-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprevious_loader.lj
21 lines (20 loc) · 1.06 KB
/
previous_loader.lj
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
using DataFrames
function data_loader(max_training_set)
main_data = readtable("train_test.csv", separator=',')
labels_train = main_data[1:max_training_set,3073] # all labels are here for training ##001-240
images_train = main_data[1:max_training_set,1:3072] # all images are here for training
labels_test = main_data[(max_training_set+1):300,3073] # all test_labels are here for testing ##241-300
images_test = main_data[(max_training_set+1):300,1:3072] # all images are here for testing
grades = ["grade-a","grade-b","grade-c","grade-d","grade-e","grade-f","grade-g","grade-h","grade-i"]
# return labels_train,images_train,labels_test,images_test,grades
data_dict = Dict(
"images_train"=> convert(images_train,zeros(Float32,240,3072)),
"labels_train"=> convert(labels_train,zeros(Float32,240,3072)),
"images_test"=> convert(images_test,zeros(Float32,60,3072)),
"labels_test"=> convert(labels_test,zeros(Float32,60,3072)),
"grades"=> convert(grades,fill("",9,1)) )
return data_dict
end
function batch_loader()
centent = 0
end