Skip to content

Commit 4cad930

Browse files
authored
Merge pull request #2 from lambda-feedback/new_pipeline: New pipeline: updated prompts of the chatbot
New pipeline: updated prompts of the chatbot
2 parents 2c67ce9 + 32a77ac commit 4cad930

File tree

8 files changed

+156
-200
lines changed

8 files changed

+156
-200
lines changed
Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
{
2+
"message": "mock",
3+
"params": {
4+
"include_test_data": true,
5+
"conversation_history": [
6+
{ "type": "user", "content": "hi" },
7+
{
8+
"type": "assistant",
9+
"content": "How can I assist you today? Are you working on the dot product question?"
10+
},
11+
{ "type": "user", "content": "say hi" },
12+
{
13+
"type": "assistant",
14+
"content": "Hi! How can I help you with your question or any topic you're working on?"
15+
},
16+
{ "type": "user", "content": "say bye" },
17+
{
18+
"type": "assistant",
19+
"content": "Sorry, I'm not familiar with that topic, but I can help you with the dot product question."
20+
},
21+
{ "type": "user", "content": "mock" }
22+
],
23+
"summary": "",
24+
"conversational_style": "",
25+
"question_response_details": "This is the question I am currently working on. I am currently working on Part (a). Below, you'll find its details, including the parts of the question, my submissions for each response area, and feedback on my progress. This information highlights my efforts and progress so far. \n Maths equations are in KaTex format, preserve them the same.\n # Question: Dot Product;\n Guidance to Solve the Question: None;\n Description of Question: $$\n\\vec{a}=\\begin{bmatrix}1 \\\\ 3\\\\ -2\\end{bmatrix} \\quad \\vec{b}=\\begin{bmatrix}0 \\\\ 3\\\\ 1\\end{bmatrix} \\quad \\vec{c}=\\begin{bmatrix} 1 \\\\\\ -1\\\\ -3\\end{bmatrix}\n$$;\n Expected Time to Complete the Question: 1 - 4 min;\n Time Spent on the Question This Session: 72 minutes which is too much time spent on this question.;\n \n # [CURRENTLY WORKING ON] Part (a):\n Part Content: No content;\n \n ## Response Area: 1\n Area task: What is $\\vec{a} \\ \\cdot \\ \\vec{b} \\ =$ ?\n (Secret) Expected Answer: 7;\n My Latest Submission: none made;\n No direct answer\n \n ## Worked Solution 1: \n Assuming the given basis is orthonormal, the dot product between two vectors, $\\vec{a}$ and $\\vec{b}$, can be calculated simply by multiplying their corresponding components and summing them up:\n; ;\n$$\n\\begin{array}{rl}\\vec{a} \\cdot \\vec{b} &=\\begin{bmatrix}1 \\\\ 3\\\\ -2\\end{bmatrix}•\\begin{bmatrix}0 \\\\ 3\\\\ 1\\end{bmatrix} \\\\\\\\ &= (1 \\cdot 0) + (3 \\cdot 3) + (-2 \\cdot 1) \\\\\\\\ &= 0 + 9 + (-2) \\\\\\\\ &= 7\\end{array}\n$$\n; ;\nTherefore, the dot product between vectors $\\vec{a}$ and $\\vec{b}$ is \\$7\\$\n \n \n # Part (b):\n Part Content: No content;\n \n ## Response Area: 1\n Area task: What is $\\left(\\vec{a} - \\vec{b}\\right)\\cdot \\vec{c}\\ =$ ?\n (Secret) Expected Answer: 10;\n My Latest Submission: none made;\n No direct answer\n \n ## Worked Solution 1: \n To calculate $\\left(\\vec{a} - \\vec{b}\\right) \\cdot \\vec{c}$ , we first need to find the vector resulting from the subtraction of $\\vec{b}$ from $\\vec{a}$:\n; ;\n$$\n\\begin{array}{rl}\\vec{a} - \\vec{b} &= \\begin{bmatrix}1 \\\\ 3 \\\\ -2\\end{bmatrix} - \\begin{bmatrix}0 \\\\ 3 \\\\ 1\\end{bmatrix} \\\\\\\\&= \\begin{bmatrix}1 - 0 \\\\ 3 - 3 \\\\ -2 - 1\\end{bmatrix} \\\\\\\\&= \\begin{bmatrix}1 \\\\ 0 \\\\ -3\\end{bmatrix}\\end{array}\n$$\n\nNext, we can compute the dot product of $\\left(\\vec{a} - \\vec{b}\\right)$ and $\\vec{c}$\n; ;\n$$\n\\begin{array}{rl}\\left(\\vec{a} - \\vec{b}\\right) \\cdot \\vec{c} &= \\begin{bmatrix}1 \\\\ 0 \\\\ -3\\end{bmatrix} \\cdot \\begin{bmatrix}1 \\\\ -1 \\\\ -3\\end{bmatrix} \\\\\\\\ &= (1 \\cdot 1) + (0 \\cdot -1) + (-3 \\cdot -3) \\\\\\\\&= 1 + 0 + 9 \\\\\\\\&= 10\\end{array}\n$$\n\nTherefore, $\\left(\\vec{a} - \\vec{b}\\right) \\cdot \\vec{c}$ is equal to \\$10\n \n \n # Part (c):\n Part Content: No content;\n \n ## Response Area: 1\n Area task: What is $\\left( \\ \\vec{a} \\cdot \\vec{c} \\ \\right) \\vec{b}\\ =$ ?\n (Secret) Expected Answer: 0,12,4;\n My Latest Submission: none made;\n No direct answer\n \n ## Worked Solution 1: \n To calculate $\\left( \\ \\vec{a} \\cdot \\vec{c} \\ \\right) \\vec{b}$ , we first need to find the dot product of vectors $\\vec{a}$ and $\\vec{c}$\n; ;\n$$\n\\begin{array}{rl}\\vec{a} \\cdot \\vec{c} &= \\begin{bmatrix}1 \\\\ 3 \\\\ -2\\end{bmatrix} \\cdot \\begin{bmatrix}1 \\\\ -1 \\\\ -3\\end{bmatrix} \\\\\\\\ &= (1 \\cdot 1) + (3 \\cdot -1) + (-2 \\cdot -3) \\\\\\\\&= 1 - 3 + 6 \\\\\\\\&= 4\\end{array}\n$$\n; ;\nNext, we can scale $\\vec{b}$ by $\\vec{a} \\cdot \\vec{c}$\n; ;\n$$\n\\begin{array}{rl}\\left( \\ \\vec{a} \\cdot \\vec{c} \\ \\right) \\vec{b} &= 4\\begin{bmatrix}0 \\\\ 3 \\\\ 1\\end{bmatrix} \\\\\\\\ &= \\begin{bmatrix}4\\cdot0 \\\\ 4\\cdot3 \\\\ 4\\cdot1\\end{bmatrix} \\\\\\\\&= \\begin{bmatrix}0 \\\\ 12 \\\\ 4\\end{bmatrix} \\end{array}\n$$\n; ;\n \n ",
26+
"conversation_id": "7a65b6ed-85d1-4621-8efb-4fc8e9c5a8de"
27+
}
28+
}
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
{
2+
"message": "i see. ",
3+
"params": {
4+
"include_test_data": true,
5+
"conversation_history": [
6+
{ "type": "user", "content": "i am very confused about this" },
7+
{
8+
"type": "assistant",
9+
"content": "It's understandable to feel confused, especially with complex topics like vectors and dot products. Let's take a moment to review your progress so far. You've already successfully completed parts (a) and (b), and you're currently working on part (c). \n\nIn part (c), you're asked to construct a unit vector in the same direction as the vector \\(\\vec{N} = \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix}\\). You need to normalize \\(\\vec{N}\\) by dividing it by its length. \n\nYou calculated the length of \\(\\vec{N}\\) correctly as 5, and then you can find the unit vector \\(\\vec{n}\\) by using the formula:\n\n$$\n\\vec{n} = \\frac{1}{|\\vec{N}|} \\vec{N}\n$$\n\nThis gives you:\n\n$$\n\\vec{n} = \\frac{1}{5} \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix} = \\begin{bmatrix} 0.6 \\\\ 0.8 \\end{bmatrix}\n$$\n\nIf you're struggling with any specific part of this process or if there's a particular concept that's unclear, please let me know, and I can help clarify it further!"
10+
},
11+
{ "type": "user", "content": "how did you get |N|?" },
12+
{
13+
"type": "assistant",
14+
"content": "To find the length of the vector \\(\\vec{N} = \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix}\\), we use the formula for the length (or magnitude) of a vector, which is given by:\n\n$$\n|\\vec{N}| = \\sqrt{\\vec{N} \\cdot \\vec{N}}\n$$\n\nThis means we take the dot product of the vector with itself. The dot product for a 2D vector \\(\\begin{bmatrix} x \\\\ y \\end{bmatrix}\\) is calculated as:\n\n$$\n\\vec{N} \\cdot \\vec{N} = x^2 + y^2\n$$\n\nFor \\(\\vec{N} = \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix}\\):\n\n1. Calculate \\(3^2\\) and \\(4^2\\):\n - \\(3^2 = 9\\)\n - \\(4^2 = 16\\)\n\n2. Add these results together:\n - \\(9 + 16 = 25\\)\n\n3. Finally, take the square root to find the length:\n - \\(|\\vec{N}| = \\sqrt{25} = 5\\)\n\nSo, the length of \\(\\vec{N}\\) is 5. If you have any more questions about this or need further clarification, feel free to ask!"
15+
},
16+
{ "type": "user", "content": "i see. " }
17+
],
18+
"summary": "",
19+
"conversational_style": "",
20+
"question_response_details": "This is the question I am currently working on. I am currently working on Part (c). Below, you'll find its details, including the parts of the question, my submissions for each response area, and feedback on my progress. This information highlights my efforts and progress so far. \n Maths equations are in KaTex format, preserve them the same.\n # Question: Dot Product ( Hard );\n Guidance to Solve the Question: None;\n Description of Question: ;\n Expected Time to Complete the Question: 3 - 7 min;\n Time Spent on the Question This Session: 4 minutes which is a good amount of time spent on this question.;\n \n # Part (a):\n Part Content: True or False: The formula for the dot product is always equal to multiplying the corresponding components of two vectors and summing them up;\n \n ## Response Area: 1\n \n (Secret) Expected Answer: false;\n My Latest Submission: none made;\n No direct answer\n No worked solutions for part (a);\n \n # Part (b):\n Part Content: Given that $\\vec{a}=\\begin{bmatrix}4 \\\\ -2 \\\\ -5 \\\\ 2\\end{bmatrix}$, what is its length?;\n \n ## Response Area: 1\n \n (Secret) Expected Answer: 7;\n My Latest Submission: none made;\n No direct answer\n \n ## Worked Solution 1: \n We can find the length of vector $\\vec{a}$ using the dot product\n; ;\n$$\n|\\vec{a}| = \\sqrt{\\vec{a} \\cdot \\vec{a}}\n$$\n; ;\nFirst, let's calculate the dot product of $\\vec{a}$ with itself:\n; ;\n$$\n\\begin{array}{rl}\\vec{a} \\cdot \\vec{a} &= \\begin{bmatrix}4 \\\\ -2 \\\\ -5 \\\\ 2\\end{bmatrix} \\cdot \\begin{bmatrix}4 \\\\ -2 \\\\ -5 \\\\ 2\\end{bmatrix} \\\\\\\\&= 4^2+(-2)^2+(-5)^2+2^2 \\\\\\\\ &= 49\\end{array}\n$$\n; ;\nNow, we can calculate the length of $\\vec{a}$:\n; ;\n$$\n\\begin{array}{rl}|\\vec{a}|&=\\sqrt{\\vec{a} \\cdot \\vec{a}} \\\\\\\\ &=\\sqrt{49} \\\\\\\\ &= 7\\end{array} \n$$\n; ;\nTherefore, the length of vector $\\vec{a}$ is approximately 7 arbitrary units\n \n \n # [CURRENTLY WORKING ON] Part (c):\n Part Content: Given that $\\vec{N}=\\begin{bmatrix}3 \\\\ 4 \\end{bmatrix}$, construct a new vector, $\\vec{n}$ , that is pointing along the same direction but is of unit length;\n \n ## Response Area: 1\n \n (Secret) Expected Answer: 0.6,0.8;\n My Latest Submission: none made;\n No direct answer\n \n ## Worked Solution 1: \n To construct a vector pointing in the same direction as $\\vec{N}$ but with unit length, we need to normalize it. Normalising a vector involves scaling the vector with the reciprocal of its length.\n; ;\n***\n\nFirst, let's calculate the length of $\\vec{N}$\n; ;\n$$\n\\begin{array}{rl}|\\vec{N}|&=\\sqrt{\\vec{N} \\cdot \\vec{N}} \\\\\\\\&= \\sqrt{\\begin{bmatrix}3 \\\\ 4\\end{bmatrix} \\cdot \\begin{bmatrix} 3 \\\\ 4 \\end{bmatrix}} \\\\\\\\&= \\sqrt{3^2+4^2}\\\\\\\\&= \\sqrt{25} \\\\\\\\ &= 5\\end{array}\n$$\n; ;\n***\n; ;\nNow, we can normalise $\\vec{N}$ by multiplying it by the reciprocal of its length\n; ;\n$$\n\\begin{array}{rl}\\vec{n}&=\\frac{1}{|\\vec{N}|} \\ \\vec{N}\\\\\\\\ &=\\frac{1}{5}\\begin{bmatrix}3 \\\\ 4\\end{bmatrix} \\\\\\\\ &= \\begin{bmatrix}0.6 \\\\ 0.8\\end{bmatrix}\\end{array}\n$$\n \n \n # Part (d):\n Part Content: Between the two vectors $\\vec{U}$ and $\\vec{W}$, which one of them has an orientation that is closer to $\\vec{V}$?\n; ;\n$$\n\\vec{U}=\\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix} \\quad \\vec{W}=\\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix} \\quad \\vec{V}=\\begin{bmatrix}3 \\\\ 9 \\\\ -1 \\\\ -2\\end{bmatrix}\n$$;\n \n ## Response Area: 1\n \n (Secret) Expected Answer: [false] U,[true] W;\n My Latest Submission: none made;\n No direct answer\n \n ## Worked Solution 1: \n No content\n \n ## Worked Solution 1: Stupid but more conceptually involved method\n The dot product provides information about the alignment of two vectors. Intuitively, a larger dot product indicates a closer alignment between the vectors. However, the dot product is also influenced by the magnitudes of the vectors. To ensure a fair comparison of orientations, it is necessary to normalize the vectors involved ( we don't have to normalise $\\vec{V}$ because its magnitude will influence both dot products to the same extent ). By normalising the vectors and then computing the dot product, we can accurately assess their relative orientations independent of their magnitudes.\n; ;\n***\n; ;\n### Normalisation\n; ;\nWe first have to find the length of each vector\n; ;\n$$\n\\begin{matrix}\n\\small\\boxed{\\begin{array}{rl}|\\vec{U}|&=\\sqrt{\\vec{U} \\cdot \\vec{U}} \\\\\\\\&= \\sqrt{\\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix} \\cdot \\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix}} \\\\\\\\&= \\sqrt{9^2+(-4)^2+(-5)^2+3^2}\\\\\\\\&= \\sqrt{131}\\end{array}}\n&&\n\\small\\boxed{\\begin{array}{rl}|\\vec{W}|&=\\sqrt{\\vec{W} \\cdot \\vec{W}} \\\\\\\\&= \\sqrt{\\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix} \\cdot \\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix}} \\\\\\\\&= \\sqrt{(-4)^2+7^2+(-2)^2+(-5)^2}\\\\\\\\&= \\sqrt{94}\\end{array}}\n\\end{matrix}\n$$\n; ;\n***\n; ;\nWe can then normalise them\n; ;\n$$\n\\begin{matrix}\\boxed{\\begin{array}{rl}\\vec{u}&=\\frac{1}{|\\vec{U}|} \\ \\vec{U}\\\\\\\\ &=\\frac{1}{\\sqrt{131}}\\scriptsize\\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix} \\end{array}} \\quad \\boxed{\\begin{array}{rl}\\vec{w}&=\\frac{1}{|\\vec{W}|} \\ \\vec{W}\\\\\\\\ &=\\frac{1}{\\sqrt{94}}\\scriptsize\\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix} \\end{array}}\\end{matrix}\n$$\n; ;\n***\n; ;\n### Dot Product\n; ;\nWe can now compute the dot product between the normalised vectors and $\\vec{V}$\n\n$$\n\\begin{matrix}\n\\boxed{\\begin{array}{rl}\n\\vec{u}\\cdot\\vec{V}&=\n\\left(\\frac{1}{\\sqrt{131}}\\scriptsize\\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix}\\right)•\\scriptsize \\begin{bmatrix}3 \\\\ 9 \\\\ -1 \\\\ -2\\end{bmatrix}\n\\\\\\\\\n&=\\frac{1}{\\sqrt{131}}\\left(\\scriptsize\\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix}•\\begin{bmatrix}3 \\\\ 9 \\\\ -1 \\\\ -2\\end{bmatrix}\\right)\n\\\\\\\\\n&=\\frac{1}{\\sqrt{131}}\\scriptsize[(9\\cdot3)+(-4\\cdot9)+(-5\\cdot-1)+(3\\cdot-2)]\n\\\\\\\\\n&≈-0.8737\n \\end{array}}\n\\\\\\\\\n\\boxed{\\begin{array}{rl}\n\\vec{w}\\cdot\\vec{V}&=\n\\left(\\frac{1}{\\sqrt{94}}\\scriptsize\\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix}\\right)•\\scriptsize \\begin{bmatrix}3 \\\\ 9 \\\\ -1 \\\\ -2\\end{bmatrix}\n\\\\\\\\\n&=\\frac{1}{\\sqrt{94}}\\left(\\scriptsize\\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix}•\\begin{bmatrix}3 \\\\ 9 \\\\ -1 \\\\ -2\\end{bmatrix}\\right)\n\\\\\\\\\n&=\\frac{1}{\\sqrt{94}}\\scriptsize[(-4\\cdot3)+(7\\cdot9)+(-2\\cdot-1)+(-5\\cdot-2)]\n\\\\\\\\\n&≈6.4980\n \\end{array}}\n\\end{matrix}\n$$\n; ;\nComparing the magnitudes of $\\vec{w}\\cdot\\vec{V}$ and $\\vec{u}\\cdot\\vec{V}$, we find that $\\vec{w}\\cdot\\vec{V}$ is larger than $\\vec{w}\\cdot\\vec{V}$.\n; ;\nTherefore, the vector $\\vec{W}$ has an orientation that is closer to $\\vec{V}$.\n \n ## Worked Solution 2: Plugging in numbers\n To determine which vector, $\\vec{U}$ or $\\vec{W}$, has an orientation closer to $\\vec{V}$ using the dot product-cosine formula\n; ;\n***\n1. **Calculate the dot products:**\n ; ;\n $$\n \\vec{U}\\cdot\\vec{V}=(9 \\cdot 3) + (-4 \\cdot 9) + (-5 \\cdot -1) + (3 \\cdot -2) = -10 \\\\ \\ \\\\ \\vec{W} \\cdot \\vec{V} = (-4 \\cdot 3) + (7 \\cdot 9) + (-2 \\cdot -1) + (-5 \\cdot -2) = 63\n $$\n ; ;\n ***\n2. **Calculate the magnitudes:**\n ; ;\n $$\n \\begin{matrix}\n \\small\\boxed{\\begin{array}{rl}|\\vec{U}|&=\\sqrt{\\vec{U} \\cdot \\vec{U}} \\\\\\\\&= \\sqrt{\\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix} \\cdot \\begin{bmatrix}9 \\\\ -4 \\\\ -5 \\\\ 3\\end{bmatrix}} \\\\\\\\&= \\sqrt{9^2+(-4)^2+(-5)^2+3^2}\\\\\\\\&= \\sqrt{131}\\end{array}}\n &&\n \\small\\boxed{\\begin{array}{rl}|\\vec{W}|&=\\sqrt{\\vec{W} \\cdot \\vec{W}} \\\\\\\\&= \\sqrt{\\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix} \\cdot \\begin{bmatrix}-4 \\\\ 7 \\\\ -2 \\\\ -5\\end{bmatrix}} \\\\\\\\&= \\sqrt{(-4)^2+7^2+(-2)^2+(-5)^2}\\\\\\\\&= \\sqrt{94}\\end{array}}\n \\end{matrix}\n \\\\ \\ \\\\\n \\small\\boxed{\\begin{array}{rl}|\\vec{V}|&=\\sqrt{\\vec{V} \\cdot \\vec{V}} \\\\\\\\&= \\sqrt{\\begin{bmatrix}3 \\\\ 9 \\\\ -1 \\\\ -2\\end{bmatrix} \\cdot \\begin{bmatrix}3 \\\\ 9 \\\\ -1 \\\\ -2\\end{bmatrix}} \\\\\\\\&= \\sqrt{(3)^2+9^2+(-1)^2+(-2)^2}\\\\\\\\&= \\sqrt{95}\\end{array}}\n\n $$\n ; ;\n ; ;\n ***\n3. **Calculate the cosines of the angles:**\n \n $$\n \\cos(\\theta_{\\vec{U}\\vec{V}}) = \\frac{\\vec{U}\\cdot\\vec{V}}{|\\vec{U}| |\\vec{V}|} = \\frac{-10}{\\sqrt{131} \\cdot \\sqrt{95}}\n \\\\ \\ \\\\ \\ \\\\\n \\cos(\\theta_{\\vec{W}\\vec{V}}) = \\frac{\\vec{W}\\cdot\\vec{V}}{|\\vec{W}| |\\vec{V}|} = \\frac{62}{\\sqrt{94} \\cdot \\sqrt{95}}\n $$\n ; ;\n ***\n4. **Calculate and compare the angles**\n \n $$\n \\theta_{\\vec{U}\\vec{V}}=\\cos^{-1}\\left(\\frac{-10}{\\sqrt{131} \\cdot \\sqrt{95}}\\right)≈95.1^\\circ\n \\\\ \\ \\\\ \\ \\\\\n \\theta_{\\vec{W}\\vec{V}}=\\cos^{-1}\\left(\\frac{62}{\\sqrt{94} \\cdot \\sqrt{95}}\\right)≈49.0^\\circ\n $$\n \n Since $\\theta_{\\vec{W}\\vec{V}}<\\theta_{\\vec{U}\\vec{V}}$ , the orientation of $\\vec{W}$ is closer to $\\vec{V}$ then that of \\$\\vec{U}\\$\n \n ",
21+
"conversation_id": "64602b9c-4101-4981-b501-44f6dab61ab8"
22+
}
23+
}

0 commit comments

Comments
 (0)