You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| fluid ounce | fl oz | $28.4130625~\mathrm{millilitre}$ |
218
-
| gill | gi | $142.0653125~\mathrm{millilitre}$ |
219
-
| pint | pt | $568.26125~\mathrm{millilitre}$ |
220
-
| quart | qt | $1.1365225~\mathrm{litre}$ |
221
-
| gallon | gal | $4546.09~\mathrm{litre}$ |
222
-
| ounce | oz | $28.349523125~\mathrm{gram}$ |
223
-
| pound | lb | $0.45359237~\mathrm{kilogram}$ |
224
-
| stone | st | $6.35029318~\mathrm{kilogram}$ |
213
+
| inch | in | $0.0254\mathrm{metre}$ |
214
+
| foot | ft | $0.3048\mathrm{metre}$ |
215
+
| yard | yd | $0.9144\mathrm{metre}$ |
216
+
| mile | mi | $1609.344\mathrm{metre}$ |
217
+
| fluid ounce | fl oz | $28.4130625\mathrm{millilitre}$ |
218
+
| gill | gi | $142.0653125\mathrm{millilitre}$ |
219
+
| pint | pt | $568.26125\mathrm{millilitre}$ |
220
+
| quart | qt | $1.1365225\mathrm{litre}$ |
221
+
| gallon | gal | $4546.09\mathrm{litre}$ |
222
+
| ounce | oz | $28.349523125\mathrm{gram}$ |
223
+
| pound | lb | $0.45359237\mathrm{kilogram}$ |
224
+
| stone | st | $6.35029318\mathrm{kilogram}$ |
225
225
226
226
#### `plus_minus` and `minus_plus`
227
227
@@ -295,7 +295,7 @@ There are three examples in the example problem set. Each examples uses an EXPRE
295
295
296
296
##### Example (a)
297
297
298
-
The response area below has answer `2.00 km/h` $2.00~\frac{\mathrm{kilometre}}{\mathrm{hour}}$ .
298
+
The response area below has answer `2.00 km/h` $2.00\frac{\mathrm{kilometre}}{\mathrm{hour}}$ .
299
299
300
300
There are many possible correct responses, e.g. `2.00 kilometre/hour`, `2 km/h`, `2000 m/h`, `0.556 meter/second`, `2 metre/millihour`.
301
301
@@ -608,12 +608,12 @@ Some more feedback customisation is shown in *Examples: Customizing comparison u
608
608
609
609
#### Using integrals
610
610
611
-
The evaluation function can handle one-dimensional definite integrals, i.e. expression in the form $\int_a^b f(x)~\mathrm{d}x$, if the `elementary\\\_functions` parameter is set to true. The integrand and the boundary values can be symbolic.
611
+
The evaluation function can handle one-dimensional definite integrals, i.e. expression in the form $\int_a^b f(x)\mathrm{d}x$, if the `elementary_functions` parameter is set to true. The integrand and the boundary values can be symbolic.
612
612
613
-
**Note:** Indefinite integrals (expression in the form $\int f(x)~\mathrm{d}x$), contour integrals ($\oint f(x)~\mathrm{d}x$) and integrals based on abstract measures ($\int_A f(x)~\mathrm{d}\mu$) are not supported.
613
+
**Note:** Indefinite integrals (expression in the form $\int f(x)\mathrm{d}x$), contour integrals ($\oint f(x)\mathrm{d}x$) and integrals based on abstract measures ($\int_A f(x)\mathrm{d}\mu$) are not supported.
614
614
615
-
The expression $\int_a^b f(x)~\mathrm{d}x$ can be written `Integral(f(x), (x, a, b))`. The syntax works as follows: the integral sign corresponds to `Integral` (the short form `int` can also be used), which must be followed by two argument, first is the integrand (the function that is integrated), the second is a triple containing; the variable to be integrated over and the two boundary values.
615
+
The expression $\int_a^b f(x)\mathrm{d}x$ can be written `Integral(f(x), (x, a, b))`. The syntax works as follows: the integral sign corresponds to `Integral` (the short form `int` can also be used), which must be followed by two argument, first is the integrand (the function that is integrated), the second is a triple containing; the variable to be integrated over and the two boundary values.
616
616
617
-
Here is an example of an integral that can be fully evaluated, more specifically $\int_0^2 3xy~\mathrm{d}x = 6y$. If the answer is set to `Integral(3xy, (x, 0, 2))` then response area will accept both integral expressions, e.g. `int(3*y*x, (x, 0, 2))`, and computed expressions, e.g. `6y`.
617
+
Here is an example of an integral that can be fully evaluated, more specifically $\int_0^2 3xy\mathrm{d}x = 6y$. If the answer is set to `Integral(3xy, (x, 0, 2))` then response area will accept both integral expressions, e.g. `int(3*y*x, (x, 0, 2))`, and computed expressions, e.g. `6y`.
618
618
619
-
The boundary and function does not need to be defined explicitly. As an example of a more abstract integral we can consider $\int_a^b f(x)+g(x)~\mathrm{d}x$. If the answer is set to `Integral(f(x)+g(x), (x, a, b))` then, for example, `int(g(x)+f(x), (x, a, b))` $\int_a^b g(x)+f(x)~\mathrm{d}x$ and `int(f(x), (x, a, b)) + int(g(x), (x, a, b))` $\int_a^b f(x)~\mathrm{d}x+\int_a^b g(x)~\mathrm{d}x$.
619
+
The boundary and function does not need to be defined explicitly. As an example of a more abstract integral we can consider $\int_a^b f(x)+g(x)\mathrm{d}x$. If the answer is set to `Integral(f(x)+g(x), (x, a, b))` then, for example, `int(g(x)+f(x), (x, a, b))` $\int_a^b g(x)+f(x)\mathrm{d}x$ and `int(f(x), (x, a, b)) + int(g(x), (x, a, b))` $\int_a^b f(x)\mathrm{d}x+\int_a^b g(x)\mathrm{d}x$.
0 commit comments