|
| 1 | +In order for the resultant force to be a force with magnitude \SI{30}{\N} oriented along the horizontal, the following conditions must be true, |
| 2 | +\begin{align} |
| 3 | + T_2 \cos\alpha + T_1 \cos\ang{20} &= \SI{30}{\N} \\ |
| 4 | + T_2 \sin\alpha - T_1 \sin\ang{20} &= 0 \,. |
| 5 | +\end{align} |
| 6 | +Hence, |
| 7 | +\begin{align} |
| 8 | + T_2 &= T_1\frac{\sin\ang{20}}{\sin\alpha} \label{A1:eq:Q3:T1}\\ |
| 9 | + \left( T_1 \frac{\sin\ang{20}}{\sin\alpha} \right) \cos\alpha &+ T_1\cos\ang{20} = \SI{30}{\N} \nonumber \\ |
| 10 | + T_1 &= \frac{\SI{30}{\N}}{\frac{\sin\ang{20}}{\tan\alpha} + \cos\ang{20}} \,. \label{A1:eq:Q3:T2} |
| 11 | +\end{align} |
| 12 | +When $\alpha=\ang{30}$, this yields |
| 13 | +\begin{align*} |
| 14 | + T_1&=\SI{19.58}{\N}\\ |
| 15 | + T_2&=\SI{13.39}{\N} |
| 16 | +\end{align*} |
| 17 | + |
| 18 | +Substituting the expression for $T_1$, equation~\ref{A1:eq:Q3:T1}, into the expression for $T_2$, equation~\ref{A1:eq:Q3:T2} allows us to determine $T_2$ as a function of $\alpha$, |
| 19 | +\begin{align} |
| 20 | + T_2 &=\frac{\SI{30}{\N}}{\frac{\sin\ang{20}}{\tan\alpha} + \cos\ang{20}} \frac{\sin\ang{20}}{\sin\alpha} \nonumber \\ |
| 21 | + &=\frac{\SI{30}{\N}} {\sin\ang{20}\frac{\cos\alpha}{\sin\alpha} + \cos\ang{20}} \frac{\sin\ang{20}}{\sin\alpha} \nonumber \\ |
| 22 | + &=\frac{\SI{30}{\N}} {\sin\ang{20}\frac{\cos\alpha}{\sin\alpha}\frac{\sin\alpha}{\sin\ang{20}} + \cos\ang{20}\frac{\sin\alpha}{\sin\ang{20}}} \nonumber \\ |
| 23 | + &=\frac{\SI{30}{\N}} {\cancel{\sin\ang{20}} \frac{\cos\alpha} {\cancel{\sin\alpha}} \frac{\cancel{\sin\alpha}}{\cancel{\sin\ang{20}}} + \cos\ang{20}\frac{\sin\alpha}{\sin\ang{20}}} \nonumber \\ |
| 24 | + &=\frac{\SI{30}{\N}}{\cos\alpha + \frac{\sin\alpha}{\tan\ang{20}}} \,. |
| 25 | +\end{align} |
| 26 | +Examining the form of this, we can see that $T_2$ will be minimal at $\alpha_{min}$ when $\left(\cos\alpha + \frac{\sin\alpha}{\tan\ang{20}}\right)$ is maximal. Searching for maximal stationary points in the usual manner, |
| 27 | +\begin{align} |
| 28 | + \frac{\mathrm{d}}{\mathrm{d}\alpha} \left(\cos\alpha + \frac{\sin\alpha}{\tan\ang{20}}\right) &= 0 \nonumber\\ |
| 29 | + &= -\sin\alpha_{min} +\frac{\cos\alpha_{min}}{\tan\ang{20}} \nonumber \\ |
| 30 | + \tan\alpha_{min} &= \frac{1}{\tan\ang{20}} \label{A1:eq:Q3:alpha}\\ |
| 31 | + \Rightarrow\,\alpha_{min} &= \ang{70} \nonumber |
| 32 | +\end{align} |
| 33 | +Hence, $T_2$ is minimal when $T_2$ is perpendicular to $T_1$.\sidenote[][]{This is true for all angles of $T_2$, see if you can convince yourself of this by examining equation~\ref{A1:eq:Q3:alpha} analytically.} |
| 34 | +\clearpage |
0 commit comments