Skip to content

Commit 4f0027d

Browse files
Merge pull request #217 from lambda-feedback/tr186-add-integral-as-elementary-function
Removed ~ since it causes issues with Github markdown formatting
2 parents 20a6f9b + aecddb8 commit 4f0027d

File tree

1 file changed

+54
-54
lines changed

1 file changed

+54
-54
lines changed

app/docs/user.md

Lines changed: 54 additions & 54 deletions
Original file line numberDiff line numberDiff line change
@@ -148,24 +148,24 @@ Note that the function treats radians and steradians as dimensionless values.
148148
| radian | r | $(2\pi)^{-1}$ |
149149
| steradian | sr | $(4\pi)^{-1}$ |
150150
| hertz | Hz | $\mathrm{second}^{-1}$ |
151-
| newton | N | $\mathrm{metre}~\mathrm{kilogram}~\mathrm{second}^{-2}$ |
152-
| pascal | Pa | $\mathrm{metre}^{-1}~\mathrm{kilogram}~\mathrm{second}^{-2}$ |
153-
| joule | J | $\mathrm{metre}^2~\mathrm{kilogram~second}^{-2}$ |
154-
| watt | W | $\mathrm{metre}^2~\mathrm{kilogram~second}^{-3}$ |
155-
| coulomb | C | $\mathrm{second~ampere}$ |
156-
| volt | V | $\mathrm{metre}^2~\mathrm{kilogram second}^{-3}~\mathrm{ampere}^{-1}$ |
157-
| farad | F | $\mathrm{metre}^{-2}~\mathrm{kilogram}^{-1}~\mathrm{second}^4~\mathrm{ampere}^2$ |
158-
| ohm | O | $\mathrm{metre}^2~\mathrm{kilogram second}^{-3}~\mathrm{ampere}^{-2}$ |
159-
| siemens | S | $\mathrm{metre}^{-2}~\mathrm{kilogram}^{-1}~\mathrm{second}^3~\mathrm{ampere}^2$ |
160-
| weber | Wb | $\mathrm{metre}^2~\mathrm{kilogram~second}^{-2}~\mathrm{ampere}^{-1}$ |
161-
| tesla | T | $\mathrm{kilogram~second}^{-2} \mathrm{ampere}^{-1}$ |
162-
| henry | H | $\mathrm{metre}^2~\mathrm{kilogram~second}^{-2}~\mathrm{ampere}^{-2}$ |
151+
| newton | N | $\mathrm{metre} \mathrm{kilogram} \mathrm{second}^{-2}$ |
152+
| pascal | Pa | $\mathrm{metre}^{-1} \mathrm{kilogram} \mathrm{second}^{-2}$ |
153+
| joule | J | $\mathrm{metre}^2 \mathrm{kilogram second}^{-2}$ |
154+
| watt | W | $\mathrm{metre}^2 \mathrm{kilogram second}^{-3}$ |
155+
| coulomb | C | $\mathrm{second ampere}$ |
156+
| volt | V | $\mathrm{metre}^2 \mathrm{kilogram second}^{-3} \mathrm{ampere}^{-1}$ |
157+
| farad | F | $\mathrm{metre}^{-2} \mathrm{kilogram}^{-1} \mathrm{second}^4 \mathrm{ampere}^2$ |
158+
| ohm | O | $\mathrm{metre}^2 \mathrm{kilogram second}^{-3} \mathrm{ampere}^{-2}$ |
159+
| siemens | S | $\mathrm{metre}^{-2} \mathrm{kilogram}^{-1} \mathrm{second}^3 \mathrm{ampere}^2$ |
160+
| weber | Wb | $\mathrm{metre}^2 \mathrm{kilogram second}^{-2} \mathrm{ampere}^{-1}$ |
161+
| tesla | T | $\mathrm{kilogram second}^{-2} \mathrm{ampere}^{-1}$ |
162+
| henry | H | $\mathrm{metre}^2 \mathrm{kilogram second}^{-2} \mathrm{ampere}^{-2}$ |
163163
| lumen | lm | $\mathrm{candela}$ |
164-
| lux | lx | $\mathrm{metre}^{-2}~\mathrm{candela}$ |
164+
| lux | lx | $\mathrm{metre}^{-2} \mathrm{candela}$ |
165165
| becquerel | Bq | $\mathrm{second}^{-1}$ |
166-
| gray | Gy | $\mathrm{metre}^2~\mathrm{second}^{-2}$ |
167-
| sievert | Sv | $\mathrm{metre}^2~\mathrm{second}^{-2}$ |
168-
| katal | kat | $\mathrm{mole~second}^{-1}$ |
166+
| gray | Gy | $\mathrm{metre}^2 \mathrm{second}^{-2}$ |
167+
| sievert | Sv | $\mathrm{metre}^2 \mathrm{second}^{-2}$ |
168+
| katal | kat | $\mathrm{mole second}^{-1}$ |
169169

170170
###### Table: Common non-SI units
171171

@@ -176,52 +176,52 @@ Note that only the first table in this section has short form symbols defined, t
176176

177177
| Unit name | Symbol | Expressed in SI units |
178178
|-------------------|:-------|:-------------------------------------------|
179-
| minute | min | $60~\mathrm{second}$ |
180-
| hour | h | $3600~\mathrm{second}$ |
179+
| minute | min | $60 \mathrm{second}$ |
180+
| hour | h | $3600 \mathrm{second}$ |
181181
| degree | deg | $\frac{1}{360}$ |
182-
| liter | l | $10^{-3}~\mathrm{metre}^3$ |
183-
| metric_ton | t | $10^3~\mathrm{kilogram}$ |
182+
| liter | l | $10^{-3} \mathrm{metre}^3$ |
183+
| metric_ton | t | $10^3 \mathrm{kilogram}$ |
184184
| neper | Np | $1$ |
185-
| bel | B | $\frac{1}{2}~\ln(10)$ |
186-
| electronvolt | eV | $1.60218 \cdot 10^{-19}~\mathrm{joule}$ |
187-
| atomic_mass_unit | u | $1.66054 \cdot 10^{-27}~\mathrm{kilogram}$ |
188-
| angstrom | å | $10^{-10}~\mathrm{metre}$ |
185+
| bel | B | $\frac{1}{2} \ln(10)$ |
186+
| electronvolt | eV | $1.60218 \cdot 10^{-19} \mathrm{joule}$ |
187+
| atomic_mass_unit | u | $1.66054 \cdot 10^{-27} \mathrm{kilogram}$ |
188+
| angstrom | å | $10^{-10} \mathrm{metre}$ |
189189

190190
| Unit name | Expressed in SI units |
191191
|------------------|:-----------------------------------------------------|
192-
| day | $86400~\mathrm{second}$ |
192+
| day | $86400 \mathrm{second}$ |
193193
| angleminute | $\frac{\pi}{10800}$ |
194194
| anglesecond | $\frac{\pi}{648000}$ |
195-
| astronomicalunit | $149597870700~\mathrm{metre}$ |
196-
| nauticalmile | $1852~\mathrm{metre}$ |
197-
| knot | $\frac{1852}{3600}~\mathrm{metre~second}^{-1}$ |
198-
| are | $10^2~\mathrm{metre}^2$ |
199-
| hectare | $10^4~\mathrm{metre}^2$ |
200-
| bar | $10^5~\mathrm{pascal}$ |
201-
| barn | $10^{-28}~\mathrm{metre}$ |
202-
| curie | $3.7 \cdot 10^{10}~\mathrm{becquerel} |
203-
| roentgen | $2.58 \cdot 10^{-4}~\mathrm{kelvin~(kilogram)}^{-1}$ |
204-
| rad | $10^{-2}~\mathrm{gray}$ |
205-
| rem | $10^{-2}~\mathrm{sievert}$ |
195+
| astronomicalunit | $149597870700 \mathrm{metre}$ |
196+
| nauticalmile | $1852 \mathrm{metre}$ |
197+
| knot | $\frac{1852}{3600} \mathrm{metre second}^{-1}$ |
198+
| are | $10^2 \mathrm{metre}^2$ |
199+
| hectare | $10^4 \mathrm{metre}^2$ |
200+
| bar | $10^5 \mathrm{pascal}$ |
201+
| barn | $10^{-28} \mathrm{metre}$ |
202+
| curie | $3.7 \cdot 10^{10} \mathrm{becquerel} |
203+
| roentgen | $2.58 \cdot 10^{-4} \mathrm{kelvin (kilogram)}^{-1}$ |
204+
| rad | $10^{-2} \mathrm{gray}$ |
205+
| rem | $10^{-2} \mathrm{sievert}$ |
206206

207207
###### Table: Imperial units
208208

209209
Commonly imperial units taken from [Wikipedia, Imperial Units](https://en.wikipedia.org/wiki/Imperial_units)
210210

211211
| Unit name | Symbol | Expressed in SI units |
212212
|-------------------|:-------|:----------------------------------------------|
213-
| inch | in | $0.0254~\mathrm{metre}$ |
214-
| foot | ft | $0.3048~\mathrm{metre}$ |
215-
| yard | yd | $0.9144~\mathrm{metre}$ |
216-
| mile | mi | $1609.344~\mathrm{metre}$ |
217-
| fluid ounce | fl oz | $28.4130625~\mathrm{millilitre}$ |
218-
| gill | gi | $142.0653125~\mathrm{millilitre}$ |
219-
| pint | pt | $568.26125~\mathrm{millilitre}$ |
220-
| quart | qt | $1.1365225~\mathrm{litre}$ |
221-
| gallon | gal | $4546.09~\mathrm{litre}$ |
222-
| ounce | oz | $28.349523125~\mathrm{gram}$ |
223-
| pound | lb | $0.45359237~\mathrm{kilogram}$ |
224-
| stone | st | $6.35029318~\mathrm{kilogram}$ |
213+
| inch | in | $0.0254 \mathrm{metre}$ |
214+
| foot | ft | $0.3048 \mathrm{metre}$ |
215+
| yard | yd | $0.9144 \mathrm{metre}$ |
216+
| mile | mi | $1609.344 \mathrm{metre}$ |
217+
| fluid ounce | fl oz | $28.4130625 \mathrm{millilitre}$ |
218+
| gill | gi | $142.0653125 \mathrm{millilitre}$ |
219+
| pint | pt | $568.26125 \mathrm{millilitre}$ |
220+
| quart | qt | $1.1365225 \mathrm{litre}$ |
221+
| gallon | gal | $4546.09 \mathrm{litre}$ |
222+
| ounce | oz | $28.349523125 \mathrm{gram}$ |
223+
| pound | lb | $0.45359237 \mathrm{kilogram}$ |
224+
| stone | st | $6.35029318 \mathrm{kilogram}$ |
225225

226226
#### `plus_minus` and `minus_plus`
227227

@@ -295,7 +295,7 @@ There are three examples in the example problem set. Each examples uses an EXPRE
295295

296296
##### Example (a)
297297

298-
The response area below has answer `2.00 km/h` $2.00~\frac{\mathrm{kilometre}}{\mathrm{hour}}$ .
298+
The response area below has answer `2.00 km/h` $2.00 \frac{\mathrm{kilometre}}{\mathrm{hour}}$ .
299299

300300
There are many possible correct responses, e.g. `2.00 kilometre/hour`, `2 km/h`, `2000 m/h`, `0.556 meter/second`, `2 metre/millihour`.
301301

@@ -608,12 +608,12 @@ Some more feedback customisation is shown in *Examples: Customizing comparison u
608608

609609
#### Using integrals
610610

611-
The evaluation function can handle one-dimensional definite integrals, i.e. expression in the form $\int_a^b f(x)~\mathrm{d}x$, if the `elementary\\\_functions` parameter is set to true. The integrand and the boundary values can be symbolic.
611+
The evaluation function can handle one-dimensional definite integrals, i.e. expression in the form $\int_a^b f(x) \mathrm{d}x$, if the `elementary_functions` parameter is set to true. The integrand and the boundary values can be symbolic.
612612

613-
**Note:** Indefinite integrals (expression in the form $\int f(x)~\mathrm{d}x$), contour integrals ($\oint f(x)~\mathrm{d}x$) and integrals based on abstract measures ($\int_A f(x)~\mathrm{d}\mu$) are not supported.
613+
**Note:** Indefinite integrals (expression in the form $\int f(x) \mathrm{d}x$), contour integrals ($\oint f(x) \mathrm{d}x$) and integrals based on abstract measures ($\int_A f(x) \mathrm{d}\mu$) are not supported.
614614

615-
The expression $\int_a^b f(x)~\mathrm{d}x$ can be written `Integral(f(x), (x, a, b))`. The syntax works as follows: the integral sign corresponds to `Integral` (the short form `int` can also be used), which must be followed by two argument, first is the integrand (the function that is integrated), the second is a triple containing; the variable to be integrated over and the two boundary values.
615+
The expression $\int_a^b f(x) \mathrm{d}x$ can be written `Integral(f(x), (x, a, b))`. The syntax works as follows: the integral sign corresponds to `Integral` (the short form `int` can also be used), which must be followed by two argument, first is the integrand (the function that is integrated), the second is a triple containing; the variable to be integrated over and the two boundary values.
616616

617-
Here is an example of an integral that can be fully evaluated, more specifically $\int_0^2 3xy~\mathrm{d}x = 6y$. If the answer is set to `Integral(3xy, (x, 0, 2))` then response area will accept both integral expressions, e.g. `int(3*y*x, (x, 0, 2))`, and computed expressions, e.g. `6y`.
617+
Here is an example of an integral that can be fully evaluated, more specifically $\int_0^2 3xy \mathrm{d}x = 6y$. If the answer is set to `Integral(3xy, (x, 0, 2))` then response area will accept both integral expressions, e.g. `int(3*y*x, (x, 0, 2))`, and computed expressions, e.g. `6y`.
618618

619-
The boundary and function does not need to be defined explicitly. As an example of a more abstract integral we can consider $\int_a^b f(x)+g(x)~\mathrm{d}x$. If the answer is set to `Integral(f(x)+g(x), (x, a, b))` then, for example, `int(g(x)+f(x), (x, a, b))` $\int_a^b g(x)+f(x)~\mathrm{d}x$ and `int(f(x), (x, a, b)) + int(g(x), (x, a, b))` $\int_a^b f(x)~\mathrm{d}x+\int_a^b g(x)~\mathrm{d}x$.
619+
The boundary and function does not need to be defined explicitly. As an example of a more abstract integral we can consider $\int_a^b f(x)+g(x) \mathrm{d}x$. If the answer is set to `Integral(f(x)+g(x), (x, a, b))` then, for example, `int(g(x)+f(x), (x, a, b))` $\int_a^b g(x)+f(x) \mathrm{d}x$ and `int(f(x), (x, a, b)) + int(g(x), (x, a, b))` $\int_a^b f(x) \mathrm{d}x+\int_a^b g(x) \mathrm{d}x$.

0 commit comments

Comments
 (0)