-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbruss_1D.py
executable file
·84 lines (69 loc) · 2.48 KB
/
bruss_1D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 31 21:19:17 2020
Implementation of the one-dimensional Brusselator, adapted from the 2-dimensional
Brusselator described in "Solving ORdinary Differential Equations II: stiff
and differenatial-algebraic equations" by E. Hairer and G. Wanner, page 151-152.
This constitutes a stiff PDE example. Sitffness increases as the diffusion
coefficient alpha increases, and as the number of mesh points increases.
@author: laurent
"""
import numpy as np
class brusselator_1d:
def __init__(self,alpha=0.1, xmin=0.,xmax=1.,nx=100):
self.alpha = alpha
self.x = np.linspace(xmin, xmax,nx)
self.nx = nx
self.dx = self.x[1]-self.x[0]
def fcn(self,t,y):
""" returns the time derivatives of the discretised varibles u and v """
u,v = y.reshape((2,self.nx),order='F')
dover_dxx = 1/(self.dx)**2
x = self.x
nx = self.nx
# compute second spatial derivatives with periodic BCs
dxx_u = np.zeros_like(u)
dxx_v = np.zeros_like(v)
dxx_u[1:-1] = (u[:-2]-2*u[1:-1]+u[2:])*dover_dxx
dxx_u[0] = (u[-1]-2*u[0]+u[1])*dover_dxx
dxx_u[-1] = (u[-2]-2*u[-1]+u[0])*dover_dxx
dxx_v[1:-1] = (v[:-2]-2*v[1:-1]+v[2:])*dover_dxx
dxx_v[0] = (v[-1]-2*v[0]+v[1])*dover_dxx
dxx_v[-1] = (v[-2]-2*v[-1]+v[0])*dover_dxx
# compute source term
f = 5.*( (x-0.3)**2 < 1e-2 )*(t>=1.1)
dt_uv = np.zeros((2,nx),order='F')
dt_uv[0,:] = 1. + u*u*v - 4.4*u + self.alpha*dxx_u + f #du/dt
dt_uv[1,:] = 3.4*u - u**2*v + self.alpha*dxx_v # dv/dt
dt_y = dt_uv.reshape((-1,), order='F')
return dt_y
def jac(self,t,y):
raise Exception('TODO')
def init(self):
x = self.x
u0 = 0.*x
v0 = 27*x*(1-x)**1.5
return np.vstack((u0,v0)).reshape((-1,), order='F')
def postprocess(self):
raise Exception('stop')
if __name__=='__main__':
# Test of the model
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
# prob = brusselator_1d(alpha=0.02,nx=128)
prob = brusselator_1d(nx=128)
sol = solve_ivp(fun=prob.fcn, y0=prob.init(), t_span=[0.,2.], t_eval=None,
method='Radau', atol=1e-4, rtol=1e-4, band=(4,4))
u = sol.y[::2,:]
v = sol.y[1::2,:]
fig, ax = plt.subplots(2,1,sharex=True)
# for i in range(0,len(sol.t),5):
for i in [-1]:
ax[0].plot(prob.x, u[:,i])
ax[1].plot(prob.x, v[:,i])
ax[0].grid()
ax[1].grid()
ax[-1].set_xlabel('x')
ax[0].set_ylabel('u')
ax[1].set_ylabel('u')