-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdelete_O_from_Ti.py
364 lines (311 loc) · 13 KB
/
delete_O_from_Ti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 19 10:58:36 2023
@author: xiety
"""
#注意本脚本只适用于不带缺陷的完美晶格体系
#仅仅用于找出并且删Ti周围的O原子
from pymatgen.core.composition import Composition
from pymatgen.io.vasp import Poscar
from pymatgen.analysis.local_env import VoronoiNN
import numpy as np
import random
import os
import sys
show_vac=0 #1 for use XX element to show vac position
##########You Need To Change Below Code In A Diff System##########
dir_files="C:\\Users\\xiety\\Desktop\\switch-LiNi\\Doping\\Doping_result\\doping_after_relax\\"
filename_dop="LiNiO2_331_NCM_513_Ti_num_1_0.vasp"
file_dop=dir_files+filename_dop
filename_orig="LiNiO2_331_NCM_513.vasp"
file_orig=dir_files+filename_orig
doping_ele="XX" #doping atom element
doped_ele="O" #doped atom element in original cell
sample_number=6 #this is for monte-carlo sample time
doping_num=1 #doping atom number
tolarence_dis=1e-5 #tolarence distance to judge two atom in one kind
#basic symmetric change
O_neighbor=Composition("O")
Li_neighbor=Composition("Li")
TM_ele=['Sc','Ti','V','Cr','Mn','Fe','Co','Ni','Cu','Zn','Y','Zr','Nb','Mo','Tc','Ru','Rh','Pd','Ag','Cd','Lu','Hf','Ta','W','Re','Os','Ir','Pt','Au','Hg','Lr','Rf','Db','Sg','Bh','Hs','Mt','Ds','Rg','Cn']
TM_neighbor=[Composition(x) for x in TM_ele]
structure = Poscar.from_file(file_dop).structure
# create VoronoiNN object
ele_lst=[str(i.species)[:-1] for i in structure]
vec_a=structure.lattice.matrix[0]
vec_b=structure.lattice.matrix[1]
vec_c=structure.lattice.matrix[2]
A_vec = np.vstack([vec_a, vec_b, vec_c]).T
A_inv = np.linalg.inv(A_vec)
pbc_cell_333=[-1,0,1]
#这里的center_atom_number是vesta里面的原子标号,而不是index(具体是index+1)
def neighbor_get(center_atom_number,surrounding_type):
center_atom_index = center_atom_number - 1
ele_info_neighbor=[]
for i in range(len(structure)):
dis_i=[]
for a in pbc_cell_333: #contains the 3x3x3 supercell atoms and only get the minimal distance
for b in pbc_cell_333:
for c in pbc_cell_333:
site_i=np.array(structure.sites[i].coords)+vec_a*a+vec_b*b+vec_c*c
#calculate the distance between the neighbors and the center to select the nearest neighbors
dis_i.append(np.linalg.norm(site_i - np.array(structure.sites[center_atom_index].coords)))
dis=min(dis_i)
if dis!=0:#exclude self
ele_info_neighbor.append([structure.sites[i].species,(i+1),structure.sites[i].coords,dis])
ele_info_neighbor=sorted(ele_info_neighbor,key=lambda x:x[-1])#list sorted by distance
neighbor_O_tot=[]
neighbor_Li_tot=[]
neighbor_TM_tot=[]
for i in ele_info_neighbor:
if i[0]==O_neighbor:
neighbor_O_tot.append(i)
elif i[0]==Li_neighbor:
neighbor_Li_tot.append(i)
elif i[0] in TM_neighbor:
neighbor_TM_tot.append(i)
neighbor_O_sel=neighbor_O_tot[:6]
neighbor_Li_sel=neighbor_Li_tot[:6]
neighbor_TM_sel=neighbor_TM_tot[:6]
neighbor_tot_sel=ele_info_neighbor[:6]
#print("****************Selected Atom********************")
#print(structure.sites[center_atom_index].species,(center_atom_index+1),find_cluster(center_atom_index+1),structure.sites[center_atom_index].coords)
#print("*************************************************")
atom_environment={}
surr_atom=[]
if surrounding_type=="judge":
found_Ti=0
Ti_num_count=0
for i in neighbor_tot_sel:
if str(i[0])[:-1]=="Ti":
found_Ti=1
Ti_num_count+=1
if found_Ti:
return True,Ti_num_count
else:
return False,Ti_num_count
elif surrounding_type=="TM":
for i in neighbor_TM_sel:
surr_atom.append(f'{str(i[0])[:-1]}-{i[-1]:.6f}')
#print(i[0],i[1],find_cluster(i[1]),i[2],i[3])
elif surrounding_type=="Li":
for i in neighbor_Li_sel:
surr_atom.append(f'{str(i[0])[:-1]}-{i[-1]:.6f}')
#print(i[0],i[1],find_cluster(i[1]),i[2],i[3])
elif surrounding_type=="O":
for i in neighbor_O_sel:
surr_atom.append(f'{str(i[0])[:-1]}-{i[-1]:.6f}')
#print(i[0],i[1],find_cluster(i[1]),i[2],i[3])
elif surrounding_type=="tot":
for i in neighbor_tot_sel:
surr_atom.append(f'{str(i[0])[:-1]}-{i[-1]:.6f}')
#print(i[0],i[1],find_cluster(i[1]),i[2],i[3])
return surr_atom
#判断方法:找到最近邻的原子,如果最近邻三种原子的类型,距离啥都一样,姑且认为是对称结构。
surr_doped_atom={}
doped_ele_lst=[]
ele_o_index=[]
Ti_count=[]
for i in structure:
if str(i.species)[:-1]=="O":
ele_o_index.append(structure.index(i))
include_Ti,Ti_num=neighbor_get(structure.index(i)+1,"judge")
if not include_Ti:
continue
else:
Ti_count.append([f"{str(i.species)[:-1]}-{structure.index(i)+1}",Ti_num])
doped_ele_lst.append(structure.index(i)+1)
surr_doped_atom[f"{str(i.species)[:-1]}-{structure.index(i)+1}"]=[]
surr_doped_atom[f"{str(i.species)[:-1]}-{structure.index(i)+1}"].append(neighbor_get(structure.index(i)+1,"tot"))
##########You Need To Change Above Code In A Diff System##########
##################################################################
##################################################################
print(surr_doped_atom)
def judge_same_env(env1,env2):
for i,v in enumerate(env1):
number_lst1=[i.split("-")[0] for i in env1[i]]
number_lst2=[i.split("-")[0] for i in env2[i]]
dis_lst1=[float(i.split("-")[1]) for i in env1[i]]
dis_lst2=[float(i.split("-")[1]) for i in env2[i]]
#print(number_lst1,number_lst2)
#print(dis_lst1,dis_lst2)
for j,w in enumerate(number_lst1):
if w!=number_lst2[j]:
return False
for k,x in enumerate(dis_lst1):
if (x-dis_lst2[k]>tolarence_dis):
return False
return True
#aa=judge_same_env(surr_doped_atom["Li-24"],surr_doped_atom["Li-35"])
#print(aa)
srs_raw=[int(i.split("-")[1]) for i in [key for key,v in surr_doped_atom.items()]]
print("Absolute number",srs_raw)
srs=[i-min(ele_o_index) for i in srs_raw]
print("Relative number",srs)
Ti_count=sorted(Ti_count,key=lambda x:x[-1])
print(Ti_count)
keys_atom = list(surr_doped_atom.keys())
print("***The atom list below are equivalent:**")
print("**********************************")
for i in range(len(keys_atom)):
for j in range(i+1, len(keys_atom)):
result_judge=judge_same_env(surr_doped_atom[keys_atom[i]],surr_doped_atom[keys_atom[j]])
#print(result_judge)
if not result_judge:
pass
else:
srs[j]=srs[i]
print(keys_atom[i],keys_atom[j])
print("**********************************")
tot_x_num=max(ele_o_index)-min(ele_o_index)+1 #X-site atom number
#print(tot_x_num,len(ele_o_index))
if doping_num> tot_x_num:
raise ValueError(f"The total number of {doped_ele} is {tot_x_num} and the {doping_num} is too large !")
srs_st=sorted(list(set(srs)))
#print(srs)
srs_st_index=[i-1 for i in srs_st]
srs_index=[i-1 for i in srs]
#monte-carlo part
def generate_sequence():
seq = [1]*tot_x_num
if doping_num<=len(srs_st):
indices_to_replace = random.sample([i for i in srs_st_index], doping_num)
else:
indices_to_replace = random.sample(range(len(srs)), doping_num)
for i in indices_to_replace:
seq[i] = 0
return seq
#a=generate_sequence()
#index_0=[i+1 for i,x in enumerate(a) if x==0]
# print(a,index_0)
str_list=[]
#str_list.append(generate_sequence())
print("Replace following")
dupli_cout=0
for i in range(sample_number):
#print(i)
c=generate_sequence()
index_0=[i+1 for i,x in enumerate(c) if x==0]
#print(c,index_0,len(c)) #show the doping sequence
print(index_0)
if c not in str_list:
str_list.append(c)
else:
dupli_cout+=1
if dupli_cout>40:
print("maybe it has get the maxima str number!!")
break
def factorial(n):
s = 1
for index in range(n, 0, -1):
s *= index
return s
# 定义排列函数
def A(n, k):
return factorial(n) / factorial(n - k)
# 定义组合函数
def C(n, k):
return factorial(n) / (factorial(k) * factorial(n - k))
if doping_num<=len(srs_st):
print(f"Total {doped_ele} number is :",len(srs))
print(f"Unique {doped_ele} number is :{srs_st}")
print(f"Unique {doped_ele} number is :",len(srs_st))
print(f"Doping number on {doped_ele} is {doping_num}")
print("Different structure number generated:",len(str_list),"\n")
print(f"C {len(srs_st)} {doping_num} is {int(C(len(srs_st), doping_num))}")
else:
print(f"Total {doped_ele} number is :",len(srs))
print(f"Unique {doped_ele} number is :{srs_st}")
print(f"Unique {doped_ele} number is :",len(srs_st))
#print(f"Total {doped_ele} number is :{srs}")
print(f"Doping number on {doped_ele} is {doping_num}")
print("Different structure number generated:",len(str_list),"\n")
print(f"C {len(srs)} {doping_num} is {int(C(len(srs), doping_num))}")
def create_str(file,filename):
dir_f=os.path.join(os.path.expanduser("~"), file)
if not os.path.exists("%sDoping_result"%dir_f.split(filename)[0]):
os.mkdir("%sDoping_result"%dir_f.split(filename)[0])
f1_original=open(dir_f).readlines()
f1=[]#delete the empty rows
#print("*****")
for i in f1_original:
if (len([x for x in i.split() if len(x)>0])==0):
print("empty rows")
else:
f1.append(i)
str_ele=[x for x in f1[5].split("\n")[0].split() if len(x)>0]
str_num=[int(x) for x in f1[6].split("\n")[0].split() if len(x)>0]
atom_tot=sum(str_num)
#print(atom_tot)
str_coord=[]
for i in range(atom_tot):
str_coord.append([float(x) for x in f1[i+8].split() if len(x)>3])
#print(str_coord[0])
doped_ele_range_l=0
doped_ele_posi=str_ele.index(doped_ele)
if doped_ele_posi!=0:
for i in range(doped_ele_posi):
doped_ele_range_l+=str_num[i]
doped_ele_range_r=doped_ele_range_l+str_num[str_ele.index(doped_ele)]-1
#print(doped_ele_range_l,doped_ele_range_r)
fixed_coord=[]
for i in range(len(str_coord)):
if i not in range(doped_ele_range_l,doped_ele_range_r+1):
fixed_coord.append(str_coord[i])
#print(len(fixed_coord))
fixed_ele=str_ele.copy()
fixed_ele.remove(doped_ele)
#create structure
ele_tot=[]
for i in str_list:
f_new=f1[0:5].copy()
#print(f_new)
orig_seq_pos=[]
doping_seq_pos=[]
new_coord=[]
fixed_coord_in=fixed_coord.copy()
new_coord.extend(fixed_coord_in)
#print(len(new_coord),len(new_coord[0]))
#print(new_coord)
#修改元素符号序列为dope和original元素
for j in range(len(i)):
if i[j]==1:
orig_seq_pos.append(j)
elif i[j]==0:
if show_vac==1:
doping_seq_pos.append(j)
#repositioning
#print(orig_seq_pos)
#print(doping_seq_pos)
#print(len(orig_seq_pos))
#print(len(doping_seq_pos))
for k in orig_seq_pos:
new_coord.append(str_coord[k+doped_ele_range_l])
if show_vac==1:
for k in doping_seq_pos:
new_coord.append(str_coord[k+doped_ele_range_l])
f_new.append(" ")
f_new.append(" ")
for j in range(len(fixed_ele)):
f_new[5]+=" %s"%fixed_ele[j]
f_new[6]+=" %d"%str_num[str_ele.index(fixed_ele[j])]
if show_vac==0:
f_new[5]+=" %s\n"%doped_ele
#f_new[5]+=" %s\n"%doping_ele
f_new[6]+=" %d\n"%(len(orig_seq_pos))
#f_new[6]+=" %d\n"%(len(doping_seq_pos))
elif show_vac==1:
f_new[5]+=" %s"%doped_ele
f_new[5]+=" %s\n"%doping_ele
f_new[6]+=" %d"%(len(orig_seq_pos))
f_new[6]+=" %d\n"%(len(doping_seq_pos))
f_new.append(f1[7])
for j in range(len(new_coord)):
f_new.append(" %.9f %.9f %.9f\n"%(new_coord[j][0],new_coord[j][1],new_coord[j][2]))
f_out=open(f"%sDoping_result\\%s_drop_{doped_ele}_num_{i.index(0)+1}.vasp"%(dir_f.split(filename)[0],filename.split(".vasp")[0]),"w")
for j in f_new:
f_out.writelines(j)
f_out.close()
print("structures generated in %s"%dir_f.split(filename)[0])
create_str(file_dop,filename_dop)
create_str(file_orig,filename_orig)