diff --git a/CODE-OF-CONDUCT.md b/CODE-OF-CONDUCT.md new file mode 100644 index 00000000..243525af --- /dev/null +++ b/CODE-OF-CONDUCT.md @@ -0,0 +1,42 @@ +# Code of Conduct + +## Our Pledge + +In the interest of developing an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a smooth experience for everyone, regardless of age, size, personal quirks, ethnicity, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, religion, sex inclinations, or sexual identity and orientation. + +## Our Standards + +Examples of behavior that contributes to creating a positive environment include: + +- Using welcoming and inclusive language +- Being respectful of differing viewpoints and experiences +- Gracefully accepting constructive criticism +- Focusing on what is best for the community +- Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +- Trolling, insulting/derogatory comments, and personal or political attacks +- Public or private harassment +- Publishing others' private information, without explicit permission +- Other conduct which could reasonably be considered inappropriate in a friendly setting + +## Our Responsibilities + +Project maintainers are responsible for suggesting best practices of acceptable behavior and are in a position to take appropriate and fair corrective action in response to any instances of unacceptable behavior. + +Project maintainers may claim the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. + +## Scope + +This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, public conferences and scientific gatherings, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. + +## Reporting + +Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team or in the [Issues page](https://github.com/kumiori/irrevolutions/issues). All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team maintains confidentiality with regard to the details of an incident. + +Project maintainers are bound to the Code of Conduct as well, failing to honour its best practices may lead to temporary or permanent repercussions as determined by other members of the project's leadership. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant](https://www.contributor-covenant.org), version 1.4, available at [https://www.contributor-covenant.org/version/1/4/code-of-conduct.html](https://www.contributor-covenant.org/version/1/4/code-of-conduct.html). \ No newline at end of file diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md new file mode 100644 index 00000000..f9cfb6dc --- /dev/null +++ b/CONTRIBUTING.md @@ -0,0 +1,34 @@ +# Contributing to Our Project +We welcome contributions from everyone in the community + +### Reporting bugs + +If you find a bug in Irrevolutions, please report it on the [GitHub issue +tracker](https://github.com/fenics/dolfinx/issues/new?labels=bug). + + +### Suggesting enhancements + +If you want to suggest a new feature or an improvement of a current +feature, you can submit this on the [issue +tracker](https://github.com/fenics/dolfinx/issues). + + +### Submitting a pull request + +To contribute code DOLFINx, create a pull request. If you want to +contribute, but are unsure where to start, have a look at the [Discussions page](https://github.com/kumiori/irrevolutions/discussions). +For substantial changes/contributions, please start with an issue or +start a new Discussion thread. + +On opening a pull request, unit tests will run on GitHub CI. You can +click on these in the pull request to see where (if anywhere) the tests +are failing. + + +### Code of conduct + +We suggest all our contributors to read the [code of +conduct](CODE-OF-CONDUCT.md). + + diff --git a/README.md b/README.md index f4eccf82..8bb070b8 100644 --- a/README.md +++ b/README.md @@ -112,6 +112,9 @@ Each file should have at least the "copyright" line and a pointer to where the f along with `irrevolution`. If not, see . +### Further information + + ## Star History diff --git a/contributed/DIC_CT_35/DIC_DATA_Build_Gmsh .ipynb b/contributed/DIC_CT_35/DIC_DATA_Build_Gmsh .ipynb deleted file mode 100644 index 42654073..00000000 --- a/contributed/DIC_CT_35/DIC_DATA_Build_Gmsh .ipynb +++ /dev/null @@ -1,512 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import pandas as pd\n", - "import numpy as np\n", - "import math\n", - "import warnings\n", - "import matplotlib.pyplot as plt\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Extraire DIC data" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "filename = \"CT_R35_1\"\n", - "# load csv file XY positions\n", - "x_coord = pd.read_csv('/Users/xinyuanzhai/Desktop/Donnes_DIC/' + filename + '/x.csv',names=[\"X\"])\n", - "y_coord = pd.read_csv('/Users/xinyuanzhai/Desktop/Donnes_DIC/' + filename + '/y.csv',names=[\"Y\"])\n", - "ux = pd.read_csv('/Users/xinyuanzhai/Desktop/Donnes_DIC/' + filename + '/u1_cod.csv',header=None)\n", - "uy = pd.read_csv('/Users/xinyuanzhai/Desktop/Donnes_DIC/' + filename + '/u2_cod.csv',header=None)\n", - "\n", - "#create dataframe for DIC data\n", - "contour = pd.concat([x_coord, y_coord,ux,uy],axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAANOCAYAAABQpgQOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9ccyl6Vmfdz/1GDqoccbIS+XxOjJq8FBjRQKfrFDVIGiCBtoEW/3LpRKuhLQVctvUTSfYTQrnLUV1mCStKHHKhjjGCtiyCh0sBB4gUoBWJu4ZhtrY7cRrOcU749iLyFAjj+1gnv7hz863y+dvfvPNvef83vu+LsnCPue3z16XxF+vvvM+Y84ZAAAAAAAAAABZ/GuHFgAAAAAAAACAWvCwAQAAAAAAAABS4WEDAAAAAAAAAKTCwwYAAAAAAAAASIWHDQAAAAAAAACQyrlDC9yPF73oRfNlL3vZoTUAAAAAAAAA4Bg3btz43TnnIyd9Z/+w4WUve1nsdrtDawAAAAAAAADAMcYY/++X+46fUQAAAAAAAABAKjxsAAAAAAAAAIBUeNgAAAAAAAAAAKnwsAEAAAAAAAAAUuFhAwAAAAAAAACkwsMGAAAAAAAAAEiFhw0AAAAAAAAAkAoPGwAAAAAAAAAgFR42AAAAAAAAAEAqPGwAAAAAAAAAgFR42AAAAAAAAAAAqfCwAQAAAAAAAABS4WEDAAAAAAAAAKTCwwYAAAAAAAAASIWHDQAAAAAAAACQCg8bAAAAAAAAACAVHjYAAAAAAAAAQCo8bAAAAAAAAACAVHjYAAAAAAAAAACp8LABAAAAAAAAAFK578OGMcZbxxifHGP89rM+/8/HGLfGGB8cY/zIsc/fNMZ48ui7y8c+f9UY4wNH3/3oGGPkpgAAAAAAAACAA8pfNrwtIr7j+AdjjG+LiFdHxJ+Zc35DRPzNo89fERGvjYhvOPpn3jLGeN7RP/Z3I+LxiPi6o/8840wAAAAAAAAAqMF9HzbMOX8tIn7vWR9/X0S8ec752aPNJ48+f3VEvHPO+dk550cj4smIeGyM8eKIeMGc871zzhkRb4+I12RFAAAAAAAAAIAPZ31nw8sj4s+NMf7JGONXxxh/9ujzl0TEx47tnjr67CVH//3Zn5/IGOPxMcZujLF7+umnz6gIAAAAAAAAAIfgrA8bzkXECyPimyPiSkS86+gdDCe9h2Ge8vmJzDmfmHNu5pybRx555IyKAAAAAAAAAHAIzvqw4amI+Nn5Bd4XEX8UES86+vylx3aPRsSdo88fPeFzAAAAAAAAACjGWR82XIuIfy8iYozx8oj4ioj43Yh4d0S8dozxlWOMr40vvAjyfXPOj0fEp8YY33z0FxDfExE/99D2AAAAAAAAAGDHufsNxhjviIhvjYgXjTGeiogfjIi3RsRbj67D/FxEvO7oxY8fHGO8KyI+FBF/GBGvn3N+/uio74sv3GxxPiJ+8eg/AAAAAAAAAFCM8YVnBL5sNpu52+0OrQEAAAAAAAAAxxhj3Jhzbk767qw/owAAAAAAAAAAOBEeNgAAAAAAAABAKjxsAAAAAAAAAIBU7vuCSAAAgENz7ebtuHr9Vty5ey8uXjgfVy5fitd840ue090h/p209m7o1OrsRmvNhk6tzm60nr1hjTxvu90e2uFUnnjiie3jjz9+aA0AADgQ127ejjf97Afi9z79uYiI+NRn/jB+9Z8+HY++8Hx8/Ytf8JzsDvHvpLV3Q6dWZzdaazZ0anV2o/XsDc4sy/Lx7Xb7xEnf8TMKAACw5ur1W3HvX37+GZ/d+5efj6vXbz1nu0P8O2nt3dCp1dmN1poNnVqd3Wg9e8Na4WEDAABYc+fuPenzzN0h/p2H2jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCwwYAALDm4oXz0ueZu0P8Ow+1c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd+pZa4WHDQAAYM2Vy5fi/POf94zPzj//eXHl8qXnbHeIfyetvRs6tTq70VqzoVOrsxutZ29YK7wgEgAArPn6F78gHn3h+fjA7d+PP/jMH8ZLLpyPH/hLr/hjb2rO3B3i30lr74ZOrc5utNZs6NTq7Ebr2RucOe0FkWPOuW+fB2Kz2czdbndoDQAAAAAAAAA4xhjjxpxzc9J35/YtAwAA8EUq3HtdYefs1qmhU6uzG601Gzq1OrvRevaGNcLPKAAA4CBUuPe6ws7ZrVNDp1ZnN1prNnRqdXaj9ewNzpz2MwpeEAkAAAehwr3XFXbObp0aOrU6u9Fas6FTq7MbrWdvWCs8bAAAgINQ4d7rCjtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3WnnrVWeNgAAAAHocK91xV2zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qTj1rrfCwAQAADkKFe68r7JzdOjV0anV2o7VmQ6dWZzdaz96wVnhBJAAAHIQK915X2Dm7dWro1OrsRmvNhk6tzm60nr3BmdNeEDnmnPv2eSA2m83c7XaH1gAAAAAAAACAY4wxbsw5Nyd9d27fMgAAUB/n+6zVnbMbrTUbOrU6u9Fas6FTq7MbrWdvWCP8jAIAAFJxvs9a3Tm70VqzoVOrsxutNRs6tTq70Xr2BmdO+xkFL4gEAIBUnO+zVnfObrTWbOjU6uxGa82GTq3ObrSevWGt8LABAABScb7PWt05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnXrWWuFhAwAApOJ8n7W6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCwwYAAEjF+T5rdefsRmvNhk6tzm601mzo1OrsRuvZG9YKL4gEAIBUnO+zVnfObrTWbOjU6uxGa82GTq3ObrSevcGZ014QydWXAADwQFS+ogkAAAAAcuAvGwAAQIarqA7vRmvNhk6tzm601mzo1OrsRitXXwIAAHxZuIrq8G601mzo1OrsRmvNhk6tzm60cvUlAADAl4WrqA7vlr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3XH0JAABwBFdRHd4te+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu64+hIAAOAIrqI6vButNRs6tTq70VqzoVOrsxutXH1pBy+IBADwgauoDu9Ga82GTq3ObrTWbOjU6uxGa7+rL8ecc98+D8Rms5m73e7QGgAAAAAAAABwjDHGjTnn5qTvzu1bBgAAPLl283ZcvX4r7ty9FxcvnI8rly+d+GRd2WWedaidsxutNRs6tTq70VqzoVOrsxutZ29YI/yMAgAAuPe6YEOnVmc3Wms2dGp1dqO1ZkOnVvUsZ077GQUviAQAAO69LtjQqdXZjdaaDZ1and1ordnQqVU9a63wsAEAALj3Ouo1qDtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3WnnrVWeNgAAADcex31GtSds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6U89aKzxsAAAA7r0u2NCp1dmN1poNnVqd3Wit2dCpVT1rrfCCSAAA4N7rgg2dWp3daK3Z0KnV2Y3Wmg2dWtWznDntBZFcfQkAUJzKVyoBAAAAgCf8ZQMAQGGcr3Fy3jm70VqzoVOrsxutNRs6tTq70crVlwAAUAjna5ycd85utNZs6NTq7EZrzYZOrc5utHL1JQAAFML5GifnnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ60VHjYAABTG+Ron552zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42AAAUxvkaJ+edsxutNRs6tTq70VqzoVOrsxutXH1pBy+IBAA4O87XODnvnN1ordnQqdXZjdaaDZ1and1o7Xf15Zhz7tvngdhsNnO32x1aAwAAAAAAAACOMca4MefcnPTduX3LAABADtdu3o6r12/Fnbv34uKF83Hl8qUTn4QfYufs1qmhU6uzG601Gzq1OrvRWrOhU6t61hrhZxQAACukwp3RzjtnN1prNnRqdXajtWZDp1ZnN1rP3uDMaT+j4AWRAAArpMKd0c47ZzdaazZ0anV2o7VmQ6dWZzdaz96wVnjYAACwQircGe28c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCwwYAgBVS4c5o552zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42AACskAp3RjvvnN1ordnQqdXZjdaaDZ1and1oPXvDWuEFkQAAK6TCndHOO2c3Wms2dGp1dqO1ZkOnVmc3Ws/e4MxpL4jk6ksAADMqX4EEAAAAAD3gLxsAAIxwvp5J3Tm7dWro1OrsRmvNhk6tzm601mzo1MrVlwAAsDecr2dSd85unRo6tTq70VqzoVOrsxutNRs6tapnrRUeNgAAGOF8PZO6c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3WnnrVWeNgAAGCE8/VM6s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnXrWWuFhAwCAEc7XM6k7Z7dODZ1and1ordnQqdXZjdaaDZ1a1bPWCi+IBAAwwvl6JnXn7NapoVOrsxutNRs6tTq70VqzoVOrepYzp70gcsw59+3zQGw2m7nb7Q6tAQAAAAAAAADHGGPcmHNuTvru3L5lAAC6cu3m7bh6/VbcuXsvLl44H1cuXzrxyXWFnbNbp4ZOrc5utNZs6NTq7EZrzYZOrepZa4SfUQAA7AHnO56zd85unRo6tTq70VqzoVOrsxutNRs6tapnOXPazyh4QSQAwB5wvuM5e+fs1qmhU6uzG601Gzq1OrvRWrOhU6t61lrhYQMAwB5wvuM5e+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qTj1rrfCwAQBgDzjf8Zy9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3WnnrVWeNgAALAHnO94zt45u3Vq6NTq7EZrzYZOrc5utNZs6NSqnrVWeEEkAMAecL7jOXvn7NapoVOrsxutNRs6tTq70VqzoVOrepYzp70gcsw59+3zQGw2m7nb7Q6tAQAAAAAAAADHGGPcmHNuTvru3L5lAAAq0uUu6E6tzm601mzo1OrsRmvNhk6tzm60nr1hjfAzCgCAh6TLXdCdWp3daK3Z0KnV2Y3Wmg2dWp3daD17gzOn/YyCF0QCADwkXe6C7tTq7EZrzYZOrc5utNZs6NTq7Ebr2RvWCg8bAAAeki53Qas7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fqWWuFhw0AAA9Jl7ug1Z2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO/WstcLDBgCAh6TLXdCdWp3daK3Z0KnV2Y3Wmg2dWp3daD17w1rhBZEAAA9Jl7ugO7U6u9Fas6FTq7MbrTUbOrU6u9F69gZnTntBJFdfAgCcQuXriAAAAAAAniv4ywYAgC8D1zP1bXV2o7VmQ6dWZzdaazZ0anV2o5WrLwEA4AiuZ+rb6uxGa82GTq3ObrTWbOjU6uxGK1dfAgDAEVzP1LfV2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7tSz1goPGwAAvgxcz9S31dkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu7Us9YKDxsAAL4MXM/Ut9XZjdaaDZ1and1ordnQqdXZjVauvvxjjDHeuizL31uW5XXb7fYtz/ruv16W5f9YluXvbLfbTx999qZlWd62LMvrl2X58Ha7/cjR569aluWXlmX5K8uy/OllWd6jvJySF0QCwKHgeqa+rc5utNZs6NTq7EZrzYZOrc5utPa7+nLMOU/9h8cY3xIRfxARb59zvvLY5y+NiJ+IiK+PiFfNOX93jPGKiHhHRDwWERcj4lci4uVzzs+PMd4XEX85In4jIn4hIn50zvmL95PfbDZzt9sJmQAAAAAAAACwL8YYN+acm5O+O3e/f3jO+WtjjJed8NX/GBF/NSJ+7thnr46Id845PxsRHx1jPBkRj40x/llEvGDO+d4jobdHxGsi4r4PGwAAnguu3bwdV6/fijt378XFC+fjyuVLJz5Fztwd4t9Ja++GTq3ObrTWbOjU6uxGa82GTq3qWWvkvj+jiIhYluVCRHz3F39GMcb4roh40Zzzbcuy/JcR8cR2u/30siyvjYgPbbfb9x/9c98WEZ+IiD+KiMe22+3bjz5/YUR853a7/emT/n1jjMeXZfnxZVkef/7zn3/xDW94w8OXAgAc4XyPcoWds1unhk6tzm601mzo1OrsRmvNhk6t6lnOnPYzigd+QeQY46si4q9FxA+c9PUJn81TPj+ROecTc87NnHPzyCOPPKgiAMCpON+jXGHn7NapoVOrsxutNRs6tTq70VqzoVOretZaue/PKE7g34qIr42I/2uMERHxaET85hjjsYh4KiJeemz7aETcOfr80RM+BwDYO873KFfYObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pTz1orD/yXDXPOD8w5v2bO+bI558viCw8SvmnO+c8j4t0R8doxxleOMb42Ir4uIt435/x4RHxqjPHN4wtPKL4nnvmuBwCAveF8j3KFnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k79ay1ct+HDWOMd0TEeyPi0hjjqTHG93657ZzzgxHxroj4UES8JyJeP+f84t+FfF984faKJyPiI8HLIQHgQDjfo1xh5+zWqaFTq7MbrTUbOrU6u9Fas6FTq3rWWrnvCyK32+3PbLfbv7Xdbn9ou93+7e12e/NZ3/9P2+3208f+969vt9sf3W63P7bdbp889vmd7Xb7lqPvfkF5MWVExBNPPLF9/PHHH6QJAOBUnO9RrrBzduvU0KnV2Y3Wmg2dWp3daK3Z0KlVPcuZ014QeZZ3NgAA2FL5+iAAAAAAgLUgXX15SPjLBgBQqXC1UYWds1unhk6tzm601mzo1OrsRmvNhk6tXH0JALASKlxtVGHn7NapoVOrsxutNRs6tTq70VqzoVOretZa4WEDAJShwtVGFXbOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7tSz1goPGwCgDBWuNqqwc3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3WnnrVWeNgAAGWocLVRhZ2zW6eGTq3ObrTWbOjU6uxGa82GTq3qWWuFF0QCQBkqXG1UYefs1qmhU6uzG601Gzq1OrvRWrOhU6t6ljOnvSByzDn37fNAbDabudvtDq0BAAAAAAAAAMcYY9yYc25O+u7cvmUAAM7CtZu34+r1W3Hn7r24eOF8XLl86cSnvs47ZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPWiP8jAIA7HG+H1ndObvRWrOhU6uzG601Gzq1OrvRWrOhU6t6ljOn/YyCF0QCgD3O9yOrO2c3Wms2dGp1dqO1ZkOnVmc3Wms2dGpVz1orPGwAAHuc70dWd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd+pZa4WHDQBgj/P9yOrO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfObupOPWut8LABAOxxvh9Z3Tm70VqzoVOrsxutNRs6tTq70VqzoVOretZa4QWRAGCP8/3I6s7ZjdaaDZ1and1ordnQqdXZjdaaDZ1a1bOcOe0FkVx9CQAHp/KVPwAAAAAAHeEvGwDgoHC10eHdaK3Z0KnV2Y3Wmg2dWp3daK3Z0KmVqy8BAJ5DuNro8G601mzo1OrsRmvNhk6tzm601mzo1KqetVZ42AAAB4WrjQ7vlr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3daeetVZ42AAAB4WrjQ7vlr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3daeetVZ42AAAB4WrjQ7vRmvNhk6tzm601mzo1OrsRmvNhk6t6llrhRdEAsBB4Wqjw7vRWrOhU6uzG601Gzq1OrvRWrOhU6t6ljOnvSByzDn37fNAbDabudvtDq0BAAAAAAAAAMcYY9yYc25O+u7cvmUAoA/Xbt6Oq9dvxZ279+LihfNx5fKlE5/UKrvMsw61c3ajtWZDp1ZnN1prNnRqdXajtWZDp1b1rDXCzygA4DmBe5TrNXRqdXajtWZDp1ZnN1prNnRqdXaj9ewNzpz2MwpeEAkAzwnco1yvoVOrsxutNRs6tTq70VqzoVOrsxutZ29YKzxsAIDnBO5Rrteg7pzd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42AMBzAvco12tQd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7Kbu1LPWCg8bAOA5gXuU6zV0anV2o7VmQ6dWZzdaazZ0anV2o/XsDWuFF0QCwHMC9yjXa+jU6uxGa82GTq3ObrTWbOjU6uxG69kbnDntBZFcfQkAD0zlK3oAAAAAAODh4S8bAOCBcL4WyHnn7EZrzYZOrc5utNZs6NTq7EZrzYZOrVx9CQBwDOdrgZx3zm601mzo1OrsRmvNhk6tzm601mzo1KqetVZ42AAAD4TztUDOO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO/WstcLDBgB4IJyvBXLeObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42AMAD4XwtkPPO2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWtWz1goviASAB8L5WiDnnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrWqZzlz2gsix5xz3z4PxGazmbvd7tAaAAAAAAAAAHCMMcaNOefmpO/O7VsGAHy5dvN2XL1+K+7cvRcXL5yPK5cvnfhk9RA7Z7dODZ1and1ordnQqdXZjdaaDZ1and1oPXvDGuFnFAAQETXuIHbeObvRWrOhU6uzG601Gzq1OrvRWrOhU6t6ljOn/YyCF0QCQETUuIPYeefsRmvNhk6tzm601mzo1OrsRmvNhk6t6llrhYcNABARNe4gdt45u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ60VHjYAQETUuIPYeefslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3daeetVZ42AAAEVHjDmLnnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrWqZ60VXhAJABFR4w5i552zG601Gzq1OrvRWrOhU6uzG601Gzq1qmc5c9oLIsecc98+D8Rms5m73e7QGgAAAAAAAABwjDHGjTnn5qTvzu1bBgB8qXAHsfPO2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWtWz1gg/owCAiKhxB7HzztmN1poNnVqd3Wit2dCp1dmN1poNnVrVs5w57WcUvCASACKixh3EzjtnN1prNnRqdXajtWZDp1ZnN1prNnRqVc9aKzxsAICIqHEHsfPO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfObupOPWut8LABACKixh3Ezjtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCwwYAiIgadxA775zdaK3Z0KnV2Y3Wmg2dWp3daK3Z0KlVPWut8IJIAIiIGncQO++c3Wit2dCp1dmN1poNnVqd3Wit2dCpVT3LmdNeEMnVlwANqHylDgAAAAAA+MFfNgAUx/m6H3Xn7NapoVOrsxutNRs6tTq70VqzoVOrsxutXH0JAMVwvu5H3Tm7dWro1OrsRmvNhk6tzm601mzo1OrsRitXXwJAMZyv+1F3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qTj1rrfCwAaA4ztf9qDtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3WnnrVWeNgAUBzn637UnbNbp4ZOrc5utNZs6NTq7EZrzYZOrc5utHL1pR28IBLg4XC+7kfdObt1aujU6uxGa82GTq3ObrTWbOjU6uxGa7+rL8ecc98+D8Rms5m73e7QGgAAAAAAAABwjDHGjTnn5qTvzu1bBgDyuHbzdly9fivu3L0XFy+cjyuXL534JLTCztmtU0OnVmc3Wms2dGp1dqO1ZkOnVmc3Ws/esEb4GQXASnG+Mzh75+zWqaFTq7MbrTUbOrU6u9Fas6FTq7MbrWdvcOa0n1HwgkiAleJ8Z3D2ztmtU0OnVmc3Wms2dGp1dqO1ZkOnVmc3Ws/esFZ42ACwUpzvDM7eObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO/WstcLDBoCV4nxncPbO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42AKwU5zuDs3fObp0aOrU6u9Fas6FTq7MbrTUbOrU6u9F69oa1wgsiAVaK853B2bVSXs0AACAASURBVDtnt04NnVqd3Wit2dCp1dmN1poNnVqd3Wg9e4Mzp70gkqsvAUypfA0OAAAAAADUhr9sADCky3U/nVqd3Wit2dCp1dmN1poNnVqd3Wit2dCplasvAWDvdLnup1OrsxutNRs6tTq70VqzoVOrsxutNRs6tapnrRUeNgAY0uW6H3Xn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7Kbu1LPWCg8bAAzpct2PunN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fqWWuFhw0AhnS57qdTq7MbrTUbOrU6u9Fas6FTq7MbrTUbOrWqZ60VXhAJYEiX6346tTq70VqzoVOrsxutNRs6tTq70VqzoVOrepYzp70gcsw59+3zQGw2m7nb7Q6tAQAAAAAAAADHGGPcmHNuTvru3L5lALpz7ebtuHr9Vty5ey8uXjgfVy5fOvHppbLLPMt95+zWqaFTq7MbrTUbOrU6u9Fas6FTq7MbrWdvWCP8jAJgj3C3cN9WZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPcua0n1HwgkiAPcLdwn1bnd1ordnQqdXZjdaaDZ1and1ordnQqVU9a63wsAFgj3C3cN9WZ7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k79ay1wsMGgD3C3cJ9W53dsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7tSz1goPGwD2CHcL9211dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVvWstcILIgH2CHcL9211dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVvUsZ057QSRXXwIkUfnaGgAAAAAAgAeBv2wASMD5qpwKO2e3Tg2dWp3daK3Z0KnV2Y3Wmg2dWp3daOXqSwA4A85X5VTYObt1aujU6uxGa82GTq3ObrTWbOjU6uxGK1df/jHGGG8dY3xyjPHbxz67Osb4f8YY7x9j/G9jjAvHvnvTGOPJMcatMcblY5+/aozxgaPvfnSMMfJzAA6D81U5FXbOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfObupOPWutKH/Z8LaI+I5nffbLEfHKOeefiYh/GhFviogYY7wiIl4bEd9w9M+8ZYzxxddr/t2IeDwivu7oP88+E2C1OF+VU2Hn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7Kbu1LPWyn0fNsw5fy0ifu9Zn/3SnPMPj/7nb0TEo0f//dUR8c4552fnnB+NiCcj4rExxosj4gVzzvfOOWdEvD0iXpMVAXBonK/KqbBzduvU0KnV2Y3Wmg2dWp3daK3Z0KnV2Y1Wrr48kWVZLkTEd2+327ec8N3ViLi23W7fvyzLayPiQ9vt9v1H331bRHwiIv4oIh7bbrdvP/r8hRHxndvt9qdP+veNMR5fluXHl2V5/PnPf/7FN7zhDWfMA9gPzlflVNg5u3Vq6NTq7EZrzYZOrc5utNZs6NTq7EZrv6svxxf+0OB0xhgvi4ifn3O+8lmf/7WI2ETEfzjnnGOMvxMR751z/sOj7/9+RPxCRPxORPwPc86/cPT5n4uIvzrn/Ev3+3dvNpu52+3u6wgAAAAAAAAA+2OMcWPOuTnpu3MPcejrIuIvRsSfn//qicVTEfHSY7NHI+LO0eePnvA5gD3Xbt6Oq9dvxZ279+LihfNx5fKlE582HmLn7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utJ69YY2c6WcUY4zviIgfiojLc87fP7b7FxHxg8uy/INlWf5URLwhIt445/z/lmV53bIsH1iW5XZE/EhEvH273X74fv/uJ554Yvv444+fpQ3goalwL2+FnbNbp4ZOrc5utNZs6NTq7EZrzYZOrc5utJ69wZnTfkahXH35joh4b0RcGmM8Ncb43oj4sYj4ExHxy2OM3xpj/C8REXPOD0bEuyLiQxHxnoh4/ZzzixeHfl9E/ER84aWRH4mIX3y4LIDnngr38lbYObt1aujU6uxGa82GTq3ObrTWbOjU6uxG69kb1sp9f0Yx5/yPTvj475+y/+GI+OETPt9FxCv/+D8B4EuFe3kr7Jzd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J161lq57182AHSmwr28FXbOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfObupOPWut8LAB4BQq3MtbYefs1qmhU6uzG601Gzq1OrvRWrOhU6uzG61nb1gr0gsiDwkviIRDUuFe3go7Z7dODZ1and1ordnQqdXZjdaaDZ1and1oPXuDM6e9IHL8q1srPdlsNnO32x1aAwAAAAAAAACOMca4MefcnPTdfV8QCVAV5/t21Z2zG601Gzq1OrvRWrOhU6uzG601Gzq1OrvRevaGNcLPKKAlzvftqjtnN1prNnRqdXajtWZDp1ZnN1prNnRqdXaj9ewNzpz2MwpeEAktcb5vV905u9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrWdvWCs8bICWON+3q+6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qTj1rrfCwAVrifN+uunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k79ay1wsMGaInzfbvqztmN1poNnVqd3Wit2dCp1dmN1poNnVqd3Wg9e8Na4QWR0BLn+3bVnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9F69gZnTntBJFdfQkkqXyEDAAAAAADgDn/ZAOXgqpzDu9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrVx9CbB6uCrn8G601mzo1OrsRmvNhk6tzm601mzo1OrsRitXXwKsHq7KObxb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ60VHjZAObgq5/Bu2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3WnnrVWeNgA5eCqnMO70VqzoVOrsxutNRs6tTq70VqzoVOrsxutXH1pBy+IhAeFq3IO70ZrzYZOrc5utNZs6NTq7EZrzYZOrc5utPa7+nLMOfft80BsNpu52+0OrQEAAAAAAAAAxxhj3Jhzbk767ty+ZQAehms3b8fV67fizt17cfHC+bhy+dKJT/6UXeZZh9o5u9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrWdvWCP8jAJWA/fy1mvo1OrsRmvNhk6tzm601mzo1OrsRmvNhk6t6lnOnPYzCl4QCauBe3nrNXRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1b1rLXCwwZYDdzLW69B3Tm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCwwZYDdzLW69B3Tm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCwwZYDdzLW6+hU6uzG601Gzq1OrvRWrOhU6uzG601Gzq1qmetFV4QCauBe3nrNXRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1b1LGdOe0EkV1+CBZWvfAEAAAAAAOgGf9kAB8f5mhnnnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9HK1ZcAe8f5mhnnnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9HK1ZcAe8f5mhnnnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ60VHjbAwXG+ZsZ55+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fqWWuFhw1wcJyvmXHeObvRWrOhU6uzG601Gzq1OrvRWrOhU6uzG61cfWkHL4isj/M1M847ZzdaazZ0anV2o7VmQ6dWZzdaazZ0anV2o7Xf1Zdjzrlvnwdis9nM3W53aA0AAAAAAAAAOMYY48acc3PSd+f2LQO9uHbzdly9fivu3L0XFy+cjyuXL534pO4QO2e3Tg2dWp3daK3Z0KnV2Y3Wmg2dWp3daK3Z0KlVPWuN8DMKeM6ocKet887ZjdaaDZ1and1ordnQqdXZjdaaDZ1and1oPXuDM6f9jIIXRMJzRoU7bZ13zm601mzo1OrsRmvNhk6tzm601mzo1OrsRuvZG9YKDxvgOaPCnbbOO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pTz1orPGyA54wKd9o675zdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfObupOPWut8LABnjMq3GnrvHN2o7VmQ6dWZzdaazZ0anV2o7VmQ6dWZzdaz96wVnhBJDxnVLjT1nnn7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utJ69wZnTXhDJ1ZdwJipf0QIAAAAAAAAPB3/ZAA+M8/Ux6s7ZrVNDp1ZnN1prNnRqdXajtWZDp1ZnN1prNnRq5epLgGfhfH2MunN269TQqdXZjdaaDZ1and1ordnQqdXZjdaaDZ1a1bPWCg8b4IFxvj5G3Tm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6U89aKzxsgAfG+foYdefspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qTj1rrfCwAR4Y5+tj1J2zW6eGTq3ObrTWbOjU6uxGa82GTq3ObrTWbOjUqp61VnhBJDwwztfHqDtnt04NnVqd3Wit2dCp1dmN1poNnVqd3Wit2dCpVT3LmdNeEDnmnPv2eSA2m83c7XaH1gAAAAAAAACAY4wxbsw5Nyd9d27fMuDNtZu34+r1W3Hn7r24eOF8XLl86cQnaxV2zm6dGjq1OrvRWrOhU6uzG601Gzq1OrvRWrOhU6t61hrhZxTwJZzvoM3eObt1aujU6uxGa82GTq3ObrTWbOjU6uxGa82GTq3qWc6c9jMKXhAJX8L5DtrsnbNbp4ZOrc5utNZs6NTq7EZrzYZOrc5utNZs6NSqnrVWeNgAX8L5DtrsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k79ay1wsMG+BLOd9Bm75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42wJdwvoM2e+fs1qmhU6uzG601Gzq1OrvRWrOhU6uzG601Gzq1qmetFV4QCV/C+Q7a7J2zW6eGTq3ObrTWbOjU6uxGa82GTq3ObrTWbOjUqp7lzGkviBxzzn37PBCbzWbudrtDawAAAAAAAADAMcYYN+acm5O+O7dvGTgcXe6q7dTq7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utJ69YY3wM4omdLmrtlOrsxutNRs6tTq70VqzoVOrsxutNRs6tTq70Xr2BmdO+xkFL4hsQpe7aju1OrvRWrOhU6uzG601Gzq1OrvRWrOhU6uzG61nb1grPGxoQpe7atWds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCw4YmdLmrVt05u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObulPPWis8bGhCl7tqO7U6u9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrWdvWCu8ILIJXe6q7dTq7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utJ69wZnTXhDJ1ZcFqHxdCgAAAAAAAKwP/rJh5XB9TN9WZzdaazZ0anV2o7VmQ6dWZzdaazZ0anV2o5WrL2FlcH1M31ZnN1prNnRqdXajtWZDp1ZnN1prNnRqdXajlasvYWVwfUzfVme37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pTz1orPGxYOVwf07fV2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7tSz1goPG1YO18f0bXV2o7VmQ6dWZzdaazZ0anV2o7VmQ6dWZzdaufrSDl4QeTpcH9O31dmN1poNnVqd3Wit2dCp1dmN1poNnVqd3Wjtd/XlmHPu2+eB2Gw2c7fbHVoDAAAAAAAAAI4xxrgx59yc9N25fcuAzrWbt+Pq9Vtx5+69uHjhfFy5fOnEp1yZu0P8O2nt3dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs9YIP6Mwxfme1wo7Z7dODZ1and1ordnQqdXZjdaaDZ1and1ordnQqVU9y5nTfkbBCyJNcb7ntcLO2a1TQ6dWZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPWis8bDDF+Z7XCjtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd+pZa4WHDaY43/NaYefspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qTj1rrfCwwRTne14r7JzdOjV0anV2o7VmQ6dWZzdaazZ0anV2o7VmQ6dW9ay1wgsiTXG+57XCztmtU0OnVmc3Wms2dGp1dqO1ZkOnVmc3Wms2dGpVz3LmtBdEcvXlAah8vQkAAAAAAAAAf9mwZypcvVJh5+zWqaFTq7MbrTUbOrU6u9Fas6FTq7MbrTUbOrVy9SWkUuHqlQo7Z7dODZ1and1ordnQqdXZjdaaDZ1and1ordnQqVU9a63wsGHPVLh6pcLO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J161lrhYcOeqXD1SoWds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCw4Y9U+HqlQo7Z7dODZ1and1ordnQqdXZjdaaDZ1and1ordnQqVU9a63c9wWRY4y3Lsvy95Zled12u33L0WdfvSzLu5dl+YFlWb5rWZaf3263nzn67k3LsrxtWZbXL8vy4e12+5Gjz1+1LMsvLcvyV5Zl+dPLsrxHeTlltRdEVrh6pcLO2a1TQ6dWZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPcua0F0SOOeep//AY41si4g8i4u1zzlceffYjEfF7c843jzHeGBEvnHN+/xjjFRHxjoh4LCIuRsSvRMTL55yfH2O8LyL+ckT8RkT8QkT86JzzF+8nv9ls5m63U1sBAAAAAAAAYA+MMW7MOTcnfXfufv/wnPPXxhgve9bHr46Ibz367z8ZEf84Ir7/6PN3zjk/GxEfHWM8GRGPjTH+WUS8YM753iOht0fEayLivg8b1sS1m7fj6vVbcefuvbh44XxcuXzpxKdSzjtnN1prNnRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1b1rDVy359RREQsy3IhIr77iz+jWJblv59z/vWIiO12+wfLsvzQdrv9G8uyvDYiPrTdbt9/tPu2iPhERPxRRDy23W7ffvT5CyPiO7fb7U/f79+9lp9RON/fqu6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs5w57WcU2S+IHCd8Nk/5/ORDxnh8jLEbY+yefvrpNLnnEuf7W9WdsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVOretZaOevDhk+MMV4cEXH0fz959PlTEfHSY7tHI+LO0eePnvD5icw5n5hzbuacm0ceeeSMivvF+f5Wdefslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3daeetVbO+rDh3RHxuqP//rqI+Lljn792jPGVY4yvjYivi4j3zTk/HhGfGmN88xhjRMT3HPtnSuB8f6u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6U89aK/d92DDGeEdEvDciLo0xnhpjfG9EvDkivn2M8eGI+Paj/x1zzg9GxLsi4kMR8Z6IeP2c84t/F/J9EfETEfFkRHwkir0c0vn+VnXn7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utNZs6NSqnrVW7vuCyO12+zPb7fZvbbfbH9put397u93e3G6397bb7du32+3/fPR/7x3b//p2u/3R7Xb7Y9vt9sljn9/ZbrdvOfruF5QXU0as5wWRzve3qjtnN1prNnRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1b1LGf2+YJIAAAAAAAAAGiOdPXlIVnLXzY4X6mi7pzdaK3Z0KnV2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWrn6EiScr1RRd85utNZs6NTq7EZrzYZOrc5utNZs6NTq7EZrzYZOrepZa4WHDUk4X6mi7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7tSz1goPG5JwvlJF3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3alnrRUeNiThfKWKunN2o7VmQ6dWZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPWiu8IDIJ5ytV1J2zG601Gzq1OrvRWrOhU6uzG601Gzq1OrvRWrOhU6t6ljOnvSByzDn37fNAbDabudvtDq0BAAAAAAAAAMcYY9yYc25O+u7cvmUqc+3m7bh6/VbcuXsvLl44H1cuXzrxqZTzztmN1poNnVqd3Wit2dCp1dmN1poNnVqd3Wit2dCpVT1rjfAziiSc729Vd85utNZs6NTq7EZrzYZOrc5utNZs6NTq7EZrzYZOrepZzpz2MwpeEJmE8/2t6s7ZjdaaDZ1and1ordnQqdXZjdaaDZ1and1ordnQqVU9a63wsCEJ5/tb1Z2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J161lrhYUMSzve3qjtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCw4YknO9vVXfObrTWbOjU6uxGa82GTq3ObrTWbOjU6uxGa82GTq3qWWuFF0Qm4Xx/q7pzdqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVmc3Wms2dGpVz3KGF0QCAAAAAAAAwN7gLxuScL5SRd05u9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrTUbOrVy9SVIOF+pou6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs9YKDxuScL5SRd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ60VHjYk4XylirpzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pTz1orPGxIwvlKFXXn7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utNZs6NSqnrVWeEFkEs5Xqqg7ZzdaazZ0anV2o7VmQ6dWZzdaazZ0anV2o7VmQ6dW9SxnTntB5Jhz7tvngdhsNnO32x1aAwAAAAAAAACOMca4MefcnPTduX3LVObazdtx9fqtuHP3Xly8cD6uXL504lMp552zG601Gzq1OrvRWrOhU6uzG601Gzq1OrvRWrOhU6t61hrhZxRJON/fqu6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs5w57WcUvCAyCef7W9WdsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVOretZa4WFDEs73t6o7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k79ay1wsOGJJzvb1V3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN36llrhYcNSTjf36runN1ordnQqdXZjdaaDZ1and1ordnQqdXZjdaaDZ1a1bPWCi+ITML5/lZ15+xGa82GTq3ObrTWbOjU6uxGa82GTq3ObrTWbOjUqp7lzGkviBxzzn37PBCbzWbudrtDawAAAAAAAADAMcYYN+acm5O+O7dvmco439+q7pzdaK3Z0KnV2Y3Wmg2d9QXK7gAAIABJREFUWp3daK3Z0KnV2Y3Wmg2dWtWz1gg/o0jC+f5WdefsRmvNhk6tzm601mzo1OrsRmvNhk6tzm601mzo1Kqe5cxpP6PgBZFJON/fqu6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs9YKDxuScL6/Vd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ60VHjYk4Xx/q7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pTz1orPGxIwvn+VnXn7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utNZs6NSqnrVWeEFkEs73t6o7ZzdaazZ0anV2o7VmQ6dWZzdaazZ0anV2o7VmQ6dW9SxneEEkAAAAAAAAAOwN/rIhCecrVdSdsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVMrV1+ChPOVKurO2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWp3daK3Z0KlVPWut8LAhCecrVdSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSdetZa4WFDEs5Xqqg7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k79ay1wsOGJJyvVFF3zm601mzo1OrsRmvNhk6tzm601mzo1OrsRmvNhk6t6llrhRdEJuF8pYq6c3ajtWZDp1ZnN1prNnRqdXajtWZDp1ZnN1prNnRqVc9y5rQXRI455759HojNZjN3u92hNQAAAAAAAADgGGOMG3POzUnfndu3TGWu3bwdV6/fijt378XFC+fjyuVLJz6Vct45u9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrTUbOrWqZ60RfkaRhPP9rerO2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWp3daK3Z0KlVPcuZ035GwQsik3C+v1XdObvRWrOhU6uzG601Gzq1OrvRWrOhU6uzG601Gzq1qmetFR42JOF8f6u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6U89aKzxsSML5/lZ15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd1p561VnjYkITz/a3qztmN1poNnVqd3Wit2dCp1dmN1poNnVqd3Wit2dCpVT1rrfCCyCSc729Vd85utNZs6NTq7EZrzYZOrc5utNZs6NTq7EZrzYZOrepZzvCCSAAAAAAAAADYG/xlQxLOV6qoO2c3Wms2dGp1dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVq6+BAnnK1XUnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9Fas6FTq3rWWuFhQxLOV6qoO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO/WstcLDhiScr1RRd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd+pZa4WHDUk4X6mi7pzdaK3Z0KnV2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWtWz1goviEzC+UoVdefsRmvNhk6tzm601mzo1OrsRmvNhk6tzm601mzo1Kqe5cxpL4gcc859+zwQm81m7na7Q2sAAAAAAAAAwDHGGDfmnJuTvju3b5nKXLt5O65evxV37t6LixfOx5XLl058KuW8c3ajtWZDp1ZnN1prNnRqdXajtWZDp1ZnN1prNnRqVc9aI/yMIgnn+1vVnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9Fas6FTq3qWM6f9jIIXRCbhfH+runN2o7VmQ6dWZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPWis8bEjC+f5Wdefslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3daeetVZ42JCE8/2t6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6k49a63wsCEJ5/tb1Z2zG601Gzq1OrvRWrOhU6uzG601Gzq1OrvRWrOhU6t61lrhBZFJON/fqu6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs5zhBZEAAAAAAAAAsDf4y4YknK9UUXfObrTWbOjU6uxGa82GTq3ObrTWbOjU6uxGa82GTq1cfQkSzleqqDtnN1prNnRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1b1rLXCw4YknK9UUXfObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fqWWuFhw1JOF+pou6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu7Us9YKDxuScL5SRd05u9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrTUbOrWqZ60VXhCZhPOVKurO2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWp3daK3Z0KlVPcuZ014QOeac+/Z5IDabzdztdofWAAAAAAAAAIBjjDFuzDk3J313bt8ylbl283ZcvX4r7ty9FxcvnI8rly+d+FTKeefsRmvNhk6tzm601mzo1OrsRmvNhk6tzm601mzo1KqetUb4GUUSzve3qjtnN1prNnRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1b1LGdO+xkFL4hMwvn+VnXn7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utNZs6NSqnrVWeNiQhPP9rerO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfObupOPWut8LAhCef7W9Wds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSdetZa4WFDEs73t6o7ZzdaazZ0anV2o7VmQ6dWZzdaazZ0anV2o7VmQ6dW9ay1wgsik3C+v1XdObvRWrOhU6uzG601Gzq1OrvRWrOhU6uzG601Gzq1qmc5c9oLIsecc98+D8Rms5m73e7QGgAAAAAAAABwjDHGjTnn5qTvzu1bpjLO97eqO2c3Wms2dGp1dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVvWsNcLPKJJwvr9V3Tm70VqzoVOrsxutNRs6tTq70VqzoVOrsxutNRs6tapnOXPazyge6gWRY4w3jDE+OMb47THGO8YY//oY46vHGL88xvjw0f994bH9m8YYT44xbo0xLj/Mv9sN5/tb1Z2zG601Gzq1OrvRWrOhU6uzG601Gzq1OrvRWrOhU6t61lo588OGMcZLIuK/iIjNnPOVEfG8iHhtRLwxIv7RnPPrIuIfHf3vGGO84uj7b4iI74iIt4wxnnfS2WvE+f5Wdefslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3daeetVYe9urLcxFxfoxxLiK+KiLuRMSrI+Inj77/yYh4zdF/f3VEvHPO+dk550cj4smIeOwh//02ON/fqu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu7Us9bKmR82zDlvR8TfjIjfiYiPR8Tvzzl/KSL+zTnnx482H4+Irzn6R14SER87dsRTR5/9McYYj48xdmOM3dNPP31Wxb3ifH+runN2o7VmQ6dWZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPWitnfkHk0bsYfiAi/t2I+OGI+I+XZTkXEf/+drt98xd3y7K8cbvd/o1lWf6DiHhqu92+/+jzV0fEh7fb7f/97LO32+2N7Xb7xHa7feKnfuqnVvGCSOf7W9WdsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVOrepYzp70g8mGuvvwLEfHROefTERFjjJ+NiH8nIj4xxnjxnPPjY4wXR8Qnj/ZPRcRLj/3zj8YXfnZRhtd840uk/8dw3jm7Ze+c3dTdSz728/Ezn7kaX/OVT8cnP/NIfOxjVyK+8T+979kAAAAAAADPJWf+y4ZlWf5ERLx+WZa3LcvyhxHxX0XE+yPin0fEy7fb7f++LMt/FhG/s91uf3lZln8RET+4LMs/WJblT0XEGyLijdvtdp7271nL1ZcA++b/fPePxytv/PV44fhUjBHxb8Sn46vv/Gr81qf+ZLzk0uZLO+frftSds1unhk6tzm601mzo1OrsRmvNhk6tzm60cvWlzJzzn0TE/xoRvxkRHzg664mIeHNEfPsY48MR8e1H/zvmnB+MiHdFxIci4j0R8fo55+dPOBoABF76m1fj/PjcMz47Pz4XL/3Nq8/4zPm6H3Xn7NapoVOrsxutNRs6tTq70VqzoVOrsxut/a6+fJifUcSc8wcj4gef9fFnI+LPf5n9D8cX3u8AAA/J18ynI8ZJn//uM/6383U/6s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ62Vh736EgAOxCfHI1/m8xc94387X/ej7pzd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J161lrhYQPASvnYN12Je/MrnvHZvfkV8bFvuvKMz5yv+1F3zm6dGjq1OrvRWrOhU6uzG601Gzq1OrvRytWXdvCCSICTecmlTfzWp/5kPO/jvxVfNe/FJ8Yj8eSr/tv4s9/1zNsonK/7UXfObp0aOrU6u9Fas6FTq7MbrTUbOrU6u9Ha7+rLMeepl0EcnM1mM3e73aE1AAAAAAAAAOAYY4wbc87NSd891Asi4Zlcu3k7rl6/FXfu3ouLF87HlcuXTnwq5bxzdqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVmc3Wms2dGpVz1oj/IwiCef7W9WdsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVOrepYzp/2MghdEJuF8f6u6c3ajtWZDp1ZnN1prNnRqdXajtWZDp1ZnN1prNnRqVc9aKzxsSML5/lZ15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd1p561VnjYkITz/a3qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qTj1rrfCwIQnn+1vVnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9Fas6FTq3rWWuEFkUk439+q7pzdaK3Z0KnV2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWtWznOEFkQAAAAAAAACwN/jLhiScr1RRd85utNZs6NTq7EZrzYZOrc5utNZs6NTq7EZrzYZOrVx9CRLOV6qoO2c3Wms2dGp1dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVvWstcLDhiScr1RRd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd+pZa4WHDUk4X6mi7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7pzdsnfOburO2S175+ym7tSz1goPG5JwvlJF3Tm70VqzoVOrsxutNRs6tTq70VqzoVOrsxutNRs6tapnrRVeEJmE85Uq6s7ZjdaaDZ1and1ordnQqdXZjdaaDZ1and1ordnQqVU9y5nTXhA55pz79nkgNpvN3O12h9YAAAAAAAAAgGOMMW7MOTcnfXdu3zKVuXbzdly9fivu3L0XFy+cjyuXL534VMp55+xGa82GTq3ObrTWbOjU6uxGa82GTq3ObrTWbOjUqp61RvgZRRLO97eqO2c3Wms2dGp1dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVvUsZ077GQUviEzC+f5WdefsRmvNhk6tzm601mzo1OrsRmvNhk6tzm601mzo1KqetVZ42JCE8/2t6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6s7ZLXvn7KbunN2yd85u6k49a63wsCEJ5/tb1Z2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J161lrhYUMSzve3qjtnN1prNnRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1b1rLXCCyKTcL6/Vd05u9Fas6FTq7MbrTUbOrU6u9Fas6FTq7MbrTUbOrWqZznDCyIBAAAAAAAAYG/wlw1JOF+pou6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVq5+hIknK9UUXfObrTWbOjU6uxGa82GTq3ObrTWbOjU6uxGa82GTq3qWWuFhw1JOF+pou6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu6c3bJ3zm7qztkte+fspu7Us9YKDxuScL5SRd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd2pZ60VHjYk4XylirpzdqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVmc3Wms2dGpVz1orvCAyCecrVdSdsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVOrepYzp70gcsw59+3zQGw2m7nb7Q6tAQAAAAAAAADHGGPcmHNuTvru3L5lKnPt5u24ev1W3Ll7Ly5eOB9XLl868amU887ZjdaaDZ1and1ordnQqdXZjdaaDZ1and1ordnQqVU9a43wM4oknO9vVXfObrTWbOjU6uxGa82GTq3ObrTWbOjU6uxGa82GTq3qWc6c9jMKXhCZhPP9rerO2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWp3daK3Z0KlVPWut8LAhCef7W9Wds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSds1v2ztlN3Tm7Ze+c3dSdetZa4WFDEs73t6o7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k79ay1wsOGJJzvb1V3zm601mzo1OrsRmvNhk6tzm601mzo1OrsRmvNhk6t6llrhRdEJuF8f6u6c3ajtWZDp1ZnN1prNnRqdXajtWZDp1ZnN1prNnRqVc9yhhdEAgAAAAAAAMDe4C8bknC+UkXdObvRWrOhU6uzG601Gzq1OrvRWrOhU6uzG601Gzq1cvUlSDhfqaLunN1ordnQqdXZjdaaDZ1and1ordnQqdXZjdaaDZ1a1bPWCg8bknC+UkXdObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42JOF8pYq6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6U89aKzxsSML5ShV15+xGa82GTq3ObrTWbOjU6uxGa82GTq3ObrTWbOjUqp61VnhBZBLOV6qoO2c3Wms2dGp1dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVvUsZ057QeSYc+7b54HYbDZzt9sdWgMAAAAAAAAAjjHGuDHn3Jz03bl9y1Tm2s3bcfX6rbhz915cvHA+rly+dOJTKeedsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVOretYa4WcUSTjf36runN1ordnQqdXZjdaaDZ1and1ordnQqdXZjdaaDZ1a1bOcOe1nFLwgMgnn+1vVnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9Fas6FTq3rWWuFhQxLO97eqO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO/WstcLDhiSc729Vd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd85u2TtnN3Xn7Ja9c3ZTd+pZa4WHDUk439+q7pzdaK3Z0KnV2Y3Wmg2dWp3daK3Z0KnV2Y3Wmg2dWtWz1goviEzC+f5WdefsRmvNhk6tzm601mzo1OrsRmvNhk6tzm601mzo1Kqe5cxpL4gcc859+zwQm81m7na7Q2sAAAAAAAAAwDHGGDfmnJuTvju3b5nKON/fqu6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs9YIP6NIwvn+VnXn7EZrzYZOrc5utNZs6NTq7EZrzYZOrc5utNZs6NSqnuXMaT+j4AWRSTjf36runN1ordnQqdXZjdaaDZ1and1ordnQqdXZjdaaDZ1a1bPWCg8bknC+v1XdObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dObtl75zd1J2zW/bO2U3dqWetFR42JOF8f6u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6U89aKzxsSML5/lZ15+xGa82GTq3ObrTWbOjU6uxGa82GTq3ObrTWbOjUqp61VnhBZBLO97eqO2c3Wms2dGp1dqO1ZkOnVmc3Wms2dGp1dqO1ZkOnVvUsZ3hBJAAAAAAAAADsDf6yIQnnK1XUnbMbrTUbOrU6u9Fas6FTq7MbrTUbOrU6u9Fas6FTK1dfgoTzlSrqztmN1poNnVqd3Wit2dCp1dmN1poNnVqd3Wit2dCpVT1rrfCwIQnnK1XUnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnbNb9s7ZTd05u2XvnN3UnXrWWuFhQxLOV6qoO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO2e37J2zm7pzdsveObupO/WstcLDhiScr1RRd85utNZs6NTq7EZrzYZOrc5utNZs6NTq7EZrzYZOrepZa4UXRCbhfKWKunN2o7VmQ6dWZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPcua0F0SOOee+fR6IzWYzd7vdoTUAAAAAAAAA4BhjjBtzzs1J353bt0xlrt28HVev34o7d+/FxQvn48rlSyc+lXLeObvRWrOhU6uzG601Gzq1OrvRWrOhU6uzG601Gzq1qmetEX5GkYTz/a3qztmN1poNnVqd3Wit2dCp1dmN1poNnVqd3Wit2dCpVT3LmdN+RsELIpNwvr9V3Tm70VqzoVOrsxutNRs6tTq70VqzoVOrsxutNRs6tapnrRUeNiThfH+runN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObunN2y945u6k7Z7fsnbObulPPWis8bEjC+f5Wdefslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3defslr1zdlN3zm7ZO2c3daeetVZ42JCE8/2t6s7ZjdaaDZ1and1ordnQqdXZjdaaDZ1and1ordnQqVU9a63wgsgknO9vVXfObrTWbOjU6uxGa82GTq3ObrTWbOjU6uxGa82GTq3qWc7wgkgAAAAAAAAA2Bv8ZUMSzleqqDtnN1prNnRqdXajtWZDp1ZnN1prNnRqdXajtWZDp1auvgQJ5ytV1J2zG601Gzq1OrvRWrOhU6uzG601Gzq1OrvRWrOhU6t61lrhYUMSzleqqDtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTtnt+yds5u6c3bL3jm7qTv1rLXCw4YknK9UUXfObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fObtk7Zzd15+yWvXN2U3fqWWuFhw1JOF+pou6c3Wit2dCp1dmN1poNnVqd3Wit2dCp1dmN1poNnVrVs9bKQ70gcoxxYVmWf7gsy3+3LMvrl2X5zWVZPr0sy7uXZfmBZVm+a1mWn99ut5852r9pWZa3HW0/vN1uP3K/f8daXhDpfKWKunN2o7VmQ6dWZzdaazZ0anV2o7VmQ6dWZzdaazZ0alXPcua0F0SOOeeZDx5j/GRE/Pqc8yfGGF8REV8VEf9NRPzenPPNY4w3RsQL55zfP8Z4RUS8IyIei4iLEfErEfHyOefnv9z5ERGbzWbudrszOwIAAAAAAABAPmOMG3POzUnfnXuIQ18QEd8SEf9JRMSc83MR8bkxxqsj4luPZj8ZEf84Ir4/Il4dEe+cc342Ij46xngyvvDg4b1ndXDj2s3bcfV52s6AAAAgAElEQVT6rbhz915cvHA+rly+dOJTKeedsxutNRs6tTq70VqzoVOrsxutNRs6tTq70VqzoVOretYaOfPPKJZl+bcj4v9v7/xjLs3Punzf6UAZQDJgW+jMVlq1jLZEHDwSoMaopZliSTt/qFkUrYqpmAIFcWArCs+JQUvGYEGgyaYFSlipTcGlIcBQq0RNpHCmI4W2DF0B25kp7aqM/HCktnz94z2U1913T+/3vPec83nu+7oSszvv+9lnrivP/iiP73m+zzez5y2Xy29eLpd/erlcvtXMvmmM8Y/MzKZp+q3lcvlPpmn61uVyeb+ZvWuapnes//o/b2YfmKbpXZt+n7l8jEL5/NboTtmN1poNnVqV3Wit2dCpVdmN1poNnVqV3Wit2dCpNXotZTZ9jOIkL4g8ZWafa2avGWNcMLPfNrMHNuz9iK8d+RkOd3+Zu6/cffXoo4+eQHF3KJ/fGt0pu9Fas6FTq7IbrTUbOrUqu9Fas6FTq7IbrTUbOrVGrzVXTvKw4aaZ3RxjvG396zfZwcOHD7j7083M1n/84KH9Mw799feZ2e2jLjzGeHCMsRhjLJ761KeeQHF3KJ/fGt0pu2XvlN2iO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdRa81V7Z+2DDG+DUze5+7/965HM83s3eZ2ZvN7KXrr73UzH5k/edvNrP73f3J7v4sM3u2mf3Mtr+/Gsrnt0Z3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd9FrzZWT/GSDmdlXmdlD7v4OM/uTZvZPzexVZvYCd3+Pmb1g/WsbY7zTzN5oBw8kfsLMXv6xTqKYE8rnt0Z3ym601mzo1KrsRmvNhk6tym601mzo1KrsRmvNhk6t0WvNla1fEGlmNk3Tr03T9OA0Ta+ZpukN0zT9n2ma7k7T9P3TNP3L9R/vHtr/x2mavmOapu+cpumRyO8xlxdEKp/fGt0pu9Fas6FTq7IbrTUbOrUqu9Fas6FTq7IbrTUbOrVGr6XMvXpBJAAAAAAAAADA4zjRTzbsgrn8ZIPykSrRnbIbrTUbOrUqu9Fas6FTq7IbrTUbOrUqu9Fas6FTK0dfQgjlI1WiO2U3Wms2dGpVdqO1ZkOnVmU3Wms2dGpVdqO1ZkOn1ui15goPG5JQPlIlulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbqLXmuu8LAhCeUjVaI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iu+i15goPG5JQPlIlulN2o7VmQ6dWZTdaazZ0alV2o7VmQ6dWZTdaazZ0ao1ea67wgsgklI9Uie6U3Wit2dCpVdmN1poNnVqV3Wit2dCpVdmN1poNnVqj11Jm0wsifYyxa59jsVgsxmq12rcGAAAAAAAAABzC3a+NMRZHfe/UrmXg4IiTK1dv2O07d+3smdN2+eL5I59e7WOn7EZrzYZOrcputNZs6NSq7EZrzYZOrcputNZs6NQavdYc4WMUO6bCOa8VdspunRo6tSq70VqzoVOrshutNRs6tSq70VqzoVNr9FrKbPoYBS+I3DEVznmtsFN269TQqVXZjdaaDZ1ald1ordnQqVXZjdaaDZ1ao9eaKzxs2DEVznmtsFN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdBe91lzhYcOOqXDOa4Wdslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aK76LXmCg8bdkyFc14r7JTdOjV0alV2o7VmQ6dWZTdaazZ0alV2o7VmQ6fW6LXmCi+I3DEVznmtsFN269TQqVXZjdaaDZ1ald1ordnQqVXZjdaaDZ1ao9dSZtMLIn2MsWufY7FYLMZqtdq3BgAAAAAAAAAcwt2vjTEWR33v1K5lII7yOa8VdspunRo6tSq70VqzoVOrshutNRs6tSq70VqzoVNr9FpzhI9RiKJ8zmuFnbJbp4ZOrcputNZs6NSq7EZrzYZOrcputNZs6NQavZYymz5GwQsiRVE+57XCTtmtU0OnVmU3Wms2dGpVdqO1ZkOnVmU3Wms2dGqNXmuu8LBBFOVzXivslN2iO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdRa81V3jYIIryOa8Vdspu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO2W37J2yW3Sn7Ja9U3aL7qLXmis8bBBF+ZzXCjtlt04NnVqV3Wit2dCpVdmN1poNnVqV3Wit2dCpNXqtucILIkVRPue1wk7ZrVNDp1ZlN1prNnRqVXajtWZDp1ZlN1prNnRqjV5LmU0viOToS2EuXTg3q7/RAAAAAAAAAMz4yYbZw/ExfVuV3Wit2dCpVdmN1poNnVqV3Wit2dCpVdmNVo6+hJnB8TF9W5XdaK3Z0KlV2Y3Wmg2dWpXdaK3Z0KlV2Y1Wjr6EmcHxMX1bld2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO2W37J2yW3QXvdZc4WHDzOH4mL6tym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbqLXmuu8LBh5nB8TN9WZTdaazZ0alV2o7VmQ6dWZTdaazZ0alV2o5WjL+XgBZGb4fiYvq3KbrTWbOjUquxGa82GTq3KbrTWbOjUquxGa7+jL32MsWufY7FYLMZqtdq3BgAAAAAAAAAcwt2vjTEWR33v1K5lYH88fP2WXbl6w27fuWtnz5y2yxfPP+6pWWRTZafs1qmhU6uyG601Gzq1KrvRWrOhU6uyG601Gzq1Rq81R/gYRRO6nFXbqVXZjdaaDZ1ald1ordnQqVXZjdaaDZ1ald1o3b5BmU0fo+AFkU3oclZtp1ZlN1prNnRqVXajtWZDp1ZlN1prNnRqVXajdfuGucLDhiZ0Oas2ulN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdBe91lzhYUMTupxVG90pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbqLXmuu8LChCV3Oqu3UquxGa82GTq3KbrTWbOjUquxGa82GTq3KbrRu3zBXeEFkE7qcVdupVdmN1poNnVqV3Wit2dCpVdmN1poNnVqV3WjdvkGZTS+I5OjLRly6cG5Wf+MCAAAAAADAPOEnG+CjKB8Lk71TduvU0KlV2Y3Wmg2dWpXdaK3Z0KlV2Y3Wmg2dWjn6EtqgfCxM9k7ZrVNDp1ZlN1prNnRqVXajtWZDp1ZlN1prNnRqjV5rrvCwAT6K8rEw2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfRa80VHjbAR1E+FiZ7p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoLnqtucLDBvgoysfCZO+U3To1dGpVdqO1ZkOnVmU3Wms2dGpVdqO1ZkOn1ui15goviISPonwsTPZO2a1TQ6dWZTdaazZ0alV2o7VmQ6dWZTdaazZ0ao1eS5lNL4j0McaufY7FYrEYq9Vq3xoAAAAAAAAAcAh3vzbGWBz1vVO7loEaPHz9ll25esNu37lrZ8+ctssXzx/5BE55p+zWqaFTq7IbrTUbOrUqu9Fas6FTq7IbrTUbOrVGrzVH+BgFHBvls2qjO2W3Tg2dWpXdaK3Z0KlV2Y3Wmg2dWpXdaK3Z0Kk1ei1lNn2MghdEwrFRPqs2ulN269TQqVXZjdaaDZ1ald1ordnQqVXZjdaaDZ1ao9eaKzxsgGOjfFZtdKfsFt0pu2XvlN2iO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36C56rbnCwwY4Nspn1UZ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovuoteaKzxsgGOjfFZtdKfs1qmhU6uyG601Gzq1KrvRWrOhU6uyG601Gzq1Rq81V3hBJBwb5bNqoztlt04NnVqV3Wit2dCpVdmN1poNnVqV3Wit2dCpNXotZTa9IJKjL2ErLl04N6t/CAAAAAAAAGB38JMNcM+ocMyM8k7ZjdaaDZ1ald1ordnQqVXZjdaaDZ1ald1o5ehLgDQqHDOjvFN2o7VmQ6dWZTdaazZ0alV2o7VmQ6dWZTdaOfoSII0Kx8wo75TdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0F73WXOFhA9wzKhwzo7xTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0V30WnOFhw1wz6hwzIzyTtmN1poNnVqV3Wit2dCpVdmN1poNnVqV3Wjl6Es5eEHkfKlwzIzyTtmN1poNnVqV3Wit2dCpVdmN1poNnVqV3Wjtd/SljzF27XMsFovFWK1W+9YAAAAAAAAAgEO4+7UxxuKo753atQzAUTx8/ZZduXrDbt+5a2fPnLbLF88f+UQvc7eP35OG3q3KbrTWbOjUquxGa82GTq3KbrTWbOjUGr3WHOFjFLB3lM+0Vd4pu9Fas6FTq7IbrTUbOrUqu9Fas6FTq7Ibrds3KLPpYxS8IBL2jvKZtso7ZTdaazZ0alV2o7VmQ6dWZTdaazZ0alV2o3X7hrnCwwbYO8pn2irvlN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO2W37J2yW3QXvdZc4WED7B3lM22Vd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26i15rrvCwAfaO8pm2yjtlN1prNnRqVXajtWZDp1ZlN1prNnRqVXajdfuGucILImHvKJ9pq7xTdqO1ZkOnVmU3Wms2dGpVdqO1ZkOnVmU3WrdvUGbTCyJ9jLFrn2OxWCzGarXatwYAAAAAAAAAHMLdr40xFkd979SuZQCOQvlMW+WdshutNRs6tSq70VqzoVOrshutNRs6tSq70bp9wxzhYxSwd5TPtFXeKbvRWrOhU6uyG601Gzq1KrvRWrOhU6uyG63bNyiz6WMUvCAS9o7ymbbKO2U3Wms2dGpVdqO1ZkOnVmU3Wms2dGpVdqN1+4a5wsMG2DvKZ9oq75TdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0F73WXOFhA+wd5TNtlXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2Ttktuotea67wsAH2jvKZtso7ZTdaazZ0alV2o7VmQ6dWZTdaazZ0alV2o3X7hrnCCyJh7yifaau8U3ajtWZDp1ZlN1prNnRqVXajtWZDp1ZlN1q3b1Bm0wsiOfoSJLh04dys/qECAAAAAACAJ4afbIDZwFE59Ro6tSq70VqzoVOrshutNRs6tSq70VqzoVMrR18CiMBROfUaOrUqu9Fas6FTq7IbrTUbOrUqu9Fas6FTa/Rac4WHDTAbOCqnXkN0p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfRa80VHjbAbOConHoN0Z2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdRa81V3jYALOBo3LqNXRqVXajtWZDp1ZlN1prNnRqVXajtWZDp9boteYKL4iE2cBROfUaOrUqu9Fas6FTq7IbrTUbOrUqu9Fas6FTa/Raymx6QaSPMXbtcywWi8VYrVb71gAAAAAAAACAQ7j7tTHG4qjvndq1DMAuePj6Lbty9YbdvnPXzp45bZcvnn/cE8LIRn2n7EZrzYZOrcputNZs6NSq7EZrzYZOrcputG7fMEf4GAWUg3N59+9Ga82GTq3KbrTWbOjUquxGa82GTq3KbrRu36DMpo9RnPgFke7+JHe/7u4/uv71p7n7W9z9Pes/fuqh7Svd/RF3v+HuF0/6ewMcBefy7t+N1poNnVqV3Wit2dCpVdmN1poNnVqV3WjdvmGuZJxG8Qoze/ehXz9gZm8dYzzbzN66/rW5+3PM7H4ze66ZvdDMvtvdn2QAyXAu7/7dsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0F73WXDnRwwZ3v8/MXmRmrz305ZeY2evXf/56M7t06OtvGGP8zhjjV8zsETP7vJP8/gBHwbm8+3fL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtFd9Fpz5aQ/2fBqM/t6M/vdQ1/79DHG+83M1n982vrr58zsfYd2N9dfexzu/jJ3X7n76tFHHz2hInSDc3n370ZrzYZOrcputNZs6NSq7EZrzYZOrcputG7fMFe2fkGku3+JmZ0dY7x2uVw+08y+cJqmf7VcLh+YpulVv7db//pbl8vli8zs5jRN71h//SVm9p5pmt792GtP03RtmqYHp2l68KGHHuIFkXAsOJd3/2601mzo1KrsRmvNhk6tym601mzo1KrsRuv2DcpsekHkSY6+fJ6Zvdjd/6KZfYKZfYq7/4CZfcDdnz7GeL+7P93MPrje3zSzZxz66+8zs9sn+P0BnpBLF87N6h9SAAAAAACASmz9kw3TNL11mqZvm6bp1cvlcmVmTx9j/KXlcvmZZvZZ0zT9p+Vy+ZVm9t5pmt6yXC5/3cy+eblcfu9yufxDZva1ZvbANE1j0+/D0ZdwL1A+Aie6U3ajtWZDp1ZlN1prNnRqVXajtWZDp1ZlN1o5+jKDV5nZC9z9PWb2gvWvbYzxTjN7o5m9y8x+wsxePsb4yBNeBeAeonwETnSn7EZrzYZOrcputNZs6NSq7EZrzYZOrcputPY7+vIkH6P4KGOMnzKzn1r/+f8ws+c/we5bzOxbMn5PgJOgfAROdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iu+i15sq9+MkGAHmUj8CJ7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0F73WXOFhA7RE+Qic6E7ZjdaaDZ1ald1ordnQqVXZjdaaDZ1ald1o5ehLOXhBJNwLlI/Aie6U3Wit2dCpVdmN1poNnVqV3Wit2dCpVdmN1n5HX/oYGw+D2DuLxWKsVqt9awAAAAAAAADAIdz92hhjcdT3Ul4QCVCZh6/fsitXb9jtO3ft7JnTdvni+SOfNu5jp+xGa82GTq3KbrTWbOjUquxGa82GTq3KbrRu3zBH+BgFwAYqnMtbYafs1qmhU6uyG601Gzq1KrvRWrOhU6uyG63bNyiz6WMUvCASYAMVzuWtsFN269TQqVXZjdaaDZ1ald1ordnQqVXZjdbtG+YKDxsANlDhXN4KO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbqLXmuu8LABYAMVzuWtsFN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aK76LXmCg8bADZQ4VzeCjtlt04NnVqV3Wit2dCpVdmN1poNnVqV3WjdvmGu8IJIgA1UOJe3wk7ZrVNDp1ZlN1prNnRqVXajtWZDp1ZlN1q3b1Bm0wsiOfoS4GNw6cK5Wf0DDwAAAAAAsG/4yQaABJSPyqmwU3br1NCpVdmN1poNnVqV3Wit2dCpVdmNVo6+BIAtUD4qp8JO2a1TQ6dWZTdaazZ0alV2o7VmQ6dWZTdaOfoSALZA+aicCjtlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26i15rrvCwASAB5aNyKuyU3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoLnqtucLDBoAElI/KqbBTduvU0KlV2Y3Wmg2dWpXdaK3Z0KlV2Y1Wjr6UgxdEwhxQPiqnwk7ZrVNDp1ZlN1prNnRqVXajtWZDp1ZlN1r7HX3pY4xd+xyLxWIxVqvVvjUAAAAAAAAA4BDufm2MsTjqe6d2LQPQnYev37IrV2/Y7Tt37eyZ03b54vkjn15GdpnXUt8pu3Vq6NSq7EZrzYZOrcputNZs6NSq7Ebr9g1zhI9RAOwQzhbu26rsRmvNhk6tym601mzo1KrsRmvNhk6t0Wsps+ljFLwgEmCHcLZw31ZlN1prNnRqVXajtWZDp1ZlN1prNnRqjV5rrvCwAWCHcLZw31Zlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+gueq25wsMGgB3C2cJ9W5XdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75TdorvoteYKDxsAdghnC/dtVXajtWZDp1ZlN1prNnRqVXajtWZDp9boteYKL4gE2CGcLdy3VdmN1poNnVqV3Wit2dCpVdmN1poNnVqj11Jm0wsiOfoSYMdcunBuVv8CAQAAAAAAOC78ZAOAIF2O++nUquxGa82GTq3KbrTWbOjUquxGa82GTq0cfQkAO6fLcT+dWpXdaK3Z0KlV2Y3Wmg2dWpXdaK3Z0Kk1eq25wsMGAEG6HPcT3Sm7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtFd9FpzhYcNAIJ0Oe4nulN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aK76LXmCg8bAATpctxPp1ZlN1prNnRqVXajtWZDp1ZlN1prNnRqjV5rrvCCSABBuhz306lV2Y3Wmg2dWpXdaK3Z0KlV2Y3Wmg2dWqPXUmbTCyJ9jLFrn2OxWCzGarXatwYAAAAAAAAAHMLdr40xFkd979SuZQAgj4ev37IrV2/Y7Tt37eyZ03b54vkjn4RW2Cm7dWro1KrsRmvNhk6tym601mzo1KrsRuv2DXOEj1EAzBTlM4Ozd8punRo6tSq70VqzoVOrshutNRs6tSq70bp9gzKbPkbBCyIBZorymcHZO2W3Tg2dWpXdaK3Z0KlV2Y3Wmg2dWpXdaN2+Ya7wsAFgpiifGZy9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75TdorvoteYKDxsAZorymcHZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbqLXmuu8LABYKYonxmcvVN269TQqVXZjdaaDZ1ald1ordnQqVXZjdbtG+YKL4gEmCnKZwZn75TdOjV0alV2o7VmQ6dWZTdaazZ0alV2o3X7BmU2vSDSxxi79jkWi8VirFarfWsAAAAAAAAAwCHc/doYY3HU907tWgYAdo/y2cLRnbJbp4ZOrcputNZs6NSq7EZrzYZOrcputG7fMEf4GAVAcZTPFo7ulN06NXRqVXajtWZDp1ZlN1prNnRqVXajdfsGZTZ9jIIXRAIUR/ls4ehO2a1TQ6dWZTdaazZ0alV2o7VmQ6dWZTdat2+YKzxsACiO8tnC0Z2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdRa81V3jYAFAc5bOFoztlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26i15rrvCwAaA4ymcLR3fKbp0aOrUqu9Fas6FTq7IbrTUbOrUqu9G6fcNc4QWRAMVRPls4ulN269TQqVXZjdaaDZ1ald1ordnQqVXZjdbtG5TZ9IJIjr4EaMClC+dm9S8tAAAAAACYN/xkAwCYWY1jgZR3ym601mzo1KrsRmvNhk6tym601mzo1MrRlwDQggrHAinvlN1ordnQqVXZjdaaDZ1ald1ordnQqTV6rbnCwwYAMLMaxwIp75TdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75TdorvoteYKDxsAwMxqHAukvFN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6i15orPGwAADOrcSyQ8k7ZjdaaDZ1ald1ordnQqVXZjdaaDZ1ao9eaK7wgEgDMrMaxQMo7ZTdaazZ0asq7lJYAAB7ESURBVFV2o7VmQ6dWZTdaazZ0ao1eS5lNL4j0McaufY7FYrEYq9Vq3xoAAAAAAAAAcAh3vzbGWBz1vVO7lgGA+fPw9Vt25eoNu33nrp09c9ouXzx/5BPYzN0+fk8aercqu9Fas6FTq7IbrTUbOrUqu9G6fcMc4WMUAHAslM8gVt4pu9Fas6FTq7IbrTUbOrUqu9Fas6FTa/Raymz6GAUviASAY6F8BrHyTtmN1poNnVqV3Wit2dCpVdmN1poNnVqj15orPGwAgGOhfAax8k7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbqLXmuu8LABAI6F8hnEyjtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+gueq25wsMGADgWymcQK++U3Wit2dCpVdmN1poNnVqV3Wit2dCpNXqtucILIgHgWCifQay8U3ajtWZDp1ZlN1prNnRqVXajtWZDp9botZTZ9IJIjr4EgGNz6cK5Wf1LEAAAAAAAdgs/2QAA9wSONqrX0KlV2Y3Wmg2dWpXdaK3Z0KlV2Y1Wjr4EAEiBo43qNXRqVXajtWZDp1ZlN1prNnRqVXajlaMvAQBS4Gijeg3RnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoLnqtucLDBgC4J3C0Ub2G6E7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdBe91lzhYQMA3BM42qheQ6dWZTdaazZ0alV2o7VmQ6dWZTdaOfpSDl4QCTBPONqoXkOnVmU3Wms2dGpVdqO1ZkOnVmU3WvsdfeljjF37HIvFYjFWq9W+NQAAAAAAAADgEO5+bYyxOOp7p3YtAwDwWB6+fsuuXL1ht+/ctbNnTtvli+cf90Q3slHfKbvRWrOhU6uyG601Gzq1KrvRWrOhU2v0WnOEj1EAwF7hHOX9u9Fas6FTq7IbrTUbOrUqu9Fas6FTa/Raymz6GAUviASAvcI5yvt3o7VmQ6dWZTdaazZ0alV2o7VmQ6fW6LXmCg8bAGCvcI7y/t2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iu+i15goPGwBgr3CO8v7dsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75TdorvoteYKDxsAYK9wjvL+3Wit2dCpVdmN1poNnVqV3Wit2dCpNXqtucILIgFgr3CO8v7daK3Z0KlV2Y3Wmg2dWpXdaK3Z0Kk1ei1lNr0gkqMvAWDvXLpwblb/UgUAAAAAgM3wkw0AII/ykUXRnbIbrTUbOrUqu9Fas6FTq7IbrTUbOrVy9CUAwJ5RPrIoulN2o7VmQ6dWZTdaazZ0alV2o7VmQ6fW6LXmCg8bAEAe5SOLojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd8pu2Ttlt+gueq25wsMGAJBH+cii6E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbqLXmuu8LABAORRPrIoulN2o7VmQ6dWZTdaazZ0alV2o7VmQ6fW6LXmCi+IBAB5lI8siu6U3Wit2dCpVdmN1poNnVqV3Wit2dCpNXotZTa9INLHGFtd1N2fYWbfb2afYWa/a2YPjjG+3d0/zcz+tZk908x+1cz+yhjj19d/zSvN7MvN7CNm9tVjjKsf6/dZLBZjtVpt5QgAAAAAAAAA9wZ3vzbGWBz1vVMnuO6Hzezrxhhvd/c/YGbX3P0tZvY3zeytY4xXufsDZvaAmX2Duz/HzO43s+ea2Vkz+7fu/lljjI88wfUBAI7Nw9dv2ZWrN+z2nbt29sxpu3zx/JFPh/exU3ajtWZDp1ZlN1prNnRqVXajtWZDp9botebI1h+jmKbpt6Zpev/6zz+0XC6/yMx+0cz+vpl97TRNv7VcLv+rmb1qmqbvXC6Xf8fMfmGM8VPTNN1ZLpcvMrP3TNN0c9Pvw8coACBKhXOUK+yU3To1dGpVdqO1ZkOnVmU3Wms2dGqNXkuZTR+jSHlBpLs/08wumNnbzOzTxxjvNzNb//Fp69k5M3vfob/s5vprR13vZe6+cvfVo48+mqEIAA2ocI5yhZ2yW6eGTq3KbrTWbOjUquxGa82GTq3Ra82VEz9scPdPNrMfMrOvGWP8xqbpEV878oURY4wHxxiLMcbiqU996kkVAaAJFc5RrrBTdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt1FrzVXTvSwwd0/zg4eNDw0xvjh9Zc/4O5PX3//6Wb2wfXXb5rZMw795feZ2e2T/P4AAIepcI5yhZ2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36C56rbmy9cMGd3cze52ZvXuM8W2HvvVmM3vp+s9famY/cujr97v7k939WWb2bDP7mW1/fwCAx1LhHOUKO2W3Tg2dWpXdaK3Z0KlV2Y3Wmg2dWqPXmitbvyByuVz+GTN7tZl90nK5/LvL5fIrlsvle+3g2MsHlsvlPzazp5jZK6ZpujtN06PL5fIPmtlrzeyv2sHRl7/0sX4fXhAJAFEqnKNcYafs1qmhU6uyG601Gzq1KrvRWrOhU2v0WspsekGkj3HkaxNkWCwWY7Va7VsDAAAAAAAAAA7h7tfGGIujvndq1zIAAAoon6NcYafs1qmhU6uyG601Gzq1KrvRWrOhU2v0WnNk649R7Ao+RgEA2Sifo1xhp+zWqaFTq7IbrTUbOrUqu9Fas6FTa/Raymz6GMWJj74EAJgbyucoV9gpu3Vq6NSq7EZrzYZOrcputNZs6NQavdZc4WEDALRD+RzlCjtlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0V30WnOFhw0A0A7lc5Qr7JTdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RnbJb9k7ZLbpTdsveKbtFd9FrzRUeNgBAO5TPUa6wU3br1NCpVdmN1poNnVqV3Wit2dCpNXqtucILIgGgHcrnKFfYKbt1aujUquxGa82GTq3KbrTWbOjUGr2WMpteEMnRlwDQkksXzs3qX+QAAAAAAHOCn2wAAHgCOJ6pb6uyG601Gzq1KrvRWrOhU6uyG60cfQkAAGs4nqlvq7IbrTUbOrUqu9Fas6FTq7IbrRx9CQAAazieqW+rslv2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75TdorvoteYKDxsAAJ4Ajmfq26rslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoLnqtucLDBgCAJ4Djmfq2KrvRWrOhU6uyG601Gzq1KrvRytGXcvCCSADYFxzP1LdV2Y3Wmg2dWpXdaK3Z0KlV2Y3Wfkdf+hhj1z7HYrFYjNVqtW8NAAAAAAAAADiEu18bYyyO+t6pXcsAAFTk4eu37MrVG3b7zl07e+a0Xb54/nFPpSObKjtlt04NnVqV3Wit2dCpVdmN1poNnVqj15ojfIwCAOCEdDkLulOrshutNRs6tSq70VqzoVOrshut2zcos+ljFLwgEgDghHQ5C7pTq7IbrTUbOrUqu9Fas6FTq7Ibrds3zBUeNgAAnJAuZ0FHd8pu0Z2yW/ZO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iu+i15goPGwAATkiXs6CjO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RXfRac4WHDQAAJ6TLWdCdWpXdaK3Z0KlV2Y3Wmg2dWpXdaN2+Ya7wgkgAgBPS5SzoTq3KbrTWbOjUquxGa82GTq3KbrRu36DMphdEcvQlAEACly6cm9V/GAAAAAAA7iX8ZAMAwA5QPnYpe6fs1qmhU6uyG601Gzq1KrvRWrOhUytHXwIAwIlRPnYpe6fs1qmhU6uyG601Gzq1KrvRWrOhU2v0WnOFhw0AADtA+dil7J2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36C56rbnCwwYAgB2gfOxS9k7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdBe91lzhYQMAwA5QPnYpe6fs1qmhU6uyG601Gzq1KrvRWrOhU2v0WnOFF0QCAOwA5WOXsnfKbp0aOrUqu9Fas6FTq7IbrTUbOrVGr6XMphdE+hhj1z7HYrFYjNVqtW8NAAAAAAAAADiEu18bYyyO+t6pXcsAAMBmHr5+y65cvWG379y1s2dO2+WL5498wq28U3br1NCpVdmN1poNnVqV3Wit2dCpNXqtOcLHKAAAhFA+Czq6U3br1NCpVdmN1poNnVqV3Wit2dCpNXotZTZ9jIIXRAIACKF8FnR0p+zWqaFTq7IbrTUbOrUqu9Fas6FTa/Rac4WHDQAAQiifBR3dKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovuoteaKzxsAAAQQvks6OhO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO2W37J2yW3QXvdZc4WEDAIAQymdBR3fKbp0aOrUqu9Fas6FTq7IbrTUbOrVGrzVXeEEkAIAQymdBR3fKbp0aOrUqu9Fas6FTq7IbrTUbOrVGr6XMphdEcvQlAIAYly6cm9V/ZAAAAAAAHgs/2QAAMEMqHOOkvFN2o7VmQ6dWZTdaazZ0alV2o5WjLwEAYAZUOMZJeafsRmvNhk6tym601mzo1KrsRitHXwIAwAyocIyT8k7ZLXun7BbdKbtl75Tdojtlt+ydslt0p+yWvVN2i+6U3bJ3ym7RXfRac4WHDQAAM6TCMU7KO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V30WvNFR42AADMkArHOCnvlN1ordnQqVXZjdaaDZ1ald1o5ehLOXhBJADA46lwjJPyTtmN1poNnVqV3Wit2dCpVdmN1n5HX/oYY9c+x2KxWIzVarVvDQAAAAAAAAA4hLtfG2MsjvreqV3LAADAbnn4+i27cvWG3b5z186eOW2XL54/8ol55m4fvycNvVuV3Wit2dCpVdmN1poNnVqj15ojfIwCAKAwymdGK++U3Wit2dCpVdmN1poNnVqV3WjdvkGZTR+j4AWRAACFUT4zWnmn7EZrzYZOrcputNZs6NSq7Ebr9g1zhYcNAACFUT4zWnmn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3ym7ZO2W36C56rbnCwwYAgMIonxmtvFN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0F73WXOFhAwBAYZTPjFbeKbvRWrOhU6uyG601Gzq1KrvRun3DXOEFkQAAhVE+M1p5p+xGa82GTq3KbrTWbOjUquxG6/YNymx6QSRHXwIAFOfShXOz+o8WAAAAAMwffrIBAAA4iqpgQ6dWZTdaazZ0alV2o7VmQ6dWjr4EAIDycBRVvYZOrcputNZs6NSq7EZrzYZOrRx9CQAA5eEoqnoN0Z2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2TtktulN2y94pu0V3HH0JAADl4Siqeg3RnbJbdKfslr1TdovulN2yd8pu0Z2yW/ZO2S26U3bL3im7RXccfQkAAOXhKKp6DZ1ald1ordnQqVXZjdaaDZ1aOfpyz/CCSACAew9HUdVr6NSq7EZrzYZOrcputNZs6NRa/ehLH2Ps2udYLBaLsVqt9q0BAAAAAAAAAIdw92tjjMVR3zu1axkAAJg3D1+/ZVeu3rDbd+7a2TOn7fLF8497Ah/ZqO+U3Wit2dCpVdmN1poNnVqV3WjdvmGO8DEKAAAIw7nX+3ejtWZDp1ZlN1prNnRqVXajdfsGZTZ9jIIXRAIAQBjOvd6/G601Gzq1KrvRWrOhU6uyG63bN8wVHjYAAEAYzr3ev1v2TtktulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75TdorvoteYKDxsAACAM517v3y17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovulN2yd8pu0V30WnOFhw0AABCGc6/370ZrzYZOrcputNZs6NSq7Ebr9g1zhRdEAgBAGM693r8brTUbOrUqu9Fas6FTq7Ibrds3KLPpBZE+xti1z7FYLBZjtVrtWwMAAAAAAAAADuHu18YYi6O+d2rXMgAAUB/l86yjO2U3Wms2dGpVdqO1ZkOnVmU3WrdvmCN8jAIAAFJRPs86ulN2o7VmQ6dWZTdaazZ0alV2o3X7BmU2fYyCF0QCAEAqyudZR3fKbrTWbOjUquxGa82GTq3KbrRu3zBXeNgAAACpKJ9nHd0pu2XvlN2iO2W37J2yW3Sn7Ja9U3aL7pTdsnfKbtGdslv2Ttktuotea67wsAEAAFJRPs86ulN2y94pu0V3ym7ZO2W36E7ZLXun7BbdKbtl75Tdojtlt+ydslt0F73WXOFhAwAApKJ8nnV0p+xGa82GTq3KbrTWbOjUquxG6/YNc4UXRAIAQCrK51lHd8putNZs6NSq7EZrzYZOrcputG7foMymF0Ry9CUAAKRz6cK5Wf2HEgAAAABy4ScbAABgL1Q4iqrCTtmtU0OnVmU3Wms2dGpVdqOVoy8BAAB2QoWjqCrslN06NXRqVXajtWZDp1ZlN1o5+hIAAGAnVDiKqsJO2S26U3bL3im7RXfKbtk7ZbfoTtkte6fsFt0pu2XvlN2iO46+BAAAuAdUOIqqwk7ZLbpTdsveKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7jr4EAAC4B1Q4iqrCTtmtU0OnVmU3Wms2dGpVdqOVoy/l4AWRAAA1qXAUVYWdslunhk6tym601mzo1KrsRmu/oy99jLFrn2OxWCzGarXatwYAAAAAAAAAHMLdr40xFkd979SuZQAAAI7Lw9dv2ZWrN+z2nbt29sxpu3zx/JFP/TN3+/g9ae3d0KlV2Y3Wmg2dWpXdaN2+YY7wMQoAAJBG+dzrCjtlt04NnVqV3Wit2dCpVdmN1u0blNn0MYqdvyDS3V/o7jfc/RF3f2DXvz8AAMwL5XOvK+yU3To1dGpVdqO1ZkOnVmU3WrdvmCs7fdjg7k8ys+8ysy82s+eY2Ze6+3N26QAAAPNC+dzrCjtlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdKfslr1TdovuoteaK7v+yYbPM7NHxhi/PMb4kJm9wcxesmMHAACYEcrnXlfYKbtFd8pu2Ttlt+hO2S17p+wW3Sm7Ze+U3aI7ZbfsnbJbdBe91lzZ9cOGc2b2vkO/vrn+2v+Hu7/M3Vfuvnr00Ud3JgcAAHoon3tdYafs1qmhU6uyG601Gzq1KrvRun3DXNnpCyKXy+VzzeyPTtP05vWvP8fMzk3T9OOHd9M0XZum6cFpmh586KGHeEEkAEBjlM+9rrBTduvU0KlV2Y3Wmg2dWpXdaN2+QZlNL4j0McbORNz9C8xsGmNcXP/6lWZmY4x/9kR/zWKxGKvVakeGAAAAAAAAABDB3a+NMRZHfW/XH6P4WTN7trs/y90/3szuN7M379gBAAAAAAAAAO4hp3b5m40xPuzuX2lmV83sSWb2PWOMd+7SAQAAAAAAAADuLTt92GBmNsb4MTP7sV3/vgAAAAAAAACwG3b9MQoAAAAAAAAAKA4PGwAAAAAAAAAgFR42AAAAAAAAAEAqPGwAAAAAAAAAgFR42AAAAAAAAAAAqfCwAQAAAAAAAABS4WEDAAAAAAAAAKTCwwYAAAAAAAAASIWHDQAAAAAAAACQCg8bAAAAAAAAACAVHjYAAAAAAAAAQCo8bAAAAAAAAACAVHjYAAAAAAAAAACp8LABAAAAAAAAAFLhYQMAAAAAAAAApMLDBgAAAAAAAABIhYcNAAAAAAAAAJAKDxsAAAAAAAAAIBUeNgAAAAAAAABAKjxsAAAAAAAAAIBUeNgAAAAAAAAAAKnwsAEAAAAAAAAAUuFhAwAAAAAAAACkwsMGAAAAAAAAAEiFhw0AAAAAAAAAkAoPGwAAAAAAAAAgFR42AAAAAAAAAEAqPGwAAAAAAAAAgFR42AAAAAAAAAAAqfgYY98OG3H3R83sv+3bI8BTzOy/71sCdgL3ugfc5z5wr/vAve4D97oH3Oc+cK91+cwxxlOP+ob8w4a54O6rMcZi3x5w7+Fe94D73AfudR+4133gXveA+9wH7vU84WMUAAAAAAAAAJAKDxsAAAAAAAAAIBUeNuTx4L4FYGdwr3vAfe4D97oP3Os+cK97wH3uA/d6hvDOBgAAAAAAAABIhZ9sAAAAAAAAAIBUeNgAAAAAAAAAAKnwsOGEuPsL3f2Guz/i7g/s2wdOhrs/w93/vbu/293f6e6vWH/909z9Le7+nvUfP/XQX/PK9f2/4e4X92cPx8Xdn+Tu1939R9e/5j4XxN3PuPub3P0X1/9sfwH3uibu/rXrf3f/grv/oLt/Ave6Bu7+Pe7+QXf/hUNfO/a9dfc/5e4/v/7ed7i777oFNvME9/rK+t/h73D3f+PuZw59j3s9Q466z4e+9w/cfbj7Uw59jfs8Q3jYcALc/Ulm9l1m9sVm9hwz+1J3f85+reCEfNjMvm6M8cfN7PPN7OXre/qAmb11jPFsM3vr+te2/t79ZvZcM3uhmX33+u8LmAevMLN3H/o197km325mPzHG+GNm9jl2cM+518Vw93Nm9tVmthhjfLaZPckO7iX3ugbfZwf36TDb3NvXmNnLzOzZ6//32GvC/vk+e/x9eYuZffYY40+Y2S+Z2SvNuNcz5/vsiHvi7s8wsxeY2XsPfY37PFN42HAyPs/MHhlj/PIY40Nm9gYze8meneAEjDHeP8Z4+/rPf9MO/o+Sc3ZwX1+/nr3ezC6t//wlZvaGMcbvjDF+xcwesYO/L0Acd7/PzF5kZq899GXuczHc/VPM7M+a2evMzMYYHxpj3DHudVVOmdlpdz9lZp9oZreNe12CMcZ/MLP/+ZgvH+veuvvTzexTxhj/eRy8If37D/01IMJR93qM8ZNjjA+vf/nTZnbf+s+51zPlCf6ZNjP7F2b29WZ2+BQD7vNM4WHDyThnZu879Oub669BAdz9mWZ2wczeZmafPsZ4v9nBAwkze9p6xt8D8+XVdvAfs9899DXucz3+sJk9ambfu/7IzGvd/ZOMe12OMcYtM/vndvD/G/Z+M/tfY4yfNO51ZY57b8+t//yxX4d58bfN7MfXf869LoS7v9jMbo0xfu4x3+I+zxQeNpyMoz4TxFmiBXD3TzazHzKzrxlj/Mam6RFf4+8Bcdz9S8zsg2OMa9G/5IivcZ/nwSkz+1wze80Y44KZ/batf9T6CeBez5T15/VfYmbPMrOzZvZJ7v5lm/6SI77Gva7BE91b7vnMcfdvtIOPvD70e186Ysa9niHu/olm9o1m9k1HffuIr3GfZwAPG07GTTN7xqFf32cHP7IJM8bdP84OHjQ8NMb44fWXP7D+US1b//GD66/z98A8eZ6Zvdjdf9UOPv70F9z9B4z7XJGbZnZzjPG29a/fZAcPH7jX9fgiM/uVMcajY4z/a2Y/bGZfaNzryhz33t603//x+8Nfhxng7i81sy8xs7+2/pF5M+51Jf6IHTws/rn1/z67z8ze7u6fYdzn2cLDhpPxs2b2bHd/lrt/vB28uOTNe3aCE7B+g+3rzOzdY4xvO/StN5vZS9d//lIz+5FDX7/f3Z/s7s+ygxfT/MyufGE7xhivHGPcN8Z4ph38c/vvxhhfZtzncowxfs3M3ufu59dfer6Zvcu41xV5r5l9vrt/4vrf5c+3g/fucK/rcqx7u/6oxW+6++ev/x75G4f+GhDG3V9oZt9gZi8eY/zvQ9/iXhdhjPHzY4ynjTGeuf7fZzfN7HPX/x3nPs+UU/sWmDNjjA+7+1ea2VU7eOv194wx3rlnLTgZzzOzv25mP+/u/2X9tX9oZq8ysze6+5fbwf+g/ctmZmOMd7r7G+3g/3j5sJm9fIzxkd1rQxLc55p8lZk9tH4o/Mtm9rfs4GE797oQY4y3ufubzOztdnDvrpvZg2b2yca9nj3u/oNm9ufM7CnuftPMvtm2+3f237ODt+CftoPP/f+4gRRPcK9faWZPNrO3rE82/Okxxldwr+fLUfd5jPG6o7bc5/niv/9TSAAAAAAAAAAAJ4ePUQAAAAAAAABAKjxsAAAAAAAAAIBUeNgAAAAAAAAAAKnwsAEAAAAAAAAAUuFhAwAAAAAAAACkwsMGAAAAAAAAAEiFhw0AAAAAAAAAkMr/A/uFR9mNXbvMAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#plot of DIC data\n", - "x_ = contour['X']\n", - "y_ = contour['Y']\n", - "plt.figure(figsize=(18, 15))\n", - "plt.scatter(x_,y_)\n", - "\n", - "xtip = 261.5\n", - "ytip = 789.5\n", - "plt.scatter(xtip,ytip)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Xmin 5.5 Xmax 1493.5 Ymin 5.5 Ymax 1573.5\n" - ] - } - ], - "source": [ - "#3rd contour to choose\n", - "ymax=contour['Y'].max()\n", - "ymin=contour['Y'].min()\n", - "xmax=contour['X'].max()\n", - "xmin=contour['X'].min()\n", - "print(\"Xmin {0} Xmax {1} Ymin {2} Ymax {3}\".format(xmin, xmax, ymin, ymax))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "y_mid = ytip\n", - "pixel = 16\n", - "nc = 1\n", - "#given 2nd contour\n", - "x_n_min = xmin+nc*pixel\n", - "#x_n_max = xmax-nc*pixel\n", - "#y_n_min = ymin+(nc)*pixel\n", - "#y_n_max = ymax-(nc)*pixel" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "565.5\n", - "1013.5\n" - ] - } - ], - "source": [ - "#contour left\n", - "left1 = contour[(contour.X==x_n_min) & (contour.Y < y_mid)]\n", - "left1_min = left1['Y'].min()\n", - "left1.sort_values(by=['Y'],ascending=False,inplace=True)\n", - "\n", - "\n", - "left2 = contour[(contour.X==x_n_min) & (contour.Y > y_mid)]\n", - "left2_max = left2['Y'].max()\n", - "left2.sort_values(by=['Y'],ascending=False,inplace=True)\n", - "\n", - "\n", - "\n", - "y_left_min = left1['Y'].min()\n", - "y_left_max = left2['Y'].max()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "bias_top=pd.DataFrame()\n", - "for i in range(1,100):\n", - " bias_top = bias_top.append(contour[(contour.X==x_n_min + i*pixel) & (contour.Y==y_left_max + i*pixel)])\n", - "\n", - "bias_top.sort_values(by=['X'],ascending=False,inplace=True)\n", - "\n", - "bias_bottom=pd.DataFrame()\n", - "for i in range(1,100):\n", - " bias_bottom = bias_bottom.append(contour[(contour.X==x_n_min + i*pixel) & (contour.Y==y_left_min -i*pixel)])\n", - " \n", - "bias_bottom.sort_values(by=['X'],ascending=True,inplace=True)\n", - "\n", - "#get the point max of bias\n", - "x_bias_max = bias_top['X'].max()\n", - "y_bias_max = bias_top['Y'].max()\n", - "y_bias_min = bias_bottom['Y'].min()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "top = contour[(contour.Y==y_bias_max) & (contour.X > x_bias_max)]\n", - "top.sort_values(by=['X'],ascending=False,inplace=True)\n", - "\n", - "bottom = contour[(contour.Y==y_bias_min) & (contour. X> x_bias_max)]\n", - "bottom.sort_values(by=['X'],ascending=True,inplace=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB0AAAMYCAYAAACHb5+jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdf4zk530X8PeHyzVsQdGlitP61rbsCufAqYvcLlagAomm5QyU+mSpkpFKLahkEYVSEFzJUQmlf0SOuApoBalklR+pqDBWOS4WantNAkJCahMuPeBw0iOmgcR7buP+caWIJbXNwx/fWWedzNq7+X5n5jvfeb2k084888zsE2klK28983lXay0AAAAAQ/s9qz4AAAAAME1CBwAAAGAhhA4AAADAQggdAAAAgIUQOgAAAAALIXQAAAAAFuJNqz7AUb3tbW9rd99996qPAQAAABzwqU996rdaa7fNe21tQoe77747V69eXfUxAAAAgAOq6n8e9pqvVwAAAAALIXQAAAAAFkLoAAAAACyE0AEAAABYCKEDAAAAsBBCBwAAAGAhhA4AAADAQggdAAAAgIUQOgAAAAALIXQAAAAAFkLoAAAAACyE0AEAAABYCKEDAAAAsBBCBwAAAGAhhA4AAADAQggdAAAAgIUQOgAAAAALIXQAAAAAFkLoAAAAACyE0AEAAABYCKEDAAAAsBBCBwAAAGAhBgkdquqvV9WzVfVfq+pfVNXvrapvqKqPVtVnZz/femD/hap6rqpuVNXZIc4AAAAAjEvv0KGqtpP81SQ7rbVvSXIiyaNJ3pfk4621e5N8fPY8VXXf7PV3JnkoyYeq6kTfcwAAAADjMtTXK96UZKuq3pTk65PcTPJwkg/PXv9wknOzxw8neaq19qXW2ueSPJfkwYHOAQAAAIxE79Chtbab5MeTfD7JC0l+u7X2S0m+sbX2wmzPC0nePnvLdpIvHPiI52drX6WqHq+qq1V19cUXX+x7VAAAAGCJhvh6xVvT3V64J8npJL+vqr7/9d4yZ63N29hae7K1ttNa27ntttv6HhUAAABYoiG+XvFdST7XWnuxtfZSkktJ/liS36yq25Nk9vOLs/3PJ7nzwPvvSPd1DAAAAGBChggdPp/kXVX19VVVSd6d5DNJnkny2GzPY0k+Mnv8TJJHq+rNVXVPknuTfHKAcwAAAAAj8qa+H9Ba+0RV/VySX03ycpJrSZ5M8vuTPF1VP5gumPi+2f5nq+rpJJ+e7X9va+2VvucAYPNcvrabi1du5OatvZw+tZXzZ8/k3ANfPSZoFfvGfDb7/A3Y52/APn8D9o1r31E/ax1Va3PHKYzOzs5Ou3r16qqPAcBIXL62mwuXrmfvpS/n1lsnT+SJR+5/zX+kV7FvzGezbzn7xnw2+5azb8xns285+8Z8NvvGte+onzVmVfWp1trOvNeGqswEgKW6eOXGa/7jnCR7L72Si1durHzfmM9m33L2jfls9i1n35jPZt9y9o35bPaNa99RP2tdCR0AWEs3b+0daX0V+8Z8NvuWs2/MZ7NvOfvGfDb7lrNvzGezb1z7jvpZ60roAMBaOn1q60jrq9g35rPZt5x9Yz6bfcvZN+az2becfWM+m33j2nfUz1pXQgcA1tL5s2eydfLEa9a2Tp7I+bNnVr5vzGezbzn7xnw2+5azb8xns285+8Z8NvvGte+on7WuTrz//e9f9RmO5Mknn3z/448/vupjADASf/D2t+SOt27l+u5v53//35ezfWorf+fP3fdVA5dWsW/MZ7PP34B9/gbs8zdg37j2HfWzxuzHfuzHXnj/+9//5LzXtFcAMDpTro0CAJia12uveNOyDwMAr+cra6N2b+3lwqXrSSJ4AABYM2Y6ADAqU6+NAgDYJEIHAEZl6rVRAACbROgAwKhMvTYKAGCTCB0AGJWp10YBAGwSgyQBGJX9YZHaKwAA1p/QAYClOWoV5rkHtoUMAAATIHQAYClUYQIAbB4zHQBYClWYAACbR+gAwFKowgQA2DxCBwCWQhUmAMDmEToAsBSqMAEANo9BkgAshSpMAIDNI3QAYGlUYQIAbBahAwC9Xb626wYDAABfRegAQC+Xr+3mwqXrr9Zh7t7ay4VL15NE8AAAsOEMkgSgl4tXbrwaOOzbe+mVXLxyY0UnAgBgLIQOAPRy89besdYBANgcQgcAejl9autY6wAAbA6hAwC9nD97JlsnT7xmbevkiZw/e2ZFJwIAYCwMkgSgl/1hkdorAAD4SkIHAA511CrMcw9sCxkAAPgqQgcA5lKFCQBAX2Y6ADCXKkwAAPoSOgAwlypMAAD6EjoAMJcqTAAA+hI6ADCXKkwAAPoySBKAuVRhAgDQl9ABYAOpwgQAYBmEDgAbRhUmAADLYqYDwIZRhQkAwLIIHQA2jCpMAACWRegAsGFUYQIAsCxCB4ANowoTAIBlMUgSYMOowgQAYFmEDgATogoTAIAxEToATIQqTAAAxsZMB4CJUIUJAMDYCB0AJkIVJgAAYyN0AJgIVZgAAIyN0AFgIlRhAgAwNgZJAkyEKkwAAMZG6ACwBlRhAgCwjoQOACOnChMAgHVlpgPAyKnCBABgXQkdAEZOFSYAAOtK6AAwcqowAQBYV0IHgJFThQkAwLoySBJg5FRhAgCwroQOACukChMAgCkTOgCsiCpMAACmzkwHgBVRhQkAwNQJHQBWRBUmAABTJ3QAWBFVmAAATJ3QAWBFVGECADB1BkkCrIgqTAAApk7oALAAqjABAEDoADA4VZgAANAx0wFgYKowAQCgI3QAGJgqTAAA6AgdAAamChMAADpCB4CBqcIEAICOQZIAA1OFCQAAHaEDwDGowgQAgKMTOgAckSpMAAA4HjMdAI5IFSYAAByP0AHgiFRhAgDA8QgdAI5IFSYAAByP0AHgiFRhAgDA8RgkCXBEqjABAOB4hA4AM0epw1SFCQAARyd0AIg6TAAAWAQzHQCiDhMAABZhkNChqk5V1c9V1a9V1Weq6o9W1TdU1Uer6rOzn289sP9CVT1XVTeq6uwQZwDoQx0mAAAMb6ibDj+R5Bdba38wyR9O8pkk70vy8dbavUk+PnueqrovyaNJ3pnkoSQfqqoTcz8VYEnUYQIAwPB6hw5V9ZYkfyLJP06S1trvttZuJXk4yYdn2z6c5Nzs8cNJnmqtfam19rkkzyV5sO85APpQhwkAAMMb4qbDNyd5Mck/raprVfXTVfX7knxja+2FJJn9fPts/3aSLxx4//OzNYCVOffAdp545P5sn9pKJdk+tZUnHrnfEEkAAOhhiPaKNyX5tiQ/1Fr7RFX9RGZfpThEzVlrczdWPZ7k8SS56667+p4T2FBHqcJM1GECAMDQhrjp8HyS51trn5g9/7l0IcRvVtXtSTL7+cUD++888P47ktyc98GttSdbazuttZ3bbrttgKMCm2a/CnP31l5avlyFefna7qqPBgAAk9c7dGit/UaSL1TV/hef353k00meSfLYbO2xJB+ZPX4myaNV9eaquifJvUk+2fccAPOowgQAgNUZ4usVSfJDSX62qr4uya8n+YvpAo2nq+oHk3w+yfclSWvt2ap6Ol0w8XKS97bWXpn/sQD9qMIEAIDVGSR0aK39pyQ7c1569yH7P5DkA0P8boDXc/rUVnbnBAyqMAEAYPGGmOkAMFqqMAEAYHWG+noFwCjtt1Ecpb0CAAAYltABWFuqMAEAYNyEDsBa2q/C3G+m2K/CTCJgAACAkTDTAVhLqjABAGD8hA7AWlKFCQAA4yd0ANbSYZWXqjABAGA8hA7AWlKFCQAA42eQJLCWVGECAMD4CR2A0VGFCQAA0yB0AEZFFSYAAEyHmQ7AqKjCBACA6RA6AKOiChMAAKZD6ACMiipMAACYDqEDMCqqMAEAYDoMkgRGRRUmAABMh9ABWBpVmAAAsFmEDsBSqMIEAIDNY6YDsBSqMAEAYPMIHYClUIUJAACbR+gALIUqTAAA2DxCB2ApVGECAMDmMUgSWApVmAAAsHmEDkBvqjABAIB5hA5AL6owAQCAw5jpAPSiChMAADiM0AHoRRUmAABwGKED0IsqTAAA4DBCB6AXVZgAAMBhDJIEelGFCQAAHEboABxKFSYAANCH0AGYSxUmAADQl5kOwFyqMAEAgL6EDsBcqjABAIC+hA7AXKowAQCAvoQOwFyqMAEAgL4MkgTmUoUJAAD0JXSADaQKEwAAWAahA2wYVZgAAMCymOkAG0YVJgAAsCxCB9gwqjABAIBlETrAhlGFCQAALIvQATaMKkwAAGBZDJKEDaMKEwAAWBahA0yIKkwAAGBMhA4wEaowAQCAsTHTASZCFSYAADA2QgeYCFWYAADA2AgdYCJUYQIAAGMjdICJUIUJAACMjUGSMBGqMAEAgLEROsCEqMIEAADGROgAa+DytV03GAAAgLUjdICRu3xtNxcuXX+1DnP31l4uXLqeJIIHAABg1AyShJG7eOXGq4HDvr2XXsnFKzdWdCIAAICjETrAyN28tXesdQAAgLEQOsDInT61dax1AACAsRA6wMidP3smWydPvGZt6+SJnD97ZkUnAgAAOBqDJGHk9odFaq8AAADWjdABVuioVZjnHtgWMgAAAGtH6AArogoTAACYOjMdYEVUYQIAAFMndIAVUYUJAABMndABVkQVJgAAMHVCB1gRVZgAAMDUGSQJK6IKEwAAmDqhAyyAKkwAAAChAwxOFSYAAEDHTAcYmCpMAACAjtABBqYKEwAAoCN0gIGpwgQAAOgIHWBgqjABAAA6BknCwFRhAgAAdIQOcAyqMAEAAI5O6ABHpAoTAADgeMx0gCNShQkAAHA8Qgc4IlWYAAAAxyN0gCNShQkAAHA8Qgc4IlWYAAAAxzNY6FBVJ6rqWlX9m9nzb6iqj1bVZ2c/33pg74Wqeq6qblTV2aHOAIt07oHtPPHI/dk+tZVKsn1qK088cr8hkgAAAIcYsr3ih5N8JslbZs/fl+TjrbUPVtX7Zs//VlXdl+TRJO9McjrJx6rqHa21V+Z9KCzLUeowVWECAAAc3SA3HarqjiR/NslPH1h+OMmHZ48/nOTcgfWnWmtfaq19LslzSR4c4hzwtdqvw9y9tZeWL9dhXr62u+qjAQAArK2hvl7xD5L8SJL/d2DtG1trLyTJ7OfbZ+vbSb5wYN/zszVYGXWYAAAAw+sdOlTV9yT5YmvtU0d9y5y1dshnP15VV6vq6osvvvg1nxHeiDpMAACA4Q1x0+E7knxvVf2PJE8l+c6q+udJfrOqbk+S2c8vzvY/n+TOA++/I8nNeR/cWnuytbbTWtu57bbbBjgqzKcOEwAAYHi9Q4fW2oXW2h2ttbvTDYj8t62170/yTJLHZtseS/KR2eNnkjxaVW+uqnuS3Jvkk33PAX2owwQAABjekO0VX+mDSZ6uqh9M8vkk35ckrbVnq+rpJJ9O8nKS92quYNX2GyneqL0CAACAo6vW5o5TGJ2dnZ129erVVR+DNXSUKkwAAAC+NlX1qdbazrzXFnnTAVZuvwpzv5livwozieABAABgwYaqzIRRUoUJAACwOkIHJk0VJgAAwOoIHZg0VZgAAACrI3Rg0lRhAgAArI5BkkyaKkwAAIDVETqwto5ahXnugW0hAwAAwAoIHVhLqjABAADGz0wH1pIqTAAAgPETOrCWVGECAACMn9CBtaQKEwAAYPyEDqwlVZgAAADjZ5Aka0kVJgAAwPgJHRgdVZgAAADTIHRgVFRhAgAATIeZDoyKKkwAAIDpEDowKqowAQAApkPowKiowgQAAJgOoQOjogoTAABgOgySZFRUYQIAAEyH0IGlUYUJAACwWYQOLIUqTAAAgM1jpgNLoQoTAABg8wgdWApVmAAAAJtH6MBSqMIEAADYPEIHlkIVJgAAwOYxSJKlUIUJAACweYQO9KYKEwAAgHmEDvSiChMAAIDDmOlAL6owAQAAOIzQgV5UYQIAAHAYoQO9qMIEAADgMEIHelGFCQAAwGEMkqQXVZgAAAAcRujAoVRhAgAA0IfQgblUYQIAANCXmQ7MpQoTAACAvoQOzKUKEwAAgL6EDsylChMAAIC+hA7MpQoTAACAvgySZC5VmAAAAPQldNhAqjABAABYBqHDhlGFCQAAwLKY6bBhVGECAACwLEKHDaMKEwAAgGUROmwYVZgAAAAsi9Bhw6jCBAAAYFkMktwwqjABAABYFqHDhKjCBAAAYEyEDhOhChMAAICxMdNhIlRhAgAAMDZCh4lQhQkAAMDYCB0mQhUmAAAAYyN0mAhVmAAAAIyNQZIToQoTAACAsRE6rAFVmAAAAKwjocPIqcIEAABgXZnpMHKqMAEAAFhXQoeRU4UJAADAuhI6jJwqTAAAANaV0GHkVGECAACwrgySHDlVmAAAAKwrocMKqcIEAABgyoQOK6IKEwAAgKkz02FFVGECAAAwdUKHFVGFCQAAwNQJHVZEFSYAAABTJ3RYEVWYAAAATJ1BkiuiChMAAICpEzosgCpMAAAAEDoMThUmAAAAdMx0GJgqTAAAAOgIHQamChMAAAA6QoeBqcIEAACAjtBhYKowAQAAoGOQ5MBUYQIAAEBH6LAAqjABAABA6LAQl6/tuukAAADAxhM6DOzytd1cuHT91drM3Vt7uXDpepIIHgAAANgovQdJVtWdVfXvquozVfVsVf3wbP0bquqjVfXZ2c+3HnjPhap6rqpuVNXZvmcYk4tXbrwaOOzbe+mVXLxyY0UnAgAAgNUYor3i5SR/o7X2h5K8K8l7q+q+JO9L8vHW2r1JPj57ntlrjyZ5Z5KHknyoqk7M/eQ1dPPW3rHWAQAAYKp6hw6ttRdaa786e/w7ST6TZDvJw0k+PNv24STnZo8fTvJUa+1LrbXPJXkuyYN9zzEWp09tHWsdAAAApmqImw6vqqq7kzyQ5BNJvrG19kLSBRNJ3j7btp3kCwfe9vxsbRLOnz2TrZOvvbixdfJEzp89s6ITAQAAwGoMNkiyqn5/kn+V5K+11v5XVR26dc5aO+QzH0/yeJLcddddQxxz4faHRWqvAAAAYNMNctOhqk6mCxx+trV2abb8m1V1++z125N8cbb+fJI7D7z9jiQ3531ua+3J1tpOa23ntttuG+KoAAAAwJIM0V5RSf5xks+01v7egZeeSfLY7PFjST5yYP3RqnpzVd2T5N4kn+x7jrHYr8zcvbWXli9XZl6+trvqowEAAMBSDXHT4TuS/IUk31lV/2n2788k+WCS766qzyb57tnztNaeTfJ0kk8n+cUk722tvTL/o9ePykwAAADo9J7p0Fr7D5k/pyFJ3n3Iez6Q5AN9f/cYqcwEAACAzqDtFajMBAAAgH1Ch4GpzAQAAIDOYJWZdFRmAgAAQMdNBwAAAGAh3HQY2H5l5n6DxX5lZhK3HQAAANgobjoMTGUmAAAAdIQOA1OZCQAAAB2hw8BUZgIAAEBH6DAwlZkAAADQMUhyYCozAQAAoOOmAwAAALAQbjoMTGUmAAAAdNx0GJjKTAAAAOgIHQamMhMAAAA6QoeBqcwEAACAjtBhYCozAQAAoGOQ5MBUZgIAAEDHTQcAAABgIdx0GJjKTAAAAOi46TAwlZkAAADQEToMTGUmAAAAdIQOA1OZCQAAAB2hw8BUZgIAAEDHIMmBqcwEAACAjpsOAAAAwEK46TAwlZkAAADQcdNhYCozAQAAoCN0GJjKTAAAAOgIHQamMhMAAAA6QoeBqcwEAACAjkGSA1OZCQAAAB03HQAAAICFcNNhYCozAQAAoOOmw8BUZgIAAEBH6DAwlZkAAADQEToMTGUmAAAAdIQOA1OZCQAAAB2DJAemMhMAAAA6bjoAAAAAC+Gmw8BUZgIAAEDHTYeBqcwEAACAjtBhYCozAQAAoCN0GJjKTAAAAOgIHQamMhMAAAA6BkkOTGUmAAAAdNx0AAAAABbCTYeBqcwEAACAjpsOA1OZCQAAAB2hw8BUZgIAAEBH6DAwlZkAAADQEToMTGUmAAAAdAySHJjKTAAAAOi46QAAAAAshJsOA1OZCQAAAB03HQamMhMAAAA6QoeBqcwEAACAjtBhYCozAQAAoCN0GJjKTAAAAOgYJDkwlZkAAADQcdMBAAAAWAg3HQamMhMAAAA6bjoMTGUmAAAAdIQOA1OZCQAAAB2hw8BUZgIAAEBH6DAwlZkAAADQMUhyYCozAQAAoOOmAwAAALAQbjoMTGUmAAAAdNx0GJjKTAAAAOgIHQamMhMAAAA6QoeBqcwEAACAjtBhYCozAQAAoGOQ5MBUZgIAAEDHTQcAAABgIdx0GJjKTAAAAOi46TAwlZkAAADQEToMTGUmAAAAdIQOA1OZCQAAAB2hw8BUZgIAAEDHIMmBqcwEAACAzspCh6p6KMlPJDmR5Kdbax9c1VmGdu6BbSEDAAAAG28lX6+oqhNJ/lGSP53kviR/vqruW8VZAAAAgMVY1UyHB5M811r79dba7yZ5KsnDKzoLAAAAsACrCh22k3zhwPPnZ2uvUVWPV9XVqrr64osvLu1wAAAAQH+rCh1qzlr7qoXWnmyt7bTWdm677bYlHAsAAAAYyqpCh+eT3Hng+R1Jbq7oLAAAAMACrCp0+I9J7q2qe6rq65I8muSZFZ0FAAAAWICVVGa21l6uqr+S5Eq6ysx/0lp7dhVnWYTL13Zz8cqN3Ly1l9OntnL+7BkVmgAAAGyclYQOSdJa+/kkP7+q378ol6/t5sKl69l76ZUkye6tvVy4dD1JBA8AAABslFV9vWKyLl658WrgsG/vpVdy8cqNFZ0IAAAAVkPoMLCbt/aOtQ4AAABTJXQY2OlTW8daBwAAgKkSOgzs/Nkz2Tp54jVrWydP5PzZMys6EQAAAKzGygZJTtX+sEjtFQAAAGw6Nx0AAACAhXDTYWAqMwEAAKDjpsPAVGYCAABAR+gwMJWZAAAA0BE6DExlJgAAAHSEDgNTmQkAAAAdgyQHpjITAAAAOm46AAAAAAvhpsPAVGYCAABAx02HganMBAAAgI7QYWAqMwEAAKAjdBiYykwAAADoCB0GpjITAAAAOgZJDkxlJgAAAHSEDgtw7oFtIQMAAAAbT+iwAJev7brpAAAAwMYTOgzs8rXdXLh0/dXazN1be7lw6XqSCB4AAADYKAZJDuzilRuvBg779l56JRev3FjRiQAAAGA1hA4Du3lr71jrAAAAMFVCh4GdPrV1rHUAAACYKqHDwM6fPZOtkydes7Z18kTOnz2zohMBAADAahgkObD9YZHaKwAAANh0bjoAAAAAC+Gmw8BUZgIAAEDHTYeBqcwEAACAjtBhYCozAQAAoCN0GJjKTAAAAOgIHQamMhMAAAA6BkkOTGUmAAAAdNx0AAAAABbCTYeBqcwEAACAjpsOA1OZCQAAAB2hw8BUZgIAAEBH6DAwlZkAAADQEToMTGUmAAAAdAySHJjKTAAAAOi46QAAAAAshJsOA1OZCQAAAB03HQamMhMAAAA6QoeBqcwEAACAjtBhYCozAQAAoCN0GJjKTAAAAOgYJDkwlZkAAADQcdMBAAAAWAg3HQamMhMAAAA6bjoMTGUmAAAAdIQOA1OZCQAAAB2hw8BUZgIAAEBH6DAwlZkAAADQMUhyYCozAQAAoOOmAwAAALAQbjoMTGUmAAAAdNx0GJjKTAAAAOgIHQamMhMAAAA6QoeBqcwEAACAjtBhYCozAQAAoGOQ5MBUZgIAAEDHTQcAAABgIdx0GJjKTAAAAOi46TAwlZkAAADQEToMTGUmAAAAdIQOA1OZCQAAAB2hw8BUZgIAAEDHIMmBqcwEAACAjpsOAAAAwEK46TAwlZkAAADQcdNhYCozAQAAoCN0GJjKTAAAAOgIHQamMhMAAAA6QoeBqcwEAACAjkGSA1OZCQAAAB03HQAAAICFcNNhYCozAQAAoOOmw8BUZgIAAECnV+hQVRer6teq6r9U1b+uqlMHXrtQVc9V1Y2qOntg/dur6vrstZ+squpzhrFRmQkAAACdvjcdPprkW1pr35rkvyW5kCRVdV+SR5O8M8lDST5UVfuVDj+V5PEk987+PdTzDKOiMhMAAAA6vUKH1tovtdZenj39lSR3zB4/nOSp1tqXWmufS/Jckger6vYkb2mt/XJrrSX5mSTn+pxhbFRmAgAAQGfIQZJ/Kcm/nD3eThdC7Ht+tvbS7PFXrk+GykwAAADovGHoUFUfS/JNc1760dbaR2Z7fjTJy0l+dv9tc/a311k/7Hc/nu6rGLnrrrve6KgAAADAiLxh6NBa+67Xe72qHkvyPUnePfvKRNLdYLjzwLY7ktycrd8xZ/2w3/1kkieTZGdn59BwYkxUZgIAAECnb3vFQ0n+VpLvba39nwMvPZPk0ap6c1Xdk25g5Cdbay8k+Z2qetesteIHknykzxnGRmUmAAAAdPrOdPiHSd6c5KOz5stfaa395dbas1X1dJJPp/vaxXtba/v/T/w9Sf5Zkq0kvzD7NxkqMwEAAKDTK3Rorf2B13ntA0k+MGf9apJv6fN7x+z0qa3szgkYVGYCAACwaXp9vYKvpjITAAAAOkNWZhKVmQAAALDPTQcAAABgIdx0GJjKTAAAAOi46TAwlZkAAADQEToMTGUmAAAAdIQOAzusGlNlJgAAAJtG6DAwlZkAAADQMUhyYCozAQAAoCN0WIBzD2wfKWS4fG1XOAEAAMBkCR1WRLUmAAAAU2emw4qo1gQAAGDqhA4roloTAACAqRM6rIhqTQAAAKZO6LAiqjUBAACYOoMkV0S1JgAAAFMndFgh1ZoAAABMmdBh5FRrAgAAsK7MdBg51ZoAAACsK6HDyKnWBAAAYF0JHUZOtSYAAADrSugwcqo1AQAAWFcGSY6cak0AAADWldBhDajWBAAAYB0JHSZCtSYAAABjY6bDRKjWBAAAYGyEDhOhWhMAAICxETpMhGpNAAAAxkboMBGqNQEAABgbgyQnQrUmAAAAYyN0mBDVmgAAAIyJ0GHDqNYEAABgWcx02DCqNQEAAFgWocOGUa0JAADAsggdNoxqTQAAAJZF6LBhVGsCAACwLAZJbhjVmgAAACyL0GEDqdYEAABgGYQOzKVaEwAAgL7MdGAu1ZoAAJ9DQ68AABX8SURBVAD0JXRgLtWaAAAA9CV0YC7VmgAAAPQldGAu1ZoAAAD0ZZAkc6nWBAAAoC+hA4dSrQkAAEAfQgd6Ua0JAADAYcx0oBfVmgAAABxG6EAvqjUBAAA4jNCBXlRrAgAAcBihA72o1gQAAOAwBknSi2pNAAAADiN0oLejVmsCAACwWYQOLM3la7tuRAAAAGwQoQNLcfnabi5cuv5qveburb1cuHQ9SQQPAAAAE2WQJEtx8cqNVwOHfXsvvZKLV26s6EQAAAAsmtCBpbh5a+9Y6wAAAKw/oQNLcfrU1rHWAQAAWH9CB5bi/Nkz2Tp54jVrWydP5PzZMys6EQAAAItmkCRLsT8sUnsFAADA5hA6sDTnHtg+UsigWhMAAGAahA6MimpNAACA6TDTgVFRrQkAADAdQgdGRbUmAADAdAgdGBXVmgAAANMhdGBUVGsCAABMh0GSjIpqTQAAgOkQOjA6qjUBAACmQejAWlKtCQAAMH5mOrCWVGsCAACMn9CBtaRaEwAAYPyEDqwl1ZoAAADjJ3RgLanWBAAAGD+DJFlLqjUBAADGT+jA2lKtCQAAMG5CByZNtSYAAMDqmOnApKnWBAAAWB2hA5OmWhMAAGB1hA5MmmpNAACA1RE6MGmqNQEAAFZnkNChqv5mVbWqetuBtQtV9VxV3aiqswfWv72qrs9e+8mqqiHOAPOce2A7Tzxyf7ZPbaWSbJ/ayhOP3G+IJAAAwBL0bq+oqjuTfHeSzx9Yuy/Jo0nemeR0ko9V1Ttaa68k+akkjyf5lSQ/n+ShJL/Q9xxwGNWaAAAAqzHETYe/n+RHkrQDaw8neaq19qXW2ueSPJfkwaq6PclbWmu/3FprSX4mybkBzgC97Fdr7t7aS8uXqzUvX9td9dEAAADWVq/Qoaq+N8lua+0/f8VL20m+cOD587O17dnjr1yHlVKtCQAAMLw3/HpFVX0syTfNeelHk/ztJH9q3tvmrLXXWT/sdz+e7qsYueuuu97oqPA1U60JAAAwvDcMHVpr3zVvvaruT3JPkv88mwV5R5JfraoH091guPPA9juS3Jyt3zFn/bDf/WSSJ5NkZ2fn0HAC+jp9aiu7cwIG1ZoAAABfu6/56xWtteuttbe31u5urd2dLlD4ttbabyR5JsmjVfXmqronyb1JPtlaeyHJ71TVu2atFT+Q5CP9/2dAP6o1AQAAhte7vWKe1tqzVfV0kk8neTnJe2fNFUnyniT/LMlWutYKzRWs3H5LhfYKAACA4VRXIjF+Ozs77erVq6s+BhtOrSYAAMBrVdWnWms7815byE0HmKL9Ws39lov9Ws0kggcAAIA5elVmwiZRqwkAAHA8Qgc4IrWaAAAAxyN0gCM6rD5TrSYAAMB8Qgc4IrWaAAAAx2OQJByRWk0AAIDjETrAMZx7YPtIIYNqTQAAAKEDDE61JgAAQMdMBxiYak0AAICO0AEGploTAACgI3SAganWBAAA6AgdYGCqNQEAADoGScLAVGsCAAB0hA6wAKo1AQAAhA6wMqo1AQCAqTPTAVZEtSYAADB1QgdYEdWaAADA1AkdYEVUawIAAFMndIAVUa0JAABMnUGSsCKqNQEAgKkTOsAKqdYEAACmTOgAI6daEwAAWFdmOsDIqdYEAADWldABRk61JgAAsK6EDjByqjUBAIB1JXSAkVOtCQAArCuDJGHkVGsCAADrSugAa0C1JgAAsI6EDjARqjUBAICxMdMBJkK1JgAAMDZCB5gI1ZoAAMDYCB1gIlRrAgAAYyN0gIlQrQkAAIyNQZIwEao1AQCAsRE6wISo1gQAAMZE6AAbRrUmAACwLGY6wIZRrQkAACyL0AE2jGpNAABgWYQOsGFUawIAAMsidIANo1oTAABYFoMkYcOo1gQAAJZF6AAbSLUmAACwDEIHYC7VmgAAQF9mOgBzqdYEAAD6EjoAc6nWBAAA+hI6AHOp1gQAAPoSOgBzqdYEAAD6MkgSmEu1JgAA0JfQATiUak0AAKAPoQPQi2pNAADgMGY6AL2o1gQAAA4jdAB6Ua0JAAAcRugA9KJaEwAAOIzQAehFtSYAAHAYgySBXlRrAgAAhxE6AL2p1gQAAOYROgBLoVoTAAA2j5kOwFKo1gQAgM0jdACWQrUmAABsHqEDsBSqNQEAYPMIHYClUK0JAACbxyBJYClUawIAwOYROgBLo1oTAAA2i9ABGBXVmgAAMB1mOgCjoloTAACmQ+gAjIpqTQAAmA6hAzAqqjUBAGA6hA7AqKjWBACA6TBIEhgV1ZoAADAdQgdgdFRrAgDANAgdgLWkWhMAAMbPTAdgLanWBACA8RM6AGtJtSYAAIyf0AFYS6o1AQBg/IQOwFpSrQkAAONnkCSwllRrAgDA+AkdgLWlWhMAAMZN6ABMmmpNAABYHTMdgElTrQkAAKvTO3Soqh+qqhtV9WxV/d0D6xeq6rnZa2cPrH97VV2fvfaTVVV9zwBwGNWaAACwOr1Ch6r6k0keTvKtrbV3Jvnx2fp9SR5N8s4kDyX5UFXtj5n/qSSPJ7l39u+hPmcAeD2qNQEAYHX63nR4T5IPtta+lCSttS/O1h9O8lRr7Uuttc8leS7Jg1V1e5K3tNZ+ubXWkvxMknM9zwBwKNWaAACwOn1Dh3ck+eNV9Ymq+vdV9Udm69tJvnBg3/Ozte3Z469cB1iIcw9s54lH7s/2qa1Uku1TW3nikfsNkQQAgCV4w/aKqvpYkm+a89KPzt7/1iTvSvJHkjxdVd+cZN6chvY664f97sfTfRUjd9111xsdFWCuo1ZrAgAAw3rD0KG19l2HvVZV70lyafZViU9W1f9L8rZ0NxjuPLD1jiQ3Z+t3zFk/7Hc/meTJJNnZ2Tk0nAAYwuVru7l45UZu3trL6VNbOX/2jLACAAB66Pv1istJvjNJquodSb4uyW8leSbJo1X15qq6J93AyE+21l5I8jtV9a5Za8UPJPlIzzMA9Hb52m4uXLqe3Vt7aUl2b+3lwqXruXxtd9VHAwCAtdU3dPgnSb65qv5rkqeSPNY6zyZ5Osmnk/xikve21l6Zvec9SX463XDJ/57kF3qeAaC3i1duZO+lV16ztvfSK7l45caKTgQAAOvvDb9e8Xpaa7+b5PsPee0DST4wZ/1qkm/p83sBhnbz1t6x1gEAgDfW96YDwCScPrV1rHUAAOCNCR0Akpw/eyZbJ0+8Zm3r5ImcP3tmRScCAID11+vrFQBTsd9Sob0CAACGI3QAmDn3wPYbhgxqNQEA4OiEDgBHtF+rud9ysV+rmUTwAAAAc5jpAHBEajUBAOB4hA4AR6RWEwAAjkfoAHBEajUBAOB4hA4AR6RWEwAAjscgSYAjUqsJAADHI3QAOIaj1GomqjUBACAROgAMTrUmAAB0zHQAGJhqTQAA6AgdAAamWhMAADpCB4CBqdYEAICO0AFgYKo1AQCgY5AkwMBUawIAQEfoALAAqjUBAEDoALAyqjUBAJg6Mx0AVkS1JgAAUyd0AFgR1ZoAAEyd0AFgRVRrAgAwdUIHgBVRrQkAwNQZJAmwIqo1AQCYOqEDwAqp1gQAYMqEDgAjp1oTAIB1ZaYDwMip1gQAYF0JHQBGTrUmAADrSugAMHKqNQEAWFdCB4CRU60JAMC6MkgSYORUawIAsK6EDgBrQLUmAADrSOgAMBGqNQEAGBszHQAmQrUmAABjI3QAmAjVmgAAjI3QAWAiVGsCADA2QgeAiVCtCQDA2BgkCTARqjUBABgboQPAhKjWBABgTIQOABtGtSYAAMtipgPAhlGtCQDAsggdADaMak0AAJZF6ACwYVRrAgCwLEIHgA2jWhMAgGUxSBJgw6jWBABgWYQOABtItSYAAMsgdABgLtWaAAD0ZaYDAHOp1gQAoC+hAwBzqdYEAKAvoQMAc6nWBACgL6EDAHOp1gQAoC+DJAGYS7UmAAB9CR0AOJRqTQAA+hA6ANCLak0AAA5jpgMAvajWBADgMEIHAHpRrQkAwGGEDgD/v737jZmsvuoA/j1hFbZtVjD1D+6CxYSItNHWbgi2iRohcdVa+kaDSS3Rxo0VLW1MtGuTurwz2hhrtJgNVEokJZTWlBiR0mr0TQGX1kgp2m5KbLesgmmsaENx8fhiLtnH5dndZ5/Zmbkz8/kkE+787pmbk5w7z957uPP7MRVLawIAcCqaDgBMxdKaAACciokkAZiKpTUBADgVTQcApmZpTQAANqPpAMBcWFoTAGD9mNMBgLmwtCYAwPrRdABgLiytCQCwfjQdAJgLS2sCAKwfTQcA5sLSmgAA68dEkgDMhaU1AQDWj6YDAHNjaU0AgPWi6QDAqFhaEwBgdZjTAYBRsbQmAMDq0HQAYFQsrQkAsDo0HQAYFUtrAgCsDk0HAEbF0poAAKvDRJIAjIqlNQEAVoemAwCjc66X1lxE3JhzE+ccEOccEOccEDeuuFVeLvy8gwcPLjqHLTl06NDB/fv3LzoNAEbihaU1v/r155Ikzzx7PH/7+aez56KdueLiXQuNG3Nu4pwD4pwD4pwD4sYVt9VjjdnNN9987ODBg4c222dOBwCW0laX1lxE3JhzEzefuDHnJm4+cWPOTdx84sacm7hxxW31WMtK0wGApbTVpTUXETfm3MTNJ27MuYmbT9yYcxM3n7gx5yZuXHFbPday0nQAYCltdWnNRcSNOTdx84kbc27i5hM35tzEzSduzLmJG1fcVo+1rDQdAFhKW11acxFxY85N3HzixpybuPnEjTk3cfOJG3Nu4sYVt9VjLSsTSQKwlK64eFf2XLQzj37la/mvZ49n94U7856fvvJFMz0vIm7MuYlzDohzDohzDogbV9xWjzVmp5tIsrp72weuqlcn+ZMkFyQ5nuRXuvvhYd+BJG9N8nySt3f3/cP4a5PcnmRnkr9MclNvIYm9e/f24cOHt50rAAAAcO5V1SPdvXezfdP+vOJ3k9zc3a9O8p7hfarqyiTXJ3llkn1J3l9VLzwvckuS/UkuH177pswBAAAAGKFpmw6d5IWFQ78lyZPD9nVJ7urub3T3E0mOJLmqqi5Osqu7PzU83XBHkjdNmQMAAAAwQjum/Pw7ktxfVe/NpIHxumF8d5IHN8QdHcb+Z9g+eXxTVbU/k6cicumll06ZKgAAADBPZ2w6VNUnknznJrveneSaJO/s7o9U1c8muS3JtUlqk/g+zfimuvtQkkPJZE6HM+UKAAAAjMcZmw7dfe2p9lXVHUluGt5+OMmtw/bRJJdsCN2TyU8vjg7bJ48DAAAAK2baOR2eTPIjw/aPJfnCsH1vkuur6vyquiyTCSMf7u5jSZ6pqqurqpK8JcnHpswBAAAAGKFp53T4pSTvq6odSZ7NMP9Cdz9WVXcn+VwmS2ne2N3PD595W04smXnf8AIAAABWTE0WkRi/vXv39uHDhxedBgAAALBBVT3S3Xs32zftzysAAAAANqXpAAAAAMyEpgMAAAAwE5oOAAAAwExoOgAAAAAzoekAAAAAzISmAwAAADATmg4AAADATGg6AAAAADOh6QAAAADMhKYDAAAAMBOaDgAAAMBMaDoAAAAAM6HpAAAAAMyEpgMAAAAwE5oOAAAAwExoOgAAAAAzoekAAAAAzISmAwAAADATmg4AAADATGg6AAAAADOh6QAAAADMRHX3onPYkqp6Osm/LDqPEXp5kn9fdBLMjXqvF/VeL+q9XtR7vaj3+lHz9aLeyXd397dttmNpmg5srqoOd/feRefBfKj3elHv9aLe60W914t6rx81Xy/qfXp+XgEAAADMhKYDAAAAMBOaDsvv0KITYK7Ue72o93pR7/Wi3utFvdePmq8X9T4NczoAAAAAM+FJBwAAAGAmNB2WSFX9XlX9U1X9Y1X9eVVduGHfgao6UlX/XFU/vmH8tVX16LDvD6uqFpM906qqfUN9j1TVuxadD9Opqkuq6m+q6vGqeqyqbhrGv7WqHqiqLwz/vWjDZzb9nrM8quq8qvpMVf3F8F69V1hVXVhV9wz/dj9eVT+k5qurqt45/D3/bFV9qKouUO/VUVUfqKqnquqzG8bOur6uzZfDKertXmybNB2WywNJXtXd35/k80kOJElVXZnk+iSvTLIvyfur6rzhM7ck2Z/k8uG1b95JM72hnn+c5CeSXJnk54a6s7yOJ/n17v6+JFcnuXGo6buSfLK7L0/yyeH9mb7nLI+bkjy+4b16r7b3Jfmr7r4iyQ9kUns1X0FVtTvJ25Ps7e5XJTkvk3qq9+q4PS++jt5OfV2bL4fb8+LauBfbJk2HJdLdH+/u48PbB5PsGbavS3JXd3+ju59IciTJVVV1cZJd3f2pnkzecUeSN809cc6Fq5Ic6e4vdvdzSe7KpO4sqe4+1t2fHrafyeRmZHcmdf3gEPbBnPjObvo9n2/WTKOq9iT5qSS3bhhW7xVVVbuS/HCS25Kku5/r7v+Imq+yHUl2VtWOJC9J8mTUe2V0998l+epJw2dVX9fmy2OzersX2z5Nh+X1i0nuG7Z3J/nyhn1Hh7Hdw/bJ4yyfU9WYFVBVr0jymiQPJfmO7j6WTBoTSb59CHMOLL8/SPIbSf53w5h6r67vSfJ0kj8dflJza1W9NGq+krr7K0nem+RLSY4l+Vp3fzzqverOtr6uzVeHe7GzoOkwMlX1ieG3gCe/rtsQ8+5MHs2+84WhTQ7Vpxln+ajliqqqlyX5SJJ3dPd/ni50kzHnwJKoqjckeaq7H9nqRzYZU+/lsiPJDya5pbtfk+S/Mzx6fQpqvsSG3/Jfl+SyJN+V5KVV9ebTfWSTMfVeHa7NV5h7sbO3Y9EJ8P9197Wn219VNyR5Q5Jr+sR6p0eTXLIhbE8mj/QdzYnHfjaOs3xOVWOWWFV9UyYNhzu7+6PD8L9V1cXdfWx4LO+pYdw5sNxen+SNVfWTSS5Isquq/izqvcqOJjna3Q8N7+/JpOmg5qvp2iRPdPfTSVJVH03yuqj3qjvb+ro2X3LuxbbHkw5LpKr2JfnNJG/s7q9v2HVvkuur6vyquiyTSUoeHh7zeqaqrh5mSn1Lko/NPXHOhb9PcnlVXVZV35zJZDX3LjgnpjB8J29L8nh3//6GXfcmuWHYviEnvrObfs/nlS/T6e4D3b2nu1+Ryff3r7v7zVHvldXd/5rky1X1vcPQNUk+FzVfVV9KcnVVvWT4+35NJnP1qPdqO6v6ujZfbu7Fts+TDsvlj5Kcn+SBYbWVB7v7l7v7saq6O5OLmeNJbuzu54fPvC2T2Vd3ZvK7o/tedFRGr7uPV9WvJrk/kxmxP9Ddjy04Labz+iQ/n+TRqvqHYey3kvxOkrur6q2ZXMT+TJKc4XvO8lLv1fZrSe4cmsVfTPILmfwPHzVfMd39UFXdk+TTmdTvM0kOJXlZ1HslVNWHkvxokpdX1dEkv53t/Q13bb4ETlHvA3Evti114qkQAAAAgHPHzysAAACAmdB0AAAAAGZC0wEAAACYCU0HAAAAYCY0HQAAAICZ0HQAAAAAZkLTAQAAAJgJTQcAAABgJv4PkZEpYuwlhmUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#drop in to new dataframe\n", - "final = pd.concat([left1,bias_bottom,bottom,top,bias_top,left2],axis=0)\n", - "\n", - "#put crack tip to (0,0)\n", - "\n", - "final[\"X\"] = final[\"X\"] - xtip\n", - "final[\"Y\"] = final[\"Y\"] - ytip\n", - "\n", - "#\n", - "x_final = final['X']\n", - "y_final = final['Y']\n", - "plt.figure(figsize=(18, 14))\n", - "plt.scatter(x_final,y_final)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "#save to csv\n", - "final.to_csv('xy_position_libre.csv',columns= ['X', 'Y'],index = False)\n", - "charge = final.drop(columns=['X', 'Y'])\n", - "charge.to_csv('charge_libre.csv',index = False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Build Gmsh file " - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "L = 50.\n", - "scale=2e-5\n", - "\n", - "# load csv file XY positions\n", - "filename = \"xy_position_libre\"\n", - "DIC_0 = pd.read_csv('/Users/xinyuanzhai/DIC_gradam/CT_35_1/' + filename + '.csv')\n", - "\n", - "#convert to mm and then dimensionless with L = 50\n", - "DIC_0 = DIC_0*1000*scale/L" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "filename1 = \"charge_libre\"\n", - "U_xy = pd.read_csv('/Users/xinyuanzhai/DIC_gradam/CT_35_1/' + filename1 + '.csv')\n", - "\n", - "#convert to mm then dimensionless with L = 50\n", - "U_xy = U_xy*1000*scale/L\n", - "U_xy.columns = np.arange(len(U_xy.columns))" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "#Get the value of \n", - "xval1 = DIC_0.loc[0,'X']\n", - "\n", - "\n", - "#Replace the value x and y in geo file\n", - "with open('mesh/DIC.geo', 'r') as file :\n", - " filedata = file.read()\n", - "\n", - "filedata = filedata.replace('xval = ', 'xval = '+ str(xval1))\n", - "\n", - "# Write the file out again\n", - "with open('mesh/DIC_running.geo', 'w') as file:\n", - " file.write(filedata)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "#get mid point\n", - "#mid_p = DIC_0[(DIC_0.X==DIC_0['X'].max()) & (DIC_0.Y==DIC_0['Y'].min())]\n", - "#mid_value = mid_p.index.values[0]\n", - "\n", - "#Extract x y cood and the displacement\n", - "xcord = DIC_0.X\n", - "ycord = DIC_0.Y\n", - "\n", - "#Put the geo language in a list\n", - "data = []\n", - "\n", - "j = 5 #Nombre de point dans geofile\n", - "k = 4 #Nombre de line dans geofile \n", - "\n", - "\n", - "\n", - "\n", - "for i in range(len(xcord)):\n", - " data.append(\"//+\")\n", - " data.append(\"Point(\" + str(i+j+1) + \") = {\" + str(xcord[i]) + \", \" + str(ycord[i]) + \", 0, f0};\")\n", - "\n", - "data.append(\"//+\")\n", - "data.append(\"Line(\" + str(k+1) + \") = {\" +str(2) + \", \" + str(j+1) + \"};\") \n", - " \n", - "for i in range(len(xcord)-1):\n", - " data.append(\"//+\")\n", - " data.append(\"Line(\" + str(i+k+2) + \") = {\" + str(i+j+1)+ \", \" + str(i+j+2) + \"};\")\n", - "\n", - "#two line\n", - "data.append(\"//+\")\n", - "data.append(\"Line(\" + str(len(xcord)+k+1) + \") = {\" + str(len(xcord)+j)+ \", \" + str(1) + \"};\")\n", - "\n", - "\n", - " \n", - "# Write the point cood and line data in new geofile call DIC_1.geo\n", - "geofile = open(\"mesh/DIC_running.geo\",\"a\")\n", - "\n", - "for line in data:\n", - " \n", - " geofile.write(line+'\\n')\n", - " \n", - "geofile.close()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "111" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# pls check this mid_line\n", - "mid_value = math.ceil(((len(xcord))/2)+k)+1\n", - "mid_value" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [], - "source": [ - "last = str(len(xcord)+k+1)\n", - "\n", - "curve= \"\"\n", - "#Curve loop for lower side mesh\n", - "for i in range(len(xcord)+k):\n", - " loop_value = i+1\n", - " curve += str(loop_value) + ',' \n", - "\n", - "curve += last" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "contour0 = \"\"\n", - "#Curve loop for upper side mesh\n", - "for i in range(mid_value-k):\n", - " loop_value = i+mid_value+1\n", - " contour0 += str(loop_value) + ',' \n", - "\n", - "contour0 += last" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "first = str(mid_value-1)\n", - "contour1 = \"\"\n", - "#Curve loop for upper side mesh\n", - "for i in range(mid_value-k-2):\n", - " loop_value = i+1+k\n", - " contour1 += str(loop_value) + ',' \n", - "\n", - "contour1 += first" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "geofile = open(\"mesh/DIC_running.geo\",\"a\")\n", - "\n", - "#write in geofile for lower side:\n", - "geofile.write(\"//+\" +'\\n')\n", - "geofile.write(\"Curve loop(\" + str(1) + \") = {\" + curve + \"};\" +'\\n')\n", - "geofile.write(\"//+\" +'\\n')\n", - "geofile.write(\"Plane Surface(\" + str(1) + \")= {\" + str(1) + \"};\" +'\\n')\n", - "\n", - "\n", - "#Physique surface : usually we have 1 surfaces\n", - "geofile.write(\"//+\" +'\\n')\n", - "geofile.write('Physical Surface(\"1\") = {1};'+'\\n')\n", - "\n", - "#create physic curve for upper side :\n", - "\n", - "geofile.write(\"//+\" +'\\n')\n", - "geofile.write('Physical Curve(\"2\") = {' + contour0 + '};' +'\\n')\n", - "\n", - "geofile.write(\"//+\" +'\\n')\n", - "geofile.write('Physical Curve(\"3\") = {' + contour1 + '};' +'\\n')\n", - "\n", - "geofile.write(\"//+\" +'\\n')\n", - "geofile.write('Physical Curve(\"4\") = {' + str(mid_value) + '};' +'\\n')\n", - "\n", - "geofile.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Convert mesh" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "os.system(\"python3 export_msh.py\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# plot direction" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/contributed/DIC_CT_35/DIC_FEniCS_Isotropy.ipynb b/contributed/DIC_CT_35/DIC_FEniCS_Isotropy.ipynb deleted file mode 100644 index 92f2d72c..00000000 --- a/contributed/DIC_CT_35/DIC_FEniCS_Isotropy.ipynb +++ /dev/null @@ -1,1899 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "80102748", - "metadata": {}, - "outputs": [], - "source": [ - "from __future__ import division\n", - "from dolfin import *\n", - "\n", - "import pandas as pd\n", - "import argparse\n", - "import math\n", - "import os\n", - "import shutil\n", - "import sympy\n", - "import sys\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "44b089aa", - "metadata": {}, - "outputs": [], - "source": [ - "# ----------------------------------------------------------------------------\n", - "# Parameters for DOLFIN and SOLVER \n", - "# ----------------------------------------------------------------------------\n", - "set_log_level(LogLevel.INFO) # log level\n", - "# set some dolfin specific parameters\n", - "info(parameters,True)\n", - "parameters[\"form_compiler\"][\"optimize\"] = True\n", - "parameters[\"form_compiler\"][\"cpp_optimize\"] = True\n", - "parameters[\"form_compiler\"][\"representation\"] = \"uflacs\"\n", - "\n", - "# -----------------------------------------------------------------------------\n", - "# parameters of the solvers\n", - "solver_u_parameters = {\"nonlinear_solver\": \"newton\",\n", - " \"newton_solver\": {\"linear_solver\": \"mumps\",\n", - " \"maximum_iterations\": 100,\n", - " \"absolute_tolerance\": 1e-8,\n", - " \"relative_tolerance\": 1e-6,\n", - " \"report\": True,\n", - " \"error_on_nonconvergence\": True}} \n", - "# parameters of the PETSc/Tao solver used for the alpha-problem\n", - "tao_solver_parameters = {\"maximum_iterations\": 200,\n", - " \"report\": False,\n", - " \"line_search\": \"more-thuente\",\n", - " \"linear_solver\": \"mumps\",\n", - " \"method\": \"tron\",\n", - " \"gradient_absolute_tol\": 1e-8,\n", - " \"gradient_relative_tol\": 1e-8,\n", - " \"error_on_nonconvergence\": True}" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "87ce251a", - "metadata": {}, - "outputs": [], - "source": [ - "filename = \"mesh/DIC_running\"\n", - "#Read mesh\n", - "mesh = Mesh()\n", - "hdf = HDF5File(mesh.mpi_comm(), filename + \".h5\", \"r\")\n", - "hdf.read(mesh, \"/mesh\", False)\n", - "ndim = mesh.topology().dim()\n", - "\n", - "boundaries = MeshFunction(\"size_t\", mesh,1)\n", - "hdf.read(boundaries, \"/boundaries\")\n", - "\n", - "subdomains = MeshFunction(\"size_t\", mesh,2)\n", - "hdf.read(subdomains, \"/subdomains\")\n", - "\n", - "rename_subdomains = MeshFunction(\"size_t\", mesh, 2)\n", - "rename_subdomains.set_all(0)\n", - "rename_subdomains.array()[subdomains.array()==1] = 1\n", - "\n", - "dx = Measure(\"dx\", domain=mesh, subdomain_data=rename_subdomains)\n", - "\n", - "rename_boundaries = MeshFunction(\"size_t\", mesh, 1)\n", - "rename_boundaries.set_all(0)\n", - "rename_boundaries.array()[boundaries.array()==2] = 2\n", - "rename_boundaries.array()[boundaries.array()==3] = 3\n", - "rename_boundaries.array()[boundaries.array()==4] = 4\n", - "\n", - "ds = Measure(\"ds\", domain=mesh, subdomain_data=rename_boundaries)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "a181c3a2", - "metadata": {}, - "outputs": [], - "source": [ - "#material\n", - "E = Constant(1900.0)\n", - "nu = Constant(0.34)\n", - "Gc = Constant(0.12)\n", - "ell = Constant(0.012)\n", - "ut = Constant(1.0)\n", - "k_ell = Constant(1e-6)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "8f5785bd", - "metadata": {}, - "outputs": [], - "source": [ - "Id = Identity(ndim)\n", - "\n", - "n = FacetNormal(mesh)\n", - "\n", - "ex = Constant((1.0, 0.0))\n", - "\n", - "ey = Constant((0.0, 1.0))\n", - "\n", - "def u_x(u):\n", - " return u.dx(0)\n", - "\n", - "def utt(u):\n", - " return grad(u).T\n", - "\n", - "# -----------------------------------------------------------------------------\n", - "# Strain and stress and Constitutive functions of the damage model\n", - "# -----------------------------------------------------------------------------\n", - "# Strain and stress\n", - "def eps(v):\n", - " return sym(grad(v))\n", - "\n", - "def sigma_0(v):\n", - " mu = E/(2.0*(1.0 + nu))\n", - " lmbda = E*nu/(1.0 - nu**2) # plane stress\n", - " return 2.0*mu*eps(v) + lmbda*tr(eps(v))*Id\n", - "\n", - "# Constitutive functions of the damage model\n", - "def w(alpha):\n", - " return alpha\n", - "\n", - "def a(alpha):\n", - " return (1-alpha)**2\n", - "\n", - "def sigma(u, alpha):\n", - " return (a(alpha)+k_ell)*sigma_0(u)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "44d047fe", - "metadata": {}, - "outputs": [], - "source": [ - "modelname = \"DIC_AT1_l0.012_1900_I_integral\"\n", - "meshname = modelname+\"-mesh.xdmf\"\n", - "\n", - "savedir = \"DIC_isotropy/\"+modelname+\"/\"\n", - "\n", - "if MPI.rank(MPI.comm_world) == 0:\n", - " if os.path.isdir(savedir):\n", - " shutil.rmtree(savedir)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "099bd8a1", - "metadata": {}, - "outputs": [], - "source": [ - "# Create function space for 2D elasticity + Damage\n", - "V_u = VectorFunctionSpace(mesh, \"Lagrange\", 1, dim = 2)\n", - "V_alpha = FunctionSpace(mesh, \"Lagrange\", 1)\n", - "\n", - "# Define the function, test and trial fields\n", - "u = Function(V_u, name=\"Displacement\")\n", - "du = TrialFunction(V_u)\n", - "v = TestFunction(V_u)\n", - "alpha = Function(V_alpha, name=\"Damage\")\n", - "dalpha = TrialFunction(V_alpha)\n", - "beta = TestFunction(V_alpha)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "dd6af410", - "metadata": {}, - "outputs": [], - "source": [ - "L = 50.\n", - "scale=2e-5\n", - "\n", - "# load csv file XY positions\n", - "filename = \"xy_position_libre\"\n", - "DIC_0 = pd.read_csv('/Users/xinyuanzhai/DIC_gradam/CT_35_1/' + filename + '.csv')\n", - "\n", - "#convert to mm and then dimensionless with L = 50\n", - "DIC_0 = DIC_0*1000*scale/L\n", - "\n", - "filename1 = \"charge_libre\"\n", - "U_xy = pd.read_csv('/Users/xinyuanzhai/DIC_gradam/CT_35_1/' + filename1 + '.csv')\n", - "\n", - "#convert to mm then dimensionless with L = 50\n", - "U_xy = U_xy*1000*scale/L\n", - "U_xy.columns = np.arange(len(U_xy.columns))\n", - "\n", - "#Number of point in this contour\n", - "xcord = DIC_0.X\n", - "ycord = DIC_0.Y" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "f3e95a77", - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "#number of time step\n", - "N_image = int(len(U_xy.columns)/2)\n", - "#range(len(xcord)-1)\n", - "\n", - "#define the point around the contour\n", - "#eps = 1e-6\n", - "point = {}\n", - "for j in range(len(xcord)):\n", - " point[j] = CompiledSubDomain(\"near(x[0], x1) && near(x[1], y1)\",x1 = DIC_0.X[j] ,y1 = DIC_0.Y[j])\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "244961de", - "metadata": {}, - "outputs": [], - "source": [ - "#define chargement for all points on the contour\n", - "charge = {}\n", - "for i in range(len(xcord)):\n", - " charge[i] = Expression((\"ux\",\"uy\"), ux=0, uy=0, degree=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "5aa7f1d1", - "metadata": {}, - "outputs": [], - "source": [ - "#define displacement BC for all points on the contour\n", - "bc = {} \n", - "bc_u = []\n", - "\n", - "for k in range(len(xcord)):\n", - " \n", - " bc[k] = DirichletBC(V_u,charge[k], point[k], method = \"pointwise\")\n", - " \n", - " bc_u.append(bc[k])" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "37865dda", - "metadata": {}, - "outputs": [], - "source": [ - "#boundary condition for damage\n", - "bc_a1 = DirichletBC(V_alpha, Constant(0.), boundaries, 2)\n", - "bc_a2 = DirichletBC(V_alpha, Constant(0.), boundaries, 3)\n", - "bc_a3 = DirichletBC(V_alpha, Constant(0.), boundaries, 4)\n", - "bc_alpha = [bc_a1, bc_a2, bc_a3]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "f9de0db3", - "metadata": {}, - "outputs": [], - "source": [ - "elastic_energy = 0.5*inner(sigma(u, alpha), eps(u))*dx\n", - "\n", - "# Weak form of elasticity problem\n", - "E_u = derivative(elastic_energy,u,v)\n", - "# Writing tangent problems in term of test and trial functions for matrix assembly\n", - "E_du = derivative(E_u, u, du)\n", - "\n", - "dissipated_energy = 3*Gc/8*(w(alpha)/ell + ell*inner(grad(alpha), grad(alpha)))*dx\n", - "\n", - "damage_functional = elastic_energy + dissipated_energy\n", - "\n", - "# First and second directional derivative wrt alpha\n", - "E_alpha = derivative(damage_functional,alpha,beta)\n", - "E_alpha_alpha = derivative(E_alpha,alpha,dalpha)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "6295d296", - "metadata": {}, - "outputs": [], - "source": [ - "# Variational problem for the displacement\n", - "problem_u = NonlinearVariationalProblem(E_u, u, bc_u, J=E_du)\n", - "# Set up the solvers \n", - "solver_u = NonlinearVariationalSolver(problem_u)\n", - "solver_u.parameters.update(solver_u_parameters)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "15223865", - "metadata": {}, - "outputs": [], - "source": [ - "# --------------------------------------------------------------------\n", - "# Implement the box constraints for damage field\n", - "# --------------------------------------------------------------------\n", - "# Variational problem for the damage (non-linear to use variational inequality solvers of petsc)\n", - "# Define the minimisation problem by using OptimisationProblem class\n", - "\n", - "class DamageProblem(OptimisationProblem):\n", - "\n", - " def __init__(self,f,gradf,alpha,J,bcs):\n", - " OptimisationProblem.__init__(self)\n", - " self.total_energy = f\n", - " self.Dalpha_total_energy = gradf\n", - " self.J_alpha = J\n", - " self.alpha = alpha\n", - " self.bc_alpha = bcs\n", - "\n", - " def f(self, x):\n", - " self.alpha.vector()[:] = x\n", - " return assemble(self.total_energy)\n", - "\n", - " def F(self, b, x):\n", - " self.alpha.vector()[:] = x\n", - " assemble(self.Dalpha_total_energy, b)\n", - " for bc in self.bc_alpha:\n", - " bc.apply(b)\n", - "\n", - " def J(self, A, x):\n", - " self.alpha.vector()[:] = x\n", - " assemble(self.J_alpha, A)\n", - " for bc in self.bc_alpha:\n", - " bc.apply(A)\n", - "\n", - "damage_problem = DamageProblem(damage_functional,E_alpha,alpha,E_alpha_alpha,bc_alpha)\n", - "\n", - "# Set up the solvers \n", - "solver_alpha = PETScTAOSolver()\n", - "solver_alpha.parameters.update(tao_solver_parameters)\n", - "\n", - "\n", - "\n", - "alpha_lb = interpolate(Expression(\"0.\", degree=0), V_alpha) # lower bound, set to 0\n", - "alpha_ub = interpolate(Expression(\"1.\", degree=0), V_alpha) # upper bound, set to 1\n", - "\n", - "alpha_0 = interpolate(Expression(\"0.\", degree=0), V_alpha) # initial (known) alpha" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "6c304081", - "metadata": {}, - "outputs": [], - "source": [ - "file_u = XDMFFile(MPI.comm_world, savedir+\"/u.xdmf\")\n", - "file_alpha = XDMFFile(MPI.comm_world, savedir+\"/alpha.xdmf\")\n", - "for file in [file_u,file_alpha]:\n", - " file.parameters[\"flush_output\"]=True\n", - " file.parameters[\"rewrite_function_mesh\"]=False" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "2c1c524e", - "metadata": {}, - "outputs": [], - "source": [ - "load_multipliers = np.linspace(0, N_image-1, N_image)\n", - "energies = np.zeros((len(load_multipliers),4))\n", - "iterations = np.zeros((len(load_multipliers),2))\n", - "force = np.zeros((len(load_multipliers),2))\n", - "SIF = np.zeros((len(load_multipliers),4))\n", - "\n", - "\n", - "# Numerical parameters of the alternate minimization\n", - "maxiteration = 2000\n", - "AM_tolerance = 1e-4" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "108bcbb0", - "metadata": {}, - "outputs": [], - "source": [ - "#----------------------------------------------#\n", - "#-----------Create Auxiliary field ------------#\n", - "#----------------------------------------------#\n", - "\n", - "#Auxiliry field for T-stress\n", - "mu = float(E/(2.0*(1.0 + nu)))\n", - "kappav = float((3.0-nu)/(1.0+nu))\n", - "Force = 1\n", - "u_aux = Expression([\"(-F*(kappa+1)/(pi*8*mu))*2.3*std::log(sqrt((x[0])*(x[0])+x[1]*x[1]))- (F/(pi*4*mu))*sin(atan2(x[1], x[0]))*sin(atan2(x[1], x[0]))\",\n", - " \"(-F*(kappa-1)/(pi*8*mu))*atan2(x[1], x[0])+ (F/(pi*4*mu))*sin(atan2(x[1], x[0]))*cos(atan2(x[1], x[0]))\"],\n", - " degree=2, mu=mu, kappa=kappav, F=Force,domain=mesh)\n", - "\n", - "sigmax = Expression((('-F*pow(cos(atan2(x[1], x[0])),3)/(pi*((x[0])*(x[0])+x[1]*x[1]))','-F*pow(cos(atan2(x[1], x[0])),2)*sin(atan2(x[1], x[0]))/(pi*((x[0])*(x[0])+x[1]*x[1]))'),\n", - " ('-F*pow(cos(atan2(x[1], x[0])),2)*sin(atan2(x[1], x[0]))/(pi*((x[0])*(x[0])+x[1]*x[1]))','-F*cos(atan2(x[1], x[0]))*pow(sin(atan2(x[1], x[0])),2)/(pi*((x[0])*(x[0])+x[1]*x[1]))')),degree=2,F=Force,domain=mesh)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "5ce4afa1", - "metadata": {}, - "outputs": [], - "source": [ - "#Auxiliry field for K1_K2\n", - "\n", - "#Define auxiliry field for Stress intensity factor for K1\n", - "k1_aux1 = 1\n", - " #k2_aux1 = 0\n", - "u_kaux1 = Expression([\"sqrt(sqrt(x[0]*x[0]+x[1]*x[1])/(2*pi))*(k1_aux1*((kappa-cos(atan2(x[1], x[0])))*cos(atan2(x[1], x[0])/2)/(2*mu)))\",\n", - " \"sqrt(sqrt(x[0]*x[0]+x[1]*x[1])/(2*pi))*(k1_aux1*((kappa-cos(atan2(x[1], x[0])))*sin(atan2(x[1], x[0])/2)/(2*mu)))\"],\n", - " degree=2, mu=mu, kappa=kappav , k1_aux1=k1_aux1 , domain=mesh)\n", - "\n", - "\n", - "#Define auxiliry field for Stress intensity factor for K1\n", - "sigma_1 = Expression((('(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k1_aux1*(0.75*cos(atan2(x[1], x[0])/2)+0.25*cos(atan2(x[1], x[0])*5/2)))',\n", - " '(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k1_aux1*(-0.25*sin(atan2(x[1], x[0])/2)+0.25*sin(atan2(x[1], x[0])*5/2)))'),\n", - " ('(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k1_aux1*(-0.25*sin(atan2(x[1], x[0])/2)+0.25*sin(atan2(x[1], x[0])*5/2)))',\n", - " '(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k1_aux1*(1.25*cos(atan2(x[1], x[0])/2)-0.25*cos(atan2(x[1], x[0])*5/2)))')),\n", - " degree=2,mu=mu, kappa=kappav,k1_aux1=k1_aux1 , domain=mesh)\n", - " \n", - " \n", - " \n", - "#Define auxiliry field for Stress intensity factor for K2\n", - "#k1_aux2 = 0\n", - "k2_aux2 = 1\n", - "u_kaux2 = Expression([\"sqrt(sqrt(x[0]*x[0]+x[1]*x[1])/(2*pi))*(k2_aux2*((2+kappa+cos(atan2(x[1], x[0])))*sin(atan2(x[1], x[0])/2)/(2*mu)))\",\n", - " \"sqrt(sqrt(x[0]*x[0]+x[1]*x[1])/(2*pi))*(k2_aux2*((2-kappa-cos(atan2(x[1], x[0])))*cos(atan2(x[1], x[0])/2)/(2*mu)))\"],\n", - " degree=2, mu=mu, kappa=kappav, k2_aux2=k2_aux2, domain=mesh)\n", - "\n", - "#Define auxiliry field for Stress intensity factor for K1\n", - "sigma_2 = Expression((('(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k2_aux2*(-1.75*sin(atan2(x[1], x[0])/2)-0.25*sin(atan2(x[1], x[0])*5/2)))',\n", - " '(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k2_aux2*(0.75*cos(atan2(x[1], x[0])/2)+0.25*cos(atan2(x[1], x[0])*5/2)))'),\n", - " ('(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k2_aux2*(0.75*cos(atan2(x[1], x[0])/2)+0.25*cos(atan2(x[1], x[0])*5/2)))',\n", - " '(1/sqrt(2*pi*sqrt(x[0]*x[0]+x[1]*x[1])))*(k2_aux2*(-0.25*sin(atan2(x[1], x[0])/2)+0.25*sin(atan2(x[1], x[0])*5/2)))')),\n", - " degree=2,mu=mu, kappa=kappav, k2_aux2=k2_aux2, domain=mesh)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "e4340103", - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "#charge[1].ux = U_xy[1].values[1]*ut\n", - " \n", - "#charge[1].uy = U_xy[1].values[1]*ut\n", - "\n", - "#solver_u.solve()\n", - "#plot(u,mode='displacement')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2a7a4a24", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1;32m--- Starting of Time step 0: t = 0.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 0 with load multiplier 0.000000\n", - "\n", - "Elastic and Surface Energies: [0.000010,0.000000]\n", - "\n", - "Elastic and Surface Energies: [1.0178007085231071e-05,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 1: t = 1.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 1 with load multiplier 1.000000\n", - "\n", - "Elastic and Surface Energies: [0.000062,0.000000]\n", - "\n", - "Elastic and Surface Energies: [6.222666553801626e-05,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 2: t = 2.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 2 with load multiplier 2.000000\n", - "\n", - "Elastic and Surface Energies: [0.000171,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.0001714363624599161,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 3: t = 3.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 3 with load multiplier 3.000000\n", - "\n", - "Elastic and Surface Energies: [0.000379,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.0003793468727054585,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 4: t = 4.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 4 with load multiplier 4.000000\n", - "\n", - "Elastic and Surface Energies: [0.000695,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.000695277035718305,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 5: t = 5.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 5 with load multiplier 5.000000\n", - "\n", - "Elastic and Surface Energies: [0.001052,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.0010515863286766711,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 6: t = 6.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 6 with load multiplier 6.000000\n", - "\n", - "Elastic and Surface Energies: [0.001557,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.0015567788498266491,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 7: t = 7.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 7 with load multiplier 7.000000\n", - "\n", - "Elastic and Surface Energies: [0.002164,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.002163765683854305,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 8: t = 8.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00000000\n", - "\n", - "End of timestep 8 with load multiplier 8.000000\n", - "\n", - "Elastic and Surface Energies: [0.002855,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.002854937323505551,0.0]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 9: t = 9.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00032142\n", - "AM Iteration: 2, alpha_error: 0.00000199\n", - "\n", - "End of timestep 9 with load multiplier 9.000000\n", - "\n", - "Elastic and Surface Energies: [0.003152,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.0031523984318226135,9.794609423214239e-09]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 10: t = 10.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00098088\n", - "AM Iteration: 2, alpha_error: 0.00000679\n", - "\n", - "End of timestep 10 with load multiplier 10.000000\n", - "\n", - "Elastic and Surface Energies: [0.003497,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.0034968510004373507,4.2098440613886935e-08]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 11: t = 11.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00104758\n", - "AM Iteration: 2, alpha_error: 0.00000807\n", - "\n", - "End of timestep 11 with load multiplier 11.000000\n", - "\n", - "Elastic and Surface Energies: [0.003869,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.003869476633656877,8.061059459133385e-08]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 12: t = 12.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00106053\n", - "AM Iteration: 2, alpha_error: 0.00000900\n", - "\n", - "End of timestep 12 with load multiplier 12.000000\n", - "\n", - "Elastic and Surface Energies: [0.004232,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.004231605227971303,1.2382813304958874e-07]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 13: t = 13.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00130558\n", - "AM Iteration: 2, alpha_error: 0.00001761\n", - "\n", - "End of timestep 13 with load multiplier 13.000000\n", - "\n", - "Elastic and Surface Energies: [0.004652,0.000000]\n", - "\n", - "Elastic and Surface Energies: [0.004652273310305912,2.025278135398137e-07]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 14: t = 14.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00246026\n", - "AM Iteration: 2, alpha_error: 0.00008739\n", - "\n", - "End of timestep 14 with load multiplier 14.000000\n", - "\n", - "Elastic and Surface Energies: [0.005135,0.000001]\n", - "\n", - "Elastic and Surface Energies: [0.005135452457291712,5.18482788442668e-07]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 15: t = 15.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00335110\n", - "AM Iteration: 2, alpha_error: 0.00016657\n", - "AM Iteration: 3, alpha_error: 0.00000825\n", - "\n", - "End of timestep 15 with load multiplier 15.000000\n", - "\n", - "Elastic and Surface Energies: [0.005657,0.000001]\n", - "\n", - "Elastic and Surface Energies: [0.005657357709105658,1.0485472792306804e-06]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 16: t = 16.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00450487\n", - "AM Iteration: 2, alpha_error: 0.00026161\n", - "AM Iteration: 3, alpha_error: 0.00001457\n", - "\n", - "End of timestep 16 with load multiplier 16.000000\n", - "\n", - "Elastic and Surface Energies: [0.006313,0.000002]\n", - "\n", - "Elastic and Surface Energies: [0.006312972386194336,1.8854410173470353e-06]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 17: t = 17.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00528191\n", - "AM Iteration: 2, alpha_error: 0.00043220\n", - "AM Iteration: 3, alpha_error: 0.00003591\n", - "\n", - "End of timestep 17 with load multiplier 17.000000\n", - "\n", - "Elastic and Surface Energies: [0.006983,0.000003]\n", - "\n", - "Elastic and Surface Energies: [0.006983047340356543,3.23376208120616e-06]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 18: t = 18.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00663591\n", - "AM Iteration: 2, alpha_error: 0.00069920\n", - "AM Iteration: 3, alpha_error: 0.00007245\n", - "\n", - "End of timestep 18 with load multiplier 18.000000\n", - "\n", - "Elastic and Surface Energies: [0.007686,0.000005]\n", - "\n", - "Elastic and Surface Energies: [0.007686017556057839,5.496839578738534e-06]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 19: t = 19.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.00835327\n", - "AM Iteration: 2, alpha_error: 0.00110473\n", - "AM Iteration: 3, alpha_error: 0.00014527\n", - "AM Iteration: 4, alpha_error: 0.00001908\n", - "\n", - "End of timestep 19 with load multiplier 19.000000\n", - "\n", - "Elastic and Surface Energies: [0.008513,0.000009]\n", - "\n", - "Elastic and Surface Energies: [0.008513416227707233,9.023824916294837e-06]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 20: t = 20.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.01362788\n", - "AM Iteration: 2, alpha_error: 0.00247134\n", - "AM Iteration: 3, alpha_error: 0.00045342\n", - "AM Iteration: 4, alpha_error: 0.00008353\n", - "\n", - "End of timestep 20 with load multiplier 20.000000\n", - "\n", - "Elastic and Surface Energies: [0.009594,0.000017]\n", - "\n", - "Elastic and Surface Energies: [0.009593636651832058,1.7382652753000578e-05]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 21: t = 21.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.01429858\n", - "AM Iteration: 2, alpha_error: 0.00328768\n", - "AM Iteration: 3, alpha_error: 0.00075751\n", - "AM Iteration: 4, alpha_error: 0.00017540\n", - "AM Iteration: 5, alpha_error: 0.00004063\n", - "\n", - "End of timestep 21 with load multiplier 21.000000\n", - "\n", - "Elastic and Surface Energies: [0.010646,0.000029]\n", - "\n", - "Elastic and Surface Energies: [0.01064629510127055,2.9133425079243686e-05]\n", - "-----------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1;32m--- Starting of Time step 22: t = 22.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.01497763\n", - "AM Iteration: 2, alpha_error: 0.00424686\n", - "AM Iteration: 3, alpha_error: 0.00122113\n", - "AM Iteration: 4, alpha_error: 0.00035443\n", - "AM Iteration: 5, alpha_error: 0.00010373\n", - "AM Iteration: 6, alpha_error: 0.00003049\n", - "\n", - "End of timestep 22 with load multiplier 22.000000\n", - "\n", - "Elastic and Surface Energies: [0.011621,0.000046]\n", - "\n", - "Elastic and Surface Energies: [0.011621370449105118,4.587058753054835e-05]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 23: t = 23.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.01803220\n", - "AM Iteration: 2, alpha_error: 0.00626204\n", - "AM Iteration: 3, alpha_error: 0.00218995\n", - "AM Iteration: 4, alpha_error: 0.00076994\n", - "AM Iteration: 5, alpha_error: 0.00027128\n", - "AM Iteration: 6, alpha_error: 0.00009566\n", - "\n", - "End of timestep 23 with load multiplier 23.000000\n", - "\n", - "Elastic and Surface Energies: [0.012700,0.000073]\n", - "\n", - "Elastic and Surface Energies: [0.012699582915153941,7.308130282659415e-05]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 24: t = 24.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.02753412\n", - "AM Iteration: 2, alpha_error: 0.01199642\n", - "AM Iteration: 3, alpha_error: 0.00537071\n", - "AM Iteration: 4, alpha_error: 0.00243820\n", - "AM Iteration: 5, alpha_error: 0.00111380\n", - "AM Iteration: 6, alpha_error: 0.00051025\n", - "AM Iteration: 7, alpha_error: 0.00023406\n", - "AM Iteration: 8, alpha_error: 0.00010742\n", - "AM Iteration: 9, alpha_error: 0.00004932\n", - "\n", - "End of timestep 24 with load multiplier 24.000000\n", - "\n", - "Elastic and Surface Energies: [0.014159,0.000135]\n", - "\n", - "Elastic and Surface Energies: [0.014159387183834074,0.0001352982835709058]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 25: t = 25.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.02307902\n", - "AM Iteration: 2, alpha_error: 0.01228844\n", - "AM Iteration: 3, alpha_error: 0.00665480\n", - "AM Iteration: 4, alpha_error: 0.00365337\n", - "AM Iteration: 5, alpha_error: 0.00202392\n", - "AM Iteration: 6, alpha_error: 0.00112861\n", - "AM Iteration: 7, alpha_error: 0.00063366\n", - "AM Iteration: 8, alpha_error: 0.00035818\n", - "AM Iteration: 9, alpha_error: 0.00020328\n", - "AM Iteration: 10, alpha_error: 0.00011553\n", - "AM Iteration: 11, alpha_error: 0.00006570\n", - "\n", - "End of timestep 25 with load multiplier 25.000000\n", - "\n", - "Elastic and Surface Energies: [0.015276,0.000215]\n", - "\n", - "Elastic and Surface Energies: [0.015275907907559784,0.00021515136696027403]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 26: t = 26.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.02477598\n", - "AM Iteration: 2, alpha_error: 0.01562281\n", - "AM Iteration: 3, alpha_error: 0.01010658\n", - "AM Iteration: 4, alpha_error: 0.00665329\n", - "AM Iteration: 5, alpha_error: 0.00443924\n", - "AM Iteration: 6, alpha_error: 0.00299145\n", - "AM Iteration: 7, alpha_error: 0.00202977\n", - "AM Iteration: 8, alpha_error: 0.00138399\n", - "AM Iteration: 9, alpha_error: 0.00094643\n", - "AM Iteration: 10, alpha_error: 0.00064831\n", - "AM Iteration: 11, alpha_error: 0.00044459\n", - "AM Iteration: 12, alpha_error: 0.00030511\n", - "AM Iteration: 13, alpha_error: 0.00020950\n", - "AM Iteration: 14, alpha_error: 0.00014389\n", - "AM Iteration: 15, alpha_error: 0.00009886\n", - "\n", - "End of timestep 26 with load multiplier 26.000000\n", - "\n", - "Elastic and Surface Energies: [0.016302,0.000354]\n", - "\n", - "Elastic and Surface Energies: [0.016301702254438787,0.00035380056582607564]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 27: t = 27.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.02834059\n", - "AM Iteration: 2, alpha_error: 0.02153805\n", - "AM Iteration: 3, alpha_error: 0.01669902\n", - "AM Iteration: 4, alpha_error: 0.01317795\n", - "AM Iteration: 5, alpha_error: 0.01058230\n", - "AM Iteration: 6, alpha_error: 0.00863333\n", - "AM Iteration: 7, alpha_error: 0.00713778\n", - "AM Iteration: 8, alpha_error: 0.00596323\n", - "AM Iteration: 9, alpha_error: 0.00502880\n", - "AM Iteration: 10, alpha_error: 0.00427401\n", - "AM Iteration: 11, alpha_error: 0.00365533\n", - "AM Iteration: 12, alpha_error: 0.00314034\n", - "AM Iteration: 13, alpha_error: 0.00270781\n", - "AM Iteration: 14, alpha_error: 0.00234206\n", - "AM Iteration: 15, alpha_error: 0.00203212\n", - "AM Iteration: 16, alpha_error: 0.00176746\n", - "AM Iteration: 17, alpha_error: 0.00154035\n", - "AM Iteration: 18, alpha_error: 0.00134469\n", - "AM Iteration: 19, alpha_error: 0.00117589\n", - "AM Iteration: 20, alpha_error: 0.00103049\n", - "AM Iteration: 21, alpha_error: 0.00090471\n", - "AM Iteration: 22, alpha_error: 0.00079522\n", - "AM Iteration: 23, alpha_error: 0.00069999\n", - "AM Iteration: 24, alpha_error: 0.00061760\n", - "AM Iteration: 25, alpha_error: 0.00054592\n", - "AM Iteration: 26, alpha_error: 0.00048300\n", - "AM Iteration: 27, alpha_error: 0.00042759\n", - "AM Iteration: 28, alpha_error: 0.00037907\n", - "AM Iteration: 29, alpha_error: 0.00033660\n", - "AM Iteration: 30, alpha_error: 0.00029922\n", - "AM Iteration: 31, alpha_error: 0.00026612\n", - "AM Iteration: 32, alpha_error: 0.00023677\n", - "AM Iteration: 33, alpha_error: 0.00021070\n", - "AM Iteration: 34, alpha_error: 0.00018755\n", - "AM Iteration: 35, alpha_error: 0.00016697\n", - "AM Iteration: 36, alpha_error: 0.00014868\n", - "AM Iteration: 37, alpha_error: 0.00013241\n", - "AM Iteration: 38, alpha_error: 0.00011794\n", - "AM Iteration: 39, alpha_error: 0.00010506\n", - "AM Iteration: 40, alpha_error: 0.00009360\n", - "\n", - "End of timestep 27 with load multiplier 27.000000\n", - "\n", - "Elastic and Surface Energies: [0.017219,0.000724]\n", - "\n", - "Elastic and Surface Energies: [0.01721888734077678,0.0007241497287646366]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 28: t = 28.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.04095071\n", - "AM Iteration: 2, alpha_error: 0.03987283\n", - "AM Iteration: 3, alpha_error: 0.03864195\n", - "AM Iteration: 4, alpha_error: 0.03831533\n", - "AM Iteration: 5, alpha_error: 0.03915726\n", - "AM Iteration: 6, alpha_error: 0.04085355\n", - "AM Iteration: 7, alpha_error: 0.04327040\n", - "AM Iteration: 8, alpha_error: 0.04620995\n", - "AM Iteration: 9, alpha_error: 0.04924608\n", - "AM Iteration: 10, alpha_error: 0.05203841\n", - "AM Iteration: 11, alpha_error: 0.05510439\n", - "AM Iteration: 12, alpha_error: 0.05719319\n", - "AM Iteration: 13, alpha_error: 0.05909601\n", - "AM Iteration: 14, alpha_error: 0.06015065\n", - "AM Iteration: 15, alpha_error: 0.05992305\n", - "AM Iteration: 16, alpha_error: 0.05764787\n", - "AM Iteration: 17, alpha_error: 0.05440074\n", - "AM Iteration: 18, alpha_error: 0.05085583\n", - "AM Iteration: 19, alpha_error: 0.04668497\n", - "AM Iteration: 20, alpha_error: 0.04335194\n", - "AM Iteration: 21, alpha_error: 0.04033666\n", - "AM Iteration: 22, alpha_error: 0.03721323\n", - "AM Iteration: 23, alpha_error: 0.03416245\n", - "AM Iteration: 24, alpha_error: 0.03195377\n", - "AM Iteration: 25, alpha_error: 0.02986711\n", - "AM Iteration: 26, alpha_error: 0.02780238\n", - "AM Iteration: 27, alpha_error: 0.02579748\n", - "AM Iteration: 28, alpha_error: 0.02392097\n", - "AM Iteration: 29, alpha_error: 0.02220741\n", - "AM Iteration: 30, alpha_error: 0.02095554\n", - "AM Iteration: 31, alpha_error: 0.01980101\n", - "AM Iteration: 32, alpha_error: 0.01871080\n", - "AM Iteration: 33, alpha_error: 0.01765637\n", - "AM Iteration: 34, alpha_error: 0.01658752\n", - "AM Iteration: 35, alpha_error: 0.01551102\n", - "AM Iteration: 36, alpha_error: 0.01447147\n", - "AM Iteration: 37, alpha_error: 0.01349070\n", - "AM Iteration: 38, alpha_error: 0.01262819\n", - "AM Iteration: 39, alpha_error: 0.01187985\n", - "AM Iteration: 40, alpha_error: 0.01115010\n", - "AM Iteration: 41, alpha_error: 0.01044069\n", - "AM Iteration: 42, alpha_error: 0.00976329\n", - "AM Iteration: 43, alpha_error: 0.00911347\n", - "AM Iteration: 44, alpha_error: 0.00849786\n", - "AM Iteration: 45, alpha_error: 0.00791960\n", - "AM Iteration: 46, alpha_error: 0.00737154\n", - "AM Iteration: 47, alpha_error: 0.00686073\n", - "AM Iteration: 48, alpha_error: 0.00638801\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AM Iteration: 49, alpha_error: 0.00594869\n", - "AM Iteration: 50, alpha_error: 0.00554091\n", - "AM Iteration: 51, alpha_error: 0.00516594\n", - "AM Iteration: 52, alpha_error: 0.00482103\n", - "AM Iteration: 53, alpha_error: 0.00450033\n", - "AM Iteration: 54, alpha_error: 0.00420249\n", - "AM Iteration: 55, alpha_error: 0.00392697\n", - "AM Iteration: 56, alpha_error: 0.00367165\n", - "AM Iteration: 57, alpha_error: 0.00343630\n", - "AM Iteration: 58, alpha_error: 0.00321881\n", - "AM Iteration: 59, alpha_error: 0.00301478\n", - "AM Iteration: 60, alpha_error: 0.00282818\n", - "AM Iteration: 61, alpha_error: 0.00265436\n", - "AM Iteration: 62, alpha_error: 0.00249173\n", - "AM Iteration: 63, alpha_error: 0.00233854\n", - "AM Iteration: 64, alpha_error: 0.00219349\n", - "AM Iteration: 65, alpha_error: 0.00205660\n", - "AM Iteration: 66, alpha_error: 0.00192719\n", - "AM Iteration: 67, alpha_error: 0.00180649\n", - "AM Iteration: 68, alpha_error: 0.00169441\n", - "AM Iteration: 69, alpha_error: 0.00158908\n", - "AM Iteration: 70, alpha_error: 0.00148959\n", - "AM Iteration: 71, alpha_error: 0.00139567\n", - "AM Iteration: 72, alpha_error: 0.00130714\n", - "AM Iteration: 73, alpha_error: 0.00122379\n", - "AM Iteration: 74, alpha_error: 0.00114538\n", - "AM Iteration: 75, alpha_error: 0.00107168\n", - "AM Iteration: 76, alpha_error: 0.00100246\n", - "AM Iteration: 77, alpha_error: 0.00093742\n", - "AM Iteration: 78, alpha_error: 0.00087635\n", - "AM Iteration: 79, alpha_error: 0.00081907\n", - "AM Iteration: 80, alpha_error: 0.00076540\n", - "AM Iteration: 81, alpha_error: 0.00071511\n", - "AM Iteration: 82, alpha_error: 0.00066803\n", - "AM Iteration: 83, alpha_error: 0.00062395\n", - "AM Iteration: 84, alpha_error: 0.00058271\n", - "AM Iteration: 85, alpha_error: 0.00054412\n", - "AM Iteration: 86, alpha_error: 0.00050803\n", - "AM Iteration: 87, alpha_error: 0.00047429\n", - "AM Iteration: 88, alpha_error: 0.00044275\n", - "AM Iteration: 89, alpha_error: 0.00041326\n", - "AM Iteration: 90, alpha_error: 0.00038571\n", - "AM Iteration: 91, alpha_error: 0.00035997\n", - "AM Iteration: 92, alpha_error: 0.00033592\n", - "AM Iteration: 93, alpha_error: 0.00031346\n", - "AM Iteration: 94, alpha_error: 0.00029249\n", - "AM Iteration: 95, alpha_error: 0.00027290\n", - "AM Iteration: 96, alpha_error: 0.00025461\n", - "AM Iteration: 97, alpha_error: 0.00023754\n", - "AM Iteration: 98, alpha_error: 0.00022160\n", - "AM Iteration: 99, alpha_error: 0.00020672\n", - "AM Iteration: 100, alpha_error: 0.00019283\n", - "AM Iteration: 101, alpha_error: 0.00017988\n", - "AM Iteration: 102, alpha_error: 0.00016778\n", - "AM Iteration: 103, alpha_error: 0.00015650\n", - "AM Iteration: 104, alpha_error: 0.00014597\n", - "AM Iteration: 105, alpha_error: 0.00013614\n", - "AM Iteration: 106, alpha_error: 0.00012698\n", - "AM Iteration: 107, alpha_error: 0.00011842\n", - "AM Iteration: 108, alpha_error: 0.00011045\n", - "AM Iteration: 109, alpha_error: 0.00010300\n", - "AM Iteration: 110, alpha_error: 0.00009606\n", - "\n", - "End of timestep 28 with load multiplier 28.000000\n", - "\n", - "Elastic and Surface Energies: [0.013043,0.005833]\n", - "\n", - "Elastic and Surface Energies: [0.013042598677495295,0.005833312207193253]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 29: t = 29.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.03110256\n", - "AM Iteration: 2, alpha_error: 0.02623754\n", - "AM Iteration: 3, alpha_error: 0.02302342\n", - "AM Iteration: 4, alpha_error: 0.02090395\n", - "AM Iteration: 5, alpha_error: 0.01924519\n", - "AM Iteration: 6, alpha_error: 0.01779481\n", - "AM Iteration: 7, alpha_error: 0.01646997\n", - "AM Iteration: 8, alpha_error: 0.01526151\n", - "AM Iteration: 9, alpha_error: 0.01416242\n", - "AM Iteration: 10, alpha_error: 0.01313961\n", - "AM Iteration: 11, alpha_error: 0.01217482\n", - "AM Iteration: 12, alpha_error: 0.01126582\n", - "AM Iteration: 13, alpha_error: 0.01041931\n", - "AM Iteration: 14, alpha_error: 0.00963880\n", - "AM Iteration: 15, alpha_error: 0.00893314\n", - "AM Iteration: 16, alpha_error: 0.00834948\n", - "AM Iteration: 17, alpha_error: 0.00782402\n", - "AM Iteration: 18, alpha_error: 0.00734418\n", - "AM Iteration: 19, alpha_error: 0.00689509\n", - "AM Iteration: 20, alpha_error: 0.00647330\n", - "AM Iteration: 21, alpha_error: 0.00607365\n", - "AM Iteration: 22, alpha_error: 0.00569130\n", - "AM Iteration: 23, alpha_error: 0.00532335\n", - "AM Iteration: 24, alpha_error: 0.00496921\n", - "AM Iteration: 25, alpha_error: 0.00462997\n", - "AM Iteration: 26, alpha_error: 0.00430913\n", - "AM Iteration: 27, alpha_error: 0.00400758\n", - "AM Iteration: 28, alpha_error: 0.00372401\n", - "AM Iteration: 29, alpha_error: 0.00346192\n", - "AM Iteration: 30, alpha_error: 0.00322011\n", - "AM Iteration: 31, alpha_error: 0.00299440\n", - "AM Iteration: 32, alpha_error: 0.00278334\n", - "AM Iteration: 33, alpha_error: 0.00258768\n", - "AM Iteration: 34, alpha_error: 0.00240658\n", - "AM Iteration: 35, alpha_error: 0.00223870\n", - "AM Iteration: 36, alpha_error: 0.00208308\n", - "AM Iteration: 37, alpha_error: 0.00193956\n", - "AM Iteration: 38, alpha_error: 0.00180700\n", - "AM Iteration: 39, alpha_error: 0.00168395\n", - "AM Iteration: 40, alpha_error: 0.00156962\n", - "AM Iteration: 41, alpha_error: 0.00146377\n", - "AM Iteration: 42, alpha_error: 0.00136512\n", - "AM Iteration: 43, alpha_error: 0.00127281\n", - "AM Iteration: 44, alpha_error: 0.00118719\n", - "AM Iteration: 45, alpha_error: 0.00110777\n", - "AM Iteration: 46, alpha_error: 0.00103399\n", - "AM Iteration: 47, alpha_error: 0.00096576\n", - "AM Iteration: 48, alpha_error: 0.00090305\n", - "AM Iteration: 49, alpha_error: 0.00084520\n", - "AM Iteration: 50, alpha_error: 0.00079132\n", - "AM Iteration: 51, alpha_error: 0.00074099\n", - "AM Iteration: 52, alpha_error: 0.00069395\n", - "AM Iteration: 53, alpha_error: 0.00064997\n", - "AM Iteration: 54, alpha_error: 0.00060884\n", - "AM Iteration: 55, alpha_error: 0.00057039\n", - "AM Iteration: 56, alpha_error: 0.00053442\n", - "AM Iteration: 57, alpha_error: 0.00050078\n", - "AM Iteration: 58, alpha_error: 0.00046931\n", - "AM Iteration: 59, alpha_error: 0.00043986\n", - "AM Iteration: 60, alpha_error: 0.00041229\n", - "AM Iteration: 61, alpha_error: 0.00038649\n", - "AM Iteration: 62, alpha_error: 0.00036234\n", - "AM Iteration: 63, alpha_error: 0.00033983\n", - "AM Iteration: 64, alpha_error: 0.00031896\n", - "AM Iteration: 65, alpha_error: 0.00029957\n", - "AM Iteration: 66, alpha_error: 0.00028140\n", - "AM Iteration: 67, alpha_error: 0.00026434\n", - "AM Iteration: 68, alpha_error: 0.00024834\n", - "AM Iteration: 69, alpha_error: 0.00023332\n", - "AM Iteration: 70, alpha_error: 0.00021922\n", - "AM Iteration: 71, alpha_error: 0.00020596\n", - "AM Iteration: 72, alpha_error: 0.00019352\n", - "AM Iteration: 73, alpha_error: 0.00018182\n", - "AM Iteration: 74, alpha_error: 0.00017084\n", - "AM Iteration: 75, alpha_error: 0.00016053\n", - "AM Iteration: 76, alpha_error: 0.00015084\n", - "AM Iteration: 77, alpha_error: 0.00014173\n", - "AM Iteration: 78, alpha_error: 0.00013318\n", - "AM Iteration: 79, alpha_error: 0.00012515\n", - "AM Iteration: 80, alpha_error: 0.00011761\n", - "AM Iteration: 81, alpha_error: 0.00011052\n", - "AM Iteration: 82, alpha_error: 0.00010386\n", - "AM Iteration: 83, alpha_error: 0.00009760\n", - "\n", - "End of timestep 29 with load multiplier 29.000000\n", - "\n", - "Elastic and Surface Energies: [0.013307,0.006854]\n", - "\n", - "Elastic and Surface Energies: [0.013307256129508132,0.006854182927234093]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 30: t = 30.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.04547869\n", - "AM Iteration: 2, alpha_error: 0.03901468\n", - "AM Iteration: 3, alpha_error: 0.03488432\n", - "AM Iteration: 4, alpha_error: 0.03177042\n", - "AM Iteration: 5, alpha_error: 0.02915680\n", - "AM Iteration: 6, alpha_error: 0.02681684\n", - "AM Iteration: 7, alpha_error: 0.02467723\n", - "AM Iteration: 8, alpha_error: 0.02275926\n", - "AM Iteration: 9, alpha_error: 0.02129732\n", - "AM Iteration: 10, alpha_error: 0.01993225\n", - "AM Iteration: 11, alpha_error: 0.01868529\n", - "AM Iteration: 12, alpha_error: 0.01755156\n", - "AM Iteration: 13, alpha_error: 0.01650358\n", - "AM Iteration: 14, alpha_error: 0.01554047\n", - "AM Iteration: 15, alpha_error: 0.01466018\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AM Iteration: 16, alpha_error: 0.01383597\n", - "AM Iteration: 17, alpha_error: 0.01303607\n", - "AM Iteration: 18, alpha_error: 0.01225059\n", - "AM Iteration: 19, alpha_error: 0.01158393\n", - "AM Iteration: 20, alpha_error: 0.01094098\n", - "AM Iteration: 21, alpha_error: 0.01026264\n", - "AM Iteration: 22, alpha_error: 0.00956791\n", - "AM Iteration: 23, alpha_error: 0.00888128\n", - "AM Iteration: 24, alpha_error: 0.00822132\n", - "AM Iteration: 25, alpha_error: 0.00760384\n", - "AM Iteration: 26, alpha_error: 0.00703458\n", - "AM Iteration: 27, alpha_error: 0.00651359\n", - "AM Iteration: 28, alpha_error: 0.00603564\n", - "AM Iteration: 29, alpha_error: 0.00559614\n", - "AM Iteration: 30, alpha_error: 0.00519550\n", - "AM Iteration: 31, alpha_error: 0.00483078\n", - "AM Iteration: 32, alpha_error: 0.00449678\n", - "AM Iteration: 33, alpha_error: 0.00419123\n", - "AM Iteration: 34, alpha_error: 0.00391140\n", - "AM Iteration: 35, alpha_error: 0.00365504\n", - "AM Iteration: 36, alpha_error: 0.00342198\n", - "AM Iteration: 37, alpha_error: 0.00321031\n", - "AM Iteration: 38, alpha_error: 0.00301959\n", - "AM Iteration: 39, alpha_error: 0.00284278\n", - "AM Iteration: 40, alpha_error: 0.00267635\n", - "AM Iteration: 41, alpha_error: 0.00252018\n", - "AM Iteration: 42, alpha_error: 0.00237538\n", - "AM Iteration: 43, alpha_error: 0.00224005\n", - "AM Iteration: 44, alpha_error: 0.00211172\n", - "AM Iteration: 45, alpha_error: 0.00198979\n", - "AM Iteration: 46, alpha_error: 0.00187400\n", - "AM Iteration: 47, alpha_error: 0.00176406\n", - "AM Iteration: 48, alpha_error: 0.00165974\n", - "AM Iteration: 49, alpha_error: 0.00156079\n", - "AM Iteration: 50, alpha_error: 0.00146699\n", - "AM Iteration: 51, alpha_error: 0.00137813\n", - "AM Iteration: 52, alpha_error: 0.00129400\n", - "AM Iteration: 53, alpha_error: 0.00121441\n", - "AM Iteration: 54, alpha_error: 0.00113919\n", - "AM Iteration: 55, alpha_error: 0.00106813\n", - "AM Iteration: 56, alpha_error: 0.00100107\n", - "AM Iteration: 57, alpha_error: 0.00093783\n", - "AM Iteration: 58, alpha_error: 0.00087823\n", - "AM Iteration: 59, alpha_error: 0.00082212\n", - "AM Iteration: 60, alpha_error: 0.00076932\n", - "AM Iteration: 61, alpha_error: 0.00071993\n", - "AM Iteration: 62, alpha_error: 0.00067403\n", - "AM Iteration: 63, alpha_error: 0.00063115\n", - "AM Iteration: 64, alpha_error: 0.00059081\n", - "AM Iteration: 65, alpha_error: 0.00055288\n", - "AM Iteration: 66, alpha_error: 0.00051724\n", - "AM Iteration: 67, alpha_error: 0.00048377\n", - "AM Iteration: 68, alpha_error: 0.00045238\n", - "AM Iteration: 69, alpha_error: 0.00042293\n", - "AM Iteration: 70, alpha_error: 0.00039533\n", - "AM Iteration: 71, alpha_error: 0.00036947\n", - "AM Iteration: 72, alpha_error: 0.00034525\n", - "AM Iteration: 73, alpha_error: 0.00032257\n", - "AM Iteration: 74, alpha_error: 0.00030134\n", - "AM Iteration: 75, alpha_error: 0.00028147\n", - "AM Iteration: 76, alpha_error: 0.00026288\n", - "AM Iteration: 77, alpha_error: 0.00024549\n", - "AM Iteration: 78, alpha_error: 0.00022923\n", - "AM Iteration: 79, alpha_error: 0.00021403\n", - "AM Iteration: 80, alpha_error: 0.00019982\n", - "AM Iteration: 81, alpha_error: 0.00018653\n", - "AM Iteration: 82, alpha_error: 0.00017412\n", - "AM Iteration: 83, alpha_error: 0.00016252\n", - "AM Iteration: 84, alpha_error: 0.00015169\n", - "AM Iteration: 85, alpha_error: 0.00014156\n", - "AM Iteration: 86, alpha_error: 0.00013211\n", - "AM Iteration: 87, alpha_error: 0.00012328\n", - "AM Iteration: 88, alpha_error: 0.00011504\n", - "AM Iteration: 89, alpha_error: 0.00010734\n", - "AM Iteration: 90, alpha_error: 0.00010015\n", - "AM Iteration: 91, alpha_error: 0.00009344\n", - "\n", - "End of timestep 30 with load multiplier 30.000000\n", - "\n", - "Elastic and Surface Energies: [0.013454,0.008504]\n", - "\n", - "Elastic and Surface Energies: [0.013454365781856027,0.008503533562238694]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 31: t = 31.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.10428913\n", - "AM Iteration: 2, alpha_error: 0.08696932\n", - "AM Iteration: 3, alpha_error: 0.07770743\n", - "AM Iteration: 4, alpha_error: 0.07114037\n", - "AM Iteration: 5, alpha_error: 0.06520674\n", - "AM Iteration: 6, alpha_error: 0.06092333\n", - "AM Iteration: 7, alpha_error: 0.05654624\n", - "AM Iteration: 8, alpha_error: 0.05243478\n", - "AM Iteration: 9, alpha_error: 0.04934308\n", - "AM Iteration: 10, alpha_error: 0.04683891\n", - "AM Iteration: 11, alpha_error: 0.04409100\n", - "AM Iteration: 12, alpha_error: 0.04103175\n", - "AM Iteration: 13, alpha_error: 0.03803229\n", - "AM Iteration: 14, alpha_error: 0.03564397\n", - "AM Iteration: 15, alpha_error: 0.03323358\n", - "AM Iteration: 16, alpha_error: 0.03091988\n", - "AM Iteration: 17, alpha_error: 0.02922048\n", - "AM Iteration: 18, alpha_error: 0.02756970\n", - "AM Iteration: 19, alpha_error: 0.02594647\n", - "AM Iteration: 20, alpha_error: 0.02466022\n", - "AM Iteration: 21, alpha_error: 0.02330775\n", - "AM Iteration: 22, alpha_error: 0.02184156\n", - "AM Iteration: 23, alpha_error: 0.02032059\n", - "AM Iteration: 24, alpha_error: 0.01882887\n", - "AM Iteration: 25, alpha_error: 0.01741644\n", - "AM Iteration: 26, alpha_error: 0.01611166\n", - "AM Iteration: 27, alpha_error: 0.01493424\n", - "AM Iteration: 28, alpha_error: 0.01393767\n", - "AM Iteration: 29, alpha_error: 0.01317104\n", - "AM Iteration: 30, alpha_error: 0.01245452\n", - "AM Iteration: 31, alpha_error: 0.01179265\n", - "AM Iteration: 32, alpha_error: 0.01116292\n", - "AM Iteration: 33, alpha_error: 0.01054724\n", - "AM Iteration: 34, alpha_error: 0.00994500\n", - "AM Iteration: 35, alpha_error: 0.00936050\n", - "AM Iteration: 36, alpha_error: 0.00880847\n", - "AM Iteration: 37, alpha_error: 0.00829712\n", - "AM Iteration: 38, alpha_error: 0.00781968\n", - "AM Iteration: 39, alpha_error: 0.00737631\n", - "AM Iteration: 40, alpha_error: 0.00702493\n", - "AM Iteration: 41, alpha_error: 0.00672224\n", - "AM Iteration: 42, alpha_error: 0.00643162\n", - "AM Iteration: 43, alpha_error: 0.00614471\n", - "AM Iteration: 44, alpha_error: 0.00586633\n", - "AM Iteration: 45, alpha_error: 0.00559304\n", - "AM Iteration: 46, alpha_error: 0.00532111\n", - "AM Iteration: 47, alpha_error: 0.00505115\n", - "AM Iteration: 48, alpha_error: 0.00478009\n", - "AM Iteration: 49, alpha_error: 0.00450808\n", - "AM Iteration: 50, alpha_error: 0.00423789\n", - "AM Iteration: 51, alpha_error: 0.00397316\n", - "AM Iteration: 52, alpha_error: 0.00371544\n", - "AM Iteration: 53, alpha_error: 0.00346694\n", - "AM Iteration: 54, alpha_error: 0.00323112\n", - "AM Iteration: 55, alpha_error: 0.00300761\n", - "AM Iteration: 56, alpha_error: 0.00279456\n", - "AM Iteration: 57, alpha_error: 0.00259927\n", - "AM Iteration: 58, alpha_error: 0.00241869\n", - "AM Iteration: 59, alpha_error: 0.00224778\n", - "AM Iteration: 60, alpha_error: 0.00208615\n", - "AM Iteration: 61, alpha_error: 0.00193393\n", - "AM Iteration: 62, alpha_error: 0.00179108\n", - "AM Iteration: 63, alpha_error: 0.00165737\n", - "AM Iteration: 64, alpha_error: 0.00153253\n", - "AM Iteration: 65, alpha_error: 0.00141620\n", - "AM Iteration: 66, alpha_error: 0.00130800\n", - "AM Iteration: 67, alpha_error: 0.00120751\n", - "AM Iteration: 68, alpha_error: 0.00111430\n", - "AM Iteration: 69, alpha_error: 0.00102795\n", - "AM Iteration: 70, alpha_error: 0.00094861\n", - "AM Iteration: 71, alpha_error: 0.00087567\n", - "AM Iteration: 72, alpha_error: 0.00080826\n", - "AM Iteration: 73, alpha_error: 0.00074588\n", - "AM Iteration: 74, alpha_error: 0.00068820\n", - "AM Iteration: 75, alpha_error: 0.00063489\n", - "AM Iteration: 76, alpha_error: 0.00058566\n", - "AM Iteration: 77, alpha_error: 0.00054019\n", - "AM Iteration: 78, alpha_error: 0.00049837\n", - "AM Iteration: 79, alpha_error: 0.00046017\n", - "AM Iteration: 80, alpha_error: 0.00042505\n", - "AM Iteration: 81, alpha_error: 0.00039259\n", - "AM Iteration: 82, alpha_error: 0.00036259\n", - "AM Iteration: 83, alpha_error: 0.00033488\n", - "AM Iteration: 84, alpha_error: 0.00030928\n", - "AM Iteration: 85, alpha_error: 0.00028565\n", - "AM Iteration: 86, alpha_error: 0.00026382\n", - "AM Iteration: 87, alpha_error: 0.00024366\n", - "AM Iteration: 88, alpha_error: 0.00022505\n", - "AM Iteration: 89, alpha_error: 0.00020787\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AM Iteration: 90, alpha_error: 0.00019200\n", - "AM Iteration: 91, alpha_error: 0.00017735\n", - "AM Iteration: 92, alpha_error: 0.00016381\n", - "AM Iteration: 93, alpha_error: 0.00015132\n", - "AM Iteration: 94, alpha_error: 0.00013978\n", - "AM Iteration: 95, alpha_error: 0.00012912\n", - "AM Iteration: 96, alpha_error: 0.00011928\n", - "AM Iteration: 97, alpha_error: 0.00011019\n", - "AM Iteration: 98, alpha_error: 0.00010180\n", - "AM Iteration: 99, alpha_error: 0.00009404\n", - "\n", - "End of timestep 31 with load multiplier 31.000000\n", - "\n", - "Elastic and Surface Energies: [0.013447,0.012511]\n", - "\n", - "Elastic and Surface Energies: [0.013447053277944845,0.012511124074610736]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 32: t = 32.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.05657523\n", - "AM Iteration: 2, alpha_error: 0.04901150\n", - "AM Iteration: 3, alpha_error: 0.04415775\n", - "AM Iteration: 4, alpha_error: 0.04052197\n", - "AM Iteration: 5, alpha_error: 0.03747464\n", - "AM Iteration: 6, alpha_error: 0.03541672\n", - "AM Iteration: 7, alpha_error: 0.03354957\n", - "AM Iteration: 8, alpha_error: 0.03170843\n", - "AM Iteration: 9, alpha_error: 0.02979537\n", - "AM Iteration: 10, alpha_error: 0.02782437\n", - "AM Iteration: 11, alpha_error: 0.02586662\n", - "AM Iteration: 12, alpha_error: 0.02440609\n", - "AM Iteration: 13, alpha_error: 0.02293922\n", - "AM Iteration: 14, alpha_error: 0.02140002\n", - "AM Iteration: 15, alpha_error: 0.01985350\n", - "AM Iteration: 16, alpha_error: 0.01843528\n", - "AM Iteration: 17, alpha_error: 0.01742929\n", - "AM Iteration: 18, alpha_error: 0.01652415\n", - "AM Iteration: 19, alpha_error: 0.01568275\n", - "AM Iteration: 20, alpha_error: 0.01487434\n", - "AM Iteration: 21, alpha_error: 0.01407619\n", - "AM Iteration: 22, alpha_error: 0.01326121\n", - "AM Iteration: 23, alpha_error: 0.01242506\n", - "AM Iteration: 24, alpha_error: 0.01156482\n", - "AM Iteration: 25, alpha_error: 0.01068847\n", - "AM Iteration: 26, alpha_error: 0.00993093\n", - "AM Iteration: 27, alpha_error: 0.00922034\n", - "AM Iteration: 28, alpha_error: 0.00854456\n", - "AM Iteration: 29, alpha_error: 0.00790433\n", - "AM Iteration: 30, alpha_error: 0.00730393\n", - "AM Iteration: 31, alpha_error: 0.00675244\n", - "AM Iteration: 32, alpha_error: 0.00625127\n", - "AM Iteration: 33, alpha_error: 0.00579456\n", - "AM Iteration: 34, alpha_error: 0.00537642\n", - "AM Iteration: 35, alpha_error: 0.00499237\n", - "AM Iteration: 36, alpha_error: 0.00464065\n", - "AM Iteration: 37, alpha_error: 0.00432038\n", - "AM Iteration: 38, alpha_error: 0.00402786\n", - "AM Iteration: 39, alpha_error: 0.00375883\n", - "AM Iteration: 40, alpha_error: 0.00351108\n", - "AM Iteration: 41, alpha_error: 0.00328324\n", - "AM Iteration: 42, alpha_error: 0.00307300\n", - "AM Iteration: 43, alpha_error: 0.00288041\n", - "AM Iteration: 44, alpha_error: 0.00270472\n", - "AM Iteration: 45, alpha_error: 0.00254259\n", - "AM Iteration: 46, alpha_error: 0.00239220\n", - "AM Iteration: 47, alpha_error: 0.00225265\n", - "AM Iteration: 48, alpha_error: 0.00212398\n", - "AM Iteration: 49, alpha_error: 0.00200500\n", - "AM Iteration: 50, alpha_error: 0.00189412\n", - "AM Iteration: 51, alpha_error: 0.00179054\n", - "AM Iteration: 52, alpha_error: 0.00169366\n", - "AM Iteration: 53, alpha_error: 0.00160295\n", - "AM Iteration: 54, alpha_error: 0.00151793\n", - "AM Iteration: 55, alpha_error: 0.00143831\n", - "AM Iteration: 56, alpha_error: 0.00136356\n", - "AM Iteration: 57, alpha_error: 0.00129317\n", - "AM Iteration: 58, alpha_error: 0.00122685\n", - "AM Iteration: 59, alpha_error: 0.00116427\n", - "AM Iteration: 60, alpha_error: 0.00110565\n", - "AM Iteration: 61, alpha_error: 0.00105239\n", - "AM Iteration: 62, alpha_error: 0.00100168\n", - "AM Iteration: 63, alpha_error: 0.00095331\n", - "AM Iteration: 64, alpha_error: 0.00090715\n", - "AM Iteration: 65, alpha_error: 0.00086305\n", - "AM Iteration: 66, alpha_error: 0.00082089\n", - "AM Iteration: 67, alpha_error: 0.00078094\n", - "AM Iteration: 68, alpha_error: 0.00074306\n", - "AM Iteration: 69, alpha_error: 0.00070743\n", - "AM Iteration: 70, alpha_error: 0.00067373\n", - "AM Iteration: 71, alpha_error: 0.00064134\n", - "AM Iteration: 72, alpha_error: 0.00061019\n", - "AM Iteration: 73, alpha_error: 0.00058027\n", - "AM Iteration: 74, alpha_error: 0.00055157\n", - "AM Iteration: 75, alpha_error: 0.00052405\n", - "AM Iteration: 76, alpha_error: 0.00049769\n", - "AM Iteration: 77, alpha_error: 0.00047246\n", - "AM Iteration: 78, alpha_error: 0.00044834\n", - "AM Iteration: 79, alpha_error: 0.00042528\n", - "AM Iteration: 80, alpha_error: 0.00040326\n", - "AM Iteration: 81, alpha_error: 0.00038225\n", - "AM Iteration: 82, alpha_error: 0.00036221\n", - "AM Iteration: 83, alpha_error: 0.00034310\n", - "AM Iteration: 84, alpha_error: 0.00032491\n", - "AM Iteration: 85, alpha_error: 0.00030760\n", - "AM Iteration: 86, alpha_error: 0.00029113\n", - "AM Iteration: 87, alpha_error: 0.00027547\n", - "AM Iteration: 88, alpha_error: 0.00026060\n", - "AM Iteration: 89, alpha_error: 0.00024648\n", - "AM Iteration: 90, alpha_error: 0.00023307\n", - "AM Iteration: 91, alpha_error: 0.00022036\n", - "AM Iteration: 92, alpha_error: 0.00020830\n", - "AM Iteration: 93, alpha_error: 0.00019687\n", - "AM Iteration: 94, alpha_error: 0.00018604\n", - "AM Iteration: 95, alpha_error: 0.00017578\n", - "AM Iteration: 96, alpha_error: 0.00016607\n", - "AM Iteration: 97, alpha_error: 0.00015688\n", - "AM Iteration: 98, alpha_error: 0.00014818\n", - "AM Iteration: 99, alpha_error: 0.00013995\n", - "AM Iteration: 100, alpha_error: 0.00013216\n", - "AM Iteration: 101, alpha_error: 0.00012480\n", - "AM Iteration: 102, alpha_error: 0.00011783\n", - "AM Iteration: 103, alpha_error: 0.00011125\n", - "AM Iteration: 104, alpha_error: 0.00010503\n", - "AM Iteration: 105, alpha_error: 0.00009915\n", - "\n", - "End of timestep 32 with load multiplier 32.000000\n", - "\n", - "Elastic and Surface Energies: [0.013440,0.014764]\n", - "\n", - "Elastic and Surface Energies: [0.013439616588902479,0.014763883943775868]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 33: t = 33.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.04622436\n", - "AM Iteration: 2, alpha_error: 0.04115885\n", - "AM Iteration: 3, alpha_error: 0.03782541\n", - "AM Iteration: 4, alpha_error: 0.03534587\n", - "AM Iteration: 5, alpha_error: 0.03318148\n", - "AM Iteration: 6, alpha_error: 0.03104490\n", - "AM Iteration: 7, alpha_error: 0.02884925\n", - "AM Iteration: 8, alpha_error: 0.02664166\n", - "AM Iteration: 9, alpha_error: 0.02484215\n", - "AM Iteration: 10, alpha_error: 0.02329070\n", - "AM Iteration: 11, alpha_error: 0.02193707\n", - "AM Iteration: 12, alpha_error: 0.02070185\n", - "AM Iteration: 13, alpha_error: 0.01960293\n", - "AM Iteration: 14, alpha_error: 0.01859732\n", - "AM Iteration: 15, alpha_error: 0.01762756\n", - "AM Iteration: 16, alpha_error: 0.01665391\n", - "AM Iteration: 17, alpha_error: 0.01566296\n", - "AM Iteration: 18, alpha_error: 0.01463948\n", - "AM Iteration: 19, alpha_error: 0.01358750\n", - "AM Iteration: 20, alpha_error: 0.01253674\n", - "AM Iteration: 21, alpha_error: 0.01152719\n", - "AM Iteration: 22, alpha_error: 0.01059334\n", - "AM Iteration: 23, alpha_error: 0.00979869\n", - "AM Iteration: 24, alpha_error: 0.00907284\n", - "AM Iteration: 25, alpha_error: 0.00841152\n", - "AM Iteration: 26, alpha_error: 0.00781252\n", - "AM Iteration: 27, alpha_error: 0.00731498\n", - "AM Iteration: 28, alpha_error: 0.00688648\n", - "AM Iteration: 29, alpha_error: 0.00649987\n", - "AM Iteration: 30, alpha_error: 0.00614806\n", - "AM Iteration: 31, alpha_error: 0.00582752\n", - "AM Iteration: 32, alpha_error: 0.00553629\n", - "AM Iteration: 33, alpha_error: 0.00527107\n", - "AM Iteration: 34, alpha_error: 0.00502902\n", - "AM Iteration: 35, alpha_error: 0.00481181\n", - "AM Iteration: 36, alpha_error: 0.00461839\n", - "AM Iteration: 37, alpha_error: 0.00443988\n", - "AM Iteration: 38, alpha_error: 0.00427168\n", - "AM Iteration: 39, alpha_error: 0.00411169\n", - "AM Iteration: 40, alpha_error: 0.00396132\n", - "AM Iteration: 41, alpha_error: 0.00382085\n", - "AM Iteration: 42, alpha_error: 0.00368815\n", - "AM Iteration: 43, alpha_error: 0.00355955\n", - "AM Iteration: 44, alpha_error: 0.00343195\n", - "AM Iteration: 45, alpha_error: 0.00330273\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AM Iteration: 46, alpha_error: 0.00316986\n", - "AM Iteration: 47, alpha_error: 0.00303374\n", - "AM Iteration: 48, alpha_error: 0.00289533\n", - "AM Iteration: 49, alpha_error: 0.00275569\n", - "AM Iteration: 50, alpha_error: 0.00261843\n", - "AM Iteration: 51, alpha_error: 0.00248469\n", - "AM Iteration: 52, alpha_error: 0.00235338\n", - "AM Iteration: 53, alpha_error: 0.00222547\n", - "AM Iteration: 54, alpha_error: 0.00210068\n", - "AM Iteration: 55, alpha_error: 0.00197960\n", - "AM Iteration: 56, alpha_error: 0.00186416\n", - "AM Iteration: 57, alpha_error: 0.00175431\n", - "AM Iteration: 58, alpha_error: 0.00164876\n", - "AM Iteration: 59, alpha_error: 0.00154750\n", - "AM Iteration: 60, alpha_error: 0.00145068\n", - "AM Iteration: 61, alpha_error: 0.00135842\n", - "AM Iteration: 62, alpha_error: 0.00127072\n", - "AM Iteration: 63, alpha_error: 0.00118744\n", - "AM Iteration: 64, alpha_error: 0.00110866\n", - "AM Iteration: 65, alpha_error: 0.00103431\n", - "AM Iteration: 66, alpha_error: 0.00096426\n", - "AM Iteration: 67, alpha_error: 0.00089837\n", - "AM Iteration: 68, alpha_error: 0.00083648\n", - "AM Iteration: 69, alpha_error: 0.00077842\n", - "AM Iteration: 70, alpha_error: 0.00072403\n", - "AM Iteration: 71, alpha_error: 0.00067312\n", - "AM Iteration: 72, alpha_error: 0.00062552\n", - "AM Iteration: 73, alpha_error: 0.00058105\n", - "AM Iteration: 74, alpha_error: 0.00053955\n", - "AM Iteration: 75, alpha_error: 0.00050084\n", - "AM Iteration: 76, alpha_error: 0.00046476\n", - "AM Iteration: 77, alpha_error: 0.00043116\n", - "AM Iteration: 78, alpha_error: 0.00039988\n", - "AM Iteration: 79, alpha_error: 0.00037078\n", - "AM Iteration: 80, alpha_error: 0.00034371\n", - "AM Iteration: 81, alpha_error: 0.00031856\n", - "AM Iteration: 82, alpha_error: 0.00029519\n", - "AM Iteration: 83, alpha_error: 0.00027348\n", - "AM Iteration: 84, alpha_error: 0.00025333\n", - "AM Iteration: 85, alpha_error: 0.00023463\n", - "AM Iteration: 86, alpha_error: 0.00021728\n", - "AM Iteration: 87, alpha_error: 0.00020118\n", - "AM Iteration: 88, alpha_error: 0.00018626\n", - "AM Iteration: 89, alpha_error: 0.00017242\n", - "AM Iteration: 90, alpha_error: 0.00015960\n", - "AM Iteration: 91, alpha_error: 0.00014771\n", - "AM Iteration: 92, alpha_error: 0.00013670\n", - "AM Iteration: 93, alpha_error: 0.00012650\n", - "AM Iteration: 94, alpha_error: 0.00011705\n", - "AM Iteration: 95, alpha_error: 0.00010830\n", - "AM Iteration: 96, alpha_error: 0.00010020\n", - "AM Iteration: 97, alpha_error: 0.00009270\n", - "\n", - "End of timestep 33 with load multiplier 33.000000\n", - "\n", - "Elastic and Surface Energies: [0.013308,0.016751]\n", - "\n", - "Elastic and Surface Energies: [0.013307828495864427,0.01675109316777118]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 34: t = 34.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.03733525\n", - "AM Iteration: 2, alpha_error: 0.03256293\n", - "AM Iteration: 3, alpha_error: 0.02971792\n", - "AM Iteration: 4, alpha_error: 0.02746056\n", - "AM Iteration: 5, alpha_error: 0.02561067\n", - "AM Iteration: 6, alpha_error: 0.02395172\n", - "AM Iteration: 7, alpha_error: 0.02249549\n", - "AM Iteration: 8, alpha_error: 0.02122678\n", - "AM Iteration: 9, alpha_error: 0.02006195\n", - "AM Iteration: 10, alpha_error: 0.01894055\n", - "AM Iteration: 11, alpha_error: 0.01782368\n", - "AM Iteration: 12, alpha_error: 0.01670520\n", - "AM Iteration: 13, alpha_error: 0.01558670\n", - "AM Iteration: 14, alpha_error: 0.01448772\n", - "AM Iteration: 15, alpha_error: 0.01354200\n", - "AM Iteration: 16, alpha_error: 0.01266526\n", - "AM Iteration: 17, alpha_error: 0.01182255\n", - "AM Iteration: 18, alpha_error: 0.01102926\n", - "AM Iteration: 19, alpha_error: 0.01029260\n", - "AM Iteration: 20, alpha_error: 0.00965836\n", - "AM Iteration: 21, alpha_error: 0.00906678\n", - "AM Iteration: 22, alpha_error: 0.00851140\n", - "AM Iteration: 23, alpha_error: 0.00799549\n", - "AM Iteration: 24, alpha_error: 0.00752226\n", - "AM Iteration: 25, alpha_error: 0.00708630\n", - "AM Iteration: 26, alpha_error: 0.00668528\n", - "AM Iteration: 27, alpha_error: 0.00631378\n", - "AM Iteration: 28, alpha_error: 0.00596696\n", - "AM Iteration: 29, alpha_error: 0.00564561\n", - "AM Iteration: 30, alpha_error: 0.00535076\n", - "AM Iteration: 31, alpha_error: 0.00507622\n", - "AM Iteration: 32, alpha_error: 0.00481334\n", - "AM Iteration: 33, alpha_error: 0.00456092\n", - "AM Iteration: 34, alpha_error: 0.00432089\n", - "AM Iteration: 35, alpha_error: 0.00409129\n", - "AM Iteration: 36, alpha_error: 0.00386940\n", - "AM Iteration: 37, alpha_error: 0.00365518\n", - "AM Iteration: 38, alpha_error: 0.00345024\n", - "AM Iteration: 39, alpha_error: 0.00325709\n", - "AM Iteration: 40, alpha_error: 0.00307654\n", - "AM Iteration: 41, alpha_error: 0.00290579\n", - "AM Iteration: 42, alpha_error: 0.00274350\n", - "AM Iteration: 43, alpha_error: 0.00259002\n", - "AM Iteration: 44, alpha_error: 0.00244586\n", - "AM Iteration: 45, alpha_error: 0.00231253\n", - "AM Iteration: 46, alpha_error: 0.00219072\n", - "AM Iteration: 47, alpha_error: 0.00219787\n", - "AM Iteration: 48, alpha_error: 0.00243372\n", - "AM Iteration: 49, alpha_error: 0.00267343\n", - "AM Iteration: 50, alpha_error: 0.00289887\n", - "AM Iteration: 51, alpha_error: 0.00311479\n", - "AM Iteration: 52, alpha_error: 0.00326804\n", - "AM Iteration: 53, alpha_error: 0.00330537\n", - "AM Iteration: 54, alpha_error: 0.00320276\n", - "AM Iteration: 55, alpha_error: 0.00295538\n", - "AM Iteration: 56, alpha_error: 0.00261319\n", - "AM Iteration: 57, alpha_error: 0.00223990\n", - "AM Iteration: 58, alpha_error: 0.00189383\n", - "AM Iteration: 59, alpha_error: 0.00176682\n", - "AM Iteration: 60, alpha_error: 0.00164488\n", - "AM Iteration: 61, alpha_error: 0.00151406\n", - "AM Iteration: 62, alpha_error: 0.00138147\n", - "AM Iteration: 63, alpha_error: 0.00125214\n", - "AM Iteration: 64, alpha_error: 0.00112978\n", - "AM Iteration: 65, alpha_error: 0.00101620\n", - "AM Iteration: 66, alpha_error: 0.00091241\n", - "AM Iteration: 67, alpha_error: 0.00081846\n", - "AM Iteration: 68, alpha_error: 0.00074394\n", - "AM Iteration: 69, alpha_error: 0.00067660\n", - "AM Iteration: 70, alpha_error: 0.00061535\n", - "AM Iteration: 71, alpha_error: 0.00055976\n", - "AM Iteration: 72, alpha_error: 0.00050935\n", - "AM Iteration: 73, alpha_error: 0.00046367\n", - "AM Iteration: 74, alpha_error: 0.00042226\n", - "AM Iteration: 75, alpha_error: 0.00038522\n", - "AM Iteration: 76, alpha_error: 0.00035189\n", - "AM Iteration: 77, alpha_error: 0.00032272\n", - "AM Iteration: 78, alpha_error: 0.00029631\n", - "AM Iteration: 79, alpha_error: 0.00027208\n", - "AM Iteration: 80, alpha_error: 0.00024984\n", - "AM Iteration: 81, alpha_error: 0.00022943\n", - "AM Iteration: 82, alpha_error: 0.00021069\n", - "AM Iteration: 83, alpha_error: 0.00019349\n", - "AM Iteration: 84, alpha_error: 0.00017771\n", - "AM Iteration: 85, alpha_error: 0.00016321\n", - "AM Iteration: 86, alpha_error: 0.00014991\n", - "AM Iteration: 87, alpha_error: 0.00013769\n", - "AM Iteration: 88, alpha_error: 0.00012647\n", - "AM Iteration: 89, alpha_error: 0.00011617\n", - "AM Iteration: 90, alpha_error: 0.00010671\n", - "AM Iteration: 91, alpha_error: 0.00009803\n", - "\n", - "End of timestep 34 with load multiplier 34.000000\n", - "\n", - "Elastic and Surface Energies: [0.013245,0.018314]\n", - "\n", - "Elastic and Surface Energies: [0.013245393105169949,0.018314070429731644]\n", - "-----------------------------------------\n", - "\u001b[1;32m--- Starting of Time step 35: t = 35.000000 ---\u001b[1;m\n", - "AM Iteration: 1, alpha_error: 0.04201192\n", - "AM Iteration: 2, alpha_error: 0.03734371\n", - "AM Iteration: 3, alpha_error: 0.03420303\n", - "AM Iteration: 4, alpha_error: 0.03176370\n", - "AM Iteration: 5, alpha_error: 0.02973501\n", - "AM Iteration: 6, alpha_error: 0.02795665\n", - "AM Iteration: 7, alpha_error: 0.02627179\n", - "AM Iteration: 8, alpha_error: 0.02460172\n", - "AM Iteration: 9, alpha_error: 0.02289091\n", - "AM Iteration: 10, alpha_error: 0.02129167\n", - "AM Iteration: 11, alpha_error: 0.01991993\n", - "AM Iteration: 12, alpha_error: 0.01860178\n", - "AM Iteration: 13, alpha_error: 0.01744242\n", - "AM Iteration: 14, alpha_error: 0.01646644\n", - "AM Iteration: 15, alpha_error: 0.01550668\n", - "AM Iteration: 16, alpha_error: 0.01460292\n", - "AM Iteration: 17, alpha_error: 0.01376726\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AM Iteration: 18, alpha_error: 0.01300926\n", - "AM Iteration: 19, alpha_error: 0.01230910\n", - "AM Iteration: 20, alpha_error: 0.01163796\n", - "AM Iteration: 21, alpha_error: 0.01099738\n", - "AM Iteration: 22, alpha_error: 0.01037453\n", - "AM Iteration: 23, alpha_error: 0.00975800\n", - "AM Iteration: 24, alpha_error: 0.00915343\n", - "AM Iteration: 25, alpha_error: 0.00857035\n", - "AM Iteration: 26, alpha_error: 0.00801472\n", - "AM Iteration: 27, alpha_error: 0.00749103\n", - "AM Iteration: 28, alpha_error: 0.00700560\n", - "AM Iteration: 29, alpha_error: 0.00656427\n", - "AM Iteration: 30, alpha_error: 0.00616077\n", - "AM Iteration: 31, alpha_error: 0.00581867\n", - "AM Iteration: 32, alpha_error: 0.00550597\n", - "AM Iteration: 33, alpha_error: 0.00517693\n", - "AM Iteration: 34, alpha_error: 0.00483955\n", - "AM Iteration: 35, alpha_error: 0.00450491\n", - "AM Iteration: 36, alpha_error: 0.00417881\n", - "AM Iteration: 37, alpha_error: 0.00386742\n", - "AM Iteration: 38, alpha_error: 0.00357898\n", - "AM Iteration: 39, alpha_error: 0.00331608\n", - "AM Iteration: 40, alpha_error: 0.00307929\n", - "AM Iteration: 41, alpha_error: 0.00286842\n", - "AM Iteration: 42, alpha_error: 0.00267903\n", - "AM Iteration: 43, alpha_error: 0.00250688\n", - "AM Iteration: 44, alpha_error: 0.00234987\n", - "AM Iteration: 45, alpha_error: 0.00220657\n", - "AM Iteration: 46, alpha_error: 0.00207558\n", - "AM Iteration: 47, alpha_error: 0.00195566\n", - "AM Iteration: 48, alpha_error: 0.00184569\n", - "AM Iteration: 49, alpha_error: 0.00174466\n", - "AM Iteration: 50, alpha_error: 0.00165168\n", - "AM Iteration: 51, alpha_error: 0.00156719\n", - "AM Iteration: 52, alpha_error: 0.00149027\n", - "AM Iteration: 53, alpha_error: 0.00141920\n", - "AM Iteration: 54, alpha_error: 0.00135321\n", - "AM Iteration: 55, alpha_error: 0.00129186\n", - "AM Iteration: 56, alpha_error: 0.00123473\n", - "AM Iteration: 57, alpha_error: 0.00118157\n", - "AM Iteration: 58, alpha_error: 0.00113197\n", - "AM Iteration: 59, alpha_error: 0.00108586\n", - "AM Iteration: 60, alpha_error: 0.00104349\n", - "AM Iteration: 61, alpha_error: 0.00100442\n", - "AM Iteration: 62, alpha_error: 0.00096776\n", - "AM Iteration: 63, alpha_error: 0.00093311\n", - "AM Iteration: 64, alpha_error: 0.00090030\n", - "AM Iteration: 65, alpha_error: 0.00086917\n", - "AM Iteration: 66, alpha_error: 0.00083981\n", - "AM Iteration: 67, alpha_error: 0.00081208\n", - "AM Iteration: 68, alpha_error: 0.00078563\n", - "AM Iteration: 69, alpha_error: 0.00076032\n", - "AM Iteration: 70, alpha_error: 0.00073605\n", - "AM Iteration: 71, alpha_error: 0.00071275\n", - "AM Iteration: 72, alpha_error: 0.00069051\n", - "AM Iteration: 73, alpha_error: 0.00066972\n", - "AM Iteration: 74, alpha_error: 0.00065021\n", - "AM Iteration: 75, alpha_error: 0.00063138\n", - "AM Iteration: 76, alpha_error: 0.00061310\n", - "AM Iteration: 77, alpha_error: 0.00059535\n", - "AM Iteration: 78, alpha_error: 0.00057810\n", - "AM Iteration: 79, alpha_error: 0.00056133\n", - "AM Iteration: 80, alpha_error: 0.00054503\n", - "AM Iteration: 81, alpha_error: 0.00052917\n", - "AM Iteration: 82, alpha_error: 0.00051374\n", - "AM Iteration: 83, alpha_error: 0.00049871\n", - "AM Iteration: 84, alpha_error: 0.00048407\n", - "AM Iteration: 85, alpha_error: 0.00046981\n", - "AM Iteration: 86, alpha_error: 0.00045592\n", - "AM Iteration: 87, alpha_error: 0.00044239\n", - "AM Iteration: 88, alpha_error: 0.00042920\n", - "AM Iteration: 89, alpha_error: 0.00041634\n", - "AM Iteration: 90, alpha_error: 0.00040381\n", - "AM Iteration: 91, alpha_error: 0.00039161\n", - "AM Iteration: 92, alpha_error: 0.00037971\n", - "AM Iteration: 93, alpha_error: 0.00036813\n", - "AM Iteration: 94, alpha_error: 0.00035684\n", - "AM Iteration: 95, alpha_error: 0.00034585\n", - "AM Iteration: 96, alpha_error: 0.00033515\n", - "AM Iteration: 97, alpha_error: 0.00032473\n", - "AM Iteration: 98, alpha_error: 0.00031459\n", - "AM Iteration: 99, alpha_error: 0.00030472\n", - "AM Iteration: 100, alpha_error: 0.00029513\n", - "AM Iteration: 101, alpha_error: 0.00028579\n", - "AM Iteration: 102, alpha_error: 0.00027671\n", - "AM Iteration: 103, alpha_error: 0.00026789\n", - "AM Iteration: 104, alpha_error: 0.00025931\n", - "AM Iteration: 105, alpha_error: 0.00025098\n", - "AM Iteration: 106, alpha_error: 0.00024288\n", - "AM Iteration: 107, alpha_error: 0.00023502\n", - "AM Iteration: 108, alpha_error: 0.00022739\n", - "AM Iteration: 109, alpha_error: 0.00021998\n", - "AM Iteration: 110, alpha_error: 0.00021278\n", - "AM Iteration: 111, alpha_error: 0.00020580\n", - "AM Iteration: 112, alpha_error: 0.00019903\n", - "AM Iteration: 113, alpha_error: 0.00019246\n", - "AM Iteration: 114, alpha_error: 0.00018610\n", - "AM Iteration: 115, alpha_error: 0.00017992\n", - "AM Iteration: 116, alpha_error: 0.00017393\n", - "AM Iteration: 117, alpha_error: 0.00016813\n" - ] - } - ], - "source": [ - "for (i_t, t) in enumerate(load_multipliers):\n", - " \n", - " for j in range(len(xcord)):\n", - " \n", - " charge[j].ux = U_xy[t].values[j]*ut\n", - " \n", - " charge[j].uy = U_xy[t+N_image].values[j]*ut\n", - " \n", - " if MPI.rank(MPI.comm_world) == 0:\n", - " print(\"\\033[1;32m--- Starting of Time step {0:2d}: t = {1:4f} ---\\033[1;m\".format(i_t, t)) \n", - " # Alternate Mininimization \n", - " # Initialization\n", - " iteration = 1\n", - " err_alpha = 1.0\n", - " # Iterations\n", - " while err_alpha > AM_tolerance and iteration < maxiteration:\n", - " # solve elastic problem\n", - " solver_u.solve()\n", - " # solve damage problem with box constraint \n", - " solver_alpha.solve(damage_problem, alpha.vector(), alpha_lb.vector(), alpha_ub.vector())\n", - " # test error\n", - " alpha_error = alpha.vector() - alpha_0.vector()\n", - " err_alpha = alpha_error.norm('linf')\n", - " # monitor the results\n", - " if MPI.rank(MPI.comm_world) == 0:\n", - " print (\"AM Iteration: {0:3d}, alpha_error: {1:>14.8f}\".format(iteration, err_alpha))\n", - "\n", - " # update iteration\n", - " alpha_0.assign(alpha)\n", - " \n", - " \n", - " #----------------------------------------------#\n", - " #-------------I-integral T-stress--------------#\n", - " #----------------------------------------------#\n", - " I1 = inner((0.5*inner(sigma(u,alpha),eps(u_aux))+ 0.5*inner(sigmax,eps(u))),n[0])*ds(2) \\\n", - " + inner((0.5*inner(sigma(u,alpha),eps(u_aux))+ 0.5*inner(sigmax,eps(u))),n[0])*ds(3) \\\n", - " + inner((0.5*inner(sigma(u,alpha),eps(u_aux))+ 0.5*inner(sigmax,eps(u))),n[0])*ds(4)\n", - "\n", - " I2 = dot(dot(sigma(u,alpha),u_x(u_aux)) + dot(sigmax,u_x(u)),n)*ds(2) \\\n", - " + dot(dot(sigma(u,alpha),u_x(u_aux)) + dot(sigmax,u_x(u)),n)*ds(3) \\\n", - " + dot(dot(sigma(u,alpha),u_x(u_aux)) + dot(sigmax,u_x(u)),n)*ds(4)\n", - "\n", - " I_int = assemble(I1-I2)\n", - " \n", - " #print('I-integral: T-stress = ' + str(I_int))\n", - " \n", - " \n", - " #----------------------------------------------#\n", - " #-------------I-integral KI and KII------------#\n", - " #----------------------------------------------#\n", - " #I_integral for seperating KI\n", - "\n", - " Ik1_1 = inner((0.5*inner(sigma(u,alpha),eps(u_kaux1))+ 0.5*inner(sigma_1,eps(u))),n[0])*ds(2) \\\n", - " + inner((0.5*inner(sigma(u,alpha),eps(u_kaux1))+ 0.5*inner(sigma_1,eps(u))),n[0])*ds(3) \\\n", - " + inner((0.5*inner(sigma(u,alpha),eps(u_kaux1))+ 0.5*inner(sigma_1,eps(u))),n[0])*ds(4)\n", - "\n", - "\n", - "\n", - " Ik1_2 = dot((dot(sigma(u,alpha),u_x(u_kaux1)) + dot(sigma_1,u_x(u))),n)*ds(2) \\\n", - " + dot((dot(sigma(u,alpha),u_x(u_kaux1)) + dot(sigma_1,u_x(u))),n)*ds(3) \\\n", - " + dot((dot(sigma(u,alpha),u_x(u_kaux1)) + dot(sigma_1,u_x(u))),n)*ds(4)\n", - "\n", - "\n", - " I_k11 = assemble(Ik1_1-Ik1_2)\n", - " I_k1 = I_k11\n", - "\n", - " k1_I = I_k1*1/(2*k1_aux1)\n", - "\n", - " \n", - " #I_integral for seperating KII\n", - " Ik2_1 = inner((0.5*inner(sigma(u,alpha),eps(u_kaux2))+ 0.5*inner(sigma_2,eps(u))),n[0])*ds(2) \\\n", - " + inner((0.5*inner(sigma(u,alpha),eps(u_kaux2))+ 0.5*inner(sigma_2,eps(u))),n[0])*ds(3) \\\n", - " + inner((0.5*inner(sigma(u,alpha),eps(u_kaux2))+ 0.5*inner(sigma_2,eps(u))),n[0])*ds(4)\n", - "\n", - " Ik2_2 = dot(dot(sigma(u,alpha),u_x(u_kaux2)) + dot(sigma_2,u_x(u)),n)*ds(2) \\\n", - " + dot(dot(sigma(u,alpha),u_x(u_kaux2)) + dot(sigma_2,u_x(u)),n)*ds(3) \\\n", - " + dot(dot(sigma(u,alpha),u_x(u_kaux2)) + dot(sigma_2,u_x(u)),n)*ds(4)\n", - "\n", - " I_k2 = assemble(Ik2_1-Ik2_2)\n", - "\n", - " k2_I = I_k2*1/(2*k2_aux2)\n", - " \n", - " iteration = iteration + 1\n", - " # updating the lower bound to account for the irreversibility\n", - " alpha_lb.vector()[:] = alpha.vector()\n", - " alpha.rename(\"Damage\", \"alpha\")\n", - " u.rename(\"Displacement\", \"u\")\n", - " \n", - " # Dump solution to file \n", - " file_alpha.write(alpha, t)\n", - " file_u.write(u, t)\n", - "\n", - " # ----------------------------------------\n", - " # Some post-processing\n", - " # ----------------------------------------\n", - " # Save number of iterations for the time step \n", - " iterations[i_t] = np.array([t, iteration])\n", - "\n", - "\n", - " # Calculate the energies\n", - " elastic_energy_value = assemble(elastic_energy)\n", - " surface_energy_value = assemble(dissipated_energy)\n", - " energies[i_t] = np.array([t, elastic_energy_value, surface_energy_value, elastic_energy_value+surface_energy_value])\n", - " force[i_t] = np.array([t, assemble(sigma(u,alpha)[1,1]*ds(2))])\n", - " \n", - " SIF[i_t] = np.array([t, k1_I, k2_I, I_int])\n", - " \n", - " if MPI.rank(MPI.comm_world) == 0:\n", - " print(\"\\nEnd of timestep {0:3d} with load multiplier {1:4f}\".format(i_t, t))\n", - " #print(\"\\nElastic and Surface Energies: [{0:6f},{1:6f}]\".format(elastic_energy_value, surface_energy_value))\n", - " print(\"\\nElastic and Surface Energies: [{},{}]\".format(elastic_energy_value, surface_energy_value))\n", - " print(\"-----------------------------------------\")\n", - " # Save some global quantities as a function of the time\n", - " np.savetxt(savedir + '/energies.txt', energies)\n", - " np.savetxt(savedir + '/iterations.txt', iterations)\n", - " np.savetxt(savedir + '/force.txt', force)\n", - " np.savetxt(savedir + '/SIF.txt', SIF)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f5787b8", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/contributed/DIC_CT_35/charge_libre.csv b/contributed/DIC_CT_35/charge_libre.csv deleted file mode 100644 index 4a3ecc58..00000000 --- a/contributed/DIC_CT_35/charge_libre.csv +++ /dev/null @@ -1,213 +0,0 @@ -0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55 --0.0532709685185658,-0.782096431298886,-1.5354510939102701,-2.17592095214621,-2.90273950892372,-3.4963945864610397,-4.17402365898043,-4.788586767876669,-5.47594363818277,-5.6721685413186105,-5.95092332770362,-6.2169267218782105,-6.46640822895201,-6.67864850555107,-6.982716364309139,-7.250284084310559,-7.5357164064630195,-7.760895194200269,-7.984524177132879,-8.23066920304691,-8.44825713177198,-8.63376095914218,-8.806175469829029,-9.09460210433041,-9.284968648304131,-9.4229642200749,-9.56383511896649,-9.70080043311395,-9.836253614855039,-9.9281238092446,-9.86048626378433,-8.99538242187414,-8.626306064029441,-8.3854308697667,-8.1807304127272,-8.032738482975109,-7.78781322543317,-7.4676506330140695,-7.10927271507519,-6.378663706630699,-6.214641620303639,-5.89030427639156,-5.61724522641461,-5.42248891223067,-5.24375183138732,-4.97936300717934,-4.815941749074219,-4.52158586832572,-4.28741793453175,-4.1189136474121,-3.96949550575849,-3.92769073677517,-3.8348412801941603,-3.50320414137361,-3.3033440643396403,-2.7683861975282698,3.645866608645,6.47767734061794,8.444735039063,9.783545835022052,11.2264194808905,12.5810757189713,13.935751243876199,15.282096536747401,16.527063990151802,17.017261500627903,17.5024628513765,17.941766462155602,18.391933435556396,18.8791769203964,19.3015840410377,19.7118600458514,20.102076084254,20.4705119918137,20.8525987140681,21.232196696766803,21.3923454757115,21.570215822325697,21.879942467184,22.1202066440477,22.255864009660602,22.5039362196591,22.7658354718996,23.0659564024215,23.1396337755619,23.187427088511,22.8460787692657,21.2811061262735,20.5485999236198,20.0266220677302,19.6753568046084,19.221573689677,18.6723071043954,17.9714192117004,17.4181489851975,16.189802360750598,15.753706368753901,15.3342254843901,14.8559097000958,14.500500929537498,14.087205812343399,13.911930323589802,13.431040472815999,13.1080823011883,12.5924269316641,12.2836522772122,12.064543604010698,11.994470907493,11.8324660766906,11.543207201567302,11.0385322760395,10.0946572528372 --0.0548206159818551,-0.8063750040378008,-1.52710836849342,-2.1738140739631797,-2.88653865497815,-3.46154960847734,-4.13856992182924,-4.7747734399228206,-5.39834405146057,-5.6321637511219,-5.874667141427129,-6.13756158815992,-6.396329576752981,-6.602392957459401,-6.923216860545571,-7.137162613329151,-7.41444180285722,-7.66640970125182,-7.9115665007648,-8.16168106071034,-8.38568207901025,-8.54600740152692,-8.69933753991937,-8.970738657484981,-9.128387539278439,-9.32890008724219,-9.45465436079508,-9.59614037214908,-9.716605847358288,-9.79896385391303,-9.674226135165119,-8.89396532734747,-8.46626140555014,-8.2768287059058,-8.08446274543002,-7.946468340761629,-7.67882650468009,-7.37342379316719,-6.974482647024799,-6.26771078664246,-6.09881235508721,-5.78487542030223,-5.52145126881356,-5.35062036568701,-5.167389198865441,-4.89162670330398,-4.72693842187438,-4.469048020634349,-4.26786731352069,-4.0733044857967995,-3.9315016706663104,-3.87316442826241,-3.7724880685021502,-3.43909754361678,-3.25944389910705,-2.7364693135029197,3.64928378483948,6.4819018630103,8.44616874885799,9.769642384800239,11.204115695118,12.588093618689802,13.9354457910276,15.2739870776562,16.5257726435942,16.980736718735002,17.4789078571074,17.9521647842983,18.4068385345329,18.8478568751778,19.305945596518,19.6937966238178,20.065839577610102,20.4770062317115,20.8533789198835,21.1835019843708,21.4011634572216,21.587669447200604,21.883630171012303,22.125538574942897,22.2417426380348,22.503433983449696,22.7567119373565,23.057086427515102,23.1278694711498,23.187119281499502,22.853202975563303,21.2433992145493,20.558297409281103,20.0400561377105,19.6749821416028,19.2035978020242,18.674296702521698,17.9709089730524,17.398017262787302,16.2027306301099,15.781357502653101,15.3208927102795,14.8666348315477,14.477595758434598,14.0950236187687,13.912284217182,13.4327106963521,13.103309438234401,12.6038882944138,12.327519228744599,12.0766464554831,12.0134165378759,11.821099943541698,11.5265458614215,11.0168538644653,10.1182404785951 --0.0548206159818551,-0.78523405097492,-1.4821257934240901,-2.09149269307517,-2.76283121181158,-3.34726405065713,-3.9740335483117097,-4.563032009922219,-5.186516257637099,-5.404993447082441,-5.62835428130486,-5.88045286149832,-6.13120846721479,-6.33246471682358,-6.593949053446031,-6.82101837190525,-7.1321620948152,-7.34905944726212,-7.556323339049389,-7.785050010029289,-8.002932035504509,-8.19574598069216,-8.37540567437306,-8.62147222403606,-8.77171438754277,-8.89955869381667,-9.04443178303355,-9.20192094490138,-9.333010308560391,-9.43389362764312,-9.307953321849249,-8.53218589985625,-8.18183932199227,-7.949485058461571,-7.756306527294691,-7.6165741763677595,-7.40847473234458,-7.1071249891113695,-6.71424865898386,-6.0585890626156695,-5.87629333723963,-5.5865540327071,-5.3326698459394,-5.107510469692441,-4.96270232258852,-4.6909465575773295,-4.54544994106708,-4.28581214703781,-4.07163559084894,-3.90325200366938,-3.7689876245470204,-3.7511431755096094,-3.64963105010705,-3.3215410553736504,-3.13784528114224,-2.6642433489295803,3.6187705069415097,6.466713517385781,8.443301329268019,9.769642384800239,11.204115695118,12.601442913729201,13.9354457910276,15.2902059958386,16.5257726435942,16.980736718735002,17.4789078571074,17.9521647842983,18.4068385345329,18.8478568751778,19.305945596518,19.6937966238178,20.065839577610102,20.4770062317115,20.8533789198835,21.1835019843708,21.4011634572216,21.587669447200604,21.883630171012303,22.125538574942897,22.2417426380348,22.503433983449696,22.7567119373565,23.057086427515102,23.1278694711498,23.1877348955226,22.8799836863341,21.2433992145493,20.558297409281103,20.0400561377105,19.675731467614,19.2035978020242,18.6903241388246,17.9709089730524,17.398017262787302,16.177997615555597,15.771613469584901,15.3208927102795,14.8666348315477,14.477595758434598,14.1084893942671,13.912284217182,13.4164575113327,13.0840775691092,12.565435395794301,12.2773971199431,12.0766464554831,11.9652869785114,11.806845142966301,11.525313069897098,11.0168538644653,10.1182404785951 --0.0386168598278499,-0.7451283219970078,-1.4214985158548001,-1.93850451715427,-2.61743742935414,-3.16758710459493,-3.75994194821416,-4.3394559468209,-4.910960584893759,-5.14167147912225,-5.36316788619877,-5.61240399157948,-5.82378194961777,-6.034516030738581,-6.29654576802971,-6.53794139372341,-6.753368727272309,-6.9946150210485705,-7.22191075154595,-7.457786099076741,-7.63869833397591,-7.8074139536829605,-7.950553459227179,-8.20624462613768,-8.35039029059563,-8.49229842056813,-8.62612684322487,-8.77120253882529,-8.921418634841471,-9.00640210894188,-8.935916132243142,-8.18417526357716,-7.81768615484417,-7.63920796156825,-7.45146025121062,-7.316469115749889,-7.06490383649695,-6.797438427014081,-6.3975596443821,-5.7706024534361395,-5.61672902437221,-5.31872651278541,-5.103589463544219,-4.852206268029611,-4.68404305212623,-4.448295216369741,-4.35441025027377,-4.07479459783025,-3.87480680760589,-3.72216118631723,-3.5868635282257597,-3.5677375583328996,-3.48068239175438,-3.1483321842546297,-2.9490314012569,-2.53125698522886,3.6187705069415097,6.4688746663888494,8.42675325793987,9.77472092937208,11.229899068858199,12.601442913729201,13.9354457910276,15.288828355206801,16.555264369281097,17.0026932801506,17.5107299582962,17.9847922192485,18.4292322194397,18.8845938417449,19.3307693178271,19.7446716418762,20.153602722315398,20.515778890072102,20.9132421719478,21.2403193114747,21.4293255107938,21.605300446459697,21.9498669723395,22.1620764350953,22.284942745438197,22.526145967801,22.842682499895503,23.130477286880602,23.1893081447538,23.220617216601,22.893959899906896,21.2811754540192,20.5593424651401,20.0697006479888,19.699917889931,19.2391766839782,18.7266668984381,17.9735944188488,17.4155715651228,16.2030261659367,15.781357502653101,15.330922436772699,14.8693364671389,14.4855512101553,14.1142220764485,13.945478875308499,13.4327106963521,13.1028626401513,12.568222729257801,12.3432508207194,12.0915164164851,11.9801329495318,11.821099943541698,11.5243962284042,11.0278865298209,10.1182404785951 --0.00963567682114514,-0.6954460094215811,-1.37122000169458,-1.89238525679348,-2.54586447873688,-3.11737359136344,-3.60953649336358,-4.1548819432229,-4.74742221296259,-4.94094743104177,-5.166088281353161,-5.39681527319494,-5.60418626614578,-5.786903895387661,-6.08084204406536,-6.2428402154502995,-6.53801524502872,-6.75464806566105,-6.93375144274932,-7.16665518694441,-7.38987599119779,-7.53426691688882,-7.66805926086841,-7.90769551334432,-8.08683626627164,-8.221560391883429,-8.39727437486784,-8.4915489221366,-8.625852423723531,-8.66962044056068,-8.61649534065809,-7.8530762961141205,-7.54772424594063,-7.3816807213915805,-7.19572934439522,-7.079368511844901,-6.89118982878416,-6.5823555692000495,-6.22815567969483,-5.5829845782872995,-5.4527670959907,-5.170402926325379,-4.952423229253291,-4.74685105034907,-4.623180752623741,-4.30234072069384,-4.21753961724347,-3.9648764091902704,-3.7495581996102403,-3.6363262605744504,-3.48895275473797,-3.4533626724398196,-3.37406285820908,-3.07308480818552,-2.9165792632798397,-2.44895802238431,3.6470858159521002,6.4688746663888494,8.43894467549972,9.777746393906561,11.2424170237375,12.629431846220902,13.9626193823473,15.2990222053089,16.5674539617565,17.0532256765504,17.5381700839454,17.992917677494802,18.4516534942596,18.8996239235257,19.3597046479993,19.746115826251103,20.1627475843486,20.544253051442197,20.9303505530382,21.2795178758975,21.440978108958102,21.618083568589803,21.9558503572449,22.2037288755318,22.321451137996696,22.5327996415394,22.8630664142912,23.131303933646898,23.211351607389002,23.2308866015652,22.912027950455,21.28792753664,20.572914984709698,20.113608534502,19.729543012054602,19.2400209407347,18.7432688239283,18.0476007622992,17.453287556303998,16.2412597920839,15.805215872254902,15.3761846110299,14.8976458099495,14.5130950190367,14.1193101603883,13.9518689466363,13.4582496765502,13.1028626401513,12.568222729257801,12.316211676463599,12.0915164164851,11.9801329495318,11.861115506688199,11.556018626470301,11.0523644422403,10.1473716214755 --0.00930250190785751,-0.6881236457794151,-1.35838646953906,-1.8262995894381002,-2.4525429013852005,-2.99467735927948,-3.55605622393794,-4.03476806356421,-4.569157075249559,-4.774550442282889,-4.974272325368389,-5.24601647418461,-5.4474350189887,-5.58194083224226,-5.8192944761462195,-6.0250992804709504,-6.276136649294861,-6.500633544698349,-6.7077767799771,-6.90629465963416,-7.115705704340909,-7.275340957647799,-7.44188522155022,-7.6571289999714605,-7.7555555936278795,-7.88946557485078,-8.073462429091071,-8.13607978552469,-8.29496258056332,-8.346142374907322,-8.30977115580761,-7.59245292725865,-7.27063089091271,-7.12882490139985,-6.901506627652299,-6.827191203742441,-6.61007246655403,-6.316720225244991,-5.9888094544897905,-5.41655653364361,-5.26861948905596,-4.96097203826275,-4.74345878309589,-4.51014754690985,-4.35812175075254,-4.12964738982084,-4.048338213900509,-3.75085285115363,-3.60028908534688,-3.45388884935559,-3.3750849889688803,-3.2959779515714596,-3.24328569217766,-2.90093782944566,-2.77296373819494,-2.3389445309808,3.6470858159521002,6.48176635725629,8.43894467549972,9.777746393906561,11.2424170237375,12.629431846220902,13.9705524943908,15.331309014334499,16.5795213138692,17.0884861442281,17.5431439277244,18.0038689613417,18.4516534942596,18.938497974722,19.3968792620044,19.780254533025502,20.198890999561602,20.544253051442197,20.9310987903918,21.306660916342498,21.487473744143802,21.6294564543063,21.974431644523897,22.2122901521136,22.3246807441921,22.5643337065426,22.8715739314228,23.160747364670502,23.197777060118298,23.271370900479003,22.9185990427529,21.3294637108887,20.644864763765604,20.122453416958603,19.7321570603034,19.2888202024772,18.744526094750103,18.0476007622992,17.4560077808787,16.2412597920839,15.805215872254902,15.3717724440651,14.8988276345335,14.5324747556776,14.1217094115382,13.945478875308499,13.4582496765502,13.1028626401513,12.5937334707309,12.316211676463599,12.092273201845801,12.008813630544,11.861115506688199,11.556018626470301,11.0594976613976,10.1473716214755 -0.00106161459883792,-0.6511863568587161,-1.29007177700131,-1.76319060397988,-2.3468707100447204,-2.8302452084101897,-3.38013428848561,-3.86817925129681,-4.36405638436699,-4.5477826022151,-4.74510772316133,-4.95240689952984,-5.20246678761104,-5.31140218734855,-5.602864409704571,-5.79552440699757,-6.02228740528507,-6.232559367140089,-6.39896574282938,-6.56237747659257,-6.755620080439661,-6.93570213381236,-7.06208772118912,-7.30687322541859,-7.46554811299138,-7.58949415644912,-7.67822802434009,-7.85169370155887,-7.9419564768283495,-8.00539396308783,-7.971142892535009,-7.30234953912201,-7.00777913111346,-6.79121102127543,-6.63069388255074,-6.50976811955809,-6.357093379480291,-6.075793723994559,-5.74609850616156,-5.163362097180429,-5.0129447770168,-4.74816021415542,-4.54425873609284,-4.36340220898447,-4.1908947857847,-3.9707839352266605,-3.9118442454397004,-3.6378864289262496,-3.4601295533831604,-3.3384544720171703,-3.2010412062982594,-3.17741595094968,-3.09108049070018,-2.7703155581391297,-2.6878867786697502,-2.2625219723187997,3.63308268873658,6.47263582640954,8.43894467549972,9.7886180136015,11.2283002059959,12.629431846220902,13.9705524943908,15.331309014334499,16.5795213138692,17.0884861442281,17.5431439277244,18.0256215621473,18.4557110806754,18.938497974722,19.3968792620044,19.780254533025502,20.198890999561602,20.5620598716122,20.942593422787002,21.306660916342498,21.495905591052605,21.6599982257523,21.9888075977176,22.2037288755318,22.3246807441921,22.5643337065426,22.9106004260811,23.1724405620306,23.230838207838698,23.2731233661735,22.9431576475578,21.3294637108887,20.602652371280602,20.127233729714998,19.743775096994,19.2888202024772,18.749745628646398,18.034783485686603,17.4560077808787,16.2412597920839,15.8002956518754,15.3717724440651,14.9175450891989,14.5130950190367,14.167058208837302,13.9659566718261,13.4493983718879,13.103250374315401,12.599770523624802,12.308745691633598,12.109668702650302,12.011951986463401,11.83766311694,11.556018626470301,11.0594976613976,10.1473716214755 -0.0240737635820127,-0.616483072992314,-1.21738713170369,-1.67686229948966,-2.23935896936183,-2.65763455828802,-3.1852073986175,-3.6323630867629504,-4.18377294098489,-4.34085851539426,-4.53627650371935,-4.6883744092952595,-4.970051107635269,-5.04203627879125,-5.283794477842781,-5.46100021436104,-5.74291983118257,-5.91498972272361,-6.07174096901425,-6.3041417926158,-6.47716321181368,-6.6429085066127405,-6.7324338018426,-7.00061462423713,-7.12631962316175,-7.244913715474089,-7.34496184156559,-7.48126277158893,-7.537079522640929,-7.628756572492759,-7.639508785423,-6.966722952539429,-6.68313458642462,-6.522444155021889,-6.305140169022269,-6.30044871971684,-6.00871374999959,-5.75380237627534,-5.47488944319746,-4.9105740477151105,-4.77125646125542,-4.50161337508695,-4.31784316997531,-4.15176124716195,-3.9978709394060297,-3.75116749200477,-3.6532021941653103,-3.4195667214079704,-3.23188311788068,-3.13089065563541,-2.9857395363145898,-2.94965154262129,-2.9176512753879904,-2.60888661571438,-2.5339795296869503,-2.12687251409148,3.63113578755179,6.46173468273083,8.43016239457574,9.808314267337279,11.2283002059959,12.6325303794275,13.9705524943908,15.331309014334499,16.5795213138692,17.0938348424554,17.5431439277244,18.0332633298225,18.4804309768364,18.9589662613208,19.3968792620044,19.780254533025502,20.198890999561602,20.5798760688342,20.9428688455297,21.309506014545104,21.532159534233102,21.6599982257523,22.0072291773141,22.213668569523502,22.3521427704844,22.629377693283896,22.925670148136,23.1724405620306,23.230838207838698,23.273914947536202,22.961156019447102,21.3294637108887,20.663684162244,20.1344755778356,19.7584690405659,19.299560191662298,18.7537578648021,18.034783485686603,17.4560077808787,16.2711438584174,15.8002956518754,15.3717724440651,14.9175450891989,14.547899339611002,14.167058208837302,13.9659566718261,13.4493983718879,13.103250374315401,12.6403300233007,12.308745691633598,12.109668702650302,12.0185409056651,11.83766311694,11.528981362409802,11.0594976613976,10.1117225236646 -0.0438621414972303,-0.5960598379346229,-1.1912477791335299,-1.61544290781546,-2.1360641816319297,-2.5863754461298503,-3.1035052079558905,-3.5393361838794397,-4.00862347170757,-4.14498047557123,-4.34640497629063,-4.55552168606196,-4.75491676409413,-4.8678110374713395,-5.13113274101577,-5.2977347272771205,-5.493740724319309,-5.66638080372215,-5.8598128432106,-6.01366413021304,-6.22115800771553,-6.38723285531565,-6.4856454288983,-6.684044156052161,-6.836453414321509,-6.93631341346748,-7.06898712116749,-7.17582149690668,-7.278925638914269,-7.363757790231951,-7.308542449939389,-6.68026426508255,-6.418667617117371,-6.25288070027208,-6.114260361701549,-6.01920989011497,-5.805482208341111,-5.553763550840009,-5.2808821733401,-4.7262641537615995,-4.59873663191683,-4.35640219093964,-4.16081810540635,-3.96210958397019,-3.8684108504280696,-3.61715040984574,-3.59643584797517,-3.3178015326489003,-3.1578400758882497,-3.0397918702728797,-2.90818608436169,-2.9019490517408104,-2.8268141844511803,-2.5529125268425497,-2.4123126181890697,-2.09461995282302,3.63113578755179,6.46179471082562,8.45353110331344,9.813592646567349,11.225948818108801,12.6456006515571,13.9899778165065,15.301064775542299,16.567067846085,17.0656803335917,17.5575936865581,18.0332633298225,18.509984528235396,18.924013498577,19.387951774430302,19.8076491718253,20.2033969076402,20.6127038612553,20.9728337303183,21.2993489529777,21.532159534233102,21.6991557888736,22.0072291773141,22.2248687570924,22.3451618634197,22.599848461021498,22.925670148136,23.1724405620306,23.230838207838698,23.273914947536202,22.974863167252696,21.347667904104302,20.6225423280096,20.137876141940602,19.7584690405659,19.2884366854556,18.749745628646398,18.0510544450519,17.4765296009639,16.2711438584174,15.814088379362099,15.365533236629801,14.9175450891989,14.512570027136299,14.167058208837302,13.9659566718261,13.4493983718879,13.130988163037902,12.6564217750924,12.3163256360339,12.109668702650302,12.0185409056651,11.863478107962802,11.540452385173198,11.0454172613259,10.1117225236646 -0.0446849424188706,-0.580164879392785,-1.1584734428990502,-1.54518417987591,-2.05265851926206,-2.4815996609191298,-2.94781531606723,-3.3716218669035,-3.85010818489752,-3.9482615648499797,-4.14283892710941,-4.35423767726018,-4.53232758911399,-4.6567252410962805,-4.8888138587697805,-5.034857927065071,-5.27197933625061,-5.40661918248226,-5.561048802157821,-5.69052817523139,-5.9007600535446905,-6.0490172606045,-6.215982386699519,-6.387665400547349,-6.48502898761991,-6.6101534789341505,-6.72619187560115,-6.85764843389276,-6.951122358333929,-7.031674895927111,-6.97839027426837,-6.3910791510911,-6.14411111664501,-5.971260414644541,-5.82416389916601,-5.7119666752273295,-5.5391118741595,-5.33999512199804,-5.0247563715399695,-4.486201367896519,-4.35388967906459,-4.13550362435592,-3.9319552941653995,-3.78678194658481,-3.65673354702865,-3.4537507940905,-3.3843511939016895,-3.14578816823951,-2.98193838472139,-2.8682756828146703,-2.75807896371764,-2.7380714413873704,-2.65782739743269,-2.39085179629962,-2.29939312038727,-1.98602787933498,3.62537818946973,6.4610237556472505,8.45353110331344,9.813592646567349,11.2323542185885,12.6456006515571,13.9899778165065,15.336685153410402,16.6019225257641,17.0835644248733,17.5575936865581,18.03493820286,18.509984528235396,18.967177521954202,19.387951774430302,19.8076491718253,20.2033969076402,20.6127038612553,20.9905416368913,21.3432932651029,21.5041619004078,21.6991557888736,22.0014979387975,22.233785378639197,22.380848378151804,22.616132659498202,22.8938469458812,23.1841568955066,23.253993383216,23.288770476560103,22.974863167252696,21.347667904104302,20.6225423280096,20.137876141940602,19.7584690405659,19.2884366854556,18.7610090269359,18.0510544450519,17.4765296009639,16.2337417878272,15.814088379362099,15.3655275753806,14.908004898578598,14.520940813771698,14.1463154783104,13.937697461604301,13.442492726874402,13.130988163037902,12.6564217750924,12.3163256360339,12.128924376642802,12.0045700270962,11.863478107962802,11.540452385173198,11.0454172613259,10.100276153205698 -0.0475213135841911,-0.532410738142568,-1.1144065858715,-1.51084070428067,-1.97652370300962,-2.39666482612428,-2.8002304292811098,-3.23196043605282,-3.6658770168707697,-3.80458667046539,-3.9819231852016497,-4.16710564675517,-4.356125658710661,-4.47476911947177,-4.65604097977039,-4.850528643790611,-5.01921573400192,-5.19159978678821,-5.32947055892728,-5.49813989750194,-5.659080311610791,-5.78015546982282,-5.9227479499386595,-6.12347281307978,-6.25092927255864,-6.32627730948825,-6.45562038435678,-6.49161583791738,-6.63953153309165,-6.672662392814,-6.656832650918941,-6.14017738472661,-5.8658081672184,-5.752094873115589,-5.591613241225411,-5.52725954450439,-5.3426102015505705,-5.11508725819307,-4.79380709061582,-4.31961838104756,-4.2161612203662004,-3.92684805517436,-3.75787870453977,-3.6292775933394803,-3.5441242252059104,-3.31373269491454,-3.24836682710693,-2.9834398288254,-2.87820928099369,-2.73454613541646,-2.60586024343623,-2.6352682305363904,-2.55018414818526,-2.30981525174653,-2.22340769776819,-1.8965209768940101,3.62537818946973,6.46179471082562,8.45353110331344,9.7834231757836,11.2323542185885,12.6244755777907,13.980588043471402,15.2965223035739,16.5834310340779,17.080222141064,17.5575936865581,18.03493820286,18.4981160095345,18.9523259621024,19.380798008066602,19.8076491718253,20.2033969076402,20.6127038612553,20.9728337303183,21.2993489529777,21.493659117755605,21.6908236872862,22.0014979387975,22.233785378639197,22.3597439566498,22.616132659498202,22.8938469458812,23.1841568955066,23.253993383216,23.288770476560103,22.974863167252696,21.3288294879545,20.610670113030103,20.133773388631898,19.740114678684602,19.2774039062754,18.7605404345321,18.0510544450519,17.4495918324034,16.2337417878272,15.814088379362099,15.3655275753806,14.9046912175087,14.520940813771698,14.1463154783104,13.9363610534016,13.4338828106742,13.118538733303302,12.614498471549,12.3163256360339,12.128924376642802,11.998519677397699,11.839647731276697,11.540452385173198,11.035483102866099,10.100276153205698 -0.0584500514583569,-0.532410738142568,-1.09012552148358,-1.44833298144396,-1.91557931953888,-2.28950716392704,-2.7229263456159,-3.0966475591965494,-3.5019258589566,-3.65235096775689,-3.79666000118788,-4.00907592315795,-4.15529700819238,-4.27675426460104,-4.45385090522172,-4.5858807345921795,-4.79860076877001,-4.9130657643649505,-5.10840348255024,-5.2046015384414,-5.391938618709309,-5.50582972501438,-5.6060546778272,-5.851863368921861,-5.95039271157049,-6.054950060983679,-6.14338360895272,-6.235662559602081,-6.328267754956911,-6.38838028348549,-6.34064432923239,-5.82081503284443,-5.57356649560575,-5.465481257884281,-5.3188367065493605,-5.2739578804063,-5.07663708462365,-4.8710641901182505,-4.56680871815587,-4.114354793833289,-3.9774894790454303,-3.75186062150478,-3.6025019408089602,-3.41060696390486,-3.3559903216100095,-3.1431320626411803,-3.08029092453568,-2.8293351323157596,-2.69999880640763,-2.5850735223848997,-2.4926481065626898,-2.47872670898823,-2.4188686330328903,-2.18515764707005,-2.1203736603496,-1.8252069752176399,3.6189632920635897,6.46925391324679,8.41377072731801,9.78280879523766,11.2323542185885,12.6244755777907,13.980588043471402,15.3292117349351,16.6009908984947,17.0835644248733,17.568903488294403,18.03493820286,18.4981160095345,18.9607290109447,19.380798008066602,19.7972655963826,20.229334945870498,20.6218251896865,20.9905416368913,21.3432932651029,21.493659117755605,21.6908236872862,22.013750856581396,22.282975412330103,22.380848378151804,22.616132659498202,22.909437052169,23.187143903280102,23.2675046476167,23.297607044699898,22.9785676375023,21.3288294879545,20.610670113030103,20.133773388631898,19.740114678684602,19.2774039062754,18.7610090269359,18.061152818681897,17.4495918324034,16.2828186885237,15.815029174494699,15.370267681766201,14.908004898578598,14.5502151436173,14.149868945190802,13.9363610534016,13.4338828106742,13.118538733303302,12.614498471549,12.320921317397802,12.135202751456099,12.0045700270962,11.839647731276697,11.5587430713329,11.035483102866099,10.100276153205698 -0.0679504784187465,-0.4997316334451721,-1.0727474154004901,-1.41742198183487,-1.85530958463071,-2.22585560364108,-2.59122322286956,-3.00453221058443,-3.4014459776822203,-3.5044478474292795,-3.6943402642101697,-3.82392010528053,-3.9952608496687203,-4.11745372407017,-4.28633716372762,-4.40906510743518,-4.6177683609030495,-4.803136161778871,-4.89956099731391,-5.03305990320307,-5.259643726384651,-5.3841310146430095,-5.4520997196611605,-5.59142984497576,-5.707905755893361,-5.808311177600809,-5.869009195949639,-6.00718881439417,-6.07885926370152,-6.14191441420418,-6.13822841345787,-5.62477036160748,-5.40740059599074,-5.27135100540235,-5.16331051757835,-5.03198834358917,-4.89268777256956,-4.66003677268402,-4.38981504360052,-3.9326000408571695,-3.82935533683867,-3.6196647826936097,-3.4695120524560696,-3.32002695273748,-3.2534469473314203,-3.0195427520452305,-2.9646795453424306,-2.73760862022452,-2.61917606579433,-2.50540000531289,-2.4274982986427998,-2.37905545689446,-2.31726180293544,-2.0791094598717703,-2.02113572021698,-1.75257871121207,3.63095217074528,6.4727012352075395,8.43008310520066,9.791427599857991,11.240325611660001,12.624514663831599,13.9989864827652,15.312867019254501,16.592210966286302,17.1049762920972,17.595887945882602,18.0468707185003,18.505659923263103,18.9579975993141,19.407208392738198,19.8076810837054,20.234749396025396,20.6345049462133,21.0031000885417,21.3300873079976,21.5169300150465,21.720611104764103,22.042322608268105,22.299754808516003,22.416471416337103,22.672832041581103,22.951826706867298,23.274985092245604,23.308991778443197,23.3542747402235,23.0151854037075,21.3843290873033,20.686997301215502,20.1383787696391,19.761788232854,19.3379073521703,18.8460391673376,18.0878514660199,17.4916112251515,16.2867416584708,15.8306870706687,15.4291135144458,14.960793035269,14.5734161485986,14.1644055501429,13.9798635207211,13.4679402730847,13.161824984057699,12.6263268140753,12.3509865113923,12.162271279154,12.039175484153303,11.8841071956515,11.575660020239,11.0709294881337,10.1646109893645 -0.0603698830966141,-0.470600733151708,-1.03180032835225,-1.34718572389898,-1.74806426696624,-2.11774375519619,-2.5300807749093703,-2.88904730079661,-3.32197076541533,-3.40818946325235,-3.56968621383277,-3.7411492309441,-3.8539052550538497,-3.9759197176896697,-4.1719263411393195,-4.28953404947905,-4.47120160887666,-4.5877174375916105,-4.73636435067825,-4.87505330129866,-5.01028460237875,-5.16858784262433,-5.27954565433971,-5.4718744789347005,-5.5866711492458405,-5.605650676093219,-5.69409583988454,-5.804042526960889,-5.880967566691151,-5.96063872514977,-5.96286855859177,-5.436551645465269,-5.24901836783788,-5.10881465710437,-4.934343711596321,-4.88174343173764,-4.755509940590049,-4.52244565733492,-4.31880783719808,-3.7902529835135,-3.72505360945018,-3.50020795150147,-3.35516934083614,-3.2101682719494598,-3.1045968727249598,-2.8809694520156497,-2.84091241742754,-2.61591425765477,-2.5174313177008703,-2.3880145769519303,-2.32593633949695,-2.3126881998019,-2.2506693660271697,-1.9878517921859198,-1.9330450089545501,-1.6679320297241798,3.61151817721883,6.46541967034789,8.45062501030993,9.83330303747814,11.262913393553,12.6780146170525,14.076443575368,15.3979652337978,16.6783209558425,17.1909816645744,17.6812896360825,18.1489459544367,18.601949385028398,19.0775469266608,19.517600736113103,19.9329844133063,20.360632643687197,20.7575251284311,21.151124290239398,21.4906142125834,21.668427316247396,21.861254130771698,22.1789990999719,22.4210803047674,22.5448878536627,22.8081285253182,23.090451316858697,23.402088850247804,23.4689116954214,23.495716787272396,23.168974646508197,21.514465322105103,20.800742366347603,20.277801746177897,19.9160703690494,19.4365270312523,18.9420160820912,18.2017567603749,17.6136358974924,16.3704703845795,15.937508104046302,15.487873326640301,15.0322855673109,14.6461626509202,14.2593129322285,14.0592494901646,13.542346635337601,13.2294706677229,12.684133071021499,12.4023473895799,12.2154882309739,12.090411841974001,11.929279946052,11.6240783809513,11.118765811003499,10.1949817736741 -0.0863239838996333,-0.46065201256253296,-0.9907689649539789,-1.2847188564791001,-1.68074590335354,-2.03124276399532,-2.42183201769523,-2.73575536278019,-3.17132207717561,-3.24969939166645,-3.40168469641609,-3.56252906091452,-3.6759983665493197,-3.7531514820837004,-3.95144116894462,-4.0873984571402,-4.2474139469757795,-4.333686759319529,-4.45836099330993,-4.58213170925919,-4.72259293958216,-4.84815021879672,-4.92980160508985,-5.15433527070986,-5.28350238660712,-5.31680025570387,-5.4026778980112,-5.4825150722306395,-5.57286648742968,-5.629664996775559,-5.59075667827364,-5.16643686395879,-4.932957924400191,-4.818397463436581,-4.67762726085177,-4.63989074171722,-4.500950689565481,-4.28682602488312,-4.001023836685009,-3.64582784900409,-3.5050166804931897,-3.3392947440778498,-3.1441194938257198,-3.002506137349,-2.90762202356033,-2.6927545686158503,-2.66907306252435,-2.48417112484266,-2.38842274999568,-2.2873570106990098,-2.17278863873879,-2.1616582884489097,-2.13655792585827,-1.8825160788592699,-1.80200249121548,-1.6115800129968203,3.60485636260693,6.48770756584965,8.471598695217509,9.90386266948998,11.354803657708,12.804035088129302,14.2182642108806,15.5462888313286,16.855982274022402,17.349673372314502,17.8969703613713,18.366728905497602,18.826003823116,19.2959068811896,19.7501813729653,20.1877004059003,20.6083392914489,21.036847654317697,21.4081015392183,21.774784650584003,21.9703268248988,22.173041178890198,22.5167191995177,22.731068522125803,22.848711266721303,23.1318563114704,23.430077366167897,23.719735956366502,23.793012703508396,23.8650614107927,23.481976143112103,21.8014588508849,21.0844431950974,20.5503705976198,20.184317543393604,19.709988358848697,19.1627247264179,18.438775007563898,17.8251153567619,16.5563373793398,16.155527816791302,15.6688323045292,15.204651726003402,14.777847222711598,14.422785576122301,14.225081872504001,13.6900350679649,13.3507111070576,12.8615940702405,12.531562840244,12.318681347897801,12.214616269871199,12.0638843376196,11.723287294082,11.211886883829598,10.298472187918 -0.10380546019376401,-0.444784643951273,-0.9219086133950841,-1.17760075685792,-1.5969019455278999,-1.9127100356284499,-2.30363254526082,-2.5795687784893198,-2.96471662219195,-3.0805812887843196,-3.26313557264944,-3.35720866511914,-3.50820461437844,-3.5829804647239,-3.7476576518619598,-3.85927528107209,-4.02796600449439,-4.11800879506308,-4.23161316339595,-4.36858143416687,-4.49061057700035,-4.55082491908877,-4.6856348739970395,-4.82581920522236,-4.91683418282117,-5.01599594634796,-5.14348519805388,-5.216589579483849,-5.26723295532813,-5.3285892124242595,-5.29808693338778,-4.9044404778400805,-4.65745941376302,-4.55761966770587,-4.41347494939576,-4.39077046140157,-4.24716766897944,-4.0649001517196,-3.82594023907413,-3.37248375362423,-3.27327176455486,-3.11358390378391,-2.9554545612928904,-2.8222415120963595,-2.7074570980991806,-2.53113364596141,-2.5129692851830496,-2.35420161327096,-2.22497562129151,-2.12897315609601,-2.0492593542158,-2.02843744346243,-1.9680375146453402,-1.7551778330824097,-1.68665386031181,-1.5128762347557199,3.64577241713816,6.501434778907031,8.502460935754861,9.94611793645653,11.457678337773599,12.9253561982464,14.347394063224199,15.7287172676541,17.0683974651212,17.5708532100657,18.1163797920053,18.593913913583602,19.0958355600497,19.5324130499184,20.011282956121303,20.4472428985919,20.873253094653002,21.3050580724816,21.698395233608398,22.078635574124498,22.2971433162235,22.467730942218598,22.820835795739196,23.0813132040592,23.2094429730728,23.4762775569208,23.774757354506697,24.0840688823224,24.1524156199959,24.200355365289603,23.826525005773803,22.1444367951537,21.3803068653986,20.8363551120747,20.4696600115892,19.9994351845573,19.442815993749303,18.6868244351188,18.0766213986802,16.800419162497402,16.361509578952802,15.859809507708098,15.4260667129193,15.0027665194494,14.577656508719699,14.4106369847534,13.857295021261999,13.5302143559363,12.991745136765802,12.6927750785197,12.474356210617799,12.331963633841,12.176937896872401,11.8434267440699,11.3689973649991,10.3542072208866 -0.11625566172571498,-0.42534053044907505,-0.8875662926938259,-1.1292254549947298,-1.5140796657639701,-1.81612825454409,-2.20566151396979,-2.46109121962398,-2.81573846773762,-2.9095037677333098,-3.0451398487183194,-3.17250607697227,-3.3060370641050802,-3.3710249422144902,-3.53823655291188,-3.6493165004006403,-3.75960759573944,-3.8700213251362205,-4.0427659397138,-4.11577768511086,-4.22996969349767,-4.36379638870991,-4.427065458033151,-4.5638981282726,-4.648692973861889,-4.726358251791151,-4.808187237738269,-4.86548301959697,-4.95452271746833,-5.00521496129633,-4.9779596671902,-4.59796447549366,-4.3806808016522005,-4.30369760300131,-4.1955008054208305,-4.12403359841943,-3.98924732456334,-3.7820133710527197,-3.5972562917875295,-3.16830489015903,-3.0605854406275297,-2.88229516434227,-2.75124036130442,-2.6433212629345197,-2.53451809366165,-2.37363743209597,-2.35097929084817,-2.13963017012639,-2.07041331065076,-1.9522119891479999,-1.90371349476724,-1.9060767729478,-1.8270244817185302,-1.57441951535551,-1.5585904721291202,-1.35474385042673,3.63738037060592,6.5218798571328405,8.55075476020147,10.043092020608901,11.5399456085254,13.0567832374008,14.490981637558301,15.870985981826902,17.259653001614,17.761519082681104,18.3336461337539,18.7780752835946,19.302575463285898,19.7768411101417,20.2593195734501,20.7086471700003,21.1429506158107,21.599664471219697,22.0067365515534,22.3465703811348,22.5748088966285,22.796796303302603,23.156612775777003,23.4219849553629,23.545201087298604,23.796605707842,24.145680298218398,24.4525386565233,24.521561142562398,24.557977486531602,24.2203701684973,22.4642700521127,21.7156571020685,21.153836898958602,20.756136208006197,20.2481776348461,19.714285516367102,18.9423368929559,18.292391469736103,17.0299606290714,16.5610768817048,16.1169308256469,15.631330266526199,15.245823508894901,14.7793244769205,14.564396873178,14.008537477593201,13.699235808131,13.190439393159402,12.8345897265029,12.612433236045598,12.4736585108531,12.3015983116245,11.988552416116299,11.474468856772802,10.4645894557483 -0.101497900791351,-0.422610217424878,-0.8664208017249692,-1.10353598707856,-1.45244011938296,-1.75228931966563,-2.1119812982456203,-2.3799909391927203,-2.71936944185795,-2.80029803603983,-2.9134810791624304,-3.0716853006291496,-3.21170928415891,-3.23661942448209,-3.42200406448053,-3.5305957407396096,-3.63486950245862,-3.71986606863616,-3.8169988751764,-3.8948819164801605,-3.98727844303311,-4.123078585319839,-4.208239165505621,-4.33020032792844,-4.42434993976938,-4.50065059881893,-4.540966645160281,-4.56943654136444,-4.6883342999220305,-4.743367815997231,-4.72675314272166,-4.36069652496821,-4.17254066268122,-4.09384434894625,-3.93806882591551,-3.9202516796634197,-3.77961905293011,-3.5878668620721204,-3.3912435297189303,-3.0027917491361,-2.91671786609658,-2.7286529041406102,-2.6154793328049704,-2.4746718948549704,-2.41325203506784,-2.20772874999277,-2.21392508459631,-1.99233234395735,-1.94656621329007,-1.8328026531162802,-1.79154246184667,-1.79317384000416,-1.71350285610656,-1.51257521037067,-1.47613915375875,-1.32081764389769,3.65655461586111,6.53231723177431,8.600021217929749,10.1014019539064,11.608574144765699,13.139252688419099,14.549257139341302,15.9814297155742,17.392190126021,17.907878590785398,18.4485669786408,18.9601775054049,19.445299377833898,19.963289647581,20.477136375643898,20.9216555635739,21.396698388352497,21.7987183066908,22.244957194634104,22.6549083756576,22.8577806823367,23.107807465992103,23.426929789427298,23.6877711202866,23.8310268518627,24.09203649251,24.416582271782797,24.7567832774473,24.818137465320397,24.8645644975252,24.5079179579343,22.725810098404,21.9588265467783,21.4254035330637,21.014459534127603,20.4682768313863,19.958080298965303,19.2077583907179,18.557856062482397,17.2304130114903,16.7401790263653,16.2772566243771,15.7718491905269,15.3603897877874,14.917806112199301,14.686680956464802,14.137601065715,13.8047477334337,13.2638946583652,12.946191194149401,12.7272879417168,12.5614413003745,12.397448512825802,12.1162116801877,11.5512600540987,10.5362313443923 -0.11355407233518301,-0.385100290412812,-0.8334989423069409,-1.06199207163813,-1.42242344545796,-1.68731748995492,-2.02970192461882,-2.28137967042857,-2.6003074924276,-2.6891842940796695,-2.7917530634245895,-2.91447542208985,-3.06323042172369,-3.1149529154160804,-3.22425105522257,-3.32988226807974,-3.4906387203427593,-3.55547449095132,-3.6543574284881,-3.68802713779594,-3.80982801969144,-3.89786083492826,-3.96317440729694,-4.154255338914299,-4.201498637970309,-4.27909982995813,-4.33968533474221,-4.37377132650285,-4.41847609568463,-4.50592703234434,-4.46741068761749,-4.14749294818349,-3.93237296671395,-3.83398434581019,-3.7234405166112,-3.71228149732773,-3.5456327065667796,-3.396766348263,-3.1483873844311803,-2.8172731044333603,-2.7205203915221,-2.5652279922542003,-2.4277919230225495,-2.32363221208746,-2.2707297468058596,-2.05241092057026,-2.0460339584690903,-1.8535500130021,-1.83910690499594,-1.7215838232220302,-1.61943724351996,-1.63589722641846,-1.5820926360625902,-1.39997338769521,-1.35635213874623,-1.22306804218654,3.65386832827959,6.53173029800115,8.63169625511476,10.156351531592598,11.671979398784499,13.260206482671402,14.6959912390064,16.1652554398473,17.5597317520694,18.110839945482603,18.6239772691098,19.1672877441865,19.6622684366308,20.2663982013917,20.6834531340777,21.1285102307706,21.6247719029174,22.090080711417304,22.504871844597602,22.906222350441798,23.128502641184202,23.3938601160624,23.7283296370812,23.988746630797,24.1267732949012,24.432833759979502,24.763582191118,25.118821786491498,25.1429071114126,25.197434801336698,24.8639743632481,23.0377423696938,22.2440846700947,21.6586936292275,21.299453004176396,20.7684354301566,20.249316369747397,19.3931997495617,18.7279246514115,17.3511571612192,16.961004827316998,16.4978151396283,15.941583277122099,15.5313890719539,15.113816988805,14.932227399228802,14.295704926971199,13.948682780100501,13.4241716891441,13.0694256565894,12.857915780022399,12.6911359208076,12.5666330182982,12.233635736540698,11.602825975338499,10.59033740408 -0.14515423495051902,-0.3884169720396429,-0.7846663083502651,-0.998953388543436,-1.36256167241534,-1.6077855772579899,-1.9074508053437298,-2.1711741675436,-2.46573782884334,-2.5462767020015202,-2.67773571647506,-2.8046755550507303,-2.90632292491069,-2.9657290404076897,-3.12635622762795,-3.1801022549395097,-3.3163834592244203,-3.37674082253264,-3.43396779390082,-3.4905171316742,-3.59334875394481,-3.6668660737250205,-3.72952638639715,-3.8817639120071696,-3.93999545752212,-4.01036177596566,-4.0398967728535595,-4.0852309271475,-4.17065340674466,-4.21621555723888,-4.20450810266866,-3.83592614537172,-3.69788681798316,-3.6408137667088103,-3.50620022865045,-3.4793334407567205,-3.36973406475482,-3.2172285047038,-2.9747907909778797,-2.6364225216734702,-2.52925408344606,-2.3799661115530197,-2.26101575610493,-2.14193214134093,-2.08944921075306,-1.8778490013612301,-1.89478822857279,-1.7164829327031499,-1.6849435920872098,-1.5845391324769802,-1.52857582049196,-1.52410769083972,-1.4937040260935899,-1.2647681177426202,-1.2748783610193601,-1.122541046424,3.66411627754466,6.571605657866889,8.66226689295886,10.193415115400699,11.776135276893498,13.3550612587457,14.8275412650929,16.2625831204098,17.714991767834398,18.2519811004911,18.829639406302398,19.373139212672,19.8616884299032,20.3984403279976,20.9067392344085,21.3840748476273,21.878625340936104,22.296878697753602,22.7676859869275,23.209481385353197,23.4406296242965,23.663599900128602,24.0321890184351,24.292177400335603,24.4370189561808,24.7546378689709,25.099064682976103,25.4600115364645,25.5451936946793,25.573620728061105,25.2047017745989,23.364113556057898,22.5199459128823,21.971102849502397,21.614511943955396,21.0863283071913,20.4586652325125,19.710000063278102,19.012972637300198,17.650999572777,17.2019538959446,16.646084617841,16.1505282463234,15.7840897280911,15.2835462014361,15.115473938927801,14.4807580582119,14.126126023501302,13.5815361886855,13.2348047246132,12.996063218317499,12.8568040900631,12.6787511790103,12.3341300888534,11.767175358720902,10.6965488981673 -0.170295017950105,-0.29489732125100604,-0.7181733096698101,-0.8781490947314091,-1.24630694651318,-1.4983452301997098,-1.78023530278907,-2.0473463093951003,-2.332186614639,-2.3931021691565,-2.51509086054429,-2.61078877218988,-2.68537848012706,-2.7555754460705297,-2.90455370982808,-2.95832386016193,-3.07340860513979,-3.14395608847189,-3.18336244641755,-3.25574753317935,-3.33557318544311,-3.4097900392840694,-3.4332833182927103,-3.5770114689293804,-3.60945488892676,-3.6746029099759197,-3.70271818413153,-3.7416859454408997,-3.8189793372594907,-3.83371415753019,-3.8314341545131403,-3.53240716892438,-3.38184537353262,-3.30773003868924,-3.18559872539614,-3.15944929279858,-3.04695025442506,-2.87644746560431,-2.67834779195144,-2.29544057977416,-2.2838206983465,-2.15189244832751,-2.01552478518743,-1.9007974370785001,-1.84380021262728,-1.66943920670609,-1.6696516440638403,-1.55024722187574,-1.48142283770378,-1.3898823309941297,-1.3368990776035299,-1.35582902913416,-1.3105565224363402,-1.1203551182791298,-1.12545443739787,-1.0197954429881,3.6526013626456497,6.57544496171487,8.70324438394668,10.2575063941501,11.8303710587259,13.4138966508932,14.893661976557802,16.408871938884598,17.8283754629832,18.4044617590903,18.953636892822498,19.4795420463099,20.0540606174058,20.5091836225067,21.0798549894179,21.5361869749225,22.0701880880446,22.517418190320303,22.9265489725256,23.386785688580602,23.6840154975362,23.929167060896898,24.2691910719878,24.564588394657196,24.697017157711397,25.0291991459556,25.3723643908429,25.7421738526438,25.8042484278802,25.873631637815,25.513095470435,23.630992419554502,22.780005266055102,22.2487455964337,21.827099862283102,21.293923882305897,20.669702906003998,19.9329954190993,19.2333172972724,17.887228045353,17.3838683793698,16.8789060811869,16.371600288111402,15.9179526918473,15.455427385327301,15.2357570546648,14.6721735339404,14.295174691201902,13.724345211301301,13.3642519955317,13.1351408952923,12.9563635125877,12.8054419004321,12.457766178426098,11.880848106338101,10.784371219091101 -0.169066308544768,-0.28984727235464897,-0.708017202721111,-0.8689158832153728,-1.2082023151552,-1.43109089738783,-1.72985156164967,-1.9613593533056701,-2.2316684181363504,-2.30421599431616,-2.42203272590427,-2.49937427539537,-2.63613044187938,-2.67148253073128,-2.79236567653273,-2.85511768309213,-2.95815335145069,-3.00924918308066,-3.04520287457178,-3.0667653738277996,-3.14941594728825,-3.2336751331084903,-3.26348128654679,-3.3716545060306204,-3.41705624126898,-3.4811389088556,-3.5138904735781002,-3.58357140404224,-3.5998651745338197,-3.64336730456925,-3.6321064865622206,-3.3088422332679097,-3.18196652737002,-3.1014870881777696,-2.99875669142336,-2.93894630893877,-2.86278554947648,-2.72360962305269,-2.5111964295417,-2.1981744944377,-2.0927671887520702,-1.98011116214793,-1.85728856148468,-1.74362948961754,-1.72381601418336,-1.53212425657978,-1.5658071804972602,-1.38559635089644,-1.3787337289423303,-1.2817985299785601,-1.24732098369914,-1.22313241718146,-1.22419334042843,-0.993863710399532,-1.0111211760631,-0.9193955982431321,3.6666762811980296,6.59202453509649,8.72481179082584,10.298370260022802,11.862357951293198,13.4570101434017,14.997686987593902,16.4800259628094,17.8983288639654,18.4936493947772,19.082444718499602,19.590371811793002,20.1252843297479,20.6713553508765,21.1872559232438,21.6472568473858,22.171322285228502,22.641533022329998,23.101065407017003,23.537747791918395,23.8153431563738,24.0692881003281,24.456528717442797,24.7276048453889,24.8857299228725,25.221080976292,25.543879204082497,25.888090665372896,25.9689950749565,26.029047607797605,25.669026442883002,23.7747604831528,22.9415961721416,22.372314257469398,21.9522696895017,21.420477466365302,20.8770154952803,20.0449931912147,19.355513555699602,17.9534135762479,17.51065336353,16.9911511875386,16.4727333178588,15.9897941417928,15.563402097905099,15.3503498191852,14.7897674930004,14.379946656547402,13.7813272030711,13.4458138468224,13.216527955587999,13.085446066447101,12.874352186307302,12.5322499070703,11.959599240034802,10.850785358123698 -0.171596052421606,-0.292061887439042,-0.6941172421076639,-0.8687843606480742,-1.17057189854079,-1.39336890463432,-1.67932360603334,-1.87565537668821,-2.1806446382853,-2.2469384879679,-2.34061121777644,-2.42524133932884,-2.52490950745405,-2.5388941679270096,-2.6579916658764504,-2.72556696923331,-2.7955432079913396,-2.8410594372843097,-2.8891339508302303,-2.92996473251916,-2.9887181629730804,-3.06226665099837,-3.0933148312129903,-3.2333989293177403,-3.2808851072547798,-3.30713808611011,-3.31959504052806,-3.3642394972169,-3.4022688731880804,-3.4524842596665,-3.4036258846701903,-3.1292874610006,-2.94734027657021,-2.87827988923173,-2.7477390130311203,-2.73648433003331,-2.63373859852075,-2.4973607009381698,-2.3396737419767994,-1.99883394315051,-1.9272706736941698,-1.8017594406194601,-1.7059454775571599,-1.6112233422806201,-1.59173866877314,-1.40184419900866,-1.4388466633261001,-1.32590307386165,-1.26024097516654,-1.204759427271,-1.12910848454382,-1.11473593379226,-1.06413204430522,-0.896317648774905,-0.934834081259729,-0.886850476943224,3.6989773314763905,6.66021398663178,8.756096441933769,10.3635878994371,11.9283884452133,13.5673869510841,15.0990408299962,16.5931472090342,18.077320510098602,18.644557021912103,19.2395846453987,19.765032378144397,20.335804457061,20.8588659458594,21.3989079262605,21.8438558759693,22.3716177156526,22.890817294288603,23.362002072337102,23.7714703460315,24.1057417758389,24.3291457341348,24.7302542934671,25.043872910935196,25.185087665551897,25.5219825970616,25.882622821471802,26.205734925132397,26.305358310097603,26.382266523567502,26.00934784156,24.0757896316575,23.2535421888243,22.6493054584306,22.264601920763102,21.6918695082759,21.1008773083473,20.2615186816163,19.6533868409145,18.1672958928002,17.718312342824603,17.2011431020068,16.6297567433478,16.2063948181448,15.720090841989698,15.495818033629,14.982239813237099,14.5548584321738,13.937857722905099,13.558133998652501,13.334853746817801,13.2452336931188,13.0278622693554,12.642104806755302,12.080576782548098,10.9630339797159 -0.18466536803087802,-0.28384633827826194,-0.6456927074008321,-0.802820151569765,-1.12224350255567,-1.3664449182741099,-1.61230835216865,-1.82377613016224,-2.07161409307262,-2.1837222729868997,-2.23020544417184,-2.35421206455274,-2.4537918644001,-2.45639594680414,-2.57916243066555,-2.62419843399608,-2.7074086007277995,-2.75012939044165,-2.8085709958680805,-2.83664899411991,-2.85027446546976,-2.9473995497920797,-2.9279510296041398,-3.0650966081849,-3.12302729814832,-3.17454625832007,-3.1534838269467302,-3.2032088413768705,-3.2186443855205398,-3.24711701985077,-3.1983024468436003,-2.9386310207195496,-2.8079808490447795,-2.73387948956626,-2.62704080258358,-2.58416294357308,-2.47942666782385,-2.3161389200492404,-2.18451390767082,-1.85832741626922,-1.7740812871498,-1.68431587007864,-1.6096317442648,-1.5081399947033,-1.4886536924124099,-1.2821111122978401,-1.3231316515874298,-1.17113489702124,-1.1504757691125,-1.06004599999131,-0.9861471123685149,-1.017062719433,-0.9693707701756701,-0.813406366900984,-0.838741445527501,-0.782486659855925,3.71296215652048,6.6516114780585305,8.79290818768148,10.4025353890919,12.0281112361083,13.6842075607378,15.2566813544116,16.7502978911026,18.2485310203639,18.815450033936802,19.4043988810839,19.915450322869198,20.5150960287958,21.0765343445377,21.569944668965398,22.117811746098,22.6201315324684,23.1235143560469,23.593315685715698,24.050573563902898,24.3585665099162,24.6091905935504,24.9921689413824,25.3280997046182,25.4972213081107,25.786078581567,26.2096422506651,26.525686144960105,26.6499575220722,26.705909029028,26.324848526717602,24.416740870675,23.548380496347104,22.956842334010602,22.556614418203896,21.9676732467128,21.3833069156319,20.5616231728653,19.836380150563,18.428819646548398,17.9335825599348,17.394741761879597,16.837470157455,16.4048433316282,15.917507329330402,15.713925577307501,15.0934135831039,14.704777878328303,14.1102122316895,13.744270843689401,13.500426509966701,13.3630673067231,13.179927123410199,12.7997356125403,12.212513165913698,11.0495179507042 -0.193176166458655,-0.25025499079727803,-0.616986481918995,-0.762783790357588,-1.07254605592018,-1.2888885264120702,-1.54181427513104,-1.7412915224049899,-1.99695525449747,-2.0578710412385903,-2.1576872315205,-2.22670036137574,-2.3425069954880495,-2.36165874694391,-2.4394557352452,-2.4887664405690697,-2.56687780714442,-2.60263451735099,-2.6060273581946602,-2.6391164699386604,-2.68254417901858,-2.75317675822454,-2.76239102604339,-2.8631646156228703,-2.8943497120710497,-2.9136111706981405,-2.9864573322471406,-3.0187958815320295,-3.04265166455817,-3.0286564746185602,-3.0241337563127,-2.7272273337496205,-2.56701375291612,-2.50837950332324,-2.41207779484034,-2.3545411127455296,-2.2977741502808904,-2.13071663714767,-1.9950901062928101,-1.6582847914308998,-1.6329966131692701,-1.47362328056453,-1.41284871688213,-1.35791075034278,-1.31398677924814,-1.12714190790135,-1.18574692909002,-1.04482807311051,-1.01927569678197,-0.918894258293771,-0.8896770986472459,-0.8828343892782671,-0.8568357126038629,-0.6973043364372391,-0.7080564378654691,-0.7141586343080841,3.71070370787517,6.662159277461599,8.83907622122655,10.4482113687756,12.0635288037715,13.728628287286101,15.3135782071684,16.822324841714998,18.331308610771803,18.9144675381397,19.524840662109398,20.042788730426302,20.6470166690147,21.2114917060829,21.762388876840802,22.2669502164714,22.7758915502639,23.3139178599852,23.826843817154103,24.3027226122832,24.5984274638268,24.8449480671763,25.2381259381436,25.570556800085804,25.7624133834985,26.1274748854651,26.4826998489782,26.815084760744902,26.9545842480854,27.007299469846696,26.620397613376998,24.6643780005795,23.833398786725997,23.178343376442598,22.7692760711022,22.206951798713103,21.6108495112151,20.774665217235103,20.066306048010002,18.5945524816357,18.0977134800481,17.5860202846402,17.0198478984952,16.551812968499,16.1237902190063,15.865649968755902,15.2558830096227,14.839478361013501,14.2659254215239,13.8810452302739,13.6303385266199,13.4962451469399,13.2861635120672,12.8862924871614,12.3020284420351,11.146298788870402 -0.19715493142447502,-0.234407036479263,-0.5799449047996651,-0.7451782569868259,-1.04562816780902,-1.2525867626132199,-1.50273913798783,-1.6723565833655198,-1.93517986070806,-1.9851620656539801,-2.0360949693311,-2.16758084490225,-2.25109826231594,-2.27078741261115,-2.35609318210851,-2.41436348142786,-2.4663685509439,-2.4675918277386497,-2.4973569353766,-2.52922086228165,-2.5172839303781203,-2.56657339487234,-2.56803325195502,-2.71113556075854,-2.74015735572093,-2.7314087433208196,-2.7135618658045204,-2.73865508721254,-2.81500576002127,-2.8237246736921096,-2.79410917272593,-2.52517255159659,-2.35917034263263,-2.30960893726097,-2.23716636131607,-2.22123025809106,-2.0953481637702303,-1.93400361589497,-1.8312016173964099,-1.51554565298857,-1.47264244253574,-1.3761548458628101,-1.2770873938221499,-1.21236377184604,-1.1941811177691999,-1.01141619538763,-1.07051930705848,-0.888109005019313,-0.9044647700455171,-0.8313207205757909,-0.790218597180295,-0.7857942013781769,-0.7478111728774509,-0.583729518718874,-0.598112982998725,-0.585361108482755,3.72230246261008,6.661272902654309,8.862247086439481,10.494859047668099,12.183381002695699,13.819751019340401,15.4310813374632,16.943009148838698,18.454331669694398,19.060778031020302,19.6514340465504,20.2084427401484,20.7827921908661,21.368881707462197,21.905137474215397,22.4447235303622,22.977574993537196,23.5254628244536,24.0165586572872,24.5063600121515,24.823587307818798,25.094966897508503,25.5214192570205,25.850573586756802,26.047669061304603,26.382027191464502,26.757679534675397,27.1203661913274,27.2518315706922,27.3238710165827,26.9602282312772,24.9485304851777,24.099480833083895,23.49787454033,23.0222941013653,22.4698927120923,21.863920413295197,21.0229096176318,20.299600208812002,18.819310146847602,18.329893173380302,17.7927922463751,17.223521030662102,16.762352164634,16.2687020426473,16.0189056360581,15.4247466532532,15.0102467056235,14.3917371177446,14.0366017285773,13.7857080479111,13.660890260346198,13.4440614516308,13.0259827948208,12.415455599600302,11.240525035264799 -0.24223426269508203,-0.187570570472814,-0.524660469450656,-0.6463602493723289,-0.9424839211242421,-1.1308204785081,-1.38714154251012,-1.5816246701466998,-1.81937896961542,-1.8596481301541101,-1.95303293468714,-2.02619038359559,-2.1051648712677897,-2.1281245038314798,-2.211621077415,-2.24282269965581,-2.2988229516182597,-2.33111346578419,-2.31674351770244,-2.3041319480836098,-2.33921159658406,-2.38849543263456,-2.39999964029209,-2.4774144620821,-2.48370296234908,-2.518093843084,-2.50260441962321,-2.5149176788662997,-2.5218564726063097,-2.54575596691146,-2.5208079205550695,-2.24306027747336,-2.18885068027917,-2.1174109564916996,-1.9833029032645,-1.9821589520902199,-1.91449216587673,-1.79492816399531,-1.61892850775126,-1.3399708571253999,-1.2768201033079198,-1.16258040968784,-1.0735387673339,-0.991099987459206,-0.977811646540981,-0.7894672224535629,-0.858960693036455,-0.728852317301402,-0.716084583942733,-0.654148032438384,-0.6267090814758239,-0.627345170002598,-0.6094668735799771,-0.452121547165296,-0.5132655753256911,-0.5174374513752821,3.7270080689303304,6.68051540887664,8.88283577004983,10.5375951013036,12.216501623194098,13.842341196054099,15.4744704681233,17.0482678670515,18.562426086352502,19.1831183488853,19.777113917001603,20.3205930163538,20.913272926302398,21.514863607912,22.052113692783198,22.6134159418964,23.1603181444802,23.6785506458704,24.2168577011545,24.6934117450172,25.0262386610952,25.338495448713104,25.740519587229098,26.073711504479604,26.296793109063696,26.6614324016365,27.0531704062301,27.3950372723668,27.5122249733312,27.5923001349653,27.230365440009397,25.231242444059898,24.350414655770102,23.7162100121314,23.310671149689103,22.710719218246602,22.0931331183005,21.263659667257603,20.475714913212897,19.0347242006948,18.5198527725135,17.9408665470034,17.399403914774002,16.912276880221697,16.4450076662889,16.1943300962662,15.5606436590466,15.1653439247335,14.5349098011122,14.1674490066945,13.8858901426822,13.769226761909001,13.537359018624802,13.1565211613846,12.5470390738858,11.328902008031198 -0.239644662827201,-0.179398250661531,-0.516810848628186,-0.632093062831157,-0.9086682511616229,-1.1063408465808,-1.3378487384098101,-1.52797698937628,-1.74291733004041,-1.7819163129980702,-1.8564999405379798,-1.9294962873977302,-2.05177677437585,-2.00802416766208,-2.13560433909086,-2.18198333163531,-2.21884812953285,-2.23551304378765,-2.23763337615883,-2.2264740610365696,-2.24317707734677,-2.27490957188913,-2.2491166228281902,-2.34901266881887,-2.35278551492621,-2.35771880955269,-2.35312097607845,-2.39626393111539,-2.4004544471990896,-2.4045120193374396,-2.38251935955412,-2.0953751110948997,-1.95889153714803,-1.9156423410157701,-1.8065793830993602,-1.79260114202032,-1.70060080717214,-1.6327303041594299,-1.4027494942307699,-1.1927782059296201,-1.11333136488575,-1.04188949769267,-0.927042606051846,-0.8768842384595601,-0.8735533960321771,-0.7111927228092529,-0.761802610436782,-0.652564007490037,-0.644599792894459,-0.579925545367161,-0.547334590713936,-0.505442229930169,-0.537198576744912,-0.39010375034825506,-0.464459425729601,-0.455873986942008,3.72053254166054,6.68606292734166,8.904823550550411,10.5678815175765,12.2512973203703,13.9638798557265,15.538924755430699,17.170302847908598,18.674424207925302,19.279408719988197,19.865403600605603,20.452046641678898,21.069467032186502,21.6125141812872,22.166136985949002,22.759431428171002,23.338484410225398,23.852515333007197,24.362447997376105,24.9207114716945,25.268829880636602,25.573271001339997,25.9562817106776,26.2899174102559,26.5195266941538,26.8790655507637,27.2943346287875,27.6435624543848,27.823439238319303,27.8834736369167,27.5328322088962,25.5131634487804,24.592959269844602,23.9486721169351,23.555278355254604,22.9842205875396,22.337895222940002,21.447585385917,20.6892107484813,19.187778884701398,18.711346211555103,18.2156244065214,17.557437496246198,17.0803821190122,16.5879669630531,16.354196194929997,15.712928516519,15.2869573999015,14.6480570895281,14.2676027909597,14.0074450884332,13.8583989269068,13.6354312532518,13.269072265584901,12.629913365199801,11.395095073748 -0.239644662827201,-0.163023344698982,-0.478318191942636,-0.601780286048501,-0.847556563141374,-1.05470952987376,-1.2555139665208999,-1.44276253584981,-1.67833622627348,-1.6780489841875,-1.7725996786190599,-1.8165592519198799,-1.92970059240951,-1.91554868816259,-2.0249510102326598,-2.0322811692706497,-2.0874765535014,-2.12263052634803,-2.11373462416133,-2.08285554310964,-2.1007863481697697,-2.11864279519882,-2.10343980555414,-2.22903482043785,-2.2059227264164902,-2.20513342377834,-2.17425394390397,-2.2048281149321403,-2.2065861266069,-2.2044706616613703,-2.14709841442737,-1.88061121260349,-1.7471125802347698,-1.76020743725583,-1.64259654075502,-1.6120935287481002,-1.5346973817532301,-1.40509035661686,-1.2723715368024902,-1.03486055261157,-0.9752636441422671,-0.8824937860276809,-0.806462801840533,-0.704108684239058,-0.7522184207362959,-0.603365161302683,-0.6367171064394761,-0.505457498639035,-0.550409111369885,-0.474682873379471,-0.466183973170694,-0.458073448041349,-0.439047038901541,-0.274167046038379,-0.37342866876794206,-0.383867987129373,3.73588899799752,6.7111147042159995,8.93753938944744,10.6109715246834,12.3345851222085,14.0404802809523,15.666981198029001,17.2760698643275,18.783481413479397,19.430248960948898,20.014979038476103,20.5872519673377,21.2062278748598,21.7841051322604,22.358012912774896,22.8958763259125,23.4918686437287,24.0413505665327,24.5733748797256,25.130485364191603,25.4803708421739,25.746142141501103,26.211402773266897,26.5499866119795,26.7814882865674,27.1720388046133,27.5610065297548,27.9499531231891,28.079889329970303,28.185316935651603,27.821860565756197,25.7754465862868,24.8581782687032,24.2244812212708,23.7986925144019,23.2279489151037,22.5808711730722,21.7145898137633,20.960012863333002,19.435168787097002,18.910168293316698,18.3877375260092,17.7974782001836,17.2887325636301,16.7734333808094,16.537214297112,15.9273165013092,15.471190402748102,14.8034871290078,14.452942348834801,14.2088135966204,14.058644003073098,13.8446498400159,13.421169587279401,12.7350278426934,11.513432247834698 -0.272672735447945,-0.135853670700014,-0.46151474447729496,-0.549493574894433,-0.8064138451558341,-0.9814766906129541,-1.1699143793499198,-1.33084144140624,-1.54377707250151,-1.60480241862946,-1.6762745715011103,-1.71418079620704,-1.78469941175217,-1.7933080984839902,-1.8654072900668999,-1.9083536452086598,-1.9520197592017001,-1.93489947183368,-1.9313495101633102,-1.91679355731952,-1.8908332754522499,-1.92178200979669,-1.9094126739917099,-2.03129578825831,-1.99605096737367,-1.9899375868265199,-1.96262178684613,-2.02125179619549,-2.01528922172418,-1.97562910133556,-1.9369060881158302,-1.6562520490174601,-1.55615370640914,-1.5320249313821799,-1.42941787946966,-1.4164746156529702,-1.35795245663811,-1.22490784772166,-1.08614516893599,-0.8298846533809819,-0.770648796428769,-0.6703937311732671,-0.646336007741289,-0.5748159891004351,-0.570140142289592,-0.400106164916536,-0.49548159625254995,-0.37296013663244004,-0.38369950654854,-0.304700236249563,-0.30496278593968,-0.30545091076299796,-0.287153891500412,-0.177344573401685,-0.24132167561849102,-0.310015418458364,3.7488240122088397,6.718535584719089,8.96364885884348,10.646118107355198,12.384659598538198,14.08603089592,15.7118919955289,17.317001511198402,18.897343632565697,19.5076031998617,20.1045260823646,20.7241406241054,21.324431390001198,21.891921380898598,22.486457511553002,23.079534066750302,23.628856759594,24.2053634729729,24.7557325605639,25.2843832844883,25.640963395141302,25.962948046571498,26.419527444191104,26.7966538266638,27.0221392860926,27.4111079401301,27.809709048604997,28.2044726083476,28.3442413581359,28.4563350686485,28.0764269227499,26.0369541317307,25.101740980518798,24.4733238666408,24.040555425096503,23.439376670500497,22.783007050728102,21.905504754758397,21.1468836197948,19.6338302353785,19.076798476448698,18.524794227765103,17.9514728320172,17.4181254741676,16.9043797883192,16.7064398642745,16.0402905893526,15.5708725648622,14.948112763278802,14.564508028733599,14.3145570871927,14.139195537181802,13.923460517000999,13.505460920392402,12.860597401468,11.5785527217384 -0.272993379962564,-0.0959855925193539,-0.426457516202166,-0.5203195888414079,-0.7692073497680659,-0.9046395682481909,-1.10885077290781,-1.2551792170862401,-1.46423744447913,-1.49204424992875,-1.5839433615889298,-1.62917438306173,-1.69809996815137,-1.6909369910493999,-1.78755483465657,-1.79033320508873,-1.8249533711968002,-1.8299557022545,-1.7951091544284201,-1.7812999334888702,-1.76621077186658,-1.7820122404190502,-1.7691992617592902,-1.8274001852008401,-1.8058099316708,-1.82046335294483,-1.8048156535147,-1.7976946841430899,-1.78466546608062,-1.7839713980195901,-1.75195786218017,-1.4877464023247502,-1.3786180469134799,-1.3431436686264098,-1.23305113975982,-1.21873011388063,-1.13821354840639,-1.04578574208462,-0.88233707010471,-0.6575364803132979,-0.6287996785267621,-0.5408680176357129,-0.465720749218145,-0.431551084670082,-0.442156775098181,-0.30095753601975,-0.366671908081709,-0.24077703541947199,-0.280572593076706,-0.20374658365499698,-0.186033553845216,-0.214023156406861,-0.21469079127157503,-0.0542021115594282,-0.174741704903316,-0.235654790686123,3.7543860369822903,6.726834159942241,8.98397814141411,10.6578530654721,12.403547354479999,14.169616774658001,15.773441093710801,17.4181546368362,18.983516054996397,19.595996757138398,20.204971674568,20.7937866745551,21.4284243142154,22.033590072125698,22.5702159069142,23.1881928732297,23.7683950978319,24.330200616777397,24.9081868223072,25.494925906384,25.840305931792003,26.1783085942256,26.583104075531896,26.9872889581174,27.2625230574577,27.6365575014114,28.051695208294703,28.4180002009719,28.560093628671602,28.6554233490274,28.313088555571298,26.280670707967502,25.3686528477113,24.676604443814398,24.267931895660702,23.6880036149471,23.0278213055197,22.149784610021502,21.3400929473113,19.817514830898,19.292921360070004,18.6674316695832,18.113797424665698,17.6145903092893,17.0960690802236,16.8402056213735,16.1495571681018,15.717180383889302,15.052410188819803,14.6589560886461,14.413119540040901,14.2796725153778,14.056451369118301,13.5900611841783,12.9485317084801,11.6444111861764 -0.271316519611872,-0.0923252467321766,-0.411474149079325,-0.480822447432414,-0.7189993842767229,-0.8889618352478209,-1.0687759272428,-1.21814304255995,-1.40317249111844,-1.4187031382282702,-1.4823639099123502,-1.57654276323329,-1.6111313855823999,-1.60108409727206,-1.67677175487317,-1.6777164741893602,-1.7267138235228798,-1.71756769224884,-1.67452073779408,-1.67276518216927,-1.6593335040543402,-1.67520330927354,-1.64849219919495,-1.69737458887299,-1.6868582752343602,-1.6410870928237098,-1.62755126281922,-1.67187832617399,-1.65554382348231,-1.64722189785162,-1.57548974731365,-1.3377059097288702,-1.2245105583470501,-1.19834247555506,-1.09152440344405,-1.06034710716298,-1.01440131114341,-0.8985332110058192,-0.745601367046011,-0.5298625172724261,-0.48659368599743,-0.433830389281903,-0.35343081401105203,-0.311659952614238,-0.321463448884382,-0.16138885328513597,-0.263340071590909,-0.165791953440271,-0.171329426285332,-0.111445321446144,-0.134807465747782,-0.14536937965364902,-0.144886677052214,-0.0046445120023925895,-0.0768672826833801,-0.18719797447743802,3.7668792188402005,6.73532910428066,9.00754698955587,10.708521243059,12.4522023164925,14.2044969317064,15.840864616342198,17.5004781768392,19.0738466478389,19.7006912723029,20.325210193548802,20.9353495265633,21.5552730193073,22.130257851542503,22.736031597676398,23.367421119897102,23.891824200137002,24.504074346607197,25.139632890628,25.632726620868503,26.003656371930198,26.333532344001398,26.816319141740397,27.2753876997929,27.4945478280226,27.8534061931641,28.2659099660881,28.700040817409,28.823738193470604,28.9995363143958,28.6111941306071,26.523628175968,25.622163985085802,24.9489566803019,24.5078537512403,23.919945758372698,23.2745034851299,22.392087831824398,21.5899131131921,19.9966422002464,19.482268726140603,18.8672425046603,18.3152618631862,17.7484319715658,17.2567080167701,17.0408431251072,16.3462026269237,15.8674523410895,15.2527911004431,14.8471068788744,14.549788011207099,14.409326248794502,14.1428728014836,13.7236380417365,13.0799302912689,11.7536692558777 -0.298028600477461,-0.0579074520807863,-0.36719387840478296,-0.430235416224184,-0.6399286035425079,-0.813829301831013,-0.9747785537481349,-1.14039417841926,-1.33165141580771,-1.3626545883651102,-1.4000498654375402,-1.45606447907545,-1.52221226819435,-1.53464070272719,-1.5537250870776498,-1.6105398930518702,-1.62026329155319,-1.56390395747649,-1.5524263203709798,-1.5578604029440901,-1.5276672965533102,-1.505676673752,-1.47037760909369,-1.53731543922079,-1.52539186916663,-1.51426254837004,-1.47659255683952,-1.50118607730194,-1.47741894721976,-1.43212181103118,-1.38992674534882,-1.1824289714792,-1.07418543352092,-1.06363673319892,-0.9023621582294259,-0.9186825483442509,-0.846768320184371,-0.707449641856444,-0.55705538346857,-0.350585694899901,-0.32917138714144606,-0.270287552646108,-0.200983265994803,-0.136234492649394,-0.20249489635301002,-0.0453234447762102,-0.127515727892919,-0.0032179264612695897,-0.0454717568032313,0.0150153862645283,0.00023226670542388398,-0.0046387682099182205,-0.0159997684521557,0.132306531803502,0.00979328843742495,-0.0531141997068304,3.7624669035053997,6.74528359400261,9.02237994701402,10.7135466546789,12.4816222243768,14.2382156946316,15.892665597463,17.5492782395596,19.148988223799602,19.796972924748896,20.3958002575955,20.9993831372954,21.625895643260197,22.257439845957,22.8284697899476,23.421397717918502,24.048134474270896,24.604440270713802,25.211536453797002,25.8021791227585,26.205177961452197,26.5129570927653,26.975413110260895,27.4074696286995,27.656916412322396,28.093655211566603,28.4750948550385,28.8611201837566,29.053237521613998,29.1817351399378,28.8314741550436,26.7316294664519,25.8187312287823,25.1475618157616,24.698511234437298,24.120892382127,23.422351834989602,22.5480010309265,21.718375408508102,20.1977747278757,19.648487931761,19.022226032181198,18.418342727541102,17.9253003938042,17.388238176031898,17.147451511731802,16.427096889188,16.0123481148266,15.3308088350814,14.932493068652802,14.608022595797,14.466679841661199,14.258682796258302,13.8388259811902,13.126595521874401,11.8373055131254 -0.312135052450438,-0.0297119940682661,-0.348111220733601,-0.39709480729021995,-0.6024046911606271,-0.7246461028219351,-0.894021678008261,-1.03502390255513,-1.2312353616132299,-1.2345895195093601,-1.3011353775137,-1.33926659847484,-1.437652727845,-1.41603199466335,-1.4585354130775499,-1.44132701142178,-1.48417211102903,-1.46837821823428,-1.41204449767596,-1.3931334567621898,-1.38552641313425,-1.3719946351570702,-1.31441088063486,-1.3683847145415802,-1.3406898473931201,-1.3561385917723998,-1.2785672219861899,-1.26661914758546,-1.30303706765499,-1.25893886094174,-1.19839469307676,-0.9221218009107941,-0.8176697234386701,-0.7882040079658441,-0.6818351895363041,-0.6743947759885109,-0.647613583524979,-0.521980240300964,-0.385806280673639,-0.20112202924325,-0.16103164754350302,-0.0753393679426079,-0.0559065061307803,-0.0077363959250079,-0.0510782319738842,0.174076584873638,0.0173934067833129,0.12605945554613102,0.0737610083210332,0.149902373305375,0.14815189760620198,0.10366124109601499,0.10770731547131501,0.204643249359606,0.14705124159987,0.0157093807572986,3.77115095538756,6.7614848567397905,9.051581582330972,10.756487986579499,12.5309186562748,14.3107272091206,15.9905907018207,17.5950441606588,19.231362367544104,19.87263663367,20.5036448371894,21.1102789780921,21.7380933747126,22.344105741491198,22.9656810726723,23.5494590547813,24.191689545776896,24.7661446711194,25.372480511002397,25.9449090503885,26.3475569752458,26.6874772122079,27.1960314301821,27.57957140894,27.872556936501798,28.2940500302319,28.7016059484777,29.114885323819298,29.298685131027003,29.4067508810576,29.0941223033552,26.9866263967294,26.063835352783602,25.3951941196067,24.930873954063397,24.3569765523205,23.688837716763302,22.7738320723067,21.9629853633843,20.3793312950025,19.832607423208998,19.2324534802402,18.5894849753384,18.137975750752197,17.551954913654303,17.2906334613307,16.5935420522385,16.1246255957344,15.481780082611198,15.087076184133,14.7875651425747,14.573183834325302,14.373721744391402,13.9470585007649,13.281990446621098,11.934592739614502 -0.31670866661274893,-0.000504290109385189,-0.284032986929643,-0.3570484567126379,-0.5468821826967399,-0.70427595736314,-0.8470987854393319,-0.9891291832405479,-1.16323716363387,-1.17297542610344,-1.23018122432247,-1.25945594515869,-1.34026267648517,-1.3169466438956101,-1.36715406751219,-1.3773430205805302,-1.36892958100395,-1.35127053557628,-1.31121994154812,-1.2641701814246202,-1.21652282881531,-1.2101736043805,-1.16317482687822,-1.23521419509067,-1.21393858290668,-1.1828638000626102,-1.1286086726492,-1.11372265390719,-1.10121577339784,-1.07938090042099,-1.0070335761192701,-0.7565955733183091,-0.674026434797955,-0.6282980260952811,-0.52617707291567,-0.515229548288317,-0.47265149824695707,-0.426626754842034,-0.24884694259759002,-0.0608955323942082,-0.00940390391932088,0.0382097375443839,0.0883829844804524,0.139543966510853,0.0950970235487016,0.252563910491778,0.121812560581885,0.22431805398297,0.179762623843232,0.226597367599715,0.18567275072590803,0.20707177156237802,0.179455596616536,0.31861225617515,0.19451829999507997,0.0757855490769627,3.7714771056266803,6.76937561689251,9.07842647302936,10.803840734574198,12.5791209837071,14.388838685717198,16.0456257055478,17.7264365450598,19.3191755471787,19.9800270279716,20.6139820862398,21.2236272881456,21.848083137659604,22.484614391138,23.1085658664069,23.679875877719603,24.3303044005509,24.907884180998103,25.525698287715603,26.113719080374302,26.544981219401603,26.9055952346524,27.393636580598397,27.7780719710668,28.0886149712994,28.5014770212393,28.939728445219302,29.3515882788559,29.5321886588964,29.655247208191298,29.3550154889702,27.2425725359407,26.322431162248996,25.635801016293502,25.1861342858872,24.588709143895997,23.925422721156696,22.991240547063605,22.178594328607396,20.5528316812033,20.030283236610398,19.4322466712689,18.7825049156391,18.2636022086427,17.7188430984298,17.4659505294741,16.7562901891555,16.3153050015207,15.5968751782128,15.2177612896866,14.914372805761499,14.748404746839002,14.523654923628,14.0685737156639,13.3713096350981,12.000110197889303 -0.30207171535399296,-0.00032589302273268396,-0.266408453184348,-0.322546848179255,-0.501591154173282,-0.633654967013884,-0.745993754135173,-0.881468127415063,-1.02764725861341,-1.044544270105,-1.10299150410223,-1.14142690706537,-1.2359197299003601,-1.1971014669347602,-1.22645029415079,-1.24344831041635,-1.26135787358774,-1.20752922108628,-1.14384027694586,-1.1041830567806599,-1.0842954860240799,-1.0393781228360401,-1.03383007122907,-1.10236017799314,-1.0336998965498598,-1.02581728640332,-0.96414512853531,-0.922802253440489,-0.87517051741264,-0.897020610590505,-0.802030682749394,-0.591018419656589,-0.48601816329893893,-0.4166456628092371,-0.321394840084236,-0.33146760361854,-0.25223091132993,-0.192844855085215,-0.0922402108916691,0.11890557668425301,0.15521278669995597,0.20644513877987697,0.268097450878628,0.28696947700469605,0.260545781173908,0.40369649731589,0.25898676937202697,0.34339831694270795,0.305203976500271,0.360012037265964,0.35202692579660794,0.330451512041527,0.281680759098412,0.420212703482135,0.289924023003658,0.148095087884593,3.77584226002711,6.78427809926189,9.11680474536206,10.850537113629,12.610213514932699,14.398038710755902,16.123351796301698,17.765137952998,19.3736112723093,20.0512344443334,20.688121643123104,21.289396097612602,21.9328043587313,22.582971818877397,23.173176715307196,23.7838111619864,24.453470392140797,25.021169140258603,25.623239720881,26.2784832695783,26.6925802207301,27.0313838698106,27.5036363672506,27.985462132996897,28.2942353698256,28.667404739580103,29.089201291665898,29.5573209823559,29.744636465921502,29.8571081451105,29.557800828119102,27.4463858575626,26.514391165756503,25.8412562634784,25.3880831702123,24.7789158940448,24.120224441889402,23.183893457571997,22.3375868761236,20.738773781769396,20.2014891203208,19.5998508439207,18.936674123224,18.4308971674468,17.8453166534387,17.5894122363357,16.9144806163996,16.4290644464865,15.7391976602056,15.352773559546199,15.049213125123801,14.8596449976404,14.6450328924495,14.186583055739698,13.4432471215319,12.0742526839362 -0.33680513578266597,0.0597866919283569,-0.22873539470266502,-0.247076258357699,-0.4477386407420061,-0.561663350725212,-0.684627804500972,-0.779562287814068,-0.9302545445827409,-0.947700834264885,-1.01202046857722,-1.01739960950304,-1.06152566911931,-1.0337911602141499,-1.10488618344166,-1.09975481772385,-1.05422734761186,-1.0369932176435201,-1.01545416569937,-0.934105288346386,-0.8833342952540171,-0.893167841470833,-0.8485783463100842,-0.8760703413838801,-0.831112259532129,-0.8005425389120729,-0.744496284459527,-0.723322278639509,-0.7138813692995579,-0.674104609036006,-0.614530966416703,-0.376042194980568,-0.279549869991565,-0.25455910699357504,-0.167613068832775,-0.151813070099379,-0.0647352875456341,-0.0194907685213805,0.0952230894594167,0.312218684454831,0.309893381147569,0.375352395706169,0.360933844480459,0.427217036120145,0.366106637934826,0.544858594476447,0.39729828844714293,0.45828049087641404,0.41911919817413895,0.473881285956399,0.46022546433631895,0.42705303360172703,0.41249190321068196,0.46951549201924,0.38047459059571703,0.216856439182874,3.80265473592102,6.79777916126696,9.13479847264218,10.880810526564698,12.6637806111833,14.4852372796968,16.1885922883291,17.868766402404802,19.4957040338053,20.1544271360118,20.813711066429,21.4130514384434,22.0260464954467,22.6845926340241,23.3520590926813,23.9393635250138,24.5699578526934,25.224079003143896,25.818381764934102,26.4232578661923,26.8769050561269,27.276911774004002,27.747729714405104,28.1788711306734,28.481138253964602,28.938785949190997,29.373797345203702,29.790867925916398,29.968684896083,30.1280940849398,29.801806219375898,27.7116970029492,26.7500132549928,26.0648485947699,25.6714209556251,25.0130758066092,24.338572903878003,23.427936677136604,22.554762736588398,20.9681508649908,20.389736432650302,19.7431642047499,19.1524089948191,18.588021449658697,18.0483290404931,17.7508388090567,17.0898443297743,16.5811577522047,15.8617927552293,15.4756607550659,15.188022580429099,15.022405814595801,14.772327458812999,14.3010081558021,13.575519302952301,12.171671085748999 -0.366498058524781,0.0857385527181102,-0.187895451456316,-0.215544832765815,-0.37301098953576795,-0.49128232576421405,-0.592491615899046,-0.718317874848588,-0.8225793035928001,-0.84990205047435,-0.9028148662456009,-0.8975339342233031,-0.985072024767629,-0.939666418816693,-0.962547616449127,-0.9662452426985308,-0.96221541227649,-0.8825513240730759,-0.88581245306558,-0.7964979933734809,-0.7596264739689991,-0.703427996412827,-0.6823747081344761,-0.7109782128258381,-0.6789237586158189,-0.637779688761796,-0.5747944173356171,-0.559239968081173,-0.533171446952724,-0.487755385098554,-0.42948191663698704,-0.211366354744148,-0.10362239050330699,-0.0537308730609085,0.0417392805305685,0.0123474557600141,0.10410021481368902,0.163576044556677,0.24614787917998002,0.44102970534397207,0.428165155945189,0.472805768592245,0.49891399744081,0.5026282496315011,0.493064642753607,0.640205740045933,0.48737848807909206,0.5658515941013721,0.502754575715446,0.5658742388088189,0.548327071147386,0.539884650222259,0.5104714080202499,0.599173680048801,0.47087416181131403,0.29786890267856503,3.8037513746609504,6.84814605100623,9.14799174516928,10.913694620590801,12.695897689963902,14.505133335353198,16.225123430563,17.9121223099146,19.5481389885616,20.201867854309498,20.8735153143881,21.476111434359797,22.1433416890409,22.756148469788602,23.3906007622727,24.0030015725454,24.656806357027,25.2875383803889,25.934721889892,26.5093541720595,26.962954843920897,27.354925068818602,27.8860440985563,28.3018506345577,28.6235322458369,29.0302297072486,29.4984298330556,29.949444762599896,30.1749988544832,30.3326370841568,30.023350196490195,27.913132153502,26.9247893436243,26.255484937003,25.864882597926698,25.214044056974696,24.5138261134694,23.5852828976202,22.734763587013898,21.1485426953073,20.579635679659802,19.9570790693993,19.296482384911002,18.7458408106731,18.172817851388103,17.938820960743502,17.2348466582276,16.6951504154891,16.0236587790182,15.5716048470729,15.2981411017207,15.1353407842625,14.902973391985302,14.413168121307,13.628288925036198,12.241007887732199 -0.36854776958413704,0.110189571172715,-0.15486391108291,-0.156458641099243,-0.302057259505914,-0.43716422156265294,-0.519026529768688,-0.576414203897672,-0.7139334940242521,-0.7094787004719519,-0.7607523618174541,-0.8052092049982751,-0.816521857366636,-0.782174976024698,-0.8490217075655071,-0.815043199195603,-0.8211787227776949,-0.720808370749543,-0.701619856012965,-0.623133330367049,-0.572646282832355,-0.546555451103198,-0.47856415087302295,-0.512154771955965,-0.45445758439683503,-0.423379749124664,-0.372032988644637,-0.357257384747884,-0.32907406998763106,-0.308600754988012,-0.21924817982182102,0.0133238926312963,0.0939455302222244,0.14953574883306303,0.238315721226555,0.241068192246141,0.270529281965415,0.35688610253033703,0.475652624527125,0.605354109606817,0.629274830095201,0.6694261935079371,0.687031868599319,0.7365352880839109,0.6461982922712021,0.842916989467894,0.696098277924156,0.7610049174043341,0.6610320535600179,0.6867789907324511,0.6758437192996549,0.6557014027457501,0.650450856588747,0.7114832463493821,0.588299984746176,0.401845613532504,3.8074022209205802,6.82158628541006,9.16958607955084,10.919660857704198,12.7084694423944,14.529154498096002,16.2670296449911,17.974130411243998,19.602848723306803,20.2876079740932,20.9124044644379,21.5632958394918,22.244572171431,22.8495497626416,23.482174225911898,24.1377639623249,24.752370926108302,25.4109102540233,26.056956098101804,26.646643525166002,27.1279402213899,27.508229418169304,28.040018210697,28.4910596959417,28.801745184574198,29.243272369359,29.6929611128168,30.152293405622,30.3817929632534,30.5031802617128,30.2457812594313,28.101355273670997,27.1638800220966,26.510349915054498,26.034582236136497,25.4094801606245,24.7450936403196,23.7809668888395,22.9297455110704,21.3006943873171,20.720814617553,20.1106288837482,19.4258786851863,18.8760743706171,18.3373738107618,18.094716836323,17.3412002493984,16.8158063497272,16.1230934492738,15.706038363681,15.385449046753301,15.227890337577,14.994144149909802,14.497653298549901,13.771089648645198,12.3508193964979 -0.379367623050153,0.13705518096135302,-0.0777617830281714,-0.112122821589985,-0.266014795827346,-0.36676322142475104,-0.432400079866041,-0.46752090635359705,-0.6470168739084289,-0.6258974197384001,-0.694252582957249,-0.6639454152805799,-0.703744358407735,-0.6720984497011121,-0.706205422926764,-0.6662475548676179,-0.667342293103596,-0.595638946909767,-0.539538271798623,-0.51234887781494,-0.4415369351956429,-0.36734217992410495,-0.333126643337767,-0.338002016536161,-0.320384588865428,-0.24972166829534698,-0.16559981143791,-0.135168877483576,-0.123996144014968,-0.0845499229334855,-0.0190232411683638,0.23566263636719503,0.322685898854067,0.32486422758816197,0.421332528812116,0.43577651261494205,0.47810433638046995,0.529173938584498,0.5941904059732679,0.759992898583753,0.766700797975733,0.813896366286736,0.804652137232718,0.862384018146337,0.808674631246043,0.9568331883772869,0.793805753364934,0.8470921037736892,0.7969215837027439,0.8099455791156421,0.7716874170703959,0.7745406320214879,0.729476758993434,0.8240185053586121,0.6615009543356171,0.47035495879321904,3.80593868514273,6.812197404389499,9.157909803314839,10.931133380141599,12.738324404370198,14.558982688339999,16.2892854946266,18.0059920507203,19.662147392645302,20.3149449044232,20.9934820742129,21.6208994300048,22.277476301848196,22.9080392348873,23.5730735941688,24.184530176306602,24.840077416192003,25.5190360516221,26.1354716720095,26.7332504383071,27.265928221500698,27.6237535390694,28.172025318821103,28.5778444089256,28.9358168778438,29.367520944703998,29.860819119886397,30.2955570813085,30.5249020935146,30.659935983398398,30.378113106132304,28.2854154836785,27.338508259861303,26.632922225522197,26.175661144039,25.5879837134867,24.879804418899496,23.973148194138304,23.1032845412433,21.4504267675782,20.833497384640697,20.2412143111682,19.5602597417674,19.015868247753,18.4429490157454,18.1492361465327,17.4464056483773,16.926092188626498,16.2215547557926,15.7720407248562,15.4797386629973,15.319845704688001,15.072874776359699,14.5541248537162,13.8218114206772,12.3827986994414 -0.390778630404608,0.17629125743602103,-0.0212563798923169,-0.0380850780276312,-0.20895616115049304,-0.280988607713273,-0.36516809956223206,-0.385669100991617,-0.5203432517130129,-0.507585073130769,-0.56959261015596,-0.561744732273098,-0.6471601822741829,-0.5952426858453671,-0.625423782981449,-0.585746706978708,-0.579580363307654,-0.48644481592580197,-0.45311496493641296,-0.350965602720381,-0.30125956778849394,-0.246958178123325,-0.164860386965423,-0.215865537626674,-0.11629321952207002,-0.11137087062684199,-0.0209844814954395,0.025244201680311003,0.0553465892072203,0.12763405604707,0.199114153841018,0.379680595798136,0.42203551359207303,0.445724116700494,0.563210609607055,0.5124536678912011,0.599484349254156,0.673123307121298,0.7605932801172759,0.8776406227859309,0.9313204251099659,0.889503300045027,0.9613483492289029,0.9659158742651109,0.917867861597695,1.05333155152179,0.9084197575094829,0.9584780919912299,0.8657708961939781,0.856329199830547,0.8710614714729209,0.852269596817809,0.802317905667986,0.9016595094039731,0.728350412266503,0.536273866949433,3.81956703928308,6.83457697740314,9.214283416162141,10.9898448464858,12.8095046230319,14.658425604747,16.3826923913465,18.1138029591093,19.776676628411103,20.442107929331602,21.1161249679093,21.7608072030731,22.4202139860748,23.0625418175952,23.730092856566,24.3506975087863,24.986600055434497,25.6666710846497,26.3003407489355,26.9002467384796,27.440676824061104,27.8077862881707,28.3639260046523,28.792278934686603,29.206680918262,29.594048382897395,30.0769714383292,30.5257216701062,30.7699795785183,30.938758394870895,30.6444244809346,28.576721684385,27.5890113299018,26.890702405491098,26.472141250499398,25.818824314966502,25.1446581666653,24.2080132964144,23.347719980839802,21.691263459574298,21.0878243614113,20.474249063951103,19.801450572179,19.2013955182894,18.656081403637604,18.3573813172157,17.6560002940173,17.137649833240303,16.3946070535343,15.978931086514,15.670221826821699,15.514732111444099,15.2576479178645,14.7264797018068,14.009687894877,12.497164948478801 -0.410466794054714,0.201080031284994,-0.00463789794291415,0.0155845519272197,-0.133406065443232,-0.219050701370285,-0.28437586222662,-0.310815391136896,-0.40133419350058896,-0.43944934740240404,-0.466341338348489,-0.45431717752606704,-0.504043886087159,-0.443883764528294,-0.440498698688647,-0.43119581630461107,-0.40344155594100395,-0.324659220188141,-0.287904052266726,-0.19839399025884602,-0.101175578116115,-0.0511479768260068,-0.0103372966627992,-0.0192386087621623,0.0566225197194886,0.11537030142113099,0.18373551944757302,0.230006109477156,0.266560290812041,0.315313530811125,0.37917772148122,0.564506118931129,0.677684580914499,0.694896242071697,0.7599652063207741,0.7747461759652808,0.8352278119494821,0.86063912031683,0.9742082215211479,1.10034281169602,1.07679905397945,1.11775242290604,1.14702637613527,1.1603375417876298,1.0938603005534,1.24253282438697,1.0762753295504102,1.1383344413416399,1.03348472895278,1.0555485280112,1.03933951100091,1.00990078507498,0.994544734512477,1.03513734206917,0.877956399366082,0.62267251795769,3.82929358376641,6.84894520329236,9.24443747398017,11.020000378487302,12.849595061610902,14.7078050542035,16.4012545982334,18.1722582508103,19.834605784112398,20.501046213882898,21.179654951272,21.8042029882088,22.4798351844542,23.124665769805198,23.7643347294443,24.428942244513102,25.0973943053267,25.7345895862504,26.395209959144395,27.0458130728671,27.5192375542981,27.902787594197,28.450997856146998,28.9382753515168,29.3148505963258,29.7544268692918,30.224431086193,30.6564393783035,30.892664606009898,31.091517523546,30.7857543943126,28.6901640879465,27.7404550895855,27.050335290812804,26.5924543164432,26.0129086528533,25.316371645680103,24.378949278864496,23.4613840023387,21.775949599936,21.2013092378894,20.599076989133803,19.8821361165436,19.3417791108444,18.77477642141,18.510204904217,17.7159235474089,17.2277959190133,16.5193519431032,16.079349224577197,15.7438718583644,15.5785373062231,15.3536358915101,14.8215551298926,14.0939858164302,12.5838007260368 -0.41199477036993293,0.236781052833171,0.0469433891875328,0.0479241978308517,-0.0709833214735663,-0.15397218563468698,-0.212542143762874,-0.21438931118046,-0.317447610074008,-0.31669834508189804,-0.34109845805165,-0.327023549952414,-0.377838511835436,-0.30389462257613503,-0.34305251272706894,-0.29742463510896994,-0.272254289642335,-0.19301024336074601,-0.12124097277313901,-0.0322135681045428,0.0600905500266891,0.0837170272733573,0.182369901283115,0.15515991254109698,0.254879181048149,0.292530503127691,0.3646365047021621,0.402392059633883,0.45400534254085795,0.504364638293263,0.576256616137772,0.782956711033016,0.8274458181484409,0.866007820961692,0.976414873773047,0.958051137854178,0.981937830171259,1.06663665227723,1.14661679342937,1.25283774616435,1.2692027556366299,1.28886026396262,1.28862217963364,1.29175056776985,1.2139993047956,1.386320050113,1.18286521009349,1.22479677090177,1.15466267950149,1.1833158714559,1.1402324925766698,1.08786186838377,1.03413805180342,1.1546401177887,0.9614436038170471,0.700414733436611,3.8178117090501296,6.85003150635674,9.23117230187716,11.028912638801401,12.8386388217389,14.708121840734101,16.4720287572597,18.191282373503803,19.8710693034658,20.5783859324359,21.2274758094687,21.8552091152355,22.5217213986084,23.1975906843403,23.819439653821696,24.4924643098877,25.1808527301661,25.806834104946798,26.4624792821323,27.166996513758,27.634170388972997,28.038238944289397,28.5785049995368,29.084310313859802,29.4435188192374,29.852066670446803,30.358751668941103,30.834505837088198,31.0601026067238,31.243446195694798,30.9604886904519,28.8611835419484,27.879595712460798,27.223260078394,26.775278214240302,26.172926782885,25.461579341715197,24.5029691194976,23.601036189972895,21.949889447114895,21.3392391713784,20.6900743389595,20.0181699954303,19.4528759368438,18.8847147829625,18.612301549573,17.832830451328302,17.3153337024198,16.6074841168571,16.1813697220685,15.840607413786199,15.650939434281199,15.4219197757739,14.904002980817001,14.1692922860658,12.6309383137839 -0.429671863296629,0.25326569758963396,0.0860217076172538,0.12849214019566998,-0.0321523511031547,-0.0553077367004712,-0.14153700102310401,-0.148092086719809,-0.224205279439218,-0.224859579037508,-0.266578128123452,-0.23366841148153397,-0.26028186668368103,-0.205844934576158,-0.21004895798511103,-0.16552210163544,-0.14008248496325598,-0.0532354792451541,0.025925217879391,0.143446235285633,0.236593601807772,0.250906946694646,0.31941969177277596,0.34477819031870593,0.42292299580924103,0.47257512238997795,0.561790553161269,0.6055148073990629,0.6561090761577989,0.712932718955835,0.7647216810547199,0.968786842481128,1.03822771942411,1.07427848622924,1.14669496089702,1.15303311403401,1.18038572247956,1.2505365854693202,1.33722573537201,1.43931515228701,1.39777681155112,1.45042368352406,1.4424196448929298,1.41136400020832,1.36044603013814,1.5097840479422098,1.32031813583825,1.36064931314929,1.2821537102215101,1.30390723042336,1.22077345234717,1.225119005854,1.18607654657955,1.24202722003773,1.07158448765827,0.7879539544895101,3.81779914270542,6.86186556240795,9.23657579509073,11.0337833003279,12.860145125081301,14.7328757186816,16.4996363581049,18.248361149913897,19.9164989066187,20.5890161431938,21.2680914786463,21.9206485265019,22.567414104897498,23.232224812575804,23.8979272743308,24.5368093407337,25.239419400374103,25.8865054583842,26.543480933313102,27.2275752761268,27.7027438924933,28.1419024773647,28.6636835297684,29.1781007880688,29.5422223938327,30.002374886960602,30.494461737178,30.982334840733,31.2637420761974,31.439388687443298,31.146176628595,29.0631421219917,28.0966333823379,27.397171265056702,26.953833313536002,26.3364781154182,25.613329190506,24.662039086111,23.7841136377284,22.108307424613198,21.5242490496286,20.858383739532897,20.1941365335659,19.6158529881549,19.0316881847856,18.719478677726602,17.9895054766045,17.456341116170698,16.691280887866,16.2895422525512,15.988246228995099,15.7592849837695,15.517669893332698,15.0208224398574,14.241905767281,12.6766061194258 -0.429335461010181,0.273079098175464,0.11048033416041302,0.16425603845487102,0.0603082866320287,-0.014217889532370001,-0.04393784668095101,-0.070852682036683,-0.118727778764326,-0.11968053742975,-0.137867556377248,-0.11017965968721001,-0.161204705238383,-0.0862955101404971,-0.0944078859211349,-0.0330807423817515,-0.0008160062530423941,0.0568599287150359,0.18711195643650602,0.268008741900812,0.365044909666191,0.408204973329505,0.457777189529476,0.49395754349817894,0.554439985334487,0.6115382014288829,0.717496650899753,0.7552236162337801,0.8264913752002131,0.865824690382629,0.943649243316239,1.1457907741116398,1.22581791214472,1.21710398985185,1.32534628435258,1.32671663852972,1.3490152858663798,1.39598713666173,1.4902925474277402,1.57223396116191,1.5471489627937098,1.57704762390439,1.56260524942652,1.56041735600294,1.49829173422133,1.66116917070612,1.41724670458855,1.45611927256699,1.36278927836295,1.3807589737644899,1.3552169418520201,1.33927515328843,1.2482977602566498,1.2958066652758702,1.1470570045756598,0.8364193514533872,3.81779914270542,6.86186556240795,9.231937438310819,11.0459789401301,12.880470639056302,14.7627524221207,16.522757979229997,18.280822651828302,19.9478038053294,20.6372325146578,21.3474225107144,21.9959232239327,22.641512122918897,23.318765467862,23.9856192147145,24.5988328524884,25.3455538610495,26.0053360297465,26.640815827928602,27.3170375219115,27.8649296666537,28.278762366953,28.807665928980303,29.3007085321484,29.677345514809698,30.140668474261602,30.6283617603321,31.1187026196213,31.368326336868897,31.552142840960897,31.352997471786498,29.234469803521105,28.245363906756502,27.5604939417157,27.155900615783402,26.504806550588498,25.776301360732603,24.815674867818398,23.935816742322196,22.3083167979735,21.6392342351115,21.0423976304825,20.3198274117437,19.7273551284681,19.1766585966083,18.8876091918718,18.107802593134302,17.539737294638698,16.8223076529293,16.3845445929106,16.072548508209902,15.8539601399837,15.6158735997333,15.088991806946199,14.3051675806335,12.7784891060528 -0.439958193279941,0.309432281887486,0.14138536668257998,0.200343531473745,0.11329877587669099,0.0352331354919949,0.0369137749050561,0.0374923233300746,-0.0158821993649899,0.007725076578863759,-0.0466219673502132,-0.0132822925926737,-0.0138841886296847,0.0322630280632614,0.0199055000534898,0.11810177572548401,0.12638102474188698,0.20872695561357,0.32991422300800605,0.42390166050261796,0.50939043443029,0.565685833015081,0.6507787418285239,0.652472093985789,0.7448461886013721,0.804640048806467,0.8419192133797321,0.92955655043309,0.963282419768378,1.04339846543051,1.0863392991551999,1.27496928254119,1.39744467898318,1.39135966763599,1.4695351893884399,1.50206252409176,1.51433414559881,1.5784644306478102,1.64362041373753,1.70099441309453,1.7176834916139099,1.70636751452996,1.6926922785363998,1.7059493695275398,1.59775678712836,1.7494153947791102,1.57385654425199,1.57877048801409,1.45575728394037,1.49538121649382,1.4719429248833702,1.40294540088735,1.32858521952333,1.4035526115454098,1.24913288132075,0.892826943298118,3.8104224593832896,6.85812390125821,9.243442466389249,11.052576134811803,12.9010060232897,14.7732949071687,16.551925722871598,18.298823397818197,20.0065499984519,20.6747487940255,21.3960918289702,22.031720896279502,22.6919175890309,23.3603220210186,24.055228142034803,24.684017896918697,25.4231346397978,26.0643669933902,26.7255286369166,27.4258056168862,27.9262077081642,28.3851081304551,28.9173204939326,29.4114346151225,29.7942162832537,30.265599827340804,30.7799974414013,31.2753221648321,31.5251755022655,31.684336851919,31.456173403756104,29.3785959734635,28.413028972087396,27.6958868895551,27.3024233886329,26.6616578283255,25.939733121357197,25.0273078465642,24.084812316734,22.379497293281304,21.797432888561897,21.1645014849915,20.440785615280898,19.8488982661062,19.3003987447834,18.991151842262003,18.186491507958397,17.6532749419752,16.9448533576019,16.4811360234899,16.1456802962174,15.9410087078304,15.688375878579999,15.1883990962712,14.3823660620544,12.8486762845431 -0.46948523361331607,0.324333084388157,0.19468900871723202,0.232728483495127,0.182871365537851,0.13782971148109197,0.12200138686201699,0.148272026795814,0.0695486535881889,0.10957970382071301,0.0555841373124754,0.106914262711015,0.0897562190786072,0.12290582201455301,0.178204815608473,0.239074092265235,0.28073822316733005,0.355377353806248,0.46373132064084,0.54561165715265,0.64369460324811,0.678372005816173,0.83358967003083,0.8241913163106892,0.87228397340073,0.979106596239935,1.08516552635446,1.13816957748619,1.20757116793227,1.2406188602394899,1.3709315134341002,1.54545843599512,1.55322861605997,1.59481700618777,1.67558652273507,1.64593807017201,1.7104507962404498,1.74112581965784,1.81602475739723,1.88291205384208,1.86874219851971,1.86338267920511,1.84357543209173,1.8453564979427999,1.7247759549662098,1.8690468424548998,1.6690510680514898,1.7013604897449397,1.6040500404098201,1.5591490831180501,1.56639117703338,1.5283351924267,1.4764202063169098,1.5055904108762899,1.3228643606272,0.9981391783861769,3.83008082064212,6.872487798991539,9.27199366418652,11.0932704617717,12.9367768716641,14.810564697108099,16.5884438211461,18.3746486949858,20.052255878971398,20.736010061884,21.440825026685697,22.0999339747653,22.763615421375498,23.443535006498298,24.1386026166284,24.7853751090322,25.4777666858817,26.1899393459577,26.8481656405378,27.5117986932546,28.0572949151432,28.5120115444946,29.062902640658496,29.5537578781055,29.960066470909,30.4283186719448,30.9403921929767,31.4223028302874,31.658175975378498,31.874000374548803,31.621157770120696,29.5388303042905,28.5707041909584,27.9121584715343,27.4666181410008,26.8268436118851,26.119232608485103,25.177389130939698,24.2629170413203,22.5273651559815,21.929590654451605,21.2813192664808,20.5506918218252,20.009203484821,19.4175592472535,19.1225768312576,18.351982051991,17.7837740769116,17.0260636186527,16.6077475629048,16.266117322214903,16.0800729232439,15.8335418574085,15.309537746430301,14.4777295944635,12.895392105186401 -0.48947887092430303,0.346969686969733,0.22407210272230105,0.288802301295196,0.22176840302332,0.204851196859196,0.176401302232223,0.217784970506749,0.155947877955797,0.173790861444977,0.183616529104324,0.19376856681437601,0.21368439762577301,0.268477528061248,0.28626130304609304,0.320362595378711,0.38674930740436203,0.49218631484902203,0.6149667488333461,0.7239762465661541,0.835527896610761,0.888166727555702,0.9853943125274108,0.992767279466703,1.10098341830611,1.13340883556789,1.2330588794127901,1.31546943238323,1.40989200653409,1.4782921353025,1.54593081414987,1.7109662837794,1.7456683672573399,1.7765971818739,1.8666562747321298,1.85691951317225,1.85821871079166,1.89398890716184,1.98828256091689,1.98943023405074,1.99669654284806,2.00793155988774,1.9871110988460499,1.9799577903073502,1.8610812481725498,1.96546344496887,1.7931214278860101,1.8520812886379299,1.70151303914628,1.67781557872813,1.64365490226493,1.64590301930933,1.61113830027721,1.61773665351441,1.4064189434299401,1.05691226705009,3.8337805368861604,6.89562531440684,9.28974202711792,11.1182873701656,12.9581011931605,14.863924760520899,16.627860429665198,18.411703206618398,20.108096241853602,20.832258483366,21.5021408437003,22.171942204571,22.8144828089604,23.4955022387391,24.193460819423102,24.829538100375398,25.5451965036308,26.247291827714,26.914541757729697,27.615626080992698,28.157354069703104,28.5952601447994,29.136802326561103,29.641775942861,30.0624883665228,30.5301203088291,31.059186096901,31.540487358291102,31.803510870329298,32.018304171277,31.7660866970017,29.6954678645954,28.765376067329804,28.0544836810916,27.6011153235752,27.0168156792236,26.320028362548598,25.351791495103303,24.389591517738104,22.688403783999902,22.110122961014298,21.432774877839,20.7137948767785,20.1761441811929,19.5474602659177,19.299990236640998,18.477633316238602,17.9198483584431,17.1775956326247,16.6773663083118,16.3723851736951,16.211651092176,15.9374143585253,15.4111926869311,14.5734295159696,12.990758349444599 -0.49735282445447204,0.37316129806869297,0.259117423644621,0.327300257887797,0.27355779219083604,0.265735814416286,0.25125257704517,0.267971997872698,0.23755965545447197,0.248020297969974,0.244667316653087,0.24845538094117897,0.25676211612510996,0.34664354279798104,0.3589918433918,0.41900851100040504,0.453871296673188,0.591483860809667,0.649978060384747,0.7670676240818081,0.863055767700868,0.9566130479451491,1.05982847713374,1.0924639915441101,1.17359872110728,1.25080555026347,1.3475656970393601,1.43769510488892,1.50121146212922,1.5723408286921998,1.62383823375443,1.81632223828888,1.84871880984295,1.8602574601177702,1.96049278936511,1.9449895622537499,1.98063965701627,2.00287319222355,2.09798030599363,2.13102478171815,2.12949944757074,2.08721582743963,2.07924732878905,2.0788353849291203,1.96693425127576,2.09411377922874,1.881749394673,1.91229308354152,1.75827455936405,1.77781915888183,1.72976667936974,1.7094224553682,1.65283516012586,1.66844469410357,1.4659381848913202,1.10105255683514,3.82351028252653,6.911737969481321,9.295077063675011,11.1449696272958,12.984551446732599,14.872814971434,16.6707912241722,18.4696489713579,20.1533218742639,20.854410048145898,21.546724896993798,22.210002007953,22.899528409858398,23.5445829780403,24.2657623340344,24.9328293370324,25.6050766104787,26.3359179400025,27.0188977881853,27.692330097326497,28.250263599268,28.6910216336131,29.2723623493287,29.758963649934,30.2053673082406,30.677422173683897,31.2004224117829,31.662971075181304,31.9334117426835,32.1598656016156,31.942779864057197,29.8523439091748,28.8974422922188,28.2328364494654,27.7743979087494,27.172537682890702,26.4522472520925,25.485749605342196,24.5680666658496,22.8349973657308,22.230759094330303,21.550184651521896,20.8341395078462,20.263591154402,19.655618742184,19.3878425575397,18.5644603213512,18.017668189972802,17.279479962642,16.805731993552197,16.4433466649587,16.2742635237731,16.035833281386598,15.483575559734302,14.6132551865713,13.0382500248543 -0.488553365787157,0.3679016086416621,0.259117423644621,0.33441651865111405,0.282434344228291,0.249380354760308,0.21708444278329303,0.23185166847378197,0.20088275947776899,0.222536211781403,0.24397139686822303,0.242446327528978,0.25676211612510996,0.325341910103206,0.30332741394318896,0.365699289342492,0.453871296673188,0.541906492337243,0.627719437747244,0.7588099173717691,0.854657710478212,0.926815923455339,1.0247236291424302,1.06664294655778,1.17359872110728,1.24910168569096,1.3317026515118,1.4197805937568502,1.4785163141743898,1.5524194260601598,1.6150599440481201,1.7945083726346,1.84871880984295,1.85371878660496,1.96049278936511,1.93311058567123,1.93039659180256,1.99806713252662,2.0587226552130904,2.10851231786698,2.0900231531671296,2.06735383932179,2.0749736248992803,2.05373484095258,1.96693425127576,2.09271591941908,1.8753962748361102,1.9084540371587602,1.75827455936405,1.77781915888183,1.72976667936974,1.6963512625351997,1.6487244390631002,1.66844469410357,1.4659381848913202,1.10105255683514,3.82351028252653,6.89799823314942,9.295077063675011,11.1583770673788,12.992532715777699,14.886433744830502,16.6855048691724,18.5032153921734,20.208310402955302,20.9132501284971,21.582403695760398,22.281149807445303,22.9263872452517,23.633455127406002,24.3474200126941,25.015200955156804,25.716455018299698,26.412672833459897,27.110583254547,27.766739081074,28.3762162899115,28.8423963450002,29.3697405102148,29.8744606257872,30.3501677540422,30.8361981490057,31.3412250295057,31.8132410865022,32.1704341397446,32.3334990745803,32.0855123104705,30.0420401023544,29.0759257221617,28.395786341951,27.9451766146353,27.355111186620302,26.651028363008297,25.6666169183053,24.730610075303602,23.000363046297103,22.391240028560098,21.7172753793259,20.9670058326454,20.390003560533,19.7962543488329,19.5229972539105,18.658660687848197,18.136713556013998,17.3807612070615,16.9227293311453,16.589510644523198,16.3675463340186,16.1060171230302,15.549589223217499,14.766199591233,13.143330793867301 -0.48725228546071,0.37428875911181303,0.27105965069533,0.34314067430319206,0.285931630380928,0.249380354760308,0.21840983244204398,0.23384736936979503,0.20184424273746598,0.222536211781403,0.21461964031992603,0.242446327528978,0.22642363799134899,0.307327201199032,0.30332741394318896,0.350177660536165,0.431659864628632,0.541759307453716,0.625728713399209,0.74278668639424,0.83721496782515,0.892558342809823,0.9976921346850741,1.00777684489391,1.10962590371052,1.19385438772234,1.2905139895853899,1.32407689357753,1.38789524044985,1.49566846193381,1.521377256036,1.75482053484375,1.8129495571936298,1.83282307649374,1.90063057942608,1.9099666623266598,1.93039659180256,1.99152856082395,2.0539847323626,2.08792608834833,2.0900231531671296,2.05494351521655,2.0314362694867802,2.05059020084116,1.94213244568719,2.09271591941908,1.87441597437171,1.89983223660137,1.7564139224765398,1.7461048985727199,1.69618903775179,1.6908683484924099,1.6244949503162802,1.6517213415083998,1.45564704749749,1.09777921180004,3.85086713433207,6.89599001414078,9.35317209984974,11.1787878716031,13.0546648055,14.966933861331599,16.742087207165,18.5521886421268,20.264421799523898,20.9710786703225,21.6728883807648,22.3228739167643,23.0179120846168,23.6986472793039,24.4035101912134,25.0666105510513,25.7778764607851,26.4959532569104,27.201427277665502,27.8651334855288,28.4447291629942,28.9079392227453,29.5134348415631,30.025386005351898,30.4463238140663,30.9307611187849,31.469578211417105,31.987526014053397,32.2367124571095,32.4792411200606,32.2606888473043,30.1936112299721,29.238041672834502,28.528497303006898,28.09314188996,27.494340752353896,26.7481844070349,25.779978923067198,24.872296752689298,23.128293847259997,22.5138317514999,21.8292521122012,21.1442073231845,20.4875645712008,19.8772405373968,19.6276029537101,18.7756127907882,18.260455498355398,17.448119020191,17.005250432114302,16.6511355193968,16.4431980585449,16.2020142825927,15.644767557397099,14.8103745100848,13.195020415792401 -0.48966373539729297,0.39288527899111303,0.281314174636379,0.34319618038356103,0.285931630380928,0.234120681291676,0.21840983244204398,0.22947067434225302,0.20184424273746598,0.222536211781403,0.21461964031992603,0.242446327528978,0.22642363799134899,0.307327201199032,0.28073661079904905,0.350177660536165,0.431659864628632,0.5199854255420201,0.623811547540044,0.732542298838772,0.8297161946347621,0.892558342809823,0.9976921346850741,1.00777684489391,1.08736365681044,1.18791517472778,1.2905139895853899,1.3197008343569598,1.38059664104952,1.4890011543101498,1.52062587308234,1.75047363707429,1.80393879821337,1.83282307649374,1.89295501448319,1.8991043409482602,1.93039659180256,1.98255010599884,2.0539847323626,2.08792608834833,2.08255548781147,2.05494351521655,2.0314362694867802,2.04344012304521,1.94213244568719,2.0892944752644502,1.87441597437171,1.8918559784414097,1.7564139224765398,1.7461048985727199,1.6900095737121898,1.69061122220894,1.6244949503162802,1.67003841834321,1.45350754589615,1.0953849703747,3.85086713433207,6.929422889149929,9.373739835726699,11.201808233771601,13.088817684780299,15.0063289784635,16.794412884124,18.5942834647019,20.3319167843168,21.055964904166398,21.7587264906331,22.4029375545428,23.140608966180896,23.798942931743603,24.516830066304102,25.1852971197883,25.914137726631303,26.5849799184587,27.344767732951897,28.0512367831123,28.6029514597296,29.0807589024423,29.6668584787312,30.198654509630398,30.6216570979565,31.0953054693855,31.6294723450391,32.193623961410104,32.4788893630195,32.6540173028854,32.462631313136605,30.3829401182268,29.4629960709719,28.750760265005002,28.286799858111802,27.6554899060826,26.971369325225,25.9945797845088,25.076857647104603,23.351061138183603,22.675439673167,22.021164575246896,21.287726634548896,20.6782836334501,20.0883463824622,19.7892833062923,18.936207358218397,18.3662453395852,17.6364979177245,17.1610466843985,16.7837451637453,16.6013474483057,16.3650899331239,15.7596333716823,14.948148159669499,13.2821815742669 -0.49271592373136797,0.40415748895695797,0.272204380291942,0.34319618038356103,0.292962055852055,0.242101799532966,0.23040396822290196,0.257340914064129,0.20660967655798,0.23329829410864397,0.21461964031992603,0.20960601804085602,0.22102783819460298,0.28847374412046695,0.294719882250987,0.383979614961193,0.387439432794908,0.5243081431705879,0.599466655247663,0.7072092932996892,0.8142597527858041,0.854211894737328,0.987568586280316,0.9763761709800871,1.06968796323806,1.16063402617037,1.26211424619676,1.30820456516516,1.37996889136717,1.44019408035624,1.5104153574976298,1.72046935689066,1.78115798881224,1.81548389354946,1.87011588377299,1.88123511597574,1.90304857467742,1.93877653100724,2.04912258406166,2.07609490584397,2.06767432501886,2.0595395741927,2.0314362694867802,2.04344012304521,1.94213244568719,2.08495097459741,1.8434330438173898,1.8923389870799898,1.7564139224765398,1.7461048985727199,1.6900095737121898,1.67140300057208,1.6244949503162802,1.68245887478508,1.4411681741676203,1.0953849703747,3.86237527383294,6.94500550157277,9.377203391555119,11.230010872093999,13.1297176333306,15.0687872659702,16.8448269636181,18.646818310186802,20.3848916859931,21.1277572906852,21.804060494205398,22.490902509239103,23.1847214561193,23.851853820689698,24.5810041368634,25.2833387306245,25.976888088523896,26.7063930745612,27.423882163443302,28.118450955535003,28.701698163390304,29.2067105079056,29.7512898703122,30.316472076489397,30.7318294053367,31.2416572699472,31.7728588276115,32.2986792108119,32.5931040389381,32.814082816802895,32.616291580367196,30.5573376595195,29.6042711626412,28.903234890666297,28.478538943607603,27.847711344908,27.1449722130863,26.177436233660398,25.243021887423396,23.492747124191297,22.850136883359102,22.1604580397144,21.4491101674196,20.818997846448397,20.243304031433198,19.9033039465237,19.097597906580997,18.5297082392821,17.7382160281436,17.2567310614404,16.8974960650221,16.6865155868619,16.438079635857697,15.887752283248599,15.030107102344301,13.3474184911308 -0.5021437462837279,0.39925272229818204,0.28601252698102503,0.351479402385826,0.292865519928789,0.23855515653933104,0.23206916408258102,0.257340914064129,0.19581316639989998,0.208426548724868,0.19708811937992896,0.20621564105273898,0.188923395578644,0.267690366225381,0.284850171391341,0.358536942137769,0.37826362126621904,0.49694702289532794,0.5899632261961401,0.682293390867175,0.790066534923023,0.842639674568277,0.932512111806384,0.951344184309621,1.0237115466426199,1.11477905797301,1.22102002784549,1.26832026359913,1.30468096655766,1.3773669359618101,1.47730149123766,1.68158419128591,1.7393383873224801,1.7303919513913602,1.8471110192776798,1.8645816317433999,1.8839198461291102,1.93877653100724,1.99346579945014,2.0644191950402098,2.03684484716233,2.05107071603286,2.0285926775834198,2.0147619939448203,1.94101567892974,2.07894933898844,1.8434330438173898,1.8846459828278799,1.76074091672382,1.74071186077173,1.6742407209015602,1.67652639749838,1.5853909253788798,1.6893724689581697,1.45548959472673,1.10606195420515,3.87477513867076,6.96089073450818,9.40088049225773,11.238737016984901,13.1785429603565,15.1203910946105,16.892730496299,18.7063564501164,20.4456104901566,21.166377159042803,21.8755183399743,22.540264921118602,23.2711085302418,23.9317175809047,24.6557258022462,25.366208396998896,26.094488384541396,26.774155660506896,27.5064667255294,28.225095119569602,28.829848799100297,29.3132018240675,29.8878689912538,30.428143494506198,30.866840109460203,31.367986649430105,31.9207624674734,32.4664307027637,32.7699933564665,32.9993748889596,32.754911984329,30.717857458285398,29.759787513436898,29.121143760909995,28.6577942862375,28.029367960549397,27.3168964573104,26.340151411799603,25.413237565864,23.629791826311497,23.008439104496897,22.302782599011003,21.5581033246571,20.966258838413502,20.3470471046381,20.010807121398603,19.2287646465835,18.6507801063346,17.803370264345,17.396376433452,17.067684212573,16.8344572826565,16.5521198621007,15.9705181935581,15.1342396358265,13.441461886700699 -0.488390152251754,0.39925272229818204,0.277734238455807,0.32119329956955395,0.292865519928789,0.23253899568980302,0.23206916408258102,0.222800421946658,0.17443669894125302,0.174997045978673,0.16620254321643,0.193365637169853,0.188923395578644,0.22813519537608298,0.267716143385294,0.309272300371895,0.332633417083203,0.47343351466908096,0.517073728791952,0.650070234523069,0.758321350554682,0.809628884625846,0.897256470698771,0.884860096429218,1.00089886464154,1.0963545406899,1.16798949402249,1.2150531950220802,1.2683498645891103,1.36348911588897,1.43284637559085,1.66209816681793,1.69209307435897,1.69840389542422,1.79719978176781,1.82088068130083,1.8571110380685902,1.9169919367880701,1.9350233123175,2.02264217361819,2.0158638256671297,2.0230620984809096,1.98261301461385,2.00597637520262,1.90873886144539,2.0288710736659,1.82970757621836,1.8712426517045302,1.70930510857708,1.72342937455354,1.65858753662556,1.6697435615685299,1.59288335203893,1.64348809118965,1.4477976548814198,1.07997309233665,3.8808096203458198,6.97168160195403,9.41842704078498,11.272292402983,13.1834888996683,15.148077040504301,16.9157468580094,18.760305476587302,20.486978760548602,21.2631925054485,21.911220450600702,22.6113381822403,23.318667645128798,24.005111260318603,24.736535700604502,25.441714753583003,26.1728303829046,26.893082700136,27.634594929671604,28.3372712091058,28.927387215935802,29.4098919133915,30.0116480796907,30.5708384723286,31.0057858170552,31.4810865061382,32.0377370728481,32.5932280779458,32.8869250209031,33.1314661895938,32.9387781885536,30.905271773724998,29.951510111401802,29.290322938751302,28.8185392492101,28.1827479889082,27.505920143494897,26.487611069103497,25.583716343572604,23.764017109971103,23.148225810552397,22.4125009675101,21.7012060551977,21.100443996112602,20.4735273807116,20.1715146384943,19.348229019376603,18.731965847219502,17.9748757065931,17.5182085912109,17.1363935782977,16.9008814703584,16.667376724175803,16.075838388121,15.222364322887799,13.482641102569401 -0.505127123000482,0.400010977107646,0.29154238514489,0.3500726742227,0.297555652716726,0.24934199613104802,0.252434508083328,0.21869487099299398,0.17443669894125302,0.18265728710410603,0.17597500470216199,0.20079476503185,0.194344704149184,0.22813519537608298,0.27089946107858603,0.309272300371895,0.329397907346051,0.475051349120695,0.517073728791952,0.6597470439006949,0.738083950667485,0.798173053835459,0.879639039847774,0.8727963726560191,0.98193524349632,1.0771964722140799,1.16798949402249,1.2150531950220802,1.2493374949118998,1.3266643837918701,1.3996907087563202,1.6257004073275803,1.6825179949679598,1.69484677781109,1.76990540062706,1.80923745132243,1.8571110380685902,1.8899411240755,1.9350233123175,2.02264217361819,2.0158638256671297,2.0230620984809096,1.98261301461385,2.00305737544202,1.90873886144539,2.0288710736659,1.84902367402725,1.8801233745675099,1.70930510857708,1.72342937455354,1.6654259906278899,1.6697435615685299,1.5908164230880502,1.64348809118965,1.4595677921211898,1.0898863551292,3.88928237040435,6.97168160195403,9.42303486917948,11.2999426772856,13.214216911161099,15.1754634684133,16.9746601626214,18.797377149303802,20.5394676514981,21.2867726946048,21.9440092391743,22.659611129346104,23.3549196167419,24.0507252079502,24.753904836956803,25.495047330981496,26.222612476578103,26.965212515225502,27.669539139373498,28.441933761964002,29.0196007290367,29.4872312685075,30.1251817446373,30.6327943974761,31.096002391084,31.5904353886707,32.204957450406496,32.6949833451365,32.993674123641604,33.2608026288038,33.073120237701204,31.027961860039,30.092530648453998,29.396934972189303,28.976705807761697,28.3268460845233,27.627797033241897,26.6409205434243,25.6954301475622,23.9048191101981,23.287769285032603,22.557087639500605,21.8093359714647,21.2366753409184,20.5748729922339,20.2668767221826,19.4471694226635,18.8573112391097,18.0497562052155,17.5784125969832,17.2358509878996,16.9915253932027,16.7285304694269,16.1595835511406,15.2713678686786,13.5590580179964 -0.480461833874866,0.41349204617431795,0.288124858351996,0.330369236747719,0.277306547219336,0.248625599146566,0.20895196986800302,0.195854868777507,0.15322683424963002,0.178218666167804,0.161460897497639,0.147778352002768,0.16126567725992902,0.21860312002801396,0.21559108201159696,0.25387283974981895,0.324070669426341,0.40128094999943303,0.49086503945272403,0.6146170942661561,0.698000726631401,0.7373471844000891,0.838178155720469,0.8720469822770409,0.9306405330187429,1.02488966875725,1.13689984205451,1.17275539354329,1.2242016012181103,1.29829870222981,1.37222392183886,1.5923669457205802,1.6620809955325901,1.6856976319411798,1.7662693365889999,1.7683138462763601,1.80030876777475,1.84083106992221,1.9350233123175,1.9943468910953301,2.00146498016811,1.97930892227575,1.97337756800573,1.9815063225371599,1.8567170494943002,1.9947561870884198,1.8304781369227299,1.85378249614802,1.70836595167476,1.70978884538926,1.6654259906278899,1.66764015754347,1.57183530651284,1.6282131365131998,1.4476280787660398,1.0898863551292,3.8949769152672897,6.991187121210981,9.44020585510517,11.3240950748129,13.2504703988169,15.2024795068101,17.020548392037,18.8312187244277,20.5715610796188,21.3391091033357,22.0548648629365,22.687722406849602,23.411364696918,24.1372358792609,24.8459714203976,25.552987643973303,26.3170340739168,27.0064183185802,27.7630586042486,28.499479653833397,29.0874119447297,29.616964477423302,30.239028400615503,30.771593055502702,31.2225719001766,31.741487348253603,32.3364222010495,32.8538650819995,33.1868291043368,33.4040660439945,33.2336975834011,31.212640183945304,30.2871532176192,29.5761127735802,29.1481832605222,28.481278836844503,27.802614154476398,26.783372730070802,25.8755429002756,24.103489611047397,23.4352361203967,22.6828539258579,21.9978467113974,21.3974427360435,20.724704941321303,20.4170460104097,19.559072126277197,18.9856166861587,18.1991061455373,17.7269291347068,17.3351280379066,17.166186976764802,16.8546439736599,16.2782258332239,15.380486537757198,13.6016417222824 -0.522785653855004,0.43180603474293605,0.30402294904384697,0.34245647550356395,0.277306547219336,0.248625599146566,0.20895196986800302,0.195854868777507,0.141690250352135,0.178218666167804,0.161460897497639,0.147778352002768,0.16126567725992902,0.21860312002801396,0.21559108201159696,0.25387283974981895,0.324070669426341,0.40128094999943303,0.492378837160082,0.6146170942661561,0.698000726631401,0.7373471844000891,0.837138842273116,0.8720469822770409,0.9155767443740079,1.01605096901965,1.1040674753721103,1.16540433962329,1.2099994502423301,1.29829870222981,1.37222392183886,1.5914156530697599,1.64187940460806,1.67371172406152,1.76456513368126,1.7511609584352699,1.79478435347799,1.84083106992221,1.92738646149627,1.9943468910953301,2.00146498016811,1.96978358324008,1.9615410052844,1.9815063225371599,1.8567170494943002,1.9947561870884198,1.8304781369227299,1.85378249614802,1.72025076176402,1.7218166186305401,1.6869929539724902,1.66764015754347,1.57183530651284,1.61128989320842,1.44607404476141,1.1058879539731699,3.90699248482479,7.00630479932956,9.46856053837339,11.356659347837601,13.2941780619172,15.2642262507612,17.091336955009698,18.9000807333706,20.652023472516802,21.399039380917802,22.092672622084198,22.7858027681578,23.499699460264804,24.2100106772608,24.9365032052007,25.647804573945198,26.405861623252395,27.148712307747,27.8708013316322,28.632481142746897,29.238996317939897,29.6923435494428,30.363441545403102,30.909675541657,31.326383523235197,31.853727969001103,32.4633130925556,32.9905372117102,33.3333382529134,33.545309641329496,33.3758925225706,31.363653792504802,30.4414779606729,29.7320269344879,29.3185661204707,28.6788418850687,27.9574745402458,26.9903838277267,26.0444464953885,24.2397250975732,23.580960770918605,22.885556813432498,22.1444398658776,21.524134954198104,20.8721250359634,20.562460895538603,19.6836640077725,19.1582172834558,18.3294053987482,17.823387956406897,17.4405992797795,17.2738155329217,16.9885163365273,16.3909977010332,15.480156477703199,13.7202787081319 -0.497728305256156,0.409231863968397,0.30393780167892703,0.335062014747139,0.27792095928440397,0.237875804055386,0.20895196986800302,0.19594649724381197,0.144090247266962,0.16808298951433498,0.14821229044468098,0.13709533570732302,0.130242068012697,0.21946415300108302,0.195479332712461,0.24011938742460198,0.313920769134669,0.38615389923665294,0.492378837160082,0.590316663996751,0.6781770607399139,0.7319561862219051,0.8171847255580279,0.840472011829723,0.902415407450082,1.01197319224163,1.06935567091576,1.15299709783326,1.18122287779365,1.27094882243284,1.33396224434442,1.55036760875608,1.6193522689058601,1.6260255515828201,1.71345208121448,1.7379314409098798,1.77190764966664,1.83110710683615,1.88154318344278,1.98453722911533,1.97819299137727,1.96438584420825,1.96854142245708,1.96340935004127,1.83999459810777,1.98514312442864,1.7892178171570399,1.82635161882407,1.69174787764454,1.7153034004555698,1.6573757415514698,1.6278352401929,1.55128376345391,1.61128989320842,1.43228860657026,1.08463202752663,3.90699248482479,7.01906136066762,9.47181186255043,11.3821687766537,13.3254299669061,15.2720278328035,17.105799627123197,18.9194120279837,20.673216376825604,21.4493268397034,22.138090750367898,22.8002441930005,23.5391122076432,24.250582385915102,24.9893812505939,25.710716278727798,26.436698585854202,27.1956560717032,27.922529451754897,28.677019780230196,29.290384807222498,29.7977177749362,30.419549429970697,30.9811515411893,31.425050324742898,31.973271454320603,32.5333005882432,33.0958372331728,33.4272809545095,33.6673979927562,33.5046787547845,31.505850903024896,30.5608769856795,29.878020888095197,29.4705237620535,28.8128116958542,28.111403264809603,27.137287005353798,26.186401186684602,24.3682048603912,23.705942878707102,23.021162260858198,22.2442760263884,21.5998636632509,20.9729722616752,20.6528941447696,19.820908438783,19.251784336824397,18.389097402224102,17.9097216240066,17.533395015664198,17.3455061774495,17.0510031625424,16.4739682674153,15.5545744411409,13.7746577519839 -0.520018139830721,0.419374039690348,0.306156536458556,0.36630555015391403,0.303864850724687,0.25623414458642396,0.19805958106751,0.217820622750769,0.16052059300237498,0.15958648045397597,0.13641231659456,0.134398421639729,0.155931604145401,0.22937037885563,0.19939194664447896,0.260362803947841,0.30985546062690505,0.39298263343900397,0.49687847103999705,0.585658790695776,0.694649572453796,0.731375647452558,0.829616862686577,0.7812092246961708,0.886028155696221,0.9867054447396371,1.0498046749644,1.10084463077676,1.16664961142074,1.24448930175861,1.30991835913949,1.5150848185994101,1.57571558394016,1.6260255515828201,1.69373573763399,1.69283413927474,1.7602154739184197,1.7988222430243799,1.8769538732903501,1.9587809395131102,1.97819299137727,1.97088663072257,1.9560621424322502,1.96340935004127,1.84539834943258,1.99630002318748,1.7892178171570399,1.8206958983408401,1.7032453447048999,1.7016394798745802,1.64036624822821,1.62694729244472,1.57202714208419,1.60148202781221,1.44806995578152,1.08866563019676,3.9071123097987503,7.025694458505219,9.49845267707749,11.380548336501802,13.342756022815498,15.298104448417801,17.1455105013887,18.957895462215397,20.7226139553079,21.477776634987197,22.169841047438698,22.8734912077878,23.5758920519788,24.2971536763394,25.027346851902,25.745001164000897,26.522532157980798,27.2498149589251,27.9898062810499,28.7337100764332,29.342817955969895,29.892064508839802,30.518454981254695,31.0613494661393,31.5256029621673,32.0596277301225,32.676191295375,33.2063167925821,33.522409640296196,33.7876536105843,33.6439870961656,31.641084054552003,30.6912531488052,30.0259768361216,29.6040100423307,28.9693310827261,28.282458357038102,27.256719900042402,26.316687894431,24.5042378349408,23.8394840570328,23.1396182675494,22.3857091057535,21.7604921984933,21.0960333134387,20.776267525046602,19.9264521942128,19.320133376304103,18.500750754643303,18.0120648518405,17.6441277619303,17.4376002161434,17.1753135537977,16.524825743637,15.6191217794068,13.834175339329699 -0.5090819721482489,0.419374039690348,0.307447283685149,0.351644828795515,0.280097284218448,0.25623414458642396,0.19805958106751,0.217820622750769,0.161298459962949,0.141637044039796,0.13641231659456,0.132746487903498,0.141775312999028,0.22474921058191397,0.19939194664447896,0.258581054312063,0.301501965284976,0.39298263343900397,0.48084241336789796,0.562045282505474,0.658005222757986,0.706367560199401,0.7943680644799058,0.772687607574907,0.8816122767923491,0.961024110219557,1.0434106778447099,1.09381321355798,1.13390519706868,1.22311198814642,1.30991835913949,1.50769214555281,1.55261059088644,1.6260255515828201,1.67312743412648,1.69283413927474,1.7602154739184197,1.7958782969519902,1.8769538732903501,1.9587809395131102,1.9675947458866598,1.97088663072257,1.9560621424322502,1.96340935004127,1.8472957856595098,1.99303797106626,1.7855572229498202,1.81236268094127,1.7032453447048999,1.70076529979639,1.64036624822821,1.6236051182070201,1.56627986140391,1.60148202781221,1.4440727777832498,1.08573140685299,3.9093779734642595,7.03264194971266,9.49845267707749,11.4028815883723,13.342756022815498,15.3241075040411,17.1755690318668,19.0027817366137,20.759341112523803,21.503759135356997,22.2306246918614,22.8982650749555,23.6433976963078,24.326344710685202,25.072379257673003,25.826271596831198,26.5589483371851,27.307365208558696,28.0740347642857,28.797809077093397,29.4626395124705,29.9813162690579,30.623117812140396,31.146905565178297,31.6344866516431,32.2094354601323,32.7661530705007,33.3231172881673,33.682806274686,33.9177351361935,33.7792885576478,31.8029500228592,30.8577510493011,30.2414767352438,29.7520298979974,29.113387290864395,28.4204022960023,27.4111388149935,26.453534748120003,24.6516259242928,24.013276014983102,23.283187540169603,22.504677565583897,21.899646632080604,21.227098838356103,20.903756416346802,20.053538058917,19.4669687755776,18.6206540222318,18.134939119718698,17.754096891223,17.5539353367706,17.2568709231938,16.619835773440098,15.7411545184783,13.933918422514601 -0.510793080664818,0.4284491109104279,0.335571769710827,0.35164182374531605,0.30224087999392896,0.232862371448239,0.184692987594226,0.22020586861408498,0.134221508672299,0.141637044039796,0.13547915395155902,0.13123727048446301,0.127449621141394,0.20426584512118,0.185567300134567,0.24417394424475503,0.28791191317308,0.38457270736265897,0.44053293563245294,0.551990856404853,0.64459564741627,0.668275349513115,0.766501240751181,0.7512600255890111,0.82440013038349,0.9476707471611129,0.9922564976117291,1.06456128328388,1.10948503099384,1.20475440797512,1.2504236365060502,1.4973053666774199,1.5333598213708002,1.60779706769426,1.6656995224933202,1.6695839160478,1.700905727101,1.76716433937951,1.85264160720507,1.93739331353641,1.90630218272275,1.92838567239999,1.9096072325306601,1.9090092730655501,1.8472957856595098,1.94402975924718,1.76275899319175,1.81221037198254,1.6905587362897398,1.69807977361348,1.64036624822821,1.62341905539764,1.56627986140391,1.60148202781221,1.4440727777832498,1.08229584182975,3.9212075578226804,7.03769924043505,9.51716855720378,11.4183897793574,13.363950886907102,15.3680389580738,17.2044279325245,19.043463980235398,20.8129147692919,21.550260657163896,22.253819588195,22.954716311659002,23.651161140162102,24.384413299682898,25.132988948801497,25.858170632118398,26.633271520346604,27.371702623290602,28.1609013778233,28.903725428717298,29.5587085540935,30.054696617697,30.696225156771497,31.2506986337111,31.748783406012898,32.2984281182951,32.9010810670072,33.4457858325069,33.7951845643179,34.0460633741329,33.9130354774182,31.911699434078198,30.995825112887896,30.341699694018804,29.890718550135798,29.270163254605603,28.5822797648739,27.5717441523454,26.634047317594103,24.790850344017898,24.138168035619398,23.4139652900517,22.673513234935,22.0423950277664,21.3649238361013,21.0632777562043,20.217808646631802,19.564458764266103,18.7376976061955,18.2496279708149,17.829277773781396,17.6349684396189,17.3809452573858,16.737888920056697,15.8089768536499,14.0156116635651 -0.507712145803341,0.41756549022301503,0.33938919593504896,0.35305086891168797,0.28724166785307004,0.24206021576354803,0.184692987594226,0.23217647631443303,0.14485968506018698,0.12723562928294999,0.14248143935743202,0.114117810341892,0.12539050907272697,0.198787392209117,0.175902554964623,0.21463950389811395,0.273216007199001,0.370855486543228,0.422744602576135,0.5425313053219191,0.633826257429048,0.665226988357842,0.751070916686957,0.742581866787048,0.7961242282578391,0.9054422807547121,0.9648162399373961,1.0409560231961401,1.08525675387129,1.15984413308149,1.2334668023273998,1.4575033726881799,1.52349360973282,1.5466589456395599,1.65372938108468,1.65566294609615,1.69167351796161,1.76716433937951,1.82703661433535,1.9206118045347398,1.9004738441643998,1.91554373288325,1.90355674441472,1.9090092730655501,1.8504784373368501,1.94402975924718,1.7548255458056101,1.77989227031339,1.65147231490148,1.67482816878442,1.6281096561844,1.60690976343779,1.56498679724058,1.6163033323101499,1.44425830441904,1.05544844174896,3.93046173162709,7.04711086390295,9.52647368526527,11.4381886247242,13.3787945490993,15.3876525725802,17.2443230457146,19.0844491598306,20.8565771589888,21.591515873678897,22.3108775066162,23.0109731310216,23.7273769352764,24.4624883322114,25.2090285376968,25.882685003528103,26.699775251767804,27.4556559107423,28.190154026174103,28.963865753836497,29.588295873725,30.1263926358497,30.772101491159,31.3542013186939,31.8221452902564,32.3779593415444,32.980568646428296,33.5199475389893,33.883461856661,34.1595564598737,34.0106053384171,32.0465101862389,31.1482990102142,30.472703884511105,30.039348876208898,29.410060410691198,28.693568170922102,27.689700653617802,26.732106125928503,24.8970701872895,24.2755912865735,23.524349016174398,22.746273769882897,22.1436788523903,21.481109726836,21.1605505306338,20.271277059965104,19.663393441162697,18.8181151826292,18.3083141089024,17.9267940392026,17.718834577546698,17.4423487935277,16.793356807051698,15.861913536150999,14.068694351984 -0.515713682579609,0.43262505095407106,0.35022947808113897,0.37930058042126097,0.314976557639323,0.248679553761227,0.20761607418105302,0.24480759933862,0.14485968506018698,0.143744131950861,0.14294697508422,0.114117810341892,0.13121826342721,0.19686437332814302,0.182191075180072,0.22461959624066397,0.273216007199001,0.35684995374776096,0.416353714394729,0.555722424084574,0.6388177924627111,0.665226988357842,0.751070916686957,0.742581866787048,0.7960665916306171,0.9044951198457192,0.973991816636601,1.0306680873231,1.08525675387129,1.1593156882401798,1.21238061586393,1.4292890047935802,1.5229621594545901,1.5456927436965302,1.63984737400676,1.6426778648935199,1.6899607008725102,1.76716433937951,1.81175728374128,1.9066996042289799,1.89875171050226,1.9267676960536497,1.91441663065921,1.8939040995641399,1.8488422665545299,1.94258899486163,1.74955688204266,1.7832688959536298,1.6610124254698602,1.67482816878442,1.6350656083484598,1.60690976343779,1.5691770442389599,1.6163033323101499,1.45238238148969,1.08006665302131,3.93569892924051,7.039731182332551,9.54701692172641,11.4610944647609,13.387465916319801,15.400398687893802,17.2625084731807,19.1027810647521,20.872025008089498,21.6176869762843,22.3380781048727,23.0389110414603,23.7459093033802,24.495826294614602,25.241784300169396,25.947622364632398,26.7106045057143,27.469336854078303,28.2673108875514,29.0201928847126,29.6653210290223,30.23979410333,30.829520766398502,31.419574056567697,31.9448433649183,32.4732629229776,33.0626812675179,33.6490947565468,34.0299394912985,34.2853045649464,34.16633732248,32.2164398184861,31.289244559328104,30.6054370432673,30.189588754791103,29.550979707554898,28.8205249972274,27.853321864598197,26.888368591841,25.0619696952675,24.369850286624697,23.6715760481952,22.8684815795993,22.255726086554603,21.586421535945803,21.261430453299198,20.388114944630498,19.7857343998845,18.9079564532841,18.4279639286271,18.0324292829079,17.8124980839754,17.5543330079784,16.9030472721075,15.9850746615974,14.168141569261 -0.508538476452324,0.44094506561321506,0.355678951860996,0.371997985989935,0.30811883646983,0.24955552259435299,0.232130821171953,0.24480759933862,0.14858067103824601,0.13068510648234102,0.13543160510434699,0.114117810341892,0.111056603983681,0.182084107348986,0.182191075180072,0.21795636971473803,0.26056245965908803,0.348216228486234,0.424945411423899,0.528715890406073,0.6275009500976529,0.641650069856683,0.74604637816321,0.721698419965383,0.8179897633772231,0.876386034776156,0.9793067854574441,1.02327820599777,1.05347374799851,1.11661883409369,1.20048668847492,1.40552475814248,1.5189851148009101,1.5452135320525402,1.6176956405886,1.6426778648935199,1.6899607008725102,1.74635179997814,1.81175728374128,1.8846119437630302,1.89355041772502,1.9267676960536497,1.90651708481478,1.9155692148999302,1.8488422665545299,1.93373472610589,1.73275485160338,1.7832688959536298,1.6610124254698602,1.6582510914533302,1.6350656083484598,1.60468346332369,1.5691770442389599,1.59292312732064,1.44693558233741,1.06593834445381,3.93722437292468,7.04960719855911,9.555945233743948,11.4804251403776,13.4136961352389,15.424866991533301,17.279094561992302,19.1430709840393,20.904542993404103,21.6516244726348,22.373791977167002,23.057332080471102,23.8065748963938,24.523949167445696,25.273128763632304,25.985077189467003,26.754321391254802,27.545952948415998,28.327460675051498,29.0986262471065,29.714584226452104,30.3045310815271,30.890390730704603,31.507478660503303,32.0280092547055,32.5758126757988,33.1619137388348,33.7426037957751,34.0980556652827,34.3989590579473,34.283997547019304,32.3065906925584,31.4039325809297,30.7446747813166,30.297538523870802,29.6597629727896,28.9916481541892,27.9569570874187,27.043983778095196,25.213786305417198,24.531295368579396,23.7985563169991,23.021827185798898,22.372662675553897,21.7089945935858,21.4482394906483,20.4902657562669,19.8730183341935,19.0508260431526,18.518235662945003,18.133456092003698,17.9055723902871,17.6485519036167,17.0188107488271,16.053147582314402,14.213547601322201 -0.501108119019248,0.44094506561321506,0.351347635463979,0.367709183154836,0.311794131416886,0.24620183876724697,0.22015974604671298,0.22315517816100697,0.130488671286254,0.13068510648234102,0.11847769238607,0.10948340100801,0.10743178675278801,0.159373624177186,0.15939858136949803,0.21795636971473803,0.23725797397281098,0.348216228486234,0.416486685935559,0.528715890406073,0.603055113152449,0.640895399115397,0.714358895782356,0.7035219756652349,0.790448840224641,0.8432873389855009,0.955463449319473,0.983190346065208,1.04691901647313,1.0935580140715402,1.14816066546557,1.40552475814248,1.4651300789633301,1.5091520316413602,1.59882051150496,1.6033367154604798,1.6788627449250901,1.72193952867542,1.7988909647248101,1.8846119437630302,1.89355041772502,1.9145845590187902,1.88810615719457,1.89895944994593,1.85547591117949,1.93373472610589,1.73275485160338,1.79896763988256,1.6665177307044,1.6582510914533302,1.60376117209634,1.5666549954056699,1.5750231047044398,1.5900395323622099,1.4376421340260903,1.0456570944443901,3.9450940056452204,7.05637527683383,9.58774144024461,11.485058286277699,13.447423644105802,15.440049246588302,17.2961513794967,19.1562387802664,20.9127127337498,21.668320538261103,22.4011585741844,23.083972935885896,23.8184259289565,24.553878574082102,25.3064369275657,26.0230405704779,26.7863565941681,27.5764435107555,28.3447284854603,29.135012420648103,29.783740954443196,30.346551629460397,30.958566804858,31.557525184590503,32.078288688203,32.64271085934261,33.207222674475005,33.8177159382175,34.2208468485066,34.4976505120485,34.381125652561,32.428856577271105,31.494852661698697,30.823298069135898,30.4167741626203,29.788481415173504,29.077515920733298,28.0933069177257,27.1395635177077,25.287002408635697,24.599192888243604,23.8770936744384,23.120499067590497,22.4544685556966,21.773651296477798,21.480205802156895,20.587014421887897,19.9515003607183,19.1069897353219,18.5937466616467,18.2241591522566,17.9823383839949,17.6988250509151,17.0650256403077,16.1423464505985,14.279949889256 -0.501108119019248,0.43673795218977207,0.349996494026948,0.367709183154836,0.308878909537282,0.24089404708596,0.20108795695624698,0.18681899663836302,0.11962068860247099,0.116223297649235,0.0919386911658301,0.10532059138993499,0.0825142334395188,0.133648779388201,0.12525690280032198,0.180429822415077,0.215141122411262,0.32174726257916997,0.39948892753936605,0.507341235883017,0.555591211732159,0.626132877801203,0.6850329662820249,0.6709157481432171,0.7446807957352429,0.815306360699749,0.9217021212154791,0.9474012851253851,1.01450513341991,1.0935580140715402,1.14132139009061,1.36830865798821,1.4512281881216003,1.48674094266116,1.5648200655700701,1.5886072950234198,1.6303421081918401,1.69793672829847,1.7800852333438701,1.86251989944628,1.86301732296971,1.87079678636949,1.86690581541657,1.8774073272858403,1.79063246497643,1.90716394234407,1.71591013575926,1.77554362339422,1.64727878665667,1.65138929810756,1.58491705384179,1.56667858945953,1.54208530053568,1.5768603827941998,1.4093179053517602,1.0370388069340302,3.9375160029795295,7.06740140804461,9.554077530195462,11.489473255074,13.448239594975199,15.445914578629699,17.304554565924303,19.174599189414,20.9470849561843,21.7045545976416,22.4105485623275,23.115932043351197,23.8472344685602,24.575002218402,25.349132979979,26.0610870498913,26.8465504001678,27.6265009978072,28.3906258442137,29.1809521178714,29.864320041409997,30.392004584366997,31.0584903085192,31.639105836560503,32.1712045663707,32.6969011481779,33.310348005826995,33.875528867199804,34.2874985855996,34.5517773085003,34.4669991437589,32.508775026828296,31.6165495865508,30.9643020731406,30.5328552383235,29.919869751811,29.215719578197398,28.2060528274197,27.267781384888202,25.4208592053731,24.7049712217719,24.0126007821032,23.243371844103,22.589041014699102,21.9275566268754,21.5739877995244,20.6790040054364,20.104880545051103,19.212157857570002,18.6809241346667,18.2871496916094,18.119104530127302,17.8016674529171,17.133332414090802,16.2134401399685,14.3136536382197 -0.505639567241879,0.432301161091592,0.34495120572389804,0.36988640207419,0.308878909537282,0.25207583549655804,0.20394917458354303,0.198655504696457,0.11962068860247099,0.12472774844369698,0.0919386911658301,0.0958100622874669,0.0988848136199742,0.14541696834532,0.137677631267448,0.18295311361497,0.215141122411262,0.313073126228646,0.395773326926724,0.49643766612073,0.563448633076811,0.5946922113702879,0.6824671794750339,0.6577148655262329,0.7368622736141321,0.820612945876103,0.8914585195039498,0.9272574848037021,0.9827292764265841,1.06971100206251,1.11574358862184,1.35596039325287,1.44980219955302,1.4604637741326898,1.5540812346853403,1.5839076749245602,1.6146208915831102,1.69793672829847,1.76752676289745,1.8740948112722702,1.8651421459684598,1.8751773058755299,1.84443673430823,1.85539249767908,1.79063246497643,1.91647600511131,1.7273024728328898,1.7747024802943,1.6505927458711398,1.6428549020416001,1.5834557853033102,1.56667858945953,1.5441632685688502,1.59887836384159,1.4093179053517602,1.0370388069340302,3.9601086718811698,7.07807830875211,9.591528185591551,11.5053311939556,13.4745766839994,15.4732326259852,17.3419158344872,19.2136319118124,21.0165413632283,21.7566054994737,22.442245760973503,23.1843763508042,23.899216109425897,24.6197240653724,25.3941121863435,26.1212734182263,26.9014968793708,27.646662129215603,28.458242640858998,29.2328278619513,29.9108294055853,30.440650572101003,31.1338299809237,31.686195707507895,32.2271464649205,32.7807395883639,33.419794160097396,33.9776594746611,34.3567657387992,34.6605329823592,34.5354754451171,32.6413070176288,31.750966291832,31.1122215892201,30.641660668372303,30.054815141177002,29.3574585284071,28.3658566444131,27.4030304677208,25.5304168280121,24.853477578495603,24.139438775206198,23.3552054658288,22.6785833728347,22.0269903280865,21.692713382418603,20.777744481851002,20.165837811870002,19.3078525094717,18.772048152726104,18.3953097250351,18.1852371672017,17.8860173066696,17.222629254267698,16.2644803859086,14.3581307055291 -0.506373680951014,0.464875769732196,0.35346007182294803,0.389333849461379,0.320950181050995,0.256436764428112,0.20483085433745998,0.21627193453037802,0.148108128584808,0.12472774844369698,0.110766925302586,0.10001507173885,0.104526319869123,0.1661218358106,0.151143727887053,0.181352566698093,0.228448674280619,0.313073126228646,0.395773326926724,0.49643766612073,0.573837770312226,0.59037693169285,0.6824671794750339,0.6638427741415059,0.7368622736141321,0.840866010226086,0.8914585195039498,0.9272574848037021,0.9762425044015941,1.06601643698024,1.11574358862184,1.34135180496417,1.4592961932817798,1.4641220645506299,1.52847315725539,1.5720003622093202,1.6146208915831102,1.67542637518856,1.76752676289745,1.85666125655528,1.8526793939658401,1.87534152921509,1.84571523263001,1.8383848936936498,1.7680786742135302,1.91525202230339,1.70234450582563,1.7601098882178199,1.6505927458711398,1.6322327686173501,1.59662518887074,1.5895230033275902,1.5441632685688502,1.59887836384159,1.4093179053517602,1.0520337414477199,3.9586199305396,7.095088428798361,9.62477150520074,11.5196037218647,13.4979493238909,15.491895504623802,17.364678135274197,19.2536809186698,21.0462736407725,21.787014153495498,22.483187332404498,23.233219077927398,23.9406596623756,24.6566254718011,25.4308124221755,26.152331054825396,26.9593484871081,27.737463440495702,28.5239211118878,29.3219840725097,29.9948611393258,30.5487273179988,31.1905757240382,31.7880448822407,32.3342416389889,32.8802470738757,33.502380672307,34.10908482612,34.460960581395994,34.758046750849104,34.6862279049424,32.7833264818139,31.8889224095214,31.2494494832231,30.8199341785461,30.203109494537,29.5287477566913,28.4909044805555,27.573926929155,25.6885825101188,25.0119197913685,24.291312238751,23.496331170455605,22.8556097463777,22.1634124839821,21.8447972889252,20.9054286954279,20.3258585104497,19.4374147245724,18.921264727688,18.511871322153198,18.2968791307584,18.013844551447303,17.361526341297502,16.3991170529321,14.4676766066538 -0.506768581375842,0.477093543109348,0.35234613112234003,0.40169071875960405,0.326056453035592,0.255670960566596,0.20505420551921,0.21627193453037802,0.133185023457441,0.139387578201667,0.120649164428547,0.10001507173885,0.113350640852019,0.1661218358106,0.151143727887053,0.168822130543404,0.23505161141296,0.313073126228646,0.37289021349159895,0.503939592922254,0.573837770312226,0.599149217181806,0.6807042919118989,0.663002302276329,0.7368622736141321,0.8333390071330258,0.875947983325164,0.926668100338504,0.972469538876158,1.0410499541620999,1.09903400582579,1.33875167783918,1.4425303161474698,1.4551821073745,1.5167461561102802,1.5607176510783702,1.5958016088501599,1.65172089171485,1.75899387841041,1.8459299805512899,1.8526793939658401,1.87534152921509,1.84311575505485,1.82442583840713,1.7628369674577,1.91525202230339,1.6924773192111697,1.7601098882178199,1.6497799464500702,1.6318264582273898,1.57958705868784,1.5750349060334599,1.54685903885271,1.59887836384159,1.41297733388484,1.04986735649343,3.9659682333367003,7.112725108134071,9.64327342454083,11.5402768874644,13.518245998567,15.511689919431902,17.4052514912462,19.285244329067602,21.0546533292706,21.8248302069719,22.517819768276897,23.269946289352998,23.9695532059592,24.7076892624294,25.4833502413991,26.196660896026696,27.0152617314955,27.7658372000983,28.544182929955397,29.3345567562431,30.0177818858821,30.5932431555608,31.2873926086881,31.8406485245782,32.4167421737728,32.964495495120694,33.5530989173006,34.1793062147891,34.5752327322015,34.8239799225395,34.7383008201935,32.888785823902104,32.0333983593,31.3320769970629,30.941007571181,30.3279012434408,29.6049005324887,28.622711811165,27.653854686215,25.8165821428978,25.1637069507055,24.3890025703465,23.6255917498175,22.975376837266197,22.2521493601718,21.924373162363896,21.0607596480107,20.424191311097502,19.521288578998,19.0149651521959,18.5971721625695,18.3860092486626,18.1291198879502,17.4268149840039,16.4767907937923,14.5353718504044 -0.5207331486248701,0.477093543109348,0.37403315899922296,0.41344156964141,0.35177575632492697,0.255670960566596,0.21968500941124103,0.206352128926921,0.133185023457441,0.139387578201667,0.125948230397128,0.0895652675559446,0.0963171163719575,0.17095604256372798,0.14693409040323702,0.169413882158054,0.23346637298633396,0.31412033709933196,0.38503957735179206,0.49778615306591295,0.559088088366061,0.599149217181806,0.676485004254691,0.663002302276329,0.742020350054169,0.81281306094326,0.872591583984768,0.9132455452389409,0.941256528000467,1.03101711231058,1.05251268820234,1.30693693992758,1.38408745205448,1.4519468764201,1.4957449507876202,1.53538453603391,1.5698369255204498,1.65172089171485,1.7301727504846,1.8354431656230301,1.81556223839207,1.8586714736395902,1.83782471710718,1.83382797571122,1.7628369674577,1.8931754347142198,1.6895411739556299,1.73789330513238,1.62462096797737,1.6179991474485,1.57162879187027,1.56016317179877,1.5147386939023,1.56252162254754,1.3895431476386801,1.04945424339388,3.9659682333367003,7.121092044577191,9.64327342454083,11.5511617387171,13.5208233115511,15.535131679221001,17.4205735479179,19.3026772764132,21.103571493281898,21.8315454981891,22.5729792514415,23.301580433688397,24.0026574017379,24.7246927763549,25.495731775391697,26.254022865920895,27.043855475203,27.783406357601198,28.6018058359228,29.3980284402837,30.1199205457413,30.647615223513398,31.3123708403937,31.9195624300531,32.471577871608,33.0391547647063,33.651799700033195,34.270134050787895,34.6607059741117,34.935329226071204,34.87310693498689,33.004993089355196,32.121252427426704,31.4784427227953,31.0605472780791,30.4775568321997,29.769462527558797,28.769268755809602,27.8163302477143,25.961821788692898,25.274064176662502,24.5179390594504,23.711508151621498,23.0832289500881,22.4213898392711,22.0634978463595,21.1560798125956,20.4915282489006,19.6322612262455,19.1054183747001,18.6996730021765,18.5038224684158,18.2060878648234,17.5368397585462,16.5565993817245,14.6080074783204 -0.5207331486248701,0.48434693402579604,0.377931564969308,0.40740152144321,0.35856164010578007,0.274043234588391,0.215854555275707,0.209299766224276,0.139506974681522,0.139387578201667,0.125948230397128,0.0900953574260558,0.0963171163719575,0.17095604256372798,0.155794034514018,0.17515354534745098,0.23346637298633396,0.31412033709933196,0.38503957735179206,0.49778615306591295,0.564031566309538,0.6036069446511639,0.6653104484032211,0.677042059343532,0.724874709002609,0.805907189750598,0.8546116129190101,0.9073523510241109,0.9493509002430519,1.01780386385728,1.05251268820234,1.30693693992758,1.38162159917032,1.4378989671847902,1.4957449507876202,1.528246510333,1.5628884122413897,1.6459948229942802,1.7301727504846,1.8354431656230301,1.81556223839207,1.84886718232605,1.83461765834829,1.84494575395899,1.77746724402519,1.89331920471171,1.69069443253683,1.7258442611854299,1.62462096797737,1.6179991474485,1.57162879187027,1.56016317179877,1.5109277117619198,1.56252162254754,1.38075663877637,1.04314968548137,3.98416709235369,7.125588889865611,9.64997764664869,11.5599020268596,13.559215325539599,15.553129665383802,17.4218978652254,19.314424153751602,21.1387740374403,21.8423294615204,22.5857276348585,23.3169293653372,24.0373926058686,24.7390427233345,25.530022025610105,26.292900669778103,27.105855833954,27.8123487764053,28.637636124039698,29.4406102313372,30.170756677279602,30.7045886648817,31.3606762041189,31.993125950321303,32.542530107747,33.0768681164349,33.7076797378002,34.3564363193761,34.7367365694436,35.0102047175115,34.9593059319634,33.0747792815553,32.235564556884306,31.579078946272897,31.162348126592196,30.564644461089102,29.839105172916497,28.8974208284448,27.929239301326103,26.0791732135268,25.3685178101235,24.6457592009765,23.8373417977167,23.1973107355966,22.5403388681949,22.194092295468103,21.245022493633197,20.6047588519634,19.719013006540397,19.213259848107104,18.801034748070897,18.607293250585197,18.2921341420759,17.604692171705302,16.6262912287711,14.6634966704886 -0.515641903719076,0.49309804034005605,0.389106340812155,0.403903156195536,0.332730387444045,0.26460871905947303,0.21613648469372498,0.209299766224276,0.14147740944256199,0.12198750790579302,0.113283284635649,0.0950266597946971,0.0791510660073624,0.161715294904102,0.151076312884655,0.18276629427545998,0.21774301247304,0.26506207884143396,0.38503957735179206,0.44940345062503295,0.5406933009604,0.585342516666298,0.6474143622862409,0.6733871557714639,0.720079085387826,0.7534420712734009,0.825961297338864,0.8736247566192541,0.9317045864238259,0.984069804139435,1.03619147824884,1.30362977888446,1.3703950233061901,1.41213652093136,1.4957449507876202,1.5170474892876797,1.5628884122413897,1.6459948229942802,1.72059879339614,1.8014217745147698,1.80267333733927,1.8241395447274398,1.83128746947608,1.83951725789891,1.76423587610153,1.88823202694258,1.69452942586337,1.7227998603916699,1.62491404783342,1.6179991474485,1.57162879187027,1.5580038953381599,1.5166960372930198,1.55254977861081,1.38075663877637,1.02737132364418,3.99809119624014,7.1507560204397596,9.65807092040995,11.586052995540301,13.5740865985565,15.6196318599244,17.4633834846957,19.356210206294502,21.1562190063549,21.882380236608,22.6058409830097,23.349580761902104,24.060601096869803,24.798228067565397,25.587003464245,26.317944414198,27.1417295592324,27.922226336016003,28.681377278821,29.5200382940224,30.2436445210826,30.753077646593,31.4397635942378,32.1006352382213,32.6142934318935,33.1635483697901,33.8116691644166,34.4460257150643,34.828788390473,35.1154711325354,35.04388436603,33.2388409947529,32.3676134865515,31.690391037034303,31.300822952209398,30.6672058237147,29.988977892963,28.995455434247198,28.0411158527396,26.1543182137881,25.5197808137487,24.7383435625874,23.9339765878906,23.3128737204531,22.609026794689196,22.274780868572,21.361996862403103,20.7089569709062,19.822958243501102,19.299776386442,18.8798300406625,18.6713492627402,18.3738005077199,17.6689943814136,16.704905906113602,14.7285498368879 -0.5244012985924579,0.49991570636412,0.39223603149910397,0.403903156195536,0.343223601738341,0.26587107380626196,0.23542414665797698,0.210397406032453,0.15848590040542201,0.137455611143653,0.11500473695702802,0.0960184830475695,0.0796437710520496,0.13751963601431602,0.14683705740851902,0.172395006195304,0.204901514121017,0.295215885081903,0.38821518185980103,0.478890367300823,0.523299852909338,0.56443302065409,0.6545585881488449,0.623075356752256,0.6909113364180329,0.778371661493571,0.817807148682369,0.8701006010954301,0.915164098835509,1.0045057597263198,1.0237790552912,1.2481963400364,1.3369952092092399,1.40293902464027,1.4541483521692198,1.49198876055277,1.5512037045253602,1.6146920868892398,1.69473098440071,1.77636286102043,1.80267333733927,1.8020556070152,1.8100586251239899,1.81407244206989,1.73097418602588,1.84756491472772,1.69244238213999,1.71041637872755,1.6242207481400002,1.6092640418789599,1.55450059915697,1.53481588529843,1.4999660125452599,1.5797887086084301,1.39146551603925,1.04111002541551,4.009466165963,7.15714430829704,9.68314352896012,11.601769374337803,13.5979618271727,15.627827155716501,17.4792844987438,19.369853266837602,21.1739844062465,21.907233735580203,22.5987938699913,23.361981047592202,24.0814742451228,24.8112067976276,25.6166206829085,26.3559784313672,27.176284719491502,27.941401403077197,28.721639775367798,29.564507353032102,30.282003965770397,30.8147741337185,31.515657022948197,32.1508101645222,32.6677509723729,33.2526952710183,33.8727795942399,34.5035969792033,34.8745289582832,35.1709621204491,35.1347923797823,33.314787313812396,32.4469711834043,31.8035206564617,31.371189408295397,30.8098220563912,30.1224869402844,29.1387043747256,28.1644138666605,26.3284868377064,25.607470728658,24.86143188753,24.0492128128767,23.3789885818933,22.724702060912104,22.3970996729269,21.4673469141023,20.7986362724251,19.9131667611587,19.370234763215198,18.954409259488898,18.765524159251,18.454032337459896,17.7512715556037,16.7794092891656,14.772576136877001 -0.5212251681696679,0.497465079565086,0.39223603149910397,0.405680913060558,0.35312511504229405,0.258366656357734,0.227523706524613,0.21172033541569502,0.140840860549329,0.137455611143653,0.09727916354320301,0.0880168348448103,0.0796437710520496,0.12326751299169501,0.14683705740851902,0.172395006195304,0.20245482763248604,0.295215885081903,0.37153866850964395,0.47447420174638005,0.523299852909338,0.56443302065409,0.646942702948787,0.623075356752256,0.6909113364180329,0.778371661493571,0.787941410745322,0.8555254565742869,0.915164098835509,0.9852658686365259,1.0237790552912,1.2481963400364,1.33585993926312,1.38445812729767,1.4541483521692198,1.4865206409733898,1.53975309565678,1.6146920868892398,1.68752722944233,1.77636286102043,1.79312223008359,1.7884281701781597,1.80770859296545,1.7966037389378702,1.73001961642719,1.84756491472772,1.6889544382212702,1.71041637872755,1.6242207481400002,1.6092640418789599,1.55450059915697,1.53481588529843,1.4961233939730099,1.5797887086084301,1.38126727191749,1.00964780772699,4.00562123376722,7.15724305356727,9.6740978457373,11.6252207941889,13.6144692726129,15.622856068257999,17.494995141058098,19.3674907597283,21.1934480528714,21.9309343867059,22.6835340191134,23.371445476461396,24.122431204126002,24.8336185379768,25.6287199309853,26.400635151926302,27.1879986587423,27.9709053411761,28.7854264598589,29.592773017855702,30.3053524357519,30.847931869327198,31.5261755925498,32.190905203964896,32.6940908930771,33.2873465340014,33.931641359892105,34.542941195596,34.916467994168,35.2463272802723,35.2375989966821,33.3821904368549,32.5258417059827,31.8874122263448,31.5046630506633,30.8890290663031,30.211453223872798,29.2358692819216,28.258632690189298,26.355472159286105,25.7015323567035,24.9189910305858,24.1465297977738,23.5151460261339,22.807791361051102,22.4497920386722,21.569159365079603,20.8651998254225,19.9765164212638,19.450154591720104,19.023604147797602,18.803068052426397,18.5223554191633,17.830315975734397,16.8068385031618,14.8056501280876 -0.5304311211763449,0.496681120096105,0.39805096617084296,0.400799906712653,0.360005091189946,0.258366656357734,0.227523706524613,0.21172033541569502,0.140840860549329,0.137455611143653,0.09727916354320301,0.0880168348448103,0.0796437710520496,0.12326751299169501,0.14683705740851902,0.172395006195304,0.20245482763248604,0.324416946818425,0.37153866850964395,0.47447420174638005,0.523299852909338,0.56443302065409,0.646942702948787,0.623075356752256,0.6909113364180329,0.778371661493571,0.787941410745322,0.8555254565742869,0.9124420926796329,0.9852658686365259,1.02101482547577,1.2481963400364,1.33585993926312,1.37596002450035,1.4541483521692198,1.4865206409733898,1.53335990367201,1.6146920868892398,1.687324282387,1.77636286102043,1.7835140212004,1.7884281701781597,1.79716663169821,1.7938176074296002,1.73001961642719,1.84756491472772,1.68850564341349,1.71041637872755,1.6044438914206398,1.6092640418789599,1.55450059915697,1.53481588529843,1.46534104373862,1.5797887086084301,1.38126727191749,1.00964780772699,3.9964765374042797,7.16334793886903,9.68260191788099,11.631969179346699,13.6218563807229,15.622856068257999,17.4985823073702,19.3713466164896,21.2188735643137,21.9468110817285,22.6742762760656,23.4098806569942,24.1317963522768,24.8727385917655,25.6519971344522,26.4154647334449,27.230671853923397,28.003384980309402,28.8132274550584,29.626740251997198,30.328298436012698,30.9205164173977,31.613715833961802,32.2351015354566,32.7609934988517,33.3759252057433,34.0229108135607,34.608578712275,35.0724848417485,35.3357795052885,35.3151107876675,33.5045052088469,32.6329472391925,32.0152422496025,31.6186890976622,31.0205435842212,30.3704623340889,29.3374674721094,28.397901453740698,26.5078497078369,25.8436511748321,25.077197553260103,24.271094309772895,23.600108228870802,22.8973650749685,22.547225681470398,21.619584661961397,20.9888410841538,20.111428876487,19.5515001524411,19.1120253966906,18.902888998909603,18.606456290913602,17.927092011817,16.9263427570777,14.8899330978907 -0.5204119467934439,0.49978975661299696,0.415594231042731,0.41029653911203495,0.371781381174807,0.270051791003841,0.226129177453537,0.22646941245668303,0.13060738575636902,0.171109873256521,0.0965586350439434,0.110589623068453,0.0902798428625677,0.127873252353362,0.146504967099486,0.18954543760269396,0.202705299700091,0.32312126527963597,0.356935197143039,0.443999742874474,0.523269190790668,0.553573242257211,0.628687231772114,0.633166187060876,0.6743939500397541,0.741354724950403,0.766142820074314,0.8401758530821949,0.8991945874214621,0.94679210742122,1.02212148930453,1.2462372471198702,1.3203253443620702,1.39091347163292,1.4413027097792501,1.46621529514611,1.5239513189704499,1.59117260780211,1.66622424640663,1.79742027727662,1.7835140212004,1.79008714330287,1.8040798162623701,1.80360882906332,1.71629698636167,1.83337652941896,1.6939294822738,1.71627081744138,1.59952975444477,1.62983435527421,1.54526185035434,1.53394181088335,1.49150728367087,1.57622345249162,1.38936063465308,1.00692947233073,4.00926500909941,7.16720760881568,9.707405693653689,11.639795643336502,13.6346403480241,15.6351979990685,17.5195459889345,19.423769161679896,21.2345018249161,21.9815646008493,22.709774560147398,23.4505418034199,24.1701100647406,24.8973950727937,25.6876630783743,26.428990868776697,27.2634026557598,28.0527019186058,28.8612545621529,29.682559128036104,30.3855781538927,30.957457208305,31.6346127692282,32.2861034587921,32.8376421049689,33.4228248079726,34.0702442414997,34.6650404337466,35.1208488260181,35.3942175739219,35.3832060014505,33.592370787248804,32.7321686845419,32.1322685515103,31.705514530254696,31.1648088495046,30.4581724951364,29.465865324398603,28.485384123688696,26.6127299172015,25.9514415211967,25.197708510296398,24.340895736213998,23.718056931114802,23.0527243509596,22.6530289846252,21.7517126041898,21.1087033812539,20.176269160037602,19.6194070503435,19.2109317570807,19.0313273760831,18.686257758795396,17.9745443759856,16.9877305284063,14.927500669624 -0.52699355754186,0.511085901684887,0.42366928169247997,0.43033304456386295,0.376261377816459,0.295165367328709,0.23040840101129997,0.256019133201734,0.16651911379823,0.15489767530975102,0.11844338024521699,0.142913841857453,0.10596913018229802,0.15667191845457998,0.149900743580158,0.18954543760269396,0.21587765330923397,0.309787420710424,0.3781135608431121,0.426544718732746,0.523269190790668,0.560308951769566,0.6121266214019879,0.6354693169763239,0.6660450783490529,0.708424770608257,0.792776315989857,0.850209321839683,0.8871945977818679,0.9515965091843459,0.976564612690167,1.24976215184383,1.3378781592802,1.40354809133722,1.45189570542325,1.46784568626075,1.52683052566529,1.59276918197296,1.6699582485883702,1.76144307188108,1.78457274731018,1.7887186611210502,1.80599112635799,1.8135001380126003,1.7218538122266498,1.8374034710601599,1.6976244283633999,1.67942055472592,1.60026050521398,1.62657777167109,1.5506994706511,1.5470455297184,1.50343660360466,1.5682334349106202,1.39754715150834,1.03856260776147,4.01235426578033,7.19514922699092,9.71364573530263,11.6467737392815,13.6485940139687,15.6361527709074,17.5424269890228,19.4473004833945,21.2621414269282,22.001446273306303,22.733469126735802,23.4595463676758,24.1933319883041,24.960500634156297,25.7104145531076,26.4937975446409,27.3088654726141,28.0956000750568,28.910921878031896,29.706962148004,30.4667085887468,31.055395835875302,31.6899551844991,32.3481399100873,32.930494577535,33.502744956803305,34.144740836926104,34.8034723198756,35.1916342892276,35.5109018144652,35.4780236326481,33.7093230304332,32.8600293171826,32.283670846013194,31.8462022905679,31.265282291644898,30.600447693255,29.605093341346997,28.644261398881397,26.758848636749896,26.0823242447002,25.304611096217602,24.4882396134777,23.834908433440198,23.1698910262646,22.810837000750197,21.8417635087744,21.1964912399407,20.3105769907621,19.774349366253897,19.346739000154603,19.0901718529851,18.7916167458399,18.1160555197589,17.0919684758047,15.046660549421999 -0.530132880769107,0.5207316868016371,0.42366928169247997,0.428213440957554,0.37659311596175604,0.2914887652316,0.233312041407321,0.256108547379362,0.16651911379823,0.15489767530975102,0.128865909772326,0.14376982735165197,0.11748855452009101,0.15771357863709304,0.15684599639837302,0.18954543760269396,0.21587765330923397,0.309787420710424,0.3781135608431121,0.426544718732746,0.523269190790668,0.560308951769566,0.6052142432580621,0.6223624666790861,0.667747145188923,0.721566912135126,0.7816953270555791,0.850209321839683,0.888633200382718,0.948387801011198,0.976564612690167,1.24976215184383,1.31970309832256,1.3768155453668898,1.45189570542325,1.4640056979739198,1.49422119466701,1.59276918197296,1.66777547168971,1.76144307188108,1.78457274731018,1.7887186611210502,1.80599112635799,1.8135001380126003,1.7218538122266498,1.8511069113683603,1.6976244283633999,1.67942055472592,1.60674040259359,1.62657777167109,1.55508948262909,1.54864161198969,1.50343660360466,1.5682334349106202,1.39838169987101,1.03856260776147,4.0191959211083,7.20821684132182,9.71364573530263,11.659574268920801,13.6675590145977,15.6523539241818,17.5602271590637,19.4783418030975,21.2847697187995,22.0395149226662,22.738220336182398,23.4762468527025,24.2174930542302,24.965520429193898,25.7304855498164,26.512862368129696,27.339898863276602,28.1177246187891,28.936501610124196,29.7434076432896,30.4886688246041,31.066634519764104,31.728070501359703,32.4391416186396,32.9688197195181,33.547233644784995,34.1861224597152,34.8331176859456,35.2365743123615,35.563886915062795,35.5311610318181,33.772768727986104,32.9589699881239,32.378551492853106,31.9724950660951,31.3566076898125,30.6686533031781,29.687618843615798,28.731517796907898,26.8807769761847,26.1845017079758,25.396885688636605,24.6013991268935,23.922916505645198,23.228360078045696,22.903349154036604,21.954021017413897,21.3268415414614,20.387702507042,19.8074671599828,19.3981799415706,19.2029631140316,18.878322532225603,18.1701732618569,17.1711840318625,15.065550013250501 -0.5357643956899439,0.5207316868016371,0.42343186712032105,0.428213440957554,0.37251090595458997,0.2914887652316,0.24558751490461397,0.256108547379362,0.16651911379823,0.13604371438838198,0.128865909772326,0.14376982735165197,0.11748855452009101,0.15771357863709304,0.15684599639837302,0.17622201240024898,0.21587765330923397,0.28740911340837605,0.3781135608431121,0.42416452161896706,0.5577926830656961,0.5596833664019739,0.601388443876674,0.6121563365337249,0.667747145188923,0.721566912135126,0.778880857206389,0.8392394712548509,0.888633200382718,0.9245599061119459,0.961716701215393,1.24251937163266,1.29809345214354,1.35721894971111,1.4326840337844802,1.46183189425547,1.4772542436421698,1.57741867081795,1.6436591013098503,1.7345987562854202,1.78049494196656,1.7767911743196,1.77371436315231,1.79700137296318,1.72137873695675,1.84882808136969,1.6951505604868,1.6732688782958898,1.61384538527381,1.6232047066776298,1.5426600878021899,1.53278925819558,1.48590441585152,1.55680372836503,1.39838169987101,1.01719762966114,4.0191216333504,7.22332480042647,9.734484049723632,11.668876913613698,13.6780508144117,15.6814250220058,17.5903916004713,19.487786559221803,21.292207172274,22.0573770615712,22.7470974583068,23.5188422205701,24.231183170004396,24.969516272677698,25.777587638880302,26.5252843705126,27.3455667213462,28.1597331456677,28.9541769478135,29.784264081627697,30.5144893518103,31.148293508964898,31.8170539323287,32.4714232701565,32.9951637993407,33.6075903820808,34.287753879436,34.8904498449457,35.3096037115223,35.662583903961895,35.644833246747396,33.9090438335846,33.0745149249421,32.477425860217,32.0929162748946,31.463163978299303,30.8252897273909,29.826765573137198,28.8648741229321,26.969315561047697,26.305074389378,25.536330611898197,24.7047416954636,24.0569775616435,23.3603435890122,22.9956316997968,22.060470319386802,21.4020830896753,20.465219726849803,19.9149177863898,19.4884444881475,19.2735036216205,18.9352412553465,18.246164013749897,17.2158560264134,15.131810069282501 -0.5357643956899439,0.5444047445273771,0.45634472306173207,0.448923489909774,0.410780986585788,0.312695109020904,0.28228496546643606,0.28097938386227506,0.178417251884669,0.17523577461603698,0.150196690234845,0.156636575224625,0.119556218025863,0.179686034619566,0.16995291545670302,0.188464881194252,0.233786009121392,0.309697499083915,0.41374957636647297,0.443622572078145,0.545844654517253,0.5864267256662329,0.6129113856441091,0.629829296193598,0.7103293595719731,0.7598542210069891,0.7846578154916379,0.860166535892315,0.888633200382718,0.9245599061119459,0.978104924806932,1.24403501240188,1.32723986853999,1.35721894971111,1.4276967374481397,1.46992212858534,1.4772542436421698,1.57741867081795,1.64348462897861,1.7345987562854202,1.76688121933377,1.79500078215947,1.77217995596227,1.8034671036361298,1.7478422041025299,1.84882808136969,1.71626026238967,1.6860649320152301,1.6054545572538,1.63166917839102,1.5426600878021899,1.53278925819558,1.4961278013181498,1.5629405738489899,1.4054258183286898,1.03543118660723,4.0353011125971,7.2054282486369505,9.76862091672844,11.680640863001699,13.7002068918083,15.7145225607143,17.606949162249602,19.493165117467,21.328481366638698,22.090564706601896,22.7827942362822,23.535453079089898,24.2435792220748,24.9934545652699,25.7893069961725,26.5511195022542,27.412885753238502,28.190110633231896,29.0102382051048,29.812469636501998,30.555210281227197,31.195552313956103,31.8851652459136,32.5261638782128,33.0904721196284,33.668806634068495,34.3678598401334,34.957947152634894,35.390003164414,35.7334301509467,35.7072788135579,34.0155605035592,33.1640149059824,32.597323673052394,32.2127947494628,31.6077517613999,30.895803330314198,29.960934846371604,28.962872394074896,27.062211954677,26.424350216003102,25.6510062394553,24.8064048497893,24.184807000060896,23.4828773752877,23.082511579146104,22.1432005122918,21.503747979931802,20.532898032778398,20.0402836314931,19.5984606401936,19.372979140711,19.0348690749747,18.3434060632922,17.3065760301311,15.179574774867199 -0.5401076796913321,0.5444047445273771,0.47473027805194296,0.473673023395674,0.4330599061478879,0.334602812593792,0.29322724033353004,0.28097938386227506,0.19358388497273699,0.17556365295832096,0.157238747389868,0.154556587699029,0.11983033517933199,0.203340192740299,0.18208941472920603,0.19917029283822898,0.24259772669364002,0.311352913037964,0.41374957636647297,0.45896177684121897,0.549862174087261,0.5864267256662329,0.6402007529175461,0.639676945524995,0.7224207547247371,0.7777082092732571,0.8005849085666579,0.860166535892315,0.8880489480807249,0.9242888448233899,0.9730865639855291,1.2482355663779199,1.33080423160644,1.3557712517683,1.4299912650518798,1.47208215507648,1.5108775493683402,1.5754841276135,1.64988379453383,1.72170709478891,1.76688121933377,1.7982235616066,1.78814994612656,1.80449766809217,1.75173777858711,1.83430377318695,1.6958580596718897,1.7128149808157098,1.5987656895249298,1.61464794240825,1.54540647553966,1.5251078803778702,1.4961278013181498,1.55612269470348,1.40416089420299,1.03543118660723,4.04300449982442,7.245433586666371,9.7868030953744,11.710550807230302,13.7187882805981,15.740467850831099,17.6199305159188,19.5270145865952,21.350940857379,22.099899691401703,22.8259404629239,23.548210852939,24.2902365439749,25.063825281073605,25.836957270208302,26.5797866740967,27.4365387672222,28.243574953986602,29.0636541715489,29.886972592346698,30.6394344892005,31.220741416419703,31.9521453317726,32.5887246665673,33.1707016759362,33.7407816397981,34.4231725600754,35.072029778191,35.4902830641734,35.817672078283,35.788768865548704,34.0818163297743,33.2731920495126,32.6771294819275,32.3207827596158,31.7153464279629,31.0165494176119,30.076608251938897,29.0840564871964,27.1965234282753,26.5006175319803,25.7519635387322,24.9016895154386,24.2831512575397,23.570560828737197,23.1942096219027,22.286998167872,21.5953012418744,20.636278950246602,20.1221578388434,19.6870916582009,19.441760505507897,19.1279682039137,18.4360197601069,17.3741681789383,15.284863079857098 -0.550267216816081,0.553477796986022,0.507325753477794,0.475581959096964,0.440261365452471,0.348829694380358,0.303796305518943,0.285217056351596,0.19358388497273699,0.18913789386722402,0.163225174987405,0.16326014399977698,0.13461860005815,0.203297169169248,0.18208941472920603,0.208541832126165,0.250006927021387,0.311352913037964,0.418941908828303,0.48058398659688,0.549862174087261,0.5924776777948829,0.6402007529175461,0.639676945524995,0.7119917980046,0.772815370440619,0.8005849085666579,0.8783030358176079,0.8891178209671301,0.944499675311551,0.98852422422031,1.26061121959815,1.30407830691553,1.3582400430572399,1.4389635793162399,1.45293121853548,1.48949917328296,1.57826404552216,1.64352730992486,1.7554868674828799,1.76304167727008,1.7973686335060801,1.7945721650188202,1.80449766809217,1.75173777858711,1.8730557378409902,1.6958580596718897,1.69833996337453,1.60577961321645,1.6145967595506598,1.5303545741423499,1.5522389350473702,1.4872559701524197,1.5486439582788403,1.4217222954459399,1.06655892858269,4.042878280100609,7.24691562123605,9.79411774555499,11.7247472235142,13.7187882805981,15.7432380775479,17.628375276592898,19.538315701834602,21.3706338754996,22.1175745527677,22.8521998710785,23.575131418873,24.307301610566697,25.0968327953122,25.8763186809515,26.628171571533,27.4689034510429,28.2718719173874,29.1075376475251,29.9210663018838,30.7028509672336,31.290842089983503,32.0033424019611,32.6218559612882,33.2113127108462,33.801417492365,34.4943644484484,35.1341928801313,35.5578171912116,35.881546280087,35.8726831822325,34.208678466124,33.39076324571,32.7959727983383,32.4143999410309,31.8116113425773,31.160453300722104,30.2068380014576,29.237219698455895,27.3226057898547,26.626277613717104,25.8965036228534,25.0412818439814,24.383174728125898,23.6582743437962,23.338942071353102,22.363369516632105,21.6756662354389,20.747075578207397,20.2034690782432,19.77779434582,19.566485452959498,19.232908432724802,18.4932725442308,17.4639029080342,15.333058422346802 -0.5662764961711899,0.570526025551739,0.513083078886643,0.500592121025084,0.45961860234374796,0.370941655885462,0.319822945009831,0.306369198166776,0.212449350585747,0.192455421549632,0.19744869068368598,0.17024763564149403,0.135147547067531,0.215058829109534,0.19587744474940802,0.222313916171658,0.26023916369882605,0.33062028104719005,0.419894956346805,0.48582038789372706,0.5662675543333701,0.58316825568228,0.638267785554785,0.6438250952192,0.691836347768516,0.7483605201071178,0.7855335734690941,0.8763098329529859,0.8891178209671301,0.9379011860853129,0.98852422422031,1.26061121959815,1.2783833984283999,1.3550895088191202,1.4389635793162399,1.43910088333637,1.48949917328296,1.57826404552216,1.64352730992486,1.7554868674828799,1.7720836723018403,1.7962271905969798,1.7945721650188202,1.80449766809217,1.75061825641498,1.8730557378409902,1.69295742483243,1.6933381678539199,1.6295907337076798,1.59325304904478,1.5303545741423499,1.5522389350473702,1.4730929133975699,1.54806205695647,1.4217222954459399,1.0634597431595,4.042878280100609,7.249475468170821,9.79411774555499,11.730005776031302,13.7202621820697,15.764096065377801,17.653190527173198,19.5791957697129,21.3857031855129,22.1393626937668,22.8768545495396,23.603664759889302,24.3397481850286,25.119217078818,25.8859573145825,26.641151981177202,27.5042214787041,28.314176267132698,29.149960716346396,29.9650227021291,30.722183185668698,31.3603613960426,32.050680150381,32.6874656414203,33.2948715704122,33.8661480700478,34.5408494378888,35.2153929723509,35.611653128834604,35.963199465539,35.9747115625257,34.2964116505077,33.4681324019952,32.8639953962049,32.494077764973,31.909579293432998,31.2609813499774,30.2781372597465,29.3463399296636,27.4326094806532,26.703957735402497,25.9775018223993,25.149188697277797,24.4728013021133,23.734919608271603,23.4074616430965,22.453548851733103,21.773730835500498,20.8394028653332,20.2976554623947,19.84470318477,19.624106460399197,19.3070861266803,18.5784398464444,17.5241017345892,15.375651166500099 -0.568873461507911,0.5713026279128629,0.5296820460036911,0.49753141931733796,0.477023540536037,0.39021397546126896,0.351896295968693,0.35250482668294897,0.212449350585747,0.192455421549632,0.18675531592741698,0.17656883093316,0.153141638254799,0.215058829109534,0.206572930425843,0.234017804214234,0.26023916369882605,0.33140837382379995,0.431368499659902,0.490862546336287,0.5758500529820999,0.58316825568228,0.668059401329431,0.663905363113288,0.691836347768516,0.7500488776871429,0.8149133342667321,0.929475093094078,0.8891178209671301,0.926785995570448,0.98852422422031,1.28706395259396,1.29978784889438,1.3555225888577802,1.42917874536416,1.44771781410141,1.4828475641042802,1.57541123178342,1.65791187367279,1.7633194532056,1.77166939715026,1.7870887205533599,1.79189187790528,1.7924076962762299,1.76101612497469,1.8766691303149299,1.68732740358096,1.6988104373548898,1.63510764359646,1.59628573478026,1.5217838518776798,1.5704090891573301,1.47313825733896,1.54942057817046,1.4257899736639699,1.07194631784901,4.04654947515996,7.273360471647201,9.812905662042132,11.737440971796,13.7487695147825,15.787278531438199,17.6830117894174,19.5939176961504,21.4192259703488,22.1767726578773,22.917747742880202,23.6154394721409,24.3697678824619,25.1455890930461,25.905232404046195,26.6895946311202,27.5291431799889,28.3504587472298,29.190626975278697,30.0021792766114,30.782062471356603,31.4194123747047,32.1089517973261,32.7543734129155,33.3598555414212,33.945250107896,34.6152067740203,35.264224430550705,35.694479461077705,36.0392646736964,36.05905997292071,34.4011294025155,33.5471720255382,32.9892295173326,32.6264185361791,32.0363290761723,31.381255478049503,30.398954980160102,29.4638709934141,27.581034705247397,26.8517681127037,26.079939189928798,25.2599634416571,24.5615470225713,23.8862221263449,23.527918515587896,22.556571973024997,21.8719145435363,20.952724103711,20.387377835202397,19.959015421026603,19.7186655247179,19.375621852483803,18.6269010496243,17.609219351011102,15.473841276183801 -0.540893599025415,0.5713026279128629,0.54349292957956,0.49753141931733796,0.476636634927604,0.38398823080915007,0.360882412104844,0.341962904856508,0.212449350585747,0.179007651599455,0.183720713730071,0.189671479214008,0.153141638254799,0.217268084355184,0.206572930425843,0.22068429902593198,0.25132854092064605,0.36461637599541097,0.431368499659902,0.492438452371741,0.561605613457554,0.591622286834319,0.6792608244336179,0.6434800042830731,0.693087436101056,0.7767390380917201,0.8149133342667321,0.9298484195627159,0.9048644322254159,0.925825425128812,0.97248531710657,1.28706395259396,1.34698098075698,1.3555225888577802,1.4295393570047,1.46229114812942,1.48214981495669,1.55439402058349,1.68312810325307,1.77328077137304,1.7501154938631398,1.7856021325263798,1.8031079510334098,1.7924076962762299,1.76088919286779,1.8766691303149299,1.68732740358096,1.6988104373548898,1.63510764359646,1.59628573478026,1.53511768216959,1.58121483359258,1.5138708409072599,1.5658821341049098,1.4406136428463399,1.07731887855003,4.06143839667633,7.25878347332906,9.81840082983824,11.7439616953124,13.7669631104416,15.7954505025382,17.6985957124144,19.5989474136135,21.4315319609213,22.188625947091303,22.932928351700696,23.6457271315025,24.401208952574603,25.170371507754002,25.940125994057198,26.7176520279922,27.570942229039,28.3940642006629,29.220687171810305,30.0476661237377,30.8175279770821,31.4467830033248,32.1492451167224,32.782532126114305,33.4057717107515,34.002818116993105,34.6673277729168,35.3271041725793,35.804567403671605,36.136018022395504,36.1271622078275,34.4818011592234,33.6908368900462,33.0952713490953,32.7399656888724,32.171746176403495,31.4935780612663,30.511227103649897,29.579475007367503,27.6726999813413,27.0039628722383,26.2104220804543,25.3973981938658,24.7093059106452,23.996736205688897,23.6529902834534,22.6709633437717,22.0050547207197,21.0398693768493,20.486721458320602,20.026695748917398,19.8220970092793,19.4998589103425,18.7398067079586,17.6956019777539,15.5215830745873 -0.5150405415344821,0.571324474151181,0.531914826425744,0.47079454887921507,0.46606560193368396,0.38398823080915007,0.308075828036736,0.337934179729803,0.22236781858912,0.16046976408923003,0.18235451154958698,0.198523516461971,0.119391295363619,0.23104057230238,0.18214672295644,0.196705763931913,0.238178547883317,0.376060733679034,0.42111494836669,0.508149831349438,0.522042624603532,0.5671938037293461,0.683387442209161,0.598389945764472,0.6349191182889781,0.7582319860794989,0.80244087245353,0.883871497113887,0.876466708332211,0.9520101322906279,0.945130622297383,1.2446752124566203,1.2943864452758602,1.30813367009882,1.36284739996021,1.4577313217286203,1.47472353378947,1.55439402058349,1.654321365164,1.75001762200717,1.7501154938631398,1.80501543907375,1.79191805415679,1.7464577758340702,1.73052472405255,1.85686396493713,1.64985682129153,1.6952487070353701,1.59637815827393,1.5921715097375602,1.52432396039817,1.5805381532769098,1.4448329019675,1.54793187517039,1.4142147636713502,1.03801148030905,4.06102181535801,7.244649178156901,9.82113417261009,11.748753044194501,13.793469065209802,15.796086402053401,17.713623562009,19.6110187094907,21.449191697841197,22.205854584572897,22.931580633789395,23.678734151564,24.4122837534527,25.200524792950397,25.949915261427602,26.7433823354084,27.591038300615,28.4215431775314,29.2421575842552,30.0991788609108,30.8536985562358,31.4575360647642,32.1741410929589,32.8527166163815,33.446226404579605,34.0697211895468,34.7182610571014,35.38818109203329,35.8170754548933,36.200279635848496,36.1983004994021,34.5382021160111,33.745111225047005,33.1918982405273,32.7978610868818,32.2330740937149,31.5542008522784,30.5791315546982,29.6459515994638,27.7269040064038,27.053335552085098,26.292766465301,25.462635408890602,24.750685674861604,24.066209921837398,23.6920053796106,22.7342256472788,22.044598189523395,21.0894421214043,20.5395483326604,20.114919102423002,19.892678016495896,19.5338954271412,18.786358350388998,17.7335305499394,15.5477684506475 -0.5119217512075279,0.5882174760762809,0.509322507179013,0.469784716928939,0.46606560193368396,0.38398823080915007,0.296987103933747,0.337934179729803,0.22236781858912,0.16124306012210401,0.18235451154958698,0.199046650175754,0.119391295363619,0.23104057230238,0.18214672295644,0.196705763931913,0.23893258890544397,0.376060733679034,0.42111494836669,0.508149831349438,0.522042624603532,0.5671938037293461,0.683387442209161,0.597733763617563,0.64252384381327,0.7582319860794989,0.7926795518812301,0.8648806868108959,0.876466708332211,0.960639485803001,0.943392242106814,1.22234529884518,1.26342615886756,1.28917086725392,1.3433291673704901,1.43578665705075,1.46052023702444,1.5307851485014499,1.6260544898486298,1.73973727885192,1.73253168833485,1.80501543907375,1.75451654260207,1.73841929247983,1.71639074243043,1.8330416246437702,1.62275625714873,1.6688801054063502,1.59024044823728,1.57803604254577,1.49682512818234,1.56585921523425,1.4238307941276598,1.54793187517039,1.3961116957375699,1.03801148030905,4.07505060976189,7.244649178156901,9.82802993568208,11.767901602964699,13.8001399655142,15.836037183678801,17.732482432863897,19.6330756338477,21.481064270194203,22.240342738060104,22.931580633789395,23.6960159451112,24.4380300179,25.231716493924605,25.989996865405196,26.778749817509198,27.6188352124751,28.4377911477736,29.2993112504878,30.157206171206102,30.8800206673308,31.513551993681997,32.2379107555831,32.9010034322163,33.4778698932522,34.131943722702104,34.78724781848,35.4547536584755,35.8998146737629,36.2488794298575,36.284684482681705,34.6503999686037,33.869735343192,33.2906567529448,32.9308120600489,32.3699799226484,31.690094591774898,30.6954188137447,29.7779581917649,27.888389801588698,27.176982807288297,26.394036897090697,25.557468409337,24.8905670949787,24.169529976192102,23.797386817473,22.833223184379396,22.146855768482,21.2010159455935,20.6216742464518,20.1817320426562,19.943534636738,19.6252631137555,18.902308973838,17.8050729749446,15.616952821011902 -0.5150405415344821,0.589720191310598,0.506317845528703,0.4740969054603761,0.46058400469788396,0.382553052799225,0.304372220687269,0.342596668803723,0.22236781858912,0.16124306012210401,0.17184900233147,0.206742229154672,0.119391295363619,0.253670452778026,0.18214672295644,0.196705763931913,0.25188322282381304,0.36458673546679204,0.43490649316012703,0.5074210229400999,0.5208392467591121,0.564898691417536,0.656694501387831,0.597733763617563,0.64252384381327,0.7582319860794989,0.7779624901364308,0.8648806868108959,0.876440621851284,0.960639485803001,0.9309308484140959,1.21856649598277,1.26342615886756,1.29451326654804,1.3433291673704901,1.43578665705075,1.47127999129722,1.5441275076486698,1.6260544898486298,1.7386114579510301,1.7405049942196298,1.7815487008103201,1.7652054347652901,1.7449931542242199,1.71639074243043,1.83970143879119,1.62275625714873,1.64741282810264,1.59024044823728,1.57803604254577,1.4877255108341003,1.51216901165779,1.4410026699678502,1.54793187517039,1.39088119002723,1.02703183280414,4.07799603978867,7.26442395234441,9.83474931114936,11.777457923362201,13.8102536906034,15.849623651481302,17.743430875364698,19.666263055741002,21.5074682866704,22.288703637017797,23.0080088849194,23.741165078304896,24.493480793646697,25.2615391197462,26.0535980620512,26.802769694555604,27.6814840820436,28.5238194187656,29.3509013250531,30.191266381143603,30.974393320335196,31.6035805751486,32.3361383805259,32.9859427047755,33.566002755125105,34.2221164564464,34.9003163660986,35.5428277637608,35.996087052674206,36.361980102410605,36.4387502499925,34.7771516899028,34.0078069373737,33.428963612638896,33.0898434887242,32.4852662778818,31.8367268635359,30.874358696984,29.9191726712217,27.9926023348625,27.317872203432604,26.562333095058104,25.699147729054104,25.022916480120102,24.309122994011602,23.9164905718608,22.9591156568061,22.2694443444769,21.3000380509751,20.7559824141782,20.312738255346,20.0612802506623,19.731885786954802,18.9644891013484,17.9031650209606,15.686422985137698 -0.535579637284998,0.6043947349258261,0.528098550756043,0.490127559617423,0.47437770216261893,0.40039396893678203,0.345244832959555,0.36830599389079494,0.256609557066885,0.21323141592193898,0.223899583020797,0.23526545338519297,0.18124136551646602,0.28521133793582,0.219274651772686,0.24710911813393,0.306923420708629,0.36289547073789097,0.465122889747332,0.521462489003791,0.5687099032443199,0.5956406293564399,0.6741710181204289,0.6564187655823679,0.685614160667135,0.794693309314407,0.808995267211535,0.8782078087447941,0.8981249170961151,0.9724680623343459,0.95400143822188,1.2499071989708,1.30520293555995,1.36044677828262,1.40122584986736,1.4436500537003703,1.489799031426,1.57531909801555,1.6479727140274798,1.73573753876739,1.7947283478863,1.7999574614137501,1.8029392383085803,1.76520642614431,1.7308236112916202,1.85969445466475,1.65860419326875,1.6859951315580999,1.60898413379925,1.5980705842438998,1.5117856935562501,1.5444720113464099,1.4974330518602699,1.5640038620532097,1.4073579466414299,1.03749066066501,4.0933068812251605,7.30270517239959,9.875082342593211,11.8149302882136,13.8288527088481,15.8722715711983,17.7814012929371,19.6965730415473,21.532985026863297,22.300064501925,23.062796864227,23.766130083748102,24.510938159613104,25.2869295691104,26.063617259491895,26.8244065443609,27.694787387424803,28.529404447041003,29.4104818954518,30.261563568558604,30.9930869543439,31.6312308373737,32.3702008219826,33.0407671460115,33.6116741039939,34.2533692249265,34.9367581990677,35.5982435242849,36.07587292345829,36.4226994426608,36.4735193468367,34.7955783764721,34.1117811673169,33.5139346423106,33.1623401600792,32.547973711208,31.925756678622697,30.9307735185361,30.0272940093334,28.1266293896094,27.4203693555866,26.589308776578804,25.7725074731424,25.1211552927528,24.397686256149502,24.033046572453397,23.0219768102806,22.347187040248198,21.3678750548758,20.7933680483637,20.366580024421,20.149985400625898,19.780106373349,19.004926782610198,17.989388978249604,15.7330755166629 -0.550706746804035,0.6155145673655821,0.53419513679237,0.512698338371085,0.487231122242224,0.40039396893678203,0.34809462340065694,0.37418582080457896,0.258881159493213,0.219624440220204,0.244829170310825,0.25440611817220105,0.18124136551646602,0.28521133793582,0.23914558372916603,0.24710911813393,0.311498607191809,0.36849166863854205,0.47245675875261606,0.522639914281824,0.5687099032443199,0.611874673026464,0.69701819445089,0.6564187655823679,0.685614160667135,0.794693309314407,0.8251124316370079,0.893013559003582,0.8981249170961151,0.9724680623343459,0.9753409586825942,1.2499071989708,1.30520293555995,1.36066354210556,1.41205263135694,1.4436500537003703,1.489799031426,1.57531909801555,1.6479727140274798,1.73573753876739,1.7947283478863,1.7999574614137501,1.80367125844083,1.76520642614431,1.7532097474841801,1.8663485066389,1.65860419326875,1.6859951315580999,1.60898413379925,1.5980705842438998,1.5117856935562501,1.5444720113464099,1.4974330518602699,1.5640038620532097,1.4073579466414299,1.0513165463063399,4.0799585081841405,7.29451000783936,9.864403668718928,11.8035894911588,13.8288527088481,15.8894511818773,17.8014241244012,19.7081810053498,21.5495663599364,22.3234279041742,23.0410067851508,23.7954374757693,24.5423624562422,25.315137391849397,26.1094892079787,26.879974128611103,27.7543610868763,28.553653227791802,29.424734873874304,30.3114844762674,31.0661994409305,31.6747720558358,32.4447261134094,33.0940894243611,33.7027747869435,34.360379589361,35.0254158264638,35.699703653060105,36.149289646945796,36.537397608626705,36.5427527007229,34.9497064184922,34.2411661620511,33.6257541374258,33.2988200400205,32.7410352235498,32.0882392156922,31.1037464228932,30.1761839275592,28.266953631285,27.548577974026603,26.7825155412671,25.925567682776798,25.216791731704998,24.5240418103585,24.1693564348142,23.1360685761996,22.4872507273416,21.4860068307976,20.8953718167535,20.4452782398749,20.275629357453,19.902503431290103,19.137236887822002,18.069415146405802,15.814872433972399 -0.568560336398326,0.6167503790479371,0.5479767950994571,0.558379116139172,0.49794934741281205,0.42725875258966,0.37072091420362896,0.38061118158588203,0.315506811897215,0.287870786791044,0.289257409950672,0.264230340166803,0.202364501904082,0.30308460308504304,0.23914558372916603,0.286338980608447,0.343412900579547,0.409440997502483,0.5150383028763089,0.581840212722208,0.594477223479828,0.666077351885741,0.7332681565242009,0.685486898379325,0.7131683354646559,0.8273002845980741,0.857616388535973,0.9122244572264542,0.9246909661285329,0.9724680623343459,1.03902844197641,1.28669438728976,1.30770699848357,1.3789650085633103,1.4459014211976102,1.45138774486223,1.5438506926956201,1.59528319729026,1.6537972623236101,1.76676634935914,1.80451245507646,1.8306190697263798,1.83043244519831,1.77555973616949,1.77113381023532,1.86668283416995,1.6717348296731698,1.7256214753884398,1.61032771981378,1.62164915213866,1.5650327934800201,1.56742987279117,1.54761805286553,1.57258298376917,1.4073579466414299,1.0674200078468299,4.08791305697585,7.30270517239959,9.87987809052273,11.8332733131671,13.8577266973415,15.904769041341698,17.820756689232898,19.7570783366023,21.5723176347373,22.351846336515603,23.0677813186893,23.8224861666219,24.5775096888372,25.353359343513198,26.150296749714304,26.921697845473105,27.798910576660198,28.629392988306304,29.4605233441132,30.341925754082,31.1135121602851,31.7368038373844,32.509122364622996,33.167985122554,33.7700365395157,34.4254130033748,35.095059713829,35.753990626694005,36.2438331640131,36.6244187688829,36.6776793129862,35.044084228026904,34.3076712871356,33.7040242144729,33.3684425106604,32.786601854183104,32.1487450224585,31.1794522854535,30.216746922553803,28.3335848026897,27.635780222804105,26.837041503481696,25.976236859173397,25.345288962214397,24.562367739622804,24.208070482209898,23.2160634332092,22.527268977007697,21.541681466353698,20.9932644000595,20.5441019840848,20.3050704281893,19.9575370213618,19.2343531830343,18.1359602169024,15.858254722444197 -0.595660797102433,0.6163688262867391,0.556309873579802,0.57257943754085,0.518731950839452,0.458889720637927,0.38426733707707106,0.38061118158588203,0.34081213440602504,0.288913897586634,0.275560027507972,0.27664500122585994,0.201303665025449,0.30308460308504304,0.260967182320411,0.27525055876617305,0.35148083983341,0.409440997502483,0.519038371058553,0.597440232389008,0.5934531946079239,0.666077351885741,0.741641476056827,0.677705778548958,0.744693328190621,0.8382257483942019,0.857616388535973,0.952817876300279,0.9595327704931759,1.00866201352723,1.02955382336709,1.2738968830266,1.31416436810365,1.4118649781345298,1.4459014211976102,1.4624209505214398,1.55359523177071,1.5800583072802499,1.64743943771971,1.7718460789157302,1.81229548670649,1.80964159650295,1.8393814401795,1.7813469531312098,1.76513444532776,1.8458857846508798,1.68868937721211,1.72982532923078,1.6133790047359398,1.61713208187784,1.5393110367701202,1.57151103584143,1.5352749658224498,1.5850230217788899,1.39741173014094,1.05651054139094,4.08810913367626,7.308468470802361,9.88714851107228,11.851031785957598,13.888907605419499,15.927412360471802,17.8536726118758,19.761861290583997,21.605567638685898,22.371349615774,23.105346565016898,23.8476369688379,24.611072075636898,25.378251115721604,26.1623467238023,26.9516800420301,27.8407408678337,28.6771850397787,29.4994937734312,30.401315640489003,31.153394635162396,31.7903955196653,32.5687457649481,33.2340557481428,33.836330667691996,34.4734888671006,35.1448043946381,35.8441146444915,36.3252406625877,36.6904143649901,36.7353809457003,35.1525563960845,34.4208051871241,33.8594904534966,33.517512493416,32.9444120171407,32.3029173483648,31.3111453112808,30.386137856894997,28.4570167750425,27.7513765740347,26.980625754673,26.1313265419241,25.4484446041637,24.721797043158002,24.3677178357444,23.354287780129,22.6298346328448,21.6549036852222,21.111697540348302,20.642705920930702,20.4273596388479,20.086466989805,19.2927996219092,18.2041506554793,15.900788859186699 -0.6077513212878559,0.627540951270926,0.586997781602454,0.57257943754085,0.530114277832607,0.4739733031470089,0.39115884164915704,0.40375720559592704,0.34081213440602504,0.3294781447958,0.301219908848861,0.30973397345662895,0.252682119798609,0.315151164964987,0.319466180049922,0.329078456513433,0.37646284474848407,0.4719467755229171,0.519038371058553,0.6184308884322249,0.65320939666847,0.666077351885741,0.7506327620951758,0.7038783904097929,0.788159130536547,0.848120535114161,0.894119200879472,0.9623500218236349,0.976747372594192,1.01851930632784,1.04933242547733,1.2835284885920801,1.33574371671957,1.41474708792187,1.4582649620190702,1.4624209505214398,1.57082067893175,1.59744590995931,1.6657994479651899,1.7773445327472701,1.81229548670649,1.8292903607794198,1.8393814401795,1.79057024795695,1.7509846033575498,1.83916702212592,1.67542278826592,1.7231032070743602,1.6133790047359398,1.6246964449238601,1.5518525910024301,1.57151103584143,1.5352749658224498,1.5853255023411297,1.3986404610245902,1.05651054139094,4.10502498765643,7.30903134610934,9.917736465738901,11.867281446520801,13.913076536690301,15.9546573044823,17.8752685236229,19.780460372611802,21.6326033058497,22.398485226647,23.1680620647716,23.878451645164102,24.6360880066232,25.4190501737739,26.1867625756138,26.9907533929037,27.852463452753,28.698309133549103,29.542232790309402,30.439001084579896,31.2216927409613,31.883384016666497,32.625694551532604,33.3136555528122,33.9211891750834,34.5755119969065,35.2465061898757,35.9452674249714,36.429557217265604,36.7988567476919,36.8625394247006,35.2822795067266,34.5310308545186,33.9802788894679,33.6261535136326,33.0881181957327,32.4232376347793,31.436597848280698,30.505030447416896,28.5831135285088,27.884611620164698,27.124637032716898,26.2533159684213,25.535601315938802,24.828580401230504,24.4537036984335,23.4451126636452,22.7632235004324,21.7607410556496,21.2028167845057,20.716987566314,20.512361342473,20.1892809444624,19.402223028650898,18.3117400824103,16.0017489824429 -0.604714592058374,0.6532531729642309,0.596261156465409,0.587046291930195,0.542226075474447,0.47475553353155503,0.40140613341058096,0.43140125268863394,0.364052172442653,0.35351424858021296,0.33211067104114694,0.310540033867353,0.286680475908097,0.326609341046542,0.331823999858159,0.33901048720339394,0.357309760827093,0.500003141489001,0.5512992665690469,0.6384597921690279,0.664649449171318,0.7178851988216659,0.7703988974996642,0.731424503677277,0.811184891493163,0.866614701135394,0.894119200879472,0.970869866331744,1.00333430205672,1.03251409056539,1.04933242547733,1.30705995743756,1.37418801325358,1.4243935246159398,1.4888286831596202,1.50187097216075,1.5752034179984298,1.60068929061651,1.70698019220103,1.77621537146376,1.8176050388482,1.8329871972728202,1.84522547274387,1.81118023687228,1.7598031885085201,1.86471951237923,1.6719741562971802,1.74116983820728,1.6133790047359398,1.65764196426181,1.56548324324501,1.56594847585029,1.55021993743285,1.5853255023411297,1.41349913245208,1.06972484187557,4.117944888265519,7.338891182857491,9.95006411312997,11.880898518622699,13.938839419872199,15.967960874923198,17.9153657360052,19.828256395466003,21.663602140070502,22.4384304647268,23.2172100842621,23.912578126033,24.670119472775802,25.443791417912998,26.2584662675159,27.062478473836602,27.940668507536202,28.7675219568866,29.6033967251265,30.507034093670896,31.3235292290069,31.967302038250498,32.6820224161361,33.3983015861822,34.0034685612273,34.632433711721696,35.3533474745633,36.032024225416706,36.4939766731099,36.8905467790897,36.9491645217578,35.3606349976697,34.6181405047253,34.0832174671734,33.7348691245953,33.188205659110196,32.5496880988037,31.5588418323102,30.627080455132603,28.6937753494345,28.0152793881997,27.227950199309202,26.360625700332303,25.6485442595261,24.927316748044,24.5930111035462,23.543786161217,22.8696669524915,21.8502713609858,21.2926363479591,20.8094349041369,20.5811000584342,20.2551321587375,19.4637205164949,18.4031385380128,16.0648049980596 -0.5614879736952421,0.6375838979716459,0.582206060742338,0.599308637221337,0.5567592521223511,0.47475553353155503,0.422032791310824,0.429391320771849,0.364052172442653,0.351725130745767,0.303717363316568,0.30667383254487,0.27866068975798997,0.301269499481521,0.320163574653547,0.33741535141615303,0.357309760827093,0.483421483298011,0.5512992665690469,0.654630350548791,0.665633878746044,0.7218669834478091,0.8207390175130379,0.7279736312918641,0.816631240981122,0.895030342948375,0.8921390968244269,0.98245706408731,1.01540207184957,1.04523757404354,1.0827095913971099,1.30451681936059,1.39931081874585,1.4243935246159398,1.5003882507250903,1.47939939366716,1.5492601225601201,1.59023969241269,1.7205784983249097,1.77621537146376,1.8302720509294799,1.8180094881701498,1.84069467219872,1.82959162042905,1.75016977463925,1.8682723291628,1.6689154053256101,1.72576827185368,1.59742184903688,1.6253928828116202,1.55886817249477,1.56123801765246,1.55968178946955,1.56607697410021,1.4100720687718302,1.0555072522809599,4.12199513300336,7.3479301318507995,9.960003539491618,11.905321167861302,13.9545277859915,16.026920496458,17.9570793958734,19.8692640487009,21.699653283544503,22.481987047866696,23.233467448197604,23.9682121739293,24.7369542006079,25.4951199439147,26.3175994312855,27.1086473302302,27.9769504957981,28.8309925807898,29.6793088117064,30.565218392076602,31.350887504481502,32.014260260677,32.7646610215444,33.436857480110305,34.0883229068729,34.7055889271245,35.3794860598881,36.118111903961,36.5736899099483,36.96426918440729,37.0323939251743,35.5102744962109,34.7302686223835,34.242095000256704,33.859852222758,33.3138673139999,32.6563163196533,31.717487191306702,30.759514729180196,28.803935805932003,28.153751571771604,27.3664391191116,26.463449684809603,25.804899738234703,25.078680782062897,24.6706050689192,23.6750545707545,22.951580667308697,21.986564276957804,21.4014272271415,20.902954988523398,20.689801401672398,20.339005027831103,19.5538414524047,18.4411462638565,16.120709278125698 -0.5662014194376911,0.647190085896033,0.5932048788894739,0.609456131855787,0.563395656778428,0.4820763883664171,0.42542208757685496,0.438368373120486,0.355231620088659,0.35237673142046994,0.31954329098538103,0.323692966006384,0.287725742518427,0.317905791174252,0.320679607367575,0.346441496709772,0.37498444494082706,0.483421483298011,0.557033505132816,0.654630350548791,0.6713789360606651,0.7223239978351159,0.8207390175130379,0.739559577791986,0.832885161765081,0.8951757701749359,0.897732288396577,0.9970738647730211,1.0203633915839498,1.0549270083573,1.10730043846485,1.3138321335153702,1.4022078806931,1.4303843963827199,1.5313756055862702,1.4959087941254199,1.5585711316803201,1.61294195591131,1.7205784983249097,1.7914981839254498,1.8398065747925298,1.8188518736467498,1.83532901860728,1.83791833015171,1.75016977463925,1.8682723291628,1.6813997517458001,1.736520804287,1.60517203494253,1.63112055861466,1.55886817249477,1.56123801765246,1.5537690332275802,1.58029756168513,1.4100720687718302,1.05748944812857,4.12854281163159,7.36953238467996,9.97566245855409,11.9136058358803,13.9815708606001,16.0667854567085,17.9829390664029,19.9070924587625,21.732600553255896,22.530808761294104,23.2897392494672,24.021085869068305,24.783445910611,25.539512195551897,26.381577625099897,27.194478841434805,28.023293260147298,28.914797169682103,29.753797917880398,30.6645586928073,31.453688149007,32.1066269845863,32.8447467996382,33.547534848463,34.184883746905996,34.816991069836995,35.5273651153166,36.2411878694259,36.711767287369106,37.094643946826295,37.16442330455661,35.653840454359,34.9424705152055,34.397408445279396,34.0086811310979,33.4777483239217,32.8470940543433,31.8299210070852,30.9135823190237,28.9752115047404,28.2735894770466,27.476202334246,26.635234061004702,25.9081217324835,25.1796721659371,24.8027677329279,23.775342010535198,23.0965071321106,22.080649095395497,21.513050376288,21.0383171001298,20.8018564207417,20.4776000378474,19.6741665211439,18.5534168095942,16.2353184492961 -0.5662014194376911,0.638752270109588,0.5932048788894739,0.60433832196284,0.5635312025422751,0.482129096121352,0.437132280415601,0.430134896633493,0.349754123379072,0.35237673142046994,0.329887653480604,0.323692966006384,0.284328041647247,0.33147560348453003,0.320679607367575,0.3604731821194939,0.42647417869747495,0.4839535215248879,0.575007146523129,0.634688730954306,0.6713789360606651,0.715899990447157,0.8236344665973531,0.739559577791986,0.8274988375941619,0.8951757701749359,0.915204564714167,0.9970738647730211,1.03489034630088,1.0549270083573,1.10730043846485,1.3293910166796399,1.4022078806931,1.45349833088058,1.5313756055862702,1.4959087941254199,1.5657486127076299,1.61294195591131,1.70340489923132,1.79949961018918,1.8398065747925298,1.8188518736467498,1.83532901860728,1.83791833015171,1.7496409446809797,1.85061630031943,1.6813997517458001,1.7319389201769702,1.60517203494253,1.6221877793119999,1.5542500956473002,1.5416838947952198,1.5276509625835002,1.5834480675342102,1.41331656409639,1.0499822541063701,4.16219546422416,7.3960859029968296,9.99891199933607,11.9551095237903,14.022639529062,16.1148453946997,18.0342578035432,19.9452985749398,21.806285339939603,22.591214488059002,23.3578906858607,24.0776760151599,24.850562312811398,25.607540659677,26.4180889628838,27.2708948212742,28.114147085869103,28.9717317550945,29.8362844267133,30.722663174875002,31.5440399438218,32.2076473087365,32.9625687450951,33.6400667694797,34.2785392479256,34.9408929882434,35.6340705792975,36.362671745042896,36.837180967939894,37.24806242853929,37.3183267822578,35.787018739103,35.06942183945289,34.5007670741134,34.1492045355477,33.588604362404105,32.9649277361179,31.9908923480867,31.076943821529003,29.1162081256843,28.3986663244213,27.6197663179004,26.750653505332497,26.022943110851998,25.3305081069099,24.9444252019912,23.941390825822396,23.231355250352603,22.220055604643804,21.602025588518,21.138948646316603,20.9059339125656,20.5604115684679,19.7381170725291,18.6509512468853,16.2934020127093 -0.5787510888689991,0.657564506100609,0.60816812661622,0.604786737431106,0.57231145904448,0.495475419459777,0.438850689028479,0.430833838023202,0.36542835908987,0.369227191046141,0.366715460834442,0.34952021290970897,0.331570494392259,0.37900110679225496,0.349507355274498,0.416131982489331,0.43144998685972297,0.540409654383192,0.579719425371388,0.6531823420970571,0.720117986159943,0.7795968229903241,0.83457107902593,0.80237127158971,0.8653874822829131,0.966944794099347,0.9821811153948441,1.04233537692431,1.0622423762636501,1.08124235250452,1.12388254355384,1.3787246897959,1.4244493895483799,1.4627539378453702,1.5394218290934398,1.53343305968445,1.63439528134051,1.6628739268422401,1.7520936274865402,1.81759903468103,1.8300234072105401,1.86970057733383,1.8544916661016002,1.8341806162309098,1.78201398928426,1.8873803595719498,1.7151913879479297,1.7339722883205,1.62859977192081,1.6410604940370102,1.57454580903375,1.56178925124996,1.52133461024638,1.60513242567236,1.43036230186778,1.0763834852703,4.16300027420741,7.3960859029968296,10.0052088005909,11.964919610905199,14.0431177708842,16.1331948204497,18.046438834352102,19.9695398655705,21.8296874102823,22.6094996685825,23.3879916166742,24.1133912974184,24.870714932311696,25.6462452570013,26.4969552771256,27.306137279949603,28.159328152866603,29.0136255229057,29.8704664761026,30.7888446645431,31.611343951001395,32.2652257982798,33.01530431883489,33.7264727548962,34.3771083994993,35.0295010805854,35.71530302593771,36.433761392631205,36.9203303005831,37.308793454230496,37.4110984027023,35.876113545021894,35.172885907044304,34.646455549829895,34.3035276072191,33.732187683074194,33.103530699777004,32.132060120240695,31.1854468587496,29.235448268068104,28.5201581299152,27.716165868113197,26.8594341295737,26.195754233641,25.455060644097,25.06110045273,24.0426025279639,23.3348581761723,22.308063476492897,21.7047618558913,21.2491116469382,21.0032293795208,20.632775291243398,19.845513230193802,18.7172179159472,16.3623245375858 -0.583278954391998,0.6494949006020141,0.6120187912491349,0.6033170101528751,0.57231145904448,0.502243902219386,0.46086681377226896,0.458290281089946,0.38873579036971895,0.387552793116143,0.366715460834442,0.369904846726727,0.354644477404957,0.399378398951173,0.36470681115898795,0.416131982489331,0.464491282084724,0.557853158584075,0.597355083839844,0.6757293021460289,0.720117986159943,0.8112570959287009,0.8477470067889,0.802926033447102,0.8858020787935491,0.966944794099347,0.9821811153948441,1.051126866411,1.07359634722503,1.10897184521826,1.13382924488666,1.38730154171536,1.4634423186058798,1.4918886795288402,1.5437030019359899,1.58608667902971,1.63439528134051,1.67151546732919,1.7450210486764899,1.81759903468103,1.8269799512339802,1.8737455744606701,1.86935215110856,1.8341806162309098,1.78255437557679,1.9169222605146399,1.7297732163827602,1.7339722883205,1.63457418734355,1.6410604940370102,1.5751209973111697,1.5776789154070499,1.52133461024638,1.6005935396543203,1.43036230186778,1.0763834852703,4.171095517939819,7.413962851254491,10.0392856536278,11.9773497344962,14.0655356349313,16.1421577910338,18.0699784982724,20.031940509294,21.8669159787917,22.6769514464603,23.4259233771462,24.1665254066163,24.895378930326,25.6836055217766,26.5408368449219,27.3295220434125,28.211849462082895,29.053613552488102,29.9562102073103,30.8611530423735,31.6695911092356,32.3576928996673,33.0898990149875,33.7764673481283,34.4552152694531,35.0681180538266,35.7877189251929,36.4883498886558,36.9948041311536,37.4160040663445,37.5001092001402,35.9865920160648,35.2560835745721,34.7246838238693,34.4157610912726,33.8519897095545,33.2296535970196,32.2613772336976,31.296303769451104,29.3352948269034,28.634954450504303,27.837650515686697,26.958338898765604,26.3167773972279,25.5343088764147,25.183240142308502,24.1502833985358,23.408807581626895,22.392324859899897,21.812515458846,21.344866376508698,21.1045612022123,20.733142418448697,19.9225625322179,18.7821183814106,16.4165945526944 -0.5926320494960439,0.664679776407475,0.6371929690131569,0.6564114129361229,0.612683705451503,0.555543364154653,0.5100552183266429,0.486565908390417,0.41790991625149704,0.39787895418738795,0.38747379200436705,0.389585297697141,0.371379449963478,0.41860607856521503,0.4073785105576961,0.43700225187823705,0.48635203365262897,0.557853158584075,0.656492251517125,0.732860259701283,0.7518360959262359,0.8232653818702661,0.903932815623167,0.853037191038145,0.9182701869721709,1.00004298529826,1.02877430397422,1.07961106691819,1.08396087307988,1.14711783631927,1.20076813274365,1.4191522322895198,1.47813450414316,1.49871089297147,1.55915700545804,1.62301048165503,1.65452481287333,1.6829741410417398,1.7450210486764899,1.83644252205658,1.84059363132188,1.8737455744606701,1.89096711486006,1.8489821085649698,1.7870982687725498,1.9247525687221798,1.74525324826723,1.77381758472139,1.63457418734355,1.6674279101812,1.59504006856289,1.59609279141083,1.52133461024638,1.6054765172239,1.4420885353302602,1.09903474220149,4.17300410523111,7.42841182511826,10.067744687375301,12.0189655147113,14.122336833777098,16.182081583759903,18.0960205315371,20.0794200776473,21.923806909505302,22.7042515559237,23.46803429025,24.197871133073804,24.9549699195498,25.7665728279222,26.5947282282932,27.3925044103491,28.3056505387185,29.144934375507603,30.011845018339898,30.9257531532374,31.7497180982794,32.426044832681896,33.186235285276,33.914613567101696,34.547231152059695,35.217525125271294,35.8768891751102,36.641856376282,37.125333794349,37.5453747941551,37.637963956319794,36.155775094319104,35.416944209464795,34.885100216760605,34.5731984422765,34.0302920124181,33.3731034804457,32.4095139672752,31.4738120163383,29.4914577915941,28.784263684178,27.9914314640138,27.134096973219698,26.425334680574498,25.655371868123602,25.287902071665698,24.2590412173632,23.5268305467985,22.4916233149412,21.913973497919503,21.447231577880398,21.2194144443027,20.837779411284398,20.049936794999102,18.888798838274,16.495630567161697 -0.5925824275615771,0.644979897601182,0.642680275018453,0.66226621405445,0.6325511816209549,0.5738930188226079,0.514974409882215,0.49469549896203396,0.44108815230184206,0.4353148396853211,0.41418260363176207,0.395066230286666,0.371752350369005,0.42112759375775,0.436121692969053,0.45125951413839205,0.524050365855082,0.5733310015272801,0.656492251517125,0.7491040805855329,0.7518360959262359,0.83188552838505,0.907310235068366,0.8639565281153481,0.9421366382862579,1.01519314414395,1.02877430397422,1.08758806187748,1.0854096864715201,1.1474441460825902,1.2028524825301898,1.4191522322895198,1.47813450414316,1.52308500194653,1.5893166708516597,1.60603496401178,1.65318416303278,1.69006578697956,1.7478884134734198,1.8378081147936698,1.8415410181524599,1.87018788270199,1.88729961253784,1.8664139640524,1.80354892130168,1.9247525687221798,1.7496656340563703,1.74714681559113,1.63404062200636,1.65432523284816,1.59413217334402,1.5760030168855,1.5308059745274698,1.6054765172239,1.4374838366823401,1.11789993307919,4.18424448295547,7.431507601350809,10.0890531312074,12.045405762790699,14.135655810252599,16.2096034653348,18.15398786323,20.0863775235862,21.950859841533298,22.748127914667897,23.508771989281602,24.260750237905103,25.017124523358802,25.8108189457225,26.6261115082377,27.444587398639698,28.335516935243803,29.196186624138605,30.103423387283502,30.9975488072305,31.8321668554262,32.5177138089219,33.2566786270574,33.9789671211147,34.6589921260181,35.295486456193295,36.0450864975983,36.7465411114906,37.2105637876114,37.628459485637705,37.7370231849958,36.289575515167996,35.5524673501819,35.0214081259235,34.6788225442244,34.1289219959088,33.5223437952633,32.5262384704522,31.5943425927027,29.623720890408002,28.8797718983773,28.098244384783396,27.210379644082497,26.5166539562536,25.744489100168902,25.390974574082303,24.352243440560002,23.6305361913627,22.586976813365897,21.9883905981078,21.518834791373703,21.247583205087,20.902293335779103,20.1311756646579,18.939704502354697,16.5457931074056 -0.604558693465192,0.6953662537783821,0.671633690463452,0.66226621405445,0.644124968047687,0.574819143536905,0.555161954664542,0.525810807997072,0.446824739426966,0.45583682846731893,0.42138297227630295,0.429898663319045,0.389118614483003,0.438468655871884,0.43976375435132103,0.472728477244105,0.5448576591854111,0.608767168544337,0.6657595715184229,0.779491805532294,0.758035183948188,0.856183697762312,0.9148055245295699,0.8929373441866271,0.952607840051468,1.0489499788160002,1.04668624352702,1.10602880325306,1.094508236117,1.16865091467507,1.2161913661503,1.43977874975391,1.50222639899187,1.54678132837867,1.59644545098994,1.6136732826623201,1.65318416303278,1.7442659397376798,1.79095400494797,1.8401096687691398,1.8631210216242702,1.8641427157946,1.88729961253784,1.8797581891511699,1.8204539832257802,1.91195767680499,1.7496656340563703,1.74714681559113,1.63983944595063,1.65432523284816,1.59413217334402,1.5844423319718302,1.54124936853991,1.6323393870087701,1.43782442722668,1.1191467884908302,4.19281325900393,7.419981242039231,10.0875571809809,12.066208225351401,14.161512645488301,16.2518815952965,18.1836908691457,20.1233549341176,22.0119228977172,22.801645444569697,23.533732913524698,24.302607421202502,25.0945214931577,25.8862995978901,26.677857654116302,27.535991270897004,28.4261888062471,29.283620781760398,30.177765359068605,31.102204310401696,31.9053147310394,32.6049902246572,33.353487134740895,34.0980574606965,34.750966895373104,35.406116313474605,36.1402685277698,36.842713017749205,37.3520029406352,37.7729854340107,37.8859400415571,36.4218194928996,35.7165759705627,35.1911668029376,34.8323183449176,34.3066550076306,33.6386689029062,32.673008308369695,31.7257724549358,29.7529829678044,29.075862422913197,28.251633397846103,27.365970272681604,26.675736079205798,25.9029194100874,25.5322516609085,24.457438317708696,23.7477679758528,22.701291563140398,22.1306388549416,21.633196479347802,21.382846403477,21.041715076446398,20.227177326413898,19.0454944661832,16.6306363599004 -0.602788645012691,0.688321902581431,0.661499732560619,0.66139359151921,0.639055677712205,0.566121442530451,0.539327589297602,0.524737243787074,0.450530983417851,0.45583682846731893,0.420110814138856,0.43349703226617897,0.389118614483003,0.441813036246868,0.462999998382984,0.49950251369359,0.5378678076930671,0.6071500759937671,0.678775748955334,0.768317230584793,0.787192346922542,0.868779716939462,0.919401625265621,0.9254093828383321,0.9621569658669259,1.0489499788160002,1.03903234697246,1.13964780997288,1.10967353392511,1.1748032867278,1.23407356342495,1.4194310623378799,1.50463542718864,1.55615984120876,1.6107529334011499,1.61514242350617,1.6640069641435502,1.74404299521013,1.8035952657041499,1.8527910309388798,1.8631210216242702,1.8768473785753799,1.91048286125486,1.87517000297777,1.8240518226372902,1.92033277200587,1.7503809964946397,1.75569186151927,1.6463108659031,1.67185791553326,1.5884592517050702,1.58238057473853,1.5431949822651698,1.6335669103686001,1.44923652415595,1.10837827229893,4.18795318963237,7.43175730017941,10.1002058629049,12.0905516333163,14.201393675170001,16.2673419207409,18.2286950314852,20.1826172853655,22.056858760296503,22.8549200016172,23.5800901712994,24.358078001210398,25.1585082063239,25.9355145375559,26.728335012259397,27.6097759869598,28.497755471031198,29.374707298038803,30.2459726819204,31.165118910552696,32.014282740236304,32.672387060384494,33.439900284618304,34.179874417423804,34.847667364004394,35.495504584581795,36.25438416391071,36.9859611458824,37.477498210879396,37.877100473094394,37.997230973733394,36.5376392258765,35.8126065169919,35.288657071208206,34.978828405464895,34.4264384014309,33.759389079923004,32.796251763527,31.8535218778509,29.8900098644537,29.194896107705002,28.3890302078543,27.481691485703696,26.7600535071916,25.9984755615915,25.6283347754628,24.594460496426002,23.8365811567139,22.787056111279803,22.2119066947562,21.674383527813802,21.437234525379502,21.1159024177676,20.2878329492009,19.125277924638397,16.715594098797 -0.607573256402106,0.706433071844897,0.674085438088036,0.672823962055763,0.649628791075862,0.576252509425203,0.5844705279212221,0.5326111079167329,0.488216089548364,0.467264669123543,0.440373336145529,0.453215207369683,0.404480900579369,0.462343028260062,0.480787051053989,0.500242951500562,0.5448576591854111,0.627306527136094,0.701061167038827,0.7959732327417042,0.8433869646350601,0.8774055482407179,0.984434087798866,0.952509724688771,0.972123738861725,1.1052509232365701,1.13197177863714,1.1623069456563302,1.19592022291556,1.2230391774474099,1.2586538467230302,1.4470428018035,1.5476031178657201,1.6066394955061298,1.6478421022016698,1.6788654574844,1.69285145849421,1.74404299521013,1.8592200713266998,1.92144974357153,1.91196801602667,1.97119220540752,1.9105944796076102,1.9305215995088798,1.8240518226372902,1.92453138351358,1.7819372423496598,1.77758231556997,1.68954650598428,1.6888218408078302,1.6294554783781299,1.5857767950682398,1.5842228544236299,1.6438256535796498,1.47229492850086,1.1257788491192902,4.20657825600514,7.44647732197357,10.1299397213945,12.1263124891132,14.2259001958721,16.290301226138197,18.259587871534602,20.2060358477762,22.1038614339471,22.8873211763758,23.666897634293605,24.4126148719397,25.2027142734865,26.0191204471598,26.778076782502104,27.6712924435156,28.5426198257096,29.447740995090697,30.3265497709131,31.233734680426,32.0978809132933,32.7761628823,33.5804765044873,34.308669238453,34.9493785987106,35.627891118793706,36.3868280095727,37.091055085307104,37.6162007369105,38.039598993735396,38.1809237068279,36.6703916404853,36.0065877613061,35.4652349688715,35.13378069552439,34.596062653183104,33.9804251839266,32.954835194563195,32.0353014504789,30.060383206864902,29.338573447848,28.5047259421635,27.6448121213948,26.888863921546804,26.135613885001998,25.7660049601438,24.691410055223898,23.993355710916802,22.898934895025302,22.291369340627398,21.805310038800997,21.567618283374802,21.2241107874085,20.34255047505,19.2032355392415,16.750321326672097 -0.615522306771698,0.706433071844897,0.674085438088036,0.6910787555274179,0.65982343848198,0.5870814106193261,0.5581876556277661,0.5326111079167329,0.488216089548364,0.474178572427511,0.4708297339182129,0.46683406666231797,0.43358400036162703,0.4876828871172179,0.494200722600683,0.50084020189206,0.5674502201135461,0.626215537232929,0.70912015518753,0.7959732327417042,0.8571053014410591,0.8960037256073359,0.984434087798866,0.952509724688771,0.972123738861725,1.1073289940026698,1.13197177863714,1.1623069456563302,1.19592022291556,1.23784802353186,1.2586538467230302,1.4470428018035,1.55420637986821,1.6066394955061298,1.6478421022016698,1.6788654574844,1.70965931677192,1.74404299521013,1.8592200713266998,1.92144974357153,1.9230666552292999,1.9795839860401,1.9105944796076102,1.9305215995088798,1.8240518226372902,1.92453138351358,1.7819372423496598,1.77758231556997,1.68954650598428,1.6888218408078302,1.6324614415977499,1.5857767950682398,1.5842228544236299,1.6438256535796498,1.47229492850086,1.1257788491192902,4.20657825600514,7.45321063429878,10.146295566654802,12.131250688703899,14.235169534545,16.3128677557869,18.286286585554603,20.2631767024345,22.1723399994848,22.890392361302098,23.7027666273489,24.463285445844,25.2206327441641,26.0480328957622,26.8030959846027,27.7186801019019,28.575093469047697,29.479484840384803,30.3816124039401,31.279981264183803,32.161922106710804,32.8097023710503,33.6058622218362,34.3555785219555,35.0048765340966,35.685855892863295,36.4356461200525,37.1684117548548,37.6676319141579,38.124982930313294,38.2565814780609,36.742538843077895,36.0741868259616,35.55030523475,35.2051270546661,34.6715777081214,34.041641178587604,33.042847373239105,32.1311463393323,30.144406181608897,29.3980701698209,28.563519726511196,27.675113053752998,26.9564722392413,26.2247494654725,25.822702008085898,24.7484836789196,24.0477065094832,22.967932349637998,22.381287391668,21.849337206268302,21.618802795599297,21.2633199211141,20.427013205423698,19.2335383317164,16.7680147251615 --0.0508648516475818,-0.183307015468935,-0.16924130518830502,0.232227677175918,0.361678109716954,0.6186279466938029,0.907467650082888,1.2533094662963102,1.52659227231488,1.67431349209134,1.76606499593927,1.8618867773591203,1.98356228575972,2.10917040877886,2.2216296143158902,2.3180041052141003,2.4290862599559904,2.5520045954138797,2.665806217388,2.78351655278444,2.8506929931145604,2.95068072628586,3.09905827967225,3.20138272998181,3.3109485518333197,3.4712770751244997,3.58571861615201,3.73376565333467,3.8091189501484,4.00011591323572,4.108719441687979,4.28871687365786,4.520392283082679,4.7002226128319,4.95185067900246,5.11965310872053,5.372558403080441,5.65122157003288,5.8934735313482305,6.27856712991773,6.52844805315521,6.73612956336088,6.94519722896157,7.24275149456474,7.38423643724985,7.727605960365059,7.80024976061126,8.02971857881787,8.22428450447158,8.41185764795789,8.62003082793078,8.73546904829293,8.89285149720666,9.3785559455696,9.74236757495891,10.1640768627087,4.0448034604754595,7.296884352487321,9.758748176758749,11.2347319562555,12.9583857707211,14.6355358736608,16.2317129421824,17.739236234463302,19.1560787906011,19.724660150157103,20.3221173551242,20.886234116600804,21.4703412456341,22.0375743127357,22.6525281330514,23.248744734545898,23.9287932868423,24.6108885859928,25.3070890556953,26.046149327821002,26.5641111175467,27.004154871711698,27.442968754959196,27.9155571045177,28.3306542338648,28.7437406679666,29.220620128696602,29.6946722196426,29.9211196027954,30.111464200797602,29.875003274092002,28.0624532602354,27.0035638221417,26.371584261392897,25.805509821259303,25.197896379068798,24.437310348714398,23.4060068682258,22.3314338498182,20.5691351139367,19.842154633699103,18.943439174283398,18.0528046023351,17.4001464739924,16.6318640592753,16.1917723274891,15.2497373554196,14.4712080149426,13.601463082128001,13.0164366704857,12.5270777293727,12.2218332904219,11.8371048062289,10.9627775117983,9.83607043187216,7.72098827761165 --0.0510979444462836,-0.185552009127803,-0.189669326620121,0.232227677175918,0.361678109716954,0.6186279466938029,0.8996915716217371,1.2502362291723301,1.51081096635602,1.6518021248569799,1.76823985009594,1.84708414520645,1.9716801767616499,2.094874250768,2.2216296143158902,2.31494100785581,2.4290862599559904,2.54163667494061,2.64715787471776,2.78351655278444,2.8418728407742595,2.9476250248969103,3.10257460346306,3.16593207038283,3.30563756885113,3.4712770751244997,3.58558183061619,3.7160891812519403,3.7913702592023597,4.00011591323572,4.108719441687979,4.251757295484991,4.520392283082679,4.7002226128319,4.9457241725419,5.13492472064199,5.372558403080441,5.645759989739849,5.8934735313482305,6.27856712991773,6.52794855793846,6.71700340332029,6.94519722896157,7.19487317754021,7.3747778081688296,7.704063574943611,7.79453144118445,8.02291361049309,8.201721676654591,8.398145210744751,8.61012963907611,8.72848341278781,8.89285149720666,9.38275934146208,9.73658402435406,10.1640768627087,4.03159114294145,7.296884352487321,9.755403300126359,11.2333269765867,12.975210814972902,14.6584847889162,16.274681594588802,17.7581563900617,19.202952151109397,19.7461950835652,20.369544967951,20.9403445849644,21.519913920970502,22.1145426803549,22.657074225585603,23.2875232856033,23.9546834933443,24.65391466186,25.318607105822803,26.0983783603612,26.6317816565452,27.019641480714103,27.488089195886197,27.9860213083908,28.400862285360198,28.805648823931197,29.2951163610895,29.7277933346424,29.952524189172397,30.1642465564408,29.965011120510898,28.0962904562464,27.109610328233398,26.403891123551603,25.878676706609003,25.276428062490602,24.4956938202925,23.501502982105198,22.465478035328,20.6828229683046,19.9545145104588,19.0866101466107,18.1847756317566,17.524245995528,16.778136965983602,16.3632166178861,15.378282245664401,14.6633275175472,13.750279210655801,13.2025447759049,12.7279355191089,12.431214935413802,12.0409618315374,11.1883354779806,10.031697816325,7.99795083202135 --0.0629111331538054,-0.20440120432658,-0.227785567158583,0.221610475226654,0.361678109716954,0.614309929818852,0.8695967989462601,1.24110124469582,1.4894851504373898,1.6295675807118202,1.76823985009594,1.8376598306958702,1.9526770871359098,2.0907823321826102,2.2157516150577203,2.28519816408046,2.4208273617694904,2.54163667494061,2.63474269639526,2.75927289545591,2.80698354980283,2.9476250248969103,3.10257460346306,3.1518717526970805,3.30563756885113,3.46425517358043,3.5635125094182905,3.69458365028359,3.7913702592023597,3.9779744067292704,4.08413176503662,4.22770284294279,4.48250546213293,4.69791434369429,4.94495948015495,5.13492472064199,5.35264467655676,5.634373718043291,5.86821122873159,6.220295172584059,6.469596151043429,6.70080762938514,6.9337351384004995,7.1715589437541105,7.323568871800691,7.66614989012851,7.7430100707189595,7.940336695110309,8.15058503200678,8.37675005310275,8.55510115428089,8.69603069433828,8.83844181146775,9.35178646323177,9.64903886528515,10.0808767308589,4.0349115038303,7.31903567570264,9.77697319138977,11.2616360541658,13.0211281535056,14.704908367739801,16.2934526368814,17.7969963991535,19.2410013196142,19.840078434504303,20.4438712958705,21.006708778375,21.566077106782103,22.1838291222843,22.796916622056397,23.3962649926364,24.104147090667702,24.764121740337,25.442656474448,26.200169821131702,26.774810818766998,27.2075995147197,27.648964237551898,28.159976812014605,28.562605416237002,29.002662887276603,29.486361383257197,29.967599315507304,30.187997058277197,30.360796523027396,30.2268041522644,28.359368737024997,27.388235130902,26.713533029341697,26.208615377425698,25.5812768438732,24.884216290313002,23.8916928440422,22.8310422614007,21.099011284434102,20.3842790924714,19.5468559334742,18.7014566929739,18.0437536524734,17.3053697688591,16.917455358696802,15.9252477838414,15.237086099270599,14.317283411616799,13.7761010150741,13.345337195508302,13.0624496936831,12.682894854197302,11.898081456714001,10.7394450427228,8.74735779158365 --0.0782550360099716,-0.178482675123495,-0.24298781011288897,0.21810763306626202,0.3733801951021571,0.603133938319833,0.8785946078214151,1.2325425720107501,1.4688049955499598,1.6259648637056698,1.76823985009594,1.8376598306958702,1.95396601421904,2.08287579833841,2.2234057449277,2.27982665281325,2.40108690188439,2.5349242546574704,2.63474269639526,2.75082077963414,2.79693389735375,2.9476250248969103,3.10257460346306,3.13614067651209,3.28579935832455,3.4561467307232303,3.54841575992564,3.6797877450755503,3.7856577375322904,3.95533412066995,4.0779884288081005,4.22770284294279,4.48250546213293,4.70036917636,4.94495948015495,5.13606152543668,5.35264467655676,5.627874272095081,5.850584777016469,6.225573990750849,6.469596151043429,6.6873598914068095,6.93223708771775,7.1715589437541105,7.304927479259209,7.66614989012851,7.7430100707189595,7.9307162333323005,8.15058503200678,8.361639055779719,8.55510115428089,8.69603069433828,8.83386393908903,9.35178646323177,9.64228186034239,10.0808767308589,4.01934943018241,7.32628120528171,9.766367730740301,11.285521918638,13.0702676759938,14.749951058176599,16.3510471390581,17.8851275226748,19.3700837900093,19.9523998830938,20.564164065341302,21.162168853750302,21.716996438583003,22.345079200554,22.947641498951803,23.543400521975897,24.26171616593,24.965122898782802,25.5664050030998,26.3307150053192,26.9439969432491,27.373230177211298,27.8506158811848,28.3924654961807,28.7777526431025,29.192646245255602,29.6853526315621,30.2067983984029,30.430132912132898,30.637527414952803,30.4550398229607,28.6402034769867,27.679365740165,26.998104175502895,26.5165776563348,25.9089276723681,25.2043423277269,24.2725559665711,23.249374237828498,21.530008737358603,20.8303838084397,19.9745744284057,19.1694153123292,18.508797394877302,17.8052581359671,17.4060902573207,16.457619534815098,15.7720810555608,14.887740144479698,14.3877913960258,13.905996338899099,13.6923188878519,13.316076154456,12.5151089241893,11.462491985897401,9.47227840930278 --0.0537103092083442,-0.18137374169192,-0.227785567158583,0.23846252543693602,0.403309504399741,0.6120331159796011,0.870587759746304,1.2149693408175,1.48709523411307,1.60647483720652,1.74236343624105,1.85141395057637,1.9490402591930902,2.07810187616617,2.20531979343883,2.27269065181032,2.37537228124544,2.53101264921449,2.5980344831077997,2.74868957784244,2.78070847578067,2.89090621590941,3.06404870223767,3.11630168862158,3.24414654109869,3.42165418985264,3.54143422991562,3.66146525530704,3.74004783368918,3.93060204303844,4.0552880945390894,4.242779912676061,4.4416679509411106,4.65541411441992,4.8942392197717695,5.113049238780049,5.31419186075964,5.590819346095969,5.830143958667179,6.202987105023531,6.426599760272841,6.652263910782731,6.886809009485379,7.1546975443171705,7.30293664606962,7.6241772962018395,7.69576231159652,7.904892953803031,8.13994831442933,8.3167734116745,8.51121749596293,8.68330956412485,8.80664478868467,9.286260445130962,9.6199123492433,10.049452594261698,4.02267829674616,7.346308748715219,9.76871975438627,11.315455428445102,13.097737670825698,14.761031515216501,16.3931778626456,17.9183333468322,19.423604687393897,19.9870196092595,20.6224581235195,21.2246438937778,21.768698298358803,22.4032821276752,23.036326809611896,23.637108033084303,24.333510989707605,25.0478613905087,25.682099598168996,26.434938205857396,27.0732704547508,27.4709591505908,27.950372126157497,28.471744554615803,28.932871882576297,29.333548338794103,29.8078944771603,30.314687890313202,30.5457514086939,30.760300543704,30.6174066305242,28.833207267292398,27.8991658362955,27.2960658980592,26.779724196230504,26.1736930630295,25.512324949207002,24.548024424067002,23.583576496181198,21.8642997119327,21.221119052192602,20.3671179671541,19.579394998835898,18.9150944855905,18.2362823952501,17.8481580877097,16.9181863760939,16.232444562263,15.4018442143752,14.9027461381292,14.426184778248999,14.2109741056388,13.8512244819013,13.131997517349902,12.056036473059699,10.1418294836193 --0.0552525619532382,-0.18371373700067603,-0.221101485684294,0.235851195841157,0.41357007294208104,0.615607099700065,0.870587759746304,1.21043459612881,1.49047340804574,1.60647483720652,1.7396523035656002,1.8412027139637899,1.93673106295965,2.07810187616617,2.19338400190292,2.26407732991309,2.3731758254744304,2.53265625304458,2.59782924338295,2.74868957784244,2.7757774819951297,2.8738566279846003,3.0343872067570494,3.10931422382194,3.2407510580912695,3.42165418985264,3.54143422991562,3.65513830396132,3.7313454003068,3.89718816150732,4.05487740828004,4.242779912676061,4.44281929191733,4.6316469591408,4.9102526072460595,5.09005899271821,5.32357943934396,5.58185421292287,5.839854217176669,6.20734454334471,6.428181915190929,6.654570434720419,6.891754786892441,7.174397393236901,7.30986552017848,7.62713864598562,7.69576231159652,7.928333485336469,8.12296213854837,8.32905414616582,8.50636513452958,8.69184617791986,8.80374918458495,9.31568699383365,9.640014345525769,10.0359939101595,4.0133065961765295,7.32219560709133,9.75848560215276,11.316908329407699,13.1160532992223,14.8292231138502,16.432618233238898,18.0098225170771,19.4908565736337,20.0928540883555,20.734940719705,21.3207525616281,21.8867102899219,22.5425113237075,23.143808377960802,23.7291121182969,24.461200750345697,25.1930789914118,25.835973972529697,26.6146209278366,27.204962907231604,27.6002157667347,28.1207872985793,28.674929829803098,29.0876425803535,29.4937299723445,29.9932926999311,30.5379204217568,30.7870806240927,30.9912167111115,30.832466325803498,29.0814710508074,28.2024114710623,27.5357097010165,27.0855969558138,26.528079969754,25.848971490583,24.9439218342587,23.9462868912462,22.2699862302739,21.5782514932934,20.798106753914603,20.034616052851103,19.382304092764603,18.723419538317,18.3436800124599,17.448315250717098,16.765236916359697,15.9155665591272,15.4447625623876,15.0235045592071,14.7714197819372,14.453138561246,13.7057817689101,12.7205600944811,10.8272957446899 --0.0343368726645619,-0.18349803721223298,-0.19389957565286,0.220192440072148,0.408039542799449,0.611012901942463,0.870587759746304,1.21043459612881,1.47499633496914,1.59714503445634,1.72910843254619,1.8168869806956798,1.9366082036992902,2.08747708133128,2.19338400190292,2.26407732991309,2.38777401993,2.5018140346885,2.59782924338295,2.72272664261783,2.7476518274713904,2.8740825155456697,3.0343872067570494,3.0612496490735297,3.2066834285547596,3.4018283390670003,3.53082207973562,3.6354372479355197,3.7236978447124303,3.90256694582072,4.0271458677173,4.19812404480879,4.432361891843031,4.5898958120556,4.87518355690662,5.0393473947116,5.29650966028208,5.5623928025985805,5.8069619469575,6.18303887019338,6.38890613143155,6.622875228756911,6.87465606319579,7.14448880010005,7.288810920469889,7.59048608161116,7.648347655135339,7.87120260740713,8.09470358114493,8.285827946949379,8.47046899799181,8.672386416261249,8.76370624367861,9.31568699383365,9.583695669574789,10.0329175282747,4.017403118183379,7.31926335672907,9.757734070108052,11.304996773630302,13.1464777499735,14.8474518821765,16.4813005545855,18.0741346891592,19.587415448378398,20.1550125112732,20.7702608531686,21.3840593655576,21.9515047283162,22.5958697481071,23.2337545618777,23.857330043275102,24.571442162957897,25.2849422561901,25.9459771349959,26.705898442483896,27.347579313447,27.757996531071896,28.287011512484103,28.7953839005036,29.277097501802302,29.6919150146886,30.181571330346998,30.6852611131115,30.924013643004603,31.2165028834738,31.051407913179997,29.3139984667277,28.4328504815871,27.831313701303703,27.3734578542032,26.7893420229649,26.159132381581202,25.2383855463058,24.2684540087469,22.6166958830013,21.988630167525603,21.205114145648,20.4514881546163,19.8019646780096,19.1635945814777,18.8021885897729,17.9075009217874,17.2706141289506,16.410989630736697,15.9746341419069,15.550044547486,15.3589446423053,15.030492594521501,14.3479166076913,13.336037662734899,11.4953934864469 --0.0273993076345022,-0.18349803721223298,-0.21694523482206698,0.20851401284383497,0.36906586799629293,0.577232822156714,0.840195219339816,1.2152119986963001,1.45511438432876,1.5753934592838401,1.70273140132956,1.81051860352223,1.90007953266141,2.05883514016821,2.1732325067374,2.2280994225282598,2.3782841236576497,2.47091248091911,2.56269986724268,2.69006650439727,2.7029846445084704,2.85864712083639,3.0183517303491603,3.0023815422176803,3.2013268375891397,3.38716384670683,3.4816232213013305,3.6159591995012903,3.6860026876671,3.8818122825891,3.9922220357884903,4.15172765022922,4.3998900973119,4.56411103817743,4.847481875935389,4.9917031608145805,5.25385953469997,5.48546449414144,5.76259446779124,6.100991145741401,6.353047410195991,6.57906641284583,6.808583764503879,7.049511765836151,7.21114725642303,7.5157932700788095,7.56874417000606,7.86049108164204,8.03629747538548,8.22526179735681,8.41458870391982,8.586658151661121,8.71716361584439,9.23642194981186,9.54302163168867,9.97803201879334,4.02473351687743,7.3182827675612305,9.757734070108052,11.322121910025599,13.1698042051683,14.858825921607401,16.4909751724629,18.0864407136012,19.616620750636102,20.223014621037898,20.825505341594898,21.438885014054698,22.0243593192036,22.6447183277283,23.3106102461344,23.9159993326914,24.6144588826765,25.3573255670411,26.0411854561509,26.770290780544,27.4242494968573,27.831712075596197,28.352098763188895,28.882381736606604,29.361879908106605,29.7897487686232,30.2921366928882,30.781127549099303,31.074497406430503,31.3206486313525,31.1992065477445,29.485583428147102,28.6367413307246,28.0020023093343,27.5490303932268,27.017861197796996,26.3955163352592,25.4830358708458,24.541418885057897,22.9206090022262,22.2684210629432,21.5239109607137,20.762721695567,20.200798555726102,19.5031103842509,19.201822673278,18.3154176756768,17.6747413071294,16.8478986282089,16.4119517227668,16.0171132856422,15.8049721015557,15.442263071113802,14.8191409287165,13.880795741278,12.0561476974863 --0.0342881096975131,-0.198846791018238,-0.25092429868274696,0.196186764878199,0.36906586799629293,0.577232822156714,0.840195219339816,1.21104210970959,1.45511438432876,1.5510306161376202,1.7019177959488299,1.81051860352223,1.89148253911465,2.05883514016821,2.14715781910942,2.2280994225282598,2.3491602350713903,2.46081431041603,2.5490057979187597,2.69006650439727,2.7025974600664,2.85864712083639,3.0183517303491603,3.0023815422176803,3.2009751758449703,3.3537365776373798,3.46108070711486,3.6159591995012903,3.6860026876671,3.87011282671045,3.9922220357884903,4.15161344478616,4.39688350268378,4.56153870994718,4.847481875935389,4.9917031608145805,5.25385953469997,5.48546449414144,5.76259446779124,6.100991145741401,6.353047410195991,6.57906641284583,6.808583764503879,7.049511765836151,7.21114725642303,7.5157932700788095,7.56874417000606,7.86049108164204,8.03629747538548,8.22526179735681,8.41458870391982,8.586658151661121,8.71716361584439,9.23642194981186,9.54302163168867,9.97803201879334,4.02263195855402,7.309090457047451,9.77555590374409,11.3587013889956,13.190179670323,14.8960355952468,16.5876756034024,18.2067715515613,19.7051799021486,20.3279174831664,20.954340713274398,21.549585979890498,22.172551414692897,22.7933964676925,23.435365460114497,24.0600332149402,24.7717525575977,25.4933895879167,26.1905530654581,26.9294137012764,27.584352246226803,28.0642460583326,28.538906879882397,29.083832206366,29.5458458842356,30.001591169835,30.474397087632198,31.020272786191697,31.3110071467938,31.551675999334396,31.4354034120002,29.7326859302389,28.8855545072434,28.316851361289803,27.8989847674862,27.3110461162325,26.7404784664784,25.844034707061898,24.9295899829257,23.3114201556013,22.6727720832018,21.9428803587153,21.2136420884714,20.6070685761692,20.0005698802446,19.638880555310603,18.8026132202448,18.206228483987697,17.3732242086142,16.9400372921327,16.5550761728721,16.4008313107973,16.0910118730114,15.4540173708969,14.541584106103802,12.769902606794 --0.0215031900032367,-0.204171300073629,-0.22218333457417302,0.20193944605636302,0.36906586799629293,0.577152017730844,0.8253955473859449,1.2108729348206102,1.4331390896375098,1.5510306161376202,1.7019177959488299,1.77911880713283,1.89148253911465,2.03943505792884,2.13831303831182,2.2280994225282598,2.32681675629824,2.46081431041603,2.5490057979187597,2.68100353545344,2.69350858481493,2.8499901836318395,3.00174069008131,2.9719663661981297,3.2009751758449703,3.32874856776851,3.46108070711486,3.59298124982682,3.6860026876671,3.8666206828028704,3.9946498484612296,4.1377515119866,4.38698163939654,4.549337608579281,4.827417928467,4.97303577746299,5.2381552309296,5.48546449414144,5.75245777868911,6.09438424003839,6.353047410195991,6.57106745156341,6.808583764503879,7.049511765836151,7.21114725642303,7.50610288706092,7.56874417000606,7.863907204352749,8.03629747538548,8.22526179735681,8.41458870391982,8.586658151661121,8.71716361584439,9.23642194981186,9.54302163168867,9.97803201879334,4.02041826640398,7.32348893598661,9.78293932613289,11.376919029661801,13.2131322353761,14.967509613687401,16.6390744683375,18.2380038485299,19.7577573055204,20.3857622143868,21.047862655474,21.6218750511178,22.2157713466644,22.845251519841298,23.510957322009897,24.1367370688404,24.874687017930498,25.5811068857507,26.272508937180902,27.0414640217609,27.6792311741494,28.1743828707132,28.711644276508103,29.188975235890698,29.6764389700698,30.1432262238288,30.650199736599102,31.201930740728898,31.482485974586602,31.7163832317416,31.635670987364602,29.921040509853,29.127811370339604,28.527732703896604,28.119941622483395,27.5744073314583,27.017364850651397,26.1701690838147,25.2826989587135,23.6611772947515,23.056438960047604,22.3158367562343,21.6096720298568,21.0098696744925,20.4407694496543,20.098444208354,19.2650896118721,18.6562069227234,17.842691271268603,17.463256643992697,17.0629098648127,16.8592773744994,16.6005605984988,16.0232143262754,15.148227207825,13.390755290641199 --0.0223552000136272,-0.196508060446347,-0.248229945487502,0.179904165825742,0.3712220142472821,0.584405181038384,0.8355261043331121,1.17568892362006,1.4202743853950701,1.53848043732644,1.66742146118846,1.77690454492264,1.8556582312571201,2.03884794318466,2.1151527938954,2.2097785576303397,2.32681675629824,2.44573688795832,2.5147735213995,2.6833638311573798,2.66826221692156,2.82943623363978,2.99448865774548,3.0019609433630605,3.16009056888865,3.3050331044474195,3.4101951129883,3.58144536667498,3.66292516523799,3.8292691455373595,3.98538800042844,4.10898371795135,4.38698163939654,4.536982624883611,4.8053054595986,4.93761215838925,5.2246313915204405,5.457578849374701,5.72069245627388,6.084117795296541,6.33032196468995,6.52614286821601,6.77797854663499,7.02485901840975,7.21705173210582,7.5377479016073705,7.57077046687767,7.845462284852671,8.02337193038963,8.21200212117743,8.413896109638129,8.58952845126309,8.68118870015677,9.23013805927786,9.54811561523785,9.99591634209928,4.01049758820439,7.309090457047451,9.77255512473877,11.3937753851248,13.2481868001825,14.9961915024927,16.6500193745842,18.2797687160126,19.8023279621542,20.4591104610695,21.0769026032053,21.659249188874803,22.2876815964465,22.944993456367197,23.5743345906647,24.2057025118664,24.955010303939098,25.673418973378,26.355520158552398,27.161361777356,27.770875777217103,28.273983608103197,28.754546851700002,29.337460662755298,29.821524606220002,30.2478296755908,30.752467034106303,31.339143553762398,31.6151182775955,31.882003088445803,31.7807265022788,30.155577752280198,29.3152061891048,28.7198243882508,28.349204759282,27.832552004555303,27.2463844502355,26.427315297045997,25.555770561319605,23.959588505024602,23.3843123235892,22.6287166346946,21.9529025678722,21.397890968905198,20.8027812611323,20.5018416070378,19.6507474995998,19.082765694049197,18.2852341094472,17.9051775706033,17.5530885203199,17.3944450903438,17.0989415049917,16.548423494077,15.7053110730369,13.9914652730507 --0.0368797153002537,-0.19284043028148604,-0.235142471275017,0.17295582072520901,0.35625531618498996,0.5742553193501401,0.795415681291457,1.17094540039026,1.3595180291437,1.50569750343183,1.6562659569708003,1.7363358646216798,1.7830283223571102,1.98260599537229,2.07195587442838,2.14388071081532,2.29821002136266,2.42001978469648,2.46667102026589,2.58912738340195,2.6390152288918,2.7720903588245,2.9156320227668195,2.91257248939339,3.10688154566036,3.2956254880499305,3.37665607912252,3.5123911113684905,3.61949656771034,3.7928912354664397,3.95553666441294,4.07467143765588,4.29615418358501,4.50287873868354,4.70687353421238,4.8933836839567,5.177509358827219,5.423692386943849,5.659242663535941,6.02233357419881,6.27839263047374,6.50108364654837,6.74391341374918,6.9952179455755,7.15323152860761,7.50245406429129,7.50376262391675,7.81216805844561,7.982589421095411,8.21629851152588,8.358940194637482,8.58290736921664,8.6816094560287,9.191259174862301,9.557361525825009,10.0251906650715,4.006478785260089,7.318135357038139,9.78892733354322,11.4024356392499,13.253335494807999,15.039251301071598,16.6573860551988,18.325215442790302,19.8510939451909,20.497242323071102,21.168373073720698,21.737783263920104,22.356413030833803,23.014835954285303,23.6310443347049,24.338144808371702,25.020759335637997,25.8119840346578,26.4891297408317,27.2300017520515,27.8781282315584,28.3671784991333,28.8831175452242,29.441182552511396,29.9365729495118,30.396932823596302,30.9323386558151,31.472908276023396,31.768419652725395,32.0363312828744,31.9560780109959,30.288909838660498,29.5333363182312,28.974298796388197,28.5902210295998,28.1397467569557,27.5376719754208,26.6941638761082,25.854481561254502,24.289643198154103,23.732803455775105,23.015867518551396,22.327785826694697,21.7915259134084,21.207461919851,20.913579731597103,20.1196984912633,19.5316934878063,18.7608445311456,18.4142347798208,18.0237858671698,17.892814761046,17.6380714324482,17.0920461003841,16.2833606768119,14.640741752671198 --0.0469635300555959,-0.18610965335768104,-0.24889692606321695,0.173930091369895,0.35625531618498996,0.5742553193501401,0.7839653833781309,1.17094540039026,1.3478481413311498,1.50213689463922,1.6562659569708003,1.73068558099761,1.77351920483277,1.98260599537229,2.05789767207383,2.12030182227929,2.29821002136266,2.41630917014415,2.46667102026589,2.58912738340195,2.61313379780572,2.7720903588245,2.9198559177990298,2.89800324259516,3.07663220011691,3.2749535370782,3.37665607912252,3.50555837426797,3.5960930164106695,3.77134268734533,3.95384493231906,4.07467143765588,4.284043325139931,4.49051817294857,4.70687353421238,4.8853362583117095,5.15914163922096,5.35103837304292,5.62562496417047,6.01907765932199,6.24759664657131,6.49606193810156,6.7320194043421795,6.95222359475562,7.13973741990729,7.431401035525281,7.4668395745449905,7.76323217491616,7.982589421095411,8.20117583775227,8.349754911861,8.550375068646389,8.6816094560287,9.191259174862301,9.51277974847468,9.98091269485943,4.00378967053382,7.285432197924809,9.767531053663609,11.405739512235902,13.275735621409499,15.051070587337898,16.7111935631061,18.385803699208104,19.9439151965578,20.5602292621341,21.274167874875697,21.801363573854605,22.433357163095604,23.1119598575581,23.7132098114325,24.364863930446703,25.1680899615239,25.8720897780855,26.5779582548804,27.3921853350963,28.002569892220997,28.481964269122802,29.009673965619896,29.5759604696842,30.091685506620003,30.531279372333398,31.079119601657,31.5936464588766,31.928989763861605,32.1891933227286,32.1397644197244,30.504084573134303,29.7245890076785,29.2191895218677,28.8233658248415,28.3833274643586,27.792425308857897,26.9988716077632,26.112173251986498,24.6116511417535,24.034474020662397,23.3912147181038,22.6750643711003,22.154331573354302,21.593808434358102,21.3258114027609,20.518232042404698,19.9722922183392,19.2643965073277,18.8682348609897,18.487200802144198,18.389131379415698,18.1733214297563,17.639212763510603,16.8462060634895,15.2840499501723 --0.0552425598616768,-0.18749147733700897,-0.26234310960212803,0.161700115920315,0.33653264596039695,0.545774168235555,0.7646977519716741,1.15147373191054,1.3478481413311498,1.4916234175891998,1.64433167031851,1.7198345954514098,1.72106562949199,1.98260599537229,2.04681641849475,2.0672494192312,2.2923700460697596,2.39140912046606,2.44553374811219,2.5620770961339905,2.59878919099914,2.73301927589483,2.8595640015409702,2.87630371792343,3.0299075840987997,3.25163236253281,3.33612782218817,3.4795502348633702,3.5759206345405095,3.7469111733119,3.8768343236798195,4.05329807051602,4.197734357517491,4.4687862394285895,4.63412624495246,4.85264210627974,5.1296336712481905,5.35103837304292,5.6084230540775595,6.00062480560272,6.22244120912504,6.461627900391541,6.69556082374048,6.935886625757151,7.135181981009519,7.44127585741999,7.4668395745449905,7.76323217491616,7.96864406195758,8.20117583775227,8.35562322791693,8.550375068646389,8.67436650127103,9.193721691151119,9.518010750515161,9.9943395198718,4.00378967053382,7.275266409832901,9.778326002588301,11.4134692863302,13.280752617619697,15.0793849887747,16.7401465690137,18.4312735352412,19.986933417200998,20.6242801481264,21.285033838461,21.8818403163728,22.519554403674697,23.196369693421698,23.8211085289785,24.4489331763957,25.236893835250395,25.953456943541198,26.664520719316002,27.4510088031185,28.1395668813355,28.590230150907,29.108658021914202,29.675055367105497,30.214900107698497,30.6298325538023,31.2171338062086,31.748350230138303,32.0968935614589,32.3463691049227,32.3178965841447,30.6809457199187,29.9337568539116,29.418113808847103,29.070163755975297,28.5721003248734,28.0770919775147,27.2706837261412,26.450418418368603,24.9183037227771,24.376148972235303,23.744500052906197,23.047167305362397,22.532080275860896,21.9973277264078,21.7476913685058,20.9470560085834,20.431871449334,19.6838537757606,19.333136088120302,19.004867205025,18.8818889873939,18.652756322174,18.200165890211398,17.4269698884917,15.857647234689601 --0.0581724004685844,-0.190708233069834,-0.27802684655439697,0.14804071213059802,0.311010913068642,0.522347657195404,0.7593057875457841,1.10615644519004,1.3273834350998701,1.4555454399365402,1.58069044227533,1.7086368091767,1.7194572434109,1.9014188140440902,2.03450035423584,2.06532387610437,2.25474903329187,2.3438689286712004,2.43771472656943,2.53297297228741,2.55952452560953,2.70370693745496,2.8595640015409702,2.85856852738063,3.00629676190958,3.22419658315745,3.31576957599823,3.46732240659514,3.5665652497041695,3.7469111733119,3.8647661728593703,3.99436053752277,4.1858892098858,4.4233064953955905,4.62567442277127,4.83977551805171,5.1080407169918205,5.35103837304292,5.58006824983999,5.97885158325224,6.19839186599717,6.433628157051901,6.662832743167431,6.92215061335021,7.1256697564896605,7.44127585741999,7.44741192515726,7.762204869313151,7.966760693297111,8.18615044205837,8.341470038509,8.54092817970694,8.678866764349621,9.21090555147814,9.518010750515161,10.008054489628,4.00378967053382,7.2654729542165395,9.778326002588301,11.411657749936,13.3002306940356,15.095971970035,16.7919447922474,18.472536459483603,20.014977882414502,20.689120875215103,21.3468422653693,21.978182379615504,22.577507896967397,23.246126241796603,23.9012850499515,24.573726121223398,25.3500428880168,26.069657129709,26.7904311947323,27.5484932819847,28.2415339463975,28.678521425765098,29.214947375518303,29.809761466989798,30.3601155889121,30.783867270516602,31.3411058042307,31.925164468520197,32.2840312642637,32.5336496812679,32.4994013153718,30.8840170814901,30.167030782202602,29.662326561719603,29.2700881439423,28.843698398779896,28.3230558002264,27.541700248730198,26.715147538337003,25.2487041242929,24.7145583410331,24.043020826472898,23.410691449802798,22.907402884476102,22.3608226374062,22.148540592965603,21.3668941938311,20.857750153591798,20.1625182020527,19.841567663717,19.468211894800103,19.3976126759797,19.168321991387,18.726279021200398,18.020695298665302,16.524067538633197 --0.0777442844484018,-0.208487060826356,-0.27893841562333194,0.130705215740977,0.284145240342611,0.504383065326466,0.7409293005337471,1.09498982248253,1.31956344570553,1.43654702322269,1.57858884176419,1.70614131268097,1.7245655599487901,1.92828004601699,2.00792992717695,2.07208029381298,2.20553688633055,2.33706537915904,2.45452419821284,2.52534709790406,2.54778879359185,2.6757632511763703,2.86178927782988,2.84795051051821,2.9900699849446704,3.22419658315745,3.31385129313658,3.4401448442705798,3.5626138508571694,3.75806210225797,3.85838448323874,4.00703980128736,4.20918694361563,4.42211832337995,4.62676699938109,4.83090048950022,5.074613225872099,5.3452579018229,5.581628846260071,5.96860009066071,6.1910680789670005,6.45814216479794,6.68556420169816,6.92536436701607,7.12966897724949,7.45754432098688,7.513679762679041,7.7889850691752995,7.97425555595629,8.21932637918096,8.377037847980631,8.580915736999481,8.69557045235104,9.27339391307297,9.625831334239539,10.1108354842037,3.97763610669516,7.31149484314063,9.781678378374421,11.422652879439099,13.3174332949242,15.122596195079401,16.8317329353106,18.5135472758537,20.082699048666,20.730893455672398,21.4105770504958,22.0364079835943,22.647309805557498,23.3424598092303,23.975570274421397,24.6171313781817,25.399915485148,26.139566618319698,26.854193875784397,27.6427096809169,28.312815857090303,28.804877504730502,29.3599909935618,29.9120629986122,30.4669435193768,30.9003448527533,31.456497815085303,32.0305846205608,32.3854303138018,32.6416508878739,32.6102633837868,31.0799020031657,30.355082640601896,29.840207888740398,29.5121867129195,29.0572886218045,28.534490856315198,27.806941993046998,26.984801738755003,25.5505869325381,24.9967609294932,24.378863153800502,23.7528727759796,23.2708012685461,22.7466799118226,22.5251582318677,21.7871341785528,21.2524608914919,20.5661523113693,20.265448565971898,19.948291097313103,19.885117803760604,19.660830996336998,19.2843705395926,18.587868747563103,17.1575114726005 --0.0644102681041871,-0.217802177267328,-0.286514851558558,0.130705215740977,0.267856997517559,0.5088285417729721,0.750137479846673,1.0783225424204101,1.31956344570553,1.4337029285139298,1.57521373704294,1.70614131268097,1.73038089841302,1.92828004601699,1.98305704482042,2.07693881436673,2.18986354990888,2.33706537915904,2.46874948108921,2.5202540828401,2.54778879359185,2.6757632511763703,2.8746224209378903,2.8448559616196603,2.9900699849446704,3.1949326004669203,3.3173383813573905,3.4401448442705798,3.5577674179276095,3.76225535068701,3.8312296063773297,3.99964138909642,4.20918694361563,4.39783369753532,4.62676699938109,4.83023944135092,5.06104432729856,5.3452579018229,5.581628846260071,5.96398330461833,6.1910680789670005,6.45814216479794,6.68556420169816,6.92536436701607,7.13131597209066,7.45754432098688,7.516316142291321,7.78116858423559,7.9975912884440605,8.21932637918096,8.377037847980631,8.580915736999481,8.69557045235104,9.28720723369703,9.63324395671973,10.1420826250436,3.9761378927404203,7.2980114831508605,9.78980602555668,11.4386975167851,13.341213387179101,15.1314064502751,16.8763379823403,18.566335760948103,20.1847486182038,20.8082713633235,21.4682136690806,22.096204416667103,22.697472246982002,23.414027711133,24.090460166642,24.7351179402742,25.483982839106602,26.2151311864072,26.9482191471565,27.7432503774753,28.4606335264335,28.8933712628626,29.4741918561021,30.0755553949488,30.5778872241098,31.061980001248603,31.5982941428487,32.2038351716102,32.528344044501196,32.8296962083439,32.7808029474152,31.2760309878241,30.5431584696452,30.075835811654102,29.7305207360447,29.310073180096303,28.804768318399702,28.1116318909464,27.2923215412677,25.837664496323104,25.3929209728736,24.746936012278105,24.1471722792563,23.673108001689602,23.1695720722988,22.8987237441189,22.234259520005196,21.706458785331996,21.0576261617392,20.7202395567985,20.474816280480603,20.386141633261897,20.2348687089888,19.8056660674313,19.182864658470603,17.8221226091431 --0.0724935007495411,-0.22641660941055897,-0.27879638443382004,0.0883765546214022,0.28806477518379303,0.5088285417729721,0.742098569295305,1.07567824666607,1.2896349591724399,1.4040965426967298,1.56381460237605,1.6728704985427703,1.73038089841302,1.93314455146752,1.9783125203232699,2.07693881436673,2.18986354990888,2.33706537915904,2.46930134788281,2.5202540828401,2.54778879359185,2.6757632511763703,2.87189854946271,2.8448559616196603,2.9900699849446704,3.21167666789234,3.3173383813573905,3.4401448442705798,3.5266185218164803,3.72029966477998,3.82444817938722,3.9973884821500802,4.20918694361563,4.39783369753532,4.62676699938109,4.83023944135092,5.06104432729856,5.3452579018229,5.58170101773136,5.943004972215,6.1887411663359595,6.460423347730269,6.698690084891959,6.91203139853993,7.151515525213901,7.45949925728188,7.50629049411057,7.78116858423559,7.9975912884440605,8.21932637918096,8.38767872512179,8.60029992649229,8.69557045235104,9.297049345576509,9.64747190577847,10.215923850109402,3.96106233457334,7.2980114831508605,9.79622799111617,11.461129552689302,13.3716099432378,15.1675005321772,16.904968490845,18.6044087400723,20.2069500375809,20.856586455995604,21.519518373407198,22.1446030642237,22.769189487141105,23.457549778651,24.1611706276663,24.773352289801196,25.5564300912331,26.324777879264698,27.079355380634304,27.8312678726088,28.535620739981603,29.0246786133361,29.5639811679585,30.221181801676195,30.7106674343314,31.166345922595,31.714891181768397,32.3606663141336,32.6740762410347,32.9954557746045,32.9626925752372,31.44694736303,30.7505753771492,30.3028388037214,29.981561958790998,29.551874110644196,29.079808635455603,28.390014130489398,27.5848758215986,26.2229538999363,25.687269402926102,25.086818133270302,24.5346832882275,24.081076019449895,23.5563157036028,23.380520506459497,22.657299093298302,22.1914563256742,21.5703775513552,21.267250954144302,21.0290489578749,20.922596965658396,20.7603695787916,20.444153667149198,19.8561268198889,18.5211596961696 --0.065645821381652,-0.236115936602985,-0.266665691513217,0.0789623346211903,0.31284260433110805,0.515408364497304,0.765714718903337,1.07567824666607,1.27361382987029,1.4040965426967298,1.53532491153841,1.6639894838215301,1.7173080153968998,1.9104634944594499,1.94432308441125,2.0722706989583104,2.17233590303857,2.31656926770971,2.4229745941637404,2.5171997631474503,2.58026175756529,2.67014810356204,2.8211850083583303,2.8447070989266496,2.9712441277676898,3.18377692717026,3.26269468421772,3.41629429492869,3.51435836268253,3.6728287065520497,3.7898511641601003,3.9590514525116802,4.17836907128452,4.37817612237608,4.61996586955159,4.81710705305961,5.0579157732750195,5.31531798713424,5.572982071079591,5.932893782679651,6.17474640253914,6.470688017900421,6.672964788122551,6.9007890667234895,7.15723462826761,7.47682555181066,7.50862705354511,7.78055604939757,8.063023785394781,8.27765820041843,8.38959330448435,8.64188798545933,8.69988176034609,9.345274392638801,9.696706149571481,10.292725269131,3.97418635383461,7.284283306843929,9.79722917509641,11.4742146240312,13.3886932954929,15.177779963593302,16.9364413745497,18.634858879291897,20.245612706425103,20.914529169903,21.5891606068623,22.2147933236406,22.8352213605715,23.548485253548698,24.2110251245422,24.855301096252102,25.655479875834605,26.4087309388972,27.131789183045804,27.9141391076692,28.610171758931898,29.110187026704804,29.670110112614697,30.2911749517352,30.8047614637041,31.3021826940825,31.885629501387502,32.4456359974945,32.80839705214,33.1384883814733,33.1293283431068,31.6723707617801,30.9342064382299,30.4734174799999,30.1880275386698,29.799781749296198,29.328699245409304,28.625121988708703,27.8811978783926,26.457636646371004,26.0154844847998,25.4440595638705,24.8280359093541,24.416416952419898,23.9986140298537,23.773503180415602,23.110989700217498,22.6463994951586,22.025330621521697,21.774447000693,21.497159307182002,21.4370640592413,21.2636252888941,21.000540388122,20.448225216181,19.2136509362066 --0.0598095660420811,-0.228728202537552,-0.26201127274263797,0.100008322279401,0.33654223634839303,0.514498452377148,0.776589104648394,1.08268771165232,1.28050535013799,1.3849227247366598,1.56632072545257,1.6362471091868,1.72071095598531,1.9045538160784299,1.9437575095535902,2.07629073755459,2.17693499108966,2.31656926770971,2.41915081211591,2.51158728751594,2.58026175756529,2.6745919874963597,2.8211850083583303,2.8563622684558796,2.98811775286165,3.16580044563119,3.2861229278619803,3.41020309063649,3.48521399737589,3.6517272916831702,3.7898511641601003,3.96329765603992,4.21256913871121,4.42211173719208,4.65581023517597,4.81710705305961,5.05056901145923,5.32722619533309,5.57964721283083,5.92846718880525,6.17474640253914,6.470688017900421,6.68964871357978,6.93098422387829,7.15723462826761,7.49993124237542,7.516917451255799,7.80828584335081,8.063023785394781,8.28843599046731,8.44114085375465,8.680154905730099,8.77194011080789,9.361899986435539,9.77339408254835,10.3214433563263,3.9719796644162297,7.287278791984019,9.79722917509641,11.4849445665004,13.4053091783659,15.2202743547731,16.9613071191904,18.669180503792397,20.318870337288303,20.993589683247198,21.666046212269396,22.2962374761554,22.9258872655158,23.6227904596053,24.2968498360552,24.9837722658816,25.713394523133395,26.479202178357,27.2639626788447,28.030962956578,28.7001948842038,29.2376085638485,29.7910228406826,30.409003239145104,30.9333463712674,31.4344694837292,32.0251003897163,32.5988199583811,32.968305686742895,33.2994654173599,33.2961209003316,31.835484756794802,31.1840372618042,30.700602490591802,30.3963027376805,30.039221956719604,29.580542965102502,28.9010615297505,28.1910180291641,26.8364566411947,26.3492930771418,25.7904627016739,25.250921462339395,24.8054330955019,24.350556172252197,24.1928354134026,23.5428406232948,23.1094766401198,22.504974893933202,22.266746781844603,22.001716372823,21.9690844335531,21.814269443506397,21.586936374889103,21.112369773485398,19.9167236053076 --0.0376929877547081,-0.22301941767864897,-0.230891424098728,0.14832569807136903,0.358737676323577,0.5425586815067079,0.792395899922083,1.10856192544201,1.28050535013799,1.4287191487615503,1.57755362573829,1.66231226950048,1.72350126237073,1.9045538160784299,1.9806661976058701,2.09002762396877,2.2019677077828197,2.3384843730991096,2.42951501165007,2.53478618782485,2.6146378613572003,2.69442295822877,2.8437866209447904,2.8845310351028197,2.99996121616975,3.16628847661371,3.2861229278619803,3.43455663981188,3.52369533112952,3.6832459937592406,3.82442288863383,3.9958747837606903,4.2421009248957,4.43387370479999,4.65581023517597,4.8621339993994805,5.0540191485037305,5.34542461568466,5.6349071412965195,5.966505426444299,6.22659792057809,6.473417686612249,6.73966944187665,6.980682864050781,7.19280908437363,7.551216681187401,7.60989823243504,7.84956092786242,8.11608683014383,8.346743683945219,8.525727961352429,8.73770513347559,8.83692182141046,9.45680440044367,9.87697402599995,10.4596389783227,3.9700233373066496,7.28462977581222,9.80026749261967,11.4964786114232,13.427983486688301,15.2565644882529,16.9863414493719,18.720995744600398,20.3754643225528,21.026287152617897,21.705697034053102,22.346555305089602,23.0104906225048,23.683781946641897,24.356628315931697,25.0504494400776,25.820103641185497,26.5869328067286,27.324458225801802,28.141505692866396,28.831434911048003,29.309273450257898,29.8795409435401,30.502729885063502,31.037718934342898,31.5577636375452,32.116165606163804,32.6967293876589,33.0955437216782,33.432230414101,33.451215413197104,31.9968314409338,31.3545198609642,30.899144748614603,30.648078481100196,30.3190886319797,29.8175055257717,29.1451407814452,28.470175182883303,27.132145328028603,26.7037167389111,26.150564008843002,25.5957803243903,25.195714203828302,24.804796008537398,24.6281808077526,23.999775167245897,23.5879836019455,22.9917091869094,22.751182430234298,22.543476489130203,22.549641224691896,22.4207292556804,22.238094674446202,21.7737552581584,20.6792188753434 --0.0182261281037595,-0.20866287516048604,-0.23030940837054503,0.136494099312246,0.358737676323577,0.5423930794585751,0.8055141989495891,1.13610832164903,1.29665720697394,1.4475312971962198,1.57755362573829,1.6382194002127999,1.72838079542699,1.89213154612625,1.9806661976058701,2.07419069363425,2.21817837982455,2.3384843730991096,2.4009035226434903,2.53478618782485,2.6146378613572003,2.68834570658055,2.83908455840958,2.89963241060816,3.0438594939274197,3.1749153540016604,3.2871550028720296,3.4592621859825896,3.53481489999358,3.6832459937592406,3.86214951826033,3.99802389628962,4.2501625526667,4.44285374300295,4.69500510203763,4.885365914398429,5.12146907273016,5.38473318898494,5.6477974529461905,6.043611522037821,6.25728763315299,6.5179562482394005,6.7716149595790895,7.032621810465491,7.281616794355769,7.6256274960969295,7.64943413525359,7.90904129689256,8.254248592590692,8.395622608786251,8.58383180449503,8.848437382877439,8.95014436091752,9.57348687612082,9.959021280166349,10.5787169268078,3.96095159853104,7.2774764079192495,9.775313227995339,11.4997759667242,13.4364661200479,15.265517672363698,17.0101213600767,18.7637633872092,20.423283603087803,21.0530685542675,21.732713878859002,22.3931258233392,23.0437517657942,23.737440217816,24.413380158070197,25.115583357147102,25.9072127540676,26.6540538020819,27.4403504980448,28.1935968434741,28.912479674755502,29.434849264279,30.014039141677603,30.659678031031397,31.180834688435603,31.6644277449735,32.2634403109753,32.8691398148602,33.2428943140029,33.5524773427888,33.5921121218785,32.2073517000428,31.570490014929298,31.15349603092,30.875062950426003,30.5301077736983,30.1014525585912,29.4348042527703,28.7510954340272,27.4864604518293,27.0342124103157,26.530616084956602,25.970680656521896,25.6124706171562,25.2018640828247,25.060898766005398,24.4367786382689,24.0393507352181,23.543772655275003,23.3249283172466,23.112816025447398,23.139920922281497,23.0123442393989,22.853171194793898,22.4573546453919,21.465857191973697 --0.0188287798435756,-0.21257628452319,-0.23419501200415696,0.13039088774844,0.31985125037018797,0.52607347490742,0.7796981910778291,1.12205702606056,1.29564791522629,1.4475312971962198,1.54796144886271,1.6382194002127999,1.72838079542699,1.896317301568,1.98607553930186,2.07419069363425,2.18564586589366,2.3420852307195,2.4009035226434903,2.4939755305265896,2.5916293915825,2.68834570658055,2.83908455840958,2.8649908466073297,3.0347022019004397,3.16024120771303,3.2871550028720296,3.4592621859825896,3.52501656951596,3.6832459937592406,3.8456862460635204,4.00903824444587,4.243495162899509,4.44285374300295,4.69500510203763,4.88926417039125,5.12146907273016,5.38473318898494,5.6477974529461905,6.0360191897115705,6.267489736386841,6.5179562482394005,6.7716149595790895,7.032621810465491,7.281616794355769,7.6256274960969295,7.64943413525359,7.95602147728881,8.254248592590692,8.41804451645169,8.64070538527892,8.857203496081071,8.98267880846452,9.5836854891907,10.0261163551986,10.644318302955499,3.96095159853104,7.26626857102876,9.789869970628141,11.501083206932199,13.4497214336657,15.2846877441979,17.0638516568959,18.7828171644511,20.4520360409001,21.102376463857,21.7809794158637,22.4518178121915,23.1002374618641,23.763126546282898,24.461514968036603,25.1385691259239,25.9480860930733,26.7167798597156,27.476017307083,28.2522412673321,28.963058041796604,29.478968016265696,30.095016007301997,30.700728056848696,31.251435568180998,31.7569211314226,32.3526398532107,32.9622982834825,33.3386546023645,33.6567483441475,33.6969390904091,32.3326181850782,31.6633195469304,31.285191525290198,31.0600038120863,30.7237021346799,30.291543073287396,29.664301846919304,28.9541532565414,27.704335524903897,27.312762660221896,26.791886612539603,26.294885632234603,25.9560279238167,25.545576109907604,25.432807710360002,24.822301117530397,24.4646530887399,23.9417510909863,23.783280004386302,23.5916136477878,23.5963277320166,23.5159094501754,23.4347397921772,23.059020148123697,22.1865700459437 --0.0152343423000404,-0.20662755603954103,-0.27144697443731197,0.13039088774844,0.290486930803856,0.49362018990173795,0.761522573342336,1.11581552799223,1.29564791522629,1.4528838560748703,1.54511728122396,1.6372373197734198,1.72246414648952,1.8884862234503301,1.9694443616597501,2.07419069363425,2.17223711193771,2.32321565854619,2.37453773556481,2.47127039267671,2.56694146654602,2.66958679245701,2.83908455840958,2.86380752694081,3.0157756869426398,3.16024120771303,3.2871550028720296,3.4592621859825896,3.52501656951596,3.6792605418936004,3.84260518070025,4.00346877469106,4.2272916978106805,4.430218105466451,4.69500510203763,4.88926417039125,5.12146907273016,5.409393810014651,5.66241864811037,6.0360191897115705,6.2791974318989805,6.5179562482394005,6.78393149760908,7.07719000655435,7.28833844223131,7.6353748442198395,7.68472296977716,7.9917371587203005,8.254248592590692,8.48746079944701,8.65773087469013,8.88379236802153,9.02469994367622,9.633174326921411,10.0475205712837,10.661602411305301,3.9625440063414903,7.25337860863712,9.789796579805381,11.5100013525934,13.4492791604192,15.3330362801087,17.0870868382612,18.8249418354873,20.5259230395481,21.1807240428277,21.9083100203181,22.5312180968847,23.183058440858,23.887882277045,24.5706628614699,25.246901546336304,26.0552443286129,26.8282695102532,27.557787283066897,28.4052002566819,29.107532781779998,29.6407616344585,30.2562610976872,30.857630301274,31.394403494215698,31.9124746772535,32.5055064588683,33.1254390437967,33.4992067935632,33.8875584190349,33.9171041797751,32.5355382104448,31.9148422218056,31.5347887787612,31.3235473546723,30.9780755040703,30.595354624330103,30.0016266582535,29.333781059456,28.1149066074415,27.7116736769939,27.1992135416341,26.7288872885044,26.4256973920144,26.0240848254744,25.934822943219,25.365217189710002,25.015067240266198,24.5287056034172,24.3522014256324,24.2130075292803,24.289889701435104,24.167371603681,24.120737980313102,23.8572183926707,23.0377713698427 --0.0152343423000404,-0.202150781944534,-0.27144697443731197,0.13052172231565098,0.278678552432788,0.49855113969441295,0.733975795572489,1.08594296635755,1.28563598791328,1.43827100183949,1.54583672828739,1.64591780773705,1.7606429593374,1.9128147105941498,1.95669253599621,2.08287837633872,2.18388965842895,2.27849579782537,2.37782286430591,2.47127039267671,2.56318539997628,2.68404226075813,2.82779010994456,2.84979747205275,3.0257355458289,3.1593016145887405,3.29728784833754,3.42200599097522,3.5240086675670295,3.6783255768420497,3.8488897307662002,3.99957638072607,4.2527831264708595,4.44050154685966,4.70969647599334,4.9040157173967005,5.15957084053365,5.43365401853441,5.719274156069191,6.05044350975629,6.2937167039020006,6.56228432516771,6.8289403684009,7.11816251430179,7.35383585711962,7.672721393454929,7.748624175257451,8.03808306100808,8.30799783004257,8.54044286829322,8.74664211212167,8.967534226366821,9.07799307029772,9.69974640651485,10.1465397943119,10.7890960320648,3.95551187721183,7.27626653470188,9.790795557500909,11.5432588080704,13.4671565435098,15.346786484106,17.1372088064975,18.881856579314498,20.5830239495201,21.2225453263417,21.930834795505,22.5723783816189,23.247407045764398,23.945461066318103,24.629099013225797,25.3472132027631,26.1180952229319,26.866497312505498,27.631558261013303,28.467132289250802,29.2039595212506,29.705000423372997,30.319405102149897,30.946268612793897,31.522777579970604,32.033988479345105,32.618554834997504,33.251100314902104,33.609363230012804,34.03195943425111,34.0578441663565,32.73025753541361,32.105396514142605,31.7171810965415,31.5121176508377,31.2461269722853,30.853966658591105,30.256251305071302,29.610989846866303,28.4140739274805,28.047037990538996,27.569652215560797,27.1086207471,26.8107134629361,26.438246693433104,26.356795794990695,25.8318846474366,25.502655427087003,25.046432202083302,24.896942581305105,24.7494441770196,24.8284118217308,24.7734748902755,24.8132712699652,24.5336819239855,23.8537379544419 --0.0115828120945352,-0.202150781944534,-0.272418929179429,0.14104217339615197,0.28279314866849603,0.5099469496136889,0.733975795572489,1.07491868257844,1.28773844019356,1.4404444593739398,1.56517863837302,1.63173070059796,1.7498275805458101,1.9024767629201498,1.97018001339012,2.07194389637572,2.1909840608762403,2.27849579782537,2.3710693627162502,2.4562576375718503,2.56318539997628,2.67213439470688,2.7875878823018803,2.8698749045496803,3.0257355458289,3.1603600763762096,3.2679729893739102,3.4104552535906296,3.53864076848352,3.6783255768420497,3.8228376544494997,3.99957638072607,4.240339275330831,4.4182778535379805,4.6813426196221295,4.87037018590415,5.16126906680408,5.415759683226059,5.724147200096491,6.07469850166916,6.32746017882452,6.5809502251593,6.83180626905802,7.15145541795278,7.35318782231429,7.67722914109838,7.786368989881001,8.082143807666169,8.31450440701576,8.586482010449691,8.79344684713368,8.98083605391782,9.17136476156076,9.77679401115121,10.2161403287166,10.8517087069381,3.9418700493241503,7.250288992592701,9.790722166678151,11.5257456490952,13.475730905314501,15.3471406991841,17.154139225095502,18.913995371819603,20.605896183808802,21.2765698225108,21.9598884040133,22.627199318649996,23.3000309510009,24.010930472584,24.6765184544961,25.3922522253456,26.204637371149698,26.966136334726897,27.733003854019998,28.5627851357277,29.2738889413136,29.7918654441852,30.413279927618397,31.0095559118888,31.6115237472838,32.1374582712938,32.7509943705754,33.3693664268489,33.7787181026147,34.145456171304104,34.2018031616744,32.8806669500652,32.3203189925146,31.9450686971246,31.719081645724696,31.4618052806844,31.085874249099803,30.539064032630602,29.8898361914196,28.7396537769926,28.371630783411003,27.9133749894195,27.4904120325908,27.2277721134869,26.8652695757534,26.80711642716,26.2852729612327,26.016499107806503,25.605419691558104,25.454739281043896,25.351713153691,25.3950333723993,25.386620670571297,25.4901416318144,25.2730282829121,24.676100415952202 --0.0171914515708429,-0.204232801804265,-0.269679411986424,0.110568618161642,0.27787409801895696,0.48821238152988206,0.742334713920533,1.04926038321429,1.29441428040324,1.4308422348018601,1.56517863837302,1.63306235907545,1.74917756086162,1.9017027346247102,1.97018001339012,2.0466933159679197,2.1807591377908997,2.28046443841957,2.3726763421232597,2.46874621199216,2.55026513322486,2.65308712838453,2.79023811533885,2.86065052115828,3.0230738935554804,3.1603600763762096,3.2692569185336398,3.41467578153889,3.53553997485608,3.68105947603731,3.8228376544494997,3.99331062465217,4.240339275330831,4.4182778535379805,4.6813426196221295,4.87037018590415,5.160543902993201,5.42319553144305,5.724147200096491,6.07859229204232,6.34996588091334,6.59698812018121,6.84290368834933,7.1578693164913405,7.35438430547614,7.71314022105504,7.81647186095654,8.12563371032958,8.362557368882081,8.60926558354052,8.83768147710374,9.071140586174131,9.23068380498808,9.824248468727278,10.2573725807013,10.8928534228166,3.93093153558261,7.2530075155035,9.791478322022119,11.5533444788505,13.4845212047473,15.387323730025301,17.1559477431134,18.953230016937198,20.6286316737695,21.312752855945,22.007462407609896,22.6533423340554,23.3295340004674,24.0411486312472,24.7072450239917,25.473715806633603,26.2579738223628,27.0228177401997,27.7836885720474,28.5908472688006,29.3803820592769,29.891855589065198,30.461037390601696,31.101999532358303,31.677369101191502,32.236125226422,32.8457861801655,33.4685613897909,33.8654851075541,34.2447440680056,34.2946223335246,33.0316937605751,32.4178383769169,32.125139955717394,31.939917421748,31.6298132066647,31.347350881845397,30.732827664531197,30.1754730605684,29.028985039703898,28.6621965694738,28.300518164419604,27.859536807547197,27.594702745188602,27.305823491325302,27.245606438087503,26.7346630048189,26.4753532534329,26.116124388168302,26.0290979905997,25.941707157581302,26.037088559023104,26.037267227739896,26.131928807559902,26.0668985106175,25.5220970494153 --0.0245393314335696,-0.22325508331439103,-0.285569922787089,0.11038530843812401,0.26041855969653,0.473455462379839,0.7385563402653541,1.04926038321429,1.29441428040324,1.4259924199041598,1.555107762564,1.63306235907545,1.7400825736019299,1.8741620295063999,1.9573018272594198,2.04433400494275,2.16460884801457,2.2979345485194598,2.3726763421232597,2.46874621199216,2.55026513322486,2.64129707621936,2.79023811533885,2.85540829195458,3.0045877633689906,3.16281328255187,3.2692569185336398,3.41467578153889,3.52531242716134,3.68105947603731,3.80732308286152,3.98233666308998,4.2320857696690295,4.412469419043781,4.677012605669,4.87037018590415,5.1709161927336,5.42319553144305,5.737488456105959,6.0921440853043,6.34996588091334,6.61146461808541,6.867799092338361,7.17625548872256,7.37399414372398,7.716700772761031,7.81822387570503,8.134130494525749,8.36656675698104,8.64488860261884,8.86980891570564,9.102683551539199,9.23085321420502,9.83669547021944,10.3057118826725,10.927941467708099,3.92224784785716,7.21850968020336,9.802062455496449,11.5484508677324,13.5182140659936,15.3927982061343,17.1981754118738,18.987214282664002,20.6988017730051,21.391427071865802,22.0925940816228,22.7600224970014,23.446990428703298,24.1408709508338,24.8211692491754,25.5485260029102,26.326941327495998,27.149582913467302,27.9006039216686,28.723089775201302,29.423957456546503,30.0155058870996,30.637310503727,31.2561860419492,31.841506311509498,32.3773665520849,33.0040854344795,33.6241160812594,34.041055515085205,34.4273299042719,34.5204299104849,33.2365434980279,32.6661595230772,32.3547677570322,32.18032971342,31.905459111684397,31.5958972608103,31.0944067867054,30.5228209017755,29.3972874203479,29.093195273391398,28.6923661749568,28.302928308934803,28.059351640661802,27.7439101151119,27.718335978417002,27.306074870832898,27.0435082221031,26.669744644366602,26.6163919994534,26.5380308138667,26.674098897273698,26.6932186417108,26.8951579213626,26.867750520869002,26.3918397753506 --0.031900185169983,-0.22591951070512398,-0.285569922787089,0.11038530843812401,0.250447812410112,0.469304475110714,0.73615803523679,1.0427872571678,1.31397281009254,1.4086264050801598,1.56797179429079,1.63306235907545,1.7400825736019299,1.8741620295063999,1.9377462217305401,2.04433400494275,2.16460884801457,2.2979345485194598,2.3726763421232597,2.5173714394800095,2.55026513322486,2.6363609270944397,2.8208076809262597,2.84629787597456,3.0045279795699704,3.1751393310983698,3.29630416856753,3.42071229588067,3.5305866185454,3.68105947603731,3.8134538237470696,3.98233666308998,4.26644868179206,4.4447519295490805,4.69383477364568,4.91971017350824,5.17503578109712,5.46961544485667,5.7389231634175095,6.11487386562685,6.3719014208635,6.65186773543885,6.92107831912695,7.228399809836071,7.45156866889904,7.766136636544241,7.90072343974126,8.22583650965851,8.45585558113859,8.71783822123453,8.92214857940441,9.17360672148202,9.336339470520619,9.92273975251926,10.3746431502447,10.993678837098598,3.9297646742068304,7.22829002731483,9.77915632518387,11.5563769144124,13.537044399632302,15.424289639094699,17.224711151380202,19.016792814743603,20.7138283653827,21.4070778583186,22.1130492702878,22.778932742539602,23.4920226158942,24.201592511369,24.862525608457304,25.6012195018196,26.4052504184877,27.1901715743398,27.983114794984104,28.7640337785364,29.499244872646,30.064403715841102,30.671486432275895,31.336048007388,31.9418326075004,32.4640421287111,33.069255591,33.7017094038685,34.1359072387759,34.5371893021087,34.5886683672596,33.394743589790394,32.8209678206667,32.5272555269031,32.3761377844015,32.1373794677843,31.848706830849103,31.3259791168148,30.7763799282232,29.707421298372697,29.4206233548778,29.033062613818302,28.690511522111102,28.4341811537748,28.220565474622102,28.2150546592759,27.751768237548898,27.5768679548071,27.2608303361652,27.237766044769696,27.161812162523102,27.295630602667604,27.3338849537075,27.617921737975003,27.6472300869724,27.296251298443103 --0.0381563424082429,-0.23628378640198602,-0.29391830378363204,0.11038530843812401,0.257020107335974,0.4744871389437029,0.69967785277852,1.03324500951876,1.24194995710463,1.39465264203675,1.51343987933713,1.59075173769079,1.6896128671418702,1.88372964301012,1.9313423135127,2.04582486566638,2.17397379773527,2.28366901459637,2.36824371978949,2.50469009744693,2.52998708763525,2.6651699474754302,2.81096292657534,2.86289911575683,2.979117966182,3.1901948072330297,3.2426340285290998,3.42175611609155,3.53329100942136,3.66555802348091,3.8403508155512402,4.0203199536540195,4.2859122711880495,4.51884997020439,4.76208630028163,4.95073283774156,5.20780938432384,5.48968587730753,5.763847009266441,6.15373595598683,6.43366119492509,6.68627759423975,7.00244874755088,7.28071565930304,7.49171003169418,7.83670318311311,7.95711596365706,8.26867774913099,8.55106139200801,8.78398818681496,9.01330629725833,9.20071176670094,9.39031880067903,10.0062313349782,10.445108347428599,11.0520119634925,3.9297646742068304,7.2316142819324805,9.77811159711505,11.567683791893199,13.5394814655415,15.432310183452401,17.2368841624412,19.0693614387885,20.776961275857197,21.4835139087363,22.2058014807475,22.850609153885497,23.5048628191856,24.2425324792729,24.989270607182302,25.6848477506073,26.5168756590619,27.2745299201669,28.0516086584644,28.908758168189397,29.625852951409,30.228087012765698,30.819906466672396,31.4628000347224,32.060446126796606,32.6076547405642,33.2498243908077,33.8579578147019,34.3228535257918,34.7167405617272,34.8251050719685,33.5813645971094,33.066991974191104,32.7742181524832,32.6437785538594,32.4365789716734,32.1239092690001,31.645877977982696,31.1083399545882,30.067986070834603,29.8244311798871,29.4715036540305,29.1590095604998,28.927678160055798,28.7052406907161,28.742140535772,28.365562333926803,28.159309965948502,27.895936229255902,27.8887630943578,27.910757091263598,28.0637984223607,28.081482278369304,28.4091652421052,28.514032975784897,28.247736110306803 --0.0295198632761805,-0.22976618712893299,-0.286523205477842,0.10590101156395501,0.257020107335974,0.471337024536438,0.7291755347196941,1.03449115496379,1.24194995710463,1.39798751419586,1.51733957086243,1.59144343578448,1.69865006017086,1.85443043093461,1.9313423135127,2.04582486566638,2.17397379773527,2.28366901459637,2.3537910359864904,2.50469009744693,2.52998708763525,2.66985344852608,2.8160332413556097,2.86289911575683,2.9853805353406,3.1901948072330297,3.24697048056983,3.44334794223853,3.53827196165433,3.66555802348091,3.8403508155512402,4.02583795513262,4.27826000756885,4.51884997020439,4.7757421656671,4.96643806185831,5.232088469106549,5.506881385738599,5.8006575177988395,6.18743426662819,6.475039926190339,6.75100209144778,7.00832095990473,7.33161480265379,7.510110718929731,7.8790351752265,8.03025081381373,8.3407388471345,8.61034530225429,8.89164918317003,9.088122791110962,9.2932912596749,9.46285220436839,10.0816806901983,10.509247091743,11.1160328385642,3.9291407981384396,7.236824299434541,9.770580522748231,11.567683791893199,13.5526099888212,15.4437956312904,17.274959615143498,19.0924187119772,20.818537413132997,21.537204382371698,22.2591341427877,22.9541274830998,23.603245810841102,24.3306117242995,25.0446610600272,25.746237392150196,26.565623450138602,27.381654677993804,28.149880343779397,28.969623234422002,29.723837611044804,30.3155353638508,30.924300790591804,31.5816562111865,32.1972527950432,32.7277289432332,33.3749019290253,33.9930913493471,34.4399740295867,34.8672171091282,34.9861613602963,33.7878098543708,33.278401946225,32.9908349537777,32.8917507247632,32.6793240898618,32.4225940644089,31.9461010193992,31.447810037273303,30.458812695666598,30.206898490230497,29.895913210574303,29.551801456170804,29.4043126666898,29.235257490963203,29.240724129207802,28.9046066446937,28.7209957527195,28.503253296365102,28.485979124925198,28.547953330181603,28.723129948541498,28.8193381734125,29.190860229968802,29.3536440084783,29.165062936542803 --0.0254453646795736,-0.215390789211087,-0.296768054790617,0.10995959565764099,0.25439229210739495,0.450206946825484,0.7340344191558149,1.0353264934273299,1.24554537001047,1.39798751419586,1.53548119053701,1.60007989672005,1.69865006017086,1.85443043093461,1.9313423135127,2.04582486566638,2.17397379773527,2.28249733428571,2.3537910359864904,2.50469009744693,2.54014755447255,2.67701190931936,2.8213514963317,2.86289911575683,2.9853805353406,3.1901948072330297,3.24697048056983,3.4475369533673703,3.51571493873808,3.66555802348091,3.8403508155512402,4.02583795513262,4.28728956885012,4.51884997020439,4.781370101825639,4.96643806185831,5.232088469106549,5.51348939645896,5.80958847472487,6.221980812365691,6.4951131322669395,6.75759194823038,7.04529779242351,7.333512035734239,7.52389191290729,7.9113127301053705,8.058875662007999,8.383031928297191,8.62727676855599,8.891806404483651,9.09631204772498,9.327014510304311,9.48270628312809,10.096691714704301,10.548543900664,11.1220406694131,3.9374556409674,7.23833402228649,9.79732214470452,11.588512088782199,13.596511979238901,15.5348950107814,17.3465567842354,19.166301277938302,20.897426173705398,21.5766022267544,22.3177908768217,23.0150584208604,23.678200209763602,24.3706453099787,25.138460405636803,25.8259464423216,26.6458251532103,27.4623911581552,28.219633343431397,29.0575517589766,29.8212809833535,30.399594853845702,31.0094481800101,31.673376609551102,32.3208304376795,32.8468559055123,33.5200675864221,34.133062424091804,34.576855448870305,34.981278479500496,35.1178536188998,33.9491589547328,33.477937098646,33.2342424986735,33.102983976652396,32.935034592071396,32.6597442830607,32.2494349725689,31.7594011558812,30.783846198461298,30.6001425703749,30.295513969875998,30.0183933167639,29.859506717786797,29.688648139592,29.779776190461103,29.446978517656603,29.3314882177578,29.104751533963398,29.1715815818997,29.2023958139179,29.4168508259019,29.530650696034304,29.948080889295397,30.1816282528509,30.0867072325385 --0.0136207439456178,-0.20733558557657,-0.286523205477842,0.13767694470376002,0.255678748550287,0.45102851844183006,0.7340344191558149,1.04454845534747,1.2597910334575901,1.43236973241224,1.5661673994616399,1.6269173340574399,1.7341492728532202,1.87153033882546,1.9589734871125901,2.07898607031777,2.1856013672979397,2.28646835431168,2.3508561348829,2.50607953371913,2.5797744106478597,2.6944299286176197,2.8213514963317,2.87755845738271,3.02931086838003,3.19174811396507,3.32669103303871,3.4839992854068704,3.5315284804889,3.7067814427454198,3.8712029897158198,4.065205586353721,4.3096388650790605,4.54400257522084,4.813913652393441,4.99633357861313,5.262154255801059,5.54963636203567,5.87225133248449,6.25341906444811,6.55261632124841,6.82074112499832,7.0896954412184,7.396300631325179,7.64530457293553,7.977056569272981,8.122450722001,8.42597801882057,8.67245142755292,8.93999858802527,9.141162764916169,9.363023542155759,9.550669582418788,10.1661552410813,10.5754236530208,11.178810546593402,3.91266499863758,7.25535949721155,9.80553982316442,11.5916216128331,13.625256723162101,15.5524235748861,17.392790820886198,19.2077277303183,20.964016192894498,21.6791022814571,22.3743671440853,23.065798530837,23.7076989141035,24.448264892844897,25.213220446886503,25.8755388974337,26.726160330118798,27.5461868147901,28.335490651552,29.1725818459623,29.9418682784623,30.5164267963942,31.1312913487785,31.808956893831702,32.4344701241791,32.985153848169396,33.627975284643696,34.226711184955505,34.7350762420593,35.203139940359996,35.2992306862335,34.164877437925604,33.699194301594,33.442276768008696,33.3538338813378,33.2203119234013,32.9503654400313,32.5711963407723,32.1003965971918,31.2333827263709,31.040172915387803,30.734983936820196,30.5043823809885,30.360061295323895,30.222164110345002,30.292084943569698,30.0504667422011,29.9831269537251,29.772147881212202,29.8654459209083,29.9188017262061,30.1515070282879,30.3079949117131,30.8191951945639,31.096682914159697,31.0883315105036 --0.0101250995800141,-0.20492559097188198,-0.27855510362889396,0.139881403443732,0.255678748550287,0.45102851844183006,0.723482963191223,1.05370249961946,1.2597910334575901,1.43236973241224,1.5661673994616399,1.6327863358735002,1.7341492728532202,1.8913325171045199,1.96914085286122,2.07968852151901,2.2183412092757098,2.28646835431168,2.3920690764319703,2.50607953371913,2.5797744106478597,2.6993386219742996,2.82156940477923,2.87704927322019,3.02931086838003,3.19174811396507,3.3475167180737,3.51554022994767,3.5315284804889,3.7149920280172903,3.91674331309492,4.10635976669253,4.34666329198606,4.5695568904557,4.84217990327764,5.0275391303631505,5.2945545970093,5.59123122015166,5.92595069521849,6.30501118038211,6.596053416472441,6.86634113549204,7.15604636631017,7.45295980195997,7.6826577091629895,8.05605510554077,8.2088476346212,8.487428621840591,8.770622018029151,9.019689508759189,9.19907277432322,9.45376573147393,9.5942429771274,10.201528792999301,10.6223585698911,11.180700951173902,3.90190184947521,7.211035452700259,9.79396253051203,11.5922859954213,13.622300812872698,15.552930988348999,17.3964397906309,19.2329050211149,20.987684791824602,21.698062404138604,22.421276869453898,23.1115487202095,23.783788001708604,24.5136190379461,25.2668406362496,25.9959806462284,26.810887678715897,27.6308297296905,28.408867517926197,29.291957302032102,30.041403329662103,30.6214453647289,31.272782616061,31.9311874486425,32.5528279258371,33.122707561620395,33.7539032445303,34.4105504451215,34.870186912862394,35.320163347262294,35.4670113895066,34.3615437477732,33.927453379046696,33.6761866285326,33.6114711065982,33.4696134554211,33.2825037279828,32.899197041413196,32.4561154581988,31.610612499132298,31.430252539657197,31.202320023720002,30.996415878587104,30.8880701072459,30.788580394147395,30.8797345523209,30.647120249227,30.5676790894741,30.463169806023,30.5576132952635,30.660343407104698,30.899374641466302,31.068509954296104,31.631399510096504,31.950604836080604,32.0092207212736 --0.0183615549042283,-0.210038092447915,-0.24307557747646302,0.12579903695809,0.260449353550935,0.4781732550297271,0.736795255963278,1.06931225616177,1.28580759894196,1.43439314845738,1.54066098746438,1.6507977642495701,1.73990215281048,1.9222474141658998,1.95677408336672,2.07968852151901,2.18708301841469,2.27950872089932,2.36133722617408,2.51027366774197,2.5843126372891603,2.6993386219742996,2.84057453825044,2.88023612758542,3.04163203656879,3.2057522736517203,3.34628716826007,3.49884367401108,3.5772334071999903,3.7383070295154304,3.89489989850513,4.10635976669253,4.37642628284935,4.59727979464743,4.8781064863886705,5.08400549025135,5.343972663682769,5.62038611892825,5.96254312147379,6.3412167815156195,6.63863355442895,6.892794793493509,7.22662583512847,7.518162156007,7.702621522577781,8.06419438655734,8.23825751851571,8.53551907890704,8.795356150113891,9.04184555301663,9.28102918729783,9.534663887126419,9.66236403445901,10.2490946030207,10.7020935914621,11.224485437898,3.8990693307666002,7.2113761091835,9.761670468963189,11.6008606595735,13.6367011642733,15.568206299674499,17.435797214600697,19.2769080591945,21.024590479587,21.7454005790605,22.4706345144775,23.151283579130602,23.8203434267176,24.5397750488738,25.307505771181503,26.0550234366312,26.8400569524006,27.680228040869604,28.453676117285198,29.3361321952151,30.063393079595297,30.667662768809098,31.3492351790479,31.991172953764895,32.6260599476726,33.2323977383369,33.8436147640875,34.513215169953,34.9680229076169,35.426212958662894,35.5574675624907,34.4976645696091,34.0605517707746,33.8651244331799,33.813538295449604,33.6851433364018,33.5113509063347,33.173050992595805,32.7547941116297,31.956458622564,31.794737365444604,31.5758733831134,31.397680730155898,31.3403100574967,31.2431450517314,31.3793052329863,31.1968541869943,31.1577075241879,31.065564084594804,31.2021684045196,31.326017959643,31.6127504221906,31.772178072435697,32.3680394936262,32.751731169237,32.9114484407863 --0.0270584328109328,-0.22736171903704896,-0.30508912829566104,0.10997948538955,0.263026589318466,0.469560484596794,0.713717166401435,1.06931225616177,1.28580759894196,1.4135257876643703,1.50743799889077,1.63110804523132,1.73077193070274,1.8776788568279,1.94499699297301,2.0612366068126398,2.18253349765776,2.27950872089932,2.37042052725521,2.50323393601157,2.56961876033454,2.6826698622985,2.84057453825044,2.89955524049702,3.0373433927247406,3.1946511727390403,3.33381940443957,3.47348888897991,3.5772334071999903,3.73719596509264,3.89489989850513,4.1201218733760205,4.372985119665721,4.60993825848355,4.88149617381268,5.09094363419102,5.36622749276769,5.66430061230407,5.96274712904132,6.3573269482476,6.6564297267042605,6.927763278256179,7.25954624599358,7.5594885278229,7.79844769696838,8.15204754300195,8.269942638543009,8.586606235713429,8.8586552781802,9.10517055378682,9.306943432486731,9.54354543867957,9.69053225873272,10.2856388624296,10.7060613252191,11.2263877475202,3.8895892453663397,7.1904939707743605,9.76133352272587,11.600427178389198,13.6367011642733,15.5557466813706,17.4379463078668,19.3194687436992,21.065237299375998,21.7748938697831,22.539455400241998,23.2442437704772,23.8949609989886,24.6455939683464,25.408563892600398,26.090649168908,26.9802185300946,27.762921181243602,28.559197805609003,29.442944899904898,30.187289235313397,30.7703776869803,31.441342126526603,32.1089970810057,32.783974877393696,33.3346380559467,33.9896244695299,34.655000818531,35.1402225628969,35.5980201743414,35.7542035097809,34.7058982348503,34.3132849422453,34.121438046444695,34.0854970121907,34.0142629532207,33.8277383964676,33.5345267161619,33.182697881813105,32.3604092514157,32.2506077119242,32.063179032413004,31.9122134664004,31.8936744582542,31.825546396972605,31.9803791370906,31.8128076713168,31.8312343648766,31.769678680029504,31.9455025962114,32.133023288775,32.4023761836863,32.5843413740032,33.2795185861286,33.7291585049539,33.906074869756 --0.0265015723975121,-0.23533308294414199,-0.28710353389261795,0.10558422241929499,0.26133025914703,0.469560484596794,0.713717166401435,1.0548033296091102,1.28580759894196,1.41548756187011,1.5135715563436398,1.63454344762543,1.73281344552476,1.89367698541269,1.94499699297301,2.06201682099848,2.18253349765776,2.27950872089932,2.38779024525478,2.5042281757795597,2.57754922387457,2.7008473132141297,2.8462025203173704,2.9062885417717497,3.06174800632572,3.1999125731394904,3.3484305268527903,3.4836156755783496,3.58172604459405,3.7683971591549503,3.9061596395550096,4.14657799819943,4.41484169503623,4.65279229605172,4.91018527959071,5.12891778214318,5.4026256476066195,5.718832562820151,6.000014798685499,6.388229039085691,6.7059360352110895,6.993782359049259,7.296170986059929,7.57317599136209,7.812322331035641,8.1761829451947,8.29144165981741,8.615053636689192,8.89904897611598,9.14242490219227,9.350598482660061,9.592960954152462,9.74930945720579,10.2868413754027,10.7164334620887,11.252657902192901,3.8860031887486,7.20589494280863,9.7607557065159,11.6141310258608,13.656042001530302,15.6024599379232,17.4643572448365,19.3416501716992,21.0849273399622,21.822973694891,22.5711651862889,23.2943349425161,23.965926335381102,24.703085262947997,25.467272516992196,26.1695485348141,27.043648531111998,27.828371245016196,28.623443826114997,29.4814943123383,30.273737626229895,30.8836107651587,31.507699471132003,32.2132388709526,32.862745001754305,33.4557960606193,34.0876189209336,34.7697973730674,35.291590373973705,35.7278761857031,35.9099224380428,34.8884515031251,34.5099684615362,34.3455590738556,34.342606940230105,34.2811872121834,34.1173061164085,33.8277703533989,33.489071450873,32.752452247855395,32.6500429244202,32.4934162414717,32.3809645701979,32.3865051185563,32.3808214477639,32.5448706343681,32.3883703761716,32.4253411407026,32.369076072166,32.6254279761655,32.819373620616496,33.097176809922,33.3541893713396,34.0812365999196,34.5408566328338,34.793447052879 --0.0225207511582826,-0.236073632813696,-0.28710353389261795,0.11756043250408302,0.26133025914703,0.45468518096937,0.713717166401435,1.0447678328798,1.27854685449043,1.44424894089793,1.5414657776395402,1.6400328559689399,1.7533808984371102,1.89367698541269,1.9751309702686297,2.0695795406489097,2.20269066064071,2.31124053735667,2.41017068131355,2.5304655971167596,2.57754922387457,2.7324053578660297,2.85143833608619,2.92575867225099,3.09643104608333,3.2392383854033797,3.3484305268527903,3.5098288327501805,3.6310921873620403,3.7965299209829597,3.94837716216225,4.1613955754500696,4.41484169503623,4.65279229605172,4.93180323098835,5.147054216214549,5.43908194861687,5.722366659493481,6.046025709094209,6.4641014985595,6.7317839692781,7.043413808505029,7.3370548474318396,7.617053495447871,7.837148100227241,8.19288029560684,8.34534067122926,8.64183588045391,8.91482446850544,9.16422446363132,9.376820499265609,9.608825317241891,9.753113523146821,10.3106398078029,10.7164334620887,11.275527361924901,3.88270739344786,7.183065154059889,9.763456278221222,11.611682341366699,13.668636465749099,15.611829163257301,17.5062198285901,19.3779125794674,21.1853924726042,21.879285730275196,22.624425679077202,23.3476652893928,24.024218275282504,24.786103113454104,25.5421914738317,26.275631911429997,27.128241816479,27.9270364176238,28.7171075177249,29.618138364176303,30.3841108032441,31.0030218756163,31.657157751521897,32.3611838577471,33.0164196564821,33.5606006981479,34.2680520671702,34.917178137182,35.4366890987302,35.871614865592,36.083690823594395,35.1528724266856,34.7511293381572,34.6210080284369,34.6142020784982,34.585170469169505,34.4761481494274,34.194622621767,33.8697555531668,33.2150942246749,33.1459340588669,33.003316008415496,32.939218287147,32.9666842589722,32.9721955837867,33.2010817752748,33.1000490516786,33.1641744138943,33.1866154117333,33.3958453528586,33.5979927167624,33.9395932044279,34.1676381367574,34.9842199170006,35.5472351518133,35.8507322134869 --0.0167146814298383,-0.236141950528268,-0.289882813854214,0.117568379364021,0.263741138733407,0.4606061678937971,0.7060901582437241,1.05200470855583,1.2954055673121299,1.4471590002836299,1.5410977876183,1.62512455543225,1.72938432084546,1.8961318756472798,1.95732162100268,2.09458707041431,2.20167101526061,2.3035178364380497,2.42899612350587,2.53369440534862,2.5974826239216298,2.71651721818882,2.8358104896687,2.92639857487346,3.0956854022974905,3.24755228826253,3.35566522279964,3.51114896598508,3.60881981204515,3.80270512723258,3.99458028672167,4.1655139789268,4.4650346153179,4.65763632252234,4.97282603396578,5.16285723505277,5.442693729501441,5.75478754791101,6.06688351013742,6.51459231523551,6.769490816513571,7.07135265271469,7.40984204609296,7.66961062309767,7.87120481411084,8.28675276596951,8.41547107554904,8.69116301063628,8.95574149878993,9.171451569000801,9.372456747035471,9.614825188046789,9.761992208759699,10.3167115926131,10.7238003325023,11.2315935208553,3.8853061803582998,7.183065154059889,9.76298150727153,11.6183625808515,13.682757019117401,15.6353392395624,17.5573309265687,19.3939749493587,21.199598662674397,21.952778625230998,22.671067000120395,23.383959933994603,24.060826183112102,24.8070498992146,25.5899935811055,26.3142719184714,27.1850449417948,27.984387941008897,28.805125751262604,29.6453343637432,30.447649035437998,31.085585316234397,31.7599265175741,32.4174552482417,33.097922997312395,33.728379635001104,34.3676019509125,35.0490162955125,35.5409868847931,36.0301366824555,36.246567212817105,35.2802869806294,34.9465088041392,34.8339708956799,34.8110299271282,34.819114775220605,34.7290074772467,34.4913215528907,34.184053878516,33.6074501504638,33.5996662912705,33.4869005485984,33.4210700983984,33.4835800459495,33.539393195419194,33.768401590176396,33.7218427280694,33.8473649574992,33.8856268407054,34.1069794196328,34.3378024396364,34.6841047947903,34.9504406563662,35.796467307213796,36.41219639604,36.77122941957521 --0.0188058264086948,-0.23047221770264498,-0.29257943473075704,0.126940312753094,0.271919947006711,0.467827795459689,0.7216542275957741,1.04929166217871,1.2954055673121299,1.4471590002836299,1.54757261783168,1.62512455543225,1.7416951508695502,1.8961318756472798,1.9778612152447301,2.09458707041431,2.1949165033221902,2.31599753654385,2.43956623820887,2.54675478986182,2.6323484538329103,2.7422668765831397,2.88110122029453,2.9640500676546204,3.10271339570472,3.25842433384514,3.36775193389311,3.5152221603464504,3.61295033302219,3.8034938445783597,4.00110871427692,4.18418876173846,4.4783025657571605,4.73008872573088,5.00778154671573,5.22486491880632,5.47557261812667,5.81060984544223,6.086053228432861,6.52285458620076,6.82047536058681,7.115589147340581,7.424776497233389,7.676211866314559,7.89635733740396,8.29511061360586,8.420800472461881,8.724449392074309,8.98941306488333,9.192608727563119,9.382378436956051,9.61891279600839,9.761992208759699,10.3167115926131,10.72476676402,11.2299261613339,3.89007922235377,7.18682819842027,9.76641787467056,11.6421409196437,13.7209713723954,15.6709579315341,17.5852129567927,19.472492518417802,21.2719250154064,22.018355510507398,22.7459222625466,23.455770799563304,24.1576101735001,24.9119643759304,25.668893353806702,26.403724620610298,27.2748960374756,28.105985629924103,28.9038394960121,29.795394558730102,30.5847494249156,31.2074318440667,31.870065671340004,32.5762468705549,33.2571018894527,33.836456751888,34.5355483394007,35.22455324415439,35.7203020936039,36.1971314175705,36.4348364829349,35.524209910174,35.215953296605704,35.1345580289303,35.1197738859545,35.1290409737903,35.0791960337707,34.8740416178779,34.5931822926096,34.068791291035,34.06742327806,33.9714249378807,33.9738718628509,34.0435972900382,34.105151675229,34.374376526973,34.3515174764736,34.5239554586702,34.5907756152517,34.8894391601581,35.1198653925351,35.4940588531409,35.7856031995808,36.645123519018796,37.3305784536486,37.763497471849604 --0.0150881562333754,-0.223634909631649,-0.289157973893886,0.123461360195366,0.271919947006711,0.474955239978322,0.7216542275957741,1.05446237463951,1.3003323097581398,1.4471590002836299,1.55201944917992,1.6291804805422399,1.7416951508695502,1.8979429536297199,1.9778612152447301,2.09458707041431,2.1983468160497,2.31599753654385,2.43956623820887,2.54675478986182,2.63899714690781,2.7422668765831397,2.88110122029453,2.9894070425091295,3.14079350908495,3.27227536679213,3.3999336787207,3.5333300655682405,3.62116956005885,3.8034938445783597,4.00110871427692,4.18418876173846,4.50200547615343,4.7314909379008,5.038566232223321,5.26944439503147,5.49308905914033,5.83042448178148,6.13189195399237,6.55717942278932,6.831471836774441,7.1766261934252,7.4752404809679005,7.71455008862376,7.91993148084703,8.3190761247132,8.44563511181206,8.73575332178106,9.006972402249279,9.23271196675254,9.39130033610763,9.640880075261618,9.77208616682043,10.3422019584555,10.7476070516984,11.2418675455711,3.8963130457279505,7.192041992615531,9.774217744437339,11.6694029191936,13.747708143606902,15.706513354846699,17.6119228463585,19.5333891870815,21.333069616447602,22.079814163833298,22.813444049868803,23.5411974247501,24.249832491563502,25.022207210605398,25.767024917550103,26.5127568575347,27.395105322349895,28.232164903790302,29.0205880850834,29.9085153130199,30.6591615203047,31.330190012632798,32.004345792114805,32.7195087679034,33.4129499719743,34.029653312834895,34.6805458463297,35.3826799099185,35.9042429941296,36.3823967905581,36.5840888883027,35.744016334593795,35.4675397414403,35.413835179251706,35.439954184613,35.430619411540604,35.4206068028767,35.2808120484829,35.0441239359933,34.5025047582276,34.540755709176196,34.532861972783195,34.5385287290091,34.6537874354105,34.7404634177312,35.0414122057855,35.0549181906555,35.2068291803861,35.3410265965485,35.6420101357869,35.8877127411823,36.282564074220204,36.618110687521295,37.5542704413549,38.275615421952295,38.722571432533705 --0.0265928459466067,-0.21340236344879798,-0.28296851828472197,0.11471220981038001,0.272927856776696,0.48111890681125796,0.735874380136975,1.05446237463951,1.30705185878837,1.44674418351725,1.5560153273619,1.6786530664785302,1.7673410866004802,1.91290625678217,2.0075480405484503,2.1158926893891103,2.20823905052746,2.36201497802535,2.4509253866127203,2.56566493816762,2.63899714690781,2.7652488306393304,2.92371300229877,2.9917883054289707,3.1772147216378794,3.3153737960316003,3.4397400329449397,3.58376900387537,3.6701323129378802,3.85410870107858,4.00110871427692,4.251436647677741,4.52860712199821,4.7608570404031,5.07554573502058,5.27958478592312,5.54904412029053,5.856916563613911,6.210641283040791,6.61531766665007,6.87800512668858,7.204440301243251,7.53351405640337,7.77465795266299,8.01902916053004,8.36568016068751,8.51484097179822,8.78570758845249,9.050991987303421,9.298062332765651,9.456755007988269,9.69544982306816,9.83772460084451,10.399893977310901,10.8095254601037,11.267192491221198,3.8805768799626406,7.1848066777960895,9.774217744437339,11.679764646535899,13.748335497896099,15.731431174598999,17.658348064130102,19.5599277467722,21.391727721926898,22.1205318628927,22.899333217709398,23.6324743111096,24.302306822023002,25.086655743978895,25.8688071594693,26.579970315612698,27.4776014840205,28.280835411696,29.1254163849809,29.9888557150526,30.7707608879621,31.4500401423409,32.1155667426097,32.8661159010947,33.568933324252896,34.1623552602561,34.8481683002884,35.5248477263498,36.0495981464354,36.571035851539705,36.7970280566654,35.9739526856955,35.7089321604692,35.6755513228949,35.7143001215591,35.7994367531931,35.7828175697281,35.6732489070263,35.4866820581111,35.012873253790005,35.068264553968895,35.0910318643434,35.121749659826605,35.2574808052019,35.408195696159,35.7071767509664,35.7507450796964,35.9150394259079,36.0911393678532,36.3874278274894,36.687894713070506,37.1301807908648,37.4569559201579,38.4378794318965,39.197638167024294,39.7067441612504 --0.0256796480491479,-0.22813675288496102,-0.28296851828472197,0.100736225374166,0.278189670351349,0.484891651811985,0.7351260406018599,1.07896043066588,1.3326115752771,1.4726140657728501,1.58913066630712,1.69675979498285,1.7641914308148798,1.9575294444707598,2.01855908751816,2.1174342419809298,2.26465059859282,2.3719390861592204,2.46893687255586,2.56525436549981,2.66761954626666,2.79439358781956,2.92480552391409,3.01639824284899,3.19332417727976,3.3202596508894198,3.477909682579,3.61174223774272,3.7330730987248906,3.89931787265813,4.0726909501846595,4.2909164924658105,4.56699700861617,4.83679269336722,5.14002784286309,5.36492447018708,5.6317844519412805,5.9428225572119295,6.2864507423388805,6.71692699801235,6.97723242663524,7.28830688449202,7.58747677429278,7.85222281617959,8.08178742858838,8.4617873609021,8.55164091231164,8.84797004729554,9.09047126554922,9.320997972560038,9.502715036247789,9.72723932045167,9.85656598510901,10.4183064901838,10.8230979042068,11.302980742992599,3.86618972648879,7.15846183948267,9.783304639426142,11.679764646535899,13.7521640941279,15.750566597273,17.6740019608834,19.573388038240303,21.445517041554698,22.1922141509849,22.941745845444004,23.653641685550102,24.3402837960595,25.1509512445925,25.9013600711441,26.654263993745605,27.548417877030897,28.3675238439534,29.216505314235302,30.1038094529209,30.872495065345003,31.537318524881,32.2290874452879,32.9455047041304,33.646436557083604,34.2752895608507,34.968823390325305,35.6725565575556,36.1920042022943,36.716950493821294,36.978981863860895,36.1835149170633,35.9607228073599,35.9242542073373,36.02222104838879,36.0890741999369,36.0973949999942,36.0027253771454,35.8301791178295,35.4516998614542,35.5348323828471,35.5921392412128,35.633501810506395,35.829772552621,35.9815311546782,36.3183789643761,36.412886676851,36.6280336871453,36.7832836133519,37.1982936171863,37.480106993144005,37.8997455042452,38.2348191973425,39.28347835249279,40.067130292891896,40.6900811605677 --0.021402954644331,-0.23155750253659402,-0.270960489440038,0.100736225374166,0.267957860270725,0.48461904689052,0.7379042546637241,1.09626034532999,1.3521188598368998,1.4726140657728501,1.58913066630712,1.71224138410014,1.7647747403674598,1.96851786262411,2.01855908751816,2.1178370442194,2.28149299747209,2.3719390861592204,2.47869430275981,2.57008932750934,2.66761954626666,2.8082951737135695,2.9422187071569703,3.0314503043149306,3.2006984717421,3.33736752128629,3.48801480257061,3.64004357165054,3.73926082537858,3.89931787265813,4.088395238881819,4.34606669537812,4.58278953554466,4.83679269336722,5.20729169211531,5.398744649145749,5.692932254942661,5.96295837427479,6.30752548740399,6.72048338450997,6.98831475047538,7.33188128427824,7.61998151314657,7.85728681574968,8.09574859712137,8.46884281406243,8.56023510983801,8.852380796484288,9.09047126554922,9.313359261025381,9.502715036247789,9.74011222202411,9.8781061097301,10.400395644413098,10.814085774108,11.292103920397198,3.84199157012981,7.15428923495491,9.76537051418849,11.6877341234036,13.7587305539786,15.7614023871857,17.7101746073959,19.617305884228,21.4870642848487,22.2141225980923,22.9835298329729,23.728838490784195,24.420883054199198,25.2027460328537,26.011852921661703,26.7245366041511,27.645692751443,28.4706418737145,29.283580939726896,30.197815628184298,30.9963404650606,31.635460834791,32.3623907511375,33.0952368841089,33.7908695870279,34.4368280594804,35.1276387766991,35.8330693867189,36.3561887221379,36.8819714558511,37.154095591982,36.4352229210254,36.1990021423772,36.205796119908,36.3389179640135,36.422334952594206,36.460892960230495,36.4078642535126,36.293062917103796,35.9473997341453,36.0484419927003,36.0977678600961,36.2571780432625,36.4305969753908,36.6409075067333,36.978723266847894,37.118276635281404,37.331469468624505,37.5622996050421,37.916527206541,38.2534157074487,38.701034266792,39.0721689342058,40.1386527202104,41.012038062813204,41.630959970579504 --0.0181449592538688,-0.23155750253659402,-0.270960489440038,0.11269234436672801,0.25791624547758496,0.48461904689052,0.738525572774258,1.09626034532999,1.3521188598368998,1.4726140657728501,1.58913066630712,1.71224138410014,1.76785530060554,1.9726728839126297,2.01855908751816,2.16226513083455,2.28149299747209,2.37656112532304,2.49269304786346,2.58594667029622,2.68155147688773,2.8094875195965696,2.9523262453651,3.0327847314447895,3.2095224892303102,3.3694104920614905,3.48801480257061,3.64004357165054,3.76140119924754,3.89931787265813,4.088395238881819,4.35035701663241,4.61938999891749,4.89471785053932,5.208058284153269,5.411904093767769,5.701575781268881,5.96295837427479,6.31740338331805,6.75564864310684,7.02872778117833,7.34441603235526,7.63834887641238,7.88314088658092,8.113058139611981,8.47988106300515,8.59811136817536,8.86766555690303,9.10787718781,9.325780430068619,9.502715036247789,9.74565714615948,9.88375688881392,10.4116247133089,10.814085774108,11.3125262851015,3.8190324902099904,7.121423537039031,9.75475768857104,11.6880367927571,13.786994098977498,15.8058761349075,17.7264668368958,19.665807371284803,21.5284865428172,22.2735721249035,23.0525778675072,23.7973629634754,24.476449977701503,25.304606687608,26.079858602621698,26.806947771753002,27.732459886329003,28.558140112400604,29.414597568906302,30.3215705631814,31.125034547955604,31.8010672289374,32.5125599218178,33.2085171652905,33.9045027062899,34.5687620941301,35.2652284729448,35.9555943750186,36.5208032152618,37.0696282131715,37.3801399497085,36.64391107004629,36.4505674122231,36.501902095797895,36.6275624133046,36.7252291399508,36.7819840644611,36.800723903679796,36.708771997129105,36.4152221275147,36.5746280572474,36.6908393708029,36.805369866606796,37.0670636592429,37.300939890418704,37.6604174690449,37.8153012425884,38.108705109584896,38.3046518162676,38.700990531101105,39.048670608395796,39.5525123092992,39.939434102117,41.0498803171525,41.9265820193121,42.6479331269811 --0.00462126209019145,-0.21770060047613699,-0.26476044703109103,0.12011236125201899,0.271091809038754,0.493798930542331,0.759830994821525,1.09949954894551,1.3521188598368998,1.53244477390641,1.62086178092862,1.7135926338346699,1.8142763004825802,1.97819519535647,2.07102898763724,2.1707827383785903,2.28540100562686,2.40008387782034,2.4999370603718702,2.617650110045,2.69676113100225,2.8471071011494304,2.9999199559879703,3.0522561332729197,3.2402999432792097,3.40691598878706,3.5375189021070295,3.6871032913836803,3.79763690718519,3.9673727908975898,4.178225049023911,4.37662926633007,4.68270096617026,4.96271531946744,5.273326955852331,5.45063998829788,5.79502281964732,6.0910781540645305,6.3878042780383595,6.80591388564147,7.07177418817795,7.41101838447258,7.70851333322566,7.9926944819447,8.19949652206252,8.507704296455719,8.63206294393479,8.8917566878808,9.147876738616551,9.37132850937744,9.573866739624581,9.77470483412217,9.920120935707368,10.478125234328099,10.846536912962,11.372853996719,3.8252607326237595,7.13572917292874,9.75475768857104,11.691539468047399,13.809609559845299,15.821717598527998,17.764727532799803,19.723012281683303,21.5707430686856,22.348451882417198,23.097427812083996,23.875513161072103,24.5659960263061,25.332094126097,26.1353862906677,26.8757576792617,27.8102849518572,28.626068000721002,29.473947644822697,30.410475086806997,31.1938814148561,31.879823521634396,32.622411470238,33.31276827583989,34.0817413859333,34.7147718531239,35.4228614215438,36.1461598071218,36.6919386160539,37.213548938509796,37.5361172130718,36.8533156818521,36.7540021779495,36.7826042519821,36.946430261866205,37.1122608895512,37.1947114117353,37.207765857923796,37.1579811314631,36.8919451149756,37.096636296286,37.255267368515206,37.4184272035235,37.6649696300001,37.9236948905205,38.3083006793141,38.4808759162786,38.808096291229994,39.0740690767134,39.486668770049896,39.8648160720221,40.311919093266,40.7058016324918,41.883897798442796,42.8196718492393,43.58974871259149 -0.0052342379364192105,-0.225765728251953,-0.290797842701445,0.142167550214073,0.29591147302205606,0.50358902976627,0.7667629509853131,1.11909613194731,1.3539770507861497,1.50135304226816,1.6395261980382903,1.74577818772374,1.8142763004825802,1.98800869741328,2.0923314332312,2.18128307666915,2.33401655873122,2.4292671621513597,2.52029820903884,2.65383049533204,2.73013421999377,2.87946159947836,3.05032056258721,3.10466411338085,3.27156530554446,3.4122899869990295,3.5577075488660497,3.6871032913836803,3.8185853095301603,4.00543984145376,4.21681161008117,4.46755089120933,4.75315783834,5.028437066854241,5.33786525289438,5.52922069630477,5.8139563163393095,6.1282184883295,6.44135279998114,6.862995027481659,7.1482135716994595,7.4572796675531,7.72898549078022,7.99988273769266,8.20426738568529,8.541838287202,8.65143312696078,8.94677917066442,9.14936271446148,9.36655530822456,9.581636911622471,9.77470483412217,9.91421816922225,10.478125234328099,10.858562238485801,11.372853996719,3.8355194875804597,7.15129121457384,9.782417243855779,11.721059426454001,13.823055379937598,15.857554154719901,17.8370088151471,19.795975068222603,21.6767549675178,22.447500960682696,23.216113033172498,23.958901250356803,24.6597695128846,25.491214327031397,26.276072519801396,27.0427514291448,27.9138799879625,28.796458678729998,29.630527274774398,30.567405329684302,31.387405590894698,32.059430586501605,32.761782387681606,33.5391797215832,34.2417284121396,34.8841611967038,35.612893758408205,36.3501878480645,36.9115465191407,37.4704143651433,37.7687363985652,37.177175654219496,37.053476989444796,37.1172341296513,37.2992645576259,37.4627189841046,37.5925993689897,37.6687469249449,37.657613649688294,37.4455745922544,37.6531259117734,37.804159039889,38.024763525100106,38.34024386502001,38.636808250865,39.0569420153873,39.2401048265739,39.5868963839688,39.8530741562506,40.2759275333906,40.6683775216868,41.1888165311387,41.6451959764536,42.8294608430746,43.816273383143795,44.6304981646564 --0.0030755842555864198,-0.225765728251953,-0.284810848773222,0.138024881267305,0.29591147302205606,0.514133240982378,0.7667629509853131,1.1058062857581799,1.38357322825286,1.5091313564950999,1.6463250907004199,1.7248270028569799,1.80199106502094,2.0033388773023,2.10504145024927,2.19739528351234,2.33050382417151,2.44744993527538,2.55162466350549,2.66090571536721,2.7399730110336806,2.89012008932239,3.07771006346539,3.12986481162533,3.28915976566716,3.44579443969267,3.6090902671190204,3.7425031945961202,3.84885749588624,4.02548173805049,4.23709907478522,4.48784323947142,4.795454585222799,5.05876067619575,5.37178033380258,5.57029440494062,5.88404859691825,6.17070292151999,6.50571458401469,6.90288617354643,7.18285424726753,7.485747095411281,7.77698652033766,8.0433173375808,8.25281056285766,8.58767900349291,8.66216938620326,8.95324563886467,9.16237695420099,9.36835317395597,9.581636911622471,9.78363137247197,9.91421816922225,10.4867982073515,10.858562238485801,11.400497975684301,3.84147733518417,7.18272225755188,9.792937808264949,11.743370456233098,13.8311041600356,15.895408138432801,17.880799839725803,19.875009621285,21.7688786080138,22.517454610989,23.269436924885603,24.041823290167603,24.7680470540938,25.556882961973,26.3307866412204,27.1365170886371,28.016772010166697,28.887383190957102,29.7583132376888,30.6609410467475,31.4936416942018,32.1801684015216,32.8882786145525,33.6607378423724,34.4016364100082,35.0807227785356,35.787156587569896,36.5101003234089,37.1104401668444,37.6407929766545,37.970303006316904,37.433234453637,37.326982840483105,37.4303558786988,37.6540266678847,37.865940065833605,38.0057156731859,38.114100264724996,38.1132792876906,37.974076361090205,38.1924033396792,38.430813945440796,38.6240475417882,38.963832292564994,39.309010540463,39.745412516102,40.0165342420328,40.3433475655877,40.6277853213664,41.1000159225544,41.493042896180896,42.051288565861505,42.4792503294648,43.723733347542705,44.7238087856525,45.61083968541921 --0.00533731027456588,-0.225765728251953,-0.279309116185702,0.13932500044603602,0.299916272952356,0.5203061057007979,0.7709549596059351,1.1058062857581799,1.38478576785899,1.5091313564950999,1.6602224278688003,1.74512347899743,1.83517331846064,2.01125578205634,2.1191563878416697,2.20207389078278,2.3482003399464704,2.4689265767311297,2.5582220220874703,2.6656905300667004,2.74682004347743,2.90416433897844,3.07771006346539,3.14199337825863,3.3085721233160497,3.44579443969267,3.62023216862507,3.75078724992646,3.8721383817079,4.05639886888792,4.2702491963929905,4.5177336473554695,4.8124738587594,5.05876067619575,5.37178033380258,5.60441892963608,5.91067915870589,6.22949694185112,6.546970302782801,6.921710548102619,7.183231092096231,7.485747095411281,7.77804066659361,8.03243091934612,8.23810738564682,8.57558848003973,8.671745827725559,8.957862596263231,9.16237695420099,9.36835317395597,9.563603856994341,9.761865231436461,9.89932355344684,10.483171450203699,10.863285849432302,11.3870870912328,3.84147733518417,7.18272225755188,9.78406829957899,11.747028642701302,13.8728779303373,15.946598291130302,17.9322115066708,19.9227554700448,21.8332384011142,22.611785687463698,23.387802001781502,24.127920010395602,24.870359754959,25.6607448825337,26.4662832904563,27.2541908413619,28.1339764619678,29.026024346982698,29.847470105691105,30.7571571754558,31.615806599523697,32.346903061602696,33.0493547283833,33.8324939526542,34.555241032993194,35.2421713318576,35.961685780329,36.7069959467019,37.320547224295794,37.8477562802633,38.2131545701044,37.6705193020976,37.647831569210894,37.744402069346,38.006928002760404,38.2197392406291,38.3916166948806,38.528547478189004,38.5734394835491,38.4931481016314,38.7688512017291,39.008411829718,39.285000004299704,39.6320304952042,39.9571713354779,40.4192069020289,40.685059019379395,41.061872449629,41.400026775589396,41.8771224644489,42.3317718966955,42.8592492899574,43.3403704485674,44.5756407555297,45.6752169796424,46.5695936751561 --0.00194962952720685,-0.202896493893684,-0.276822781953236,0.157312386606441,0.32919796584818,0.54387830948877,0.7979957026456949,1.1501045548031001,1.4011597672793799,1.5601868522656899,1.6651651596442398,1.75154037532652,1.85267751823955,2.04675814689827,2.1308079177936,2.2575089010552003,2.37403215388962,2.47819193415618,2.60047189217328,2.7105663513969795,2.8180716185200096,2.952171808243,3.10993050954383,3.20212289400623,3.37590327030875,3.4696029943270497,3.66208060748639,3.80877855526631,3.93605204472705,4.09231911589975,4.29958685304381,4.56183329845728,4.87048168133963,5.1680610438407895,5.460806759114949,5.65103574421744,5.94470604557571,6.2838415878816605,6.595759375522761,6.9487309159383095,7.25869928403753,7.517469143623719,7.81138399073702,8.05052423217132,8.26672654115398,8.602032884161769,8.707602068130491,8.98794773556817,9.20262228254697,9.405430602406051,9.58298446053781,9.79566380713231,9.934519922476039,10.491672747319301,10.899134361156399,11.4187706435743,3.83883551407495,7.17848193797024,9.784502019884789,11.7481939715265,13.902975202615302,15.9626359866646,17.972300517777104,19.9515491756423,21.8526618109188,22.6531625598804,23.4190278149824,24.197726719869102,24.9413318488683,25.7383650951612,26.5311059173459,27.339550200658397,28.220279200302702,29.11400685288,29.9780711186554,30.8704164717202,31.7502443893997,32.4608667239595,33.194959654269496,33.9428702778887,34.7251458755418,35.366967448855,36.105457702919296,36.8529992293038,37.485566286094105,38.0488606435237,38.4232706687769,37.9552621966349,37.8953522430351,38.0906779078343,38.340223954779795,38.573005175289005,38.8191766273684,38.9694617121187,39.064198886644796,39.0316814651076,39.3084938728869,39.618059947562706,39.909895133379706,40.27030262824,40.637540771459,41.1221588658686,41.4267861350305,41.813251354395106,42.16054027743721,42.6794447437116,43.10557357875879,43.6673894889829,44.168718649809996,45.465776583143,46.601592058555,47.56845180433189 -0.007431207609020709,-0.203276502554634,-0.24993037390113398,0.175402166530632,0.34005920300972303,0.556310264874455,0.8149936200998961,1.1672190335644899,1.42239438336889,1.5674237161801399,1.69142970150512,1.78481303809662,1.88154500975757,2.07368997813606,2.1308079177936,2.26742803109725,2.3953377069161803,2.5069012711284198,2.62806518045242,2.75014298091065,2.82954322376604,2.9892036506063597,3.1505694215580897,3.25554352346034,3.38517590223526,3.52519264329589,3.69621354550079,3.82717156479491,3.93605204472705,4.129284556372009,4.32853143966638,4.60647727036734,4.92238947931492,5.20846459881741,5.521866392700829,5.66808150252329,5.97387861504478,6.3130612293461,6.62105604271869,6.9963871482426105,7.27211529142809,7.55134064055452,7.826162393876441,8.051997776043839,8.26672654115398,8.602032884161769,8.707602068130491,8.97204976352514,9.19966115004325,9.40755914198935,9.58298446053781,9.79566380713231,9.934519922476039,10.4905880259921,10.8825208199735,11.414465109442501,3.80672938428116,7.115610420476281,9.76508107689735,11.7483870966261,13.931187125309801,15.9820643043854,17.9983925724665,20.0207286195785,21.9378936236197,22.715946125499503,23.516302970566503,24.2565297389007,25.029333438204198,25.81707247475,26.628252540556897,27.437156950367303,28.3354500606053,29.2211670520602,30.101015942712603,31.0129239478715,31.8906110028031,32.577701752989604,33.3087539801295,34.1063377400197,34.8681161630911,35.587132973067206,36.3048144691951,37.0380705280957,37.655646115673704,38.2573721262452,38.6565803223707,38.22264098520721,38.2618681196584,38.4013993273401,38.6992483305184,38.969906074941,39.2380382995473,39.4349223046934,39.54313097499279,39.5525870258888,39.907642622606204,40.2307744682585,40.5312917132525,40.9337147342107,41.298680229447896,41.830574008980705,42.1599369479305,42.584897800962295,42.944657669396,43.47380929465779,43.9356032885106,44.4991241383347,45.0238905445481,46.359019170580396,47.534415503461396,48.537254219078704 -0.00726768447751218,-0.201181310102792,-0.24005045107294198,0.175563866129691,0.353943915904437,0.556310264874455,0.8149936200998961,1.1672190335644899,1.42239438336889,1.55527369151882,1.7043947217210702,1.81352746864629,1.91383268801617,2.08479526363738,2.18530924591532,2.28390352989154,2.4077356671962598,2.53614185118295,2.62806518045242,2.75014298091065,2.83147290736007,2.9813022745885402,3.16375883464993,3.2745606436711205,3.37656377937734,3.5539207886139,3.73083742260609,3.86311396269666,3.9899556722121603,4.16832485864563,4.389449301913411,4.64956492084471,4.949991669177269,5.21010680639346,5.512895692732309,5.741955152562291,6.06704055877342,6.33548326142149,6.6516636752458895,7.00830867069472,7.27317858110672,7.58420151512777,7.851247067240549,8.101193574516929,8.28110072397357,8.637232951512901,8.687118852847531,8.97204976352514,9.198360575341118,9.35610293095657,9.55331919828828,9.78037153900656,9.913896894316869,10.508503023146199,10.867490915465,11.354197824802,3.82213000923976,7.1386312593868695,9.79388821231363,11.760184969683198,13.944942082046799,16.0252872861546,18.0502306246278,20.058458345719302,21.9770213463002,22.7572867786729,23.575919558592,24.3602915333871,25.0710922420056,25.911115919089,26.683163466978304,27.460725307379303,28.4338360548442,29.306270560462302,30.206499618386,31.117213025866604,32.0034393054507,32.672395335653704,33.476986403594104,34.2755003889752,35.0274679385774,35.711169101219504,36.4634039045924,37.2071404612849,37.864638629964205,38.4710030731221,38.860296420798896,38.4888317811603,38.525504369943796,38.736456271463204,39.06891804595121,39.3584890334117,39.65874125917939,39.907104227583794,40.06590801374,40.1212951569733,40.4606106602894,40.77107838395771,41.1625068547906,41.6000604744029,42.006464577749206,42.5161133754809,42.8506304031156,43.31357135473311,43.691297875459206,44.2427229792412,44.7115282226618,45.3144412638939,45.8231965239606,47.228041178028896,48.446862143074895,49.5011182011425 -0.0124142532562479,-0.201181310102792,-0.246431747718589,0.17594265485313396,0.353943915904437,0.557396014792922,0.822267754599529,1.15844760543328,1.42565154660735,1.55527369151882,1.7065956503400501,1.81352746864629,1.91383268801617,2.08479526363738,2.18530924591532,2.28766522440927,2.43233960989426,2.53614185118295,2.64046000940837,2.75708989183401,2.84241769501643,3.0014239770561897,3.16375883464993,3.27807141160556,3.3900861083073903,3.5539207886139,3.73083742260609,3.8678956780120997,3.99438200083488,4.16832485864563,4.41583253606627,4.6609119461863395,4.96340803753196,5.237775259601929,5.547364322652559,5.76947362929731,6.06704055877342,6.34269775677994,6.676652249695281,7.0088127064125505,7.29234205206132,7.58651452729112,7.851247067240549,8.101193574516929,8.28110072397357,8.641655266129481,8.68907652071867,8.959435677782109,9.171463862061199,9.35610293095657,9.55578833392998,9.78037153900656,9.90120031631764,10.508503023146199,10.8674937452715,11.3432879892423,3.81037187497262,7.122925056348291,9.771042616227609,11.8259948011822,14.002322326280801,16.0739539633323,18.1558736054066,20.1576134161333,22.105891673562997,22.9222311403679,23.717769972270197,24.470494797887,25.260355529834104,26.0590993099229,26.873513197369498,27.711950744665398,28.6215875740062,29.506260714088803,30.400805811122797,31.334638682924105,32.209498572479504,32.936079322423204,33.6856895861776,34.500356007609994,35.284462651451896,35.9736715238613,36.7089065239386,37.491562830691706,38.1176503403698,38.729798540553006,39.2201761560009,38.8549413700296,38.935345751467,39.180698886015705,39.5055210369365,39.876504161193,40.1485079528185,40.4515180539721,40.6294548664572,40.7485881682522,41.1165115223169,41.4974594942739,41.868166857000205,42.30647054539371,42.740599103735704,43.312769162049,43.6656180763694,44.1271706313566,44.57915763311149,45.1007861090452,45.605716077289,46.23793548007,46.767225746879795,48.206925976936795,49.4781622758656,50.58939077052071 -0.0124142532562479,-0.19070342600502802,-0.255119767270346,0.17818640323020202,0.359734295383169,0.577030469808328,0.8597708593275569,1.1773849602138602,1.4641659320073301,1.5534240941944502,1.7065956503400501,1.8450350518432,1.91383268801617,2.08479526363738,2.18530924591532,2.30396776734411,2.44738780426243,2.55744418215517,2.65596141536064,2.7863815945679504,2.8592844727976603,3.0014239770561897,3.19354127518525,3.29901544643677,3.3900861083073903,3.57329953962326,3.73880300397455,3.88004209968529,4.03830669241812,4.202629182702,4.41583253606627,4.67592518000654,4.99059698003653,5.27090708738976,5.555439543049951,5.79660724601683,6.07926047185912,6.3907821340717,6.6993052160917905,7.0088127064125505,7.29234205206132,7.59412360738503,7.851247067240549,8.10650225672178,8.28110072397357,8.641655266129481,8.68907652071867,8.986532215828472,9.171463862061199,9.35149040087866,9.55578833392998,9.78037153900656,9.88977615101197,10.5145730143605,10.8674937452715,11.3432879892423,3.8159387030911898,7.15541210755825,9.796721590721289,11.848575534219599,14.025211448301999,16.1538212323821,18.205509974195603,20.2390988571067,22.16517729507,22.9979240433319,23.753692838806302,24.5482371656256,25.313957730413698,26.1501052662599,26.966644018158497,27.763078852298197,28.691429822489,29.606206760819003,30.4923987610065,31.418761674195398,32.3452219170453,33.0383675914495,33.7952985238344,34.605443970876,35.4035612400206,36.116221377815705,36.8932829597236,37.6921186649514,38.305673396452704,38.9316860570789,39.4026020651872,39.1130274600396,39.209489861859396,39.4830218081138,39.873442114060396,40.2061329135787,40.566645053885004,40.8854866253302,41.131263334817795,41.2624566116885,41.668756696554496,42.0509764649513,42.436796189705,42.955530488329494,43.4128921565164,43.9837913286383,44.358156180250795,44.856846918268396,45.28935593054,45.868101003551,46.4061623700455,47.021278330971796,47.5645406116834,49.0477477819921,50.362873222556296,51.5048594421675 -0.0169561228560521,-0.179171238291346,-0.255119767270346,0.17977052566111698,0.36768444984809795,0.587552121903947,0.8625065438631059,1.1852219490088702,1.45887412251777,1.6249227669954398,1.7605501545109499,1.8712582650148502,1.94429173742331,2.14174865867366,2.2163832876072203,2.3045386734833397,2.48085250324552,2.58037617475475,2.65945246555753,2.80346181792223,2.88320785332213,3.07430404770712,3.26681410037045,3.33968444309288,3.49290772009599,3.65111947988484,3.81083097376455,3.95650661741369,4.061692368504359,4.27541088527855,4.4847456378281905,4.77615561190952,5.0613486794833,5.3595707401787696,5.656144448419809,5.86405439220899,6.16806319589492,6.46836822122928,6.71211872236556,7.1209149158623894,7.36430783253538,7.654964391134219,7.87790395760239,8.14566627034151,8.3134742938108,8.67986077492244,8.723387394258241,9.00581095595059,9.20069224669093,9.42463260793228,9.61205118956016,9.762179217179039,9.904201957924071,10.5138268854573,10.888758775983698,11.4153930725268,3.7945616770453197,7.13078797168082,9.78632664338739,11.848575534219599,14.0449713715707,16.1538212323821,18.2426318969195,20.2703353551954,22.246948751992,23.089643876953396,23.8351981740222,24.6551625498392,25.4091511202313,26.2333815140375,27.0735321129464,27.899181875640696,28.821240447817804,29.7246356636501,30.612215152793798,31.5938537574123,32.439989204428,33.2204595370505,33.9672011838707,34.7742577353689,35.5866243626338,36.341840571300295,37.1206139513746,37.8657971485105,38.5489632904547,39.218672122673,39.6445551709299,39.413609464806,39.534235648610505,39.8423257343736,40.2502392501112,40.6429580539049,41.060777901224704,41.3690448716269,41.6883514324906,41.8232205288504,42.2882780899529,42.6939627665002,43.130233123562796,43.6381094716358,44.1246606180505,44.702857503886605,45.093458734266605,45.62988479415879,46.1148561381483,46.6827778734289,47.2398053595697,47.873903658031594,48.462464622869206,50.0004629209982,51.3281268570541,52.5161384433908 --0.00728245915414285,-0.20412819460279996,-0.248731139380933,0.177643884084233,0.37454980129133597,0.607032583822336,0.873001234626368,1.1852373376921201,1.45887412251777,1.63581912532546,1.7605501545109499,1.8712582650148502,1.9606438893703002,2.14506321550302,2.2163832876072203,2.3236484132446,2.48085250324552,2.58329873622926,2.69110028572487,2.8222132019126405,2.8962436166735603,3.0819770140200298,3.28080548031626,3.3668680793858905,3.5040480989797,3.6517174678679596,3.81083097376455,3.95650661741369,4.1188873447348895,4.28678000438704,4.5013951343681295,4.78285606745276,5.1193001922997805,5.37355483337533,5.67321148439652,5.893935779914581,6.16806319589492,6.47263097982443,6.7325451730119505,7.12467261197807,7.36430783253538,7.654964391134219,7.87790395760239,8.14566627034151,8.3134742938108,8.67986077492244,8.723387394258241,9.00581095595059,9.194150380504839,9.41975191514386,9.60805896823039,9.762179217179039,9.904201957924071,10.5138268854573,10.8885055311652,11.430367831125,3.80118393630175,7.144505334794941,9.82763186390772,11.866510426657099,14.0764619376502,16.2076512363511,18.3062102391565,20.3658510493517,22.331411649131798,23.1555165310151,23.9308989170287,24.723619556493396,25.5217122376509,26.3314323791862,27.212603726451,27.996126413382502,28.9585970915799,29.8350334419923,30.7485952915889,31.7148324540595,32.629552787514896,33.4033664737148,34.1647827959187,34.972597910563394,35.7602836791859,36.5166752201027,37.3452850772186,38.065402635358204,38.7724598119909,39.4479620799618,39.911091175349796,39.7316950936017,39.8980499258185,40.2316985904815,40.655206461994,41.1154907242527,41.5168407807808,41.8841461461678,42.172375896304494,42.442266762731705,42.8843228066568,43.3476217032918,43.801511144176295,44.29473066202271,44.8138576527731,45.4211975597076,45.8766792572849,46.4119919235172,46.91490677601539,47.4944148230409,48.049174235209506,48.708060671624004,49.321346016680295,50.8707314545649,52.258106725153,53.507585266444906 --0.0025273409614330897,-0.23380192916891396,-0.234395782886282,0.20150677706514197,0.369554116258999,0.586133922414062,0.863170941633201,1.1903282549939198,1.45887412251777,1.63581912532546,1.76150101351277,1.8712582650148502,1.98047049867021,2.15957664542997,2.2631064717458598,2.4043981688410496,2.5058532094081403,2.61478944358183,2.73185117686244,2.8517912541376798,2.9347340766948395,3.11327737014644,3.28080548031626,3.3700977564600096,3.5453756295850303,3.65172127945534,3.8363878925647206,3.9930664639814104,4.15705906138845,4.31915978723925,4.548078201880269,4.827865014525191,5.17954601851059,5.411882483979321,5.6982129484638,5.9451030950868295,6.233567955016531,6.47263097982443,6.79876456906507,7.14966958307347,7.36430783253538,7.66619556338191,7.902055896046269,8.155329394825,8.30651160122696,8.66562977383737,8.739314356745089,9.013495952883721,9.18286906215566,9.419939893293892,9.63297188601213,9.81107081146239,9.95301336165616,10.5578687929382,10.8979351210918,11.457846858670699,3.8121398500390695,7.14251412947129,9.82260925684816,11.893334573805499,14.147738091875599,16.274068388993598,18.3685476052453,20.4745742868387,22.4373545328378,23.268117126271,24.068438662439398,24.8477263072587,25.6223663876234,26.468150440469397,27.304250599639698,28.209634658414103,29.1047195514814,30.0347781704436,30.9429771164688,31.866833934718798,32.8052673545921,33.5611438115292,34.390067181237896,35.1849827056716,36.011023462008794,36.7409481750314,37.5181702768657,38.364061819446796,39.0096280712369,39.6918731977419,40.252211872054296,40.0373617871291,40.340180686431395,40.65366721898,41.0665036184948,41.5283646863471,41.9844481635539,42.399685640496,42.7373843861724,42.992377654139396,43.4999812078263,43.97847511583671,44.4628266919689,44.9878565367895,45.518808119713604,46.1761504571993,46.6467249150387,47.1638674298528,47.67351856449329,48.306299695438796,48.876401810663204,49.5362544960761,50.169309441724394,51.74170648972079,53.178777036933795,54.4920735673367 --0.0025273409614330897,-0.231364499561118,-0.24173252757918698,0.21045118777343202,0.367422999254609,0.5807590411438299,0.863170941633201,1.20287242301627,1.4866333131170701,1.65294969080771,1.7830377276409901,1.8754187153129,1.98047049867021,2.18519425047393,2.2667764569294597,2.4043981688410496,2.50481699427976,2.62765437111503,2.7420377708685,2.8785869126751296,2.9347340766948395,3.14543608758334,3.26089318673733,3.3700977564600096,3.57423705235919,3.6800611115753,3.87386543227741,4.0282619770307795,4.15705906138845,4.37469867866611,4.5651942659139,4.85453561082073,5.17954601851059,5.43575966746467,5.73650880734425,5.9451030950868295,6.272302187895581,6.523981821673889,6.79524929204347,7.153811614278831,7.334059767434661,7.66619556338191,7.904745519124429,8.16436854356342,8.30024586250308,8.640778424712929,8.7053149577582,8.953401744315721,9.18280079521411,9.368754943634189,9.61835444085792,9.77916646682302,9.94151539142645,10.5578687929382,10.8863213247016,11.4430026370734,3.8121398500390695,7.14784056718982,9.830279479241131,11.9502211356076,14.182047720792598,16.2981207367626,18.4118688372618,20.5344880388555,22.537173301434898,23.364895622730497,24.187357870406398,24.989148432371397,25.7641519750701,26.624218104551396,27.461557712774,28.3046210531387,29.2526152494912,30.179216271983105,31.073375606770202,32.0537194204412,32.9677500911748,33.753147892162396,34.5559492662451,35.388539583623704,36.224693215356105,36.967642070685,37.7505191470829,38.559677899876,39.3064384147225,39.9737175275227,40.5034438967976,40.4367541897743,40.670033406403604,41.0619183211806,41.553174244651,42.000835840648705,42.4789064920879,42.9373733084255,43.29901359448979,43.64012567164121,44.145339157209705,44.654335669785006,45.166261307294796,45.7612131516744,46.2327095207599,46.903943784587,47.3779753717936,47.9687229197528,48.494407295732294,49.147166650812,49.7453461418375,50.457577962620896,51.0930582640452,52.6986058953332,54.1673968445467,55.5076160391478 --0.0025273409614330897,-0.21754500747006603,-0.247518823377621,0.17656829839715102,0.355185639427493,0.549047990001133,0.814525444394729,1.17784127183838,1.4586056195209198,1.61347315712163,1.72575719662609,1.8242901397658997,1.93791483083991,2.11282584399599,2.21337750681594,2.34546213121771,2.43529175140535,2.55758672549633,2.6705928513231902,2.79494390077816,2.8758688524258305,3.0366247141458196,3.2108351378369804,3.30695346409995,3.4555522303825996,3.6010515627618997,3.77483365027589,3.92076598683526,4.0589660955104,4.2261084573701,4.43530208028618,4.7390798195833606,5.0301958113069904,5.28689246368392,5.582619371225599,5.79230450279817,6.079599801832059,6.31002664910929,6.6015887495174805,6.88140776538736,7.11041006770489,7.38896751461252,7.62627009266709,7.80922366964833,8.017506801328091,8.298931473601801,8.382916679759411,8.64798780167388,8.846362828033321,9.02714142905547,9.23355944937005,9.39144579756474,9.5412493693606,10.087084264042199,10.5126582301835,10.965171586565999,3.7911221423966097,7.14473654778996,9.83069807749741,11.933804857509001,14.182047720792598,16.3319893454285,18.455408903380498,20.557343850601498,22.5799576853661,23.437335774403,24.2320387521327,25.048024319088803,25.825337485600702,26.6706611613974,27.5527361216222,28.3724635039968,29.357107971483998,30.269484150174303,31.206652476340103,32.1673371209976,33.082469774497596,33.8457084029478,34.6697909312948,35.5417160472499,36.371184212476294,37.1493583221718,37.9313603303754,38.7045337347803,39.4912503352868,40.165803719883996,40.7010904033494,40.6760687824605,40.9134900345245,41.3991458748336,41.88616520893579,42.3638042806868,42.86550695423429,43.3906075298622,43.7984585186439,44.130766707351505,44.688831889860104,45.2176950610943,45.74885636454,46.3096607282821,46.8208418879715,47.5433460581792,48.02413518150371,48.6337907958171,49.166122589353506,49.8512882920011,50.44783855274489,51.1604333420549,51.809036736228,53.4640071383843,54.98089715966721,56.3851671934995 -0.0154854581514604,-0.218576339802168,-0.259175621394969,0.149056909520096,0.323461874347388,0.47760386084309103,0.744848122787784,1.05321016094768,1.33422505268044,1.4591368510559197,1.5952230132756697,1.69208541872043,1.7999914304416902,1.9445827679015601,2.0571125611206402,2.17837039272927,2.23094755548967,2.3928982475578398,2.46429142711656,2.6200186787064,2.6845219388778103,2.8421291736909597,3.0005953355013,3.0701231567561797,3.23920733712813,3.3578803879427097,3.53468866696778,3.6740072911865096,3.7939757541394,3.9938410365217996,4.19116976920529,4.40053563312234,4.629814185937559,4.9239071924643305,5.22943954650436,5.3867796651200095,5.64765736352152,5.86764563477224,6.12008738743886,6.39086093472378,6.570044618026,6.8015305146003495,6.983257762726151,7.2208002378885,7.36937254216964,7.6549938725001105,7.71188577237707,7.9529522923853095,8.07914620162886,8.25515562483332,8.44502066815863,8.58317354269995,8.71115471735844,9.2653589290455,9.61491682445711,10.0501726438199,3.7749448878386302,7.13016391593516,9.828718413143259,11.934805906802302,14.1794946375135,16.3665435021453,18.4815540411259,20.5873779711112,22.629952018043298,23.4756830249062,24.3098085354072,25.1220351090819,25.9045571231004,26.7671813918642,27.6315294828515,28.469122790756803,29.4461809921687,30.367263761297497,31.2995652543704,32.2864406380689,33.230005139052,33.9775687242576,34.8325581086929,35.667969441332104,36.50671070465629,37.315755051463206,38.115267151831006,38.9083174914215,39.6447000577142,40.3768142086294,40.933608767266605,40.9375761789337,41.3007711650161,41.743820345126,42.2542406952396,42.8314841747009,43.3778118114961,43.893660070439,44.331747553244,44.758266862476304,45.306062739885505,45.861903821251104,46.4183880822034,47.060137726685895,47.6151810468604,48.336078473411,48.8526080977703,49.44742167321299,49.994937653431904,50.739556849299895,51.3484881074235,52.0236742020187,52.753210357183505,54.483006152741794,55.9909277230901,57.4467748884377 -0.0211912646569938,-0.23551405989916396,-0.282017405139619,0.10618625332822801,0.27382548984037197,0.41812974221247395,0.628776171897975,0.981222033831172,1.20376673745254,1.37482519556912,1.43120793744839,1.55314943768623,1.63402191771128,1.79822561499058,1.8915622110143102,1.97197369615879,2.07715069967101,2.19189507264814,2.2726326123832004,2.4196740851454397,2.4461015749527903,2.59299523053878,2.77056720043458,2.81573857250094,2.96060255421413,3.1282684556594904,3.29747399073596,3.4190847025945197,3.5234400562493,3.6609328921788595,3.8436351864543394,4.05605183723688,4.32288833703599,4.511213684002519,4.75962462250642,4.931260661245799,5.1380832978827105,5.4021235222628405,5.5872995476722,5.794863267679651,5.96577883226239,6.16023464336584,6.336782637547509,6.4945214307647,6.59936612620025,6.9318990866209,6.88413161301421,7.148755630473829,7.2607388025105095,7.44063917656815,7.604859722047401,7.72779933742699,7.832545045019421,8.32291441070674,8.58733831053484,8.98631085857175,3.78374339084862,7.1342708653180305,9.82420860106207,11.950148383319199,14.182722334147199,16.3717940179023,18.5063807832469,20.6284525660861,22.6700491531916,23.5265425778616,24.3561509667065,25.197036740451104,25.983426147613102,26.848348019548602,27.7225494593114,28.552477062920197,29.553992714608803,30.4645328138587,31.4284868922705,32.339152889976894,33.3634727519438,34.1485301446056,34.9675867965453,35.8439083718292,36.6728178191687,37.470894965493,38.300885155394504,39.1416821027772,39.8581853542568,40.6094031429425,41.2021663126398,41.2848213562547,41.6038595621426,42.1070286722697,42.6472597973984,43.22423415697779,43.755619200980995,44.3854660389251,44.86012006396339,45.2942975046681,45.913142015458895,46.494242165314105,47.0819416308943,47.7218560904038,48.3317064193565,49.0380778030433,49.5538957117902,50.1970043712681,50.8309342711408,51.488216676669396,52.1301685919108,52.8981004663992,53.556733658500995,55.337695848018996,56.927231715694,58.424838706346904 -0.00373936656293256,-0.214841755742913,-0.299319630765979,0.0656072318459242,0.193701146161585,0.321791480291986,0.56858827278612,0.8421224609772959,1.06119847745638,1.1903496846305102,1.27928921397495,1.4058172543163099,1.48698551895217,1.62485310470027,1.72559733707919,1.8208590766572,1.9028772143166202,2.00130200147396,2.08244942721862,2.2073514209142204,2.27177564447447,2.3881087809412502,2.53730868782198,2.60097274196925,2.7277399648884906,2.8663709591575404,2.99171060627099,3.1481935822761398,3.2616921337837597,3.4287156040452795,3.57919354806793,3.75925045614586,3.9734339943788304,4.18462484641563,4.42323537221033,4.5652626233887,4.7425884954201205,4.91502587340074,5.09540966808252,5.3253069238350195,5.40832935090305,5.6257230062396,5.74205187855479,5.90078502863713,6.0018051426554795,6.279633340042139,6.277070632781321,6.44276928690716,6.556851303653589,6.70849554597879,6.852563454408281,6.9535041870585,7.04157674679181,7.526267224655549,7.7748560000024405,8.092954639153861,3.7905602060173194,7.153152266605929,9.85608665823677,11.9747377650706,14.2453352260921,16.428298103236,18.5704752021997,20.7074979097779,22.774663548656,23.604940287972898,24.4609119288503,25.2931173699797,26.0731533002246,26.954186099021502,27.7960754924878,28.665904982641603,29.6598063709628,30.5743048569046,31.5528756806291,32.482538622845304,33.501188043519,34.24968250669,35.1033536008833,35.9464870960576,36.8211157964541,37.6280010721939,38.4436892701827,39.2915245099381,40.0371025202938,40.8133488686486,41.4419912933679,41.5240304200521,41.848445229323396,42.417323593831505,43.012489411216,43.658087331672704,44.1927929262936,44.8114313911424,45.33401153061979,45.8506164553575,46.4775622959474,47.069798420562,47.7185920393246,48.3511601276467,48.973020327946394,49.7249719471286,50.26799662464371,50.9109725781427,51.535313138184996,52.2913138303662,52.9294109538134,53.701036899911,54.4013130033513,56.2269021729245,57.8704721745193,59.3567194537681 -0.00123921695739396,-0.238478579223275,-0.320758202451141,0.0379459303683774,0.14460933267877302,0.314518397703908,0.5303300591883959,0.766006405866293,1.00105207092684,1.1288689848349098,1.23678225946564,1.31288666852415,1.35412397586631,1.5151179378279098,1.5569439196366799,1.6772871575988,1.73895535094138,1.8319497782453,1.95301368040357,2.04339736709564,2.1135372725638,2.2489011728732997,2.38607298650247,2.43368058579205,2.52604917895392,2.67908823786069,2.8183873062806404,2.9302726097791805,3.0411059616292704,3.18948432730402,3.3344589326546497,3.5038376026037503,3.6673988268547704,3.8069988035990603,4.05240792156675,4.137361092818311,4.3297355232948895,4.4397704550242105,4.617584301172441,4.76596937608124,4.83581056799124,5.01205892409934,5.1488597223519,5.2682965093255705,5.34441848071621,5.6232234336019005,5.58523444345873,5.739634879254741,5.7902405392985905,5.961802744364589,6.01794083940617,6.16560460538024,6.23573708064065,6.6057386994436005,6.83719956840073,7.16826056089914,3.7836984963205498,7.153152266605929,9.861197402065901,12.006196798834699,14.268528736312499,16.4471822414568,18.6434521879757,20.7994094527837,22.8754019607377,23.7176801235819,24.572305741498297,25.402593890166397,26.244199761090197,27.0882600764149,27.951670530382103,28.819244247150102,29.815170277028102,30.778903018519,31.727095349110304,32.6523936332756,33.6713433715903,34.482014548730895,35.3482372608819,36.1911185552543,37.107964352593,37.9091267069065,38.7356415927813,39.556815352555795,40.328948413901,41.0962031333174,41.7501177531122,41.920934097605794,42.3703007147204,42.8929809442674,43.5276338777415,44.1442724005219,44.766818909245394,45.4832833467988,45.967313809517606,46.5684149644425,47.2578274195379,47.8502425176717,48.46474510012361,49.2137926515913,49.817497533474906,50.5187048154514,51.18527623897221,51.8020361037627,52.4566281989182,53.193423657020205,53.8950573886522,54.65591022786899,55.4534569116399,57.31625107583421,58.9268921492255,60.4806664194423 -0.000606845842861997,-0.246128416358131,-0.329480222206954,-0.00545670274752115,0.10120066599542599,0.241254601245974,0.42132746691030304,0.6680356133706801,0.8468427109127059,0.942396834773052,1.05225246786568,1.1400580864223602,1.1856083119159,1.3257584266953402,1.40811119069586,1.48429795788975,1.57050169150282,1.6208645299454099,1.7374365179472802,1.82950386701597,1.87804366773925,2.00361449044063,2.15261408232957,2.19012004114999,2.29466840675423,2.41610160617435,2.55236492487194,2.64162459459295,2.7243933808148904,2.8541622779637996,2.99073322659662,3.13285156169594,3.23098116027125,3.42953546110365,3.67410083227769,3.6953226953013902,3.82318289734865,4.00212563393966,4.14314931220703,4.18056515160535,4.29291030347682,4.42660133228449,4.50885578417467,4.645639017979111,4.71460095935154,4.91468987203955,4.85120355801419,5.002426950528361,5.05202414995164,5.144480302319111,5.21949184333985,5.33014935092402,5.37766095529397,5.773424912905821,5.99698547612843,6.21505155132188,3.7994562148107005,7.1447742936789504,9.860090502167,12.0579878071431,14.3330614405778,16.5299168317998,18.6850941256947,20.839994457525698,22.9504804805278,23.799610281032,24.6753821243227,25.4470293353723,26.3117301305298,27.177324185382105,28.060602510071103,28.9361776343404,29.9075547773984,30.8733145783993,31.8239816703015,32.825414181526696,33.79951464532039,34.6219232710072,35.5211698686255,36.3740572993956,37.2910619851586,38.0985539330661,38.9152528419585,39.7613136695183,40.567227796459,41.3345461589636,41.955885217512204,42.2684631454403,42.7175103531542,43.31072001355761,43.9515737658716,44.6434286074372,45.3317755891107,46.0165547927285,46.6138119551645,47.188953850501605,47.8596095572756,48.53348163225839,49.162270113542206,49.86850336811689,50.566269339441796,51.3136063982485,51.938410806545,52.6192238899186,53.282762613154,54.06377010871179,54.7537696109194,55.5463020235318,56.2332580172461,58.190703336932295,59.9073345725424,61.5060044204303 -0.00455908807845759,-0.251923190993518,-0.336598503751432,-0.0260778440951501,0.0708038676776327,0.19252158851114898,0.393040405607142,0.5723023713294829,0.744956108888453,0.8343028528214091,0.902893232656307,1.00874239938886,1.05565414374994,1.21272977050839,1.25167833246259,1.33802936465819,1.4200127921889698,1.48914996002434,1.5771636985494302,1.67092608790425,1.69654209857006,1.8154363508319398,1.94094203079647,2.0013055635085704,2.04499703038005,2.19206217007133,2.31088642972604,2.4158220912399,2.5081479907888595,2.62309758982372,2.74785392737475,2.7954504808423595,2.94435417553785,3.1064276739771897,3.28734393082765,3.3400112340161603,3.43117558656937,3.5365936996692096,3.6318711261404197,3.66456371290519,3.70139717690057,3.8350326187190897,3.9148133109818604,3.96580245736982,4.01931927788599,4.28853123889253,4.12743761029528,4.28934770782872,4.38539270328767,4.4407673285768094,4.526537114318639,4.60427418828158,4.62912985735571,4.95714779883379,5.07860012392054,5.28183718646093,3.75652259995614,7.14265828185343,9.85132486679562,12.075672302704199,14.357771973685901,16.573050773889197,18.7566578391333,20.9243681483125,23.0202415932218,23.902147683928,24.7346746869544,25.5883178628334,26.4426363047666,27.336786069649,28.2195320173227,29.0995106824046,30.088549352427602,31.054095067667,31.982435356580602,33.0268712284558,33.9798207824162,34.8365310761652,35.706553723225205,36.585721207911796,37.505335141019394,38.3137922332546,39.1592687725623,40.0245573997337,40.8212997858802,41.598756607269394,42.28854270318521,42.5903788589086,43.12570209399071,43.742532610678396,44.4692900770661,45.1466081204031,45.8422414856211,46.5959072532829,47.2155933387547,47.8867288946547,48.5837992067837,49.2311527904633,49.9317738756559,50.6754279229218,51.3722313309804,52.1259887189589,52.7816238271257,53.51686420349521,54.18967651250879,54.946842970587205,55.68026003377089,56.5072031163722,57.2186272082497,59.1974863231273,60.9498784181396,62.6538416508395 -0.0101390566814081,-0.241731972264118,-0.36339831287190705,-0.0503482848390003,0.037197456556998,0.144901356041236,0.288884975518566,0.4615238301728279,0.636674706503548,0.6986377930422099,0.8112144623049209,0.8628768980282521,0.9408733919460469,1.05218181823632,1.11958159563768,1.1967429458943302,1.22013885589388,1.3138281615108,1.38627329098435,1.46294489474571,1.5272537357385,1.6140687789036,1.7439562201938799,1.7442948292868101,1.8254758657738799,1.94336985129664,2.0338597328792303,2.15462543721764,2.2285902274871803,2.33285529589263,2.4509466384310095,2.50912487692525,2.6057313141184197,2.70958728351029,2.8581734926144,2.8882951935632404,2.98822995673535,3.02079357294252,3.10066988297245,3.11481021944823,3.1321153323071402,3.20624551991858,3.25916206618202,3.34599505844302,3.35307272356431,3.50506794241403,3.43622440390329,3.5436003954207904,3.5543110333951096,3.60946752429431,3.6881541186419304,3.76432405212672,3.7691167178322593,4.06740249056058,4.11303350854986,4.29961389174715,3.76561299583302,7.13520955892421,9.85998134023726,12.084737153629801,14.3691029355127,16.6036912204462,18.791329592153,20.9775050268347,23.1152620692618,24.007148601490602,24.852405009805697,25.6987347539787,26.501832749762396,27.4171625950525,28.3083073110179,29.211424200205997,30.212102399572302,31.1762181411171,32.1260843820385,33.1647557437276,34.1495020475287,35.015515640427395,35.851401772182,36.7548689156558,37.6861019966943,38.4948203018075,39.387626492219404,40.2443929214151,41.0660122197947,41.845610944668,42.5577465843469,42.946544214441296,43.5169637045382,44.18074758732799,44.8962482425163,45.6325192917304,46.3923863575735,47.0974871417366,47.760602673760395,48.5030558013461,49.1804574354609,49.885953273481206,50.60890093599879,51.3373099982665,52.0444312237288,52.8410017868765,53.5260830999606,54.225465849921,54.9596291279968,55.7725602376065,56.5010510983845,57.323156054565494,58.0448272855949,60.0275207346271,61.8615242056521,63.5879294718706 --0.0075760381054158,-0.256142869941118,-0.37765844655529296,-0.0918736812989602,-0.057576963539999,0.0514750690216038,0.169044516204017,0.387410866718288,0.479960129015272,0.5995374245101,0.6697427260980571,0.725340616224582,0.7144876734852819,0.8586231885456541,0.8472051502505408,0.9844309732129229,1.05396088532396,1.1607781373492099,1.15853230283178,1.24978863760474,1.29361860661596,1.3998180757985499,1.54402235887254,1.5071604702522998,1.5974122318008899,1.6527844912657,1.80150968881127,1.87397371054514,1.9317392501775301,2.0411836618965,2.15393405887833,2.13519409303797,2.1928562273885,2.2847098513623796,2.45269499197886,2.42770035071783,2.50517959293066,2.48797389069731,2.56100516974207,2.50034654271834,2.51888059881056,2.5547995825456096,2.59247385423842,2.59929043212559,2.6142771762112598,2.7802426538581604,2.6257401710674597,2.76471774041243,2.73714742248532,2.80433810614651,2.85833198841712,2.88434079349589,2.89563891813905,3.1001694862222404,3.18940839371659,3.2822280886582402,3.76368798216079,7.13513859362605,9.85466901077335,12.0948275072942,14.403881133928198,16.6603605996695,18.87269800201,21.0573895785508,23.1770654438369,24.0674859747206,24.9414329733819,25.8119000002948,26.6416403918153,27.523378034229,28.4430252528552,29.331974140823302,30.344657141637203,31.301310017148598,32.2871216497759,33.2258603428499,34.3267164126761,35.1549277867762,36.0208354465629,36.940213479128,37.8781624013119,38.7504365641979,39.5916595557772,40.4695438991578,41.2670509625408,42.1225027799972,42.8407438481971,43.301545690525295,43.8844710264089,44.5699192412992,45.348196828000496,46.088519532389,46.89854691936979,47.67482688825971,48.3462503451465,49.0991101603368,49.826472431567105,50.53933594765039,51.2851339163755,52.04766382190329,52.7948261504037,53.56325819852471,54.2261423516979,55.0123648622678,55.726965119504605,56.5441498548327,57.2618663655455,58.1140112590848,58.88838143813311,60.91560833557649,62.7053440349339,64.5454115286266 --0.0017156600923984,-0.26019045433052895,-0.379396801372298,-0.110708697148716,-0.10131538578066199,-0.0330165806127798,0.0936487450704677,0.23948236146953303,0.37056464519856697,0.4391663200028089,0.522597599680665,0.5741733764824449,0.629890401084609,0.715970987392532,0.750216799109006,0.8313731506633221,0.913184721224575,0.9850614644156179,1.02177269205736,1.1264618322656001,1.1336869867126,1.23503350749768,1.31935196388912,1.34160127245444,1.3868027755496002,1.47116686974408,1.57859256950203,1.6226151313134098,1.6626094660299502,1.73622431431768,1.83943716554151,1.8030174131031698,1.8436323718627399,1.88229527805518,2.03281465482929,1.9825404133902902,2.04062546747187,1.93547575558232,2.0098317818581797,1.9166354915458101,1.86517940550084,1.96179158624659,1.92500830803677,1.92044090256604,1.9709406915553103,2.08244259330436,1.9192965094350503,2.01336112298161,1.9490366537326203,2.00821096169732,2.02971790875705,2.0232181422963698,2.12473750715273,2.2993120420087405,2.31882986613794,2.3552826169262797,3.77611611567681,7.13886785284101,9.883505738834769,12.097316136072399,14.437728027047301,16.7003628912903,18.9126830751359,21.141146809147397,23.286309768249602,24.1716670018091,25.0174412251702,25.8956778145232,26.7366865110144,27.676920896789397,28.558321871721397,29.433566920920402,30.471163376979398,31.4279869765829,32.4605654061345,33.4739744780113,34.4891282550586,35.33334120114829,36.283429596124,37.218092110066706,38.103165525984295,38.951860725801,39.8350148107564,40.6861023326199,41.5872999695765,42.4209115695394,43.184141229858795,43.687656047881,44.3163647575901,45.082141982945394,45.7936356455188,46.620615825710004,47.4226622288929,48.2746307532885,48.988691826823505,49.7821177018713,50.5152594947415,51.3038080743307,51.964981287734204,52.7867979978509,53.56115340157479,54.3801047066421,55.085364625762395,55.833857761455405,56.595851884302206,57.436667870716,58.1587435850002,59.020532175746794,59.8284042404589,61.926948326086396,63.8133052880017,65.5820440714143 --0.0106738972424618,-0.271889486181556,-0.406351987743115,-0.17324930524673401,-0.140254972637941,-0.0947404459231406,-0.0028437154563481,0.12971878525983502,0.233293137313045,0.307486579156894,0.358293941953799,0.42918098759662704,0.459323497950878,0.5797237652188829,0.593191511796313,0.6694316368730661,0.7016348839956661,0.7552362908137299,0.797133757736674,0.883493944642375,0.921387737107612,0.958084223475896,1.07428846884801,1.10215435463563,1.14761713972441,1.2004879016881,1.3400467047798301,1.3727425280114902,1.4309132829028801,1.43783889626628,1.5164982256248798,1.49719525250727,1.45206019374121,1.5387036212559098,1.61413245969854,1.5210423653524,1.5373935936792902,1.46889741391251,1.4510463233358402,1.30344003489963,1.2591379653281298,1.3122083679376297,1.2446998326171201,1.2590968721460902,1.1902316797118602,1.35685544321748,1.17491693921652,1.21615458184009,1.20656856895917,1.20695444867698,1.2409758628999898,1.24034301478799,1.2264846026378702,1.39766056461142,1.36210000412708,1.36416946431333,3.7717254043056,7.12352792283921,9.89568668738883,12.1282198273995,14.453388468352001,16.7206416421411,18.969101536399,21.226162057309,23.406350138583697,24.2641213128028,25.1344488910289,26.0004876978516,26.844708816251803,27.754017739198105,28.618938067554,29.6052608932131,30.5858833770183,31.576245260482803,32.5771118246356,33.6509241228188,34.6631295438864,35.4973617784245,36.4367102956796,37.344714353924296,38.32254533052979,39.2076724251852,40.066679173863,40.989410301605,41.8465706414101,42.6649428859703,43.46607541693379,44.035059404737794,44.72174085564429,45.553765817115796,46.30202691116771,47.129509380953294,47.9946433529002,48.8161733437675,49.635655444863794,50.406677767277,51.16251718246139,51.954402925593605,52.6810221557995,53.5165844166146,54.2624435291207,55.172014075544794,55.868150961015104,56.6480321357034,57.413920388515905,58.2378648470218,59.0234944046025,59.9065773301585,60.6907105235811,62.796944136772396,64.7468202331054,66.5719521699294 -0.0065561161868315,-0.290903341915844,-0.428749334656099,-0.194301730331534,-0.22542488830009,-0.17513109633430998,-0.06320588471096,0.0937539913020308,0.165543181796207,0.24224402587321103,0.28171611682600706,0.31452612544346104,0.356232510734722,0.47244790516297797,0.478567386209464,0.531653883803056,0.559668427787923,0.602364396878299,0.6552612283157541,0.706458011044369,0.7376318361330999,0.8068026690513359,0.8665192805737301,0.8925868063137621,0.933608401023269,1.0060635016813002,1.0934336655312,1.1503238078704099,1.17282957065353,1.2298878303753602,1.30426674949672,1.1881478443459998,1.16539550682204,1.1618256465189298,1.23024689012117,1.1354483301713998,1.0977868015485799,0.991956909471132,0.944146482900193,0.7848768260044029,0.704338726371337,0.6909593501243579,0.678895082234357,0.642732530511044,0.586204874895461,0.7055419097992129,0.527898303220919,0.571600016301295,0.524043852744336,0.498409333299155,0.50518483098112,0.504307116563052,0.460568836041118,0.600939270512009,0.5708872813984021,0.555861388170776,3.76291022495825,7.13252010618074,9.89568668738883,12.1737469659839,14.4932546732449,16.771371740635,19.0555395868019,21.309032081593102,23.4681250559101,24.339204877335,25.252154116813802,26.16422634008,26.968067195411702,27.893900296219396,28.7953247029366,29.7740768864537,30.780961683797898,31.737113191321303,32.7310582132544,33.8036196313328,34.8268520156464,35.7411295151174,36.662811936901,37.5893459865007,38.5769800641309,39.469052460217,40.368963091671,41.2400547118965,42.127623473761396,42.9622601030703,43.770999390753204,44.4747511224104,45.207273944330595,46.006986490531595,46.8545798310699,47.7030380272672,48.6013841742918,49.47990629272161,50.24275636604239,51.0396455105415,51.8199167303676,52.610435082192,53.4093921628188,54.237058871311795,55.02658266383221,55.89778906144689,56.619669296350295,57.4791407754382,58.2271050498688,59.065126263675005,59.896523527281104,60.7444974710715,61.596729730953506,63.80007230639271,65.7292202036779,67.5874558274897 --0.000677777545375398,-0.27280498544159504,-0.43907656562706704,-0.245820580567532,-0.254630734373189,-0.22426473684284198,-0.141561547997577,-0.0475914244991306,0.0263918353488982,0.0827599896730864,0.146695828107711,0.13128093426089898,0.19447279770069198,0.293180467437416,0.302787737754717,0.30423269842119605,0.38027891402465397,0.377076341851971,0.45764520786750895,0.5176723512276521,0.5512054732187671,0.5654340223953511,0.646514664851383,0.631172811542573,0.6525860316307621,0.7171917298328809,0.801698652790727,0.85900967534893,0.8497446858602341,0.906389242050139,0.930474732534583,0.7778894799983771,0.687172011287176,0.7076034981563399,0.7242106432458142,0.599711192942516,0.533388776666364,0.395574672407964,0.370730134598712,0.150161085181118,0.0810924766418956,0.00771419735618484,-0.0412035435190398,-0.10194052848909199,-0.173859413416545,-0.061980097216556,-0.29093221127800706,-0.20436051179334302,-0.31833010296258396,-0.366773927797012,-0.327376652636877,-0.36145107866859294,-0.40071478741616495,-0.30324771545955104,-0.429703032634079,-0.476984296149761,3.7834975893080496,7.1192877030779504,9.89742626747756,12.188918245111301,14.533893733293299,16.8377988898988,19.1341805138246,21.37447841559,23.58004385528,24.455761630338802,25.3538330981745,26.237678059127497,27.0941218113903,28.025272076226102,28.9086637709627,29.8968432042981,30.8920026145902,31.916853531019502,32.9018998209652,33.9628920154972,35.0420924667274,35.9196489197008,36.842130546392,37.7981674493918,38.7731750853934,39.6833893361416,40.591948381841895,41.518517296146705,42.398299230683705,43.2837756391898,44.1285158991567,44.8887589628566,45.6768282512209,46.5301950287944,47.3941547799405,48.2631077928189,49.1614670816529,50.0519887828977,50.8779971592099,51.753239933382595,52.5657987513663,53.404887125216,54.165854414444,55.043774355626105,55.8569706784455,56.7153342965231,57.4882922865106,58.2862794312543,59.135259824773996,60.0243026316362,60.8099633665326,61.74987853622309,62.5634102987333,64.79933622404549,66.7681716833702,68.71728097873 --0.00298908452272115,-0.27876822844134197,-0.452729575427882,-0.26348511726580703,-0.283913036993182,-0.26273489016140195,-0.21142376040465302,-0.11638462112962801,-0.0571975153375141,-0.0013004403601388698,0.030288947428506,0.0819841910449811,0.0749350697260991,0.166982741187599,0.16421620279260998,0.205535108813531,0.23563658700606802,0.24782916319738102,0.322897945057884,0.361744323456745,0.381530786181676,0.38643302291167403,0.49542072061113,0.475674414040373,0.48375778835923405,0.513812164454563,0.6028164971393261,0.630169335746495,0.6189123982488249,0.6864708101644591,0.705359353309999,0.48509248553382,0.39987383314380603,0.312447901076676,0.35705919245687107,0.151634071793142,0.0686391234232589,-0.10435635180854401,-0.18905794346515697,-0.394816889160294,-0.552587519688032,-0.5801665151172609,-0.674877036574599,-0.752835776731525,-0.8354441091604009,-0.787338940863996,-0.9785288618395892,-0.9713297293161608,-1.09643165204817,-1.1101464253766202,-1.1645354373488799,-1.1931645551368701,-1.23629361016519,-1.21040109204009,-1.35097141652688,-1.46220480771673,3.78029877550916,7.11746944031816,9.915112052834038,12.202945694716199,14.5789132494353,16.8890279851291,19.1988678370924,21.4761620176047,23.6767074907727,24.583929052960702,25.5273960526333,26.358790709719,27.2729250992239,28.1819773195495,29.1057660488389,30.064680529170698,31.118328751670397,32.1248200793568,33.139340442884496,34.2103347500819,35.2778144564816,36.128860047360504,37.1274075049354,38.0562696171413,39.084468403293,39.942881240693204,40.887794875538,41.8289113786491,42.7462909735314,43.639496869620295,44.508358493321296,45.359961600708,46.16447615872539,47.0408617504957,47.9209253533368,48.839053458098,49.752309049348,50.6767638947714,51.57719516329411,52.4103211867999,53.228700613641394,54.098655937149104,54.8916909439919,55.77614211750689,56.5741396268058,57.52183670671639,58.2564356582183,59.1253871013687,59.9375739381105,60.784860197263605,61.6852032450897,62.5710059627229,63.4846637887654,65.7316310076029,67.74186481099889,69.7734127276038 --0.0168311706088476,-0.302772375821855,-0.47964012135884904,-0.326465934680944,-0.39308272993760296,-0.36641277649048604,-0.346309542074428,-0.280749732859721,-0.24475506439478897,-0.16723070233414097,-0.142232613230422,-0.124824887366759,-0.0984425746856009,-0.00699187044743302,-0.0290096915445433,0.007998322096181941,0.0356662709234455,0.009470347425776921,0.0625463680967983,0.125522584869883,0.107022978697928,0.14893976375697698,0.240555665733302,0.17684900799885,0.19395639356390498,0.22655137199356304,0.308810007084754,0.324676327874537,0.310727932543029,0.33908420070543394,0.33155810333913,0.0489625938933995,-0.0869982013502219,-0.19533382524094298,-0.202580490064363,-0.3693074371023,-0.530427627597979,-0.6994379350012089,-0.7813099658687909,-1.0950788587018299,-1.21322054967272,-1.31679588830845,-1.4063401224333798,-1.5187222026182299,-1.63035729592812,-1.53662653931382,-1.8088241973771202,-1.81534280266127,-1.93032430048126,-2.04194149818088,-2.0724920497891,-2.09952478051013,-2.1768356085828002,-2.13192376153003,-2.35661766188402,-2.4719416143564303,3.78073170762625,7.182557810267991,9.92537650336687,12.2662693347683,14.649820912533801,16.9778812308636,19.289474803773,21.555619593284398,23.776502108165197,24.693352549664198,25.601694872179298,26.4980180037279,27.3999359217734,28.3279633715409,29.285521302177,30.221477561854,31.2611263959383,32.2712956481383,33.3075024397139,34.3693049700294,35.4534281616366,36.340338495191105,37.37531682282739,38.2862357981892,39.328963486683705,40.2334220276929,41.168947536618795,42.138153127248394,43.0605833794963,43.983629701419495,44.880287523301604,45.7970423175947,46.626060021690996,47.5496376968676,48.465293282733796,49.4097454721964,50.3457926042883,51.29268308750879,52.1406183446879,53.0462652401517,53.95108586828171,54.8022916497707,55.60630710607921,56.496037982020205,57.340035148396595,58.2761774881798,59.037136870312004,59.983086010727504,60.766556284276106,61.6676816038086,62.504986547738,63.470777733851,64.31911606850561,66.6280130540141,68.763742238213,70.72242748028201 -0.006615557152730729,-0.309944946801567,-0.488845305877502,-0.342431585658661,-0.409516248095892,-0.41809575173768604,-0.36887073112375396,-0.32301571253844297,-0.295902065648236,-0.252915931083685,-0.24303667595619,-0.24485339490625302,-0.24526026350418303,-0.16301952716882,-0.198634360879326,-0.173403184188961,-0.13078962344578898,-0.09725242951817802,-0.0717007914411801,-0.0323771357619835,-0.0508264690442254,-0.0670913003720632,0.0257766452371854,-0.0146010689537806,-0.0124702385213274,-0.0152842923808685,0.08060885220040599,0.0967442273510437,0.0722381320400765,0.0616017062576373,0.0453596915602397,-0.318095450332938,-0.440868134426346,-0.5699599656846259,-0.6243094515735561,-0.8517986516896909,-1.0270230069303399,-1.2461405529641398,-1.37643232392786,-1.72951758217267,-1.84108350775019,-1.99225880813169,-2.08297649946495,-2.17234159217095,-2.32422771936154,-2.24348308490857,-2.54552834839587,-2.52675413982618,-2.6504184858812003,-2.7431447868516803,-2.78069509847225,-2.88792246914289,-2.91868917082187,-2.9667720748881603,-3.2081898944811,-3.4196693272892897,3.7599092915977503,7.182557810267991,9.924565592113812,12.2610183118537,14.675166146323301,17.0266640835812,19.371846452924302,21.659908628934897,23.924413460842,24.826504433352,25.7199541931499,26.6304230698652,27.5433149369597,28.460218325567002,29.414207335276103,30.381459764921104,31.437559465033,32.4660352365787,33.5058890065322,34.557492569154704,35.68705764252189,36.5873849124576,37.6133427909368,38.555872868479,39.6011972715486,40.52613535461,41.4736744324625,42.4307277713621,43.3840576179197,44.3355110223226,45.261541504550294,46.1953739302336,47.1531938103784,48.0553679852447,48.987656666439506,49.9597546644596,50.903139918179996,51.8929066227866,52.7557646071743,53.7378964152085,54.587870889606,55.5190743292902,56.2895172046356,57.2194790270405,58.054243239608795,58.9931946700179,59.80579401781671,60.7066573469584,61.5562790681952,62.48738037534579,63.3566440620444,64.3090364113084,65.1927999291,67.5677364558231,69.7124766571924,71.7821320934384 -0.0192080563077107,-0.30571912726591804,-0.490857210327478,-0.35460299804067,-0.425149801744133,-0.46745555974204206,-0.44926541577831497,-0.36905267635827793,-0.378329073694133,-0.37087492809262296,-0.321543627262823,-0.33162495921629104,-0.33168733077694895,-0.24596361305289702,-0.288558662963898,-0.30699356490356,-0.270520977531257,-0.27463951353656896,-0.224560181641412,-0.226341773956007,-0.230821154561093,-0.22783910955898395,-0.149452986262251,-0.263408194349947,-0.224768885878401,-0.21106083525941,-0.15524523855677602,-0.18006006406397101,-0.177090463612232,-0.188925100117259,-0.23497535342018,-0.6102789179734871,-0.8379058922296441,-0.9872477338484541,-1.09010382129339,-1.28307348990555,-1.50140664410073,-1.7766828924378701,-1.95020096587465,-2.27737968642831,-2.4231033472326002,-2.53112187282975,-2.70834487394567,-2.8487288463489597,-2.9876098252524703,-2.95528069776123,-3.21907314481831,-3.2843443828594703,-3.4182750283967,-3.50676939978338,-3.56077825965092,-3.6986291294918705,-3.76780193089742,-3.81862810219547,-4.118896682777,-4.27683728192891,3.77620078616516,7.16294192648444,9.934179277327141,12.277656403309699,14.717002219388599,17.0863730332748,19.4654910850971,21.7533122368262,24.0342262112562,24.9513338117805,25.8595296020898,26.7828748980086,27.6937038766231,28.6267485624046,29.5604436825566,30.5235508560076,31.6254132730376,32.6410267463065,33.7024549839672,34.7801557404789,35.900033275729896,36.8289756566897,37.8557752754573,38.8010533049859,39.836066382123796,40.7865595356906,41.7815011124138,42.7617024006654,43.732262404970506,44.6691142879039,45.6571391628959,46.714591079327406,47.6770596664717,48.66677322525,49.6038678709606,50.60310283743961,51.60738734200721,52.591606084558705,53.538232857241496,54.43612404703529,55.35290441548321,56.2181319196894,57.1070200354328,58.01325776821629,58.863421651177305,59.878748705247794,60.681196460204404,61.6271821532032,62.4919248507249,63.4248299393002,64.2850791290019,65.2892051083531,66.1940465222469,68.5165110032153,70.7212498000607,72.862684135956 -0.006360204232481671,-0.29891493337557,-0.5050364019447511,-0.393765695755164,-0.46232590837086796,-0.527565192258889,-0.5504762492960451,-0.5215808636461621,-0.534147092092097,-0.49212613661758,-0.474947478305557,-0.479148213044858,-0.507131138393907,-0.43152491510922,-0.47020253342722795,-0.416457223266951,-0.448053020068853,-0.41989616114745,-0.431119720735249,-0.385871544589987,-0.41894954957741104,-0.42631094639302397,-0.38372185810859705,-0.447064795164689,-0.45053760831678596,-0.407673467324742,-0.41825265608928897,-0.395880198576874,-0.44337008235744296,-0.44551068137326794,-0.533629949890405,-0.9679121487584109,-1.15436318523821,-1.37708505758313,-1.50814147491692,-1.76776670011753,-1.9794340413865399,-2.2948422482480098,-2.46584545736931,-2.850044547505,-2.96307091550687,-3.133365684958,-3.29015396754906,-3.4657318854280197,-3.64077810205268,-3.61471483924592,-3.9198163746284,-3.9769056486130796,-4.15125262363895,-4.22064385781969,-4.30384600734877,-4.46137690850965,-4.52935693553053,-4.596720273383,-4.87621139553738,-5.18439193271185,3.75330203246665,7.152956927115491,9.9155445612352,12.3017450462852,14.718550492664402,17.111034366203803,19.4654910850971,21.7674277605446,24.0349603016116,24.979823327281103,25.8858086007487,26.8227374681397,27.706248723425603,28.6710358101788,29.597510978418196,30.578503952906498,31.665069788179803,32.696038427188896,33.7506818511767,34.856473947073304,35.944404273172395,36.9155282620827,37.914737203782,38.910861634635296,39.951871284984,40.906094781300204,41.88345267647411,42.860736969445796,43.8430516521964,44.8014863553756,45.779573876710394,46.8950893656352,47.8697509704115,48.8299236591335,49.824995531405,50.81070642729279,51.8381984811421,52.8378352149646,53.765504901431505,54.7532268649114,55.622083836378,56.576919541,57.4306035869796,58.3519876567772,59.214775771445204,60.1958795852707,60.9886427181237,61.94530692997271,62.812544095349296,63.74913180012529,64.6488408004405,65.6517662013858,66.58526156133959,68.9566972402353,71.1470071389053,73.32741258885541 -0.0222311869928506,-0.32553135676033,-0.538473876266765,-0.448302812400446,-0.557824042423573,-0.65178051901311,-0.6548265444453341,-0.6583710647185941,-0.711320542134133,-0.68852385961319,-0.664492301830535,-0.721624967632979,-0.7201596884532121,-0.678431973899184,-0.706523462207641,-0.7005053919894089,-0.743024104858907,-0.712209276990639,-0.719855505710775,-0.73468839691243,-0.760693903760799,-0.7768565586606642,-0.734640161783986,-0.820578214918669,-0.8368569339002758,-0.8339154917329599,-0.847548759504039,-0.8385562384168771,-0.942469344736283,-0.995105042555033,-1.08491624670802,-1.61734892675262,-1.90935821447786,-2.1596487197453897,-2.27815898369515,-2.58282964232641,-2.86895937630575,-3.21989362641668,-3.42610301357981,-3.8754740509899803,-4.05494654180632,-4.225369114475931,-4.3930344543517,-4.61585599918909,-4.80056725953327,-4.8399170306870705,-5.15139255275009,-5.226629193116669,-5.43718851158288,-5.54339370339157,-5.64070906663412,-5.7903385009855795,-5.93774353571422,-6.0655614086542,-6.431511133296749,-6.76222190518773,3.7407204042801703,7.14900648338122,9.978065533025552,12.378058631862901,14.769752863655,17.1567149790382,19.5254437492948,21.848645192427,24.190093655376398,25.014286606157302,26.029616948582,26.914589432470102,27.8274086077809,28.7948055563295,29.7235672090589,30.724021761652697,31.8050676517881,32.9019882057243,33.91152187408,35.0098216443813,36.1672616998273,37.0870136143442,38.14682980678771,39.141548362270996,40.2286665489381,41.1992727333628,42.1934145874536,43.153824918324794,44.1838300285866,45.1420227446925,46.2073008141422,47.3836720920193,48.3983361535345,49.39486104659,50.41066017864021,51.4516299026876,52.481712514905006,53.488014799487104,54.455752540857404,55.4069381697945,56.3534038086059,57.2968563444779,58.1845786069038,59.0898069372109,59.9944968000742,61.021077164379605,61.8491195467994,62.789795115238505,63.7125863291423,64.68078920203149,65.5711287899084,66.57229893306021,67.4976151865731,69.93272392519789,72.1472980510522,74.36931957450949 -0.0047128876183963895,-0.343613566152603,-0.5352316640324349,-0.48227408194656296,-0.6017309457522241,-0.6827905554007659,-0.771659945380528,-0.7544251011457559,-0.8061971929122099,-0.804756818346726,-0.8037490706813399,-0.815135592890526,-0.8466898825822741,-0.7890950823190841,-0.85961528315566,-0.8412845661903149,-0.86004933067507,-0.87200109200543,-0.899187707300241,-0.8934475882531608,-0.9289161496388809,-0.961696795438135,-0.9328757635490771,-1.0573632366753,-1.07016834715542,-1.08473005147543,-1.06969471727964,-1.14608278646805,-1.1916879137248302,-1.24273012373007,-1.3804512812473797,-1.97437030671559,-2.29996844032446,-2.56172133247168,-2.72122903428915,-3.12066475442316,-3.37236204010854,-3.6921842936841,-3.96773923616597,-4.41244425788714,-4.64689280937663,-4.85904634589545,-5.04984823552396,-5.276503811899491,-5.44700574654067,-5.47903898059297,-5.80533845563514,-5.90823298900476,-6.14275108710876,-6.27247727019971,-6.44519609193563,-6.545775284950321,-6.706319296911841,-6.92487441527772,-7.31551383875921,-7.6524963590231705,3.7957585152458195,7.158980970455401,10.0010958595139,12.409082988493399,14.8135185880934,17.252133041947502,19.6055168386997,21.9845623989518,24.3302025755396,25.2537504464496,26.2065907960885,27.1017648231055,28.0089410673425,28.985245150349698,29.954101449791104,30.964015180127102,32.058170046925994,33.0991520674833,34.1997348995291,35.2921612812106,36.415672895041105,37.439060882232106,38.4976468437575,39.444638363170206,40.5700179204988,41.5443370768155,42.5677633198721,43.5567189849724,44.5886971213262,45.5899021479908,46.6789787752576,47.8560660165829,48.9380981551787,49.983218998819,51.037478076451706,52.0347131627546,53.097116747761895,54.160307307427,55.104205606977104,56.099999375890896,57.0796261016607,57.976618981585204,58.9024811515489,59.802896311745606,60.77574883917279,61.78463605766629,62.597220141049995,63.608498247208395,64.48720656982779,65.4953859931199,66.4456956618666,67.457330531501,68.4227184829996,70.8496943806466,73.16107763722059,75.4135071602361 -0.0030752359863041897,-0.362436745288748,-0.584393195730711,-0.533755208111098,-0.688133065400749,-0.753239252540822,-0.8326631812265809,-0.841361361719621,-0.9336965816751569,-0.9214619127385171,-0.9319140323358771,-0.9616041154263321,-0.9885428163225971,-0.9672697460566129,-1.02444115893601,-1.02498022853735,-1.07283073477533,-1.07052953583115,-1.10070563995386,-1.0905215506974102,-1.13684893098412,-1.19683197315531,-1.17618798798785,-1.25740263197864,-1.3302410755606002,-1.3470608491619098,-1.3508450770949099,-1.40863950800044,-1.4980694272302402,-1.5448778096451297,-1.70700501867905,-2.38782752404303,-2.7617801473383703,-3.1120594988900603,-3.29565920258297,-3.6072006287137097,-3.9436982183278,-4.31415738858823,-4.55342895676463,-5.086235621092849,-5.3513223137373,-5.52121918972159,-5.75977738378393,-5.986907845797879,-6.20572695187768,-6.24659777824667,-6.60716619160966,-6.6827365588093794,-6.959619357592571,-7.16470401470351,-7.24589360358889,-7.4250920867714205,-7.57350930305786,-7.8206781880633605,-8.25499996200009,-8.65103785724718,3.75010367442323,7.1281132349317895,9.99574819501609,12.3878770609428,14.873837503628199,17.309975587639197,19.6779358044804,22.067872499705,24.404720214861197,25.341291441277598,26.3043405574027,27.2390114587597,28.169267602372,29.1215747018788,30.1146001763247,31.1426812943817,32.2287379785504,33.3017198030543,34.341146511187,35.4888428743131,36.66562236664021,37.6773332526656,38.674628517425106,39.7453322722685,40.8182008639243,41.842721069359605,42.876104628338204,43.87540223998529,44.8967652895368,45.9714116597248,47.0858246287745,48.3900425443433,49.4574249205744,50.5233610259764,51.543128652312205,52.65327708604071,53.707223589099904,54.7569765124287,55.7613445098641,56.7706820955051,57.6965905445216,58.7092340070771,59.6064850384459,60.5568126656945,61.5903434776478,62.5058590643301,63.4541540997445,64.4378100283899,65.3425092995838,66.3702868945542,67.3054717138654,68.3408657987459,69.3064434910783,71.83648218193579,74.13546608952379,76.43923277571649 --0.0114921676670774,-0.33259238106409,-0.5510031377756279,-0.5446596521432601,-0.71533358731892,-0.7875067346969201,-0.8805618652527272,-0.9233750358493822,-1.03766528986727,-1.02166981438458,-1.03136373127233,-1.05312372975664,-1.13393092202068,-1.08792791947663,-1.1437341227462,-1.1546044201253702,-1.2365763043459,-1.24902525900916,-1.24399801055705,-1.27605045935616,-1.29016521786791,-1.39653513415548,-1.35273986920274,-1.48825034866061,-1.55030989444053,-1.5753205935766297,-1.60106986362912,-1.6329030196316001,-1.7810338172876499,-1.84630063598537,-2.04885917188266,-2.83160263817775,-3.27139985293229,-3.52839858149508,-3.7896022982835196,-4.14713953853532,-4.494507930588769,-4.877246956233031,-5.2324213432296505,-5.7285928140576505,-5.96652789314231,-6.21877656920792,-6.42780759247641,-6.68830802702896,-6.94169501917526,-6.979912638375191,-7.3942631927374896,-7.486980702714809,-7.7600110031804,-7.94287339080101,-8.06452993883137,-8.26525449795282,-8.43043403539493,-8.70405188822434,-9.200471323454849,-9.681956630590278,3.77759935438833,7.1572279696862005,10.005137810647698,12.4597312339698,14.9181325506757,17.3969069028379,19.810433539441302,22.227830300593,24.5666463803409,25.517556163618103,26.485400065376396,27.425980745606605,28.3600363812122,29.336443326946803,30.331755254868302,31.3589188388799,32.451203825971106,33.5499728014059,34.639428491338805,35.790291674147,36.9404829047792,37.981079117639496,39.062024830783294,40.0876426020832,41.2222931775478,42.2485628765184,43.2536106415053,44.2969973956995,45.340112672668106,46.4345384517588,47.55705772656879,48.9111056520992,50.0211915434159,51.11289211505589,52.205645660947,53.2862439929396,54.3627238653879,55.4368716025758,56.429905503153,57.4905279298639,58.46001563158529,59.4491822082133,60.383293647823,61.3779175076793,62.3771795701805,63.376360494651095,64.28991099617521,65.30706471121451,66.23904694146209,67.2827642146989,68.2345285167093,69.2568572566143,70.2648675992061,72.82632729980449,75.15162326769871,77.55897201389492 --0.00124538871626964,-0.35252116685040996,-0.582283616090625,-0.569408503566015,-0.752229254019197,-0.8757278681178,-1.00794353381851,-1.0691995966310501,-1.18071146219903,-1.16565808327206,-1.1992951413116,-1.20934452435715,-1.29099256607744,-1.22677995403708,-1.33740382326465,-1.33540554703802,-1.39370131132689,-1.39458335911151,-1.46076210227122,-1.47672393283719,-1.5344866191016102,-1.57610984456749,-1.60306865001755,-1.71368293767587,-1.7961320324943701,-1.88755969497082,-1.8788870295626203,-2.00280165821619,-2.07255812172642,-2.21873944339646,-2.41332690651839,-3.2577990649036903,-3.7348043345949704,-4.07284771857018,-4.30246042591428,-4.74728771550067,-5.121205715886441,-5.520197878570079,-5.85169049469996,-6.310014071515861,-6.6523299121222905,-6.9515960009539,-7.1738110109841005,-7.396428356747379,-7.658958413899571,-7.699528176031491,-8.10188354318831,-8.201970853916059,-8.53280424448109,-8.786874885485691,-8.94569760934307,-9.14063871853393,-9.29295103927123,-9.583526475999689,-10.10074660227,-10.609427743130802,3.7848040840215402,7.17357790362504,10.036144921587802,12.496728362749801,15.0019591369264,17.4495991126015,19.897101182855803,22.3387155364626,24.6834141663372,25.6623213285335,26.6440931089604,27.6034278744416,28.5269656722089,29.551349466441497,30.5045477866651,31.5535426134093,32.672850690977604,33.7733893355504,34.8633448540928,36.0194197414014,37.2084460696866,38.226030970553396,39.3516057554365,40.387213904205296,41.5466247948724,42.5734393053126,43.61667374323321,44.6636662329041,45.7472913953698,46.832630965826304,48.0156576095454,49.4532556329565,50.5542279906079,51.699275498301,52.7423623217921,53.90583095861239,54.925580801626,56.0712518055584,57.0701131233783,58.1515794508811,59.129791014127505,60.1689925471939,61.101025789989,62.12836318592879,63.1006904092948,64.1882711224731,65.0753225484862,66.1251309613958,67.0340056607285,68.0881912991123,69.0872097303961,70.15243116007011,71.14250156785421,73.78452280308909,76.1425133625466,78.58189927471891 --0.00225062832866707,-0.37448911927685,-0.6064134782469289,-0.614437996805568,-0.8140255244395881,-0.9298529438995949,-1.06199260380474,-1.1502102958080802,-1.26054759698868,-1.26344615181627,-1.31947108181626,-1.33837547536483,-1.40388416561577,-1.4002983895089098,-1.46927936048397,-1.4926369920195701,-1.54085978481478,-1.5796122015607301,-1.6195718295868702,-1.6348860973316899,-1.75134861576503,-1.80660039200654,-1.81401409909468,-1.92833743750049,-2.09098315436415,-2.1211562716478203,-2.17694759518071,-2.24215061697803,-2.4087663789227203,-2.50078578553043,-2.8004173575073703,-3.6846111864152,-4.17400855365259,-4.549043488579009,-4.8314952004466,-5.26025270809181,-5.64504933125583,-6.0798329698902,-6.426889943782211,-6.97865352050214,-7.26497521929595,-7.49298358256706,-7.8226594285213205,-8.04527834899827,-8.37026599143149,-8.42328832214495,-8.8422300214696,-9.055982065825981,-9.347908433313869,-9.49202793235249,-9.734011845422609,-9.92448385764991,-10.147288485656,-10.4617117845546,-11.0207894460022,-11.5477068978055,3.76962992496776,7.19617068837813,10.067948214550402,12.5396936997354,15.058461921896,17.550291262631,20.0290170039883,22.4496484489035,24.824305207896103,25.8280327470393,26.7899090397621,27.756032200937902,28.7079790653655,29.7451822543952,30.710977219442803,31.769434197424196,32.8943777304244,34.0287962762298,35.124204069850805,36.2750830370873,37.494559637939204,38.53776523596879,39.6675300996654,40.7103051495032,41.912498996051504,42.9471493330894,44.00869113986361,45.099133972530204,46.156056500965995,47.303774860417995,48.50061893473929,49.9828760599245,51.1330108917275,52.265665136879605,53.341049786278,54.466639717182,55.593167445741905,56.714785062363006,57.762680688288796,58.8394913160154,59.8274664091905,60.863542850079,61.8184944066265,62.8570729866215,63.8791614025038,64.92646361696711,65.8553504135701,66.9092969852824,67.8943017937183,68.9512671733696,69.9634202189059,71.04513139843391,72.01878059972059,74.6785303428954,77.1500026380978,79.61164912066259 -0.00626886255618103,-0.36929775290098205,-0.62761397252999,-0.616934550374465,-0.841737173696524,-0.979624441869212,-1.13389095681725,-1.2312456969691499,-1.35586916271007,-1.3741927474701898,-1.42006098376383,-1.4624781653149599,-1.53061378428576,-1.49965580385171,-1.62496451181549,-1.62119784988676,-1.66519062311703,-1.7459427125587,-1.8016607788866001,-1.8289728510000198,-1.94328971030378,-2.01730181207648,-2.05226301520509,-2.2208565871106,-2.3190054772621402,-2.4052653614462005,-2.42861777854541,-2.5147679844581203,-2.69862446219445,-2.82208724140041,-3.12599151488064,-4.118470158379259,-4.61685562014576,-5.04118278203644,-5.324087370160111,-5.73085756226992,-6.15024954959524,-6.61250542556551,-6.97314633696308,-7.5435149928865,-7.862816302809369,-8.15403858622479,-8.45993096693551,-8.72744744731941,-9.03513599135724,-9.13452610347822,-9.53350475411512,-9.699245145989302,-10.0300519878604,-10.266712338485199,-10.4739849350992,-10.6822061883353,-10.923524998801,-11.286833881290901,-11.859558505854599,-12.468005139599098,3.77915301029581,7.19200259463307,10.0945019763889,12.568219163259402,15.1509358507616,17.6350490759311,20.1034577361308,22.5666893030479,25.003586194228102,25.9761292389055,26.9771442149267,27.9453576553884,28.9054617603154,29.918007365831198,30.940236234506102,32.0086777981723,33.1225116916011,34.2591968405933,35.3812038778604,36.5611252376531,37.7956317838323,38.8661745053428,39.9836195710779,41.0672697880702,42.273371746329104,43.33649519622371,44.3896287815135,45.4910428225098,46.5805238196887,47.7459993629896,48.9781216811978,50.493023291768296,51.655417040057706,52.7876587292138,53.935263471301205,55.022392718791,56.179262345872296,57.29329491250171,58.4073774164363,59.4583214920467,60.5030955004245,61.5536197601071,62.562539493755,63.5792634505107,64.6135318450065,65.7095204638655,66.6142339405247,67.7250834565804,68.7023849095129,69.7922080891022,70.80250452735251,71.9181891953795,72.9082470360737,75.63446133753759,78.1129714412113,80.5935226144408 -0.0366421232540451,-0.36987975325802297,-0.640778540746729,-0.6689077420732521,-0.895928083466274,-1.0768869529182399,-1.2009702997019098,-1.31497203950924,-1.4679744461741,-1.50377278605404,-1.5180531529907098,-1.63086105150481,-1.6671675985819798,-1.65802420319018,-1.76202356565269,-1.77557087780844,-1.83491479551772,-1.92638260107781,-1.98555533022272,-2.05604424406038,-2.19252508541976,-2.2656227069043298,-2.29138987946222,-2.4543627027971295,-2.5858900291113396,-2.67563778419573,-2.73298115756585,-2.8428093386109,-3.0507993290353,-3.1830815898069704,-3.49404928007673,-4.55199789169156,-5.1096024352013,-5.50320232685326,-5.82465566552537,-6.3084157063787805,-6.72621345844159,-7.22100278323992,-7.563378397664059,-8.19187396280289,-8.51476286265272,-8.831175718174949,-9.16261543484832,-9.44184548465654,-9.7495396296966,-9.84304637973135,-10.3253541024183,-10.529928082114699,-10.857113413120501,-11.1132071850995,-11.3011885070535,-11.5314955695015,-11.7454767492503,-12.2179146255761,-12.8036553298892,-13.428644759524099,3.7695289871792297,7.19854461392819,10.10812265975,12.6103679688753,15.2193087209476,17.6948421877881,20.2195961507606,22.686223208474498,25.201647702965804,26.137494232424697,27.179682114189703,28.1231768749225,29.120377196370395,30.0886010922373,31.1689084236393,32.236396854134604,33.4085977291333,34.4720493621873,35.6660186310519,36.857984569963996,38.101689160709206,39.212977635636896,40.2922492058336,41.4125639140306,42.6095618099014,43.7041883673732,44.7880743417397,45.869769442087005,47.0416317093145,48.1921229453208,49.4469898220495,51.0151082092062,52.1938770219613,53.36661064385179,54.4940065852102,55.667759291507394,56.7698333442453,57.9728909969347,59.021548351287095,60.139962996867,61.1855123647944,62.261841425806,63.288897370768204,64.310361245365,65.3929911156953,66.4797084988685,67.4489272684282,68.5332797131672,69.5488924867049,70.63938763794229,71.7058552797251,72.79384926865991,73.85559159002759,76.574763963191,79.0961648846573,81.6768722612564 -0.0357657605175784,-0.40167198039834,-0.6634373055467809,-0.711864031301264,-0.949024017781457,-1.1203111575148899,-1.33622509266949,-1.4284356571558001,-1.5789095554961698,-1.6259109981181599,-1.6490040710874998,-1.7599686844647802,-1.81394509538531,-1.8288935020264798,-1.9179837787630303,-1.9909613459416002,-2.1039769608008503,-2.17036785901613,-2.19386548440759,-2.24808883290662,-2.39159291432809,-2.49205761151697,-2.55213070432955,-2.72562215171096,-2.85794151411523,-2.97048431200956,-3.03300088684089,-3.20217591210369,-3.37471648530259,-3.5449220012577904,-3.9020072494071205,-5.06167147864451,-5.60219196605923,-6.055432650642401,-6.34157147234712,-6.80891336984021,-7.310571856179321,-7.83544407279607,-8.199077546478321,-8.76240402681036,-9.18974528810747,-9.518660962869859,-9.83166005238084,-10.107916972818199,-10.4810118827784,-10.5621217877615,-11.056452180494098,-11.274426335907199,-11.6446243992356,-11.872560775378302,-12.093780329895,-12.3727314427386,-12.5848820790924,-13.073970273887,-13.7398450178231,-14.4577164522436,3.7813743149421097,7.23882222340954,10.124942620598901,12.651953800161701,15.2564203384115,17.7712242275511,20.322936769832,22.8399651880959,25.330891186859002,26.2886362950795,27.3166124833305,28.255083665293302,29.3188129596344,30.3371438332302,31.392932717769103,32.4632033288937,33.5925108749372,34.7393749980125,35.887897866329205,37.084399354369104,38.3517192954242,39.474074975672394,40.6208298141526,41.6705078405788,43.0393443634178,44.045018736870006,45.1756213196219,46.2481056642419,47.444095769726495,48.6580625712784,49.8295411738545,51.47018230804629,52.643201174356,53.86903663708161,55.0033695913394,56.1629640811756,57.3321551794123,58.5066689678688,59.5819291540625,60.7534010307083,61.8158326646106,62.8859105453323,63.9327227221401,65.0320251711839,66.0051566260114,67.2071119100182,68.1610307460433,69.2575881091567,70.27277321563001,71.3851051952518,72.48547104271009,73.609454238994,74.6398296912511,77.3945229116105,80.0079218301277,82.5442972536718 -0.0461607896230909,-0.387507362504916,-0.67989591411535,-0.7450342094681691,-0.991610256157553,-1.1718935942876398,-1.36776088009046,-1.53457992847071,-1.71943731672757,-1.77071027859745,-1.83099339233868,-1.93124253458645,-1.9841989163551201,-2.0141707406625,-2.15165659584085,-2.1594833165858103,-2.25105672487117,-2.37370710829635,-2.38302787423915,-2.5041073043114905,-2.60771967806881,-2.7376602500123197,-2.83058957961133,-2.98446875161112,-3.15647093196311,-3.28295861130074,-3.3612925220779,-3.52568000803078,-3.7467746753667996,-3.9488940661871896,-4.33681504094352,-5.48898800300559,-6.114613360928989,-6.548419647501639,-6.90751213367751,-7.44022421626732,-7.897075827155301,-8.42990094302119,-8.82184914613201,-9.44170559792984,-9.867677039277881,-10.1774726671712,-10.5182885518123,-10.8048043058301,-11.205356058750999,-11.338547250477701,-11.836719549957099,-12.0684521916414,-12.445767003371,-12.7007806134848,-12.9419023899436,-13.220797253134599,-13.4483075121525,-13.958491235693801,-14.655226934749699,-15.4084234278828,3.7772812145345496,7.23393378932518,10.1511483976685,12.7624611031585,15.3695527960058,17.9033288475932,20.5106748398042,22.9993737162417,25.5511515248582,26.5489596678982,27.5726475869163,28.5705138687462,29.570438557371997,30.5428709712869,31.6445926852425,32.7553074147038,33.923168055756605,35.070067797936,36.24752408489471,37.4707844451766,38.751468696058105,39.8888057811713,41.066228194320104,42.179468851988396,43.4295007580893,44.543243236536796,45.630431951929296,46.7282741674089,47.95439363486339,49.13272491383471,50.3970112443268,52.061604090965396,53.2937276215765,54.4512328795964,55.6259479366286,56.8084636412599,58.00694485151179,59.17882775384621,60.2947630936131,61.491760307579,62.5128281143575,63.62736303474399,64.6472069378306,65.7689311983717,66.8760081537775,68.02203805478189,68.9886803678261,70.1280372409629,71.1533768705475,72.2787446318025,73.3567713875221,74.5133020725377,75.6426256802268,78.39113387868,81.0124876864961,83.67436319677651 --0.0215464859066738,-0.39752346876206,-0.687884347429546,-0.793682671747027,-1.07677864382985,-1.3423131431478799,-1.54080274308009,-1.6468846523499598,-1.8827308237874198,-1.97946776623756,-2.00707915027794,-2.1148463438131597,-2.19655989619829,-2.22753315431025,-2.30336253731619,-2.39495305276161,-2.50186179452248,-2.5341731026012404,-2.6840226453242297,-2.6743501394497002,-2.91753924301665,-3.1102564723603905,-3.1306819964662402,-3.42303439117163,-3.5287975138468903,-3.6472125752978903,-3.78939353014784,-3.88715085791555,-4.20500676490596,-4.3675891268464,-4.82304046632051,-6.06870027018987,-6.58806722451674,-7.1637710014195095,-7.53409561587916,-8.03667891782038,-8.47093620184997,-9.01534313207123,-9.47942905507784,-10.1777840776771,-10.5415290197068,-10.9345851563491,-11.2751241494819,-11.6613718083615,-11.9509104644274,-12.1675125550824,-12.6124306829428,-12.9299760889838,-13.288582528714,-13.5733817671939,-13.860680189319401,-14.135529602413198,-14.3957102336166,-14.8791960546138,-15.6743483548565,-16.4765682460589,3.78695966516743,7.20714659633826,10.1466439232463,12.787482999619801,15.421204318973901,17.9746493767808,20.5929060461722,23.159845981268802,25.717083950026,26.7009523205136,27.7521805069357,28.7423642562645,29.7671842563625,30.765926423818602,31.8575761402261,32.9813086843942,34.184166536181806,35.381946621317205,36.5235549138912,37.737097225788204,39.0483256842771,40.1536207746396,41.3669080107871,42.462559848195205,43.7663939318091,44.913206661720295,46.0287540058119,47.1930945838608,48.3505601337839,49.6062993416838,50.8814976989547,52.4824286639036,53.763678000321704,54.974538836840296,56.139428858238496,57.3790559506293,58.467007386180896,59.755442333942604,60.8439796467706,62.05712141979961,63.157472208479604,64.2358042408617,65.357727753622,66.4108040673896,67.5928150792696,68.67444125517359,69.7566442480378,70.8730149765563,71.93888222524059,73.05594643014871,74.1563217851158,75.360604768364,76.42868981348741,79.2754355585654,81.9543078668825,84.59876526435491 --0.00621279691535295,-0.41558287731928006,-0.704176852917439,-0.8161885819446999,-1.1642945511499299,-1.37204293971566,-1.62145049525797,-1.80291394573551,-2.02692261889367,-2.06505862755062,-2.1556250077043,-2.28099784422466,-2.36361562614794,-2.3878154992992298,-2.53396502747256,-2.59302890787002,-2.69405767497378,-2.80080287972652,-2.8886336672867,-2.9620032263546903,-3.1326556650205295,-3.32309633808442,-3.43353602753366,-3.62790990566174,-3.87540612033979,-3.9582670879414397,-4.1793980670058595,-4.2554433185569795,-4.57451077140487,-4.8097454566334905,-5.22848240157416,-6.49405753661303,-7.14010040129272,-7.6675038214088,-8.03088346441409,-8.606856221105241,-9.028641239507891,-9.68102570863101,-10.096326025874198,-10.803587908663198,-11.2395541850317,-11.579538366510901,-12.010604817293999,-12.349133555160599,-12.7265550180619,-12.9345894357077,-13.408220234524501,-13.651076326814401,-14.121582995597,-14.418228083912101,-14.7011796616033,-14.999889200413401,-15.2500057382795,-15.880502220806598,-16.5974306725831,-17.4703621267228,3.79689248753003,7.25885423005239,10.2264574735619,12.8796357754056,15.5568439609676,18.153728355835,20.7248377313915,23.342330638782602,25.893527179844103,26.9279985025804,27.9516220407409,28.9914971403897,30.0144844956385,31.0426064388089,32.1263698902134,33.2966986335052,34.5024223172039,35.6465669663978,36.8271852542077,38.1096679773159,39.3844496621425,40.5336971104041,41.7633851342632,42.9017179852984,44.1732618180068,45.34217723585321,46.4405581069652,47.5993702360395,48.819480992814995,50.1272632352489,51.4231499608323,53.0421458645644,54.3186543447187,55.5670061125593,56.735374579437895,57.970213624980204,59.1752726565014,60.365749840852004,61.5419571293719,62.6880303295751,63.8276229424572,64.97271390759279,66.1114434075562,67.21275979254871,68.2878575034262,69.4757537284201,70.5056556881392,71.70663604762991,72.7746977738047,73.942182623976,75.0733361842956,76.2192047035379,77.3497353385795,80.1676713866827,82.8946299547642,85.6909984046763 -0.00867234242845479,-0.422430450035521,-0.7132345369199291,-0.8619472382542309,-1.21147854589722,-1.42838302208132,-1.68640339553296,-1.92930411775018,-2.20667769953417,-2.26735698952583,-2.36982030514711,-2.4621809104014902,-2.56101460302354,-2.60502301229407,-2.7495435109007995,-2.81653412210495,-2.9675198682644903,-3.0664199741208704,-3.1786628951067697,-3.2337536127457795,-3.4880878859972,-3.62956557280644,-3.77212121833256,-3.98817864967402,-4.24173607003434,-4.39055546884712,-4.4561647710635,-4.6781723855203206,-4.9480405521644295,-5.22983782737264,-5.67420841635418,-6.991760461009001,-7.651790700060269,-8.25591178484939,-8.58668574036177,-9.17605101706752,-9.70069857752442,-10.287537319432,-10.7402134634848,-11.4681633903985,-11.876723162406002,-12.279131728821499,-12.692065263429802,-13.1161096115107,-13.468465621346901,-13.6982347887763,-14.173182692465598,-14.5272990312187,-14.916153342223899,-15.239057537748,-15.535017843923098,-15.8389588275259,-16.189244915304197,-16.7625321025763,-17.6001435885962,-18.4789295231794,3.77323768822994,7.25658762850941,10.2580579947722,12.898745247824099,15.5716509810113,18.224692872014398,20.842658012086,23.4560663031737,26.0631874014347,27.0625843918509,28.1317720666252,29.1592483048069,30.198230781722103,31.2408559952671,32.3423674399374,33.471294800071995,34.7251066713867,35.9072772473525,37.099863378347294,38.3058028422472,39.646318751245204,40.8315393913467,42.004304848708,43.187628255616595,44.5255030817772,45.66421175544371,46.7722710515985,47.975869131374104,49.199321822918606,50.442348864557104,51.7844991455624,53.477945307796794,54.6885735704,55.99382418208611,57.1501847074973,58.417435806890204,59.6023446290355,60.841868209851704,62.0554623966354,63.256134839907396,64.3765568723583,65.5432940635295,66.6099481245939,67.7863064535837,68.8634296196406,70.13173030578061,71.1413629589937,72.3799808077223,73.42496095543879,74.5703461651525,75.7482818175287,76.87312896917271,78.0609965803625,80.96159867992591,83.6829705448465,86.4839017590353 -0.0228123414285254,-0.40683909556202097,-0.743846312401274,-0.933387361100363,-1.26877828830523,-1.5253373851436898,-1.7842011666640498,-2.03765714994928,-2.3275982714976804,-2.33409153302707,-2.4567335115282996,-2.6138070538122595,-2.72356027589695,-2.7269002264133704,-2.9686166764762794,-3.02184088933682,-3.1638100956932003,-3.2889316247092997,-3.3965667919530897,-3.4514914729687702,-3.68618174382101,-3.85369872317916,-4.0521517514620795,-4.24534480079713,-4.51016706170025,-4.69942914961418,-4.80438506824382,-5.03809558814043,-5.31125474156058,-5.54971717382205,-6.1239187586606,-7.47433255571944,-8.09828631507362,-8.71111829314827,-9.116854383496,-9.634679935297632,-10.1921687006734,-10.837255192716599,-11.2884884588786,-12.0857608413482,-12.4879523206984,-12.8788918209639,-13.3260306263575,-13.684407300508001,-14.131470884084301,-14.274483441768501,-14.8983282856463,-15.1549244942646,-15.6311491182525,-15.9696285104472,-16.229292729345698,-16.6200910162501,-16.9550205430482,-17.5770015766855,-18.420509867895,-19.338928954127397,3.77599464506004,7.27256664120955,10.2697024058034,12.9872633834231,15.6562218255398,18.343339143092898,21.0201800724645,23.6644224089931,26.255839165321003,27.328773942308196,28.380088999238502,29.449708911020398,30.475779432561804,31.5833905149992,32.6643548016046,33.8287044663734,35.1040561886765,36.2856001732994,37.471542338683,38.7563198307019,40.0847927134266,41.2976219440136,42.5032851308539,43.6822539031325,45.0156756266169,46.1706168131638,47.366836935136206,48.519061274020004,49.7473372407889,51.0503314974623,52.371619809087804,54.1037580875844,55.4006740486135,56.616123482354,57.846928292171405,59.113227471197796,60.3110076839578,61.625661492561996,62.8040337774123,64.0659914384529,65.217606722787,66.38596715697919,67.46797343231711,68.6932735805499,69.80063900339479,71.0264105375272,72.105016709906,73.31295969286691,74.4843722787534,75.6186976690213,76.70980098540741,77.97537364605721,79.15208480317659,82.1147016783789,84.8633058492484,87.7064889974362 -0.032715195254684,-0.43478653938578493,-0.770067302899652,-0.95473414103164,-1.3570985401762101,-1.59623853022407,-1.90250188943704,-2.1571008771185403,-2.43673979789211,-2.5568185536068198,-2.6114920018882004,-2.7847484019402904,-2.88858519555507,-2.9588612242064904,-3.1643150453256204,-3.22659918802479,-3.3967622905001598,-3.51119052862379,-3.61277536341156,-3.74850396852502,-3.9612058471104103,-4.17861057860811,-4.30374211208449,-4.56640200769099,-4.8474504847215405,-5.0186200924423305,-5.221595132112769,-5.36945365589694,-5.68882523737578,-6.03846806253357,-6.492868102692911,-7.8948310786180595,-8.59022983851611,-9.200284253037902,-9.57728389877849,-10.1972245875722,-10.7107024721344,-11.3916260636031,-11.8385699772975,-12.6356824797439,-13.0963045588326,-13.5191224567186,-13.959499104304,-14.334516569935902,-14.818007899828698,-15.0354714370328,-15.5734783817576,-15.895328004124998,-16.3475446893341,-16.6875350727805,-17.0732846720482,-17.3831490134379,-17.6877550583462,-18.3380148748196,-19.3194683278688,-20.2546541543831,3.78478733114143,7.31063765054014,10.2780775994303,13.070615894723899,15.760900132578302,18.480681997184,21.195562860694803,23.8082593566849,26.508149417688998,27.581063189299602,28.647665828806897,29.7030538480098,30.750306164071603,31.839983738742,32.9876844057488,34.1181395734726,35.364272046440796,36.5898923391501,37.7925185017594,39.1256329044368,40.426834534379296,41.6652959430944,42.900986171746396,44.050110656099996,45.445783462859495,46.6163713522809,47.7489852573551,49.0147947979354,50.225665848267404,51.5081438448714,52.923746444942395,54.60901148109551,55.8979816702925,57.184828520621394,58.43024601921449,59.713551056197005,60.95848444150621,62.255262660747995,63.41362356792379,64.6527094095842,65.9149982257472,67.1195569006879,68.19780528659601,69.4072647107454,70.5623894249666,71.8434565001272,72.9150322197087,74.1288073851151,75.2471190441702,76.48089338526671,77.68312265568909,78.86889954099149,80.0433251684807,83.03783259872041,85.9171784234189,88.7566983855307 --0.00524474789348174,-0.468997561346194,-0.808122838535116,-1.03121921015086,-1.4561313285527098,-1.7279489849223602,-2.07743062010186,-2.3755996064068396,-2.70669187182748,-2.73900751184138,-2.88863670115852,-3.04299565003299,-3.1490023247831203,-3.2458216492245002,-3.3772394913801,-3.5462476871781496,-3.67155429899244,-3.8196126038306497,-3.97019649980873,-4.1187801063415295,-4.35275196612575,-4.52395404436171,-4.697366727635679,-4.95954542161307,-5.27437758716663,-5.40837281325082,-5.67550421882221,-5.79447014581654,-6.18894561161431,-6.4628642430673,-7.03438864805526,-8.438133069831869,-9.17131558735507,-9.760857823380961,-10.2093896760821,-10.7991977888972,-11.3804927188247,-12.0154979449332,-12.493939080375199,-13.261466514417698,-13.776924390439598,-14.170483862114901,-14.660006382293698,-15.0785400018996,-15.558483577502502,-15.780660335798599,-16.3685960556379,-16.6882135080624,-17.18125201628,-17.5344566968714,-17.8939333801724,-18.2070279123474,-18.5763374763035,-19.3129372315207,-20.220092404531698,-21.204432128006,3.79822980517632,7.28448818634782,10.3334769626631,13.114491782878401,15.8369309661486,18.592575289712602,21.348698890657698,24.038087259025396,26.7320213626272,27.7927744484835,28.8878571866677,29.976325972305897,31.0458871931668,32.1308237156762,33.2891954246099,34.462020273167504,35.7083615553063,36.932498451768105,38.1801567137364,39.46794279976179,40.8004957892584,42.056786131680205,43.2722494460608,44.486990521467106,45.8512129184003,47.0284546230944,48.2094350499166,49.4487117538326,50.7233334531072,52.0125864233934,53.3964548332158,55.0903250714769,56.438984355538,57.7689887350884,59.004030924721896,60.2894479020145,61.5511921460019,62.8603591761732,64.1135560143044,65.4021946974088,66.5939462541879,67.8248267157798,68.96293319761119,70.1681169186405,71.3596822208837,72.60971478251871,73.70549910297959,75.01051591534359,76.1167848425478,77.3807123542074,78.57606685201999,79.8289354335743,80.9955290582928,84.0590086879008,86.9296331209225,89.82482172642479 --0.0157698744652192,-0.4770580716347171,-0.831942163972541,-1.10822853226931,-1.53773382663358,-1.85795649105415,-2.21390584309274,-2.53890711724214,-2.90841643949907,-3.0098413931914,-3.1453660193348996,-3.3248712619603302,-3.46023351157735,-3.5282197937302597,-3.6684425731654797,-3.79576557022088,-4.003349838109529,-4.12891809319645,-4.28783143474427,-4.44075357072054,-4.66610553197017,-4.9170252298163,-5.08979681489715,-5.433790404098869,-5.666776104215059,-5.8014477678869705,-6.02001230915696,-6.2617745967524305,-6.6302498669321706,-6.96127150197724,-7.5786738665406395,-8.93190512198133,-9.683633459721289,-10.288948544887301,-10.737586116784302,-11.4142679141515,-11.954545929458801,-12.6288071419123,-13.176736123204,-13.9499903422778,-14.438377619830199,-14.884848078247302,-15.3965245951524,-15.7873141557548,-16.268205740486902,-16.5523447541552,-17.131452958093902,-17.464428608426303,-17.939787670418102,-18.3628856396609,-18.7214880312663,-19.1103280801857,-19.5111328177226,-20.192454546182102,-21.213961995297197,-22.190193418171397,3.84238540740529,7.33592868281408,10.3714430657092,13.2047282246068,15.972954542170301,18.678994675692802,21.5357473767453,24.2477799653015,26.9381684176473,28.053722726497696,29.20128225834,30.229873430566897,31.3717035926197,32.4457294711626,33.6126343845779,34.7392077491619,36.034907097435,37.312590124355104,38.5145015382438,39.8608032136778,41.1837857607719,42.43257046281229,43.6997242141977,44.9198375790034,46.221380806402905,47.49278026159221,48.6780486828659,49.929786235581396,51.208160169612896,52.5135331680604,53.8663888133748,55.648730870204496,57.006078390076105,58.2916621764202,59.5972064288081,60.8739241741821,62.176384853433504,63.5247448273071,64.7268387865287,66.050720747725,67.2597251607952,68.4950959117222,69.6934764378488,70.89518057665391,72.1677164842138,73.4397981477079,74.4626580413908,75.7865388308769,76.9766605527134,78.2394910552561,79.4338650210095,80.65654174560929,81.8816250603376,84.9638536749743,87.90773053943241,90.8343083482427 --0.00896207498912845,-0.47764987694428496,-0.865888282434547,-1.17485948426695,-1.5962023166980202,-1.90296024859943,-2.3136613174712,-2.60098319406342,-2.9993966995827206,-3.0551312961700696,-3.24749938405487,-3.3975638591353,-3.5649171074354,-3.5826273902776005,-3.83310149575617,-3.95779714184449,-4.09110694898285,-4.25570274534987,-4.47878296961429,-4.55506181412841,-4.85921230409566,-5.07640433473031,-5.27784697862527,-5.52858272925352,-5.87738337901792,-6.04920268568045,-6.30569196270481,-6.4654939852066695,-6.87392463276615,-7.168625445582711,-7.77044093634645,-9.18940181794637,-9.91916072980435,-10.6102511759002,-11.013158713954198,-11.652045493839701,-12.317547820900199,-12.9521478477448,-13.450824794433501,-14.339996900606,-14.8035401479914,-15.252150302664198,-15.7309087321627,-16.1679931777001,-16.680535580802,-16.9283928399553,-17.5307401897646,-17.890830892250303,-18.3663967045875,-18.7841299024624,-19.1829295323213,-19.4959261293567,-19.9314834272299,-20.648650048879002,-21.644920641884305,-22.710597121600298,3.80806333055374,7.32090217529177,10.3789010956873,13.2047282246068,16.0139078771052,18.73492013471,21.591824489863402,24.3227090882316,27.049893378970605,28.154931958876702,29.292150934319,30.3571623014839,31.486841136217,32.5758612246413,33.7274550169111,34.8948148455547,36.186768544200504,37.4677309891765,38.656840764695204,40.0243068463527,41.3532862032677,42.581027623427,43.854678541717206,45.09761011277121,46.395873134289296,47.663257728960296,48.8683304853578,50.10925559087111,51.414657038975804,52.7147137424145,54.093864714033,55.8529091128395,57.2474339528579,58.55213600232929,59.832831878156796,61.142339389333294,62.428888313297996,63.7778014744589,65.0144285328759,66.3296559801358,67.5606670335917,68.8259661018594,69.9856583686612,71.23576464086409,72.47633395528959,73.7602188415801,74.8477029384115,76.11961565507879,77.3536765109901,78.6150444548662,79.829750282966,81.0706928561241,82.2454358519637,85.39376568240621,88.3449256914582,91.3048187750177 -0.00656120889334629,-0.477756071209637,-0.891552075943273,-1.20059255898009,-1.6516224927924,-1.9790717864273102,-2.36362856629967,-2.6958371156663503,-3.12370574161408,-3.25380061475478,-3.36288166547616,-3.5772378294716205,-3.72065252233131,-3.76857736937196,-3.98782211121275,-4.1348079695276,-4.32075860536933,-4.48441516049073,-4.66998308943197,-4.8246278116026104,-5.0907660702616795,-5.36072927703916,-5.508924189907559,-5.83032040713478,-6.17366935430009,-6.369015035280009,-6.549022261306679,-6.801290344107509,-7.18230255288777,-7.561065723489589,-8.14466633258724,-9.59887387440501,-10.3828227401369,-11.034241954499901,-11.4892938027793,-12.1477440104742,-12.7152408931968,-13.432412741375401,-14.016453150876698,-14.7684667708803,-15.3390535007994,-15.757336060812,-16.3034672510217,-16.7590385313445,-17.2667372953475,-17.5226258257287,-18.1892779170765,-18.5004053700661,-19.061136038602,-19.4602310970019,-19.8268998223982,-20.230073296996398,-20.6260676643684,-21.440756266776198,-22.433830952504202,-23.5235561799045,3.77747270530734,7.312632820494679,10.3871502329041,13.1915806656465,16.0141504479384,18.7771158227388,21.5859256791974,24.315911975668502,27.1016830461446,28.164041624963197,29.274224774260603,30.408211254211803,31.4938166569559,32.5952923559652,33.722548993962896,34.943233975475394,36.2120671465664,37.4427562710634,38.6820788245357,40.013598359667796,41.3775936786661,42.638818823241,43.8859035003375,45.119852322482394,46.431682923441706,47.68388994762589,48.906208710524304,50.144796492422294,51.4305859838549,52.7662710805052,54.1506913268404,55.8779732242037,57.271697458868104,58.60573451966999,59.860668890788794,61.1951546421957,62.4712969771366,63.8061819229756,65.0721679587554,66.4180750743573,67.62572662053971,68.8775788937238,70.0613088997746,71.32755620120979,72.5178759593,73.8080566614485,74.94102009140671,76.2277994339888,77.4331934041513,78.6917344412179,79.8943985927514,81.1617121405458,82.34070410995051,85.4988227994737,88.4252580820518,91.46316747121521 -0.00772753187767692,-0.49975445087891796,-0.9073605718565021,-1.24892160536261,-1.7134966774523703,-2.07965002070533,-2.50671079755923,-2.89241412193296,-3.35588766182285,-3.45794948359703,-3.61994238652418,-3.79298873584675,-3.9598609425170896,-4.04159464094204,-4.26538725813484,-4.3899812127529,-4.61163386393098,-4.77615930337045,-4.96755292798116,-5.16095203327404,-5.4213305149860895,-5.678809428760201,-5.87764556804996,-6.15168188868178,-6.508467368503309,-6.71649143288653,-6.983527584053861,-7.24406916005203,-7.6706850918792595,-7.983390326929951,-8.58555200394287,-10.093707637919,-10.8798469362941,-11.5670860891378,-12.0088183351941,-12.6761018773231,-13.3456853479953,-14.0457028496012,-14.6215981265661,-15.4503600814979,-15.973776776079099,-16.4678451741378,-17.0376417186703,-17.4942832241879,-17.9941811275822,-18.305948065431398,-18.969291890382603,-19.3372452217658,-19.8763528302708,-20.276665014179898,-20.6856844049103,-21.1488229170869,-21.5304129763493,-22.310915566686,-23.4064742036341,-24.522972778826603,3.76431652152155,7.310122594977799,10.3871502329041,13.249430829314198,16.0141504479384,18.829168814400802,21.5859256791974,24.3295062007946,27.1016830461446,28.164041624963197,29.274224774260603,30.408211254211803,31.4938166569559,32.602945463492496,33.722548993962896,34.961784802480196,36.259408374257205,37.49270570728971,38.7455966607998,40.013598359667796,41.3775936786661,42.638818823241,43.8859035003375,45.1314182374961,46.4826784315162,47.68388994762589,48.906208710524304,50.16233854799071,51.4305859838549,52.769275920763505,54.1506913268404,55.8779732242037,57.282109213182295,58.60573451966999,59.860668890788794,61.1951546421957,62.4938732049228,63.8123445229444,65.0721679587554,66.4206928405083,67.62572662053971,68.8775788937238,70.0923358305004,71.33486607026309,72.572174094762,73.7853600496839,74.9869677913151,76.24975818494791,77.44100385946109,78.6954112791333,79.8952789364531,81.1844057927828,82.3627220887017,85.5217471633213,88.48260978035059,91.46316747121521 -0.0139440916744575,-0.5121015331692921,-0.9203233563930542,-1.30057509599024,-1.79405335220853,-2.23074464324082,-2.6589002784432,-3.0521787748114706,-3.5201382815557403,-3.64658757470079,-3.8336886206774996,-4.03110063648305,-4.1988104448170205,-4.36014680000587,-4.5160946364474,-4.69982181583607,-4.89936962135325,-5.087227559579429,-5.288426454355349,-5.486105589697799,-5.727987107238049,-6.04697759977688,-6.19804717154985,-6.614118924739469,-6.884910141376059,-7.14938247950142,-7.392102879088809,-7.68425788922919,-8.07229997359851,-8.48915945455941,-9.086396472584868,-10.619969329083,-11.428676078611698,-12.0813391145455,-12.580564169767301,-13.288832093320101,-13.9358139876016,-14.6693511683316,-15.2599104504716,-16.1067582792804,-16.6830564117062,-17.202332559279,-17.7308973811909,-18.2232331995983,-18.767494054548198,-19.062147977379,-19.7556024492765,-20.1106475006872,-20.7037718379986,-21.124752362507,-21.529235127371802,-22.014696436654,-22.4046242383393,-23.2772028026444,-24.399769313165603,-25.585107934759,3.77627291448654,7.30793195249526,10.3871502329041,13.2406263148231,16.0397369389086,18.800625956844897,21.5809596423948,24.3390567607508,27.0829894321283,28.1409439814078,29.2942989624085,30.3877486896777,31.4904498036067,32.5877450948517,33.7353016113871,34.937198420674896,36.2264464862216,37.4235620673279,38.6979437291196,40.019489127946294,41.388118199475,42.6512379495832,43.895716400550604,45.137467143478496,46.4960158437891,47.7027600144382,48.911660260548,50.2016301873353,51.4684442656083,52.766135581842896,54.2112895071595,55.9138825588647,57.3015280026019,58.593469056898606,59.8901827922175,61.2213990503193,62.5157404377119,63.840165894026896,65.0776193577417,66.44667722465749,67.6570196410681,68.89226160397689,70.1186450710304,71.32755620120979,72.5358793256966,73.8136323914018,74.975735336396,76.25967403084199,77.44100385946109,78.70171087918379,79.92275552769341,81.2356267253574,82.4243729362159,85.54937110232851,88.48260978035059,91.4923543077898 -0.00922535268175888,-0.544053926451719,-1.00305185256365,-1.33900774614099,-1.8744714456058702,-2.34356254840649,-2.75432895276169,-3.21238214898715,-3.71170071200773,-3.8592699068184797,-4.0635589284206,-4.26805567308141,-4.4875601905074,-4.580873163867019,-4.81610098750227,-5.00120731403116,-5.23600521990337,-5.39041335562991,-5.57639652994182,-5.769103956505471,-6.100045293813371,-6.4179569398008,-6.59879249313756,-6.94591382748672,-7.315092385545321,-7.57328534494463,-7.79012487100721,-8.06729215708563,-8.52013575406801,-8.943975057791619,-9.55075167025742,-11.092439391335098,-11.9052753430671,-12.617169901508,-13.151924505278302,-13.825600652126601,-14.4894008176276,-15.229295143148699,-15.847494889532001,-16.7901108073836,-17.2847586176749,-17.8189844705825,-18.4053175410267,-18.9152926984853,-19.4448161350353,-19.786687463652697,-20.500046315494,-20.9133677994068,-21.450323361177897,-21.9259243978612,-22.335608381118497,-22.837093748376603,-23.2276335554013,-24.1587538366023,-25.2892302999925,-26.525978744797,3.7814171105614,7.30793195249526,10.394200753533301,13.2406263148231,16.0578379581236,18.800625956844897,21.5809596423948,24.3390567607508,27.0829894321283,28.194642649657897,29.2942989624085,30.3877486896777,31.4904498036067,32.5953518768547,33.741583832203005,34.9885794935071,36.2264464862216,37.439356842020295,38.6979437291196,40.0437714597612,41.4305494467511,42.6532395177691,43.9015339397826,45.1585241582454,46.4960158437891,47.71592950764789,48.945727092686795,50.2052990328813,51.478884819665005,52.8093820872773,54.2149400991659,55.94162107382729,57.3015280026019,58.6479376823942,59.9010402732743,61.22411331396629,62.535088103804505,63.8646810691185,65.0980911750941,66.4633474141718,67.6912962286111,68.9158708401342,70.1186450710304,71.3688729954694,72.5466215392185,73.8136323914018,75.04538496702409,76.2771150597968,77.4798897618062,78.7725789006297,79.96173205543809,81.2356267253574,82.4476536697914,85.5579763576461,88.54126431623502,91.5502003805407 -0.00922535268175888,-0.526194550749319,-1.02028201655861,-1.43321829390481,-1.9690381512786799,-2.43248238958068,-2.9734034752580203,-3.4164621543519997,-3.9017238484452905,-4.084812476157779,-4.24227417728775,-4.48747897154403,-4.68144504668106,-4.832390744546281,-5.07153236054691,-5.24736248109922,-5.48960148325889,-5.6548579250652,-5.883226623338901,-6.10180737122205,-6.392335554378071,-6.74425223830308,-6.946361815494599,-7.306808415911241,-7.681379071129889,-7.949923420629231,-8.179839914708941,-8.47295749397727,-8.94798677140948,-9.38355025773692,-10.0295585080817,-11.5671391374211,-12.435279354444699,-13.1583035356305,-13.6513092860958,-14.439938332089099,-15.0643263518315,-15.8463261127163,-16.4924104447784,-17.3827421277389,-17.984080298564102,-18.5444570878574,-19.1047571613142,-19.6220930012924,-20.24210944625,-20.564623550565102,-21.2529776654656,-21.6792619762977,-22.312602475668804,-22.7747496449522,-23.202046190894798,-23.632002845359,-24.122401478053003,-25.0854138381094,-26.263630038555497,-27.523888011600103,3.7814171105614,7.30793195249526,10.394200753533301,13.227156929044002,16.0397369389086,18.800625956844897,21.5599669666835,24.3390567607508,27.0829894321283,28.193454427956098,29.2942989624085,30.3877486896777,31.484210139181,32.5953518768547,33.741583832203005,34.937198420674896,36.2264464862216,37.439356842020295,38.6979437291196,40.0769234333059,41.4305494467511,42.6532395177691,43.9015339397826,45.1585241582454,46.4960158437891,47.7277527890201,48.945727092686795,50.2052990328813,51.478884819665005,52.7808815575393,54.222452090790604,55.94162107382729,57.3015280026019,58.6479376823942,59.9010402732743,61.22411331396629,62.5323729822672,63.872167395781005,65.0980911750941,66.4633474141718,67.7024655776691,68.9158708401342,70.1186450710304,71.3688729954694,72.5466215392185,73.87182021044941,75.0338128309549,76.2771150597968,77.4798897618062,78.76703718329401,79.96173205543809,81.2356267253574,82.4476536697914,85.5624509907058,88.54126431623502,91.5502003805407 --0.00707329625287125,-0.526194550749319,-1.02848516181972,-1.4516933559962901,-2.05897383647351,-2.57372853368891,-3.06976946862454,-3.60085027322703,-4.13753551381438,-4.26519619769769,-4.48566189389151,-4.68811029787698,-4.93177655227413,-5.07692707723912,-5.35174195749127,-5.49382352069664,-5.76885391956604,-5.99609051790908,-6.174528570920111,-6.380283964325679,-6.7402826520911105,-7.05708870232812,-7.29818275317812,-7.63189510550208,-8.043739424253,-8.35125164754141,-8.558062601818369,-8.91092376721279,-9.35572733551813,-9.79745468663049,-10.488561257662901,-12.0709880673781,-12.9363532617421,-13.6731694484486,-14.2584360829835,-14.9832287686131,-15.6410709324087,-16.4498810835137,-17.114221354356598,-18.0539902076993,-18.6475371799025,-19.205802051155104,-19.8146185169337,-20.357749167734397,-20.940765847845,-21.316975354142198,-22.023368051381897,-22.492951340316,-23.1081359996905,-23.600830698196397,-24.081869130815395,-24.5223999249548,-25.0045813279497,-26.0196041564512,-27.204851972825303,-28.545493246208895,3.7834567262832004,7.31636030655274,10.399402437406,13.227156929044002,16.0315900771121,18.8272850388625,21.5599669666835,24.361901270367497,27.1464496507752,28.194642649657897,29.327202219162302,30.4247570359721,31.484210139181,32.620683131717,33.749639778726895,34.9885794935071,36.285397495647395,37.5016521473132,38.7347560363445,40.077479337880604,41.43272716617339,42.6892840391431,43.94925020004129,45.1796099123389,46.54709783120521,47.7535978008296,49.002880911199,50.2416823703932,51.531037295593,52.8093820872773,54.2398576134097,55.9762325696852,57.3310752804318,58.6520291150452,59.9400212938259,61.2426571856731,62.535088103804505,63.898636083117104,65.1599582778035,66.4754914379016,67.70259303856909,68.9632287526494,70.1305682353332,71.4028986993003,72.6143107379205,73.9024147140126,75.04538496702409,76.2995809353771,77.5392839696292,78.7725789006297,79.97679252857709,81.2866798213184,82.4613189285057,85.6360894527515,88.5703864881766,91.5808247610079 --0.0136302591673795,-0.545592757583633,-1.07623807181829,-1.5441702376926598,-2.15246372145142,-2.6916974981450097,-3.23546946275587,-3.75054979954988,-4.30896220211865,-4.4874096533870595,-4.70591656402849,-4.96795424386662,-5.1756399866256295,-5.34787646871294,-5.6271670431866205,-5.82213273420945,-6.072803927405599,-6.3117145446824,-6.53148074262861,-6.753507466371139,-7.071871297829371,-7.436947642759769,-7.664248764967559,-8.02843577244308,-8.43218815136848,-8.72846683862362,-9.05320984520059,-9.33848087218415,-9.80940777598942,-10.2834916027988,-10.997750707692099,-12.531894364780399,-13.4276726459923,-14.1996167861254,-14.7178917306848,-15.513653824219698,-16.2003648048478,-17.030706043874304,-17.6966837358244,-18.6529014691692,-19.2730553963311,-19.855751147008103,-20.4847393223792,-21.0317956673735,-21.6292328992687,-22.026293930336198,-22.7497734922338,-23.224920717481197,-23.885909319346,-24.362379737888897,-24.844216449159003,-25.370817532815,-25.813428780343102,-26.8706152105558,-28.098406568014003,-29.5190879778444,3.77820926147547,7.31636030655274,10.4083138825937,13.237433995602801,16.0315900771121,18.827457164888198,21.5749598380118,24.3783111388877,27.1464496507752,28.1975214070387,29.3345567110583,30.429923795237798,31.5306896732397,32.6758182376432,33.7852528767843,34.988826918927195,36.29417457989779,37.5397323880109,38.767771137606296,40.0830292332325,41.4433298414691,42.696484318516504,43.9748335390185,45.210140164641295,46.54814662391129,47.78187485863379,49.012143117899,50.276854583350705,51.5366724761086,52.875347159043294,54.3070427480184,56.021187435485494,57.36492901912379,58.66232364327949,59.940516177685396,61.3088309731808,62.5593691521401,63.925586703367,65.1684394315261,66.491307504476,67.70259303856909,68.9865815087166,70.16977823074761,71.44372278190579,72.64767802845141,73.9226507240621,75.095407686939,76.3555675960817,77.5707088320442,78.7799599262452,80.0130843887405,81.2898883741813,82.5508831533034,85.6406265694813,88.608693493561,91.63946034520279 --0.015321440815575002,-0.5557855854701579,-1.11263005282244,-1.6347453074903202,-2.29227039079327,-2.82002954868299,-3.43222107385203,-3.97618564792629,-4.563022012939441,-4.743587703380009,-4.96058078253213,-5.22631370979441,-5.46330992084659,-5.63973315824019,-5.93223490099644,-6.13841449571983,-6.38665587664145,-6.6280799501264696,-6.87155752986547,-7.11305479303524,-7.4391623787672,-7.794582460927519,-8.06291688585781,-8.49984403489774,-8.852753791850999,-9.149234958625179,-9.444349555244461,-9.821181662785339,-10.3353302334051,-10.714504951166,-11.459235700680098,-13.0647095674362,-13.9781289469685,-14.743401203127599,-15.3328392305711,-16.093450740256902,-16.7756267559455,-17.645057473944398,-18.3237173883278,-19.2969923750818,-19.962134791396398,-20.5643800065597,-21.2043070787616,-21.772287207818398,-22.372305509071804,-22.769448129994302,-23.554064017694202,-24.028966274896398,-24.6984819504633,-25.2462156885304,-25.758269547162598,-26.249808049084898,-26.718441772892604,-27.7975177524512,-29.0835818031072,-30.493169393385,3.77820926147547,7.3126857401299405,10.399402437406,13.2483013247585,16.0623886681716,18.8272850388625,21.5749598380118,24.3783111388877,27.142246146297197,28.247618112326304,29.3701653613695,30.445460703324102,31.5392051127495,32.6474737213841,33.8117999615918,35.0510346972373,36.345277863421394,37.5397323880109,38.8104544393536,40.1244929967758,41.4433298414691,42.7291437915764,44.041458340194595,45.2436755340507,46.6027838411516,47.78187485863379,49.051378703362296,50.2512611438949,51.5591097295637,52.8869052964549,54.3070427480184,56.01957720343229,57.3807633739402,58.7164734474424,59.9861030192412,61.3114523676036,62.589804453384296,63.958654816876106,65.1914969280918,66.5500480212721,67.723821911312,68.9978316341819,70.2178727983344,71.4626279039704,72.6655004223115,73.96470816697641,75.123214307165,76.38792540080699,77.5724139511499,78.84981534257291,80.09638113196209,81.3050875383366,82.5508831533034,85.690107135737,88.65812687753159,91.66342102729321 --0.0310248483119526,-0.570982539725907,-1.14681563210971,-1.7279974241968301,-2.3873778670599703,-2.94214839091755,-3.5840925396668397,-4.16829677150473,-4.77901948338671,-4.975294334868781,-5.225326838301441,-5.47479490714458,-5.7209600434553805,-5.92651833352039,-6.20293733379156,-6.42661034453019,-6.69402801340351,-6.946258104850481,-7.2079548315926205,-7.45593993401204,-7.78464866560171,-8.1853152828542,-8.44054729874621,-8.80368608853858,-9.240591301756881,-9.53261596709771,-9.886311489579551,-10.2227004467982,-10.7389017967645,-11.2322981557933,-11.9373502917748,-13.5541074212751,-14.514359005181301,-15.2653643761471,-15.898853146242,-16.6560961550873,-17.3892375857669,-18.2890136995201,-18.9515597169409,-19.985330568187102,-20.627681526170498,-21.254762398015803,-21.9314503674053,-22.538429900916398,-23.1390923722191,-23.5637745360517,-24.3452382790563,-24.855885026313,-25.517396409202103,-26.087887649025802,-26.6075758019406,-27.107399046693303,-27.605082048524498,-28.763211158176798,-30.0885782232883,-31.5482087131286,3.77040826838655,7.29653460752015,10.405573680862801,13.2612869884161,16.0623886681716,18.8470912530985,21.602269801457602,24.3783111388877,27.142246146297197,28.247618112326304,29.3734697660279,30.463960448323697,31.543576743023895,32.6859656953201,33.8246065780789,35.0510346972373,36.3507582210338,37.5449563910581,38.8106011183324,40.1377858379671,41.481823041167004,42.757694997113795,44.041458340194595,45.2564117750574,46.60513343777989,47.834721651719796,49.051378703362296,50.3319884770589,51.570856421609996,52.8903590143863,54.30229225624001,56.01957720343229,57.3807633739402,58.7164734474424,59.9861030192412,61.3217963675267,62.589804453384296,63.958654816876106,65.22137553383371,66.5500480212721,67.7651924679619,69.01699596216099,70.2186528035783,71.46888019716991,72.685549661912,73.96470816697641,75.123214307165,76.3889342590298,77.5987891131506,78.8544633274483,80.09638113196209,81.3559179317883,82.5508831533034,85.7047530167675,88.69404056981459,91.67921842055979 --0.0259427556007765,-0.6044693524767011,-1.18675887806943,-1.7779046995572299,-2.45672000343308,-3.08268172653551,-3.75892529071671,-4.3376183901242795,-5.01419419174342,-5.25987851541987,-5.5096398718408395,-5.76639332783403,-6.022425172644611,-6.23140078795943,-6.528768564262361,-6.77273514843985,-7.035615683256919,-7.3002699444394406,-7.57143246138029,-7.85211936260419,-8.198460357387331,-8.584912808447669,-8.81245721055417,-9.287274128773,-9.66409306165469,-9.990023260191471,-10.3397588016883,-10.6779009158617,-11.2039290037565,-11.6876571693552,-12.4153917494621,-14.041051661688199,-15.0286414305561,-15.791749872660901,-16.4393815264383,-17.2292814371296,-17.9881976936645,-18.8242840315735,-19.5739667442698,-20.6202798586763,-21.3241098471572,-21.936339252527,-22.615750358727396,-23.2457280889082,-23.8967567769191,-24.3426830013641,-25.116522525323898,-25.620951189287,-26.342336552802,-26.872299104131397,-27.429868875601397,-27.939329770345502,-28.4705828165063,-29.654454780627603,-31.0018812823065,-32.4941357949516,3.8012643930562997,7.28774019392357,10.3759786195303,13.2645875156439,16.0623886681716,18.8548601602768,21.602269801457602,24.3858402491853,27.161389688473502,28.249661919205398,29.3736067123532,30.463960448323697,31.5839048069423,32.708431599175896,33.8426596485804,35.0639931666649,36.367485918780396,37.5846122863325,38.8263314985302,40.1377858379671,41.5005090690997,42.7757663198149,44.0621388586344,45.285731007385905,46.60513343777989,47.834721651719796,49.051378703362296,50.3319884770589,51.6115621636166,52.9147838813099,54.30229225624001,56.01957720343229,57.3807633739402,58.7164734474424,59.9861030192412,61.3404674644125,62.589804453384296,63.958654816876106,65.2224285122133,66.5500480212721,67.7651924679619,69.01699596216099,70.2186528035783,71.4822143793843,72.685549661912,73.96470816697641,75.1233852392542,76.3889342590298,77.6270933540673,78.8760262704514,80.09638113196209,81.3773992690718,82.5807235656976,85.727243346571,88.7038793786933,91.67921842055979 --0.0259427556007765,-0.606152008022602,-1.2178514678011398,-1.80719215385382,-2.58583124766492,-3.2465175643216,-3.9359347741396298,-4.55739557268103,-5.24822007850167,-5.539272757080719,-5.776297504782191,-6.05623749338091,-6.3281309620888795,-6.54192920360597,-6.81166818805284,-7.06775740086816,-7.40291512715225,-7.64450576032764,-7.922016367187849,-8.20117969686479,-8.51465285879787,-8.90623222402319,-9.23817294537086,-9.646591902246369,-10.0861368665335,-10.4221239129983,-10.7271638184807,-11.131991714451098,-11.673691066293399,-12.180145752702,-12.9152688559176,-14.5692696648163,-15.495684236386198,-16.330602678171402,-16.9880090252912,-17.7942505469736,-18.585789119373104,-19.466277985173303,-20.1996237827361,-21.237672325298398,-21.9257484670516,-22.6140927507095,-23.278207484462598,-23.915300972502102,-24.6165618505103,-25.0580512173178,-25.867489016886,-26.3787667617492,-27.1160475045909,-27.7113978850165,-28.221799935272003,-28.7749022663059,-29.328758613257605,-30.5195204192065,-31.948905754198197,-33.5142167165227,3.8012643930562997,7.28774019392357,10.396159018963301,13.2612869884161,16.0537242490122,18.8548601602768,21.602269801457602,24.413847411577397,27.180060167616897,28.296536389151395,29.400475759443196,30.4649876087077,31.6083955146315,32.708431599175896,33.8598453556803,35.1119972533641,36.367485918780396,37.5846122863325,38.8263314985302,40.1401726890076,41.5299242967791,42.817488332345796,44.0736540066293,45.285731007385905,46.6389001071905,47.8593029088142,49.1111892999918,50.3319884770589,51.6115621636166,52.9621862878501,54.3650833013349,56.0843258122891,57.384781668913405,58.7175667371394,60.0030517902121,61.3404674644125,62.6407144122622,63.9456362687644,65.2224285122133,66.5921702811061,67.7651924679619,69.0348462168639,70.2186528035783,71.46888019716991,72.6941911792723,73.9710974907827,75.1663898320477,76.44344009770481,77.6270933540673,78.8544633274483,80.08435091232091,81.3773992690718,82.5612552964255,85.727243346571,88.7038793786933,91.6887290437573 --0.027027654934116,-0.606260904842702,-1.2336647092747501,-1.8808696219064298,-2.63409585775497,-3.26816861063681,-3.97158074030332,-4.610420455941401,-5.3320827112894404,-5.63058076522673,-5.849601914618571,-6.15524855568028,-6.40864464193068,-6.64949420381603,-6.9403318165986905,-7.1678492438587105,-7.53343225002141,-7.76785252828241,-8.0264366546964,-8.317360000797139,-8.66535667441584,-9.06855903288473,-9.374046268003449,-9.78891970207723,-10.2513016657295,-10.5774439820274,-10.9163626858605,-11.294437151996698,-11.820188634616699,-12.357732201342301,-13.103187686191301,-14.7476582202481,-15.7051544263735,-16.5514451720012,-17.1828638228743,-17.9778353388401,-18.793548148443,-19.714944888005302,-20.447018096034,-21.5132506067771,-22.1918771553229,-22.832503726789998,-23.591941034259,-24.2040562863485,-24.8588739941927,-25.3392887929272,-26.1763746768649,-26.661414951291103,-27.4104942115701,-28.0416543078086,-28.561952428821,-29.113813765767002,-29.664669032603,-30.868676967908897,-32.3129838641606,-33.8909999450384,3.8016092401964903,7.29642046370005,10.392941489119499,13.235167329836399,16.0845774014672,18.882762536557898,21.625664788889104,24.423567456589698,27.184105592912196,28.297899874839,29.4045003230542,30.4871682125008,31.6268021656534,32.7092441513365,33.8910820794452,35.1313141113891,36.374854965893704,37.6017060130181,38.8292750290866,40.163024622367,41.541954418228705,42.8470296475483,44.1093034320078,45.310108021123504,46.653625060077104,47.869317679378796,49.1216343230775,50.3935730313536,51.6278349100674,52.9670534198194,54.3851365977601,56.093067899458596,57.43637265740829,58.736773231861704,60.04133496408011,61.341957730169796,62.6657083906796,63.957491009548704,65.2136240998823,66.5985034700196,67.7810447079488,69.0405290793199,70.2354040991075,71.48172206233609,72.7054175749115,73.9899636051198,75.1804127356544,76.444865688715,77.6170896543223,78.86908316569709,80.132631625703,81.38397949366791,82.60602923813,85.72877223954251,88.72144216128159,91.7192124520804 diff --git a/contributed/DIC_CT_35/direction_plot.ipynb b/contributed/DIC_CT_35/direction_plot.ipynb deleted file mode 100644 index 9ea40d96..00000000 --- a/contributed/DIC_CT_35/direction_plot.ipynb +++ /dev/null @@ -1,194 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "9c055409", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import pandas as pd\n", - "import numpy as np\n", - "import math\n", - "import warnings\n", - "import matplotlib.pyplot as plt\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "106af010", - "metadata": {}, - "outputs": [], - "source": [ - "L = 1.\n", - "scale=2e-5\n", - "\n", - "# load csv file XY positions\n", - "filename = \"xy_position_libre\"\n", - "DIC_0 = pd.read_csv('/Users/xinyuanzhai/DIC_gradam/CT_35_1/' + filename + '.csv')\n", - "\n", - "#convert to mm and then dimensionless with L = 50\n", - "DIC_0 = DIC_0*1000*scale/L\n", - "\n", - "filename1 = \"charge_libre\"\n", - "U_xy = pd.read_csv('/Users/xinyuanzhai/DIC_gradam/CT_35_1/' + filename1 + '.csv')\n", - "\n", - "#convert to mm then dimensionless with L = 50\n", - "U_xy = U_xy*1000*scale/L\n", - "U_xy.columns = np.arange(len(U_xy.columns))\n", - "\n", - "#Number of point in this contour\n", - "xcord = DIC_0.X\n", - "ycord = DIC_0.Y\n", - "\n", - "N_image = int(len(U_xy.columns)/2)\n", - "\n", - "widths = np.linspace(0, 2, xcord.size)\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "id": "c747ae97", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADT4AAAzdCAYAAADvJeYbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdZ1tU6Z7+/XPPzEuY+/l+ZTNz9MzsfUzv3t3b7jZgQBEQAQFzQEWMrZjQNudsY0RQzIKiBMmZiuv/oIa6RSqsqlrrumq6v59HXVVrUWeXFVbBda7fnxzHEQAAAAAAAAAAAAAAAAAAAAAAAADkk3+yHQAAAAAAAAAAAAAAAAAAAAAAAAAAvkbxCQAAAAAAAAAAAAAAAAAAAAAAAEDeofgEAAAAAAAAAAAAAAAAAAAAAAAAIO9QfAIAAAAAAAAAAAAAAAAAAAAAAACQdyg+AQAAAAAAAAAAAAAAAAAAAAAAAMg7FJ8AAAAAAAAAAAAAAAAAAAAAAAAA5J1/sR3gS//6r//q/PnPf7YdAwAAAAAAAAAAAAAAAAAAAAAAAIABDx8+7Hcc5/9LdFteFZ/+/Oc/68GDB7ZjAAAAAAAAAAAAAAAAAAAAAAAAADDgT3/60/tkt/2TySAAAAAAAAAAAAAAAAAAAAAAAAAA4AbFJwAAAAAAAAAAAAAAAAAAAAAAAAB5h+ITAAAAAAAAAAAAAAAAAAAAAAAAgLxD8QkAAAAAAAAAAAAAAAAAAAAAAABA3qH4BAAAAAAAAAAAAAAAAAAAAAAAACDvUHwCAAAAAAAAAAAAAAAAAAAAAAAAkHcoPgEAAAAAAAAAAAAAAAAAAAAAAADIOxSfAAAAAAAAAAAAAAAAAAAAAAAAAOQdik8AAAAAAAAAAAAAAAAAAAAAAAAA8g7FJwAAAAAAAAAAAAAAAAAAAAAAAAB5h+ITAAAAAAAAAAAAAAAAAAAAAAAAgLxD8QkAAAAAAAAAAAAAAAAAAAAAAABA3qH4BAAAAAAAAAAAAAAAAAAAAAAAACDvUHwCAAAAAAAAAAAAAAAAAAAAAAAAkHcoPgEAAAAAAAAAAAAAAAAAAAAAAADIOxSfAAAAAAAAAAAAAAAAAAAAAAAAAOQdik8AAAAAAAAAAAAAAAAAAAAAAAAA8g7FJwAAAAAAAAAAAAAAAAAAAAAAAAB5h+ITAAAAAAAAAAAAAAAAAAAAAAAAgLxD8QkAAAAAAAAAAAAAAAAAAAAAAABA3qH4BAAAAAAAAAAAAAAAAAAAAAAAACDvUHwCAAAAAAAAAAAAAAAAAAAAAAAAkHcoPgEAAAAAAAAAAAAAAAAAAAAAAADIOxSfAAAAAAAAAAAAAAAAAAAAAAAAAOQdik8AAAAAAAAAAAAAAAAAAAAAAAAA8g7FJwAAAAAAAAAAAAAAAAAAAAAAAAB5h+ITAAAAAAAAAAAAAAAAAAAAAAAAgLxD8QkAAAAAAAAAAAAAAAAAAAAAAABA3qH4BAAAAAAAAAAAAAAAAAAAAAAAACDvUHwCAAAAAAAAAAAAAAAAAAAAAAAAkHcoPgEAAAAAAAAAAAAAAAAAAAAAAADIOxSfAAAAAAAAAAAAAAAAAAAAAAAAAOQdik8AAAAAAAAAAAAAAAAAAAAAAAAA8g7FJwAAAAAAAAAAAAAAAAAAAAAAAAB5h+ITAAAAAAAAAAAAAAAAAAAAAAAAgLxD8QkAAAAAAAAAAAAAAAAAAAAAAABA3qH4BAAAAAAAAAAAAAAAAAAAAAAAACDvUHwCAAAAAAAAAAAAAAAAAAAAAAAAkHcoPgEAAAAAAAAAAAAAAAAAAAAAAADIOxSfAAAAAAAAAAAAAAAAAAAAAAAAAOQdik8AAAAAAAAAAAAAAAAAAAAAAAAA8g7FJwAAAAAAAAAAAAAAAAAAAAAAAAB5h+ITAAAAAAAAAAAAAAAAAAAAAAAAgLxD8QkAAAAAAAAAAAAAAAAAAAAAAABA3qH4BAAAAAAAAAAAAAAAAAAAAAAAACDvUHwCAAAAAAAAAAAAAAAAAAAAAAAAkHcoPgEAAAAAAAAAAAAAAAAAAAAAAADIOxSfAAAAAAAAAAAAAAAAAAAAAAAAAOQdik8AAAAAAAAAAAAAAAAAAAAAAAAA8g7FJwAAAAAAAAAAAAAAAAAAAAAAAAB5h+ITAAAAAAAAAAAAAAAAAAAAAAAAgLxD8QkAAAAAAAAAAAAAAAAAAAAAAABA3qH4BAAAAAAAAAAAAAAAAAAAAAAAACDvUHwCAAAAAAAAgCR6enpsRwAAAAAAAAAAAAAA4A+L4hMAAAAAAAAAJLFgwQKFw2GrGaLRqKLRqNUMAAAAAAAAAAAAAADYQPEJAAAAAAAAABJ48eKF9u3bp48fP1rNcfToUfX29lrNAAAAAAAAAAAAAACADRSfAAAAAAAAACCBVatWyXEcdXR0WMsQjUa1cuVKvX//3loGSWpvb1d7e7vVDAAAAAAAAAAAAACAPx6KTwAAAAAAAADwlTdv3ujAgQOSZLXw09jYqKdPn1otX0mxEtjbt2+tZggGg+rs7LSaAQAAAAAAAAAAAABgFsUnAAAAAAAAAPhKWVmZIpGIJFkrHc1Me7KZYea+6+vrrU+dqq+v14MHD6xmiEajmpqaspoBAAAAAAAAAAAAAP5IKD4BAAAAAAAAwBc6Ojq0Z8+e+GVbE59OnjypJ0+exDPZsmrVKoXDYavFp2AwqNLSUuvlq8bGRrW2tlrNICleygMAAAAAAAAAAACA3zuKTwAAAAAAAADwhdWrVyscDscv2yg+OY4Tn/Yk2Ss+vX//Xrt27Yr/ty319fX68OGDPnz4YC1DNBpVUVGR1QyS9OzZM129etVqBgAAAAAAAAAAAAAwheITAAAAAAAAAPyvzs5O1dXVzbrORuno1KlTevz4sdUM0v8/7clmhplpT5Ld8tXx48fV0tJivfi0cuVKqxPAJGl6ejovJl8BAAAAAAAAAAAA+P2j+AQAAAAAAAAA/6uiokKhUGjWdZ8+fVIgEDCW4etpT1Ks8OM4jrEMkvThw4f4tKeZDDbMTHuymWFm2pPNDJL09OlTHT582Hr5qra2Vvfu3bOawXEcvX371moGAAAAAAAAAAAAAP6j+AQAAAAAAAAAkrq6urR9+/Y51zuOY7RocvbsWT148GDWddPT0/r8+bOxDJJUVlY2qwT28ePH+PQnU76c9iTJWuHn+PHj8QlHNktHRUVFxp+PX5ucnFRZWZn18tXFixfV2NhoNYMkjY2N2Y4AAAAAAAAAAAAA/K5RfAIAAAAAAAAASZWVlUknO3V0dBjJkGjak+kMUqzcs3PnzlnXRSIRdXV1GcsgSbt27ZpVsOnr69Pk5KTRDNFoVCtWrIhftjXx6cmTJzpy5IgkqbOz00oGSdq6dat6enqsZnAcR8uWLbOaQYo9F2pra61mkGIFQQAAAAAAAAAAAOD3iuITAAAAAAAAgD+83t5ebdu2Lent7e3tRnJcuHBBTU1NCW8zWXxavXr1rGlPM0yWfr6e9jTDdNnl2LFjevr0afyyrUlHRUVF1jNMTExo9erVkuyWr86cOaN79+7p48eP1jJIUklJid69e2c1w/v379XQ0GA1gxQrowEAAAAAAAAAAAB+oPgEAAAAAAAA4A+vqqpKU1NTSW83UXxyHGdWueVrpopPHz9+nDPtyXQGKTbtKVG5xmT5KhqNzvk3GRgY0MTEhLEMktTc3Kzjx4/HL3d2dioajRrNIEmbNm1SX19fPIMNjuOosLDQagZJevv2rXbt2mW9fFVcXGy9fBUIBHTs2DGrGQAAAAAAAAAAAPD7RfEJAAAAAAAAwB9af3+/Nm/enHIbE4Wfy5cv6+7du1YzSLFpT8FgMOFtpkpHyaY9mcwgSUePHp017WmG6YlLK1asmHU5EAjEC0imjI2NqaKiIn65s7PTypSfxsZGPXr0SJKslo5WrlypSCRiNcObN29UX19vvXxVW1ub8r3LhGg0qsuXL1vNAAAAAAAAAAAAAH9QfAIAAAAAAADwh1ZTU5N2go/fE5/STXuSzBR+Pn78qO3bt1vNICWf9iSZKx0lmvZkOoMkPXr0SCdOnLCaQZI2btyogYGB+OXJyUkNDg4azRCNRrV8+fL45e7uboVCIaMZJOnFixfat2+fJLvlq6KiIkUiEX369MlahomJCZWWllrNIEkHDx7UuXPnrGaIRqNqbW21mgEAAAAAAAAAAOD3iOITAAAAAAAAgD+swcFBbdiwIe12fhefrl27plu3bqXcxsTEp/Ly8qTTniQzxadU055MZZBi056ePXtmNYM0d9rTjGTFMD+Mjo6qsrLSagZJOnLkyKxiieM46u7uNppBiv2bRKNRSdLnz58VCASMZ2hra9P+/fsl2S1fbdq0Sb29vVaLT6FQSMuXL7devjp8+LAuXrxoNYPjOHr79q3VDAAAAAAAAAAAAF6j+AQAAAAAAADgD2v9+vUaGxtLu93nz581OTnpW450056kWPHJcRzfMnz69CnltKeZDH5LNe1JMlM6SjXtSTI3benBgwf69ddfrWaQpHXr1mloaGjO9SaLT5FIJGEJzHT5qqWlRYcOHZp1XVdXl9EMUqx8NfN+YKv4NDo6qvLycqsZJGn37t168+aNlX+HGeFwWIWFhdbLV6dOndKZM2esZpBkpZAIAAAAAAAAAAB+vyg+AQAAAAAAAPhDGhkZ0dq1a11v71fp5/r167p+/Xra7aamptTX1+dLBik27Snd5JoPHz7EJ934Id20p5kMfjty5EjSaU+mMkjJpz2ZzDA8PKyqqqqEt5ksHR08eFDPnz+3mkGSli9fPuc606Wf5uZmHT58OH55cHDQ12JmMjU1NRocHJQUK3/5WcxMJhAIaOXKlZJktXS0Z88evXr1ymr5KhqNaunSpVYzSLEJhsePH7eaQZIGBgZsRwAAAAAAAAAAAB6h+AQAAAAAAADgD2njxo0aGRlxvb1fxaeZRfs2M3R1dam2tjbtdoFAQJ8/f/Ylg5R+2pMUK5lEIhHfMqSb9iSZmTp17949nT59OuntpopPNTU1SV8npkpH4XA46b+JydLRw4cP1djYaDWDlLh8Zbr0MzAwoOrq6vjlQCBgpWhSW1sbfx5++vTJWvlq5vlps3zV0NCglpYWq8Unx3G0ZMkS6xOf2traVFdXZzWD4zjq7++3mgEAAAAAAAAAgN8Lik8AAAAAAAAA/nDGxsZmLdp3o7293fMct27d0pUrV1xv71fxqaKiIu20pxl+lX7cTHuSYiUYPxfVHz58WG1tbSm3MVE6SjXtyVSGwcFB1dTUWM0gSfv27dPr168T3mZy4lNhYWHC600Wn+7du6eTJ0/Oud504aayslKjo6NWM0xMTMx6z5iamsqozOqV7du3x18LtkpHoVBIy5Yts5pBkk6fPq07d+5Ynzq1bNky44XEr507d06XL1+2mkGSxsfHbUcAAAAAAAAAACBnFJ8AAAAAAAAA/OFs3rxZg4ODGe3jR/Epk2lPkj/Fp+7ubm3bts1qBsndtKcZfpWvIpGIq38Tv6dO/fbbbzp79mzKbUwUfqqrqzU2NmY1QygUSvlvYqrccPfuXZ05c8ZqBik/ylc9PT1av379nOtNF582btyo3t5eqxkmJiZUUlISv9zV1WVl6tTu3bv15s2beAYbotGolixZYjWDJN2/f1/Hjh2zOnUqGo1q8eLF1idf3bhxQxcvXrSaQVLKzxEAAAAAAAAAANyg+AQAAAAAAADgD2ViYkJVVVUZ7+d14efu3bsZL0j2o/BTUVGh6elpqxncTnvyM4MkHTlyJO20J8n/qVPppj1JsfKJ2yld2ejv79e6detSbmOi+FRfX5+ydGhq4tPMNJ1ETJWObt68qfPnz1vNIEmrV6/W1NTUnOtNlo5GRkZUXl5uNYM0t3w1NTWl4eFhoxmmp6dnlQNtlY4aGhrU0tIiSVYLP4sXL7ae4fDhw2pubraawXEcFRQUqKenx1oGSXr06JGOHz9uNYOkORPqAAAAAAAAAAD/t1B8AgAAAAAAAPCHsm3bNvX19WW8n9cTnzKd9iR5X77q6enR1q1bM9rHj9JRJtOeJOnDhw+eZ4hEIioqKrKaQZLu3LmTtNzyNT/LLmvWrNH4+HjKbT59+qRoNOpbhkAgoOLi4pTbmCg+Xbt2TZcvX056u4nSkeM4eVG+6uzs1JYtWxLeZrJ0VF1draGhoTnXmyz9JCtfmS4ebdu2bdbrYHh4WJOTk0YzhEKhWc9PW+Wry5cv69KlS5LsFZ++fCxsFp9OnTqlO3fuWJ86VVBQYD3DnTt3dPr0aasZJCV8zwIAAAAAAAAAuEPxCQAAAAAAAMAfxtTUlCorK7Pa18vi071793Tu3LmM9/O6+JTptCfJ++JTptOe/MggxSZ0PH/+3GoGSVq+fLnrbf0qX33+/FkbNmxIu10oFJo17cZrO3bsSFts6u3tVTAY9C1DusKRZKZ0dOXKFV2/ft1qBkkqKSlJ+nibKj719/erurraagYpefnKZIbx8fGE75+mi0f19fV68+ZN/HJfX5+vr8tEHMeJT3uSYqUjx3GMZpBij8Xr16/jGWyIRCJ5MfnqypUrunDhgtWpU47jaNGiRdYnX12/fl1nzpyxmkGKFTYBAAAAAAAA4P8iik8AAAAAAAAA/jB27NiR9eLXoaEhzxaMZjJZ6EsdHR2eLeTu7e3NeNqT5H3hp66uLuOpPV4XfiKRSMYTuPwoHd26dSs+rcRWBilWiHM7McavDFNTU1q1alXa7RzH8bXkcfHiRd26dSvlNt3d3QqFQr5lcBxHS5cuTbmNieLT27dvVVdXZzWDJJWXlyedRpYP5SuTpaP169cnnGBoMsP09HTCzzQ/S5GJNDY26t69e/HLk5OTGhsbM5phampq1mNha/LVL7/8oqdPn0qyV3xyHEcFBQWSZLV0dPbsWd28edN6+WrhwoXWy1cPHjzQsWPHrGZwHMdoORQAAAAAAADA7wfFJwAAAAAAAAB/CIFAQOXl5Tn9DC8mLj148CDrs/5PTk6qv78/5wySVFlZqampqYz387J8FQgEXJVbvuZ1+aqhoSGjaU9+ZJAym/Yk+VM66unp0ebNm11vn2lpza1t27a5Lg34VbhxUzia2c7PBe1nz57Vb7/9lnIbEwvJi4qKFA6HrWbo6urSxo0bU95uwurVq62Xr4aGhlRRUZHwNpOFmy1btiT8fzaZIRKJJHytmi79bN68edZjYaN0FAwGVVhYGL9sq2zzZRHNVvkqGo3mRfmqsbFRTU1NxsuAX8qX8tWvv/6qixcvWs3gOI7nE1QBAAAAAAAA+I/iEwAAAAAAAIA/hF27duW8IL29vT3nHJlOFvqaF4s1e3t7Myq3fGl8fFxDQ0M5Z5Bi/ybZFGfev3/vWfkqm2lPkveloxs3bujKlSsZ7eNH6ai8vDyjQpwfGSYmJlRWVmY1gySdOnVK9+/fd7WtX2UXx3G0bNmytNv19vYqGAz6kkGS2tratG/fvpTbmCj8lJaWanp62mqGrq4ubdq0KeXtJlRWViadQmgqw9jYWNLyqsni0759+9TW1jbnepOFm9HR0TnvW0NDQymfr37Yvn37rGMVG6WjcDisxYsXxy/bKtscOHBALS0tksxPIJsRDofj5SubxaeLFy/qypUr+vz5s7UMM4+FzcdBks6dO6dTp05ZzRAMBmdNqLPFq2NpAAAAAAAAwASKTwAAAAAAAAB+94LBYEZFimRyLR09fvxYv/76a04/w4tJQ2vWrMlq2pOXGbKd9iTFylfDw8M5Z5Bi055evHiR8X5eT3zKdNqT5H35qqurS1u2bMloHz9KR5s3b85ocbYfGaLR6KypKen4NXWqsbFRjx49Srud4zi+FhyWL1+edoH04OBgTu8r6XR0dGj79u0ptzFRfCopKbFevurp6dG6deuS3m6qdFRTU5N0CqGpwk0gEEj6/mmy9FNVVaWBgYE515ss/UxMTKi4uHjWdb29vYpEIsYySNKePXtmfa7aKD4Fg8FZpVFb5av6+nq9fPnSaoZoNKqFCxdKslu+2rNnj9ra2qyWryKRiBYuXGg1gyTV1tbq7t27VjMMDw/rwoULVjNIlK8AAAAAAADgHsUnAAAAAAAAAHlpdHTUs5+1d+9eT0oiuU58ynXak5R7+erz589ZT3ua4UXpJ9tpT15myHbak+Rt6ejatWu6du2a1QySVFZWpkAgYDXD2NiYysvLM9rHj9LRsWPH1NzcbDVDvpSvHj9+rCNHjrja1s/CTVFRkUKhUMptent7FQ6HfcvQ3t6etnxlonRUVlamyclJqxkGBga0Zs0aqxmkWIEg2eeBqeJTX1+fqqurrWaQpHXr1s0ptkQikYSFLL9MT0/PKaKNjIz4WopMZNu2bbOOl2yUjqamprRixYr4ZVulo4MHD8Y/z2xlmJqain+e2Sxf7du3T62trVaLT6Ojo1q5cqX18lV5eXnCSXkmffr0SefOnbOaQVLGx74AAAAAAACwg+ITAAAAAAAAgLzz8uVL7d2715OfFQqFVFpa6snPyqX49OTJEzU2NuacIdfiU1VVVcoF8yYy5DLtaYYXxadDhw5lNe1Jii1cHRkZyTmD4zhZTXuSYqUjr86U39nZqdra2qz289KGDRsyXqTvdYZIJJLxv4kfpaOGhgY9ffrUagZJs6ampOPXtKMXL15oz549abeLRqO+LqovKipKW6zye+LT+/fvtXXr1pTbmCgdlZeXa2xszGqG8fFxlZSUJL3dVOlo1apVGh8ft5phcHBQFRUVVjNIsYl9id6LTJZdxsbG5ky+6uvrMz75asOGDbPeD2xNvlq6dGn8sq3S0ZePha3Cz/T0dPzzzGbpaM2aNerr61NfX5+1DJ2dnVq7dq3VDFJsmqTXE1Qz9ebNG9flbj+ZLKgCAAAAAAD8X0XxCQAAAAAAAEDeWb16tV6/fu3Jzzpw4EDOk5pm5FL4+XoRro0MfX192rhxY84Zcl2kmOu0Jyn3SUO5THua4cVizatXr+rGjRtZ7TsxMaGhoaGcM0ixhfvBYDDj/bwsHY2MjKScIJOM14WfQ4cOZTwFwesM4XA4L8pXd+/e1enTp11v71fpZ/ny5YpGo1YzPH/+3FUht6enx9eCxcqVK9O+Vv0uHXV1dWnDhg1WM0ixCUepCgwmCj8fPnxIOUXRVOmovLw8aRnXVIaRkZGkpWaTpZ+ampo5hY5oNGq05DE0NKSysrJZ19koX23btm3WMbCN4tPg4OCsx8Jm+WrmmMVW8am7u1tVVVVWM0ixz9Tp6WmrxaenT59q165d1stXBQUFvheW07l165aOHz9uNUM0GrVeQgMAAAAAAEiH4hMAAAAAAACAvNLR0aF9+/bp3bt3Of+sSCTi2bQnKTbxKZsJO62trTp69KgnGXIpPnkx7UnKrfDjxbSnXDNI0sGDB/Xy5cucfkau5atcpj3N8KJ49P79e+3cuTOrfXt6erIqTCWydu3arIpcXpavwuGwVqxYkfF+XpeO9u3bp1evXmW0jx8Ld7+cFGIrQ3NzsxoaGqxmkKTCwkJX5Ss/p069fPlSu3fvTrtdV1eXZ9PgEikuLtb09HTKbfwu2wwODqqystJqBik2BSzVe6CJDF1dXVq/fn3S202VjtasWZN0aompDH19fUmfFyYLN+Xl5RoeHp51XTQaNTrVZXR0dE7Be2BgIO3UOq+VlZXNeixsFH4GBwdnHXvaKh2tWLEifhxuK0Nra6vq6+utZpCkRYsWGS8kfu3u3bs6cuSI+vv7rWVwHEc///yz1QyStH//ft2+fdtqhvHx8axPBuElP4+fAAAAAABAbig+AQAAAAAAAMgrFRUVCofDnhSfDh065NnkKCm2IGtwcDDj/UpKSjzL0NHRkdWCrP7+fk+mPUm5lY68mPYk5VY68mLak5R7+ery5cu6detWTj8j1/KVJJWWlioUCmW1r+M4nkx2GRwcVHV1dVb79vb2ela+2rt3b1bvGV4Wn4LBYFbPT6/LV1euXNGVK1esZpCkZcuWZbS9H5OGHj9+rCNHjljNIMWmdLiZGDMxMaGxsTFfMrx9+1Y7duxIu53fE59STTia4Xfp6MWLF/ECQTImJl+lK6KZKF/19vamfA83VXxatWqVxsfHrWb4+PGj1q1bZzWDFCu7f12mcBzHaMHiw4cPc6bD9fX1uZ7g55V8KF+9ePFiVsncVulo4cKF8e8RtkpHV69ejU+TtJVhpnBkM4MkHT58WE1NTVaLT1NTU1qyZIn18tWaNWv09OlTqxkmJyd14sQJqxkkzSnOAgAAAACAGIpPAAAAAAAAAPJGV1eX6urqJEnv3r3L6YzL0WjU08LRjPb29oy2b2tr0+HDhz27/4mJiazKV1VVVZqYmPAkQ7ZTp7ya9iTlVjo6ePBgxtN0EsmldOTFtKdcM0ix19muXbusZpCk6upqjY6OZr2/F1N+si0czdy/Vwu5d+3alfH7jORt6chxnIynPUneT1v67bffdOrUKasZpPyZfHXo0CGrGaTYxBI3E2P6+/s9KyR+Ld2Eoxl+F36WLVuW9nXvd4Y3b96kLaKZKD6VlJSknChpovDz/v17bd682WoGKTYFLFkRzdTUqZ6eHlVVVVnNIMXKmoFAYNZ1kUjE6OSrROWrkZGRObn8VlBQMKu4aqNsc+XKFZ09ezZ+2Ub5KhqNasGCBfHLtkpHjY2NunPnjiRZK/wEAgEVFBRYzSBJ69atU2dnp9UMXV1dqqystF6+qqmpUXNzs9UM7e3t2rZtm9UMktTS0mI7AtO3AAAAAABzUHwCAAAAAAAAkDeqqqriCxGnpqZyWqR69OhRPX/+3KtocZkWEkpKSjxftJNp8WhgYMCzaU9SbDpPsokKqXg17UnKvvgUDoc9mfYk5Vb4uXjxYnzBpa0MUuz56abEkEqu/6b9/f1Jp2OYyiBJdXV1WZf6wuGwJwuIp6ensy5sell8Onv2rO7evZvxfl6XbZYsWWI9w+3bt3XmzJmM9vFjyk8+TL56+vSp9u/f73p7v4om6SYczRgeHtbU1JQvGR4+fOhqCpjfpaPCwsK07+F+Z3j37l3aRdomSkeFhYUpy3YmMrx48fGgetEAACAASURBVCJe4E/EVOmouLg4adndVIbW1lbt3r074W0mCzeFhYUJS04mCze3b99WY2PjrOtGR0ddvY955evCkWSndNTQ0KAHDx7EL9soX4VCIS1cuDB+2Vb5asuWLfEJx7Yy9PX1qaysTJLd8lVhYaEmJyeNliK/1tPTo9WrV1vNIEmLFi0yUlhO5eLFizp48KDVDJFIRA0NDVYzSMr5ezIAAAAAwFsUnwAAAAAAAADkhf7+fm3dunXWdW/fvs3qZ0WjURUXF3sRa45MihEvXrzwZdFQpuWM6urqrIpKqWRaPPJy2pMUW7ibzYJRr6Y9SdmXr7ya9iTlVnx6/fq19uzZk3OGXEtHFRUVOT8/cy395FI48iqDJNXW1mb9c7q6umZNk8hWttOeJG9LR1euXNGVK1cy3s/Lwo/jOHlRvrpz507Gk6/8Kl9lUuT1I8Pbt2/TTjj6kl9ll8WLF7vazs/Fy83Nzfrll1/Sbud34aewsFChUCjlNn4v4n769Kn27t2bchsTxaclS5aknAJmIsPr169VW1ub9HZTxaeCgoKk7xemMrS0tCQ9zjFVuHEcR/Pnz094m8myy6FDh/Tw4cNZ142OjhqdfBUIBOa8d9oo/NTW1ur169dWMwwPD8/6rmqrdLRy5cr4xFVbGVpaWuKFUZvlq+XLl2t8fNxq8enOnTtqaGiwmiESieinn37KasK0l+rr67P6HuClUCjk6cljspXNJGAAAAAA+L2i+AQAAAAAAAAgL6xdu1aTk5Ozrps5C3amTp48qdbWVi9izZHJwpPS0lLPpz1JmRWfBgYGtH79es8zZFr68XLa04xMf144HPa0EJdt6ejcuXP67bffPMmQy2NaXFzsSVEmlwy9vb2eLCjL9blVW1ubc1kl1+LT5ORkTuXASCTiyULuY8eO6fHjx1nt29XVlXLRv1vZFo4kb0tHly5d0vXr1zPez+vylduSjV8ZJKmpqWnOxBLTGSR3E478znDt2jVduHDB1bZ9fX2+TQtw+xrxs3T05MkTHThwIO12fhd+Fi9enPZ4y++yTVNTk44dO2Y1gyQtXbo05XPORIbr16/r9OnTSW83VTpatGhR0ueFqQyNjY1JJyiaKtwkKhyZziDFJhx9/T2qv7/fl+9KyYyOjqqoqGhOBtNWrVo1q1hiI8OrV69mnXTE1tSpBQsWxJ8DtopPT58+jZeqbRV+HMfRjz/+aDWDFPvO3traarV8NTY2pqVLl1ovX23dutWTCc256O3t1YoVK6xmkKTz58/bjuDJ7y0AAAAA/N9H8QkAAAAAAACAdSMjIwnLD9lMfHIcRytXrvQiVkJui0+vXr1ytRg4G5kUn2pqajyf9iRlVnzyetpTNhkk6ZdffvFs2pMUW1AfDAYz2sfLaU9S9uWrly9fav/+/Z5kyKV0tHr1ak1NTeWcIZfSUa6FIy8ySNKmTZtyXpCea4ZIJKLCwsKs9w+Hw54snD19+nTW5UCvik+Ur2bL5rHwunDT0tLiasKRnxkyLaI5juNL0eTmzZs6c+aMq227u7t9KxYsWbLE1c/2s/h069Yt/frrr1YzOI6jRYsWWc0gSQ8ePFBDQ0PKbfwu/DiOo4ULF6bcxkT56urVqzp79mzS200Un0KhUMrnhany1ZYtW5J+dzBVdvl6wtGMcDis4eFhIxmk2JTRr/+fTU++6ujomHNSChuFn0WLFs0qSdrIcP78+VmFCltlm/nz58eL+7YyHDp0SE1NTVYzzBSOJLvlq/LycvX09GhoaMhahsHBQa1YscJqBilWZs52yrRXHj58qLVr11rNEI1G82L6ls2pdAAAAABiKD4BAAAAAAAAsG7Tpk0aGRmZc302E5/OnDmT9bQSN9yWjkpLSz2ZfJJLhsHBQV+mPWWSQZLq6uo8n/YkZVb68XrakxRb3JtpweHMmTO6f/++Zxk+ffqU1TSRlStXevb8zLZ81dXVpS1btniSIZfnlxeFIym30tHY2JjKy8utZpBi5cC2tracfkaupZ9oNBpfdJmN0dFRT8qeJ0+ezPq16lXpKJfylZfFp8uXL+vy5ctWM0juSzZf8rr4dOrUqaTTW0xlcBxHBQUFrrefnJz0pQB98+bNlFN9vtTT0+NL+cpt4Wgmg1/Onz+va9eupd3Oz8KPm8KR3xkk6fjx4/HF+8n4XfiJRqNasGCB1QyStHPnzpSFexMZkhWOTGaQYkX3ZEUKU+WrT58+qbq6OuFtJosmS5YsmVO0Ml2+unXrlo4fPz7rOtML+iORiObPn281gyRduHBB586di1+2UTqanp6e9Vlmq3RUXl4e/4ywleHDhw+qqqqymkGKfVceHBy0Wnxqbm7Wzp07jZZDv+Y4jn744QfrBbB9+/a5nrbql0Ag4PqY00/37t2zHYHpWwAAALCK4hMAAAAAAAAAqyYmJpIuQsu0+OT3tCcpVvhJt3j3zZs3nk3TScTtWX9ramo0NjZmNYNf054yySDFCh2vX7/2PEMmpR/HcbRixQpP7z8ajWZcLmhra8t4akoq2ZaOVq1a5dkiz2wzeFU4knIrHa1bt86ThZa5ZAiFQp48P3MtPh05ckRPnjzJ6WfkWriJRCI5la+8mvh04sQJylf/6/bt2zp16lTG+3lZOopGo3kx+er06dO6ffu21QyZFI4kKRgM+rJwN5PHwq/iUzQadf1Y+Fk6unjxoq5cuWI1QzgcdlXK87t8dfjwYT148CDlNn4XfsbHx9N+ppooHaUqHElmSkcfPnxIOS3EVPFp2bJlSaeMmsrw4MGDpBOBTRVuHMfRzz//POf6/v5+36YDJrJ79261trbOus506SgSicx5LGwUn9atWzfre62NDF8WjiR7paOCggJNT09LkrWyzcuXL7Vp0yarGRzH0T/+8Q85jmO1+NTQ0KDbt29bzTA+Pq5FixZZzSBJa9eu1cOHD61mGB0d1ffff281gyTfTq6UiYmJCdsRAAAAYAnFJwAAAAAAAABW1dbWJl3c8/bt24x+1oULF3w/A+r09HTaxbOrVq3y9SyobspXQ0NDvi5IcFs6qqury3kKTTJuS0fhcNi3Qlwm5atTp06lXYibjUwnLhUVFXm6sHFwcFCTk5MZ7fPhwwdt377dswzZPse8KhzlkmFoaEhr1qyxmkGS6uvrM37P9TpDOBxWYWFhzhlyLR4dOnRIT58+zXr/oaGhpIur3cq1fOVV6ejkyZNpp7ck41XZxnEcLV682GoGKVag/XqRthteFsCi0WhWj4Ufk6/u3LmT0T5eF48ikUhGk6+GhoZ8majyyy+/uC5r+lm+cjPtSfK3dJRuwpGJDMFg0NVrxO/SUXV1ddr/T7/LNp2dnVq3bp3VDFKscJTqtWciQ2trq+rr65PebmLSkOM4cyYcmc4gxYqBiT7Xw+GwRkdHjWSYmJhIeIwzPj4eL72YsGvXrjmf66OjowqFQsYyfP78ec5JQoaGhnybHJ3M4sWLZz32NopPTU1Ns4qBtspXP//8c3yisq2yzfHjx3X9+nVJ9spXU1NT8emJNktHZWVl6u7utpqhu7tbJSUlCafUm1RcXOzqOMtP7969U2FhodGibCIrV65UMBi0mqGjo8PqZLoZtv8tAAAATKP4BAAAAAAAAMCa6elpVVZWJr29t7fX9Zk8TUx7mtHR0ZH0tvb2du3Zs8fX+x8bG0u7AGbt2rW+Ll5zU/jxc9qT2wySdODAAb1588aXDG5LR35Me5qRybSj1tZWNTQ0WM0gSaWlpZ4uVPn8+XPGC9qHh4dnndk8V9kWfqqrqz1bRJVthunpac/eP3MpHe3bt08vX77MOUMuRZNQKKTly5dbzSBJBw8e1LNnz3K6/1wXQeVL+er8+fO6ceNGVvt6VfgJBoNZl/LyoXzlZeEmEolkVb7yuvRz4MCBjAuKXpddgsGgli1b5nr7/v5+X4rxBw8eVHNzs6tt/SodTUxMuD7O8bN0tG3bNlcTY/3M0Nvbq4qKCqsZJKmwsDBticTvDM3Nzdq7d2/KbUwUnxYsWJDyM9FEhtOnT+vatWtJbzdRfAoEAikLo6bKV1VVVUk/G01NOxofH0/6/m1yIfuKFSvmfGc3PeXn3r17c6ZVj4+PGy0VOI6jefPmzbpudHQ0XkAy5eLFi7MmjA4PDxsvoQUCgVmTyEZHR309qU4yVVVV8d912Codtbe3x7+v2ywdLV68WOPj41YzvHr1SuvWrdPo6KjVosuPP/5ovKT6tZcvX6qmpkbj4+PWMkjSvHnzrBUTZ7x48cL3k3+5wQQuAABgEsUnAAAAAAAAANbU19enXRDsZvGiJF29ejXj6QPZam9vT3qb39OeZqQqXw0NDWnt2rW+3n93d3faxQ5+TnuS3BWfwuGwiouLrWaQYlNTHj165EuGTCY+FRUV+ZIhk+LTu3fvVFdX53mGTAs31dXVni7i+vjxY8aLkPr7+z19rWZbOtq+fbtnr9VsMwSDQc+en7mUr3bv3u1JUTLX8lWuk6+CwWDOi4cPHjyY0+QrL4pP2U44muFV6Wjnzp2uj0f8ypAv5atsCkeSt8WnQCCQUeHIjwxSrGST6pjwa9Fo1POCRSAQ0JIlS1xv39fX58si7rVr17p+fP0qX42Ojrou8fpZ+Fm5cqWrBaB+ZmhpadHu3bvTbud34WfhwoVpj438Ll9dunRJ586dS7mN349DOByOT06xlUGSNm/enPKzzETxqbu7O2Ux0FTxqaKiIul7lqniU1tbm2pra61mcBxHP/74Y8LbTC7ob2ho0N27d+dcb7JwEw6H5zwW0WhUY2NjxjJIsYnEXx9bmC7cfPr0SWVlZfHLgUDAStFlwYIF8ZOb2Cpf3b9/Pz4xcGRkxFrpaN68eQqFQopEIjlPFs7W+fPndeLECUky/rqY4TiOfvjhB4VCIavFp3PnzqmxsdFq4cdxHP3973+3Og1Nkp48eaIjR45YzSApq5ODeI3pWwAAmEHxCQAAAAAAAIAVoVBI5eXlabdzu9DYz3LL15Itcn3//n18UYTfUhWfZs4E67dUZRe/pz3N3H+6xbv79+/3bdqT5K505Oe0J7cZpNhZ948ePWo1gySVlJT4cvbuTMpX/f39qqmp8fT+A4FAxos1KyoqPF2wk015aWJiQqWlpZ5lyLZ0tGPHjpTvayYy5Mvkq7q6uqxLNl+yXb4aGBjIeBLb144cOaLHjx9nvb8XhZ/JycmcjjG8Kh3t2LHDevkqEAhk/bzwsnS0bds218VjvzKMjY1l9bzwuvSzbdu2jN47w+Gw54vZ+/v7XR3Tz/j8+bMvCwMrKytdFzf8Ktu8evUqaZHha34WXRYtWuTqMfazdHThwgVduHAh7XZ+Pg7RaFTz589Pu53fhZ+6ujo9f/7caoahoaG071kmik/Lly9PuVDcRIaPHz9qzZo1SW83Vb6aP39+0hOmmMpw9OhR3b59O+FtpspX09PTWrhwodUMUuw4K1Gx22QBrLe3VyUlJXOuN11sKCgo0OTkpNUM169fn1WmmJiYUCgUMprBcRx9//338cuRSGTO42LC6dOndebMmfhlE7/r+1owGNQPP/xgNYMUO6HQ+fPnJdkrXwUCgfjzwmb56siRI7p06ZLV8lU0GtW3335r7d9ixtWrV10V/v3m1+9bM2GrGAkAgEkUnwAAAAAAAABYceDAAVcLNd++fZt2m5s3b+ratWu5h3IpWe6ysjJfCh2ZZBgeHvZ92tOMVIuO/Z72JMUW5qdaxOz3tCfJXeGnsbFRzc3NVjNI8rV85bZ09Pr1a+3Zs8eXDJk83yorK31ZpJJJhp6eHm3cuNHz+890MfmmTZs8XYifTeFncnIy4SK/bGVb+Nm2bVtGBTo/MkxNTXn2vpVL8SmXCUdfyqVoEg6Hs5rq86W+vr6cF0lu2LAhp+KQF6WjiYmJvChfZVqy8SPD2NhY1u8XXhafqqursypsePl+Ozo6mhflq9LS0owWPE5NTXn+Gdzd3a3q6mrX2/tVvlq8eLHr7wJ+lY4uX76ss2fPutrWr9JRNBpNO+HI7wxS7AQIbo7B/cwwNjbmqjDqd+GntLQ0bYHD7wxPnz7Vzp07rWaQpKVLl6ZcGGyidHTx4sVZRYavmSj8BAKBlK9TU+WrtWvXJv29gqnS0cjISNJjTpPFp2XLliX8PDVZOmpqatLevXutZohEIvrHP/4x53rTZZsDBw7ot99+m3Wd6elbwWBQ8+bNs5pBkjZu3KiXL1/GL9soukxNTc16LGyVjmpqavT69WurGcbHx+OPhc3iU319ve7cuWOlEDgjGAzq22+/tTKV7ks3b97Uli1brGaQ/P29r1t+TfcFAGAGxScAAAAAAAAAxkUiEZWVlbna1s3Ca5PTnqTEE58+fPiguro6YxmSLQ5av369sYUQyTKYmPaULoMUW+zopjiX6/2nWjgbjUZ9/8Ozm+LTw4cPdeLECd8yuC2LFBUVJT2zuakMPT092rBhgy8ZMik+lZWVeX421kynTo2MjGQ0pcONbIpPmzdv9qwUkW2GiYkJT9+3sp34tGXLlpymRX0pl/KVV5Ovcilf1dfX69WrVzlnyGXhzfDwcM6vES+e2+vXr8+ptONF4SeXwpFXGSSpqqoq65KCV4uwPn/+nHJaSCpelq/WrFmTVUnAy8Vo7e3t2rRpU8b7eV36WbFiRUaLLgOBgOeLdn/77beMzvTuR/kqk8KR5F/hZ//+/Xry5InVDFNTU1qyZImrbf0s26xZs8bVa87PDO3t7a6Off0uHS1YsCDttF6/yzaPHz9OexIGvzNEIhH99NNPVjNIsWJ3sknWkpnyVW9vb8rjb1MTn0pKSpI+/00Vn5qbm7Vjxw6rGRzHSVg4kswWn3bt2pWwtGoyw/j4eMLPU9Olo3Xr1sVLNjNMF8B6enrm/E7LxsSnysrKWe9ZNspXnZ2ds37/bKt0VFxcHP+dga3S0cDAQPw1YnPK0Jo1a/TixQurGYLBoP76179aL181Njbq0KFDVjM4jqPvvvvOagYpdtItv373nAk/TrQBAKD4BAAAAAAAAMCCo0ePzjpbaCrpik93797VxYsXvYjlWqJpB+Xl5TlPlcg1w8jIiGpqaoxlSFY6MjHtaUay0o+JaU9S7A/8qRamHT9+XC0tLb5mcFP4Wb58ufUMz58/14EDB6xmkKTVq1f7tijC7fO+s7NTW7dutZpBip1h3esFhSMjIxktABodHdXq1as9zZBNcWj9+vWeLsTPpvAzOjrqafkq29LRpk2bPCuiZftzpqenVVRUZDWDFFtgl+ti097e3rQLvVMZGhpSRUVFThm8+PesqanJqaDgReHn8+fPqqqqsppBii2QzvYM716Vjnp6ejKacORHBik2nSKb418vM7x48SLtFJlEvHzPdxwno8KRFDuG9HrB7KFDh/To0SPX2/sxdWp6etp14Ujyr/i0fv1618eGfmXo6upyXZL0c+rU4sWLFQwG027nZ/Hp4sWLriaR+ZnBcRz99NNPaReh+l06qq+vV2tra8pt/C789PX1pf2ubKJ0lGzC0QwThZ83b95o3bp1VjPMFI6SPTdNFX5++eWXOROOTGcYGRlJ+hlisvhUXl6e8LuUyeJTd3d3wpNRmC4dFRQUzHmdmi4ddXR0zDl5lo1pSz///POsopGNDM+fP5/1HcBW+Wrx4sXxz0tb5av29vb4Z5nN0tGaNWv0/PlzBQIBaxnGxsb03XffuTre89O+fftSTrQ0wXEc/eUvf7FefLpz547a2tqsZpBk9G9VAGAKxScAAAAAAAAARjmOk9HC7nQTe0xPe5JiZZsv/4D28ePHpGfn9Uui4tP69euNLgZJlMHktCcpeflq3759vk97SpfBxLQnKbYYK9XCk6amJp0+fdrXDG4Wlq5YscLXs126Kfx8/PjRt8KR2wySVFpa6tuCBLeln4GBgawXzXuVQYqVr7xeYNrV1ZVR0WR4eDjnYsnXsilfef1YZFu+cjuR0a8MUmwKmFcF2mxLPz09PVq7dm3O9x8Oh3NayF1RUZHzZ3uuxae+vr6sJxzN8KJ0VFpamtMCQy8yvHv3LqfPEa/KV8XFxVkvdPSqdPT48WPt378/q329LNwUFBRktbDNywynTp3SzZs3M97Py7JLIBDQ4sWLM9pnbGzM84WiGzZscF04kvwp/PT392f0fcSv0tHy5ctdLwb2q/Bz//59HTx40GqGSCSi+fPnu9rWz9LRqVOndPXqVasZxsfHtXTpUqsZpNgU3nTlCb+LTy0tLWlLqybKVwsWLEi5KNhE8amxsVHXr1+3mmFiYkILFy5Merup3zOVlJQk/Xw2VTpqb29XZWWl1QxS7Pgm0XGvyeJTU1OT6uvr51xvuvj0008/zTleMZ3h8uXLamhomHWd6eKT4zj6+9//rnA4HL/ORvGpqalJ27dvj1+2MW1p5rGYeV7Ymvj09u3b+N8lbBafli5dqk+fPlktPvX392vevHnWizZ1dXW6du2a1eLT9PS0/vM//3PWa9WG1tZWnTp1ymoGyd8TPAD4Y6L4BAAAAAAAAMCo06dP68mTJ6637+joSPrHqgcPHrg6c7TXQqHQrEXtFRUVxv+42NHRMatEYnrak5S48GNy2pOUeOJTOBxWSUmJ1QySdOTIET19+tRIhlQLTE2Urz58+JCy1NTa2jpnkYjX3CyyLS0t9XUxgpvn/rt377KaTOFlBik2ycavRVNuMwwODuY0vSWZTIsma9as8XwxX6aFn4GBAc8fi2xKR1VVVZ4uMs2HyVfZln5KS0s9O3t1thm6u7tTTiFwa2BgIKfjlFWrVuW8uDDXwk97e7u2bNliNYMkFRYW5rSYy4vS0evXr1VbW5v1/l4VfgoKCrLe16vy1e3bt9XY2JjVvl4twAqHwykXi6fiZflq8+bNCU9KkI6XC9EGBgZUWlqa8f17XYwvKSnJ6BjHj8LPs2fPVFdXZzWD4zj6+eefrWaQYiekcPv9368MoVDIdfnKz7JNRUWFq88iPzM8f/7cVYHXzwwz07fSnajA7+LT1atXdfz48ZTb+F06CgQCaV+nJkpHlZWVKb/Dmcjw+vXrlMe9pspX8+fPT/o7A1PFp6amJu3evTvhbaaKT9FoVH//+9+tZpBiEwOPHTs253qTpaNQKJTwsTBdfDp8+LAuX7486zrT05YikYi+/fbbWcduNiY+NTY2zjrBk42JT47j6G9/+1v8vm0Vn+7fv68NGzZIktXi008//aSBgQGFQiFfT3qVSnd3d/wz1WbpqLS0VC9evMhp8neuwuGwvvnmG6uFPEm6fv26Dh8+bDWDFDv+BfD7QfEJAAAAAAAAgDGO42RcSAkGg0knZ9iY9jRjZmFhV1dXTotPszU6Ojpr4ceGDRuMnAn4S18Xn0xPe0qUQZL27t1rbNqTlLj4FIlEVFRUZDWDJN25c0fnzp3z/f4nJiZSLkRavny57xnSlW06Ojp8LRy5ySBJK1eu9PUP8G4y9PT0aP369b5lcDvtyM/yldsMnz9/9mSqT6L7z2SxR0VFheePRaalo76+Ps+ngGVT+KmurvZ00kE2Gdrb27Vt2zbPMmQ7+aq4uNizs1dnWzR5//69Nm/enPP99/f351QYWr58ec5nj861+PTkyRMdOHAgp5/hReFn6dKlOX2OeJHh8uXLOn/+vNUMjuNowYIFWe/vVemovr4+64VUXmUYHh7OuvTvZfFp1apVGS8KDwaDnn7+vX37NuP3rP7+fs8XJi5YsCCjn+nHmdBPnjypGzduuN7ej9LR5OSklixZYjWDJNXW1urly5eutvVr2tLHjx9dT0/0s/Azf/58V1MQ/Mxw+vRpXbp0Ke12fv5+IxKJ6Mcff0y7nd9lm/Xr1+vdu3dWM3R2dqadfmuidPTzzz+nPNYzkeHq1as6evRo0ttNFH6i0ai+//57qxkkaffu3bp//37C20xNWwoGg0kfC5MTn9avX5/wWM/ktKWxsTHNmzfPagZJ2rp1qx49ejTrOtPTlsbHx+c8L2wUnxoaGmZ9H7JRMAmHw/rLX/4S/92TrWlLly5d0p49e+KXbRV+vv/++/hnha2JTy0tLVq9erXVDFLs92oPHjywdv9S7P3pm2++sVaEm3Hv3j1t2rTJagYpNjEbgDcoPgEAAAAAAAAw5sqVK2pqasp4v0QLQZqbm3Xy5EkvYmWlvb1dUmzhvq2z582Ur0ZHRz1frO7Gx48fZy28NT3tSZpbfAqFQkanPSXKIMXOxNrW1mYsQ7Lik4nC0YxkE5cePXqU9kzaXujr60u52KG4uNj3RQDpnv8vX77U3r17rWaQpLKyMl8Xp7gpHeVL+Wr16tW+LBaanp52vTivu7s7foZeL2Vatlm9erXnZ63Opnzl9eSrbIpPK1as8PT9IpsMb9++1fbt261mkGKPhRdnjnYcJ+uF/S0tLdq3b1/OGXIt2xQUFOS8aCfX8tX9+/dznqCY6+MQjUaznnA0w4vCz4kTJ3Tnzh2rGSYmJnI61vKq7LJ69eqsSwpeZWhvb9fGjRutZpBir9NM378jkYinUzwuX76sM2fOZLRPf3+/p4sCQ6FQxq9TP0pHNTU1ro/JJH9KRyMjIxlNwPWr+LRkyRLXx99+Zbh06dKsCRmp+FV8CoVCrieR+Vm+qq+vV3Nzc9rt/Cxf9fb2ujqZj98nuFm0aFHa56bfpaNLly6l/f2e3xnC4bD+8Y9/pNzGxMSnPXv26N69e0lvN1F8GhkZ0aJFi6xmkGIneHrx4kXC20xNW+ru7k76GWJy4lNxcXHC79Ymi0+9vb0Jy8ymJz4VFRXN+b2X6fLV8PDwnPcLG38bWLdu3azPMhsTnyYnJ/XXv/511nU2CliNjY06cuRI/LKNiU/hcFj/+Z//Gb9vWwWwly9fqrCwUJKslo4WL16cttztt6mpKf37v/+79fLVo0ePVFlZaTWDFCt422byZIX4/aL4BAAAWzF2SAAAIABJREFUAAAAAMCYbAspiX4hbrrc8rX29nb19PRo69at1jLMFG42btxofNqTFFskOLOQzca0J2lu4Wffvn3G/6j2dQbT056kxKWjGzduuDqTtp8ZJLPlq2Sln9evX2v37t1G7j/VH1NXrFjh+x++0xWfOjs7fX/fcrPAtayszNcFMm4KNx8/fvRkkk0ybhf6lpaW+rJQp6enx/UZZj9+/OjLGVAzLT6VlZV5voAs08LPs2fPPC8oZlM6Kiws9HSxTjaFm2fPns06c7ONDFJssbgXC1XGx8ezfn5dv35dZ8+ezTlDLqUjx3FyLhzlmkGKlbsfPnxoNUM4HFZBQUFOP8OL4tPatWuznujmVYYPHz7kNLnQq6lTS5cuzXqxpVfFp6amJh0+fNhqhmg0qvnz52e8XzAY9PTzb/v27a4nHM3wuvjU29sbP+O9rQxSbBJZJj/Xj9LRw4cPM/o89aPwE4lE9NNPP7ne3q/y1datW10/N/36HcfY2JjrSWR+/p5l2bJlrqbW+Fn4uXv3rqtpln5mcFM4kvwvHe3YsUMtLS1WM4yOjqYsHM1s47eioqKUxwcmpi11d3en/L2aqYlP8+fPT/r5bKr41NbWppqamoS3mSwdzZ8/P+FrwGTpqLW1NeFjYXri05IlS+Z8tzVdfOro6IiXW2ZEo1HjU4aKi4vn/B7edPFpZGREf/vb32ZdZ2Pa0tq1a2dNWbJRfIpEIvrmm2+snaRvxs2bN+Mnu/rTn/5kLUdhYaFevHihf/onezWJQCCgf/u3f7Nevurs7HQ17dRPoVBI//Vf/2U1A34fKD4BAAAAAAAAMOL27du6du1aVvt+/Qe0p0+f6ujRox6kyl5HR4cqKyuN/3H16wxjY2OeT8fIxEz5aufOncanPUmxP27O/OE9FAq5OmOy176e+HTo0KGkZ6X1S6KJTyYLR8kyNDU16dSpU8YyJHsOFhUVGfmj98TERNLFUK2trTp06JDvGdK9DouLi30/C2y6ws+HDx/yonxVUlLi62IAN4vh29vbVVtb68v9RyIR1wvai4uLfXksMin8dHZ2+lJEy7R0tHTpUs8XJGSa4cmTJ64WofqZQYo9Fl4u1smm+HTr1i1PP0eyKdx4VTiSYov6sy20XbhwwZMz9OZSOgoGg64Xi6eSa9mmrq4u52OtXDP09fWpvLzcagYptpgrl/dvLwo/Dx8+zOk9y4sMjuO4niLjVwZJ2r9/vx4/fpzVvl6VfkZHRzOacDRjcHDQ0+PlFStWZLwo3OviU0dHR8bFQK8LP47jZFQ48iODFJtwlK7U8SU/yldDQ0MZPTf9mvhUVlbm+rPQr+JTc3OzduzYYTVDNBrVDz/84GpbP4tPtbW1evbsmdUMQ0NDWrp0adrt/C4+lZSUpH1u+l18amtrSzuN2ETpaOHChSnvx0Tp6MaNG9q/f3/S201MW3IcR999913S7w+mJj5dv3496clBTJWvotGo/ud//ifhsYrJ8tW9e/e0ZcuWOdebLJo4jqO//e1vCR97k1Ofnjx5knCKjelpSwUFBXN+/2Y6w5s3bxIW0UzbuHHjrKnINso2k5OT+uabb+KXbRWfbt++Hf+b2T//8z9bySDFvq8/e/ZM//Iv/2ItQzQa1X/8x38Yn9D3tdLSUlcTV4F0KD4BAAAAAAAAMKK0tDTrfb8uPuXys7zy6tWrhH/oNKmjo0MbN270bUGQG+/fv7c27WnGTOFm7969am9vt3b/UqxosHLlSqsZJOnq1atZFw2zlWjik+nyVaIMbW1tnhcIUklWPFq+fLmRPzinKvy8efNGdXV1VjNI+VG+evv2rXbu3Gk1gxQr5fl5Nlw35avXr1/79lgMDAy4XgBUVFRkvXzV1NSkxsZGqxkkeVIsyTXD3bt3PX8sMs3gZeFoRjblq+PHj6upqcmT+3ccJ6uCRTQa9eyx+Pz5c9afR9u3b084iTVTuZSvJiYmPDm+yLV0VFJSkvPC31zLNi0tLTlPZcv1cXAcJ6sJR1/yonR04sQJ3bp1K+v9vSjcTE1N5fT+7VX5qry8POv3Ga+KBW1tbdq+fXvG+42Pj3t6LFBQUJDxMefAwICnx+wnTpzQ9evXM9rH6+/3Y2NjrkodfmaQYt8BMvm5fmTo6OhQdXW16+39KB05jqN58+a5fp75VfjZv3+/7t+/bzXD4ODgnIXipjNIse8hbgqHfhafXr165aqo6WcGx3H0ww8/pC0M+F2+un37dtoJvH4Xn8LhsL777jurGaTYiZVSnfjAxCL2UCikb7/91moGKVbgvX37dsLbTJ2ULBwO669//WvC92+TxacjR47ozJkzCW8zVXyKRCL67//+74RFtP/H3nlHVXGn//9tiUYT12x6dpOYpskaE40xlkRj1GSzm+1ns+0XN1Ej9gYIKE0ERMQOIvauWBG7KCoW7KAU6aCC0pvUe4F7P78/OJcv5ZYpn5nJxud1DuckMDP37dzp87w+j5odny5dumT2/YyaHZ8YY7Czs2sj4KktPmVmZsruiswDd3d3ZGRkaJqhpqYGY8aMadpXter4FB0d3SQHaik+BQYG4uzZs+jcubNmGa5duwZfX1906tRJswzEzwcSnwiCIAiCIAiCIAiCIAiCUJzY2FicOHFC8vzNCyxTUlJU6Zpii8TERFVHlDRHRkaGpt2egEbxaePGjYIK/JXMUF9fD19fX00+v7CwsGlbCA0NRWpqquoZmotPjDHVhSOgrXQUHR2NiIgIVTOYk47UEo6sZYiJicHBgwdV+fzKykqLhUje3t6qvPy3djxIT0/H5s2bFc9gS/jx8vJSfARYWxmSk5NtFnQpnQFo3EeU3C6EyC6pqamKbRf5+fmCC05cXV0VySBG+Ll06RKOHTumaQbGGObMmcM9g1jp6OjRoy1GK9YiQ0NDA/ftQor0Exoairi4OC6fr9PpJAk7lZWV3ORuObLN8uXLJQlsPDNkZmZyGQBBrnTk4uIi+xpHrmxz8uRJ2Z3I5Gaor6+XLQbykI4CAwPNSvhC4SFfPXjwQJTUoUQGoHHblHptwavb0bVr17B7927R89XV1XEr4q6rq4Ozs7Po+crLy7lepwYEBIg+bvKWjtLT07Fq1SpR8yghHbm4uIgqTlciQ3h4uKhBSpQQfqqqqkRd6yklHQkVjgDlhJ+kpCTB26aS0pG9vb0gWUBJ6ejQoUOIjIy0OZ2SHZ8MBoNN4UjpDAAQEhKChIQEq9MoLT5VVlbCwcHB6jRqdHxasWIFkpKSLP5djWfjJSUlVs+naolPgYGBFruVGI1GVboMPXr0CDNmzLD4d7Wko+DgYIvyrFoZdDod7OzszP5NzY5PGzZsMHteV1O+MhqNZuUrtTs+RUdHt5F4tej45Orq2kK+0qLjU3V1NX744Yem70Ar8enOnTtN13xaSUfV1dUYPXo0DAaDpvIV8fOBxCeCIAiCIAiCIAiCIAiCIBRHbjeg5h2f/Pz8VH9pYw6lX7ILITY2llthmFQyMzM17fYENIpP27Zt06Tbk4mcnBw0NDRo0u3J9Pmmwv4zZ87g4sWLmmRojtCRm5XMcPv2bezfv1/VDObEJ7XXhbkMSUlJ2LFjhyqfn5+fb7HIwMvLS3P56s6dO9i5c6emGYDG7ULpEWBtiU9xcXEIDQ1VNIMQ4cbDw0OxdWEwGAQVtJ85cwZnz55VJINQ6Ugp4QgQJ/xERETgwoULmmYwGAyKjFYsVjrasmULd6FZbPG5Xq8X3anDFlLkq6VLl8oWdUyUlZVJGo28qKgIAQEBXDLI+be4ublxKeiTk+HMmTM4efKk7AxyhB+DwSBJ6uCZAWgsNkxLS5O1DLnCT3Fxsex7Ih7SkYeHh6ziXx4C2NmzZ3H06FHJ8/O4v2WM2SwWVzoD0Fg4n56eLmleXqJJTk4OlixZInq+iooKroXLTk5OopdXWlrK9dnPpUuXsHfvXlHz8Baf9Ho9Zs+erWkGoLEznJABEkwoIT4lJycjODhY0wym7ltC70+VEp+OHz9usXtLa5QSn2pra2Fvb69pBqCxu6glsaQ5SkpHBQUF8PDw0DQD0CgG2rqPVFp8ysnJwfz5861Oo0bHJxcXF6vnZjXkq+zsbJvP9tTo+jR37lyr95NqdHzKzs62OjiIWtKRn58fUlJSzP5NLeno4cOHFs/ranZ8Wr9+vezBKORSW1uLcePGtbl2U1t8On/+PFauXNnid1p0fHJ2dm4xmKMW4lNdXR1Gjx7ddGzSSnxydHRsEtFIfCJ4QOITQRAEQRAEQRAEQRAEQRCKkpSUhAMHDshaRklJCR49eoSMjAxVitX/V+Ax2r1crl69qmm3JwC4e/euZt2eTGRnZ2PXrl2SC9vkUl9fj8LCQjDGNBGOgJbSUVRUlGICgTVaCz9adL5qneHKlSuCi5iUygCo2/nKYDCYLapPTExUXLIxYe245Onpqcq6sFZMGBMTo4qUZ6ugUUhBl9IZYmNjsW/fPkUz2CoYY4wp1u3J9PlCtrnjx48jOjpasQxCMBqNighHgLjrlh07duDOnTuaZqitrYWXlxf3DGKlo7Vr1+LevXuaZigoKJBUOG8NKdKPj48Pt8EHiouLJRXE3bhxg1v3Wanik9Fo5CIcyckAAFu3bkViYqLsDHJkm8rKSi77qVzhx8fHR3YhuFzxKS4uDlu3btU0g9FoFC118M4AAAcOHJDVMZCH+FRaWmqzWFzpDEDjiPdSZTheosm5c+dw6NAh0fPV1dVxK2Y3Go2CpY7mlJWVcb1vCAwMbDGwjxB4Cz/3798XfU5XQjpycHAQdR5WIsPRo0dx6tQpwdMrIT7V1dVh1qxZgqdXSjpasmSJ4OtNpQaCKikpgZubm6YZgEaxRMh3raR0lJiY2KZrijmUlo7s7e1t/juVlo6io6OxceNGq9Oo0fFpxowZNteF0uLTlStXsGbNGqvTKC0+McYwdepUq+tCjY5PCQkJWLhwocW/qyFfmdaFpeOyWuJTdnY2nJyczP5NzcEDPT09ZQ9GIZeqqiqMHTu2ze/V7vh0+vRprF69usXvtBCfvLy8WsjEWkhHR48exdq1azXNQPz8IPGJIAiCIAiCIAiCIAiCIIgmGhoauL80tfYSSgxZWVnw8/NTdbS8nzo/hc5XWok+zblw4QL3gmCxZGVlwcfHR9MM2dnZiIiIwJUrVzT5fFPXKcaYKjKFpQwmrl+/jsOHD6ueobV0pMW6aJ3h1q1bqne+MiceeXh4qHbcKikpMVt0cvPmTYSFhamSwZrww7t7i5QMly9fxpEjRzTNAEBR4ciELeknPDwc169fV+zz9Xq9zdH6jUaj4vKVEPbs2SNolHUpCJWO9Hq9YhKvGPEpKChIEblbTIaKigpFri/Eik8+Pj7cizvFCjeZmZk2C/3EYDQaUVpaKmoexhg34QholG2knBd3796N2NhYbhmkUFNTw+0aR458FRAQwKUTmRzxKT09vU1hm9oZGGOYPXu27OssudLRzp07cevWLU0z6PV6uLi4yFoGD+nI19dXVqcesccnc9y4cUNWx1ceGQwGg6zuWzwyAI1C9c2bN0XPZzAYuHV1KSgokHRO1+l0XIv6nZ2dRS+Pt3R0/Phx0V0LeUtHer1e9LaphPi0cuVKUc/VlBCfsrOzRT27VUo6cnd3F7zPK9Vt6erVq9i8ebOmGRhjmDZtmiAxUEn5KiIiQtBAZkrKV/X19Zg8ebLN6erq6hTt8HPo0CFBAq+S4lN9fT0mTJhg81pPafHpwIEDNjt7Ki0+GQwG2NnZWZWb1Oj4tH//fqvbhRrvsBhjmDhxoqIyqBCuXLmCZcuWmf2bmh2fXFxccPfu3Ta/V7PjU3l5OcaNG9fm92qLT5cuXcKiRYta/E7tjk9FRUX48ccfNc1A/Dwh8YkgCIIgCIIgCIIgCIIgiCb27t3LZdRuE5mZmdi1axeXZV2+fBnbt2/nsiyCH2q8SLRFfHy81hFw7NgxZGRkaJrh/v37mnV7Av6v61RkZCQuXbqkSYbm4pNW66K5dBQVFYUzZ85omgHQRr5qLQvcuHED4eHhqmYwJ9yoJRwBlrtOXbx4UXShn1QsSUdKdzhqjjXh5vz584iIiNA0g8FgUGW7sCUe7d69W9HzWUFBgc3Cm7q6OkXXhVDhJyQkBNnZ2ZpmKCsr4ybvt0aMdLRkyRIu3U9aI0YUycjIaDFCLy/Eylfu7u7ci+jECjMnTpxAVFQUt8+vr68XXUSt1+sFd0MQglRpaMWKFTbFVqFIFX5yc3OxdOlSLhnk7Gdz587lMqq8nAwRERGIjIzUNENtbS2Xawu50lFwcLDojjq8M2RkZGDVqlWaZmCMyRKOAD7S0datW2UJ1XLkMRPV1dWyulnykn48PT0lFybzynDp0iXs3btX9Hx6vZ6bfFVfXy9p2+QtXwUGBop+hsNbfMrPzxctwykhPjk5OYnq2qNEhtjYWFHXm0oU+RsMBkydOlXw9EqJT6GhoTh//rygaZUSn3Q6HaZNmyZoWiU7PgUGBiIhIUHQtEpJR1VVVZg+fbqmGQBg6dKlgt7ZKCkdlZWVCVoXSndbCg4OxrVr1zTNUFJSYnMfUUN82rZtm9Xni2oMPlVbW4uxY8da/PeqJT6dOXPG4mAUanZ8mjlzZpvn8oC64lNlZSW+//77Nt+JmtIRYwx2dnZtnjdQxyeCByQ+EQRBEARBEARBEARBEAQBoPFh9KJFi5CWlsZtmYsWLeL2kmfbtm2Kv7Qi/jdR8sWyUM6ePat1BERERODGjRuaZsjOztas2xPQ+OK5trYWly5dUkWmMIfp5aaWna+aCzdXrlzBsWPHNM0AqCscWcpw8eJFVbeL/Pz8NnKomsIRYFl8ioyMFFxMpVQGxpisIlQxWJOOduzYgaSkJE0z1NfXKy5r1tfX2yxg3rhxo+xicWsIkY4qKiqwYMECTTMAjdewvAtsTQgVfvLz87lJHVIzAI3HbyWuwcUINzdv3sTu3bs1zWAwGGR3kZGbAQBWr17NtdNpVVWV6GL2oqIi+Pv7c8sgVXzy9PTkVmwrNcPly5cFdUMQglTpyGAwwMnJSdMMQKMMZ67IT80MJSUlXLrkyZWOXFxcZBcey5WOwsLCZA9GIXc9VFVVyRY1echXAQEBskRNHvJVXFwcNmzYIHl+HtckRqMRs2bN0jQD0FiwnpqaKnq+R48ecXu+KEU4MmXgWUQ+d+5c0QJPRUUF1wxRUVGiZbjKykquGRhjmD59uqhlKiEdbdiwQVRHTSWko4qKCjg6OgqevqamRhGxISAgQLAY2NDQoIhsk5OTg3nz5gmenmdnvObMmzevxSBL1lCq21JWVhbmz5+vaQYAmDNnjqD7aSXlq+zsbEHP1JQeqM3BwcHmfZzSGfLy8mSd13nh5eUl6bzOk4qKCrNdlkyo1fEpPDwc27ZtM/s3NcUne3t7s52v1JSONm3aZLYjGolPBA9IfCIIgiAIgiAIgiAIgiAIAgBw8uRJxMfHcxOfHjx4gC1btnBZFtBY8EgQP1WUGulVDIcPH9Y6Ag4dOmRz1E2lefDggabylang89SpU5p1vmpedKqFcAS0lI4uXLiAU6dOqZ6heYEjY4xrhwwhGI3GNnJBRESEqtuFuSLPn4p8dfToUVy5ckWVDJakI71eL6qYSokMQKNwlJmZqWmG6upqeHt7K/r5VVVVNs+XS5cuVaTDkQkhws+DBw+wcuVKxTIIla+8vb1RU1OjSAah4tONGzewZ88eTTMwxhQRjgBx0tH27du5dsY1IUa4KSsr4yJ1yMkAAD4+Plw7LRQVFYku2k1MTMTmzZu5ZZBy3GGMYfbs2ZpmAIAtW7Zw2zalZigsLOTWJU/OOcDHx4eLnCFHtrl48SLCwsJkZ5AjHen1ejg7O8vOIFc6WrRokeBznlIZcnJysHjxYlnLkCs+McYwa9YsWdIOD/lq69atiImJkTw/j32rqKgIXl5ekuZljHE797i5uUlaVn19PTe54vr165KemdbX13Mb/KehoQEzZszQNAPQOBDF5cuXRc1TVVXFVfgpKSkRfY9cU1PDXWzw8vISddw0GAzcRZfMzEz4+fmJmkeJrk+zZs0SJZcpkeH27dui7guVGJiLMYbJkycLPvYoJT5dvHgR69atEzStUuKTaV0I2S6UHDwvIiLCotzSHCU7PpnWha1zs9Idn65fv44lS5ZYnUaNjk+Ojo5Wu4ar0fGpqKgIEyZMsPh3tcSnQ4cOYePGjWb/plbHp8zMTMycOdPs30h8InhA4hNBEARBEARBEARBEARBEAAai1IAcBuhbfHixVxfdCn5soggfg5IHameJ0Je/CrN4cOHERUVpdnnP3r0CBUVFT8J+ers2bOadSMziU9aCEetMwCNItrFixdVz6C1fFVYWNjmXHzw4EFVZWJzso3BYFBVvrIk/Kxbtw7379/XNENNTY3iwpEJa0V0gYGBsouThWBNdikoKFCsw5GJ/Px8m8U/8+fPV2zEcECY8JOWlia4sEypDEoKR4Bw6SgiIkKxc5nQDLW1tYqd18XIV/7+/lyK3+VkyMjIQEhICNfP1+l0orsmODs7c70/lHIdHRYWxlXglZKhurqa67YpVTqaP38+NyFBqvCTnp6O4OBgTTMYjUY4ODhwySBH+Fm1ahWXDo5yMmRnZ9sshBWC3GPe3LlzZRfDy81w6NAh2fencqWjyspK2dfePMQnT09PPHr0SPL8cuY1cfPmTVniLI8MRqMR06dPlzx/RUWF7AwAsGbNGiQkJEial9cxv6KiQlLXQsYY1wEC3NzcJB3zeGZISEhAYGCg6Pl4dp5ijGHGjBmiBR7egzUcP35ctETM+/7NYDBg4sSJouQ2JcSn0NBQUQMJKSE+6fV6q0JHa5SSjnbv3o3jx48LmlapbkuVlZWC14WS77L27t1rtpuOmuh0OowdO9bmv1Np8enkyZM2u2oq3fGJMYZJkyZZvZ9TQ3wqKCiAnZ2dxb+rIT41NDTg+++/t3huUku+In7ekPhEEARBEARBEARBEARBEASuXbuG8+fPAwCXjk8FBQVYv3697OUQBPG/RfNOQ1qxZs0arSNgx44duHHjhmaf/+DBAzDGNOv2BPyfdKR2hyNzGX4q8lVYWBhiY2NVz9BcuDEYDKpvF+Y6PoWGhirSOcUS5qSjqqoq+Pr6apoBAIKCgqx2YlIjQ2lpaZMArzTW5KoFCxZwLdwzR11dndXC3ZSUFGzatEnRDEKkI3d3d8WKtYRmOHXqFM6dO6dpBoPB8JOQrwIDAxW7xhGaITs7W7FOZGKEG1dXV0WKGcVkOHPmDE6cOMH186urq0XJEXV1dZgzZw7XDFKko6VLl3I9h0jJkJKSgrVr12qaAQBcXFy4bZtSxafQ0FBucrnUDMXFxdw6w8kRn1xdXbkUocvJcO3aNezcuVN2Bjnik16v59IZTq58tXDhQtmCu1zxKT4+XrbULTcDYwwzZ86U1QGDh/i0fft2XL9+XdMMxcXFssRZXuKTt7e34C6gSmW4efOm5G2TV/d3xhimTp0q6fqfp3R06NAhwWJJc3h2W6qpqcG0adM0zQAAa9euFb2f8hafSktLYW9vL2oeJcQnf39/pKSkCJ5eiY5PxcXFojrUKSVfubm5We0s1BylxKeioiLB+4iSHZ+8vb2RlJSk2PKFUF5ejvHjx9ucTumOTzt37rQpayotPjHGYGdnZ/W+Wo1uS4sWLbLaxZE6PhE8IPGJIAiCIAiCIAiCIAiCIIgWxa5paWmyX4osX76c+wtHgiAIIWRkZGgdQfGOJbYoLS1FeHg41y4EYnn48KHm8pVJuDl48CBiYmI0zaCFcNQ6A9D4Mj45OVnVzy8tLW1R+FpXVwdPT09VM5grCl+5cqWoLidKZCgrK4O/v7+mGYDGQiYeBZRyMmRlZakmrlor/HVzc1O8y2hxcbHVYrAbN25g3759imawVWBqNBoVFY4AYcLPzp07ER8fr2mGkpISLFy4UNMMQGOXDCVGkReT4dq1a4ptm0LFJ6PRKKkzhBDECDdr1qzhfs1ZWloqquA5Pz8fAQEBXDNIkY5cXFy4ippShJ8LFy7g4MGDmmaora3F3LlzuWWQKvzMnz+f2zldaobr169zEY4A6cIPYwyzZs3SNAPQKLhnZmbKziBH+Ll79y6WLVumaQbGGOzt7WVfY8kVn3bv3m21GFcIcveviooK2eIsj45P7u7ustYnjwzJycmypG4e0pHRaMS0adMkPwfnNWjDzp07JXeo5pWhurpalFjSHJ7ylZ+fH+7evSt6Pp4dn/Ly8iSd03lfq7u4uIh+ZsFbOkpOToafn5+mGQDA0dFR1HWqEoOIXL58GatWrdI0AwDMmDFD8kABvLh586bg+xAlOz7NmjWrxYBTllCy49ODBw8EiWhKi08bN27EkSNHrE6jdLelmJgYeHl5WZ2GxCeCByQ+EQRBEARBEARBEARBEMRjTmpqKsLDw5v+v6amxmx3BqGUlpYiODiYRzSCIIj/SbKysrSOoKlwBDS++A0LC9NMOAIa5SuDwSBrJGseGYDGLmBiRsjliemcXldXh3nz5mmSoblosmHDBkmFTHLIy8trUcxWWlqKxYsXq56hNYsXL5ZdwCk3w4MHDxAUFKRaBkvSkaenpyIFUmIyXLt2zeYovbywJHkwxhQXjgDboktoaCji4uIUzWBLvtLpdIofv4UUEvr5+SkqBgoRfuLi4rBt2zZNMzDGFBOOhGYAgF27duHWrVuaZigvL4e3tzf3z2eMiRJNvLy8uHfJE1tEGRUVhcOHD2uawWg0wtHRkWsGKeLT8uXLkZOTwy2DFOkoJSUFISEhmmYwCS5aZgAaBZerV69yySBVfCosLOTWfUvO9aKTkxOXYnw5GQ4dOoSzZ8/KziDnfFxdXQ1nZ2dNMwCAr6+v7O5bcqWjW7duye6+JbfbEmMMM2bMkNWVhUciKtelAAAgAElEQVTHpy1btuDatWuS5+chXz169EhWZzhe1wK+vr6Sz2O8Bj9LSUmRLHXzFJ/s7e0l7Wc8xaeLFy9iw4YNoufj2fHJaDRiwoQJopfJu9vSqVOnRN8L8ZaO9Ho9xo8fL0qSVGJAlfDwcOzevVvw9Ep0fNLr9Rg7dqzgdayU+HTkyBFs3bpV0LRKdXxijGH8+PGCrg2UFJ8yMzMFCf9Kik81NTUYPXq0zf2fxCeCByQ+EQRBEARBEARBEARBEMRjzuLFi9u8BElLS5O8vKCgIC4vfgmCIAjpJCUlafr51dXVcHNz0zTDw4cPERoaqum6yM3NRV1dnc0RL5XOAADr16/HvXv3NM1QXV3NrQBUDHq9vkWx5qJFi1TrcGSitVSel5eHFStWqJrBXJGlt7c31yIxKRni4uKwa9cu1TKYE24YY7JH3xeDpYLXU6dO4dy5c4p/fmVlpcUCRb1er4o8a0t8WrVqFbKzsxXNYEt8unfvnqhRvZXIADSO9q5E0ZoJIcLPkSNHJHciEIKQ9aDT6RS9thAq3Pj7+0sSY3hmSEpKwvr167l//qNHjwRLqEajUVahtiXEik+hoaG4efMm1wxiv9/8/HzuneGkbGPOzs5cC32lSEf79u2T3VFHboaamhquErFU8cnDw4NLVxw5Gc6fP48DBw5wySBVfNLr9dyOFXLkq0WLFuHBgweyM8i5h0hLS+Ny/S9nu2KMYfr06bKvK+Ru22FhYYiMjJS1DLnPnsvKymRf//N4/u3l5WXzutgaPLotJScnY8mSJZpmYIxhypQpkgfD4CVfnTx5Env27JE0Ly/xSa/XY8KECZLm5Sk+bdiwAZcuXRI9H88BTaqrqzFx4kTR8/GWrxYsWCC6ezpv8am0tBSTJ0/mukwp+Pr6IjExUdMMJSUlovYRpTo+rV27FhEREYKmVUp8amhowH//+19BEqyS0pGLi4ugAb9IfCJ4QOITQRAEQRAEQRAEQRAEQTzG5ObmYvv27W1+L1V8qqysxMqVK+XGIgiCIH4GpKamavr5Dx8+hKenp+YZNmzYoJlwBDSe67USjppnABrlaLkjnEvF1O0oNzcXgYGBmn2+CV9fX27FWVIzpKamYtOmTapmMPf9u7q6Kip1CMkQERGBqKgo1TKYK240Go2qdHuylgEAQkJCVDlmFRUVWSwGKysrg5+fn+IZbMk27u7uXIsHpWSIjIwUXEylVIaGhgbFt00h8lVQUJCiMpyQDNnZ2YpKq0KlHxcXF0VGkQeECzehoaGKdPasrKwUvN/V1tZi7ty53DOIlW3mzZvHffAXsRnOnDmDI0eOcM0gVr7S6XTcjxVShJ9ly5Zx7b4lJUNcXJykTh2WkCL8GAwGQaP/K5kBAFauXInMzExNM9y7d49bt1c54pODgwMXIUCOdLRr1y5ER0fLziCn21JNTQ0cHBxkZ5B73PX09BTc7dEScrstxcfHy+6+KzcDYwxTp06VJYrwuK/dtWuXrAEgeAzmUVNTgylTpkien5f4FBAQILljOK97l7y8PMld8niKT/PmzZN0b8pTBI+Pj5ckuPO+VndwcBD9PI33c5bY2FjR60KJjk8zZswQtS6UEJ8yMzNFid1KiU8BAQG4cuWKoGmV6vgUEREheMAYJbtOEY8PJD4RBEEQBEEQBEEQBEEQxGPMihUrzL4Qkyo+rVmzRvJItARBEATBE51Oh7t372qa4cGDB5oKR0Cj6LNq1SpZo0jLJS8vD2VlZVi0aJGmGQDAx8dH1Q5HJqqrq5sKBDMzM7Fu3TrVM7QWn9zd3bkWBAmhdXHKhQsXcPz4cU0zGI1GVbs9Aealo9DQUMTFxWma4dGjR/D19VXl8w0Gg8XC/oULF6pyT2FN+Ll16xZ27typeAZrBbdGo1FywSGvDACwadMmycWXvDKUlJRgwYIFimYQIh25u7tzK2qVmuHcuXM4evSophlqa2vh6uqqWAahws2KFSu4Ci4mysrKBJ8fExMTuQouJsRIRwaDAY6OjtwziJWvVq5cyV2cFZshNzeXe/ctsbINYwz29vZcC56lnBM3b96M27dvc8sgRTrKz8/nei8kVTpydnbmdv0vNcPx48dx7NgxLhmkik+VlZVwcnLSNAPQ2DmRh8gsR76Ki4vD6tWrZWeQI1+ZhCO592Nyuy2FhobK7jgrN0N5eblsGY6HfOXr6yvrGRKPa8S0tDRZ17y8xKeZM2dKPt7x6rZ08+ZNLF++XNMMDQ0N+PHHHyUtj+d1wIkTJ7B161Zuy5NCXV0dxowZI/qYxVt8CgsLE90xvEOHDlwzGAwGjBkzRpR4+sQTT3DNADSKaPPmzRM8vRLSUUlJCcaOHSt4eur4RPCAxCeCIAiCIAiCIAiCIAiCeEwpLy/HmjVrzP5NivhUW1uLpUuXyo1FEARBED8b7t69q1mHIxPZ2dmaCkdAYxHq4sWLJY/SzoO8vDxkZmYqUpwsJgPQOGoxr0IcMTTfFm/cuIH9+/drmoExprpw1DoDoL5wZC6DXq+Hu7u7qhnMiU+LFy8W3eFDDubEo+zsbNW6slVUVFgshFZDOAKsy1ehoaG4deuWphmqqqpEFVNJxZb45OvrK6vLBo8Mt27dwo4dOzTNYDQaRY0sLgUh4lNgYKCi3beEZCgsLOQuuJhgjAm+Zpk9e7Yi3bcqKysFd0zYunWrIucxMdJRQUGBInKiWOHHzc1NdgG+3AyHDx+WLRG0Ruw1dEVFBdzc3DTNADR+Hzy7oUnJcP78eezbt49bBinnorq6Otjb23PLIFU68vPzazMQglSkSkdZWVkICAjgkkHqtsUYw7Rp07gcu+Vs3zt27MClS5dkZ5DT8enRo0dcxFm50pGbm5vNDqS2kCs33rlzR3ZnOLniE2MMkyZNkrUcHt2Wjhw5Iuu4ySNDfX09xo8fL3k/5TXAy8qVK3Hz5k1NM1RUVGDChAmS5uXZ8cnPzw8JCQnclieFoqIiTJo0SfR8vDs+LV++XPTxm3fHp9raWowePVrUs0Xe0pHpmCXm2oLEJ4IHJD4RBEEQBEEQBEEQBEEQxGNKSEiIxRfVUsSnjRs3atpNgiAIgiB+avAYdVguiYmJmndjzMzMxMqVKzXNkJeXB09PT02Eo+YZ4uPjRY9Oy4vKysqmwjglO3VYo7nwc/jwYVy5ckXTDHV1dfDw8FA9Q+tr5jVr1nDvkmGL1sWFeXl5WLZsmaoZzN07eHp6KtpRpzXmRJNTp04hMjJSlc8vLi42W9Cn1+u5F61bwppss2zZMlUEXmsZsrKyEBwcrGkGxhhmz57NtXjQHLaEn127diE2NlbTDEVFRfDz81M0gxABc968ebK6ffDIcPLkSURERCiWQYh4VFVVpdixory8XHDRrqenpyLfhxj5KiYmBlu2bOGeQcx1tF6vV6T7lljhx9fXV7ZEIDdDbGwsNm/erGkGg8GAmTNncs0gRXwKDAyU9JzVElLEp/T0dK7XeVL3d3t7e27XeVIz7Ny5k4twBEgXn8rLy7mJzHLEJ09PTy7XeXKE0xs3biAkJER2Bjnik9FoxKRJk2Q/K5C7bW/btk22OCu341NlZSWmTp0qaxk8xKelS5fKkrp5PPfJzMyU9ayAlxjv7OyMBw8ecFmWVG7fvi1ZcOfZ8Wnq1Kk2B4owB8+OT3fu3JF07c1bfJo7dy6Sk5NFzcO749P27dtFD6hE4hPBAxKfCIIgCIIgCIIgCIIgCOIxRKfTWS1AzsrKEvWSqq6uTvNuEgRBEARBtEVKUQBvrl69yn30fbHEx8cjNDRU0wx5eXlwc3NTvHDeVobIyEjVpI7WFBQUwGg0wmAwaCZfNZdt1q5di7t376qeoXmBYUVFBXx9fVXP0Fo68vLyUl3WbF2UHR8fj23btmmawWg0wsXFRbXPNxqNZgv7g4ODcf/+fVUyWDpPFBQUcOvKIDUD0Chq8iigtIU14efEiRM4e/asphl0Op0qMpwt8cnb21tytxFeGZKSkrBu3TpFM9gSnxoaGhTvviVE+gkICFBUThQimiQkJCjWUVOofMUYw6xZsxTJIEZ8CgoKQmZmpqYZMjIysGLFCu4ZxEhHjDHMnDmT+zWvWPFp48aN3LuhiRWf8vPz4e3tzTWDlGOwg4ODbCFCboaTJ0/i8OHD3DJIkY4qKirg5OTELYNU6WjevHnc5ESp99m3b9/GqlWruGSQeg9hMBgwefJkLscKOfcxmzdv5iLDyRGfiouLuYizcvdzDw8P5OTkyFqGXOkoPT0dXl5espYht9sSYwx2dnaytise4tPZs2exdu1ayfPz2Lfq6+sxZswYyd8rL/Fp7969kjuR8er4VF9fj++//17SfsZTfIqMjJQ0uBRP8enevXuYNm2aphmIxxcSnwiCIAiCIAiCIAiCIAjiMWTr1q1WuzM1NDSIGnV++/btmo88RxAEQRDETxO5hTM8OHv2rKbCEQBcvnwZR48e1TRDXl4e5syZo9nnNzQ0oLS0FNu3b0dSUpImGUwF4pWVlfDx8dEkQ/Pr8CVLltgs8lc6Q0pKCjZu3KhpBgCYM2eO6vtp66LTXbt24fbt25pmKCsrU1WGq6qqMlvUN3/+fFldBMRgSXy6fv069uzZo2mGhoYGODs7q5LB2rEgMDAQ2dnZmmZITU3FmjVrFM9gSzpycnLiNoq+1AwbN27EnTt3NM2Qk5ODJUuWKJrBlnzFGIOjo6Oi34cQ0eTAgQPcOri0pqysTNC5qbCwULHrCjHCj5OTkyKyqJgM+/btU+T7ECMdlZeXKyKLihWfXF1duXdDE5vh+PHj3O9BxP6b9Ho9ZsyYoWkGoPHahqcsKkW+iouL4yYcAdLkK6PRiMmTJ3M7dkuVr0JCQhATE8Mlg9SOT0VFRdyu8+SIT7NnzxbUbdIWcsSn69evIzAwUHYGOecgo9EIOzs72d2z5MpXGzdulN19S+7+VV1djfHjx8taBg8WLlzIXSIWS0FBAaZMmSJ5fl4dn/z8/CR33+UlPpWVlWHMmDGS5uXVbclgMOCHH36QdB6mjk8ED0h8IgiCIAiCIAiCIAiCIIjHDIPBIKg4Ji0tTdDyGhoa4O/vLzcWQRAEQRCEYuTm5modAWFhYVpHQHh4OLfiMqncu3cPnp6emn1+YWEhDAYDli1bpllHNJPwk5+fj6VLl2qaAQDc3Nxkj4otN8O5c+dw4sQJ1TM0l47U6qhjLQMA+Pv7i+ruwYPW+0JqaqriHXWsfT7QKFQo3VGnOZaEny1btiguuJiwdEwqLi7GggULVMlgTXyaM2eO7EJSuRkiIyNx/PhxxTNYE34qKipUOY/Zko7c3NwU79RnK8Px48dx+vRpTTPodDquHVxaU1dXJ2g9e3p6KtYNrby8XFAB9dmzZxEeHq5YBiHU1tYq9n2Ika+8vb0VEcvFSEfXr1/H5s2buWcQs53p9XpFuqGJ3dZXrFiB9PR0rhnESkd37tyR1CGDZwaj0YipU6dylUWliE+bN2/G1atXuWWQci4ydUPWMgPQKBwJ6bAoBKmyzrlz57B161YuGaSKT/X19bCzs+PWIUgqmzZtwvnz52VnkHNvm5uby+UeRO5+7ubmJrs7tdzvMz4+XvaAHHI7PjHGMHHiRFliII+OTzExMbLWBS/xacqUKXj48KGkeXl1W1q6dCkuXLggaV4SnwgekPhEEARBEARBEARBEARBEI8ZYWFhyMjIsDmdUPFp7969gpZHEARBEATxOCO1OIEn27dv1zoCNmzYoGkXMKPRiOTkZMW7ZFjDNNK8t7e35BHS5WKSjq5evaqZlGcSfoxGo2oddSxlAIDg4GBVOupYy5Cdnc29KFdsBqBRcFFThquurm6zLxw5cgQXL15ULYM56ai6ulpVUdNSkb6Pj49iQkVrLMlXFy5cUEyoaI2l9WAwGODo6KhKBmvFlf7+/m32GbUz3Lx5U5VzurUM9fX1qsiJtkTQlStXiupYrkSG+Ph4rF+/XrHPNxqNNgWLhoYGRQQXE0Klo6VLlyp2LhWaISUlBUFBQYpkECo+GY1G7h2OTIg5H6xcuZK7cASI67b08OFDRbqhicnAGMP06dO5X9uIFZ+2b9+O6OhorhnE3kuUlJTAxcVF0wwA4OjoyPXaRkrHp3PnzmHbtm3cMkgRn3Q6HSZOnMgtg1TpaNmyZYiPj+eSQaokn5eXx02clZqBMYYpU6aI7qxnDjnHm+joaC7dt+RQX1+PsWPHyu4iKVd82rlzJw4dOiRrGXI7Pul0Onz//feyBoDgIT6FhoZi9+7dkufnIT7FxcXB3d1d8vwkPhE8IPGJIAiCIAiCIAiCIAiCIB4jGGNYtGiRoGmFiE9GoxF+fn5yYxEEQRAEQRAqoFWHo+bs3LlT6wjw8/MTXajIk9LSUiQmJqraUac1hYWFYIxpJhwB/ydf7du3Dzdv3tQkg0leKCsrU62jTmua75ceHh6SR4vnleHSpUuqCS6WMjQ0NHAvyrVFSUlJmwLFpUuXIi8vT7UM5oSf9PR0rF69WtMMRqNR1e5blmSbrVu3civKlZrh/v37WLZsmSoZLHWgYIzBwcFB0wwAsHbtWqSkpGiaoaCgQJVjtzXxiTGGWbNmce3gYg5b0s/GjRuRkJCg2Ofr9XqbYsHDhw+xcOFCxTIIKURnjMHe3l6x7nRCi+F37NiBa9euKZJBqCySm5uriHAEiJOOnJycJHUlsoWYa/m9e/fi3Llz3DOI+XeVl5cr0g1N7LqdO3eurM4p5hDbbSkyMhKhoaFcM4gVn/R6PSZNmsQ1g5RreD8/P65yopSOT5mZmfDy8uKWQaooM2PGDFGd/awhVTrav3+/bMnGhNTrgtraWowbN45L9y05ywgICEBsbKzsDHLIzc3F9OnTZS9HbscnDw8PJCUlyVqGXPEpJycHU6ZMkbUMueKTTqfDd999J0uG49V1ini8IfGJIAiCIAiCIAiCIAiCIB4jzp49i5iYGEHTChGfDh06hDt37siNRRAEQRAEQTwmaCkcmdi7d6/WEVTvqNOagoICHDt2TNWOOq0pLCxEXV0dXF1dNc0AAAsXLrTZ0UPpDHFxcZp1ZTNJR4wxRYpyxWQAGjvDqSFUNIcx1mIbyM/PR0BAgKoZzElHc+fOVayAX2iGPXv24MaNG5pmqKqqkjW6uFgsFYW7urqqJidaynDw4EHVjt2WpKOysjLMmzdP0wxAYyGqGAFDKtbOD4cPH1ZEqBCToby8XJX9w1ZB+pw5cxTtZFleXm6ziPv48eM4efKkYhmEiE+VlZWKyrtCxac5c+Yodt0tNMOFCxe4Cy4mhO77VVVVinULFLN+PTw8FBmEQoz4dPXqVUW604nZ7/V6PaZOnco9g1j5atGiRYLefYhBrHSUnJwMf39/TTMwxjBp0iRJHbMsIUWKCA8Px/79+7llkHLtXFJSgmnTpnHLIFV8mj9/PvdtUyyJiYmYP38+l2VJ7fjEGMOECRO4yHByOj5dvHgRS5culZ1BjvhkNBoxduxY2etCbrclV1dX2e+CqeMTwQMSnwiCIAiCIAiCIAiCIAjiMUJotyfAtvjEGNNsVHSCIAiCIAiCkIqWwpGJY8eOafr5paWlqnfUaU1BQQHWrl2LrKwszTIUFhYiOzsbgYGBmmYAABcXFy4je8vJEBYWhqtXr2qSwVQMXFlZqZpQYSkDAMybN0+RDhXWqKqqalF4Gh0djQMHDqiaobV0pNPpMHfuXE0zAMCSJUtU7b5lTjq6fv06du3apVoGc8KPXq9XtVOfJenI19fXqpDEE0vCz+3bt7FhwwZVMlgqNNXr9YoJFUIzAICPj4/Z/UbNDFevXsWOHTsU/fz6+nqrckNdXR3s7e0VzSBEfPL19UV+fr5iGYRIR5cvX1ZUphYiHTU0NHCVCFojVDpasGABHj58qGmGW7duKda9Uah01NDQILtbiCXESEcBAQGKSB1ixJ309HT4+flxzyBGjDYajZg4caKszinmECs+7dixA5GRkVwziJWOHj16xF2Gk3K/7+jo2HRPxAMp4tONGzewePFibhmk3Fs2NDRg7Nix3LZNqeLTli1buD0zkdrxqaqqCmPGjOFyjy5HfAoKCsKZM2dkZ5DTbenMmTNYvny57AwkPhE8IPGJIAiCIAiCIAiCIAiCIB4TYmNjcfr0acHTP3jwwGqhV0REhODuUQRBEARBEARB/LRISkrS9PMLCwvh7e2teQZPT0/VOriYo6ioCKdPn0ZERISmGerr6zFnzhxNMwCNggvPokMxmMSBpKQk1YQKSxm06r7VWp4ICgrC/fv3Vc3QWjrKzc3lWgQqJQNjDA4ODppmAIDg4GBkZmaqlsGc3JSeno6goCBNM5i+D7VkUUvy1apVq1T7PixJR2lpaarJu5YyGI1GzJo1S5UM1sSjoKAgpKenK/r5dXV1VgWL9PR0LoXB1rAlPhkMBkyfPl3TDACwZs0aJCQkKJZBiHyVmprKpVOHJYQI0kajEVOnTpXc/YVHBgAICQnBrVu3FMkgVL7KzMxUbBA1ofIVYwyTJ09W5NpfzDI3bdqkSPdGMeJTUVGRIrKoWGFmzpw5yM3N5ZpBrHwVERGBrVu3cs0gVr6qq6vDuHHjFDtWCGXJkiW4efOmphlycnK4XldI7fjk5OTEbZAWqeJTUlIStwFrpIpPZWVlGDNmDJcMJD4RPCDxiSAIgiAIgiAIgiAIgiAeE8R0ezKRkZFh8W/U7YkgCIIgCIIgCKnU1NSo0qHCGg8fPsS2bds0zVBYWKh5962ioiKsW7fO6v2fGhlyc3OxZMkSTTMAjd23tCo6NO0TBw4cwJUrV1T//JqamqYC5uLiYk3u+1sfF9zd3QUXVfOitWwTFhaG6OhoTTMUFxerLouak46cnZ25d6iwhjnp6PDhwzh37pymGdSWdy3JV46OjqILvKViSXzatWsXrl27pmmGgoIC1b4Pa/KVg4OD4vuHXq+3Klhs2rQJsbGximawJR0VFRXBw8ND0Qy2ui0xxjBjxgxFvw8hHZ+2bt2q6PlcyPkxPz8f7u7uimUQIh0xxjB9+nTFBhsQ2vFp165dXDqnmEPov62goEAxuV3M9u7o6GhWslYzw8WLF7FmzRruGcRIR1VVVZg4cSL3DGLvJfz8/JCYmMg1g1hBPCkpiXvnXbEdnxhjGD9+vCDBVihSOj5FRERw3TaliE91dXUYPXo0t+OmVOlo6tSpePDggaYZCKI5JD4RBEEQBEEQBEEQBEEQxGNAZmYm9u/fL3q+tLQ0s7+/cOECLl26JDcWQRAEQRAEQRCEZhQWFqrWMcQSGRkZio3AL5Tc3FzMnz9f0wxFRUWYN2+e6oJL6wxRUVE4evSophnq6uo07b5lKoL18fGxWuCvFBUVFU1Fs7dv38aWLVtUz9C8EFiv18PZ2VnTDADg7e2t+vfRWnyKiopCeHi4phnq6uowe/ZsVTOYk448PT25FuXawpzwc+rUKVWPV+YyVFdXq3q8siQ+ubu7q/Z9WNoPT5w4odr3YUk8Kisrg6urq+KfX1dXZ7UQ29XV1eJ3xQtb0lF4eDhOnTqlaYaysjLFzx9COj7Nnj1b0f1DyLVbWFgYTpw4oVgGIeJTWVmZot0bhcoJDg4Oiu0fQjs+nT59Gtu3b1ckg1AZV6fTwc7OTtMMAODm5qZId1Mx4lNcXJzmgww2NDRg7NixorqGCUGs+LR+/Xrux26xHZ/Kysowbtw4rhmkiE/z58/n+pxASsen0NBQhIaGapqBIFojrX8aQRAEQRAEQRAEQRAEQRD/UyxZskTSiNWWxCdfX1+5kQiCIAiCIAiCIDRFa+kJaBz1XWsSEhKauh1pRVpaGg4dOqRphqKiIqxfv17TDMXFxQgJCUFmZqamGXQ6HVavXq1ZhpKSErz00kuYPXu2Jvtpc+koODgYWVlZqmdoLvykpqYiJCRE0wwGg0HRgnFLtJaOVq1apXp3utYZ4uPjVT9WtM7Q0NCg+vdhTvhZtGgRHj58qFoGc7JAbGwsNm7cqFoGcwJJXV0dZs2apVqGR48e4fnnn2/zey8vL9W6aVZWVprt3HDjxg1Vvg9rXadqampgb2+veAZb4pO7u7vi34ct8SkqKgo7d+5UNIOtjk+VlZWYOXOmphkAYM6cOSgsLFQsgxDx6dSpU9i1a5diGYRIKzU1NZg0aZJiGYR2fPLz80NqaqoiGYR2fLpy5QqCgoIUySD0XVx9fT3Gjh2rSPdGMdfQy5cvx/Xr17lnEMO9e/fg6OjIfbliOz7NmDEDubm5XDOIFZ+io6Ph7+/PNYNY6SgnJwdTpkzhmoE6PhE8oI5PBEEQBEEQBEEQBEEQBPEzp6CgAJs3b5Y0rznx6fr16zh9+rTcWFz4xS9+gT59+mgdgyAIgiAIgiAIQhJSBqjgTV5entYREB0drfm6iI6ORkxMjKYZcnJy4O3trWmG4uJizJkzR5ECTDEZjh8/jjNnzmjy+TU1NdDpdCgpKYGPj48mGZpLR87Ozpp8H80FsG3btmnSna75eigqKtJk/2guHTHG4ODgoPrxqrXws3btWty5c0fTDPfv38fixYtVzdBavmKMYebMmaoKkuYEsKCgIIuDRymBOfkqMTERwcHBqmUwJx4ZjUZMmzZNle9Dr9dbFCz8/f0V6eDSGmvSUUxMjCrCqrVuS3V1ddyL1sVmABqFPKUFSVsdny5fvox169YpmsGW+FRTU4PJkycrmkGI+OTt7a2o0C1EfEpISMDChQsVyyDkmkmv1+PHH39U7Hgl9DphyZIlmnf/TUlJgYeHhyLLFtrxyWg0Yty4cTaFUimI6fgUFhaGHTt2cM8gRnyqrKzE999/z/1aU4x0ZDQaMWbMGO7d6Uh8InhA4hNBEARBEARBEARBEARB/MwJDAwUNOKgOcy9tF+wYIHcSLLp27cvIiIiUFRUhG+//VbrOD8ZhL5IUornnnsO/fv31zTDx78AfTEAACAASURBVB9/jL///e+aZhg+fDjs7Ow0zdC7d2/NMzz11FP4y1/+ovkLrddffx0vvPCCphnat2+PZ599VtMMgPjRJQmCIAiCeDz4KXS+UnIEfqFcuHBB6wgIDw9vIXpoQXR0NMLCwjTNUFhYCCcnJ00zlJSUwNvbm3vBn1Cqq6uh1+tx9uxZHD58WJMMpm2xqqoKbm5ummYAgHnz5pmVTpSmufh05MgRTYS85tthaWkpPD09Nc0ANAp5tmQDpTPs2bMHly5dUjVD620wPz8f8+fPVzVDa/GJMYYZM2YI7nKiRAYA2Lp1q6odQ8wVyGdmZiIgIECVz9fpdGYFC6PRiKlTp6pyfWVNvlqxYgWSk5MVz2Ct21J8fDxWrlypaYb6+npMnDhR8Qy23r/4+Pgo3kHSlvgUFxeHJUuWKJrBlnRkMBhgZ2enqNAt5Fi4YMECRfcPIRmSk5Ph5eWlWAYhxyCDwYCxY8dKfn9oC6Hvq0JCQnDu3DlFMgjt+FRQUKDYsULMM3kHBwdFjhViOj4FBgbi7Nmz3DNo/Z6I+HlA4hNBEARBEARBEARBEARB/IyprKzE6tWrJc/fWnxKSEjQrOCmOW+88QZ++9vfolOnTkhKStI6zk8GrQsWS0pKVHmhbo0nn3xS80LBr7/+Gs8//7ymGdasWYO//e1vmn1+165dUVJSgk2bNin24tQW7733Hu7cuYN79+5pJh31798foaGhKCoqwjfffKNJhl69esHV1RUXL17E0qVLNcnw1FNP4a9//SvWrFmDAwcOaJIBaDx3TJ48GQcOHBD80ps3HTt2xOeffw4/Pz+88cYbmmQAgOeffx7fffcdPvnkE80yAI37yLBhwzTN8PTTT2PAgAGaZgAaJU2t6dSpEwmSBEE81tjqWKAG165d0zqC5I7RPNm9e7fm95YxMTGynqfwoKioCI6Ojpp9fllZGYxGIwICAjTrDGeSjhITE7F27VpNM+j1es2+j+bylbe3tybPPZpLRxcvXsTevXs1zVBTU6OJINlafHJ1dTXb/UhJWktHBw4cUKxg3BKt/83l5eVwcXFRNYM58WnWrFmqPocyJx5t3rxZtfN5dXW12efB2dnZqgl5lq6fjEYjJk2apIqQZ03CXL58ORITExXPYG27S0hIUFw4Aqx3WzIJR0p/H7Y6PgUHByu+f9iSquLj4xXtOAXY7vhkMBgwbtw4QV26lGTFihW4evWqphkyMzPh7Oys2PKFdHxijGHSpEkoLi5WJIPQZ22HDx/Ghg0bFMkgVHxKTEzEnDlzNM1AENYg8YkgCIIgCIIgCIIgCIIgfsasW7dO1ujEpaWlKCkpafp/Pz8/HrFkk5mZ2fTfJD79tLA2wqYa3L9/HwkJCZpniI+P1zRDdna2phlqamqg0+k0zdCxY0f07t0btbW1SE9P1yTDsGHD8O9//xvPPvssbt++rUkGf39/LFiwAEOHDlWl0MMcGRkZOHjwICZOnKhJgd6LL76I1NRUZGVlYfXq1Xj77bdtFiDwpnfv3ggLC0NxcTHOnz8PJycn5Ofnq5rh3Xffha+vL27evImCggLs2LFDdcnlueeew3//+1/s2LEDBQUFiImJwUcffaRqBqCxO6CrqyvOnz+PkpISTJkyRfUM3bp1w1/+8hesXr0aGRkZOHr0qOoZAOD999+Hvb09Tpw4gaKiIjzxxBOqZ+jatSu++eYbLF++HHfu3MHAgQNVzwAAPXv2xJQpU3Dw4EH85z//0SRD586dMWrUKCxcuBCzZs3SJAPQKIra2dnB1dVVswydOnXCF198oWkGoHFd/Pjjj+jWrZtmGTp37oyRI0fi1Vdf1SwDALz66qt48803Nc3QqVOnn4Qo+swzzyi2bKHXKEIK+KSSnZ2t2LKFEhoaqnUEBAQEKNqNQAibN2/W7D4CaCwCvXPnjirF2pYoLS0FYwyOjo6qX8ObMElHq1atQkZGhiYZTM/2UlJSEBwcrGkGo9Go2XVKc+koICAADx480DTDjRs3NJFFm4tPNTU1mgh5reUrLy8vFBUVqZqhtXx19OhR1e+rWotPpaWlqgpgBoPBrGhib2+vmtBt6Vnwpk2bcOXKFVUyWBKf7t27p2hHneZYEp+MRiMmTpyoyjWFNYlm1apVuHHjhuIZrIlP9+/fV+X+zprc1dDQgB9//FHx78PWNUtgYKDiwpGtQfLS0tLg7u6uaAZbHZ+MRiPGjh2r6PFKyOBX27dvR3h4uGIZhDxrKywsxPjx4xXLIKTbkl6vx+jRoxUTiKnjE8EDGrKLIAiCIAiCIAiCIAiCIH6m1NXVYfny5bKXk5aWhiFDhiAtLQ179uzhkEw+WVlZYIyhoaEBqampXJf97LPPat4xqH379poV9Pyvk5ubq/m6y87Oxp07dzTPoJXkYiInJwdxcXGyl9OxY0dJL6NNBVCJiYmyt4nOnTtLeuH38OFDAI0vDVNSUmRleOKJJ2yOmmqO5oVgWhVNFhUV4eWXXwYA3Lp1S/XPr62tRa9evZr+X4sMPXv2bNGFLSUlxeqIxEowbty4FiOoGgwGLvuoGA4ePNimw1NsbKyqGXJyctrIAzExMap9/osvvogDBw5g0KBBLQoftm7dqlqGnj17ws3NDV9++SV+/etfN/0+ISFBNYG5R48e+O677/DVV19hyJAhTcUP9fX1qm2X3bt3x9dff42vvvoKX331FXr06NH0N19fX1UyAI2dz7788kt8+eWXGDp0KLp06QIAmDhxomoZnn32WYwaNaopx1tvvQWgsThOLdq1a4ePPvoIX375JUaNGoWhQ4eia9euuHz5sqqDL7zwwgsYOXIkRo0ahVGjRuGtt95CaWkpNm7cqFqG9u3b45NPPsGoUaMwcuRIfPrpp+jSpQtee+011TIAjbKqaV2MHDkS77zzDv70pz/h7t27qmUwrYuRI0c2rQsfHx/4+/urlgEAXnrpJYwcORIjRozAyJEjcfXqVYwePVrVDO3bt8eAAQOacvziF7/AkCFDVM0ANApwI0aMwIgRIzB48GB8+OGHihSOmuviYeKJJ57A4MGD8cUXX+CLL77ApEmTFBnoIDo62urfe/bsieHDh+OLL77Ahg0bEBUVxT3DihUrrP796aefxtChQzF8+HDExMRg//793DN4eHjYvD744IMPMHz4cNTW1nI/Xup0OoSHh+PUqVNWp3vmmWcwbNgwvPrqqwgJCeGaoby8HEVFRfD29rY6XYcOHdC/f3988skn3LuFmeQrBwcHm/vcr371KwwbNgxHjx41241GKibxacuWLTav4Tt27IgBAwbg7t27KCgo4J4hOzsbixYtsjn966+/DsYYcnJyuGUwiU9GoxEzZsywOX2XLl3w/PPPc83QXDoKCAgQJKy+9NJLXL+L5tJRYmKioOvGLl26cL3faH6u0Ol0mDlzps152rVrZ1MGkJoBANzd3VsMIqYG1dXVLbponDhxAmFhYap9vjlhobi4WFUBzNx2xRjDtGnTVLvHtfTccO3ataoJYJbEp+zsbLi5uamSwdI5ijGGyZMncz0vic0AACtXrsTNmzcVz2DtWXRGRoZq34clTB2nlH42aUt8CgwMxMWLFxXNYGvAiJycHEyfPl3RDLYGnmKMwc7OTlGBWEi3pXnz5in6TI7EJ4IHJD4RBEEQBEEQBEEQBEEQxE+AyspK7qOI79y5s6noXg4m8cnf35/ri2E51NTUoLCwEGVlZZJEAHN06tQJycnJeOutt7Bv3z7Y2dm1GMVVDTp37ozw8HAMGzYMCxcuhJ+fn+rrvFOnTli8eDGGDh0KHx8fRUe6s0T79u3xww8/oF+/fli/fr0ogYen9PT555/jnXfeQXh4uCgZ7t69e9xGSX/++efx1ltvITY2VlRBIc+OT+3atcOLL74oukAmOzuby4sy0yidYsWf8vJyVFVVccnwzDPPSCoQMklHSUlJsgtCP/nkE1y+fFlyhoaGBtnd0P7whz8gJSWlRdc9ITx8+BAffPABAPnS0TfffIP27duLGsW5srKyxXlWbobf//73MBgMNosvm9P6fCw3w8iRI1FcXCxqP8/NzW3x/2lpabJGVP30009x9+5d5OXlCZ6ndZcro9Eoa1307dsXGRkZogpnzI38K0e+eu+995Cenm51ROHmMMYwdOjQNr+XI1+9+uqroka7f//99/HDDz+0+b2c4p/u3buLum4aN24cPD092/z+zp07kkeW7dSpk9URrluzbds2/PnPf27ze71eL/kcKraQ8vbt2+jbt6/Zv6lRjPX0008jKioK/fr1M1sMpMaI4K+88goCAwMxYsQIPPfcc23+fv36dcUz9OjRAzNmzMCoUaPwwQcftBkRWo3v4uWXX8Y///lPjBo1CsOHD0f37t1b/D03N1fxrhZPPvlkk+Rkbl0wxlT5Pvr27dskOg0bNqzNurh27ZriGX75y182SU4jRozAb37zmxZFeytXrlQ8Q7t27ZrWxYgRI9qsi/Xr1yueAWjcNk2i04gRI/D22283rYtLly6p0r3giSeewKBBg5pEpyFDhqBr164AGov/1erA07Nnz6YMw4cPb5KHGWMt5HKetL4P/cUvfoGhQ4c2Zejfv39TIeWXX36pSIZDhw61+P/27dujX79+GD58OD7//HMMGzas6fgtRAKRgpOTU5vfvfjii00ZPv/8c/Tp0wft27fHhg0buH9+WVkZPD0923S46dy5MwYPHoxhw4bh888/x5AhQ/D000/jwoUL3MWn8vJynDhxAidOnGjzt549e2LYsGFNP2+99RaKi4u5D15UXl6OiooKs906nnrqKXz66acYNmwYhg4dikGDBqFLly5NA2DwzAAAzs7ObYq127Vrhz59+jRl+Oyzz/D6669jxIgRiohPO3bsMNut4+WXX8Znn33W9PPRRx/B3t6ea6cu07Z47949swLYk08+iYEDB+Kzzz7Dp59+iiFDhiA0NJRrYbdJfGKMYfr06Wbvh9555x0MGTKkKUN5eTm++OIL7hkAYMmSJcjKymozzS9/+UsMHjwYQ4YMwZAhQ9CjR48WA6PIpbn4FBMTgzVr1rSZpmPHjujbty8GDx6MQYMGYdCgQRg2bBgKCwu5ZKiursYvf/lLAI0CmKXvuUePHhg4cCAGDRqEgQMHYs6cOZKeM7XG1HWq+cAezs7OZp+lduvWDQMGDMDAgQPxySefYN++fVyOVebkjbCwMBw7dqzN7zt06IA+ffrg448/xoABA5CWlmZTNBaCufvYvLw8zJkzx+z0v/rVr9C/f398/PHHaNeuHZfOVObuhxljmDJlitnnJp06dUKfPn3Qv39/vPPOOxazisHSs9vQ0FCz5zCg8bjZr18/9OvXD6tXr25zvhWLpeczmZmZ8PDwMPu3rl274oMPPkDfvn1x+vRp2YM9WHpHYTQaMX78eItC3uuvv44PPvgADx48kP1M29qziaCgIIuSf5cuXdC7d2+0a9dO0Xvh1NRUzJ071+LfX331Vbz00kuyByuy1vGJMYZx48ZZ3OY6dOiAt956S/YgC7bEp02bNuHw4cMW/96tWzfodDpZ70JtiU8XLlxAQECA1fnbtWsnqxsUiU8ED0h8IgiCIAiCIAiCIAiCIIifAF5eXli6dCm35RmNRqsPqcWQlpaG+/fvY/v27VyWx4vMzExRxda2+PDDD5tGt//HP/6BgQMH4v/9v//H5QWwUD755BP87ne/A9DYaWDkyJEYPXo013+nLYYPH95UrBQWFobg4GA4OjqKKiSWy+9+9zts2rQJAGBnZwdHR0fuIzbb4q9//SsOHjwIAPDx8cF3330neATve/fuccnw9ddf49ixY+jQoQNiYmLwr3/9S7Bwcv/+fdkdhgBgxIgR2L9/P5599lns2rULEydOtDr6enNycnK4yFcDBgzA6tWr0bdvX/j5+WH+/PmCi8pzcnK4dDnq3r07/P398emnn8LNzU3wSOqmAmUeGdq1awcPDw/069cP/v7+govRTcJNWlqa7FE8X3nlFXTr1g3/+c9/sGnTpjYija0MBoNB9jYxaNAgZGVl4Y9//CMiIyMF/5tyc3Px7rvvApAvHY0YMQI9evRATk4OUlJSBG2PrdeV3Ax/+tOf8N133+HDDz9sIxMJzSC309J//vMf/OMf/8Cnn35qtsBMSIb09HRZo/1OnDgRw4cPx5/+9CfBGfLy8lp09jEYDLL2UUdHR7z77rv417/+Jeh8XVRU1KYoDJAnPvn6+uKJJ56AnZ2dIJnNUk45GVasWIHCwkLMnTtXkIRsabuVkyEkJAS3bt0S3KXIUqFhQkKC5GKS4OBgREZGCh5h3dLn6HQ6ycfLgIAAhIWFmS3EbU1NTY1F6QmQLj55enpi3759SE5Otjlt9+7d8e2331r8u9QMM2bMwN69ewUdIwcPHgwHBwfuGcaOHYuDBw82FWlbY9y4cViwYAH3DN9++y2OHj0q6Hy5atUq/Pjjjxb/fu/ePUkjUP/2t79FZGSkoGPDmTNnMHLkSIt/NxgMktbF4MGDBe0TAHD58mUMGjTIaoGcFPmqd+/eSEpKsjld165dsX37dgwfPtysDCgnw+uvvy5ogIYXX3wRXl5eGDFiBN59912LI7ULXafNeeGFFwRtRy+88AImTJiAESNGtBCdWnP9+nXRg4U89dRTgq4/nn/+efztb39rIzq1JicnR/B1sQmhsm6XLl3w5ZdfYvjw4Rg+fDj69etntnDSYDCI3iaEdpo2dRszZRg6dGgbIdGEUs9PMjMz8dprr7UQnXr16mV221QiQ21tLdauXYtu3brhs88+a8owYMAAswWctrqFSaG8vBwODg5NUmRz0cmcXKTEeigvL4efnx8KCgrwwgsvYOjQoU0ZzG2b6enp3MQOE48ePcLFixexZ88edO7cGQMHDsTQoUMxdOhQDBkypEn+MFFXVyfpWGUrQ2VlZVM3m/fffx+fffZZk2z15ptvttk2eXezMBVoOzo6QqfT4ZVXXmkSrT799FP069evTYHzhQsXFMmwd+9eREVFNclWJtFp8ODBePHFF1vMw7urqun51P379+Hn54f27dujT58+GDJkSJPs1LNnzxbn9H379imSwWg0YsqUKWCM4fXXX2+SnAYPHoyPPvqoqasr0Dg4Ds99o/k94KJFi5CZmYnu3bu3kJwGDhyIl156qWk6nU7HtftyTU1N07nh0qVL2Lx5Mzp37ox+/fo1SU6ffPIJevXq1eL7MDcYhhRqa2vBGGva9yoqKjBjxgy0b98evXv3xoABA5pEp759+7b4Pv79739zyWBOBpg5cyYqKirw2muv4eOPP24Snfr379/i2O3j48Mlg7lri/379+PYsWN4+umn0a9fP3z00Uf46KOP0L9/f/zmN79pOla0Fp2lYu4et7i4GDNnzkS7du3Qq1cvfPTRR02iU9++fZvWxb1797h0djUnPpk66tTW1uK1115D3759W/y8/fbb6NChA+rq6vD8888rkgFo7AB2/vx5PPPMM/jggw9a/PTp06dpP/r0009lZ7BEeno6XF1d0bFjR7z33nvo06cP+vTpg/fffx99+vTBm2++iQ4dOmDChAmyxSdL9xEGgwFjxoyBTqfDG2+8gd69e7f4ee+999C9e3eEhITIFp+sdXwKCQlBZGQkunXrhvfeew/vvfcefvOb3zT999tvv43bt29j0KBBsjJYE58yMzMxc+ZMdOrUCe+88w569erV5uepp57CCy+8IPlZVceOHa3e3z569Ajff/892rVrh7feegs9e/Zs+mzTf7/66qt44403ZA22KaTrFEHYhDH2k/n5+OOPGUEQBEEQBEEQBEEQBEE8bqSlpbEOHTqw6upqbss8ePAgA8Dl59tvv2VTpkzhtjxeP9u3b2fe3t7clvfDDz+0WY/19fXMw8ODtWvXTpV/06RJk9pkKCwsZN98841q69Xe3r5Nhlu3brFevXqplsHFxaVNhn379rHu3burlsHHx6fF5zc0NLD58+ez9u3bq5bB39+/RYZHjx6xf/3rX4Lm7dmzJ5cMQUFBLTKkpqayvn37Cpp37ty5rHPnzrIzrFmzpkWGyMhI9uKLLwqa99SpU+yzzz6TnWHz5s1Nn280GllQUBB74oknbM7XoUMHVl9fz2bOnCk7Q2hoaFMGvV7PZs2aJWi+4cOHM8YY27lzp+wMBw4caMpQVFTEvv76a0HzzZ8/nzHGWEpKiuwMR44cacqQnJzM3n//fUHznTlzhjHGmMFgYN26dZOV4fTp08xoNIraHtu3b8/q6+ubsn/xxReyMkRFRTVl2LhxI3vyySdtzvPZZ5+12JccHBxkZYiOjmaMNZ4rXV1dBc3j7OzcIoPc7fLq1auMMcZKSkoEHx/DwsJaZEhMTJSVISYmhjHGWG5uLhs2bJigeXJyclpkaGhoYF27dpWcISEhoenfIuT436NHD2aOwYMHy85w5swZ9sILL9ic/m9/+5vZDJMmTZKcISkpiTHG2I4dO1iXLl1sTt/6XG8iJCREcoaUlBRmNBrZokWLBF0zND+mNefatWuSM6SlpTGdTid4XRYUFJjNUFFRIfkaODU1lVVUVLC///3vNqd99tlnzX6+iXfeeUfyesjNzRV0HTBixAirGf785z9LypCcnMwyMjLYBx98YHPa8ePHW80wd+5cSRmSkpJYbGws69Gjh81pFy9ebDXD7t27Ja+HyMhI9txzz9mc9uTJk1YzJCQkSMqQmJjI9uzZI+hYe/fuXasZdDod69Spk+gM8fHxLDg4mHXs2NHqdB07dmw6x1tD6DVQ85+4uDjm5eVlc7oPP/zQ5uczxgTt461/rl27Jug69ptvvhGUQcozgaioKPbPf/7T5nSOjo6CMkjZN44dO8b++Mc/2pxu4cKFgjLcvn1bdIa9e/cKuibdsGGDoAxVVVWsQ4cOojJs3LiRDRgwQFBWoYh9drF06VJB108REREtruet8Yc//EFUBk9PT0HH6UOHDrGysjJBGWbPni0qg4ODA3v55ZetTvPyyy+zrVu3suTkZEHHqU2bNonKYGdnx5555hmr0wwZMoQdO3aMRUdHM51OZzPDlStXRGX45z//afNc8fe//53Fx8ezY8eOsdLSUpsZSkpKRF1T/f73v7f5vGHatGmsvLyc7dy5k929e9fm92E0GtlLL70kOMPQoUNt7s9eXl6MMcYOHDjArl+/zvR6vc118eWXXwrO8OGHH9qcZvv27Ywxxi5dusQiIyNZRUWFzQxinnELuQ49fvw4Y4yxnJwcdvDgQZabm2szw6pVqwRneOWVV2xOExsbyxhrfN6xd+9elpKSwgwGg9UMZ8+eFZxByPPYvLy8FsuOiYmxuU08fPhQcAYhzzyaf15aWhq7dOkSq6qqsprBYDAIukYFYHOf6N69e4tlV1VVsYiICFZYWGg1A2OMy7NLAKxXr15tln3u3DmWmppqc5uQcy/e/Oerr75qs+zk5GR25coVm9/H6tWruWSYOHFim2WXlJSwqKgom8ftM2fOcMng5ORkdvkXL15kOTk5Vo/bhYWFXN5HtX6ubyIxMZElJiZa3UcNBoOg44+tn9bP4EyUlJSwmzdv2twmhD57tvZjenZojitXrrAHDx5Y/T7mzJkjO4O17S4zM5NlZWWxhoYGi9Ps2bNH1ud37drV6nrOzc1lycnJVreJy5cvy8rQoUMHqxkIojkAbjILrpHmslPzHxKfCIIgCIIgCIIgCIIgiMcR0wtX00tKuRiNRlmFq61/evfuzUVe4P3j5eUluMhZyE9AQIDFdXru3Dn261//WvF/k6WXUUajkS1btkyQaCH3x1JRU2VlJfvhhx9U+W537NhhNkNWVhYbOHCgKhnCw8PNZoiKimK/+tWvVMlw7Ngxs9vCunXrbL7wl1NA3/zn/PnzbTLU1NSwiRMn2pxXapFw65/Lly+3yZCbm8tGjBhhc97169fLllwA88fnGzdusDfffNPmvA8ePGDDhw+XnSE5OblNhrCwMJsFKG+//TZjjDEnJyfZGTIzM1t8vsFgYD4+PjaL++3s7Bhj0gumm/+0FkaqqqrYf//7X5vzmQqiMjL+P3t3HhdVvf9x/D2AIu6a+5ZpmplmWVnaov3Ksm57t67V7VZWt3tvq7fFVjMrU8u9UHMvS/Nq2mLa4r4rCIJsw44LgqKgICDMfH9/ECQyMwzDyKS+no/HPJQ53/P9vhlmDucczud8E6qd4eDBg+Uy7Nu3z1x33XWVrrdv376yz3F1Czmzs7PLZQgLCzOdO3d2uc4FF1xQbh13PkPOHhaLpcLFCT/88EOlFyo++uij5dZ5+eWXPc7g7+9vjh8/XtaX3W43kydPrvSC8s8++6xchi+++MLjDLVq1Sp3wWVRUZEZNmxYpett3769XIaoqCiPMwQFBZW7CDcnJ6fSC9Fr165d4aKOoqIit4qFHD3q1q1bLsOePXsq3Rft27evccSdi58dPerXr1/uIpFdu3ZVeqHic8895zDDk08+6VGGBg0alLuYbNWqVaZZs2Yu13G231WViyFPfjRq1Kjcz3bOnDmV7sdHREQ4zLBmzRqPM5S+Du4WgZ04ccJhhqysLI8yNG7cuOx1KCwsNM8++6zL9pdcconD8Uu/h8ouBHf0aNiwYdnrkJubawYPHuyy/V133eU0gzHG3HTTTdV6Tx46dKjSi42dXZxXypOC2ZPfD8nJyeayyy5z2b7097UzM2fO9Oh1KN0+7Nq1q9L9t1O30afaunVrlTOcvI1av359pUXTp/6eP1VOTk6VL4Y8OcOyZctM/fr1nbZt06aNy/FLtWvXrkoZ6tSpU/Z5nzdvnsvtU58+fdzKcNttt1U5Q2FhobHb7WbUqFEuX8fHH3/crQwvvPBClTIEBASY48ePG5vNZt566y2XbR3dFMSRqhbt+vn5mWPHjpkTJ05Uuo10dp7iVJ780tcwFwAAIABJREFU3jhy5Ig5fvy4efjhh122c3Z8fqrMzMwqZ8jKyjKHDx82AwcOdNmutMC6MjabzTRp0qRKGfbv328yMzMrLaI/9TjElaqeF0xNTTVpaWnm8ssvd/n5qYohQ4ZUKUNycrKJjY11WYh28cUXVynD2LFjq5QhJibG7Ny50+X27eabb65Shu+//75KGcLDw8369etdFmOcelxVmarehGTLli1m5cqVpmHDhk7b/Pe//61ShsLCwiqdq9qwYYP56quvXBYbT506tUoZjDGme/fubmf4+eefzYwZM1wWvFSlMLNUVQqHv/vuu0rfxxs3bqxyhrffftvtDAsWLKi0CP/U80Xu+PLLL93OMGPGDPPvf//bZZucnJwqZwgJCXE7w7hx48xDDz3kdHlVt5GlsrOz3S4cHjFihMvi2o4dO3qUwW63m44dO7qV4eWXX3ZZqFXZTSVcufPOO93K8PTTT7u8CUBlN5Vwxd3zVA8++KDL31fuFtA7Mm/ePLcyDBo0yOWxqrv7cI7s2LHDrQzXX3+9y3OBzgqf3JGdne3W38Muu+wyl+ezduzY4XEGu93uVlF9ly5dXJ73cKcw1xV3btrg6r3QuHHjao1vjHvnA1zdCKmy4ivgZKLwCQAAAAAAAPhzOnToUNlJeWfFHlW1bt06t/4o4e6jsguIffX4xz/+Ya644gqv9ffjjz9W+rO6++67T+v3tHr1apcZQkJCPL7rvbsPV3fAM6bkAvF69eqd1gy7du1yOn5hYWGV71zsySMhIcFphszMzCpfYOfJ49QCj5NFRESYbt26nfYMru5GuGDBApdFRZ7chd7R49ixYw7HLy4uNsOHD3d5seLQoUOrPX5AQIDTO0kfOXLE3HPPPS7X37Jli9t3j3X2CAoKcnrXx8TERJfbwsDAQGO326t9h8yTL+A+1apVq1zePbr0jv2ezlZR+mjWrJnDO3CWFgS6uni2dAa1xYsXVytDu3btHL4GJ06cqLS4rPRC6qSkpGpl6NSpk8MM2dnZ5t577630vVD6mlVWpOTq0a1bN4cZkpKSTO/evZ2ud9NNN5VrX53iq549ezrMsGnTJpfFym+//Xa59u7Onubo0bt3b4cZli1b5rK47dSLd6tTfHXNNddUGN9ut5tx48a5vHgqKyur3DoREREeZ+jXr1+FDIWFhea5555zus6phXil63gyi4okc8MNN1To78iRIy6LcP/61786/Pm5O7PhqY8BAwZU6CstLc1l0faHH37oMMPjjz/uUYZTP2PGGBMaGupyFonffvvNYYaqXijsKkNls/3s3bvXYYaff/7ZowyO7jI+d+5cp4XjzZs3dzi+MSWFfN54HUo/l84uhnL0WS5ls9lcXnjs7PF///d/5fopLi52WZxZWZGHJ3eiP/Xi8Ly8PPPII484bT9+/HiXGZ5++ulqvw5ZWVnmlltucdq+dOYGZyZOnFjlDKduH9LS0lwWero6FjGm5DNV1QynXoQaFRXl9GJNRwWyp/Lks3HdddeV62PHjh1OiwtKi/dd8aTA5NQZMH/88Uenn6/KChJLXXXVVVXKcNVVV5Vb/5tvvnF6saa7F+66cyOAkx+XX355ufU///xzpxeWls7eWpkPP/ywShlOLjotLZR1dmx38gy8rixbtqxKGU4uoqlspt7S2U4rU9WC9pP3iQoLC10WYFutVrcyHD9+vEo3zmnfvn3Zurm5uS6LMvLz893KYEzVZt9q27Zt2Xbn8OHDTot1W7du7fb4xlRt1sbmzZuXZdi/f7/TfbhTP8OVqco5rMaNG5cd+yckJJiLL77YYbu77767Shk+//xztzPUrVu3rEg1KirKacFw6Q1O3LVp0ya3M9SpU6fsPMzGjRud3kygstkqT5WRkeF2hoCAgLLzUb/88ovT3xWzZ8+uUgabzWaaNm3qVgY/P7+yWd4WLVrk9JzHzz//XKUMxhjTt29ft1+L0hlip02b5nRfdvfu3VXOUJUbbKWmphq73W5Gjx7ttM2BAweqnOGjjz5yO0PprEnOPtMWi8Wt2fBO9e2337qdYdeuXebEiRPmiSeecLjc3eL1U1WlODIkJMQcP37c6fb11P09dxUUFLj9N4etW7earKws069fP4fL3S1ed8Td8+2//fabOXDggNMbOwwdOtTjDA888IBbGX766SeTkJDgtGht8uTJHmd455133MqwbNkys2vXLqc3dli6dKnHGdy9gdbChQvNunXrnN7YoXSmdk+4u1/31VdfmUWLFjn9W+rJN26qqry8PLc+G7NmzTKTJ092uKxly5Yej29Myb56hw4dKs3wySefON3naNKkSbUy4NwiF4VPAQIAAAAAAADgM9OnT1d+fr4kKTo62it9jhkzxiv9lCouLvZqf96SmJiobdu2KTk5WdHR0YqKiir7NyYmRgUFBZKfv+q07yFLQO1K+8up30GrYjJctnlu1DR1uv5uzZo5U0VFRRWWd+vWTe3bd1BaWqrS0tLKfrbuOhLU1nWGuu004ZtfNXXqVK1Zs8Zhk9tv/4skKTU1Valpqco9dqxKGQ7WaukyQ5srb1HwsvUaO3askpKSKiz38/PTf/7zH+3Zs0cpqalKS03VkSNH3B7fz89P+9VUB11kGDTkFTXvdaPGjx+vo0ePVljerVs33X777UpNTVVKSopSUlOVdeiQ2xkC69RRUmE9pbjIMPST2brgumX6Yt482Wy2Csv/9re/qWPHjkpNTVVycopSU1N04MABtzPUq1dPsUcDFOcsQ0ALffz1Sk2bOlWrV6922GTkyJEqKipSckqKUpKTlZKSon379pXcFc0NzZo1084DJ6QDjjM073WjPlu6TmPGjHH4XjjepLUWb16i5JQUJScnKzk5WSnJydqzZ4/D18yRVq1ba9uePEl5DpffMPg/+rhbP33yyTjl5GRXWJ5UUFff7UhUcvIfGZKTk5SamurwM+zI+R07amNSxb5LPfvhVLW/+nbNmTPb4ff1a1S65v4aqtSTXoekpCSlpKSosLDQrQxdunTRWquz93A9fTB7mWbNmqXly5c7bLFse4KGfjxL9z+fpqTkZCUnJSkpKUlJSck6ftzxa3uqrpdcojVxBx0vbH2JpixZq48/Hqvdu3dXWJxyor5WxWToxkeeV9cB9/0+dpISk5KUlJioY25up7pcdrlWx2Y6XNbpurs0eUkPjR49WgfS0yssD00/oVUxGWp48bX6clVYufGTkpLc3k517tPH6Tby1ideVuPu12n8+AkOX9dfotJ1tH6GjAnSwvVRSkxMKMmRmKSkpEQdPOjk9T3FBf36Oc3wnw+C1faqWzVnzhzZ7fYKy5ftSFTDBg0kSTNXbCv7/hMSE5WYmOjwtXOkY7/+TjLU1Qezv9OMGZ9r5cqVFZbusTUqt95LY2fp7uQ/xk9MSNCevXslN7ZTHfre5DhDk86atHi1Ph47VhERERUWRxyyl1vvpn+8pE7X363EhN8zJCYoLS3N4et3qvZX3+IwQ/2u1+jTb9dq1KhRSklJqbB8Q+IR1T9pvWaX3qip321UQmKCEhMSlJiYqJSUFLf2wdr1GeQwQ6/bHtH4DpdpzJgxDt/f34UkqUP7P7aDNst5mrVimxISEpSQkKiEhHglJSXpxIkTlWZoe5XjDPf852017n6dPv300wrbu6zatfVb9AFZLJay54wxmrF8ixISE5UQH1+WpaCg8v2pNlc6/lk899F0tb5ioL788ssKv/+SC+s5XOf1yfMVH5+ghIT4sn9zc3PdyHCrg/5q670ZS/T5544/E+GZNocZ7njmDXX7v78qPj5e1vh4xVvjHf6eq5jBwesQ1FYTFv2mj8d+rPDwsArrrIvPktpUzHDRjffr468vVbzVqvj4eMXHxysrK8uzDG16aMqSNfroo4+UkJBQYZ3l4WnqfLTipQvFLbpp0v9Wyfp7BqvVqowM1/vrktTaQYZ2fQZp0v9W6cMPP6ywvc21WPRrVLr8/PwqZrD56bOl6xUfb5XVWvLYt29fpRkcvQ69bntEH7ftqbFjxlTYh80IaOF02243Rp98vVJWa8lrYI23Ki01tdJ9urZXVXxPDnxsqOp0vkqTJk1SYUFBuWWJ+UEujwOeGj5R18fFyWq1Ki4uTikpKZVuK9s4yPD4m5/ovJ79NWvWrArrh2cWu8xw4yPPq1XvmxUXF6c4q1VJiYmVbisdbSdfGT9XLb74QkuWLKnQfmNStmq7yNCuzyCNnPmtYmPjZLXGKT4+vtJtZfurbzslQ22NnLlUwcHBWrXqtwrtV0buU7cT9Z32l9eok0bN/V6xcXGy/v4zqezYs0IGy3n65OuV+mTcOIXs2FGh/fKwVAUFBTntr/CE0cdfrVBsXJziYmMVZ7VWeuzZ4Zq/lM9Qr70mLvpNo0Z9pJiY8udDsus63kafzG6MRny+WLGxsYqLi1NsbGyl+3Tn972jXL91Ol2pyYtX6/0PPtD+Uz7be+1NKs0gSUPenqC+MdGKjY1VbGxspft0F1x7Z7l+z+vZX5P+t0offPBBhXWTnPyuOtWNf39BzXvdqNjYWMXExla6T9fpuvI/i07X3aVxCy7Uh6NG6WhOTrm20dl+bmW44No79frk8xUTE6OYmBjt2bPHZfsu/ctvH6648zGNanWJPv54bIX3c2h6odq7kcHW8mK9M/UbxcTEKDomRinJyS63lV0HlN9W3/nMGwq84EoFBwfLZiu/bVmfcET5TSrPkF9QVyNnLlVMTLSiY2KUmJDg8vi32403lssw+L8fqF6XqzVz5swK2VfFZCituGGlGYqLizVy5lJFR5ecH7NarS6Pf7vfUH7f/pmRn6pht2u1cOGCCm2Xh6WqcePGlWaQpH+OmKzo6GhFR5d8Plwd/15y/fXljvVemTBPjWfMqHCMmx8Y6Nb7sdSgIa+ozZW3/H7OMMbl8W/Pvn1PyuCndz9frEkTJ2rDhg3l2h2u7NzdKS4Z+De90KyrdkdFKWr3bofnsUpdetVVJx3719foL5ZrzJjRCgsrvw+X7tesShkaXNRXL4+fq92Ru7V7d6QOHz7sPMNll2l9wu/Lf/9d8cGHHyo2JqZcu7TihlXKcDSghd76bIEiI3crcneky+3UpZde+sd5mKYXasI3v+m990ZU2AeLzvavUoaCggK9N2OJIiIiFRkZqT170py27XbxxWXno/zaXaqJi37Te++9p8zM8uckTj2+rIzdbtdrE7/QrogIRUZEKDEpyenx74UXdlFoeqGUnqGmPW4o+Vl88EGF99D2vcflX4UMUsm2plv4Lu3atUtWa5zT7dT5HTsqMstIWRm68IZ7NGpuO40eM6bCfuSGxCM64Fe1DNc9+C8Fdb5K4eHhio6OdrqdatOmjeLzAhUfm6kr73pc7zS6QBMmTKywnV4dm6kWzt/aDnW45na9NLa5wsLCFBER6fTYs3nz5korbqg9cQc1aMgrKjyvq2bOmlnhZ/drVLr8/f2rlMG0vkSvT56vnTt3Kiw83On+VJMmTZQZ0EIHEw7r4VdGyd6quxYtWlSuja1h1T6XpfLzA/Xu54u1MzRUoaE7deSI4xeyYaNGOhzUVptTjurZD6dKbXro119/LdfmWMOOHmUottn0VvBChYaEKjQ0xOlxX4MGDXS0fgeFZRTprc8WaPTo0QoJCSnXJtPFsZUrxhg9894UhYSEaMeOEKfbiDp1glTcopt2H5bem/Gt3n//fUVFlT8fus+4tx/pyC2P/1cNL75WO7ZvV3x8vMM2gYGBUpueSjlRS2O+XK533nmnwr5XYn5djzN0HXC//lOnjbZv267o6CiH+1O1atdWQIfLdLBWHX381Qq9/fbbOnTK32Cisv3UwMMMAedfrlfGz9O2bVsVHh7u8LjP3z9AdS/so6K6dTXmy5/07rvDlZdX/nf9zgMndMTDDPmF9fTOtEXasnmzQkJDK2z7SjPU79pX9erV1YgZSzT6o9EV9yMTjyjA3/nvf1eKbTa9M/Ubbdq0SVu3bnV4fsrPz09Netyg8xs00NCP62natGnlltduVrX9hlPZjdFLY2dp46aN2rJ5s7Kzs1V0eJ+Kj+wv1+7+++9Xx44d5efnp6effrrc+yYwMNDj8YGTWdz9A2dNuPLKK82pv4QAAAAAAACAs1VhYaE6duxYVgxxzz33aOnSpdXqMzIyUpdeeqk34v3ptW7dWvv373e4zGazKSY+Sa8ti1N0tsVhGwAAAAAAAAAAAACAe+rZ85T91dCyv9FeeeWV2nHSDTVmz56tp556qqz4qUOHDkpNTfVJVpx5LBZLqDHmSkfLmPEJAAAAAAAA8JGFCxeWmwHGGzM+jR07ttp9nCnS09N1/Phx1a1bt8KyY4U2vbM6U7E5Fr17Z3ddcX4TSZLNZteBA+lKSkxSUvIfM57UrRuk6dOnV2n8goICTZgwQd9++23Zc+3atdfSpd+6WEuy243S0/crKTGpZGaJpJJ/mzVrpsmTJ1UpQ1pamt58803FxcWVPffoo4/qhRdeqDTDgQPpZbNblM600aFD+yrPGLZ+/Xq9995IHT36x12hp0//XL17X+5yPWOM0tMPlM3wkZBYMsNF165d9d5777k9vs1m1+zZszRjxkwZU3LH+MDAQG3YsKHcLBLOMmRmZirh99k1SmeW6NWrl4YNe83tDMeOHdMHH3xQbualm28eqI8+GlXpusYYHTx4SAkJpTNbJCg+PkF9+lyloUOHup0hOTlFb7zxuhITE8uee+ONN3Tfffe5lSErK+uk2S1KZrgYMGCAnnnmn25nWLVqld5///1yd1X8+edf1LRpE7fWz8rKktUar4SEeFmt8YqPt+rWW2/VE0884db6NptdM2fO1KxZf9wZu1OnTvrmm2/c/h4OHz5y0owOJRnuvvsePfTQYLfWP5pzVO+OGKGNG/+4I/Tf//6oXnzR9WfyZDk5Ob/P6BD3++wW8Xrggb/q3nvvdWv9tLQ9ev311xUfby17bsKEibruumvdznA056isJ81sERdn1aOP/l233367W+tv3rxZ77wzvNx2YdOmzapdu5bbGY4dO6b4+PiSGR3iSmaWePLJJ3XzzTdVuq4xRgsWLNDkyZPL7lrco0dPzZkz2+3xJel43nFZ462/ZyiZTeGZfz6j62+4vtJ1CwtPaMKE8eVmkhgyZIj+/e9/Vy3D8XwlJMSXZYiLi9Ozzz6ra665ptJ1Dx8+orfffls7dmwve27y5Cnq27fydU9WUFCghIQExcbGlc2mMHToS+rdu3el6yYkJGjYsGFKS/vjLrkbNmxQnTp1qpShsPCEEhMTFBMTo9jYkgyvvfaaevbsUem6GzZs1LvDh+tYbsldk7t27aqvvvqqSuNLUlFRkZKSkn6fzSFOsbExevXV19S9+8Uu1zPG6LvvvtfYsWNVVFQyI8g999yrt956s8oZiouLlZycotjYmLLX4q233lTnzp0rXe+zz4I1f/6XZc+NHDlSt912W5Uz2Gw2JScnKyYmVrGxMYqOjtHw4cN1wQUdXa6Xm5urESNGaN26dWXPLV68WOeff74HGexKS0srmUkhOkaxsTEaPvxddejQ3uV6Bw4c0LBhw8r2uYOC6mr9+nUu13HGbjfau3ePoqNjynKMGPGu2rZt63K9kvfuMKWnl1wYcvnlvfX551XbBy1ljNHevft+H78kw/vvj1TLli1drrd27Tq9++67ZTMePPbYY3ruuec8zpCenq6oqOiyHO+9957LDMYYLVu2TGPHji27Y/OIESP0l7/8xeMMGRkZ5WZ/ff/9D9S8eTOn69hsNgUHB+uLL74oe27hwoWVfpZcycw8WDZ+VFSURowYoRYtmjttX1hYqNGjx+jHH38oe27jxk0KDKx8plpnsrKyFB31R4Z3hg93meHo0WMaPvwdbdq0SZLUunUbff/9dx6PL0nZ2dll40dFRWn48OE677zznLY/cOCAXn31NcXGlswi0b9/f33yySfVynA056iioqMVtXu3dkft1ttvv61mzZy/H+LjE/TKKy+XXbD12GOP67nnnq1WhtzcXEVHR2v37t2KjNytt95602WGnTt36vVhr+tIdslsRcOHv6s777yjWhmO5x1XdEy0du+O0u7dkXrjjTdc/ixWr16tESNGlM20M3fuXF1yySXVylBQUKCYmFjt3l0yw8jLL7/i8j25dOnSctuGn1f+rKbnNa1WhsLCQsXGxv4+u0eEXnvtNac/C5vNrqlTp2revLmSpCaNm+iXX3+p1viSdOJEkeLi4hQZGaGIiEi99NKLatWqlcO2RUVFGjduvJYsWSxJuvDCC7VgQcVZd6qquLhYVmu8IiIiFBkZoWeffU5t2rR22LagoEAjR44sm8Hhumuv04SJE6qdwWazKT6+JENERIT+9a9/qV27dg7bHj16TG+++Ya2bdsmSfrrXx+o0jG68wx2JSYmateukllO/v3vfzn93Z2efkD//e9/lZBQMtPCK6+8or/97W/VzmC3GyUnJyk8PFy7du3SkCFD1LFjR4dtU1JSNHTof7V3b8kMDqNGfaSBA2+udgZjjFJTUxUevkvh4eF67LHHnO7LRUfH6JWXX9bBQyWzkc2ZM0c9elS+D+5Ohr179/3+OoTr4YcfUadOFzhsu2P7Dg17/XUdO1YyU8Ivv/yiJk3cO89QWYb09HSFhYUpLCxcgwf/TRdeeKHDtr/++ptGjBihEycKVbt2oDZt2ljt8Uulpx9QWNhOhYWF64EH/qquXbs6bLdo0SJ98sk4GWNX+/Yd9O23FWct9FRGRobCwsIVFrZTd999j8NjHGOMZs2cpem/77tedtnlmjHjc69lOHjwkMLCdio0NFR33323unfvXqFNUVGRRo8ere+//16S58dVzhzOOqzQnSUZbr/9Noc3FysoKNDw4cO1Zs0aSZ4d57ty5MgRhYbuVEhIiAYNulWXXXZZhTY5OTl65ZVXFB4eLkl688033T5n5I6cnByFhoZqx44QDRx4s8Nj//T0A3rxxReVnFwyA/zkSZPVt19fr2U4evSYQkNDtX37dg0Y0F9XX311hTaJiYl68cUXy2YG+uqrr5x+fjxx7NgxhYSEatu2bep/ww0Ov7/Q0FC98sorZTOwrPptlRo2qnxmPnfl5eUpJCREW7duU79+/XT99ddVaLNq1Sq98847KioqUmBgoDZu9N72SSo5LxUaEqLNW7aoX9++Ds+JLVz4jcaNK9mHv/DCLlqw4GuvZsjPz1do6E5t3rxJfa+pmMFuN5o0aaK+/rpkXHfPy1dFYWGhQkNDtWnTJvXu3Vs33VT+/GRxcbFGjhypFStWSPLevkv5DCe0MzRUGzZu0BVXXFEhQ15enoYO/a/CwnZKkl5++RUNHlz9fZeTFRUVaefOndqwYYN69bqswn5JVlaWnn322bK/UYwbN0433HCDVzMUFxcrbGeY1q5bq0svvVS33nprueVJScl69tn/lM0+9c03i5zuY3jKZrMpLCxMa9euVa9evTRw4MByy3ds36Gh/x2qwsJCWSx+2r59m1fHPznD6tWr1atXrwqvw9KlSzVqVMnn4IILOmnRIvf/RlKZKasTFLE3W5F79mjLli1avHhxhWPHIUOGyM/PT0OGDJExhhmf4D3GmD/N44orrjAAAAAAAADAucBut5uePXsaSWUPPz8/U1BQ4HGfKSkpxt/fv1yfZ/tj9+7dFV6H/dnHzc3j1poub/1kVkSmV+fH5JbFixebxo0bG0mmVq1axmazedSP3W73aL2CggLz0ksvlb0mDzzwgEf9VCdDWlqauf7668syfPHFFzWeYe3ataZNmzZlGTIzMz3O4Am73W4+++wzExgYaCSZq6++ukbHN8aY48ePm3/+859lr8Gbb75Z4xkSEhLMFVdcUZYhJCSkxjP88ssvpnnz5kaSadiwYY2Pb7PZzNixY8u2x4MHD67xDKe+F6ZNm1bjGVJTU80111xTliEpKanGM2zatMm0a9fOSDLt27ev8fGNMWb+/Pmmbt26RpJ54oknanz84uJi884775T9HGbPnl3jGXJycsxf//rXsgwJCQk1niEpKclcfvnlRpJp2bJljY9vjDGhoaGmY8eORpK54447fJJh8eLFpkGDBkaSGTt2bI2Pb7PZzEcffWT8/PyMJLN27doaz1BQUGCeeeaZsvdjbm5ujWc4dOiQGTRokJFkLrroohof3xhjYmNjTffu3Y0k8/jjj/skw5YtW0zbtm199n40xphFixaZevXqGUlm1apVNT6+3W43wcHBplatWkaSSUtLq/EMNput7PdE3bp1a3x8Y0r2Wx577DEjyfTr188nGbKysszAgQONJPPUU0/5JENqamrZfrSvPhORkZGmU6dORpJZvny5TzJs3LjRtGzZ0unxfk34+uuvTVBQkPH39/f4+LS6pk2bZgICAkybNm18Mr7dbjejRo0yFovF9O3b1ycZioqKys51+OKYyhhjjh07Zu69914jyYwcOdInGbKysszNN99sJJnp06f7JMO+ffvMVVddZSSZlStX+iSD1Wo1F110kZFk4uPjfZJh+/btpnXr1kaSKSws9EmGFStWmIYNG/rsmMYYYxYsWGACAwNNr169fDK+3W43o0ePNpLMQw895JMMNpvNvPrqq0aSefHFF32SIT8/3zz00ENGkhk/frxPMhw5csQMGDDASDJLlizxSYa9e/eaSy+91EgyW7Zs8UmGiIiIsuOa/fv3+yTD2rVrTaNGjYy/v79PxjemZNtQq1Ytc/HFF/tkfLvdbj766CMjydx3330+yWCz2cyLL75oJJl//etfPslw/Phxc/vttxtJZuLEiT7JkJWVVbbf8P333/skQ3x8vOnQoYORZGJiYnySYd26daZ+/fqmdu3aPhnfGGNmzpxpLBaLueyyy7za77DFu0yfD391q+28efOMxWIxPXr08GoGnN0khRgntUYGz9H+AAAgAElEQVR+AgAAAAAAAFDjVq1apcjIyHLP2e12Wa1WJ2tUbvz48WUzW5wrkpKSyn2dkJmr+4M3Kz2nQPOe6KNBPRzfRdmb7r//fu3atUvXXXedioqKyu4UXlWVzU7kTGBgoCZMmKAffvhB5513nlJTUz3qpzoZ2rdvr9WrV2v48OGyWCxKSUmp8Qz9+/dXeHh42Yw01XkdPGGxWPSf//xHW7duVdeuXcvNblJTgoJKZi5bsGCB6tev75MMnTt31qZNm/T8889Lkvbs2VPjGQYOHKjw8HD1799fR48e1dGjR2t0fD8/P7366qtat26d2rZtq71799bo+NIf74X58+erXr16PsnQoUMHrVu3Ti+99JIkad++fTWeoV+/fgoLC9Mtt9yi9PR02e32Gs/wyCOPaMeOHbr44ot98hr4+/tr5MiR+umnn9S0aVOPf0dVR8OGDbVo0SJNnDhRAQEBSk9Pr/EMF1xwgTZv3qynnnpKmZmZZTNJ1KTevXtr586duuOOO3zyGkgl+ywhISHq0aNHuVlHa4qfn59ef/11/fLLL2revLlPMgQGBmratGmaM2eO6tSpU3Z38Jp03nnn6ccff9Tw4cOVmZlZ4+NL0kUXXaRt27bpgQce8MlrIEnXXHONQkND1b9/f5+9Dg888IC2bdumLl26+CSDxWLRv//9b61Zs0atWrXySQY/Pz+NHDlSS5culb+/f7mZO2tKUFCQ5syZo08//VTZ2dk1Pr4kNW3aVD/99JNeffXVsjuD17QOHTpow4YNevTRR32WoUePHtqxY4duueUWn2W49tprFRoaqquuuspnGR566CFt3LhRbdq0UU5OTuUrnAbPPPOMVq9erYCAAJ+Mb7FY9MYbb+i7777zyX6TJAUEBGjChAmaPXu2jh8/7pMM9evX1+LFizV8+HCfbp9WrFih559/XkeOHPFJhjZt2mjdunUaPHiwz16HLl26aOvWrRo4cKDPMlx11VXasWOHevfu7bNtw6BBg7RlyxaXswieboMHD9batWtVt25dn4xvsVg0bNgw/e9///PZeXA/Pz+NHTtW06ZNU2FhoU8y1KlTR/Pnz9dbb73ls21k48aNtXLlSj3yyCNlM0bWtLZt22rDhg26+eabfZahZ8+e2rJliy655BKfvR/69++vDRs2qGXLlj77XAwePFjLly+v8gzf3mKxWPT6669rxowZPhlfKtk2TJgwQSNHjvTJOUip5Nhq6dKlXpml0lNNmzbVb7/95vWZnqriwgsv1Pr169W5c2f5+/v7JMMNN9ygX375xeWsu6fbk08+qdmzZysoKMhnGf7xj39o3rx5Ps2As4ulpDDqz+HKK680ISEhvo4BAAAAAAAAnHa33XabVq5cWeH5hQsXevRHiUOHDun888/32R86fWXChAllF9Xv2pOtx+dsl7+fRXOf6KMebRvVaJbi4mJ98MEHuuWWW9SvX78aHbvUvn379PLLL2vhwoU+GV+S1qxZo7Vr1+q9997zyfh2u10TJkxQ165ddeedd/okQ25urp577jlNnz5dgYGBPskQHx+v4OBgTZgwwSfjS9K3336rvLw8Pfrooz4Zv7i4WCNHjtTDDz+sbt26+STDoUOHNHz4cAUHB/tkfEmKjY3V8uXL9fLLL/ssw7fffqu6detq0KBBPhnfZrNp1KhR+te//qXmzZv7JENubq6mTJmiN954wyfjS1JaWppWr16txx9/3GcZNm/eLJvNpuuvv95nGebMmaO77rrLZxce2O12zZ07V0OGDPHJ+JKUl5enn3/+Wffdd5/PMuzdu1eJiYnq37+/zzKEhYWpYcOG6ty5s88yLF++XIMGDfLZhTjGGK1YsaKscNwXioqKtGnTJg0YMMBnGbKzs5WUlKTevXv7LMP+/fuVn5/v0/djbGysWrdurUaNavY46mRhYWG6/PLLfTa+JO3atUu9evXy2fjGGMXExKh79+4+y2Cz2ZSWlqYLLrjAZxkKCgqUlZWltm3b+ixDZmamgoKC1KBBA59lSEtLU7t27eTn57v7Wu/Zs0ft27f32fhSyX5Du3btfJph3759Pn0/SiW/K9q0aeOz8Y0xyszMVMuWLX2Wobi4WMeOHVOTJk18liEvL08Wi8VnhT+SdPDgQTVr1szjmwd5K4Ovjq//TBkyMzPVokULn2bIyMjw6efSGKOMjAy1anX6b0DmzIkTJ5Sdne3Tn8WRI0fk5+fn033p1NRUtW3b1meF05KUnJzs033IP0uGhIQEXXjhhT4b32azKTExUV27dvVZhuPHj+vgwYM6//zzfZZh//79qlOnjpo2beqzDLt371aPHj18Nr4k7dy506vnO15fEqE1cZna9ubNPsuAs5vFYgk1xlzpcBmFTwAAAAAAAEDNioqKcnqi+91339WIESOq3OeIESN8VmjiS88//7wmT56sDfEH9cyXoTqvfm19OeRqdWxWz2eZ7Ha7Ty9K8vX4ZPiDMcanF6H4enwy/DnGBwAAAAAAAAAAqC5PCp+AqnBV+OS70l4AAAAAAADgHOVqBpbo6Ogq95eXl6cpU6ZUJ9IZKzExUT9G7NfQb8LVuXl9fTGkj1o0rOPTTL4utvH1+GT4g6+LXXw9Phn+HOMDAAAAAAAAAAAAZzIKnwAAAAAAAIAalJGRofnz5ztd7knh06xZs3T48OHqxDpjWe2t9PyCMF11flPNeOxKNQqq5etIAAAAAAAAAAAAAADAS3x/y0sAAAAAAADgHBIcHKzCwkKny61Wq4qKitzur6ioSOPGjfNGtDNOo2sfVlGv+3RTtxb64sk+FD0BAAAAAAAAAAAAAHCWofAJAAAAAAAAqCH5+fkKDg522aaoqEiJiYlu9/nNN98oLS2tutHOLBY/NR34LzW+7mHlRvyqt29spTq1/H2dCgAAAAAAAAAAAAAAeBmFTwAAAAAAAEAN+fLLL3Xo0KFK20VHR7vVnzFGY8eOrW6sM4t/gJrd+Yoa9L5DOVv/p6wVk5SWkuzrVAAAAAAAAAAAAAAA4DSg8AkAAAAAAACoAXa7XePHj3errbuFTytWrFBkZGR1Yp1RLLWD1OKv76rexTfo8OpZyl43T5KqNEMWAAAAAAAAAAAAAAA4cwT4OgAAAAAAAABwLlixYoXi4uLcautu4dOYMWOqE+mM4hfUUC0eGKHaLTvr0I/jlRe1umxZUlKSD5MBAAAAAAAAAAAAAIDThcInAAAAAAAAoAaMGzfO7bbuFD5t2bJF69evr06kM4Z/w+Zq+eD78m/YTAeXvK/8pJByy5nxCQAAAAAAAAAAAACAsxOFTwAAAAAAAMBpFhYWpjVr1rjdPjY2VjabTf7+/k7bnCuzPdVq1kEtHnxfllqByvzmHRXui6nQhhmfAAAAAAAAAAAAAAA4O/n5OgAAAAAAAABwths/fnyV2hcWFiolJcXp8piYGH333XfVTPXnF9i2m1o+XFLglfHVMIdFTxKFTwAAAAAAAAAAAAAAnK0ofAIAAAAAAABOo3379mnhwoVVXi86Otrpso8//rg6kc4IdTpdqRZ/+0D2/KM6MP9VFR1Kddr24MGDOnbsWA2mAwAAAAAAAAAAAAAANYHCJwAAAAAAAOA0mjJlioqLi6u8nrPCp71792r+/PnVjfWnVq/7ALW4720VZe3Vga9ek+1oZqXrMOsTAAAAAAAAAAAAAABnHwqfAAAAAAAAgNMkNzdX06dP92hdZ4VPEydOVFFRUXVi/ak1uPIuNbvzFRXsiVLGgjdkP57j1nqJiYmnORkAAAAAAAAAAAAAAKhpAb4OAAAAAAAAAJyt5syZo+zsbI/WdVT4dOTIEY8LqU6X+vXrKzc31yt9Nb7hH2rU90HlxW7UoR8/kWzuz5TFjE8AAAAAAAAAAAAAAJx9mPEJAAAAAAAAOA1sNpsmTpzo8foxMTGy2+3lnps6darXioyqo0+fPpo2bZr279+vAQMGVL9Di5+aDnpejfo+qGNhK3To+7FVKnqSmPEJAAAAAAAAAAAAAICzETM+AQAAAAAAAKfBd999V61ZiPLy8rRnzx6df/75kqT8/HxNmjTJW/Gq5ZlnntGQIUMklRRoVYt/LTW/6zXV7dpX2Zu+Vs7Grz3qhhmfAAAAAAAAAAAAAAA4+zDjEwAAAAAAAHAajB8/vtp9REdHl/1/3rx5yszMrHaf3mC1WiVJBQUFSk5O9rgfS+26avngSAV1uVqHf52mgh1LPO6LwicAAAAAAAAAAAAAAM4+FD4BAAAAAADgnFZQUOD1Prdt26ZNmzZVu5/Swqfi4mJ9/PHH1e7PW0oLn+Lj42W32z3qw69eY7V6eLQC23bToR8+0bGdP2rDhg264447POovJSVFxcXFHq0LAAAAAAAAAAAAAAD+nCh8AgAAAAAAwDmruLhY48aN83q/3pjtSfqj8GnJkiV/qhmNSgufYmJiPFo/oHErtXrkYwU0aa3MxSN1PGa9goKCdMUVV+j777/Xp59+qjp16lSpz+LiYu3du9ejPAAAAAAAAAAAAAAA4M+JwicAAAAAAACcs7777jv9+OOPXu0zJSVFixcv9kpf0dHRMsZozJgxXunPWxISEmSz2TwqfKrV4gK1euRj+QXWVcbCt1SQEiZJuuiii+Tn5yeLxaJnn31WISEh6tmzZ5X6TkxMrHIeAAAAAAAAAAAAAADw50XhEwAAAAAAAM5ZkydP1u7du2W3273ap7f6i4mJ0a+//qqwsDCv9OcthYWF2rNnj2JjY6u0XmD7Hmr18GgZe5EOfD1MJ9KtZcsuvvjicm0vueQSbd++XS+88ILb/f+ZZsUCAAAAAAAAAAAAAADVR+ETAAAAAAAAzknh4eFav369cnNzlZKS4pU+c3JyNHPmTK/0Vdrf+++/77X+vMlqtVZpxqegC69WywdHqvhYlg7Mf03FWXvLLT+18EmS6tSpo0mTJumnn35SixYtKh2DGZ8AAAAAAAAAAAAAADi7UPgEAAAAAACAc9LkyZPL/h8ZGemVPmfMmKFjx455pa9SGzdu9Gp/3hIbG6u4uDi32tbrOVDN731TJzKTlPHVMNmOHarQplu3bk7Xv+222xQREaHbbrvN5TjM+AQAAAAAAAAAAAAAwNmFwicAAAAAAACccw4ePKivv/667GtvFD4VFRWVK6Y621mtVi1cuFCjR4/WY489pj59+qhBgwYV2jW8+n41u/1FFaSEK2Ph27IXOC4MczTj08latmyp5cuXa/LkyQoMDHTYhsInAAAAAAAAAAAAAADOLgG+DgAAAAAAAADUtM8//1yFhYVlX0dERFS7z8WLF2vPnj3V7udMkZCQoE8//VR333132XPGGKWnpysmJkYxMbH6NsmupNqdZE/epswlH0n2Yod9+fn5qUuXLpWOabFY9Pzzz2vAgAF66KGHFBUVVW55YmJi9b4pAAAAAAAAAAAAAADwp8KMTwAAAAAAADinFBUVKTg4uNxz1Z3xyRij8ePHV6uPM43Vaq3wnMViUZs2bXTDgBuV1OJaJdXupMf7dVTKgveUffiQtm7dqjlz5mjYsGG666671KVLF/n5+alTp05OZ3FypGfPntqxY4eee+65cs9nZ2fryJEj1f7eAAAAAAAAAAAAAADAnwMzPgEAAAAAAOCcsmTJEu3fv7/cc1arVfn5+QoKCvKozw0bNigkJMQb8c4YKSkpKiwsrFCwlH/Cpme/3qnVsZl65ZauevbGC2WxWNSoUSNdffXVuvrqq8u1LywsVGZmZpXHDwoK0pQpU3TrrbfqiSee0KFDhySVzPp05ZVXev6NAQAAAAAAAAAAAACAPw1mfAIAAAAAAMA5ZdKkSRWes9vtiomJ8bjPc222J6lklqvExMRyz+UcL9LfZ23T2rhMjbq3p577vy6yWCwu+wkMDFT79u09znHHHXcoMjJSt9xyiyQpKSnJ474AAAAAAAAAAAAAAMCfC4VPAAAAAAAAOGds375dW7dudbgsIiLCoz7j4+P1/fffVyfWGctqtZb9/0BOgR6cvkWRe3P02cO99fDVHWosR6tWrbRixQqNHz9ee/furbFxAQAAAAAAAAAAAADA6RXg6wAAAAAAAABATZkyZYrTZZGRkR71OXHiRBljPI10RistfEo6mKtHZ21XTn6R5g65Sv06N6vxLH5+fho6dKgKCwtrfGwAAAAAAAAAAAAAAHB6UPgEAAAAAACAc0J6erq++eYbp8s9KXzKysrSnDlzqhPrjGa1WhWxN1uPz9khi6SF/7xGPdo28mmmwMBAn44PAAAAAAAAAAAAAAC8h8InAAAAAAAAnBOmT5+uoqIip8sjIiI86jM/P786sc5oERmFeujzrWpSr7a+fPJqXdCsnq8jAQAAAAAAAAAAAACAs4ifrwMAAAAAAAAAp1thYaGmTp3qsk1GRoYyMzOr1OeUKVOqG+2MVfeia5XR7X61b1pXS/7dj6InAAAAAAAAAAAAAADgdRQ+AQAAAAAA4Ky3aNEit4qaIiMj3e5z4cKFOnDgQHVinbHqX3abmt09TIXpVs0YfIlaNqzj60gAAAAAAAAAAAAAAOAsROETAAAAAAAAzmrGGE2aNMmttu4WPhljNG7cuOrEOmM16jdY5936rPITQ5T5zXBl7E32dSQAAAAAAAAAAAAAAHCWovAJAAAAAAAAZ7UtW7YoNDTUrbYRERFutVu1alWVZoc6O1jU5OZn1Pj6vys38jcdXPqhTHGhrFarr4MBAAAAAAAAAAAAAICzVICvAwAAAAAAAACn0+TJk91u624x0zk325NfgJr9Zajqde+vnG1LlL12TtkiCp8AAAAAAAAAAAAAAMDpQuETAAAAAAAAzlp79+7V4sWL3W4fFRUlm80mf39/l21WrlzpjXhnBEutOmp+75sKuqC3jqyZraPbvy23nMInAAAAAAAAAAAAAABwuvj5OgAAAAAAAABwukydOlU2m83t9vn5+UpMTHTZZsKECdWNdcbwC2qoloM/VJ3ze+nQTxMrFD1JUlxcnA+SAQAAAAAAAAAAAACAcwGFTwAAAAAAADgr5efna/r06VVeLzIy0umyjIwMffnll9WJdcbwb9BcrR4Zo1rNO+rg0g+VF/mbw3ZWq1XGmBpOBwAAAAAAAAAAAAAAzgUUPgEAAAAAAOCstGDBAmVlZVV5vYiICKfLgoODdeLEierEOiPUOq+9Wv19rPzrNVHmouHKT9jutG1ubq4OHDhQg+kAAAAAAAAAAAAAAMC5gsInAAAAAAAAnHWMMZo0aZJH6zqb8Sk/P1/BwcHViXVGqN3mIrV8ZIzk568DX7+uwr1Rla5jtVprIBkAAAAAAAAAAAAAADjXUPgEAAAAAACAs8769etdztzkirP1vvzySx06dKg6sf706lzQWy3/9qHs+bnKmP+qig6muLUehU8AAAAAAAAAAAAAAOB0oPAJAAAAAAAAZ53Jkyd7vG5SUpLy8vLKPWe32zV+/PjqxvpTq3txf7W4f7iKDu/Vga9eU3FOhtvrUvgEAAAAAAAAAAAAAABOBwqfAAAAAAAAcFZJSUnRsmXLPF7fGKOoqKhyz61YsUJxcXHVjeYVbdq00QsvvKC1a9eqVq1aXumzwRV3qvldr6pwb5QyFrwh+/HsKq1P4RMAAAAAAAAAAAAAADgdAnwdAAAAAAAAAPCm4OBg2e32avURERGhPn36lH09bty46sbyCovFotjYWDVo0EApKSkqKiqqdp+Nr/+7GvUbrLy4TTr0wyeSrep9UvgEAAAAAAAAAAAAAABOB2Z8AgAAAAAAQI0rLi5Wamqq1/vNy8vTjBkzqt1PZGRk2f/DwsK0Zs2aavfpDcYYxcfHS1LZvx6z+Knprc+pUb/BOha+UkdXTPCo6EmSEhMTVVxcXL08AAAAAAAAAAAAAAAAp6DwCQAAAAAAADXuhx9+0K+//ur1fufPn6/s7Oxq9xMREVH2//Hjx1e7P2+Kjo6WVM3CJ/9aanb3MDW4bJByNi/U4Z8/1Y7t23TTTTd51F1RUdFpKWQDAAAAAAAAAAAAAADnNgqfAAAAAAAAUOOCg4MVFhbm1T6NMZo8ebJX+oqMjJQxRvv27dPChQu90qe3VLfwyVI7SC0fGKF6F12rw799ruwN83Xeeefp0ksv1S+//KKJEycqMDCwyv1arVaP8gAAAAAAAAAAAAAAADhD4RMAAAAAAABqVFxcnH777TevFz6tWrWqrCiourKyspSenq4pU6aouLjYK316S3UKn/zqNlbLhz5SYLtLdOiHT3Qs9HtJUpcuXUqW+/npxRdf1M6dO3X55ZdXqW8KnwAAAAAAAAAAAAAAgLdR+AQAAAAAAIAaNXXqVEnSrl27ZLPZvNbvpEmTvNaXJG3fvl3Tp0/3ap/eUFr4VNVCo4BGLdXqkbGq1bSdMpeMVF702rJlpYVPpbp3766tW7fqzTfflJ+fe6cQKXwCAAAAAAAAAAAAAADeRuETAAAAAAAAakxeXp7mzp0rSTp+/LhHsxY5kpCQoOXLl3ulr1Jz585Vdna2V/v0hsTEROXm5io5OdntdWo176iWf/9YfkH1lfHNWypI3llu+amFT5JUu3Ztffjhh1q/fr06depU6RgUPgEAAAAAAAAAAAAAAG+j8AkAAAAAAAA1ZsGCBcrJySn7OiwszCv9fvbZZzLGeKWvUqtWrfJqf95it9u1bt06FRcXu9U+sN0lavXwaMluU8ZXw3Rif1yFNo4Kn0pde+21Cg8P11NPPeVyHAqfAAAAAAAAAAAAAACAt1H4BAAAAAAAgBphjNFnn31W7rmdO3c6ae2+Y8eOafbs2dXu51S5uble79Nb4uLidOedd+qiiy5SrVq1nLYL6txHLR4cKVveER2Y/5qKsvY4bOeq8EmSGjRooBkzZui7775T8+bNHbZJS0tTfn6++98EAAAAAAAAAAAAAABAJQJ8HQAAAAAAAADnhq1btyo8PLzcc96Y8WnevHk6evRotfs5k+Tk5Oj777+XJBUXFystLU3x8fFlD6vVqrgTTWS7YrBOHEhU5uIRsuc7f40qK3wqddddd2n37t16+umny8Y/WUJCgnr27OnZNwUAAAAAAAAAAAAAAHAKrxQ+WSyW2ZLukJRpjOnx+3MjJD0t6eDvzd40xvzkjfEAAAAAAABw5gkODq7wXFhYmIwxslgsHvVpt9s1efLk6kY740RHR5f9PyAgQJ06dVKnTp106623SpKmr0vURytidV3npnrtsa7a+7euZQVRpcVRaWlpMsaoRYsWatiwodtjt2jRQsuWLdPs2bP14osvKi8vr2yZ1Wql8AkAAAAAAAAAAAAAAHiNt2Z8mivpU0lfnPL8BGPMJ14aAwAAAAAAAGeogwcPatGiRRWeP3z4sPbs2aMOHTp41O/PP/+s+Pj46sY745xc+HQyY4w+WhGrz9cn6Y5LW2v8g5epdoCfel3SrULbgoICJSUl6dChQ1Ue32Kx6Mknn9SAAQP0j3/8Q5s3b5ZUUvgEAAAAAAAAAAAAAADgLX7e6MQYs17SYW/0BQAAAAAAgLPP7NmzdeLECYfLwsLCPO530qRJHq97JrNarSoqKir3XLHNrlf+F6HP1yfpsb7na/Lgy1U7wPnpvzp16qh79+664YYbPM7RuXNnrV+/XqNGjVJAQACFTwAAAAAAAAAAAAAAwKu8UvjkwnMWiyXCYrHMtlgsTU7zWAAAAAAAAPgTstlsmjp1qtPlnhY+xcbG6ueff/Y01hmtuLhYCQkJZV/nn7DpmS9DtWTnXg29uatG3HWJ/PwsNZLF399fb7zxhrZt26aAAG9NMA8AAAAAAAAAAAAAAHB6C5+mSuos6TJJ6ZLGOWpksVj+abFYQiwWS8jBgwdPYxwAAAAAAAD4wooVK5Samup0uaeFT59++qmnkc4K0dHRkqSc40X6x+xtWh2Xqffv6aEXb+4ii6Vmip5O1rt3b02bNq3GxwUAAAAAAAAAAAAAAGev01b4ZIzJMMbYjDF2STMk9XHS7nNjzJXGmCubN29+uuIAAAAAAADAR4KDg10u96TwKTs7W3PnzvUw0dkhOjpaGUcL9LfPtyh8T7Y+fai3Hr3mfJ9m8vf39+n4AAAAAAAAAAAAAADg7HLaCp8sFkvrk768V9Lu0zUWAAAAAAAA/pwSExO1cuVKl2327NmjrKysKvU7Z84c5eXlVSfaGS/Uukf3T92sPYePa87jffSXS1tXvhIAAAAAAAAAAAAAAMAZxCuFTxaLZYGkLZIuslgsey0Wy5OSxloslkiLxRIh6UZJQ70xFgAAAAAAAM4c06ZNkzGm0nZVmfXJZrNpypQp1Yl1xqvdsrN2NbtJx0/YtOCf1+i6Ls18HQkAAAAAAAAAAAAAAMDrArzRiTHmIQdPz/JG3wAAAAAAADgz5efna/bs2W613blzp26++Wa32i5fvlzJycnViXZGC+zQUy3ue0fFhbla9M/bdGHLhr6OBAAAAAAAAAAAAAAAcFp4ZcYnAAAAAAAA4FSLFi3S4cOH3WpblRmfJk2a5GmkM15Q175q+cBIFR89qPQvX5WOZfo6EgAAAAAAAAAAAAAAwGlD4RMAAAAAAABOi+DgYLfbulv4tHv3bq1evdrTSGe0+r1uVfO7X1fhgXhlfD1MttwsRUdH+zoWAAD/z96dh9dB13nD/mbpDpTSVbZRRGFkB0FAZhh01HFUUEGURUXREUbG7RlFwW0ABVHnfWAEbEtT0jalLXShbAq0JaWhaZM2bdKNQlvpRpqlW7pkP88fvu1YmrbJOScNOb3v6+pFz2/5nG/yJxcffgAAAAAAANBpFJ8AAAAASLvS0tKYP39+u8+vXLkyduzYcchzDz74YCpjdVvHXHJtDPyX/4jdqxdE1cSfRWv9X39Xik8AAAAAAAAAQCZTfAIAAAAg7Try2lNERCKRiPLy8oOeqa2tjXHjxqUyVjeUFQM++m8x4B+/EpdNiIsAACAASURBVDuWzIzqqb+KRHPD3l3FJwAAAAAAAAAgkyk+AQAAAJBWmzdvjscff7zD98rKyg66P2rUqNi9e3eyY3U/2bkx6DP/J4754JWxff7UqH32/4tobdnniOITAAAAAAAAAJDJcrt6AAAAAAAyy+jRo6O+vr7D9w5WfGpubo4//OEPqYzVrWT16BWDP3tH9Dnlgtgya3Rsnz+5zXPLly+P1tbWyM72/zcCAAAAAAAAADKP/yICAAAAgLRpbW2NRx55JKm7Bys+PfXUU7Fu3bpkx+pWsnsfHUO/9Kvo/e5zo+a5Bw5YeoqI2LVrV6xdu/YwTgcAAAAAAAAAcPgoPgEAAACQNi+++GKsWrUqqbtLliyJpqamNvceeOCBVMbqNnKOHhRDb/hN9BxySlRPuzd2Vrx4yDvLli07DJMBAAAAAAAAABx+ik8AAAAApM3DDz+c9N3GxsY2SzxlZWXxyiuvpDJWt5B73Ikx7Mb7I/fogbFp0s9j9+vF7bqn+AQAAAAAAAAAZCrFJwAAAADS4s0334xnnnkmpYyysrL91h588MGUMruDnu96fwy74TeRld0jKsf/OBrWLWn33eXLl3fiZAAAAAAAAAAAXUfxCQAAAIC0GD58eLS2tqaUsXDhwn0+V1VVxfjx41PKTKesrKy44oor4hvf+EbaMnu/+7wY+qVfRWvDrqgs+GE0Va3p0H0vPgEAAAAAAAAAmUrxCQAAAOAIsnbt2mhubk57bkNDQzz66KMp57z9xaeRI0dGY2NjyrnpcPrpp8f69etj5syZ8cEPfjAtmX3//h9jyDU/j+Ytb0VlwQ+jeWtlhzOWLVsWiUQiLfMAAAAAAAAAALyTKD4BAAAAHEGGDx8ey5cvT3vu5MmTo7q6OuWcRYsW7X01qqmpKR5++OGUM9Olrq4ujj/++IiIWLOmY68yteXo8z8dgz7zn9GwYUXUPvGzaN25Namc7du3x8aNG1OeBwAAAAAAAADgnUbxCQAAAOAI0dTUFHl5eVFaWpr27IceeigtOTt27IhVq1ZFxF/LVO+kQs+GDRti8+bNEZF68an/ZdfHcR+7JXa/Pi9qp9wV5QvmxYc//OGk85YtW5bSPAAAAAAAAAAA70SKTwAAAABHiKeffjoqKyujpKQkrbmLFi2KV199NW15ZWVlERHxwAMPpC0zXSoqKiIiYvXq1ckFZGXHcR//9zj2w9dH3eI/R/W0e+PkE94Vp512WhQWFsbvf//76NWrV4djFZ8AAAAAAAAAgEyk+AQAAABwhBg+fHhERNpffHrkkUfSmldWVhbz58+P4uLitOamw57iU1IvPuXkxqArfxRHn/evsW3upNj8p/+JSLTGKaec8tftnJz4wQ9+EIsWLYqLLrqoQ9GKTwAAAAAAAABAJlJ8AgAAADgCrFmzJl544YWIiFi8eHE0NjamJXfbtm0xbty4tGTtUVZWFg8++GBaM9OlvLw8tm/fHrW1tR26l9WzTwy55r+i3+mXxeYZI2Pr7DF7997znvfsc/b000+PoqKiuO+++6Jnz57tyld8AgAAAAAAAAAykeITAAAAwBFg5MiRe//e2Ni49+WiVOXn58euXbvSkrXHggULYuLEiWnNTJeKiooOv/aU3bd/DP3Sr6P3SWdEzdO/i7rSp/bZf3vxKSIiNzc3br/99li4cGFccMEFh/yOpUuXRiKR6NBcAAAAAAAAAADvdIpPAAAAABmuqakp8vLy9lkrLS1NOTeRSMTDDz+ccs7b1dTURHNzc9pz06GioiJWrVrV7vM5xwyJYTfcHz0GnRRVU+6Jncte3u/MKaeccsD7Z5xxRsydOzfuvvvu6NGjxwHPbdmyJaqqqto9FwAAAAAAAABAd6D4BAAAAJDhpk+fHps2bdpnraSkJOXcWbNmxWuvvZZyTneyc+fOWLhwYbvO9hj0dzHsxt9Gdt/+UTXxp1G/uu2yWVsvPu2T06NH/PSnP42SkpI455xzDnhu2bJl7ZoLAAAAAAAAAKC7yO3qAQAAAADoXCNGjNhvLR0vPnXGa0/dwfnnnx8bN26MNWvWxOrVq2PNmjX7/Fm3bl30eNdpMfiaX0SiqSE2FdweTTVvHjDvUMWnPc4555yYP39+3HPPPfHrX/86Wlpa9tlfvnx5XHHFFSn9bAAAAAAAAAAA7ySKTwAAAAAZbPXq1fHCCy/st75kyZLYtWtX9O3bN6nc9evXx7Rp01Idr1taunRpfP7zn493vetdcemll+63/8KSjXHb44tiQK+ILwzaGbXfuG6fYlR1dfXes0cddVQMGjSo3d/ds2fPuOuuu+Kqq66Kr371q7F06dK9e158AgAAAAAAAAAyjeITAAAAQAZ79NFH21xvaWmJxYsXxyWXXJJU7siRI/d7cehIUVFRccC9yQvWx48ml8cZxx8To2+6MAYe1Wu/Mzt27Nhbgtq2bVtkZWV1eIYLLrggFixYEL/85S/j/vvvj9bWVsUnAAAAAAAAACDjZHf1AAAAAAB0jqampsjLyzvgfmlpadK5I0aMSHasbq+8vLzN9UdfWR3/54nFcfEpx8X4b17cZukp4q+vPJ111llx5ZVXxpe//OWk5+jVq1fce++9UVRUFKeddpriEwAAAAAAAACQcRSfAAAAADLU9OnTY9OmTQfcLykpSSp32rRpUVlZmexY3d7rr78eu3fv3vs5kUjEfc+viHueXR6fOutdkXfThXFUr8P30PrFF18cZWVlceONN8bWrVsP2/cCAAAAAAAAAHQ2xScAAACADDV8+PCD7if74tNDDz2U1L1M0drauvd1peaW1rh9cnn8sXBV3HjxyfHgdedFr9ycwz5Tnz594ne/+10ce+yxh/27AQAAAAAAAAA6i+ITAAAAQAZavXp1vPjiiwc9s2LFiqirq+tQ7tKlS6OwsDCV0TJCRUVF1De1xC3jFsak0vXx3Y++L+6+6szIyc7q6tEAAAAAAAAAADKG4hMAAABABho5cuQhzyQSiVi4cGGHch955JFkR8oopeXL4iuj5seMFZvirqvOiO9/7P2RlaX0BAAAAAAAAACQTopPAAAAABmmsbEx8vLy2nW2pKSk3bl1dXUxZsyYZMfKGDn9BsQLzR+IsnVb4sEvnRdfueTdXT0SAAAAAAAAAEBGyu3qAQAAAABIr+nTp0dVVVW7zpaWlrY7d9y4cVFXV5fsWBkh99hhMeTau6Ohx9Ex7qYL4x/eN7irRwIAAAAAAAAAyFhefAIAAADIMMOHD2/32fYWnxKJRDz88MPJjpQRegw5JYbd8NvI7tU3Ksf/JE7rn+jqkQAAAAAAAAAAMpriEwAAAEAGWbVqVbz00ksdOr958+ZDnpszZ04sWbIkldG6tV4nnRXDrr83Eq1NUVlwezRWvh4VFRVdPRYAAAAAAAAAQEZTfAIAAADIICNHjuzwnQULFhzyzJH82lOf910SQ6/9r2iuq43KcT+M5s3rIyKivLy8iycDAAAAAAAAAMhsik8AAAAAGaKxsTFGjx7d4XslJSUH3a+srIzJkycnO1a3dtTZH4/Bn/1xNG5aHZsKbo+Wutq9e158AgAAAAAAAADoXLldPQAAAAAA6fHUU09FVVVVh++VlpYedP/RRx+NpqamZMfqto750DUx4J9uit2rS6N62r2RaGrYZ9+LTwAAAAAAAAAAnUvxCQAAACBDjBgxIql7B3vxqbm5OYYPH57sSN1UVgz4yM1xzIWfjR1LZ0Xtc/83orVlv1NLly6NlpaWyMnJ6YIZAQAAAAAAAAAyX3ZXDwAAAABA6t5444146aWXkrq7fv36qKysbHPvmWeeifXr16cyWveSnRMDP/X9OObCz8b20qei9pn/brP0FBFRX18fq1atOswDAgAAAAAAAAAcORSfAAAAADLAo48+mtL9BQsWtLn+0EMPpZTbnWT16BVDPv+zOOrMj8SWwvzYMmNkRCQOeqe8vPzwDAcAAAAAAAAAcARSfAIAAADo5hobG2P06NEpZZSUlOy39tprryX9ilR3k937qBjyxXui93vOi9rnH4ztxU+0615FRUUnTwYAAAAAAAAAcOTK7eoBAAAAAEjNU089FVVVVSlllJaW7rf2xz/+MaXM7iLn6IEx5Nq7osex74rqaffF7tfntvuuF58AAAAAAAAAADqPF58AAAAADoPZs2d3Wvbw4cNTzigpKYlEIrH3886dO1N+RaozHH/88XHqqaemLS/3uBNi2A2/jdyjB8emSb/oUOkpwotPAAAAAAAAAACdSfEJAAAAoJM1NTXFbbfdtk+xKF3eeOONmDFjRso5VVVVsX79+r2fH3/88di2bVvKuely1llnxYsvvhhr166Nc845Jy2ZPYe9L4bdcH9k5faIyvE/joZ1HS8xrV69Onbs2JGWeQAAAAAAAAAA2JfiEwAAAEAne+6556KioiLWrFmT9uyRI0emLaukpCQiIhKJRDz00ENpy02Hk046Kf75n/85cnJyYt26dSnn9X73uTH0ul9Ha+PuqHr8x9FUtTqpnEQiEUuXLk15HgAAAAAAAAAA9qf4BAAAANDJRo0aFRERxcXFac1tbGyM0aNHpy2vtLQ0IiLmzZsXixYtSltuOpSVle39+9q1a1PK6nv6ZTHkml9E89bKaHru3ih+8ek499xzk86rqOj4S1EAAAAAAAAAABya4hMAAABAJ3rrrbfiueeei4j0F5+mTZsW1dXVacvbU3x6+OGH05aZLm+99VZs2rQpGhoaorKyMumco8771xh05Y+iYeNrUTn+x3HS4P5x3nnnxfz58+Oee+6Jnj17djizvLw86XkAAAAAAAAAADgwxScAAACATjRmzJhoaWmJiPQXn0aMGJHWvNLS0qiqqoqJEyemNTddysrKYv369Unf7//h62Pgx/89dr9RElWTfh6Jhp1x8sknR0REjx494s4774yysrK4+OKLO5TrxScAAAAAAAAAgM6h+AQAAADQSRKJROTl5e39XFZWFrt3705L9htvvBEzZsxIS9YeW7Zsid/97nfR2NiY1tx0KSsri7Vr13b8YlZ2HPexW+LYy66PHRUvRvXUX0Wi+a8/40knnbTP0Q984AMxZ86c+O///u/o06dPu+LLy8sjkUh0fC4AAAAAAAAAAA5K8QkAAACgkxQVFcXKlSv3fm5ubo6ysrK0ZKf7tac9Ro8e3Sm56ZBU8SknNwZ95j/j6PM/HduKn4za5x6ISLTu3d7z4tM+V3Jy4vvf/36Ul5fHP/3TPx3yKzZv3hxvvfVWx+YCAAAAAAAAAOCQFJ8AAAAAOsmoUaP2W5s7d27KuQ0NDZ1WUKqpqemU3HToaPEpq2efGHLNL6Lf3/9jbJk1KrYWPrbfmbaKT3uceuqpMWPGjHjkkUfi6KOPPuh3VVRUtHsuAAAAAAAAAADaR/EJAAAAoBPU1dXFpEmT9lsvLi5OOXvatGnv6IJSZ3njjTdi1apV7Tqb3eeYGPrFX0Xvk8+Ommf/O7bPn9rmuYMVnyIisrOz45ZbbomlS5fGJz/5yQOeKy8vb9dcAAAAAAAAAAC0X25XDwAAAACQiSZOnBi7du3abz0dxacRI0aknNFdnXPOOfGrX/0q1q5du8+furq6vWdyjhkcQ6+9K3KOGRLVU+6J3atKDph30kkntet7TzrppHj22Wdj7Nix8b3vfS+2bNmyz74XnwAAAAAAAAAA0k/xCQAAAKAT5OXltbm+fv36WL9+fZx44olJ5b7++usxc+bMVEbr1rKzs+OOO+7Yb33btm2xdu3aKF6+Nh5Y3BwNLRGnV82Kbcf3jrXNfxfr16+PlpaWfe7k5ubGsGHD2v3dWVlZ8ZWvfCU+/vGPx7e//e2YMmXK3j0vPgEAAAAAAAAApJ/iEwAAAECaLV++PObOnXvA/Xnz5iVdfBo5cmSyY2WEsrKyNtf79+8fjcecGH9Y/lb07dsrnrz5ojh92FV791taWuKtt96KdevW7X0lavv27ZGTk9PhGYYNGxaTJ0+OJ598Mr797W9HVVVVLF++PJqamqJHjx5J/2wAAAAAAAAAAOxL8QkAAAAgzQ702tMexcXFcfXVV3c4t6GhIUaPHp3sWBnhQMWnWa9Vxa3jFsS7+veJMV+/KE46ru8++zk5OXHiiSfGiSeeGJdccklaZrnmmmviiiuuiO9973sxbty4WLlyZZxxxhlpyQYAAAAAAAAAICK7qwcAAAAAyCRNTU0xZsyYg54pLi5OKnvatGlRU1OT1N1MsWzZsmhoaNhnbWrZ+vhmfmmcOuSoeOKWS/YrPXWmgQMHxtixY+OZZ56J2traw/a9AAAAAAAAAABHAi8+AQAAAKTRM888E1VVVQc9U1paGk1NTdGjR48OZQ8fPjyV0TJCc3NzLFmyJC644IKIiBg1Z03c/cyyuPS9A2P4ly+Io3t37HeaLp/61Ke65HsBAAAAAAAAADKZF58AAAAA0igvL++QZ+rr66O8vLxDuStXroxZs2YlO1ZGKSsri0QiEff/aUXc/cyy+OSZwyLvpgu7rPQEAAAAAAAAAEDnUHwCAAAASJONGzfGc889166zxcXFHcoeOXJkMiNlpAVli+LHkyvi4ZdXxfUfOjn+cP350btHTlePBQAAAAAAAABAmik+AQAAAKTJmDFjorW1tV1nO1J8amhoiMceeyzJqTJMTo+Y1XBKTCxdF9/5yKnxq8+eGTnZWV09FQAAAAAAAAAAnSC3qwcAAAAAyASJRCLy8vLafb4jxaepU6dGTU1NMmNllKyefWPI1T+L+kGnxc8//ffx9ctO6eqRAAAAAAAAAADoRF58AgAAAEiDOXPmxOuvv97u82+88Ua7y0wjRoxIdqyMkd332Bh2/b3R64S/j+rp98clAxu6eiQAAAAAAAAAADqZ4hMAAABAGowaNarDd+bNm3fIMytXroxZs2YlM1LGyO0/NIbdeH/kDjghqibfFbuWz46ysrKuHgsAAAAAAAAAgE6m+AQAAACQou3bt8cTTzzR4XvFxcWHPDNy5MhkRsoYPQa/J4be+NvI7n1UbJpwR9SvWRgRofgEAAAAAAAAAHAEyO3qAQAAAAC6u4kTJ8auXbs6fO9QxaeGhoZ47LHHkpyq++t14hkx5JqfR2vDrqiccEc0167fu6f4BAAAAAAAAACQ+RSfAAAAAFI0atSopO7NmzcvWlpaIicnp839qVOnRk1NTSqjdVt9Tv1QDL7q9mjetik2TfxZtNTt+3soKyuLRCIRWVlZXTQhAAAAAAAAAACdLburBwAAAADozpYuXRrz5s1L6m5dXV2sWLHigPvDhw9Pdqxurd9ZH4vBn7sjGqtWR+W4H+1XeoqI2Lx5c6xbt64LpgMAAAAAAAAA4HBRfAIAAABIQV5eXkr3i4uL21x/7bXX4uWXX04puzs65qKrY9C/fjfq/7IoNk34abTW1x3wbFlZ2WGcDAAAAAAAAACAw03xCQAAACBJjY2NMXbs2JQyDlR8GjlyZEq53U9WHHvF12PAFV+LnctejqrJd0eiqf6gNxSfAAAAAAAAAAAyW25XDwAAAADQXT3zzDNRXV2dUkZbxaf6+vp47LHHUsrtVrJzYuC/fCeOOuujsb10emyZMTIiEoe8pvgEAAAAAAAAAJDZvPgEAAAAZLSioqJOy87Ly0s5Y+nSpbF9+/Z91qZOnRq1tbUpZ3cHWbm9YvDn7oyjzvpobJ09NrbMGBHtKT1FKD4BAAAAAAAAAGQ6xScAAAAgY5WXl8dDDz3UKdkbNmyI559/PuWcRCIRJSUl+6wNHz485dzO0K9fv8jOTt+/Tsru1S+GfPHu6PPeD0btn/4Q2+ZO7ND9devWRU1NTdrmAQAAAAAAAADgnUXxCQAAAMhY+fn5MWfOnE7JHjNmTLS2tqYlq7i4eO/fX3vttSgsLExLbrqcffbZ8dhjj8WGDRvSlplz1MAYesNvotew90XNU7+JHYv/lFSOV58AAAAAAAAAADKX4hMAAACQkZqbm6OgoCDWrVsX69atS2t2IpGIvLy8tOX9bfFpxIgRactNlxtuuCG++tWvxo4dO9JS9sodcHwMu/H+yO0/JGqm3BW7XitKOkvxCQAAAAAAAAAgcyk+AQAAABnpz3/+c2zatCkiIoqKki/WtGX27NnxxhtvpC2vuLg4EolE1NfXR35+ftpy06WkpCQiIjZu3JhyVs+h741hN9wfWbm9ImY8EHOnPRYXXnhh0nmKTwAAAAAAAAAAmUvxCQAAAMhIf1sgmjNnTlqz0/naU0RETU1NrF69OqZMmRK1tbVpzU6H0tLSiEi9+NT75LNj6HX3RqKpPioLfhQn9G2Js88+O+bOnRsPPPBA9OvXr8OZik8AAAAAAAAAAJlL8QkAAADIOFu2bImnnnpq7+d0vvi0bdu2eOKJJ9KWt0dxcXGMGDEi7bnp8Je//CWqq6tTKj71Pe3DMeQL/xXN26uisuBH0bxlYxx//PEREZGTkxPf+c53YtmyZfHpT3+6Q7krV66MHTt2JD0XAAAAAAAAAADvXIpPAAAAQMaZOHFiNDY27v1cXl4e27dvT1v27t2705L1t55//vkoLCxMe266LFiwIOni01HnfjIGXXV7NFSujE0Ft0fLjs0REXuLT3ucfPLJMX369Jg4cWIMHTq0XdmJRCLKy8uTmgsAAAAAAAAAgHc2xScAAAAg4+Tn5+/zubW1NYqLi9OSPWrUqLTkvN1LL73UKbnpUlpamlTxqf+lX4qBn/h27F5VGlUTfx6tDTv37r29+BQRkZWVFddee20sX748vvnNb7brO8rKyjo8FwAAAAAAAAAA73yKTwAAAEBGWblyZZslp6KiopSzlyxZEvPnz085py2bNm3qlNx0KSkpiQ0bNnTgRlYM+OdvxbH/cGPsqHgpqqf+KhLNDfucaKv4tMeAAQNixIgR8fLLL8f73//+g36T4hMAAAAAAAAAQGZSfAIAAAAyypgxY9pcnzNnTsrZeXl5KWd0Vx168Sk7NwZ95j/jmAs+E9vmTY7a5/5vRGvLfscOVnza4/LLL4/FixfHz372s+jRo0ebZxSfAAAAAAAAAAAyk+ITAAAAkDFaW1tj7Nixbe7Nmzcvmpubk85ubGw8YPaRYOPGjTF06NA45ZRTolevXgc8l9Wjdwy55ufR7wOXx5ZZebH15dEHPHvCCSe067t79+4dd911V5SVlcWll166335FRUU0Nja2KwsAAAAAAAAAgO4jt6sHAAAAAEiXl19+OdauXdvm3s6dO2Px4sVxwQUXJJX99NNPR01NTSrjdXv/8R//EVdeeWUkEonYsmVLbNy4cZ8/f9lYHXNyzo5dvQdF69z82LngqYPmtefFp791xhlnxCuvvBLDhw+P22+/Perq6iIioqmpKZYtWxbnnntu0j8bAAAAAAAAAADvPIpPAAAAQMbIz88/6P6cOXOSLj7l5eUldS+TlJSUxJVXXhlZWVlx3HHHxXHHHRdnnnlmRERs2Lo7vjxqXrRs2R0jrz8/Pvabz0RLS0vU1NTExo0bY8OGDfuUpKqqqqJ///4dniE7OztuvfXWuPLKK+O2226LadOmRUREWVmZ4hMAAAAAAAAAQIZRfAIAAAAywo4dO2Ly5MkHPVNUVBTf/e53O5y9YcOG+NOf/pTsaBmjtLS0zfU3quriy6Pmx46G5hjz9YviQ6cMjIiInJycGDp0aAwdOjTOO++8tM5ywgknxNSpU2Pq1Klx2223RVlZWXzta19L63cAAAAAAAAAANC1srt6AAAAAIB0mDx5cuzcufOgZ4qKiiKRSHQ4+7HHHovW1tZkR8sYpaWl+/3+ytZuiWv+ODeaWxMx8d8u2Vt6Olw+97nPxbJly5J+yQsAAAAAAAAAgHcuxScAAAAgI+Tn5x/yzMaNG+Mvf/lLh3JbW1sjLy8vyakyS01NTbz55pt7PxeurI7rR86L/n16xORbLo0PHH9Ml8zVv3//+OpXv9ol3w0AAAAAAAAAQOdRfAIAAAC6vTfffDNmzZrVrrNFRUUdyp49e3asXr06mbEyUmlpaUREPLVoQ9z8WEm8Z1C/ePKWS+PkgX27eDIAAAAAAAAAADKN4hMAAADQ7Y0dO7bdZztafPLa075KSkpidNGa+O6ERfHBdw+ICd+6OAYf3aurxwIAAAAAAAAAIAPldvUAAAAAAKlIJBIxZsyYdp+fM2dOu89u27YtnnzyyWTGylgvvNUzJj69LD5xxtB44EvnRe8eOV09EgAAAAAAAAAAGcqLTwAAAEC3Nnfu3Hj99dfbfX7p0qWxZcuWdp2dMGFC7N69O9nRMktWdhz3iW/HluMvji9deFI8fMMFSk8AAAAAAAAAAHQqxScAAACgW8vPz+/Q+UQiEXPnzm3X2VGjRiUzUubJ6RGDrro9jj73k7Ht1QnxtTN7RU52VldPBQAAAAAAAABAhlN8AgAAALqt+vr6mDhxYofvFRUVHfJMRUVFlJSUJDNWRsnq2SeGfuGX0e+0D8fml0bE1lfGxYIFC7p6LAAAAAAAAAAAjgCKTwAAAEC3NX369Ni2bVuH77Wn+JSXl5fMSBklu++xMfS6e6PXiWdEzdO/i7oF0yMiFMIAAAAAAAAAADgscrt6AAAAAIBk5efnJ3Vv3rx50djYGD179mxzv6GhIcaOHZvKaN1ebv+hMeTauyPn6OOiasrdUb/6f195Ki0t7cLJAAAAAAAAAAA4UnjxCQAAAOiWKisr489//nNSd+vr66OsrOyA+08//XTU1tYmO1q312Pwu2Pojb+N7D5Hx6YJP92n9BQRsXDhwmhubu6i6QAAAAAAAAAAOFIoPgEAAADdUkFBQbS0tCR9v6io6IB7o0aNSjq3u+t14hkx7Pr7IhKtsWn87dG4ccV+Z3bt2hUrVuy/DgAAAAAAAAAA6aT4BAAAAHQ7iUQi8vPzU8qYM2dOm+vr1q1L+iWp7q7Pey+KIdfeFS07J7m38wAAIABJREFUt0Tl2B9GU83aA54tKSk5jJMBAAAAAAAAAHAkUnwCAAAAup1FixZFRUVFShlFRUWRSCT2W8/Pz29zPdP1O/MjMfjzd0ZT9ZtRWXB7tNRVH/R8aWnpYZoMAAAAAAAAAIAjleITAAAAkHalpaVRU1PTafmpvvYUEVFVVRWrVq3aZ621tTVGjx6dcnZ3c8xFn4tBn/pB1L+5ODZNuCNad28/5B3FJwAAAAAAAAAAOpviEwAAAJB2Y8eOjVdeeaVTspuammL8+PFpyZozZ84+nwsLC2P16tVpye4ujv2nr8WAK26OnctnR9XkuyLRVN+ue4sWLYrGxsZOng4AAAAAAAAAgCOZ4hMAAACQVs3NzTFhwoQoLCzslPznn38+qqur05JVVFS0z+e8vLy05HYLWdkx8F+/G/0/dHVsX/BM1Dz9u4iW5nZfb2xsjCVLlnTigAAAAAAAAAAAHOkUnwAAAIC0mjFjRlRVVcXs2bM7JT8/Pz9tWX/74tPWrVvjySefTFt2ugwbNizuvPPO+J//+Z+0ZWbl9ozBn7szjjrrY7H1lXGx5aU/RiRaO5xTUlKStpkAAAAAAAAAAODtFJ8AAACAtCooKIiIiEWLFsXWrVvTml1bWxtPP/102vJWrFgRtbW1ERHx+OOPR319fdqy0yU/Pz/uueee6Nu3b1rysnr1iyHX3h19Tr0wav/8UGx7dULSWaWlpWmZCQAAAAAAAAAA2qL4BAAAAKTNrl27YurUqRERkUgk9nlRKR0mTJgQTU1Nac189dVXIyIiLy8vrbnpsudVpU2bNqWcldNvQAy7/r7odfz7o2/Z4/HCwz+Ls88+O+XZAAAAAAAAAACgMyg+AQAAAGkzffr02LFjx97PhYWFac0fM2ZMWvMiIubMmRPl5eXv2NeLiouLIyL14lPugONj2I2/jdxjh0XVE7+MExPVcckll8SCBQvi97//ffTr16/DmUuWLIndu3enNBcAAAAAAAAAAByI4hMAAACQNgUFBft8TmfxacWKFTF//vy05e1RVFT0jn3tKeKvxadEIpFS8ann0PfGsBt+E1k9+8Smx++I+jcXx9ChQyMiIjc3N37wgx/E8uXL43Of+1yHcltaWmLx4sVJzwUAAAAAAAAAAAej+AQAAACkRU1NTfzpT3/aZ23hwoVRV1eXlvz8/Py05LxdSUlJp7wklS41NTWxevXqpItPvU4+K4Zed28kmpuisuBH0Vj5ekTE3uLTHieddFJMmTIlpk+fHieffHK780tKSpKaCwAAAAAAAAAADkXxCQAAAEiLSZMmRXNz8z5rLS0tUVRUlHJ2S0tLjB07NuWctjQ2NsaWLVs6JTtdiouLkyo+9Xn/JTH0C3dF8/bqqBz3w2jevGHv3tuLT3t85jOfiWXLlsXtt98eubm5h/yO0tLSDs8FAAAAAAAAAADtofgEAAAApEVBQUGb64WFhSlnz5w5MzZs2HDogxkqmeLTUed8IgZf9eNo2PRGbBp/e7TsqN1n/0DFp4iIfv36xX333RcLFy6MD3/4wwf9Hi8+AQAAAAAAAADQWRSfAAAAgJStWbMmXn311Tb30lF8ys/PTzmjO5s7d27U1tYe+uD/75iLvxAD/+U/YveahVE14afRWr9jvzMHKz7tcdZZZ8Xs2bPj0UcfjeOOO67NMytWrIi6urp2zwYAAAAAAAAAAO2l+AQAAACkbPz48QfcKykpiZ07dyadvX379pgyZUrS9zPB4sWL23kyKwZ89Jsx4PKvxo4lM6N6yj2RaG5o82R7ik8REdnZ2XHzzTfHihUr4qabbtpvP5FIxMKFC9s5HwAAAAAAAAAAtF9uVw8AAAAAdG+JRCIKCgoOuN/c3BzFxcXx0Y9+NKn8J598Mnbv3p3seBmhubk5xo8fHyeeeGJs2rSpzT+V1TWx+6yro/dp/xDbS6bFlpmjIiJxwMz2Fp/2GDx4cIwePTpuuummuPXWW2P58uV790pLS+Pyyy9P9scDAAAAAAAAAIA2KT4BAAAAKVm0aNE+JZi2FBYWJl18ys/PT+peptm4cWNcd911be7tamyOW8ctjMKV1fH9j5wSn/7mj6Oq6usHLElVVVXF4MGDk5rj8ssvj0WLFsXvf//7uOuuu6K+vj5KS0tT+dEAAAAAAAAAAKBNik8AAABASg722tMehYWFSWWvWbMmZs+endTdTFNcXNzm+padjfG1x0qifP3W+M3VZ8UXLzw5IiLe+973dtosPXv2jJ/85CfxxS9+MW677bYoKSnptO8CAAAAAAAAAODIpfgEAAAAJK2lpSUef/zxQ56bN29e1NfXR+/evTuUP2bMmGRHyzhtFZ82bt0dX8mbH2s374pHbrwgPnHGsMM60ymnnBLPPvtsTJkyJRoaGqJXr16H9fsBAAAAAAAAAMhs2V09AAAAANB9vfzyy7Fx48ZDnmtoaIh58+Z1KDuRSCg+/Y3169fH+vXr935+o2pHXPPIq7FpW32M+fpFh730tEdWVlZcffXVSk8AAAAAAAAAAKSd4hMAAACQtIKCgnafLSws7FD2nDlzYvXq1R0dKaPtefVp0bqt8YU/vhqNLYmY8K2L4+JTBnbxZAAAAAAAAAAAkH6KTwAAAEBS6uvrY/Lkye0+39Hik9ee9ldcXByzV1bH9SOL4+jePWLyrZfEGcf37+qxAAAAAAAAAACgU+R29QAAAABA9/TMM8/E9u3b231+7ty50djYGD179jzk2d27d8ekSZNSGS8jzXxjWzyVXxKnDjk68r92YQw5pndXjwQAAAAAAAAAAJ3Gi08AAABAUgoKCjp0fvfu3VFSUtKus9OmTetQqepIcPT5n47a066Mc0/sHxP+7WKlJwAAAAAAAAAAMp7iEwAAANBhW7Zsieeee67D9woLC9t1Lj8/v8PZmaz/ZdfHcR+7JXa/Pi++d37P6N+nR1ePBAAAAAAAAAAAnU7xCQAAAOiwJ598MhobGzt8b/bs2Yc8s3HjxnjxxReTGSvzZGXHcR+7NY798PWxo/yFqJ52b5SVzOvqqQAAAAAAAAAA4LBQfAIAAAA6rKCgIKl7RUVF0dzcfNAz48aNi9bW1qTyM0pObgy68odx9Pmfim1zn4ja5x+MSLRGcXFxV08GAAAAAAAAAACHheITAAAA0CFr166NwsLCpO7u2LEjFi5ceMD9RCIR+fn5yY6WMbJ69okh1/wy+p3+D7F55qOxdfb//k4UnwAAAAAAAAAAOFIoPgEAAAAd8vjjj6d0/2ClqQULFsSyZctSyu/usvscE0O/9OvoffJZUfPM76OuZNo++6tWrYrq6uoumg4AAAAAAAAAAA4fxScAAACgQwoKClK6f7Di05H+2lPOMUNi2A33R49BJ0X15Ltj59JZbZ6bN2/eYZ4MAAAAAAAAAAAOP8UnAAAAyCCtra2dml9RUREVFRUpZbzyyivR0tKy33pjY2PKr0l1Zz0G/V0Mu/G3kd3v2Kia+NPYvbr0gGeLi4sP42QAAAAAAAAAANA1FJ8AAAAggzz22GOdmp/qa08REdu3b4/Fixfvt/7ss89GbW1tyvndUa8T/j6G3vCbiIjYVHB7NGxYcdDzik8AAAAAAAAAABwJFJ8AAAAgQ1RXV8edd97Zaa8+tba2xvjx49OSVVhYuN9afn5+WrK7mz6nfDCGfPHuaN25NSrH/Wc01bx5yDvz589v89UsAAAAAAAAAADIJIpPAAAAkCGmTJkSlZWVUVFR0Sn5c+bMiXXr1qUl6+3Fp+rq6nj22WfTkt2d9DvjIzH46p9FU826qCz4UbRsr27Xvbq6uli+fHknTwcAAAAAAAAAAF1L8QkAAAAyxMSJEyMiYsaMGZ2SX1BQkLasV155ZZ+XqSZMmBDNzc1py+8Ojr7wszHo0z+I+rUVsWnCHdG6e3uH7hcXF3fSZAAAAAAAAAAA8M6g+AQAAAAZ4K233oqXX345Ijqn+NTQ0BCTJk1KW97mzZtjyZIlez/n5+enLTudevfuHV/72tfisssuS2vusZd/NY77yDdi54o5UfXkLyPRuLvDGYpPAAAAAAAAAABkOsUnAAAAyABPPvlkJBKJiIiYPXt2NDU1pTX/+eefj61bt6Y1c/bs2RERsXTp0liwYEFas9MhOzs7Vq5cGXl5edG/f//0hGZlx8BPfif6X/yFqCt7Lmqm3x/RktxLV4pPAAAAAAAAAABkOsUnAAAAyAATJ07c+/cdO3ZESUlJWvMLCgrSmhcRUVhYGBHv3NeeWltb4/XXX4+IiJqampTzsnJ7xuDP/iSOOvvjcfSbr8TTv7ghzj3n7KTzli1bFtu2bUt5LgAAAAAAAAAAeKdSfAIAAIBubt26dVFUVLTP2syZM9OWv23btnj66afTlrfHnpepxo0bl/bsdJkzZ05ERNTW1qaUk9Wzbwz5wn9Fn/d9KDa/+Md4z85lcemll0ZpaWk89NBDceyxx3Y4M5FIpL3gBgAAAAAAAAAA7ySKTwAAANDNPfHEE/utzZgxI235U6ZMiYaGhrTl7VFVVRWjR4+Ot956K+3Z6bKnUJZK8Sm737Ex7Pr7otcJp0fN07+LuoXPxKBBgyIiIicnJ/793/89Xnvttfj617/e4ezi4uKk5wIAAAAAAAAAgHc6xScAAADo5iZOnLjf2quvvhq7du1KS35BQUFactoycuTITstOh7lz50ZDQ0Ns2bIlqfu5xw6LYTf8NnIHvCuqnrwrdi2fHRGxt/i0x5AhQ2LUqFHx6quvxnnnndfufMUnAAAAAAAAAAAymeITAAAAdGOrV6+O+fPn77fe2NgYr776asr5GzdujJkzZ6accyALFy7stOx0qKur2/vqU0f1GPKeGHbDbyO7V9/YNOHOqP9L2d69gQMHtnnnkksuiZKSknj44YdjwIABh/yO4uLiSCQSSc0HAAAAAAAAAADvdIpPAAAA0I1NmjTpgHszZsxIOX/ChAmdWqxpbW3ttOx0mTVrVofv9DrpzBh2/X2RaG2KyoLbo/Gtlfvsv/3Fp7+Vk5MTt956a7z22mtx8803H/R7amtrY9WqVR2eDwAAAAAAAAAAugPFJwAAAOjGJk6ceMC9dBSfCgoKUs7o7oqLizt0vs/7Lo6h194VzXW1UTnuh9G8ef1+Zw704tPfGjx4cDz66KMxd+7cOP/889M2HwAAAAAAAAAAdBeKTwAAANBNrVy5MhYtWnTA/QULFsTWrVuTzl++fHksXLgw6fuZ4mC/47c76uyPxeDP/iQaN62OTQW3R0tdbZvnDvbi09tdfPHFMX/+/HjkkUdiwIAB++0rPgEAAAAAAAAAkKkUnwAAAKCbOthrTxERra2tUVhYmHS+157+qqamJm655Za4+eab46qrrorLLrssTj/99Bg8eHBkZ//vv1o55kPXxMBPfjfq/1IWmybeGa31dQfMbM+LT38rJycnbrnllli5cmV885vfjKysrL17ik8AAAAAAAAAAGSq3K4eAAAAAEjOhAkTDnlm5syZcdVVV3U4O5FIxPjx45MZKyP94z/+Y1x33XX7rbe2tsaWrVvj188uj8lLt8YHByfik6e/O7Z+6FdRW1sbNTU1bf6zIy8+/a1BgwbFiBEj4hvf+EZ8+9vfjtLS0li8eHHs2rUr+vbtm+qPCQAAAAAAAAAA7yiKTwAAANANLVmyJJYtW3bIczNmzEgqf+7cubFmzZqk7maioqKiNotPLYmIe15cG1OXbo2bLn13/PzTH4js7Kw2Ev5XIpFIeZ6LLrooiouL49FHH4077rgjFi5cGJdddlnKuQAAAAAAAAAA8E6S3dUDAAAAAB03ceLEdp1bunRpVFZWdji/oKCgw3cyWVFR0X5ruxqb45tjSmNq2Yb44SdOi1985tClp4iIrKysyMo69LlDycnJiW9961uxcuXKOPbYY1POAwAAAAAAAACAdxrFJwAAAOhmEolEu4tPERGzZs3qUH5TU1NMmjSpo2NltPLy8ti+ffvez1t3NcaNj86L2Sur497PnxXfvuLUtJSZkjFw4MA488wzu+S7AQAAAAAAAACgMyk+AQAAQDdTVlYWr7/+ervPz5gxo0P5L7zwQtTU1HR0rIzW2toaxcXFERFRua0+rh0+N5Zs2B4P33B+XHfRyV08HQAAAAAAAAAAZCbFJwAAAOhmOvLaU0TEzJkzO3S+oKCgQ+ePFEVFRbGqekdc/cirsXFrfTz29QvjX858V1ePBQAAAAAAAAAAGUvxCQAAALqRRCIRkyZN6tCdNWvWxJo1a9p1tq6uLqZN+3/s3Wl0nXd1L/4tW57tOE48JYSQhgRCQ8pQhhAIQwslLWUoCYRMi3IphJYh/dMmYWoG2jDe/ilDL5BLgVswWLFkyZYs2ceWLHmIHdtx4gHb8RziSfIgW5as6eic+6K1b2zLss7RkTV9PmtlSc/z7N/eO3HesBbf/EqyWW3QW7R2W3zkJyuiNdkRMz99Y9z08sl9vRIAAAAAAAAAAAxqgk8AAAAwgKxatSp2796d8bnKyspu1ZWUlERzc3PG/Qe70S97Tbxw7Ydj3MjhUfiZm+LVL5nY1ysBAAAAAAAAAMCgJ/gEAAAAA0hBQUFW56qqqrpVN2PGjKz6D2Zjr3tbTP3II5E8eiAefuv4uGryuL5eCQAAAAAAAAAAhgTBJwAAABggUqlUPPHEE1mdraqqinQ63WVNbW1tLFy4MKv+g9X41/55TP7AA9G677k48Jsvxe+eXtHXKwEAAAAAAAAAwJAh+AQAAAADxPLly2Pv3r1Zna2trY1NmzZ1WVNQUBCpVCqr/oPRxLfeEZe+97PRvH111D3xUKRbm2L58uV9vRYAAAAAAAAAAAwZgk8AAAAwQBQUFPTofGVlZZffZ8yY0aP+g0besLjkPZ+Ji992VzRuWBgHix+LdLItIiKWLVt23puzAAAAAAAAAACA3BB8AgAAgAEgmUzGrFmzetSjq+DTtm3bYtWqVT3qPygMz4/J7//HmPD6v4xjTxXF4fLvR6T/3y1Y+/fvj927d/fdfgAAAAAAAAAAMIQIPgEAAEAOtLe392r/mpqaqKur61GP6urqSCaTnX77zW9+06Peg0HeyDEx9baHY9yr3h71i38eR6t/0Wnd8uXLL/BmAAAAAAAAAAAwNAk+AQAAQA/t3bs3Zs+e3aszCgoKetyjoaEh1q5de9b7dDodM2bM6HH/gWzYmIti2u2Pxegr/ygOzfteNKw695/nsmXLLuBmAAAAAAAAAAAwdAk+AQAAQA/Nnj07FixY0Gv929vbo6ioKCe9qqqqznq3evXq2LZtW076D0TDL5oS0+/6doyY8rI4OPuxaNpY2WW9G58AAAAAAAAAAODCEHwCAACAHiosLIxEIhHpdLpX+ldWVsaRI0dy1utMQ/m2pxGTr4zpd383ho+bFHUF/xTNO1ad98zvfve7qK+vvwDbAQAAAAAAAADA0Cb4BAAAAD1QW1sbS5cujb1798bmzZt7ZUZBQUHOei1btixaWlpOPSeTyZg5c2bO+g8kIy+/Lqbd+e2IyIsDv/lStO7d1K1z6XQ6VqxY0bvLAQAAAAAAAAAAgk8AAADQE8XFxaduekokEjnv39raGsXFxTnr19LSEitXrjz1XFlZGXV1dTnrP1CMvvqPY9rt/xKp5uNRO+OBaD+4O6Pzy5cv753FAAAAAAAAAACAUwSfAAAAoAcKCwtP/d4bwacFCxbEsWPHctqzsrLy1O8zZszIae9ce+c73xkjRozIac9xf/jOmPrhf4r2I3viwIz7I3msNuMegk8AAAAAAAAAAND7BJ8AAAAgS4cOHYrq6upTz9XV1dHa2prTGQUFBTntF/H/gk8nTpzI6W1SuTR58uTYsGFDVFZWRjKZzFnfCX/8gZj8/n+M1j2/i9rffjlSJ7ILlT311FPR1taWs70AAAAAAAAAAICzCT4BAABAlubMmRMdHR2nnpubm3N6E9CJEydi7ty5Oet30qpVq+L48eMxd+7caGxszHn/XDhy5EhceeWVcfz48Uin0znpefHN98Ql7/50XHRsR/zir98Yr7rmD7Lu1dLSEs8880xO9gIAAAAAAAAAADon+AQAAABZKiwsPOtdIpHIWf/y8vJeCSZ1dHTEkiVLYsaMGTnvnSupVCqWL18e9fX1PW+WNywuueXzMfGm2+P4MxXxmqan48/f+5549tln4/vf/35cfPHFWbVdtmxZz3cDAAAAAAAAAADOSfAJAAAAslBfXx+LFi06630ug08FBQU563WmefPmxfz583utfy7U1NTE0aNHe9Zk+IiY8sEvxYTXvDeOLv9tHEn8e0y6eGJERIwYMSK+8IUvxNatW+Pee++NvLy8jFrn8nYvAAAAAAAAAADgbIJPAAAAkIXS0tJIJpNnvX/mmWeirq6ux/0bGxtj3rx5Pe5zLnPnzu10//6kp8GnvJFjY9pHvx5jX3lTHFn00zi27L9uuDrzhqcpU6bET37yk1i7dm3cfPPN3e6/fPnySKfTWe8HAAAAAAAAAAB0TfAJAAAAslBYWHjOb53dBJWp0tLSaG5u7nGfc9m7d2+v9c6VNWvWxP79+7M6O2zsxTH9zm/GqJe8Kg7O/W4cf7r01Lczg08nvfa1r42ampqYOXNmvPSlLz3vjLq6uti+fXtW+wEAAAAAAAAAAOcn+AQAAAAZamhoiAULFpzzeyKR6PGMgoKCHvcY6JLJZDz99NMZn8ufOC2m3/2dyJ/0kqgr+nqc2Fxz2vdJkyad82xeXl7cfvvtsWXLlnjooYdi9OjRXc5avnx5xvsBAAAAAAAAAADdI/gEAAAAGSorK4u2trZzfk8kEpFOp7Puf/To0aioqMj6/GCybt26jOpHTPmDmHb3d2PY6PFRO/Mr0bJr7Vk157rx6cXGjh0bjz76aGzevDluu+22c9YJPgEAAAAAAAAAQO8RfAIAAIAMFRUVdfl9//798bvf/S7r/nPmzOkyWDWUPPfcc92uHXXF9TH9zm9GpDriwIwHom3/1k7ruhN8Oumqq66KWbNmRVVVVdxwww1nfV+2bFm3ewEAAAAAAAAAAJkRfAIAAIAMNDY2Rnl5+XnrEolE1jMKCgqyPjvY7Nu3L6ZMmRIjRozosm7MNW+KqR/9enQ01ceBXz8QycN7zlmbSfDppHe9612xdu3a+Pd///e45JJLTr3fsmVLHD58OON+AAAAAAAAAADA+eX39QIAAAAwkFRUVERLS8t56xKJRHzxi1/MuP/hw4dj4cKF2aw2KHV0dERBQUG8853vjObm5jh69GjU19fH0aNHT/2+dG8yEvWT4+L08Xh1el2ceM/NZ9UdPXo00ul0RERMmjQpq13y8/Pj7/7u7+L222+Phx9+OH784x9HKpWKJ598Mt7//vfn8m8bAAAAAAAAAAAIwScAAADISFFRUbfqampqoqWlJUaPHp1R/9mzZ0cymcxmtUGrpqYm3vWud8XYsWNj7Nixcfnll5/69pOaHbFg45a4+drJ8ZO7b4lxo+7otEcqlYrjx4/H0aNH4yUveUmP9rn00kvjRz/6Udx7771x3333xbJlywSfAAAAAAAAAACgFwg+AQAAQDc1NzdHWVlZt2pbWlpi2bJl8e53vzujGQUFBdmsNqgtWbLkrHepVDq+NX9LPL5kZ7z/NZfHv37kNTEyf9g5ewwbNiwmTpwYEydOzNleN9xwQ1RWVsamTZty1hMAAAAAAAAAAPh/zv3/CAIAAABOs2DBgmhqaup2fSKRyKh/bW1tLF68ONO1Br0VK1ZEa2vrqef2jlTcX7g+Hl+yMz7+lpfF929/bZehp96Ul5cX119/fZ/MBgAAAAAAAACAwU7wCQAAALqpsLAwo/pMg09FRUWRSqUyOjMUtLS0xOrVqyMiormtIz7zq6ejaO2e+If3vCIe+cD1MWxYXh9vCAAAAAAAAAAA9AbBJwAAAOiG1tbWKC0tzejMunXrora2ttv1BQUFma41ZNTU1MSxE+1xz388FVXP1cVjf/Xq+PyfXht5eUJPAAAAAAAAAAAwWAk+AQAAQDcsWrQoGhoasjrXHXv37o2lS5dm3H+oqHxyTXz0pyti/Z5j8e93vj7uevPL+nolAAAAAAAAAACglwk+AQAAQDcUFhZmdS6RSHSrbtasWZFOp7OaMdjlT7o8tr3sA7Gn/kT84hNvjL+44bK+XgkAAAAAAAAAALgA8vt6AQAAAOjv2tvbY86cOVmdTSQSkU6nIy8vr8u6goKCrPoPdiOnvTymfuTRiIj46k3j463XTO7jjQAAAAAAAAAAgAvFjU8AAABwHosXL476+vqszh44cCA2btzYZc3zzz8fK1euzKr/YDb6yj+KaXd8M9LJ1jgw44F4Yd3yvl4JAAAAAAAAAAC4gASfAAAA4DwKCwt7dD6RSHT5/YknnuhR/8Fo7CvfGlM/8mgkG+riwK/vj2T9vqipqenrtQAAAAAAAAAAgAtI8AkAAAC6kEwmo7i4uEc9zhd8mjlzZo/6DzbjX3NLTP7gg9F6YGvUzngwOhqPRETEsmXLIplM9vF2AAAAAAAAAADAhSL4BAAAwIB14sSJXp+xdOnSOHToUI96LFmyJJqbmzv9tn379li7dm2P+g8mE99ye1x6y+eieceaqCt4KFKtTae+HT9+PNatW9eH2wEAAAAAAAAAABeS4BMAAAADVkFBQezYsaNXZxQWFva4R0tLSyxbtqzTbwUFBT3uPzjkxaQ//XRc/PZ7onFDZRwsfizSydazqmpqavpgNwAAAAAAAAAAoC8IPgEAADBglZSUREVFRa/1T6VSMXv27Jz0SiQSnb4XfIqIYfkx+f3/EBe94QNxbNXsOFz+bxGpjk5LBZ8AAAAAAAAAAGDoEHwCAABgQGpqaopEIhHl5eW9NuPJJ5+MAwcO5KRXZ8GnTZs2xYYNG3LSf6DKGzE6pt72UIz7w3dG/eKfx9Hlf2sRAAAgAElEQVTFP4+I9Dnrly5dGqlU6sItCAAAAAAAAAAA9BnBJwAAAAak+fPnR0tLSyxevDiam5t7ZUZhYWHOeq1fvz72799/2ruhftvTsDEXxbSPPRajX/aaOFT+b9Gw6vy3a9XX1w/5sBgAAAAAAAAAAAwVgk8AAAAMSCUlJRER0dLSEjU1NTnvn0qloqioKKc9Fy1adOr3dDo9pINPwydMiel3fTtGTLkqDhY/Fk0bFp3/0H/rjT9vAAAAAAAAAACg/xF8AgAAYMBpb2+PsrKyU88VFRU5n7Fq1arYs2dPTnsmEolTv69fvz6ee+65nPYfKPIvvSKm3/2dGD5uUtQ98VA0b1+V0XnBJwAAAAAAAAAAGBoEnwAAABhwampq4ujRo6eeeyP4lOvbniIiFi5cGKlUKiJiQNz2NHHixJz3HHnZK2L6Xd+JGDY8Dvzmy9G653cZ91iyZEmk0+mc7wYAAAAAAAAAAPQvgk8AAAAMOMXFxac9b9u2LXbs2JGz/ul0OgoLC3PW76Ta2trYsGFDpNPpmDlzZs7758oVV1wRZWVl8bOf/SynfUf/wetj2h3fiFRLY9T++v5oP7grqz6HDh2KTZs25XQ3AAAAAAAAAACg/xF8AgAAYEBJpVJRUlJy1vtc3vq0du3a2L17d876vVgikYg1a9bErl3ZhX4uhAkTJsT73ve+aGpqylnPsa96e0y99aG4KJrjf/755XHNZZN61K+mpiZHmwEAAAAAAAAAAP2V4BMAAAADypo1a2Lfvn1nvc9l8Kk3bns6KZFIREFBQa/1z4XNmzfHvn374vjx4znpN+GP3x9TPvBAtO7dHG9tXRN3fOh9sX79+vjRj34Ul156aVY9lyxZkpPdAAAAAAAAAACA/kvwCQAAgAGluLi40/eLFy+OlpaWHvdPp9O9GnxaunRpzJw5s9f650pVVVVOgk8Tb747Lnn3vXFi64qofeKhuGTCmIiIGDFiRHz2s5+Nbdu2xRe/+MUYMWJERn1ramoinU73eD8AAAAAAAAAAKD/EnwCAABgQCkpKen0fXNzc9TU1PS4/4YNG2L79u097nMura2tsXfv3l7rnys9Dj7lDYtL/uyzcfFNH4vj6xbEwZJvRnS0x4QJE04rmzRpUvzrv/5rbNq0KT784Q93u/2BAwdi27Zt2e8HAAAAAAAAAAD0e4JPAAAADBhbtmyJLVu2nPN7RUVFj2f05m1PA0llZWU0NDRkd3h4fkz+4IMx4XV/HseeLIgj838YkU5FRMT48eM7PXLNNddEUVFRVFdXx+tf//pujclF0A0AAAAAAAAAAOi/BJ8AAAAYMIqLi7v8novgU1FRUY97DAa///3vY9++fRmfyxs5Jqbe9miMe+Vb40jl43F06a9O+37mjU9nesc73hGrV6+OX/7yl3H55Zd3WSv4BAAAAAAAAAAAg5vgEwAAAANGSUlJl9+3bt0aO3fuzLr/pk2bYtOmTVmfH2x2796dUf2wsRNj2h3fjNEvvT4Olf7POL5m7lk15ws+RUQMGzYsPv7xj8fWrVvjoYceijFjxnRaV1NTE+l0OqMdAQAAAAAAAACAgUPwCQAAgAFh7969sWrVqvPW9eTWJ7c9nS6TG5/yJ06L6Xd9N0ZcekXUzf7naNpU3Wldd4JPJ40bNy4effTR2Lp1a9xzzz1nfd+zZ0/s2rWr2/0AAAAAAAAAAICBRfAJAACAAeF8tz2d1JPgU2FhYdZnB6PDhw93q27E5JfFtLu+E8PGTIjamV+Llp1Pn7M2k+DTSVdccUX853/+Z6xevTre9ra3nfatpqYm434AAAAAAAAAAMDAkN/XCwAAAEB3dDf4VFVVFS0tLTF69OiM+m/bti3Wr1+fzWqDVjKZjB/84AcxefLkOH78+Fl/NTY2xoGOcbH7pbdEJFtj2NL/FZekjsbxceOiqamp057ZBJ9OesMb3hBLliyJ2bNnx/333x+7du2Kmpqa+MQnPpF1TwAAAAAAAAAAoP8SfAIAAKDfq6+vj+rq6m7VNjc3x5IlS+LP/uzPMppRVFSUxWaDX0dHR9xxxx2dflu0qTY++5u1cdXFY+I/P/mmuGLSnaeda2pqOissdfXVV/don7y8vLj11lvjL//yL+MHP/hBzJgxo0f9AAAAAAAAAACA/mtYXy8AAAAA5zNv3rxIJpPdrq+oqMh4RmFhYcZnhoLKyspO3xc+vSfu/fXT8crpE2LWZ94SV0wae9r34cOHx0UXXRQveclL4rrrros3vvGN8Sd/8icxbty4nOw1atSouP/++2PhwoXR0dGRk54AAAAAAAAAAED/IvgEAABAv1dcXJxRfabBp927d8fTTz+d0Zmhoqam5qzQ2eNLdsQ/zloXb7n60vjNp26MS8eP6qPtIqZMmRLDhw/vs/kAAAAAAAAAAEDvEXwCAACgX2tubo758+dndOa5556LXbt2dbu+qKgo07WGjOPHj8eaNWsiIiKdTsc3yzfHN8q3xPv+6LL4j79+Q4wfld/HGwIAAAAAAAAAAIOV4BMAAAD92sKFC+PEiRMZn8vk1qfCwsKM+w8llZWVkexIxf2F6+OnS3bGPTe+LH7wsdfFqHw3LQEAAAAAAAAAAL1H8AkAAIB+rbi4OKtz3Q0+7dmzJ1auXJnVjKFiYVVNfObXT0fh03vi7999bXz9g9fH8GF5fb0WAAAAAAAAAAAwyOX39QIAAABwLslkMkpLS7M6W1VVFS0tLTF69Ogu62bPnp1V/6Eib9S42HrZe+L5zXXxzx+8Pu55y1V9vRIAAAAAAAAAADBEuPEJAACAfmvZsmVx+PDhrM6eOHEili5det66wsLCrPoPBcPHTYrpd34rRlx2bdx7wwihJwAAAAAAAAAA4IISfAIAAKDfKi4u7tH5ioqKLr/v378/li1b1qMZg1X+xZfFtLu/G/kXT4+6WY/E8U01fb0SAAAAAAAAAAAwxAg+AQAA0C+l0+koKSnpUY/zBZ+Ki4sjnU73aMZgNGLq1TH97u/EsJFjova3X4mW59dFZWVlX68FAAAAAAAAAAAMMYJPAAAAZGznzp29PuOZZ56J3//+9z3qsWXLlti9e/c5vxcVFfWo/2A06qU3xPQ7vxXpZHscmPFAtB3YFhERq1evjmPHjvXxdgAAAAAAAAAAwFAi+AQAAEDG7rvvvl6f0dPbnk46161PBw8ejOrq6pzMGCzGvOItMe2jX49kw8E48Ov7I3lk76lvqVQqlixZ0ofbAQAAAAAAAAAAQ43gEwAAABl57rnnoqysLLZu3dqrc4qLi3PS51zBp5KSkkilUjmZMRiMf817Y8oHvxSttduj9jcPRkfj4bNqKisr+2AzAAAAAAAAAABgqBJ8AgAAICOlpaUREVFWVtZrM7Zv3x4bN27MSa+qqqpobW09631RUVFO+g8GF934kbj0ls9Hy65noq7ga5Fqaey0rqqq6gJvBgAAAAAAAAAADGWCTwAAAGTkZPDp5M/eUFJSkrNeTU1NsXTp0tPeHTlyxO1FERGRF5P+9FMx6R0fj8aNVVE3+58j3X52SOykDRs2RF1d3QXcDwAAAAAAAAAAGMoEnwAAAOi2w4cPx7JlyyIiYunSpXH06NFemVNcXJzTfhUVFac9z507N5LJZE5nDDjD8mPyX/5DXPSGD0bD6pI4PO97EamO8x5z6xMAAAAAAAAAAHChCD4BAADQbRUVFZFKpSIioqOjIxYsWJDzGQcOHIgVK1bktOeZwafCwsKc9h9o8kaMiqm3fi3GXf/OqK/+ZdRX/Swi0t06K/gEAAAAAAAAAABcKIJPAAAAdFtpaWmXz7kwd+7cSKe7F8Lprs2bN8fzzz8fERHHjh2LhQsX5rT/QDJs9PiYdvtjMfqq18Xhih9Ew1OZhcAqKyt7aTMAAAAAAAAAAIDTCT4BAADQLW1tbTF//vzT3lVUVEQymczpnOLi4pz2O+nkrU9lZWXR1tbWKzP6u+ETLo1pd307Rk67Og6WfDMa1ycy7rFz587YvXt37pcDAAAAAAAAAAA4g+ATAAAA3bJkyZJoaGg47d2RI0dixYoVOZvR0NDQazcKnQw+FRZmdsPRhTZt2rT46U9/Gu9///tz2jf/kivisnv+NfInTI7aJx6K5m0rs+5VVVWVw80AAAAAAAAAAAA6J/gEAABAt5SWlnb6vqysLGczysvLo729PWf9XqyysjIOHz581q1V/c3b3/72+PSnPx3pdDpnPUde9oqYfte3Y+z4CfHVt4yLay7qWe/eCqcBAAAAAAAAAAC8mOATAAAA55VOpy9I8KmkpCRnvc7U1NQU3/ve96KlpaXXZuRCZWVldHR0RHNzc076jb7qtTHtY49FqvVE/NmwjXHvR98X69ati5/97Gdx+eWXZ9Wzqqoqp8EsAAAAAAAAAACAzgg+AQAAcF6bNm2KXbt2nfPbzp07ezyjtbU1ysvLe9ynK7NmzerV/rlw5MiRWLt2bZw4caLHvcZed3NMve3hSNbvj9oZD8TUsXkRETF8+PD45Cc/GVu3bo1/+Zd/iQkTJmTU98CBA7F58+Ye7wcAAAAAAAAAANAVwScAAADOa+7cuV1+z8WtT5WVlXH8+PEe9+nKtm3berV/riQSiR7f+DT+de+LyR+4P1r3bokDv/1ydDTVx9ixY0+rGTduXHz1q1+N7du3x+c+97nIz8/vdv+qqqoe7QcAAAAAAAAAAHA+gk8AAACcV2lpaZffcxF8Kikp6XGP80mn070+IxcSiUSPbnya+LY749I/+9to3vZU1M16ONKtTRERMWbMmE7rp06dGj/84Q9j06ZNcdttt3VrRmVlZdb7AQAAAAAAAAAAdIfgEwAAAF2qq6uLlStXdllTXV0dDQ0NWc/o6OiIOXPmZH1+sHnyySejsbEx84N5w+KS9/xtXPzWO6NxfSIOlnwz0sm2U5/PvPHpTNdee23MmjUrVqxYEW9729u6rK2uro6Ojo7MdwQAAAAAAAAAAOgmwScAAAC6VF5eft6bktrb22PhwoVZz1ixYkXU1dVlfX6wSSaTcfz48cwODc+PyR+4Pya8/n1xbOWsOFzxg4h06rSSc934dKYbb7wxlixZEiUlJfHKV76y05qjR4/GM888k9mOAAAAAAAAAAAAGRB8AgAAoEtz587tVl1paWnWM0pKSrI+O1idOHGi27V5I8fE1NseiXHX3RxHqv4jjtb8n07rznfj02k98/Ligx/8YGzcuDF+8pOfxLRp086qqays7HY/AAAAAAAAAACATAk+AQAAcE4tLS2RSCS6VVteXh4dHR0Zz0in01FcXJzxucGuu/8sh425KKZ97Bsx+sob4lDZ/x/HV5/7n2V3b3x6sfz8/Lj33ntj+/bt8cgjj8S4ceNOfRN8AgAAAAAAAAAAelN+Xy8AAABA/1VdXR1NTU3dqj148GCsXr06brzxxoxmbNy4MXbu3JnNeoPeLbfcEhERzc3NceLEibN+tuWPj0l/9U8x/KLJcbDon6N555ou+2Vy49OZxo8fHw8//HDce++98eijj8b//t//O5YtWxatra0xatSorPsCAAAAAAAAAACci+ATAAAA51RaWppxfabBJ7c9ndutt94af/M3f9Ppt621x+Oe/3gqmts64ke3vzpe9aXyTsNRL/557bXX9nin6dOnx49//OO477774stf/nKsXLky3vGOd/S4LwAAAAAAAAAAwJkEnwAAAOhUOp3OOPhUVlYWjz32WEZnBJ/OLZFIdBp8evr5I/E/frkmRo8YFrM+c1O8cvqEC77bddddF8XFxdHS0nLBZwMAAAAAAAAAAEPDsL5eAAAAgP5p3bp18cILL2R0Zv369fH73/++2/W7d++OZ599NtPVhoxFixZFR0fHae8Wb6mLu372VFwybmQU9lHo6cVGjx7dp/MBAAAAAAAAAIDBS/AJAACATmV629NJZWVl3a4tKSnJasZQUV9fH08//fSp59lr98Tf/OeauHbqhJj1mbfESy8Z24fbAQAAAAAAAAAA9C7BJwAAADol+NQ/JBKJiIj42dKd8cUn1sWNV18Sv/30jTF5/Kg+3gwAAAAAAAAAAKB35ff1AgAAAPQ/+/fvj9WrV2d1tqqqKpqammLcuHFd1h08eDCWLl2a1YyhZEEiESPecFv8uHpH/MUN0+N7t782RuUP7+u1AAAAAAAAAAAAep0bnwAAADhLJrc2nam1tTUWLVp03rrS0tJIpVJZzxkS8obFlgl/HD+u3hF3vfnK+OEdrxd6AgAAAAAAAAAAhgzBJwAAAM5SWlrao/PdCU6VlJT0aMZgl5c/MqZ86Msx7oZ3xy1XpOJfPvTqGD4sr6/XAgAAAAAAAAAAuGAEnwAAADhNc3Nzt25s6kpZWVmXtzk1NjZGIpHo0YzBLG/k2Jj6kUdjzLVvjiMLfxL5WxZEXp7QEwAAAAAAAAAAMLQIPgEAAAwQJ06ciM2bN/f6nMrKymhubu5RjwMHDsTatWvP+X3BggXR2traoxmD1bBxF8f0O78Vo15yXRwq/Z9xfG2ZkBgAAAAAAAAAADAkCT4BAAAMENXV1TFr1qxenzN37tyc9CkrKzvnt+Li4pzMGGzyL54e0+/6buRPuizqCr8eJzYviYiIbdu2xa5du/p4OwAAAAAAAAAAgAtL8AkAAGCAKC8vj5KSkl6dkUqlugwsZaK0tLTT921tbTmbMZiMmPoHMf2u78awUWOjduZXo2X3M6d9X7hwYR9tBgAAAAAAAAAA0DcEnwAAAAaAdDod5eXl8cwzz8Tzzz/fa3PWrl0b+/fvz1mvvXv3nvW+pqYmjh07lpMZg8Wol746pt/5rUin2uPAbx6Mtv1bz6pJJBJ9sBkAAAAAAAAAAEDfEXwCAAAYALZu3Rq7du2KiIi5c+f22pxz3dKUrfLy8rPeFRcX53TGQDfmmjfHtI9+PZLHD8eBXz8QycN7Oq2rrKyMZDJ5gbcDAAAAAAAAAADoO4JPAAAAA8CLA0QlJSW9NifXwacz+6VSqZgzZ05OZwxk4254T0z5q69EW93OqJ3xYHQcP3TO2qNHj8aaNWsu4HYAAAAAAAAAAAB9S/AJAABgAHhx8KmmpiaOHDmS8xkvvPBCPPPMMzntuWjRomhubj71vHr16ti3b19OZwxUF7351pj8F/dFy+5no3bmVyPVcvy8ZxKJxAXYDAAAAAAAAAAAoH8QfAIAAOjnGhsbo6am5tRzR0dHzJs3L+dzysrKct6zubk5qqqqTj0XFxfnfMbAkxeT3vXJmPTOT0TT76qjruifI93e2q2Tgk8AAAAAAAAAAMBQIvgEAADQz1VWVkZ7e/tp7+bMmZPzOaWlpTnvGXF6oKqkpKRXZgwYw4bHpe/7/+KiN/1VNKyZG4fK/jUilez28ZUrV8axY8d6cUEAAAAAAAAAAID+Q/AJAACgnysvLz/r3fz586O5uTlnMxobG0+7mSmXysrKIp1Ox+bNm+O5557rlRkDQV7+qJjy4a/F+Ff/SdTX/J+or3w8ItIZ9ejo6IjFixf3zoIAAAAAAAAAAAD9jOATAABAP5ZOpzsNPjU1NUVlZWXO5ixcuDBaW1tz1u/F9uzZE+vWrYvi4uJe6Z9LF110UTzyyCM57zts9Pi47I7HYswfvD4Oz/9hNKyclXWvRCKRw80AAAAAAAAAAAD6L8EnAACAfmzjxo2xZ8+eTr/NmTMnZ3NKS0tz1qszZWVlUVJS0qszcuGTn/xkfOUrX8lpz+HjL41pd347Rl3+ivgf10Vc2f5Cj/oJPgEAAAAAAAAAAEOF4BMAAEA/1tltTyfNnTs3Ojo6ejwjlUrFvHnzetynK7Nnz47Vq1f36oxcWLRoUU5vvsq/5CUx/e7vRv5FU+Ivxu2Kh//HB2L9+vXxy1/+Mq688sqseu7YsSN27NiRsx0BAAAAAAAAAAD6K8EnAACAfqyr4FNdXV2sXLmyxzNWrVoVdXV1Pe7TlWeffbZX++fKhg0bYteuXTnpNXL6NTH9ru9EXv7IqP3tl+PqccmIiBg+fHh8/OMfj61bt8a//du/xZQpUzLuvXDhwpzsCAAAAAAAAAAA0J8JPgEAAPRTR48ejeXLl3dZM2fOnB7PmTt3bo97nE86ne71GbmSSCR63GP0y14T0z72jUi3NceBGQ9EW+2OGDly5Gk1o0aNivvuuy927NgRjzzySIwfP/6C7ggAAAAAAAAAANDfCT4BAAD0U4sWLYqOjo4ua4qLi3scKiotLe3R+cFm0aJFPTo/9pVvjakfeSSSx2rjwIwHIlm/LyLirODTSRMmTIiHH344du7cGX//939/zroXq6ysjGQy2aM9AQAAAAAAAAAA+jvBJwAAgH6qvLz8vDXbt2+PzZs3Zz1j9+7dsXHjxqzPD0ZLly7N+uz41/55TP7gg9G6b2sc+M2XoqPxyKlv5ws0TZkyJb73ve/F1q1b46//+q9j2LBz/0/2hoaGWLVqVdZ7AgAAAAAAAAAADASCTwAAAP1QKpWKioqKbtWWlJRkPcdtT2dramrK6tzEmz4Wl773s9G8fXXUPfFPkW49vc+oUaO61edlL3tZ/OIXv4j169fHhz70oXPWJRKJrPYEAAAAAAAAAAAYKASfAAAA+qFnn302Dhw40K3aOXPmZD1H8CkX8mLSuz8TF998dzRuWBgHix+LdLLtrKrz3fh0puuvvz6Ki4tjxYoV8Y53vOOs74JPAAAAAAAAAADAYCf4BAAA0A+Vl5d3u3bVqlWxd+/ejGc0NDREdXV1xud4kWH5MfkD98dFf/yXceypojhc/v2IdKrT0kyDTyfdeOONsXjx4pg/f3687nWvO/X+qaeeiqNHj2bVEwAAAAAAAAAAYCAQfAIAAOiHMgk+RUTMnTs34xkLFiyI9vb2jM/xX/JGjI6ptz0U41719qhf/PM4Wv2LLutHjRqV/ay8vHjve98ba9asiZkzZ8Y111wTqVQqqqqqsu4JAAAAAAAAAADQ3+X39QIAAACc7tChQ7Fy5cqMzsyZMyf+9m//NqMzpaWlGdUPNT/84Q/jjjvuiLa2tmhra4vW1tZTvx9saI5vrWiI5xtScee1Ea9/013R1vaRs+pe/Pzyl7+8xzsNGzYsbr/99vjwhz8cP//5z2Pjxo3x4Q9/OAd/twAAAAAAAAAAAP2P4BMAAEA/k0gkIp1OZ3Smqqoqjh07FhMnTuxWfTKZzPhWqaFm8eLF8bnPfe6s93uPNsc//sdTsa8p4vF73hDv/sNpF3y3ESNGxL333pvxvycAAAAAAAAAAAADybC+XgAAAIDTZRNIam9vj4qKim7Xr1ixIg4fPpzxnKFk0aJF0d7eftq7bbXH49b/9WQcPN4av/rkm/sk9PRieXl5fTofAAAAAAAAAACgNwk+AQAA9CMdHR0xf/78rM7OmTOn27WlpaVZzRhKGhoa4sknnzz1/PTz9XHbT1ZERzodT9z7lnjTH1zSh9sBAAAAAAAAAAAMfoJPAAAA/cjq1auzvolp3rx50dra2q1awafuOXmL1uLn6uLunz0Vk8aOiNl/e1O86rKL+ngzAAAAAAAAAACAwU/wCQAAoB85GbTJxvHjx6O6uvq8ddu2bYstW7ZkPWcoqaioiJJn9san/s+auHrKuJj1mZvipZeM7eu1AAAAAAAAAAAAhgTBJwAAgH6kvLy8R+dLSkrOW+O2p+7bNeKq+PuCZ+ONV10SMz99Y0yZMKqvVwIAAAAAAAAAABgyBJ8AAADOI51OX5A5tbW1sWbNmh71mDt3bqRSqS5rBJ+65+Kb74lL3v3puG5cS/ziE2+MCaNH9PVKAAAAAAAAAAAAQ4rgEwAAwHk88cQTF2TO/Pnze9xj3759XYan6uvrY+nSpT2eM6jlDYtL3vu5mHjT7XH82YoYt25mjB4xvK+3AgAAAAAAAAAAGHIEnwAAAM7jG9/4RuzatavX55SXl+ekT0lJyTm/zZ8/Pzo6OnIyZ1AaPiImf/DBmPDaW+LokzPjyIJ/j0ULE9He3t7XmwEAAAAAAAAAAAw5gk8AAABd2L9/f6xfvz5mz57dq3OSyWQsWLAgJ73mzJlzzm+lpaU5mTEY5Y0cE9M+8miMe+Vb48iin8axpb+OiIiGhoZYsWJFH28HAAAAAAAAAAAw9Ag+AQAAdGHhwoUREVFUVNSrc1asWBHHjh3LSa9NmzbF1q1bz3rf3t6es1ulBpthYy+OaXd8M0Zd8YdxcO534/jTpwfEKioq+mgzAAAAAAAAAACAoUvwCQAAoAsnb2FasWJF7N27t9fm5DqQ1NmtT8uWLctZuGowyZ84Labf/Z0YcckVUVf09TixueasGsEnAAAAAAAAAACAC0/wCQAA4BxSqVQkEolTz7Nnz+61WRci+FRaWtpJ5dA2YspVMe3u78aw0eOjduZXomXX2k7r1q1bF/v27bvA2wEAAAAAAAAAAAxtgk8AAADn8Oyzz8ahQ4dOPRcVFfXKnD179sT69etz2vPJJ5+M2traU8/pdDrmzp2b0xkD3agrro/pd34rItURtTMejLb9W7usnz9//gXaDAAAAAAAAAAAgAjBJwAAgHNasGDBac9Lly6Nurq6nM+pqKjIec90On3aDU9btmyJHTt25HzOQDXmmjfF1I9+PTqa6uPArx+I9sMvnPdMb/w5AQAAAAAAAAAAcG6CTwAAAOeQSCROe06lUlFSUpLzOeXl5TnvGRGn7friENRQN+6Gd8eUv/pqtB98Pg7MeDA6jh/s1rmFCxdGMpns5e0AAAAAAAAAAAA4SfAJAACgE42NjbF8+fKz3hcVFeV0TltbWyxatCinPU9atGhRNDY2RoTg00kXvenWmPwXfx8tz6+L2plfiVRzQ7fPHjt2LFasWNGL2wEAAAAAAAAAAPBigk8AAACdqK6ujvb29rPeV1VVRX19fc7mLFu27FQ4KddaW1tjwYIFcejQoXjyySd7ZauVracAACAASURBVMbAkRcXv/MTMeldn4imzUuirvDrkW5vybhLRUVFL+wGAAAAAAAAAABAZwSfAAAAOrFgwYJO3yeTyZg7d27O5pSXl+esV2dKSkqivLw8UqlUr87JhZEjR8ZNN92U+8bDhse0D/xDTHzzrdHwdGkcmvvdiFQyq1aCTwAAAAAAAAAAABeO4BMAAEAnzhV8iogoKirK2ZzeDj7Nmzcv5syZ06szcuVrX/tafOELX8hpz7z8UTHlr74ao1/1zrjlJe0xbe+SiEhn3e/ZZ5+N/fv3525BAAAAAAAAAAAAzknwCQAA4Ay7du2Kbdu2nfP7ggULoqGhISdzNm/e3OM+Xamvrx8wtxTV1NREMpndTUydGTZqXEz96NdjzMvfEH868WD85PMfio0bNsSvfvWruPrqq7PuO3/+/JztCAAAAAAAAAAAwLkJPgEAAJwhkUh0+b2trS3mzZvX4zkXKpDU3Nx8Qeb0VE1NTTQ2Nuak1/Dxl8S0O78Voy57RRya8+3444kn/uv98OFx9913x5YtW+Lxxx+PK664IuPeAyVIBgAAAAAAAAAAMNAJPgEAAJzhfMGniIiioqIezykvL+9xj8EkmUzGunXretwnf9LlMf2u70T+xGlRV/hInHhueQwfPvy0mhEjRsSnPvWp2LZtW3z/+9+PadOmdbv/woULc3ozFQAAAAAAAAAAAJ0TfAIAAHiRZDIZlZWV562rqKiIEydOZD2nubk5qqqqsj4/WD377LM9Oj9y2stj+l3fibwRo6P2t1+Oluf/K0iVn5/faf3o0aPjC1/4QuzYsSO+9a1vxaRJk8474+jRo7Fy5coe7QkAAAAAAAAAAMD5CT4BAAC8yKpVq+LYsWPnrTtx4kTMnz8/6zk1NTXR3Nyc9fnBasOGDVmfHX3lH8W0O74Z6WRrHJjxQLTV7jj17cwbn840bty4ePDBB2PXrl3x8MMPx4QJE7qsr6ioyHpPAAAAAAAAAAAAukfwCQAA4EUWLFjQ7dqioqKs55SXl2d9djBrbGzM6tzYV9wUUz/yaCQbDsaBXz8Qyfp9p30/141PZ5o4cWI88sgjsWvXrnjggQdizJgxndYJPgEAAAAAAAAAAPQ+wScAAIAXyST4VFZWFq2trVnNEXzKnfGvuSUmf+hL0XpgW9T+5sHoaDx8Vs35bnw606WXXhrf/va3Y+fOnfH5z38+Ro4cedr3Z555Jg4cONCjvQEAAAAAAAAAAOia4BMAAMB/O3LkSKxevbrb9Q0NDbFo0aKM52zbti127NiR8TnONvEtt8elt3wumnesibqCf4pUS+c3RnX3xqczTZ8+PX7wgx/Etm3b4lOf+tRpAar58+dn1RMAAAAAAAAAAIDuEXwCAAD4b5WVlZFKpTI6U1hYmPEctz3lQl5M+tNPx8VvvycaN1bFweLHIp089+1bmd74dKYrr7wyHn/88diyZUvcfffdkZeXFxUVFT3qCQAAAAAAAAAAQNey+09eAwAADEKJRCLjM3PmzIn29vYYMWJEt88IPp3f7bffHjfffHMkk8no6Og47WdbMhVL266K3enJ8YrUC3H9K9LRcfXfRUdHx1m1J39eccUVOdnrmmuuiV/96lfxpS99Kb7//e9HR0dHj0NVAAAAAAAAAAAAdE7wCQAAICLS6XQsWLAg43P19fVRXV0d73nPe7pV39TUFNXV1RnPGWqOHTsWn/3sZ89639SajM/8+unYve1QfOnPr4t73/4XkZeXd8H3u/766+Pxxx+/4HMBAAAAAAAAAACGkmF9vQAAAEB/8Nxzz8ULL7yQ1dmioqJu11ZVVUVbW1tWc4aSqqqqaGxsPO1dfVNb3PWzp2L59kPxnVv/KD7zjpf3SegJAAAAAAAAAACAC0PwCQAAICKr255OKi4ujo6Ojm7VlpeXZz1nKGlra4tFixadet53tDk+8n/Zu/P4qu86X/zvLGyF0pa9i1Y72urU1lYda13vONpRb3Wsrd1nRu9vXGb3Xq111NGpa13unXG816WtUNtASEIoFGgbSEgIS0gCpCxlLXtpQ9jKEkhIcs7vDx8wIiFkOScncJ7Px4MH53y/78/7/X4A/+Tx4PX4/Lom1r5yKH51/9vjzj95TQa3AwAAAAAAAAAAoD8IPgEAAETfgk9NTU2xePHis9Ylk0nBpx6YPXt2RES82HQ4bv/lkth9sCWe/B/vjFuunZDhzQAAAAAAAAAAAOgPgk8AAEDWa21tjaqqqj71KC0tPWvN2rVrY8eOHX2ak01mz54dK7bvjzt+VRNtHcko+sLNcdNVozO9FgAAAAAAAAAAAP1E8AkAABiwEolEv8xZtGhRHDt2rE89pk+fftZ93fbUMwcvuDzueaQmLho2KKb/7bvjjy8bmemVAAAAAAAAAAAA6EeCTwAAwIDU1tYWv/3tb/tl1ty5c/vc46WXXor6+vouawSfuu+CN78/xt3+rzE80RwlX7w5Xjv6gkyvBAAAAAAAAAAAQD8TfAIAAAak+vr6ePTRR/tlVllZWUr6TJs27YzvDh06FIsWLUrJnPPdhW+7NcZ8/CvRumt9JCr+PcZdODTTKwEAAAAAAAAAAJABgk8AAMCAVFFRETU1NbFjx460zmlsbIyVK1empFdpaWkkk8lO35WXl0d7e3tK5pzPLnrvfTHqw1+MY5tqY3fxt2Jl/dLYtWtXptcCAAAAAAAAAAAgAwSfAACAAamioiIiur5FKRXmzZuXsl5bt26N559/vtN3zzzzTMrmnJdycmPULX8fF7/nnji8siz2zPhhREdbRETMnj07w8sBAAAAAAAAAACQCYJPAADAgNPc3BxLliyJiIiioqK0ziorK0tpv9LS0tOeJZNJwaeu5OXHmL94MC688aNxsKY49j/384hk4uRrwScAAAAAAAAAAIDsJPgEAAAMOIsWLYq2tt/d9lNXVxfbtm1Ly5xEIpHSG58iOg8+rVy5Ml555ZWUzjlf5AweFuPueCiGX/Oe2F/xaLxa/cRpNeXl5XH06NEMbAcAAAAAAAAAAEAmCT4BAAADTnl5+SnfS0pK0jJn5cqV0dTUlNKe69evj7Vr157yzG1Pncu94KIYf88PY+hrro29s34ah5fN7LSupaUl5s+f38/bAQAAAAAAAAAAkGmCTwAAwIBTUVFxyvfi4uK0zJk7d25a+v7hrU+CT6fLGzkuJtz3kxg0+opomv69aF5b1WX97Nmz+2cxAAAAAAAAAAAABgzBJwAAYEDZu3dvNDQ0nPJs2bJlsXnz5pTPKisrS3nPiFODT/v374+ampq0zDlXDRpzZUy4/yeRO+zC2D31m9GyZdlZz8yePTuSyWQ/bAcAAAAAAAAAAMBAIfgEAAAMKJWVlZ0+LykpSemc5ubmWLRoUUp7nrBy5cp48cUXI+J3t0olEom0zDkXDbn8zTH+vh9FRDJ2T3kwjr+8vlvndu3aFc8//3x6lwMAAAAAAAAAAGBAEXwCAAAGlPLy8k6fFxcXp3ROVVVVtLW1pbTn7ztx69MzzzyTthnnmmF/9Ccx7q7vRaL51WgseCDa9u7o0fnZs2enaTMAAAAAAAAAAAAGIsEnAABgQKmoqOj0eUNDQ2zatCllc8rKylLWqzOlpaWRSCTi2WefTeucc8Xwaz8YYz/1zWjbuz0aJ381Og7t6XGPWbNmpWEzAAAAAAAAAAAABirBJwAAYMDYtm1bbN68+YzvU3nr09y5c1PWqzP19fUxe/bs2Lt3b1rnpEpubm6MHDkyLb3Hvu/uGHPr/4qWHati99RvROLYoV71qa+vj8bGxhRvBwAAAAAAAAAAwEAl+AQAAAwYZ7rt6YRUBZ+2b98eGzZsSEmvrvziF79I+4xUeeSRR+L9739/yvte/IHPxAXvvj9uHJ2ISzfOiOTxY33q98wzz6RoMwAAAAAAAAAAAAY6wScAAGDAKC8v7/L9qlWrYv369X2ek+7bnk5YvHhxv8xJhbq6utQ2zMmN0R/957joXXfE20c2x7Qv3xoNy+vjqaeeire+9a29bjtr1qwULgkAAAAAAAAAAMBAJvgEAAAMCIlE4qw3PkWk5tansrKyPvfojiNHjvTLnFR4+umnI5FIpKRXTv7gGHvb12PE9R+OVxdNiY+MPRR5uTmRk5MTn/zkJ2PFihUxffr0uP7663vce968edHS0pKSPQEAAAAAAAAAABjYBJ8AAIABYc2aNbFnz56z1vU1+NTe3t6tgFW2aWxsjFdffbXPfXKGDI9xd34nhr3hnbFv7i/j4OIpkZubc0pNbm5u3HbbbdHQ0BClpaVx3XXXdbt/c3NzLFiwoM97AgAAAAAAAAAAMPAJPgEAAANCd8NIL7zwQrzwwgu9nlNfX5+SgM/5aPfu3X06nzf8kphw78Mx5LJrYu/TP4kjDXO6rM/NzY1PfepT8fzzz8e0adPiLW95S7fmzJo1q097AgAAAAAAAAAAcG4QfAIAAAaE8vLybtf25dansrKyXp893zU2Nvb6bP7Fl8b4+38S+RdPiKZpD8XR9Qu7fTY3Nzduv/32WLlyZZSUlJw1ADV79uxIJpO93hUAAAAAAAAAAIBzg+ATAACQcW1tbbFgwYJu1xcXF/c6+DJ37txencsGzc3NvTo3aNxVMeH+H0fu4GGxu/Dr0bLt+VPe5+TkdKtPbm5u3HHHHbFy5cooLi6Oa6+9ttO67du3x5o1a3q1KwAAAAAAAAAAAOcOwScAACDjamtrexS6Wb9+fa+CLwcOHIja2toen+PMhrzmuphw78ORbG+LxskPxvHGTX3umZubG5/+9Kdj1apVMXXq1Hjzm998Ws3s2bP7PAcAAAAAAAAAAICBTfAJAADIuIqKih6fKSoq6vGZ+fPnRyKR6PE5OjfsjTfH+DsfivbDe6Jx8gPRvv+llPbPzc2Nu+66K1avXh2FhYWnBKAEnwAAAAAAAAAAAM5/gk8AAEDGlZeX9/hMcXFxJJPJHp0pKyvr8Rw6N+L6W2LsJ78Wrbs3x+7JD0bH4X1nrM3JyenTrLy8vLj77rtj9erVMWXKlHjTm94UNTU1sWfPnj71BQAAAAAAAAAAYGDLz/QCAABAdjty5EgsXbq0x+c2bdoUK1eujBtuuKFb9clkMubOndvjOdnoqquuigkTJkREnAyXnfw9Io685t1x5KoPxuB9m2L8izPiyuv/+PS63wuljR49OiV75eXlxT333BN33nlnFBcXx4YNG2Ls2LEp6Q0AAAAAAAAAAMDAI/gEAABkVHV1dbS3t/fqbFFRUbeDTxs3bozt27f3ak62ueaaa+KZZ5457XkikYzvzVkXExdvjdtuvDx+fMdHY1Del/p9vxMBKAAAAAAAAAAAAM5vuZleAAAAyG4VFRW9PltcXHzKzUJdKSsr6/WcbFNRURGHDx8+5VlbRyL+V/HzMXHx1vgf73l9/O9PvzUG5fmREgAAAAAAAAAAgPTxv9QAAICMKi8v7/XZLVu2xIoVK7pVO3fu3F7PyTbHjx+P55577uT3o8fb43NPLIsZz78cD/z5NfGvt745cnNzMrghAAAAAAAAAAAA2UDwCQAAyJimpqZYtWpVn3oUFRWdtaa1tTUqKyv7NCfbzJgxIyIiXj16PO57rDaqN+6Jhz91Xfz9n74hcnKEngAAAAAAAAAAAEg/wScAAOAU+/fvj46Ojn6ZNX/+/D73KC4ujmQy2WXNkiVL4ujRo32elU3mzJkTO/Ycik//qiZeePlQ/OK+t8fd73xtptcCAAAAAAAAAAAgiwg+AQAAp3juueeiqqqqX2ZVVFT0ucf27dujvr6+y5qysrI+z8k2zXkXxif/78J45WBL/Paz74yPvGVCplcCAAAAAAAAAAAgywg+AQAAp6iqqoopU6b0y6zy8vKU9CkqKury/dy5c1MyJ1sMvvTqmHDfj+LIsdaY+vl3xc1/NDrTKwEAAAAAAAAAAJCFBJ8AAIBTVFZWRmlpabS2tqZ1zpYtW2Lbtm0p6VVSUhKJRKLTd7t3746GhoaUzMkGQ193Q4y/+/uROH4sjj793bj2spGZXgkAAAAAAAAAAIAsJfgEAACc9NJLL8WLL74YBw8ejOeeey6tsyoqKlLWa+fOnVFbW9vpu3nz5qVszvnugje9N8bd8e1of7Uxdhc8ELs2PB/Lly/P9FoAAAAAAAAAAABkKcEnAADgpMrKypOfCwsL0zqrvLw8pf2Ki4s7fT537tyUzjlfjbjxYzHmE1+N1pc3ROOUr0VH84GIiJg5c2aGNwMAAAAAAAAAACBbCT4BAAAnVVVVnfz89NNPx5EjR9IyJ5FIxPz581Pas6SkJBKJxGlzBJ/O7qL33Bujb/m7OPZiXTQVfyuSrc0n382YMSODmwEAAAAAAAAAAJDNBJ8AAICTfv/Gp2PHjqXttp9Vq1bF3r17U9pz165dsWTJklOerV69Onbv3p3SOeeVnNwY9eEvxsXvvTeOrJoXe576QSTbj59SsmbNmti8eXOGFgQAAAAAAAAAACCbCT4BAAAREbF9+/bYunXrKc8KCwvTMquioiItfYuLi0/5XlZWlpY554W8/Bjz8a/EhW+7NQ4uLYl9z/4sIpnotDRdATgAAAAAAAAAAADoiuATAAAQEafe9nRCWVlZ7Nu3L+WzysvLU94zIqKkpCQ6OjpOfp87d25a5pzrcgYPi3F3fDuGv/n9sX/+b+LVBb/tsn7GjBn9tBkAAAAAAAAAAAD8F8EnAAAgIiKqqqpOe9be3h6lpaUpnXP8+PGorq5Oac8TGhsbY9GiRRER0dzcHAsXLkzLnHNZ7rCRMf7u78fQ114fe2f/nzhc/9RZzyxevDiampr6YTsAAAAAAAAAAAD4L4JPAABAJJPJTm98iogoLCxM6aylS5fG0aNHU9rz9xUXF0dExIIFC+L48eNpm3Muyhs5Nibc9+MYNObK2DP9e9H8wvxunUskEjF79uw0bwcAAAAAAAAAAACnEnwCAABi69atsWPHjk7fLViwIHbt2pWyWRUVFSnr1Zlp06ZFe3t7zJ07N61zzjWDxrw2Jtz/08gdfnE0Ff1rHNtc36PzM2fOTNNmAAAAAAAAAAAA0DnBJwAA4Iy3PUX87jaooqKilM0qLy9PWa/ONDU1RXV1dZSVlaV1zrlkyOVvivH3/igiInZPfjBad63tcY+5c+dGc3NzqlcDAAAAAAAAAACAMxJ8AgAAoqqqqsv3hYWFKZlz6NChqK2tTUmvrkycODHWr1+f9jnngjHXfSDG3fW9SBw7FI0FD0Tb3u296tPS0uIWLQAAAAAAAAAAAPqV4BMAAGS5ZDLZ5Y1PERHLli2LTZs29XlWdXV1dHR09LnP2cycOTPtM1Lp0UcfTUvf4df+aVz4sa/Eay8aHONWFUTHoaY+9TvX/lwBAAAAAAAAAAA4twk+AQBAlnvxxRdj165dZ62bOnVqn2dVVFT0uUd3HDlypF/mpMqWLVtS3vPCd/xFjLn1y3HVhYl49qsfiRU1C2LOnDnxrne9q9c9Z82aFe3t7SncEgAAAAAAAAAAAM5M8AkAALLc2W57OqGwsDCSyWSfZpWXl/fp/Pkq1TcpXfz+v45Rf/a5aF6/KD7z+qNx4dBBkZOTEx/72MdiyZIlUV5eHh/4wAd63Hf//v2xaNGilO4KAAAAAAAAAAAAZyL4BAAAWa6qqqpbdevWrYtVq1b1ek5jY2OsWbOm1+fPZ2vXrk1No5zcGPWRf4yLbv50HG54NvY+/ePISXacWpKTE3/2Z38WVVVVUV1dHR/+8Id7NCLVIS0AAAAAAAAAAAA4E8EnAADIYslksts3PkVETJkypdez5s+f3+uzdEPeoBj7yX+JC9/65/Hq4imxf+7/i0gmoqOj44xH3ve+98XcuXNj6dKlceutt3ZrzIwZM/p88xcAAAAAAAAAAAB0h+ATAABksQ0bNkRjY2O366dOnRqJRKJXsyoqKnp1jrPLGXxBjL/zOzHsjTfF/nm/ioOL/iug1p2/r5tuuilmzZoVK1asiE996lNd1m7btq1PN38BAAAAAAAAAABAdwk+AQBAFquqqupR/Y4dO6KmpqbHc5LJZJSXl/f4HGeXO/zimHDvwzHk8jfF3lk/jcMrZp/yvqsbn/7QjTfeGKWlpbFmzZq45557Ije38x8ZZ8yY0aedAQAAAAAAAAAAoDsEnwAAIItVVlb2+ExhYWGPz2zevDl27NjR43N0Lf/iCTHhvp9E/iWXRtO078TRddWn1fQk+HTCtddeG1OmTIl169bFZz7zmcjLyzvl/cyZM3u9MwAAAAAAAAAAAHSX4BMAAGSpZDLZ4xufIiKKi4ujvb29R2fc9pR6g8a9Pibc95PIHTo8dk/9RrRsa+i0LpFI9HrG1VdfHZMmTYpNmzbF5z//+Rg0aFBERDQ0NMT27dt73RcAAAAAAAAAAAC6Q/AJAACy1Nq1a6OpqanH5/bs2RMVFRU9OtPTero25DVviQn3PhzJRHs0Tv5qHH9l4xlre3Pj0x96/etfH7/+9a9jy5Yt8Y//+I8xdOhQtz4BAAAAAAAAAACQdoJPAACQpXpz29MJhYWF3a5NJBIxf/78Xs/iVMPecFOMv/M70XFkfzQWPBDt+16KnJycyMvLi8GDB8ewYcNi+PDhMXLkyLjkkktO3tKUCldccUX853/+Z2zdujUuv/zylPUFAAAAAAAAAACAzuRnegEAACAzKisre332qaeeil/96lcxdOjQs9Y+//zzsX///l7PyjY33XRTFBUVRV5eXuTl5UVubu7JzzNXN8V3nn0x3nLZyHj0Lz8co3/5N5GXlxc5OTn9uuOECRPi9ttv79eZAAAAAAAAAAAAZB83PgEAQBZKJBJ9uvHp0KFD8cwzz3Srtry8vNdzslF9fX0MGzYsrrjiirj00ktj/PjxMXr06Ji6cn/82zMvxnvfODYKP39zjL94ROTn5/d76AkAAAAAAAAAAAD6i+ATAABkoTVr1sS+ffv61KOwsLBbdRUVFX2ak20SiUTMmDHj974n4/tz1sWPnlsfn3jrZfHYX70jhg9xeS8AAAAAAAAAAADnP8EnAADIQn257emE2bNnx6FDh7qsaW1tjYULF/Z5VrYpLS2NiIi2jkR8pWRlPLZoa3zm3a+L/7jrhhic78c4AAAAAAAAAAAAsoP/MQcAAANEXV1dv82qrKzsc4+WlpZTbibqTE1NTRw7dqzPs7LN/Pnz4+WmvfGFJ5fH9IZd8ZVbro5vf/yPIzc3J9OrAQAAAAAAAAAAQL8RfAIAgAHi5z//eaxZsybtcxKJRCxYsCAlvQoLC7t8X15enpI52SaRNyTu+uWiqNrQFD+47br4hw++MXJyhJ4AAAAAAAAAAADILoJPAAAwQFRXV8fkyZPTPmflypVx4MCBlPSaN29e7Nmz54zvKyoqUjInm+SNGB3j7/tRvNScG//v3rfFvTe9NtMrAQAAAAAAAAAAQEYIPgEAwACwffv22LFjR0yePDkSiURaZ1VVVaWsV0dHR0ybNq3TdwcPHoz6+vqUzcoG+ZdcFhPu/3HkjxwXe0sfivdcOTzTKwEAAAAAAAAAAEDGCD4BAMAAUF1dHRERO3fujIULF6Z1VmVlZUr7FRYWdvp8wYIF0dHRkdJZ57PBE94QE+7/SeTkD4ndhf8SR7asiDlz5mR6LQAAAAAAAAAAAMgYwScAABgATgSfIiIKCgrSNqejo+OUWamwcOHC2Llz52nPKyoqUjrnfDb0yrfG+Lt/EMnjx6Jx8lfj+O7NERFRWlqa4c0AAAAAAAAAAAAgcwSfAABgAFiwYMHJzyUlJdHS0pKWOQ0NDXHw4MGU9506deppz8rLy1M+53x0wTXviXF3/Fu0H2qKxslfjfYDL5989+yzz8bRo0czuB0AAAAAAAAAAABkjuATAABk2CuvvBKbNm06+f3gwYMxZ86ctMyqqqpKS9/CwsJTvr/yyiuxdu3atMw6n4y44aMx5i8ejNbGjbF78oPRcWT/Ke+PHj0azz33XIa2AwAAAAAAAAAAgMwSfAIAgAxbuHDhac8KCgrSMquysjItfRsaGmLDhg0nv1dUVKRlzvnkonffHaP//O/j2OZl0VT0rUi0NndaV1pa2s+bAQAAAAAAAAAAwMAg+AQAABlWXV192rM5c+bE/v37O6nuvfb29k5DVqny+7c+CT51JScu+dAX4+L33R9HVpfHnqe+H8n21jNWz5o1K1pbz/weAAAAAAAAAAAAzleCTwAAkGGdBZ/a2tpi2rRpKZ2zfPnyOHz4cEp7/r7CwsJIJpORTCajvLw8bXPOabn5MeYTD8TIt98aB2tLY98z/xGR6OjyyOHDh2PevHn9tCAAAAAAAAAAAAAMHIJPAACQQfv374/Vq1d3+q6goCCls6qqqlLa7w9t3LgxGhoaYtOmTfHSSy+ldda5KGfQ0Bh3x7di+JvfHwcqJ8arVZO6fba0tDSNmwEAAAAAAAAAAMDAlJ/pBQAAIJstXLiwy3fbtm2L173udSmZVVlZmZI+XZkyZUpcddVVaZ9zrskdNjLG3fHtGDzhDbH3mf+I5tU9uxFr5syZ0dbWFoMGDUrThgAAAAAAAAAAADDwuPEJAAAyqLq6usv3U6ZMScmctra2WLRoUUp6daWoqCjKy3sW6jnf5V04Nibc96MYNPZ1seep7/c49BQRceDAgbTf2AUAAAAAAAAAAAADjeATAABk0NmCT08++WQkk8k+z6mvr4/m5uY+9zmbl156KebNm5f2OeeK8W+8ISbc/+PIG35JNBV/K469WNfrXqWlpSncDAAAAAAAAAAAAAY+wScAAMiQw4cPx4oVK7qsWb9+fTQ0NPR5Vn/eFnTkyJF+m9VXOTk5ceedd6al9+DLronRd34vRo0eExNeKIzWl17oU7+nnnoqOjo6UrQdAAAAAAAAAAAADHyCTwAAkCFLliyJRCJx1rqCgoI+z6qsAmBi4AAAIABJREFUrOxzj/NRMpmMoUOHprzv0Ne/Lcbf9f24ID9izv/8YNTNmxHV1dXx0Y9+tNc9m5qaYvHixSncEgAAAAAAAAAAAAY2wScAAMiQ6urqbtUVFhZGe3t7r+e0trYKzHThbLdu9dQFb/5AjLv9W9G2/6X4pz9ui9eMuiAiIt73vvfFM888Ew0NDXHXXXdFbm7PfxwrLS1N6a4AAAAAAAAAAAAwkAk+AQBAhixYsKBbdY2NjTF//vxez6mrq4tjx471+vz5bu3atSnrdeHbPx5jP/FAtL60NnYXfj2G5rSdVnPDDTfE1KlTY8OGDfG5z30uBg8e3O3+paWl3bolDAAAAAAAAAAAAM4Hgk8AAJABx44di7q6um7XFxQU9HpWVVVVr89mg1QFiS5+3/0x6kNfiKMblsTukm9H8vjROH78+Bnr3/CGN8QjjzwSW7dujS9/+csxfPjws87YtWtXj/7dAAAAAAAAAAAAwLlM8AkAADKgtrY22tpOvw3oTKZPnx7Nzc29mlVZWdmrc3RTTm6M+vN/iIvefXccfv652DPz4YiO3/3ddhV8OuGyyy6Ln/70p7Fjx4546KGHYvTo0V3Wl5aWpmRtAAAAAAAAAAAAGOgEnwAAIAOqq6t7VN/c3BxPP/10j+e0tLTEkiVLenyObsobFGP+4sG48IaPxMElU2N/2f+NSP7XDVLdCT6dMGrUqPjWt74V27dvj//4j/+IK664otO60tLSSCaTfV4dAAAAAAAAAAAABjrBJwAAyICeBp8iIgoKCnp8pra2NlpbW3t8jrPLGTwsxn/6oRh+zXtif/kj8erC0/9+enKr1wnDhw+Pf/7nf47NmzfHxIkT45prrjnl/datW+P555/v9d4AAAAAAAAAAABwrhB8AgCAfnb8+PFe3cJUVlYWTU1NPTpTWVnZ4zmcXe4FF8f4e34YQ67449g766dxeHnnt3H15ManPzR48OD47Gc/Gy+88EJMmzYt3v72t598V1pa2uu+AAAAAAAAAAAAcK4QfAIAgH62fPnyOHbsWI/PdXR0RFFRUY/OCD6lXv5F42PCfT+OQaOuiKbS70Tz2qoz1vYl+HRCXl5e3H777VFfXx/z5s2LD37wg4JPAAAAAAAAAAAAZAXBJwAA6GfV1dW9PltQUNDt2mPHjsXSpUt7PYvTDRr7uhh//08id9iI2F30jWjZuqLL+lQEn07IycmJD33oQ1FRURGPP/54NDc3p6w3AAAAAAAAAAAADET5mV4AAACyTV+CT3V1dbFx48a4+uqrz1pbU1OT0uBNNrjyyivjb//2b2PQoEExePDgk78GDRoUL7UOjcc3D4mh+Tnxv942OK68/ZHTan7/++DBg2PYsGFp2fOmm25KS18AAAAAAAAAAAAYSASfAACgH3V0dMSiRYv61GPy5Mnx0EMPnbWusrKyT3Oy0Y4dO+Iv//Iv47LLLjvlefna3fGdKSvi8lHD4sn/76a4/OL0BJoAAAAAAAAAAACA/5Kb6QUAACCTEolEv85btWpVHDp0qE89CgoKIplMnrVO8KnnkslkTJs27ZRnJct2xhcKlsebJlwY0774bqEnAAAAAAAAAAAA6CeCTwAAZLWJEyf267zq6uo+99iyZUssXbq0y5rm5uaoq6vr86xsVFxcfPLzrxdsjgemrYp3/9HomPK5d8Wo4YMzuBkAAAAAAAAAAABkF8EnAACy1oEDB+Ib3/hGHD9+vN9mLliwICV9CgoKuny/ZMmSaGtrS8msbLN48eLYuXNn/OCZdfHDZ9fHrddfGo/99Tti+JD8TK8GAAAAAAAAAAAAWUXwCQCArFVbWxtNTU0xZ86cfpmXTCZTcuNTRERRUVGXwabKysqUzMlKObnx+d8sjEeqt8Rf3Xxl/OzuG2NIfl6mtwIAAAAAAAAAAICsI/gEAEDWqqmpiYiIiRMn9su8devWxb59+1LSa9++fVFWVnbG94JPvZOTPyTGfuqbsa7lovifH7o6HvrEtZGXm5PptQAAAAAAAAAAACArCT4BAJC1TgSfnn322WhsbEz7vFTd9nRCQUFBp88PHz4c9fX1KZ2VDXKHDI9xd34nhv3RO2Jf2f+LT75xcOTkCD0BAAAAAAAAAABApgg+AQCQlTo6OqK2tvbk5yeffDLtM1MdfJo5c2YcOnTotOeLFy+Ojo6OlM463+WNGBXj7304hlx2deyd+aM48vyzUVJSkum1AAAAAAAAAAAAIKsJPgEAkJXWrl17Smho0qRJkUwm0zYvmUzGggULUtqzpaUlpk+fftrzysrKlM453+VfcllMuO/HkX/R+Ggq+bc4umFxREQUFxdneDMAAAAAAAAAAADIboJPAABkpZqamlO+r1u37uQNUOmwZcuWePnll1Pet6Cg4LRngk/dN3j8H8WE+34cOYOHxe6pX4+W7StPvquvr4+tW7dmcDsAAAAAAAAAAADIboJPAABkpT8MPkX87tandKmurk5L3/nz58euXbtOfj948GAsX748LbPON0Nee12Mv+eHkWxvjcaCB+J444un1bj1CQAAAAAAAAAAADJH8AkAgKzUWfBp6tSpcfTo0bTMS1fwKZlMRmFh4cnvixYtikQikZZZ55NhV98c4z/9nWg/tCcaC74a7Qc6v41L8AkAAAAAAAAAAAAyR/AJAICss3///tiwYcNpzw8dOhTTp09Py8x0BZ8iIgoKCk5+rqysTNuc88WIt/55jP2Lr0Vr46bYPeXB6Diy74y1K1asiBdfPP0mKAAAAAAAAAAAACD9BJ8AAMg6S5cuPeO7SZMmpXzeSy+9FFu2bEl53xNWrlwZq1evjgjBp7MZefOdMfoj/xjHtiyPpqJ/jUTLkbOeKSkp6YfNAAAAAAAAAAAAgD8k+AQAQNZZsmTJGd/Nnz8/tm3bltJ56bzt6YTJkyfHgQMHoqGhIe2zzk05ccmffT4uef9fxZE182PPU9+PZHtrt04WFRWleTcAAAAAAAAAAACgM4JPAABknZqami7fP/744ymd1x/BpylTpsSCBQsimUymfdY5Jzc/xnz8yzHyHZ+IQ3VPxb45/x6R6Oj28ZUrV8aGDRvSuCAAAAAAAAAAAADQGcEnAACySkdHR9TV1XVZ8/jjj0cikUjZzP4IPu3cuTMmT56c9jnnmpxBQ2Lc7f8aw//4v8WBqklxoPI3EdHzcFhJSUnqlwMAAAAAAAAAAAC6JPgEAEBWWbNmTRw5cqTLmu3bt0dVVVVK5jU1NcW6detS0uts5s+f3y9zzhWXvu4NMf7u78fQ190Q+579WRyqLe11r6KiohRuBgAAAAAAAAAAAHSH4BMAAFmlpqamW3UTJ05MybxFixalpE937N+/v99mpcqll16alr55F46Jq/7m5zH88mtizIYZcWTVvD71W7NmTaxduzZF2wEAAAAAAAAAAADdIfgEAEBW6W7wqbS0NA4ePNjnedXV1X3ucT4bOXJkynvmj74iJtz/k9h3rCMKPndzLJ85MZYsWRK33XZb5OTk9LpvSUlJCrcEAAAAAAAAAAAAzkbwCQCArNLd4FNLS0sUFRX1ed6CBQv63ON8tnfv3pT2G3zp1THhvh9HTm5+fPUdg+NdV42OiIibb745pk+fHuvXr4/Pf/7zMWTIkB73LioqimQymdJ9AQAAAAAAAAAAgDMTfAIAIGvs2bMnNm3a1O36iRMn9mneq6++GitXruxTj/Pdvn37UtZr6OvfFuPv/kEkWpqjcfIDMTa/9bSaq6++On7961/H9u3b45vf/GZccskl3e6/bt26eOGFF1K2LwAAAAAAAAAAANA1wScAALLG0qVLe1RfW1sb69at6/W8xYsXuyGon1zw5vfHuNv/NdoPvByNkx+I9lcbo6Wl5Yz148ePj+9+97uxY8eO+NnPfhZXXnllt+YUFxenamUAAAAAAAAAAADgLASfAADIGjU1NT0+M2nSpF7Pq66u7vVZuu/Ct90aYz7+lWjdtT4ap3wtEs2vRkTEsWPHznp2xIgR8U//9E/x4osvxpQpU+LGG2/ssr6oqEiYDQAAAAAAAAAAAPqJ4BMAAFmjN8GnJ554Itra2no1T/Ap/S56770x6sNfjGObamN38bciefzoyXfdCT6dkJ+fH/fcc08sX7485s2bF7fcckundRs3boxVq1b1eW8AAAAAAAAAAADg7ASfAADICu3t7VFXV9fjc7t3747nnnuux+eam5tj2bJlPT5HN+Xkxqhb/i4ufs+9cXhlWeyZ8cOIjlMDai0tLT1vm5MTH/rQh6KsrCwaGhrivvvui7y8vFNqiouL+7Q6AAAAAAAAAAAA0D2CTwAAZIXVq1fH0aNHz17YiUmTJvX4TE1NTbS3t/dqHmeRlx9jPvHVuPDGj8XBmuLY/9zPI5KJ08p6cuNTZ2644YYoKCiIzZs3x5e+9KUYPnx4RPwu+JRMJvvUGwAAAAAAAAAAADg7wScAALJCTU1Nr8/OmjUrmpqaenSmurq61/M4s5zBw2LcHQ/F8De9N/ZXPBqvVj9xxtre3PjUmSuvvDL+/d//PXbu3Bnf//734/Dhw9HQ0JCS3gAAAAAAAAAAAMCZCT4BAJAVlixZ0uuz7e3tMXny5B6dEXxKvdwLLorxd/8ghr72LbF39v+Ow8tmdlnf1xuf/tAll1wSX//612Pbtm0xduzYlPYGAAAAAAAAAAAATpef6QUAAKA/9OXGp4iISZMmxZe+9KXIyck5a21ra2ssXbq0T/Oy0aBBg+Laa6+NYcOGnfw1dOjQGDZsWMTwUbFi5HuiJWdo/LdBL8Yb778lhg37i5Pvf7/2xO+XXXZZWvYcOnRovOY1r0lLbwAAAAAAAAAAAOC/CD4BANDvWlpaIuJ3AZL+0NTUFFu2bOlTj9WrV8fy5cvjHe94x1lr6+vro7W1tU/zslFbW1v84he/iJtvvvmU5+sbD8Vf/aYu8to6ovizfxJvv/ITGdoQAAAAAAAAAAAA6E+5mV4AAIDs09DQEDNmzOi3eX297emESZMmdauuuro6JfOyUWFh4Snfl23bH3f+qiZyciJKvvjuePuVozK0GQAAAAAAAAAAANDfBJ8AAOh3dXV18dhjj/XbvFQFn6ZMmXLytqquLFiwICXzslFxcXG0t7dHRETFut1x32O1MWbEkCj923fHNRMuzPB2AAAAAAAAAAAAQH8SfAIAoN/V1tZGRUVFbNmypV/mpSr49Oqrr8bMmTO7rGlvb4/FixenZF422r17d1RVVUXp8pfi808uj2smXBglX7w5rrjkgkyvBgAAAAAAAAAAAPQzwScAAPpdbW1tRERMnDgx7bPa2tqivr4+Zf3OtnNDQ0M0NzenbF42enhGfXy5ZGW866pRMeVz74rRI4ZkeiUAAAAAAAAAAAAgAwSfAADoV3v37j1509OkSZOivb09rfNWrlwZx44dS1m/efPmxc6dO8/4vrq6OmWzstHFH/jreHHE9fGRa8fFxM/8SYwYkp/plQAAAAAAAAAAAIAMEXwCAKBf1dXVnfz88ssvx3PPPZfWeTU1NSntl0wm44knnjjje8GnXsrJjdEf/ae46F2fjsMr5sQtI3bFkPy8TG8FAAAAAAAAAAAAZJDgEwAA/aq2tvaU748++mha56U6+BTxu5uqksnkac8TiUQsXLgw5fPOdzn5g2PsbV+PEdffEq8umhL75/0yiqYWZnotAAAAAAAAAAAAIMMEnwAA6Fe/f+NTRMScOXPi5ZdfTtu8dASfNm/e3GnAac2aNXHgwIGUzzuf5QwZHuPu/E4Me8M7Y9/cX8bBxVMiImLWrFlx5MiRDG8HAAAAAAAAAAAAZJLgEwAA/SaZTJ4WfOro6Ijf/va3aZnX2NgY27ZtS0vvSZMmnfasuro6LbPOV3nDL4kJ9z4cQy67JvY+/ZM40jDn5Ltjx47FzJkzM7gdAAAAAAAAAAAAkGmCTwAA9JvNmzfH/v37T3v+m9/8JhKJRMrnpeO2pxOKi4vj8OHDpzwTfOq+/IsnxPj7fhz5F0+IpmnfiaPrT79Bq7CwMAObAQAAAAAAAAAAAAOF4BMAAP2mtra20+ebN2+OBQsWpHzekiVLUt7zhKNHj0ZJScnJ78lkUvCpmwaNuyom3PeTyB1yQeye+o1o2dbQaV1ZWVns27evn7cDAAAAAAAAAAAABgrBJwAA+s2Zgk8REY899ljK56XzxqeIiEmTJp38vGnTpti9e3da550Phrzmuphw7w8jmWiLxskPxvFXNp6xtr29PaZNm9aP2wEAAAAAAAAAAAADieATAAD9pq6u7ozvSktLY//+/Smbdfz48Vi2bFnK+nVm0aJFsXHj74I76bix6nwz7I03x/g7H4r2w/uiseCBaN//0lnPFBYW9sNmAAAAAAAAAAAAwEAk+AQAQL9obW2NhoaGLt9Pnjw5ZfOef/75aG1tTVm/M3n88ccjIqK6ujrts85lI66/JcZ+8mtxfPeW2D35weg4vK9b56qrq2PXrl1p3g4AAAAAAAAAAAAYiASfAADoF6tWrYrjx493WfPoo49GMplMybyampqU9Dmb3/72t9HR0SH41IWR7/p0jP7oP0XLtobYXfSNSLQc7vbZZDIZRUVFadwOAAAAAAAAAAAAGKgEnwAA6Be1tbVnrVm9enUsW7YsJfP6K/j08ssvx5NPPhk7duzol3nnlpy45IN/E5d84K/jyAuV0VT63Ui29fwWrsLCwjTsBgAAAAAAAAAAAAx0gk8AAPSL7gSfIiIee+yxlMzrr+BTRMQvf/nLfpt1rnjtla+L0f/9f8bIP/lkHFo2M/bN/j8RiY5e9Vq2bFls2rQpxRsCAAAAAAAAAAAAA53gEwAA/aKurq5bdVOmTIkjR470adauXbv69QamVN1S1Z8GDRqUtt45g4bEn3z5NzHiLR+MMbsWx4GKRyMi2aeebn0CAAAAAAAAAACA7CP4BABA2h04cCA2btzYrdojR45EcXFxn+b1521PERGJRKJf56VCe3t7WvrmDh0R4+76XqzYdSwe/tR1sezJH8SqVavis5/9bAwePLjXfQsLCyOZ7Ft4CgAAAAAAAAAAADi3CD4BAJB23b3t6YTHHnusT/P6O/h0LkpHiCjvwtEx/r4fxZDxfxR/f+OQuPudr42IiOuuuy4mTpwY27dvj29+85sxevToHvdev359rFy5MtUrAwAAAAAAAAAAAAOY4BMAAGnX0+BTTU1NvPDCC72eJ/jU//JHXR4T7vtJ5F84NnYXfzveNKL1tJoJEybEd7/73dixY0f86le/iquvvrpHMwoLC1O1LgAAAAAAAAAAAHAOEHwCACDtamtre3zmN7/5Ta9mtba2xvLly3t1lt4ZPOGNMeG+H0dO/qBonPK1aN25Opqbm89Yf8EFF8QXvvCFWLduXcyaNSv+9E//tFtzpk6dGolEIlVrAwAAAAAAAAAAAAOc4BMAAGmVTCZ7fONTRMQTTzwRra2n3xp0Ng0NDXH8+PEen6N3hr7uhhh/zw8icfxYNBZ8NdqatkREdBl8OiE3NzduvfXWmD9/fixfvjzuv//+yM/PP2P9jh07YsmSJSnbHQAAAAAAAAAAABjYBJ8AAEirbdu2xZ49e3p8bt++fTFz5swen6upqenxGXrngje9N8bd8e1of7Uxdhc8EO2vvnLyXXeCT7/vbW97Wzz55JOxbdu2ePDBB+Piiy/utK6wsLBPOwMAAAAAAAAAAADnDsEnAADSqra2ttdnH3vssR6fcSNQ/xhx48dizCe+Gq0vb4jGKV+LjuYDp7zvafDphMsvvzwefvjh2LlzZ/z85z+Pq6666pT3JSUl0d7e3uu9AQAAAAAAAAAAgHOH4BMAAGlVV1fX67Pz5s2LrVu39uiMG5/S76L33Bujb/m7OPZifTQVfyuSraeHnI4cOdKnGSNGjIh/+Id/iI0bN8b06dPjve99b0RE7NmzJyoqKvrUGwAAAAAAAAAAADg3CD4BAJBWfbnxKSJi0qRJ3a7duXNn7Nq1q0/z6EJOboz68Bfj4vfeG0dWz4s9T30/ku3HOy3t7Y1PfygvLy9uu+22WLhwYdTW1sZdd90VJSUlKekNAAAAAAAAAAAADGyCTwAApE1bW1usWLGiTz0mTpwYHR0d3ap121Ma5eXHmI9/JS58261xcOm02PfMzyKSiTOWpyr49Pve+c53xtSpU+Phhx9OeW8AAAAAAAAAAABg4MnP9AIAAPSfvXv3xpgxY/pt3urVq6OlpaVPPXbt2hVlZWXxsY997Ky1gk+pNWzYsBgxYkRccNGoyHv/F6Nj7Btj1I4Fcf3IfTH87rtj+PDhMXz48BgxYsTJzyd+XXPNNWnbqz//DQMAAAAAAAAAAACZI/gEAJBF/uVf/iUeeeSRyMnJ6Zd5tbW1Kenz6KOPCj6lWX5+fixdujSuuOKKGD58eFxwwQWRm5sb+460xv94vD7WvHwofnr79XHH2/97plcFAAAAAAAAAAAAskRuphcAAKB/HD9+PJ544omUhZG6o66uLiV9Zs2aFf8/e3can2dZ5wv8/6TpQmmhLV2CLMMu6rjMACqIHkdFcQFxQETBwzjjQR1nPOMCCIoLDgMUgbK0pPteKC1UdluQyk7TpG3SJnSle5vuW5Km2Z7zQumhNm2TPPeTtMn3+/nwSZ77vq7r96f0RV7kx1VeXn7QNdXV1TFnzpxE8jqiurq6KCwsjAEDBkSPHj0iJycn1myriq8PfSMWlu+KYd8+J64458S2HhMAAAAAAAAAAADoQBSfAAA6iNLS0qipqYn8/PxWy0yqZFVfXx9jx4496JqioqKora1NJK+jmjBhwt7vF2/YFVc89EZs3rUnJnz3Y/HZ9w1ow8kAAAAAAAAAAACAjkjxCQCggygsLIyIiMmTJ8e2bduynrdjx45YuHBhYueNGDEi0un0Ad+/8cYbiWV1VK+++mosX748ilZui6/nvxEN6XQ8+v3z47xT+rT1aAAAAAAAAAAAAEAHpPgEANBBvFN8qq6ujvHjx7dK3sGKSs21dOnSePnllw/4XvEpGXeOeyquHvFm9O7eOR77wQVxdt4xbT0SAAAAAAAAAAAA0EEpPgEAdBBFRUV7v8/Pz0+0lNSYWbNmJX7miBEjGn2eTqcVnxJw9Ps/HX+sPCXO6Ncjpv7ggjipT/e2HgkAAAAAAAAAAADowBSfAAA6gD179kRJScnez2+99Va8+uqrWc0sKChI/MypU6fGtm3b9nu+atWqWL9+feJ5HUnPcy+Nvpf8LKpXL4gbP9ot+vbo2tYjAQAAAAAAAAAAAB2c4hMAQAewYMGCqK2t3edZfn5+1vLS6XRWbnyqrq6OSZMm7ffcbU+Z6fWp/x19PntdVC56LTZM+U08Pnn/P2MAAAAAAAAAAACA1qb4BADQARQWFu73bOrUqbF58+as5K1evTrKy8uzcvbw4cMjnU7v8+z111/PSla7l8qJPhf/Zxx7/pWxa+5zsfmJOyPqa+ORRx6Jurq6tp4OAAAAAAAAAAAA6OAUnwAAOoDGik81NTUxZsyYrOQVFBRk5dyIiOLi4pgzZ84+z9z41AKdOke/y26Knh/+Qmx/7eHYOmNwRLohIiLKy8vjxRdfbOMBAQAAAAAAAAAAgI5O8QkAoAMoKipq9PmwYcP2uz0pCbNmzUr8zHcbMWLE3u93794d8+bNy2pee5Pq0j0GXHlrdD/r/Nj6fH7seHXifmsmTJjQBpMBAAAAAAAAAAAA/H+KTwAA7Vx1dXXMnz+/0XdLliyJmTNnJp6Z7eLTpEmTorKyMiL+cptVXV1dVvPak5yje0Xet+6Irie8LzY9OTB2zXm60XWPP/743j9jAAAAAAAAAAAAgLag+AQA0M6VlJQctBiUn5+faF5dXd0Bb5hKys6dO2PKlCkREfHGG29kNas9yT12QORdPTBye78nNj52a1S99fIB11ZWVsYTTzzRitMBAAAAAAAAAAAA7EvxCQCgnTtUCWnatGmxYcOGxPJKS0ujqqoqsfMOZMSIERGh+NRUnfudGgOuuStyuvWIDY/cHNXL5xxyz4QJE1phMgAAAAAAAAAAAIDGKT4BALRzhYWFB31fV1cXo0aNSiyvoKAgsbMO5rXXXouysjLFpyboeuIHIu/qOyIa6qN84g1Rs35xk/bNmDEj0VIcAAAAAAAAAAAAQHMoPgEAtHOHuvEpImLYsGHR0NCQSN6sWbMSOacp7rnnHsWcQzjqjI/FgG/8Luortkb5hOujbsuaJu+tr6+PyZMnZ3E6AAAAAAAAAAAAgANTfAIAaMd2794dCxYsOOS6FStWxIwZMxLJbM3i06OPPtpqWUeioz94UfT72s1Rs3F5lE+4Iep3bW72GRMmTMjCZAAAAAAAAAAAAACHpvgEANCOFRcXR319fZPWDh06NOO8Xbt2RWlpacbnNCeP/fXq1SuO+ejl0fdL/zeqVxbHhkd+EQ3VLfuzmj17dixevDjhCQEAAAAAAAAAAAAOLZHiUyqVGpVKpTamUqkF73rWJ5VKPZ9KpZb89WvvJLIAAGi6oqKiJq996qmnYu3atRnnpdPpjM4gU6n4jxEvRu9/+k50WjM3Nk69NdK11RmdOHHixIRmAwAAAAAAAAAAAGi6pG58GhMRF//Ns59HxJ/S6fSZEfGnv34GAKAVFRYWNnltfX19jBw5MqO8WbNmZbS/o+jfv392Ds7pFMd96b9i/Ox1ce35fxeLxtwUzz3zVFx88d/+qN48EyZMUGgDAAAAAAAAAAAAWl0ixad0Ov1yRGz9m8dfjYixf/1+bERclkQWAABN15wbnyIihg8fHnV1dS3OKygoaPHejmTjxo2Jn5nK7Rr9vvaL6PHBz8a/ntcvfnPpByI3t1NcfPHF8dxzz8Vbb70VP/jBD6J79+7NPvvtt9+ON998M/GZAQAAAAAAAAAAAA4mqRufGjMgnU6vj4i3KkNkAAAgAElEQVT469cs/W/tAQBoTFVVVZSWljZrz5o1a+K5555rcaYbn9pGTtejo/83fhdHnX5ubPnjg/HVM7pGKpXaZ83ZZ58dQ4YMiTVr1sTAgQPj5JNPblbGhAkTkhwZAAAAAAAAAAAA4JCyWXxqklQqdV0qlSpMpVKFmzZtautxAADajXnz5kVDQ0Oz9w0dOrRFeWvXro21a9e2aC8t16nHcTHg6juja96ZsfmJO6Oi+I+xc+fOA67v3bt3XH/99bFs2bKYOnVqXHjhhU3KmTx5ctTU1CQ1NgAAAAAAAAAAAMAhZbP4tCGVSh0fEfHXrxsbW5ROp4el0+lz0+n0uf369cviOAAAHUtRUVGL9j377LOxcuXKZu8rKChoUR4tl9v7PZF3zcDIPaZ/bJzy66ha9FpEROzatevQe3Nz4/LLL49XXnklCgsL49vf/nZ07tz5gOu3bNkS06dPT2x2AAAAAAAAAAAAgEPJZvHpyYi49q/fXxsRT2QxCwCAv1FYWNiifel0OkaMGNHsfbNmzWpRHi3TZcDpkXfNXZHK7RobHr4pqleV7H13sBufGnPOOefEuHHjYtWqVfGrX/0q+vfv3+i6CRMmZDQzAAAAAAAAAAAAQHMkUnxKpVIPR8QbEfHeVCq1JpVK/VtE3BERF6VSqSURcdFfPwMA0EpaWnyKiBg5cmTU1tY2a48bn1pPt5M/FAO+eXuka3ZH+cQbombDsn3eN7f49I68vLz47W9/G6tWrYoxY8bERz7ykX3eP/nkk7Fjx44Wzw0AAAAAAAAAAADQHIkUn9Lp9DfT6fTx6XS6czqdPjGdTo9Mp9Nb0un0Z9Pp9Jl//bo1iSwAAA6toqIiFi5c2OL969evj6eeeqrJ6+vr62P27NktzqPpur/3E9H/67+Nup0bo3ziDVG3bd1+a3bt2pVRRteuXePaa6+NOXPmxEsvvRT//M//HDk5OVFdXR2PP/54RmcDAAAAAAAAAAAANFUixScAAA4v8+bNi4aGhozOGDp0aJPXLly4MCoqKjLK49B6fOSL0ferN8ae8sWxYeKNUV/R+P9boKU3Pv2tVCoVn/rUp+Kxxx6LZcuWxU9/+tN4+umnEzkbAAAAAAAAAAAA4FBy23oAAID2rqKiIpYtWxYf/vCHWy2zqKgo4zNmzJgRy5Yti9NPP/2Qa2fNmpVxHgd37AVXRa9PXhNVSwti8xN3RrpuzwHXJlV8erdTTjklfv/730dVVVXiZwMAAAAAAAAAAAA0RvEJACDLiouLY+zYsTFs2LBWyywsLEzknOHDh8cdd9xxyHWKT9mUit6fuy6OOeeSqCp9MerfGB9/d+Lx0bNnzzjmmGPimGOO2e/7Cy64IGvTdO/ePWtnAwAAAAAAAAAAALyb4hMAQJbNnTs3Jk6cGAMHDoxevXq1SmZSxadRo0bFrbfeGl26dDnouoKCgkTyOqrc3Nz41a9+Ff369dunwHTU0T3jobkVMXPZrvjO+SfHL2+7Kzp1urutxwUAAAAAAAAAAABoFYpPAABZNnfu3Kiqqopx48bFj370o6zn7dq1KxYtWpTIWZs2bYpp06bFN77xjQOuqaqqivnz5yeS11HV1dXF8ccfH9/97nf3PqvcUxffn1AUryzbFTd98ez43v86vQ0nBAAAAAAAAAAAAGh9OW09AABAezdnzpyIiBgyZEik0+ms582dOzfRnKFDhx70fVFRUdTX1yeW11GNHj167/dbK2viWyNmxWtLN8fAKz6k9AQAAAAAAAAAAAB0SIpPAABZVFNTE6WlpRERsWjRopg5c2bWMwsLCxM9b+bMmQe9QaqgoCDRvI7q9ddfj4ULF8ba7bvjivzXY+H6nTH02+fGleee1NajAQAAAAAAAAAAALQJxScAgCwqLS2N2travZ8HDx6c9cyioqLEzxw2bNgB382aNSvxvI7qvjGPxhUPvR6bdu2Jcf/60bjo/QPaeiQAAAAAAAAAAACANqP4BACQRXPnzt3n8xNPPBFr1qzJambSNz5FRIwZMyaqq6sbfefGp2R0ec9749k97426+oaYfN358bHTjmvrkQAAAAAAAAAAAADalOITAEAW/W3xqb6+PoYPH561vJ07d8bixYsTP3fr1q0xderU/Z5v2LAhVq5cmXheR9Pt1H+MAd+4LeqqdsZ/nF0T73/PMW09EgAAAAAAAAAAAECbU3wCAMiivy0+RUQMGzYsamtrs5I3Z86crJwbETF06ND9ns2aNStreR1F9/d9Kvpf/quo27Y2yifcEE89MrqtRwIAAAAAAAAAAAA4LCg+AQBkSX19fcybN2+/5+Xl5fGHP/whK5mFhYVZOTci4tVXX43S0tJ9nhUUFGQtryPoec4l0e/SG2LPmrIon3RTNFRtjyeffDI2b97c1qMBAAAAAAAAAAAAtDnFJwCALFm6dGlUVlY2+m7w4MFZySwqKsrKue/421uf3PjUcsd+8pro87nvRdWi12PDlF9HuqYqIiJqa2tj4sSJbTwdAAAAAAAAAAAAQNtTfAIAyJK5c+ce8N1LL7203+1JScjmjU8REePGjYuqqr8UdBoaGtz41BKpnOjzhR9Grwuuil3z/hibnrgjor52nyWjR49uo+EAAAAAAAAAAAAADh+KTwAAWXKw4lNExEMPPZRo3vbt22Pp0qWJnvm3duzYEZMnT46IiMWLF8fOnTuzmtfudOocfb96Y/T8yBdjx+uTY+v0ByPSDfstKy4uPuTfHwAAAAAAAAAAAID2TvEJACBLDlVcGTduXOzatSuxvDlz5iR21sHk5+dHRMSsWbNaJa+9SHU5KgZ8/Tdx9Hs/EVv/NCy2vzL+oOtHjRrVSpMBAAAAAAAAAAAAHJ4UnwAAsiCdTh+y+LRr166YOHFiYpmFhYWJnXUwBQUFMW/evCgoKGiVvPYgp3uvGPDN26PriR+IzU/9PnYVPnnIPZMmTYo9e/a0wnQAAAAAAAAAAAAAhyfFJwCALFizZk1s3rz5kOuGDBkS6XQ6kcyioqJEzmmKoUOHuvGpiXKPHRB5Vw+MzsedGBsf/11Ulv25Sfu2bt0aTz556IIUAAAAAAAAAAAAQHul+AQAkAWHuu3pHfPnz49XX301kczWuvEpImLChAkxb968Vss7UnXud0oMuOauyDmqZ2x45JdR/XbzymmjRo3K0mQAAAAAAAAAAAAAhz/FJwCALGhq8SniL7c+ZWrr1q3x9ttvZ3xOU1VUVER9fX2r5R2Jup74gcj71h0R6YbYMOnGqFm3sNlnzJgxI9auXZuF6QAAAAAAAAAAAAAOf4pPAABZ0Jzi02OPPRbl5eUZ5c2ZMyej/SSjR48eceKJJ8ZRp380+l95a9RXbovy8ddH7eZVLTqvoaEhxo0bl/CUAAAAAAAAAAAAAEcGxScAgCxoTvGptrY2Ro4cmVFeYWFhRvtJxrHHHhu/f+zVyLviluhesy3KJ94Y9bs2ZXTm6NGjI51OJzQhAAAAAAAAAAAAwJFD8QkAIGFbtmyJVauad8PP0KFDo66ursWZRUVFLd7b0XTq1ClrZ1efcmHc+PiC+MSZ/aLo99fGwuLC+MlPfhK9e/du8ZlLliyJ1157LcEpAQAAAAAAAAAAAI4Mik8AAAlrzm1P71i9enU8/fTTLc5041PT1dfXZ+XcXp/+TvS48NvxxQ/0jxHXnhtHd82NM888M+6+++5Yu3ZtjB49Os4777wWnT169OiEpwUAAAAAAAAAAAA4/Ck+AQAkrCXFp4iIIUOGtGjfli1bYsWKFS3aSwJSOXHcl/5vHPuxy2Nn0dNx06ePj665+94qddRRR8W//Mu/REFBQRQUFMR3vvOd6NatW5MjHn300aioqEh6cgAAAAAAAAAAAIDDmuITAEDCWlp8ev7552Px4sXN3ldUVNSiPDKXyu0S/b72i+jxwYti+ysTYtsL+bF929aD7jnvvPNi1KhRsXbt2rjnnnvizDPPPGRORUVFTJ06NamxAQAAAAAAAAAAAI4Iik8AAAlrafEpIiI/P7/ZewoLC1ucR8uluh4d/a/8XRx1xnmxZfrg2PH6IxERsXXrwYtP7+jTp0/8+Mc/joULF8aMGTPisssui5ycA/94Pnr06ETmBgAAAAAAAAAAADhSKD4BACSosrIyFi1a1OL9o0ePjqqqqmbtUXxqfZ2O7h1537ojur7nrNj85MComPfc3ndNLT69IycnJy666KKYNm1arFixIm655ZbIy8vbb93LL78cS5cuzXh2AAAAAAAAAAAAgCOF4hMAQIJKSkoinU63eP/27dvjkUceadaeoqKiFufRfLm93xN519wVub3yYuOU30TVwlf3eb9ly5YWn33SSSfFrbfeGitXrozJkyfHpz/96X3ejxkzpsVnAwAAAAAAAAAAABxpFJ8AgHYrkwJSS82ZMyfjMwYPHtzk2Tdt2hSrVq3KOJOm6TLg9Mi7+s5IdTkqNjx8c1SvLN5vTXNvfGo0p0uXuPLKK2PmzJlRWloa//Ef/xE9e/aMsWPHRn19fcbnAwAAAAAAAAAAABwJFJ8AgHZrypQprZ45d+7cjM+YM2dOFBQUNGmt255aT9eTPxgDvnl7pOtqo3ziDVFTvqTRdZnc+NSY97///fHAAw/EunXr4pZbbolly5Ylej4AAAAAAAAAAADA4UrxCQBotwYNGhQLFixo1cwkik8REUOGDGnSusLCwkTyOLijzjo/Bnz91qjbuSnKJ1wfdVvXHnBtEjc+NaZHjx5x3XXXxVlnnZWV8wEAAAAAAAAAAAAON7ltPQAAQDY0NDRESUlJPPjgg5Gfn98qmbW1tYkVrSZPnhx333139O3b96DrFJ+yr8eHvxB9Pv/vsWf94tg09bfRUF0Rubm50adPnzjuuOP2+3r++ee39cgAAAAAAAAAAAAA7YLiEwDQLi1fvjwqKytj/Pjxcfvtt0fv3r2znllWVhY1NTWJnLVnz54YPXp0XH/99QddV1RUlEheR3fqqadGXl7ePiWmPn2Oi8W5p8QrO3rHB49Lxc1X/FMc/7srok+fPtGzZ89IpVJtPTYAAAAAAAAAAABAu6b4BAC0S8XFxRERUVVVFaNGjYqf/vSnWc+cO3duouc99NBD8ZOf/CQ6derU6PsNGzbEmjVrEs3sqK688sq444479n5uaEjHrU+XxSuvr4iv/cMJMfCKD0XnTjltOCEAAAAAAAAAAABAx+O3NwGAdqmkpGTv94MHD476+vqsZ86ZMyfR85YvXx7Tp08/4Hu3PSVnzJgxUVtbGxERNXUN8eNH58WY11fEv114atz99Q8rPQEAAAAAAAAAAAC0Ab/BCQC0S+/c+BTxlwLRs88+m/XMpG98iogYMmTIAd8VFhYmntdRbdiwIZ555pmoqqmL/zOuMJ6Yty5uvPjs+OWX3xc5Oam2Hg8AAAAAAAAAAACgQ1J8AgDapXff+BQRcf/992c1r6GhIebNm5f4uc8++2wsX7680XeKT8nKHz0+vjV8VryyZFPcefkH4wefPj1SKaUnAAAAAAAAAAAAgLai+AQAtDs7d+6Mt99+e59nL7zwQrz11ltZy1y2bFlUVFQkfm46nY6hQ4c2+q6oqCjxvI6qU8++Mb/f56Js3Y546Jpz4hvnndzWIwEAAAAAAAAAAAB0eIpPAEC7s2DBgkafP/jgg1nLnDt3btbOHjFiRFRXV+/zbN26dbFu3bqsZXYkuX1OjLxrBkannsfFRV0Wxxc+kNfWIwEAAAAAAAAAAAAQik8AQDtUUlLS6POxY8fGjh07spKZzeLTli1bYsqUKfs8c9tTMrocf1bkXX1npHI6R/mkn8ezY+6LhoaGth4LAAAAAAAAAAAAgFB8AgDaoeLi4kafV1ZWxujRo7OSOWfOnKyc+44hQ4bs81nxKXPdTvmHGHDVbdGwpyrKJ14ftRuXx4oVK+LFF19s69EAAAAAAAAAAAAACMUnAKAdOtCNTxERgwcPTvxGn3Q6ndUbnyIi3nzzzX3KVYWFhVnNa++6v+9T0f+KX0XdtvWxYeINUbe9fO+74cOHt+FkAAAAAAAAAAAAALxD8QkAaFcaGhoOWnxaunRp/PGPf0w0c926dbFp06ZEz2zMQw89FBF/KVq58anlev7jV6LvJT+LPWsXRvnDN0V95bZ93k+bNi02b97cRtMBAAAAAAAAAAAA8A7FJwCgXVmxYkVUVFQcdM3999+faGa2b3t6x8SJE2P79u2xbt26KC8vP/QG9nPshd+KPhd9P3YvmRUbp/w60nsq91tTW1sb48ePb4PpAAAAAAAAAAAAAHg3xScAoF0pLi4+5Jrp06fHokWLEstsreLT7t27Y8yYMVFYWNgqee1KKif6fP7fo9cnvhUVJTNi0x9uj3RdzQGXjxgxItLpdCsOCAAAAAAAAAAAAMDfUnwCANqVkpKSJq0bPHhwYpmtVXyKiBgyZIjiU3N1yo2+l94QPf/hS7HjjSmx5bn7I9INB91SVlYWb775ZisNCAAAAAAAAAAAAEBjFJ8AgHalqcWn0aNHx86dOxPJnDNnTiLnNMWSJUti+vTprZZ3pEt1OSr6X/HbOPrsC2PriyNi+8tjm7x3xIgRWZwMAAAAAAAAAAAAgENRfAIA2pXi4uImrauoqIixY5tegjmQrVu3xsqVKzM+pzma+u/Y0eUcdUwMuOp/otvJfx+bn747ds3+Q7P2P/LII4mV4wAAAAAAAAAAAABoPsUnAKDdqKioiGXLljV5/YMPPhgNDQ0ZZc6bNy+j/S1RU1PT6plHmk7H9I+8qwdG574nxabHfheVpTObfUZVVVVMnjw5C9MBAAAAAAAAAAAA0BSKTwBAuzF//vxmrV+8eHE8//zzGWXOnTs3o/0kp3fv3nHyySdH575/F3nX3BU5R/eKjZN/GbvfLmzxmSNGjEhwQgAAAAAAAAAAAACaQ/EJAGg3SkpKmr3n/vvvzyhT8enw0bdv33h0ZlGc/r3B0a1bt9j08M9jz9qFGZ1ZUFDQor9XAAAAAAAAAAAAAGRO8QkAaDdaUlB57rnnYunSpS3OVHw6fGw76oS4dvTsyOt1dMz8xVdiSeHL8etf/zpOOOGEjM4dOXJkQhMCAAAAAAAAAAAA0ByKTwBAu1FcXNzsPel0OgYPHtyivKqqqli4MLMbhUjG0R/4THT/wo/jjH49Ysr3z4+T+nSPk046KX7zm9/EihUr4oknnogvf/nLkUqlmn32+PHjo7q6OgtTAwAAAAAAAAAAAHAwik8AQLuQTqdbdONTRMSoUaOioqKi2ftKSkqioaGhRZkkp+d5l0Xfr/wkqlfNj/suOy369ui6z/vc3Ny49NJL4+mnn44VK1bELbfcEscff3yTz9+2bVs8/vjjSY8NAAAAAAAAAAAAwCEoPgEA7cKKFSti165dLdq7c+fOGDduXLP3zZ07t0V5JKfX/7o2+nzmu1G58NXYOPU3UbVj60HXn3zyyXHrrbfGqlWrYtq0aXHxxRc36RaoESNGJDUyAAAAAAAAAAAAAE2k+AQAtAstve3pHQ888ECk0+lm7VF8akOpnDjuiz+KYz/+9dg199nY/OTAiPq62LRpU5O25+bmxmWXXRbPPfdcLFu2LG6++eYYMGDAAdfPnDkzli5dmtT0AAAAAAAAAAAAADSB4hMA0C4UFxdntH/hwoXxwgsvNGuP4lPbSOV2iX5fuzl6fOjzsf3VSbF1xpCIdENERJOLT+926qmnxm233RarV6+OqVOnxkUXXdToulGjRmU0NwAAAAAAAAAAAADNo/gEACRuz549rZ6Z6Y1PEX+59ampamtrY/78+Rln0jyprkdH/ytvjaPO+GhsfT4/drw2aZ/3LSk+vaNz585x+eWXx4wZM2Lp0qVx4403Rr9+/fa+Hz16dNTV1bX4fAAAAAAAAAAAAACaR/EJAEjUnj17mlUgSkoSxaenn3463n777SatXbhwYZsUvDqynKN7Rd43b4+u73lvbH7q97FrztP7rdm8eXMiWaeffnrccccdsWbNmpg8eXJ85jOfifLy8nj22WcTOR8AAAAAAAAAAACAQ1N8AgAStXjx4rj33nujtra21TIrKytj6dKlGZ+TTqdjyJAhTVo7Z86cjPNoutxeeZF39V2R2/v42Dj11qh66+VG12Vy41NjunTpEldeeWX86U9/ikWLFkWnTp0SPR8AAAAAAAAAAACAA1N8AgAStWDBgli3bl1MnTq1VTPT6XQiZ40cOTIqKysPuW7u3LmJ5HFonfufGnlX3xU5XbvHhkd+EdUrDvxnn3Tx6d3OOuus+PKXv5y18wEAAAAAAAAAAADYl+ITAJCoBQsWRETEvffem1gZ6VCKi4sTO2v79u0xYcKEQ65TfGodXU/6+8j71h2RbqiN8ok3Rs36xfu879mzZ5x22mnxsY99LL7yla/Eueee20aTAgAAAAAAAAAAAJC03LYeAABoX+bPnx8REbNnz44333wzzj///KxnlpSUJHreAw88ENddd12kUqlG3zc0NMS8efMSzSQilUrFcccdF3379o1+/fpF51POieXH/1P0TO2JK0+uilMfuDP69eu395++fftG165d23psAAAAAAAAAAAAALJE8QkASNQ7Nz5FRAwaNKhVik9J3vgUEVFaWhozZ86Mz3zmM42+X758eezcuTPRzI7sm9/8Ztx3333Rp0+f6NSpU0RETJ69Km56fH586MReMfpfzoveR3dp4ykBAAAAAAAAAAAAaG05bT0AANB+VFRUxPLly/d+fuyxx2LVqlVZzUyn04nf+BTxl1ufDmTu3LmJ53VkzzzzTHTv3j06deoU6XQ6hvx5adz42Py48Mx+Men/fEzpCQAAAAAAAAAAAKCDUnwCABJTVla2z+f6+voYPHhwVjNXrVqVlduXnnzyyVi5cmWj7+bMmZN4Xke2c+fOeOSRR6KhIR3//cxbMfCPi+KrH3lPjPjf50b3Li4oBQAAAAAAAAAAAOioFJ8AgMQsWLBgv2fDhg2LysrKrGUWFxdn5dyGhoYYMmRIo+/c+JS8h4YOi59OKY6Rry6Pf7nglLj3yo9El1w/qgIAAAAAAAAAAAB0ZH6bFABITGPFp+3bt8e4ceOylllSUpK1s4cPHx5VVVX7PVd8Slaqc9dY/Xdfimlz18b1X3hv/PqS90dOTqqtxwIAAAAAAAAAAACgjSk+AQCJaaz4FBFx3333RUNDQ1Yys3XjU0TEtm3bYtKkSfs8W79+fWzYsCFrmR1NTrce0f8b/x3dTv2HeH/lvPjhP50RqZTSEwAAAAAAAAAAAACKTwBAgg5UfFq0aFFMnz49K5nZvPEpIuKBBx6IdDq997PbnpLTqedxMeDqO6PrgDNi0xN3xMujb4+dO3e29VgAAAAAAAAAAAAAHCYUnwCARGzZsiXWr19/wPeDBg1KPLOysjKWLFmS+LnvVlJSEi+//PLez4pPycjtc0LkXX1X5PbsFxum/Cp2L34jKisr97thCwAAAAAAAAAAAICOS/EJAEjEgW57eseMGTOitLQ00czS0tJ9bmPKlgceeGDv93PmzMl6XnvXJe+MyLt6YKRyO0f5pJ/HnlXz977Lz89vlf+mAAAAAAAAAAAAABz+FJ8AgEQcqvgUEXH//fcnmllSUpLoeQfyhz/8IVavXh0RbnzKVLe/+3AMuOp/oqFmd5RPuCFqN769z/vi4uIoKChoo+kAAAAAAAAAAAAAOJwoPgEAiWhK8WncuHGxZcuWxDKLi4sTO+tg6uvr46GHHort27fH8uXLWyWzPep+9oXR/+u/ibodG2LDhOujbvv6RtcNHTq0lScDAAAAAAAAAAAA4HCk+AQAJKIpxafq6uoYNmxYYpmtdeNTRMSwYcNi1qxZrZbX3vT4yBej76U3xJ51i6N80s+jvnLbAdc+8sgjsX379lacDgAAAAAAAAAAAIDDkeITAJCxdDrdpOJTRMSDDz4YtbW1iWS21o1PERFbtmyJMWPGtFpee3LsJ74Zx33hh7F76ezY+Ogtkd5TedD1u3fvjvHjx7fSdAAAAAAAAAAAAAAcrhSfAICMrVu3rsk39Kxbty6mTp2acebq1atjx44dGZ/THDNmzGjVvCNeKif6XPT96HXh1VEx//nYNO22SNfVNGlrfn5+pNPpLA8IAAAAAAAAAAAAwOFM8QkAyFhTb3t6x7333ptxqaU1b3t6x9atW1s984jVKTf6XvKz6PmPX4kdsx6LLc/eF5FuaPL2srKyeO2117I4IAAAAAAAAAAAAACHO8UnACBjzS0+zZ49O958882MMktKSjLaT/akuhwV/a/4dRz9vk/FtpmjYvufR7fonPz8/IQnAwAAAAAAAAAAAOBIovgEAGSsucWniIhBgwZllKn4dHg54YQT4sQTT4yco46JAd+4Lbqd/KHY/My9sbPg8RafOXXq1NiyZUuCUwIAAAAAAAAAAABwJFF8AgAy1pLi02OPPRarVq1qcWZxcXGL95K8U089NV6b+1ace+Ok6JZ3Wmx94o6oXPCnjM7cs2dPjB07NqEJAQAAAAAAAAAAADjSKD4BABmpr6+P0tLSFu0bPHhwizKrqqpiyZIlLdpLdqyvSsWVw2ZFVTo3Hv33T8ayV/4Qd911V5x99tkZnTt06NBIp9MJTQkAAAAAAAAAAADAkUTxCQDIyPLly2P37t0t2jts2LCorKxs9r7S0tJoaGhoUSbJ6/Kes6Pmkz+MhnQ6Hv3e+XHeKX2if//+8bOf/SzKysri1Vdfje985zvRvXv3Zp+9ePHi+POf/5z80AAAAAAAAAAAAAAc9hSfAICMLFiwoMV7t2/fHuPGjWv2vpKSkhZnkqxup50TA67676iv2hnjr/1IvO/4Y/Z5n0ql4hOf+ESMGjUq1q9fH0OHDo2PfvSjzcrIz89PcmQAAAAAAAAAAAAAjhCKTwBARjIpPkVE3Hfffc2+vam4uDijTL6jassAACAASURBVJJx9Ps/Hf3/+Zao3bImyideH51rdh50/THHHBPXXXddzJo1K4qLi+NHP/pR9OnT55A506ZNiw0bNiQ1NgAAAAAAAAAAAABHCMUnACAjmRafFi1aFNOnT2/WHjc+tb2e51wafS/5WexZUxobHr4pGqp2NKuc9KEPfSjuu+++WLt2bTz88MPx2c9+9oBra2trY/To0UmMDQAAAAAAAAAAAMARRPEJANqJrVu3tklupsWniIhBgwY1eW06nVZ8amO9Pvnt6PO566Jy0WuxYcpvIl2zOyIiysvLm31Wt27d4qqrrooXXnghli1bFr/85S/jhBNO2G/d8OHDm30zGAAAAAAAAAAAAABHNsUnAGgnnnrqqXj99ddbNbOmpiYWLVqU8TkzZsyI0tLSJq1ds2ZNbNu2LeNMWiCVE30u/s849oJvxK55z8XmJ+6MqK/d+7olxad3O+200+J3v/tdrFy5Mp555pn42te+Frm5uRER8fbbb8cLL7yQ0fkAAAAAAAAAAAAAHFkUnwCgnSgrK4t77rmnVTMXL14cdXV1iZx1//33N2md257aSKfO0e+rP4+eH/5CbH/9kdg6fXBEet8bmDItPu2N6tQpvvSlL8Xjjz8ea9asiYEDB8ZZZ50V+fn5iZwPAAAAAAAAAAAAwJFB8QkA2omysrKYNm1avP32262WuWDBgsTOGjduXGzZsuWQ64qLixPLpGlSXbrHgCtvje7vvSC2vjA0drwyodF1GzZsSDx7wIABcf3118fChQvjhhtuiIaGhkNvAgAAAAAAAAAAAKBdUHwCgHairKwsGhoa4r777mu1zCSLT9XV1TF8+PBDrnPjU+vK6d4r8r51e3Q94X2x6cm7YlfRUwdcm9SNT41JpVLx8Y9/PHJy/PgKAAAAAAAAAAAA0FH4zVEAaAeqqqpi+fLlERExcuTI2LZtW6vkzp8/P9HzHnzwwaitrT3oGjc+tZ7cYwdE3jUDI7f3CbHxsVuj6q2XGl3Xt2/f+MAHPhAnnXRSK08IAAAAAAAAAAAAQHuW29YDAACZW7RoUaTT6YiIqKysjOHDh8cNN9yQ9dwkb3yKiFi7dm089thjcdVVVzX6fvfu3bF48eJEM2lc79M+GMdcclPkdOoc79v0YpxxyYUxYMDlkZeXt/efAQMGRP/+/aNz585tPS4AAAAAAAAAAAAA7ZDiEwC0A2VlZft8vv/+++O//uu/okuXLlnLrKysjLfffjvxcwcNGnTA4lNZWVk0NDQkntmRnXzyyXHzzTfvLTLl5eXFquou8cOH50ePbrkx/t8+Gmf0v6KtxwQAAAAAAAAAAACgA8pp6wEAgMz9bfFp7dq1MWXKlFbNTMqsWbPizTffbPRdcXFxVjI7slWrVsX5558fX/3qV+PjH/94LK7sFt+dUBz9j+kaU39wQZzRv2dbjwgAAAAAAAAAAABAB6X4BADtQGMlpLvvvjvS6XTWMhcsWJC1swcNGtTo85KSkqxldmQPPfRQREQ8Ont1fH9CUbzv+GNiyvcviBN6HdXGkwEAAAAAAAAAAADQkSk+AUA70Fjxae7cufHSSy9lLTObxaepU6fG6tWr93vuxqfsGD9+fAyaXho3PFYSnzijb0z67seiz9Fd2nosAAAAAAAAAAAAADo4xScAOMLt2bMnli1b1ui7u+++O2u52Sw+1dfXx+DBg/d5lk6n3fiUFanofN6VMWjmirjkw++JkdeeF0d3zW3roQAAAAAAAAAAAABA8QkAjnRLliyJ+vr6Rt89/fTTsWjRoqzkZrP4FBExbNiwqKys3Pt57dq1sXXr1qxmdjg5neK4L/3fOPZjl0fu8tdi0JUfji65fjwEAAAAAAAAAAAA4PDgN1sB4AhXVlZ20Pf33ntv4plbt26NdevWJX7uu23bti3Gjx+/97PbnpKVyu0a/b72i+jxwc/F9lcmxLJHb49XXnm5rccCAAAAAAAAAAAAgL0UnwDgCHeo4tPYsWNj06ZNiWaWlpYmet6B3HfffdHQ0BARik9Jyul6dPT/xq1x1Onnxpbpg2PH649ERMSQIUPaeDIAAAAAAAAAAAAA+P8UnwDgCHeo4lN1dXXk5+cnmjl//vxEzzuQhQsXxowZMyIiori4uFUy27tOPfrEgKvvjK55Z8XmJ+6MinnP7X03bdq0rN/kBQAAAAAAAAAAAABNpfgEAEe4QxWfIiIefPDBqK6uTixzwYIFiZ11KIMGDYoINz4lIbf3eyLvmrsi95j+sXHqb6Jq0Wv7vK+rq4sRI0a00XQAAAAAAAAAAAAAsC/FJwA4gtXW1sbixYsPuW7jxo0xadKkxHJbs/g0ffr0mDt3bixatKjVMtujLgNOj7yrB0Yqt2tsePimqF7Z+A1aQ4cOjdra2laeDgAAAAAAAAAAAAD2p/gEAEewZcuWNbmkcs8990Q6nc44M51Ot2rxKSLitttui/r6+lbNbE+6nfyhGPDN2yNdtyfKJ94QNRuWHXDtunXr4sknn2zF6QAAAAAAAAAAAACgcYpPAHAEKysra/La0tLSmDFjRsaZ69evj23btmV8TnM89dRTrZrXnnR/7yei/9d/G3U7N0b5hOujbtu6Q+4ZMmRIK0wGAAAAAAAAAAAAAAen+AQAR7DmFJ8iIu6+++6MM1v7tqeIiJqamlbPbA96fOSL0ferN8ae8sWxYeKNUV+xtUn7XnzxxXjrrbeyPB0AAAAAAAAAAAAAHJziEwAcwZpbTnn++edj/vz5GWW2RfGJ5jv2gqviuC/8MHYvK4yNk38VDXsqm7U/Pz8/S5MBAAAAAAAAAAAAQNMoPgHAEay5Nz5FRNxzzz0ZZSo+He5S0ftz34ten7wmKub/KTZNuy3SdXuafcqYMWOisrJ5ZSkAAAAAAAAAAAAASJLiEwAcoerr62PhwoXN3jdx4sRYv359i3MVnw4/p512Wpx22mkRObnR95KfxjHnXBI7Ch6PLc8Oimiob9GZO3fujEmTJiU8KQAAAAAAAAAAAAA0neITAByhVqxYEdXV1c3eV1tbG4MHD25RZkNDQ5SWlrZoL9lzxhlnxLwFb8WX73wqjn7/p6Pi1fGxfeaoiEhndO7gwYMjnc7sDAAAAAAAAAAAAABoKcUnADhClZWVtXjvQw89FFVVVc3et3z58hbtI7vWbNoe14yaHWVb6mPgFR+K5c8Nj5EjR8aFF16Y0bnFxcXxxhtvJDQlAAAAAAAAAAAAADSP4hMAHKEyKT5t3bo1xo4d2+x9CxYsaHEm2dGpZ7/Yed534631OyP/mnPiynNPip49e8a//uu/xiuvvBKLFy+Om2++OU488cQWnT9kyJCEJwYAAAAAAAAAAACAplF8AoAjVCbFp4iIe++9NxoaGpq1R/Hp8JJ73ImRd83ASHU/NkZe85H4/Afy9ltz5plnxm233RYrVqyI6dOnx1VXXRVdu3ZtcsaUKVNi48aNSY4NAAAAAAAAAAAAAE2i+AQAR6hMi09LliyJp59+ull7FJ8OH12OPyvyrh4YqZzcKJ/48zihy+6Dru/UqVN8/vOfj4cffjjWr18fQ4YMifPOO++QOTU1NTFq1KikxgYAAAAAAAAAAACAJlN8AoAMLVmypNUzGxoa4q233sr4nLvvvrtZ6xWfDg/dTv3HGHDV/0RDdUWUT/hZ1G5aHuvWrWvy/t69e8cPfvCDKCgoiPnz58dPf/rT6N+//wHX5+fnR319fRKjAwAAAAAAAAAAAECTKT4BQIb+8z//s9VLIatXr47KysqMz3n55ZejsLCwSWtrampi4cKFGWeSme7v+1T0v/xXUbdtbZRPvCHqdmyIiGhW8end/v7v/z5+//vfx5o1a+KJJ56Iyy67LHJzc/dZs3Llynj22Wcznh0AAAAAAAAAAAAAmkPxCQAysGfPnnjhhRfi8ccfb9XcJG57esc999zTpHVLliyJurq6xHJpvp7nXBL9Lr0h9qx9K8on3RQNldv3vmtp8ekdnTt3jksvvTSmTZsWa9eujXvuuSc++MEP7n0/ZMiQjM4HAAAAAAAAAAAAgOZSfAKADCxbtizq6+vjrrvuinQ63Wq5ZWVliZ316KOPxurVqw+5bsGCBYll0nzHfvKa6PO570XV4jdiw6O/inRN1T7vMy0+vVv//v3jxz/+cRQXF0dhYWH88Ic/jNmzZ8eyZcsSywAAAAAAAAAAAACAQ1F8AoAMLFq0KCIiZs+eHS+99FKr5SZZfKqvr4/777//kOsUn9pIKif6fOGH0euCq2JX8fTY9IfbI+pr91u2du3a5KNTqfh/7N13lJ51nTbwayY9hBZCEppUEWVXRERXLNgLioiAIgjq67LLrr6+vq4o7qoUKWnEJAQIoUsgSjBRutJ7FZSWSZuZJJNkJqT3ZMrz/uEhLyFtyvNMgc/nHM5h7vt3/65vTnIO+YPrfI844oiMHTs2NTU16devX9EzAAAAAAAAAAAAAGBrFJ8AoA0qKio2/vvw4cPbLbeYxackGT9+fFauXLnNMy+99FJRM2mGbt0z4LifZcf3fTHLn/h9ltxzaVJo2uLRYm582pLevXtn0KBBJc0AAAAAAAAAAAAAgDdSfAKANnh941OS3HXXXe2yFalQKBS9+LRixYpcc8012zxj41P7KuvZJwNPPC87vOsjWXL/+Cx79Matnu3Zs2fKysracToAAAAAAAAAAAAAKL3uHT0AAHRlb9z4lCQjRozI9ddfX9LMBQsWZPny5UW/d/To0fnBD36Q7t03/+vB6tWrU1lZWfRMtqy8784ZeNJ56bn7fml87JocUrYgex53XPbcc8/stdde2XPPPTf5p3///opPAAAAAAAAAAAAALzlKD4BQCsVCoVNNj4lyc0335wLL7wwe+21V8lyi73t6XXV1dWZMmVKTjrppM3eTZ06NYVCoSS5b2c9e/bMpz/96U3KTD3775nx03pkybqmXH7K+/Pp4cd19JgAAAAAAAAAAAAA0CHKO3oAAOiqFi5cmGXLlm3yrL6+PqNHjy5pbqmKT0kycuTILT5/+eWXS5b5drZhw4b853/+Z6666qqcd955Ofq4b+aK6X2yprE8N5/x4Xz6PYM7ekQAAAAAAAAAAAAA6DCKTwDQSm/e9vS6cePGZfny5SXLLWXx6amnnsoTTzyx2XPFp9IZM2ZMkuTZ6iX5+rgnU15WlklnfjhH7LtrB08GAAAAAAAAAAAAAB1L8QkAWqmiomKLz1euXJnx48eXLLeUxadky1ufFJ9K595778319/4137r66Qzo1yu3/seHc/CgHTt6LAAAAAAAAAAAAADocIpPANBKW9v4lCSjRo3Khg0bSpI7derUktz7uilTpqSysnKTZ4pPpbPDP30q5903P+8avGMmnfnh7L1r344eCQAAAAAAAAAAAAA6BcUnAGilrW18SpL58+fn5ptvLnrma6+9lkWLFhX93jdqamrK6NGjN/68dOnSzJs3r6SZb1c7ffD4DPjSj7N+7ssZ9/V3Z7d+vTp6JAAAAAAAAAAAAADoNBSfAKCVtrXxKUlGjBiRQqFQ1MxXX321qPdtzTXXXJOlS5cmSV555ZV2yXy72eUT382un/xeVk99JAtu+VUmTZzQ0SMBAAAAAAAAAAAAQKei+AQArbB+/fpUVVVt88wrr7ySu+++u6i57VV8Wr16da666qokyUsvvdQumW8bZeXZ7Zj/k50/dEJWPn9HFt0+ImlsyNixY9PU1NTR0wEAAAAAAAAAAABAp6H4BACtMHPmzGaVVIYNG1bU3PYqPiXJmDFjsmHDhrz88svtlvlWV9a9Z3Y//n/S758/m2WP3ZQl945LCv/4czRz5sz8+c9/7uAJAQAAAAAAAAAAAKDzUHwCgFaoqKho1rmHH344zz77bNFy27P4NG/evNxyyy2KT0VS1muHDPz6r9PnoCOz+C+XZ/njEzc7M2bMmA6YDAAAAAAAAAAAAAA6J8UnAGiF5hafkmT48OFFy23P4lOSjBw5Mi+99FK7Zr4Vddth1ww+ZUh67XlwFt02LKteuGuL5+65555Mnz69nacDAAAAAAAAAAAAgM5J8QkAWmHatGnNPvuHP/whs2bNanPmkiVLUltb2+Z7WuKFF17I0qVL2zXzrab7Lntk0LeGp/sug7Nw0rlZU/HYNs9fdtll7TQZAAAAAAAAAAAAAHRuik8A0Aot2fjU1NSUkSNHtjlz6tSpbb6D9tVj4AEZ/K1hKe/ZJ3UT/zvrZv99u99cd911WblyZTtMBwAAAAAAAAAAAACdm+ITALRQoVBo0can5B9llkWLFrUp99VXX23T97SvXvv8cwafMiSFhvrU3vTTbKid0azvVq5cmRtuuKHE0wEAAAAAAAAAAABA56f4BAAtVFtbmxUrVrTom7Vr1+ayyy5rU66NT11Hn4M/nEFfPz8NK19L7U1npWHJvBZ9P3bs2DQ1NZVoOgAAAAAAAAAAAADoGhSfAKCFWrrt6XWXXnpp1qxZ0+pcG5+6hn6HfT67H3d21tfNTN1NP0vjysUtvmPatGm57777SjAdAAAAAAAAAAAAAHQdik8A0EIVFRWt+m7x4sW5/vrrW52r+NQ5HXrooXnnO9+ZJNnpX07Kbl/431lX9UIW/v4XaVq3qtX3jhkzplgjAgAAAAAAAAAAAECXpPgEAC3U2o1PSXLJJZeksbGxxd+tWLEic+fObXUupfNP//RPmTq1ImdeeV92Pfrb2TDjsSyc/OsU6te36d677rors2bNKtKUAAAAAAAAAAAAAND1KD4BQAu1duNTklRWVmby5MntmklpzZ03Pz+e9PfcXbku/+sj+2fWhHPyh0m35Ljjjkv37t1bfW+hUMhll11WxEkBAAAAAAAAAAAAoGtRfAKAFmrLxqckGT58eAqFQou+efXVV9uUSWmU9eiVmv2/nD/9bX5++oV35Zdffnf69Omdr33ta/njH/+Y+fPn59JLL82RRx7ZqvuvueaarFq1qshTAwAAAAAAAAAAAEDXoPgEAC2wdu3aVFdXt+mOZ599No888kiLvlF86nzKe++YQSdfmAw+JBd99dD85ycOSllZ2SZndt999/zgBz/IM888k1dffTU///nPs/feezc7Y8WKFbnxxhuLPToAAAAAAAAAAAAAdAmKTwB0SRUVFVmzZk27586cObPF25q2ZNiwYS06r/jUuXTbcUAGnTo0PQcekNf+eHGO3qfHdr9597vfnYsuuiizZ8/O/fffn+985zvp16/fdr+79NJLi/JnDgAAAAAAAAAAAAC6GsUnALqkp59+Otdcc02751ZUVBTlnrvuuiuvvPJKs88rPnUe3fvvncHfGpbuO+6Wult+lbUznkpNTU2zvy8vL8+nPvWpXHfddamtrc2ECRPyuc99brNtUa+bOnVq7r///mKNDwAAAAAAAAAAAABdhuITAF3SjBkzMmLEiNTX17dr7rRp04p214gRI5p1bs2aNamuri5aLq3Xc4+DM/jUoSkr75Ham8/O+rkvJ0nmzp3bqvt22GGHnHrqqfnzn/+cuXPnZtiwYTn00EM3O3fppZe2aW4AAAAAAAAAAAAA6IoUnwDokmbMmJE5c+bkd7/7XbvmFmvjU5LcdNNNmTdv3nbPTZs2LYVCoWi5tE7v/d6XQSdfmKb1a1J701mpX1i18V1ri09vtNdee+Wss87KSy+9lOeffz4/+tGPMnDgwCTJ7bffnqqqqu3cAAAAAAAAAAAAAABvLYpPAHRJM2bMSJIMHTo0TU1N7ZZbzOJTfX19Ro8evd1zr776atEyaZ2+h3wsA088Jw3LalN300/TsKx2k/fFKD69rqysLIcffnh+85vfpKamJnfccUdOOumkXHvttUXLAAAAAAAAAAAAAICuQPEJgC6nUChsLD698sorufPOO9std9q0aUW988orr8zy5cu3eUbxqWP1O/xLGfCVs7J+/rTU3nx2Glcv3exMMYtPb9SjR4986Utfyu9///v84he/KEkGAAAAAAAAAAAAAHRWik8AdDl1dXVZtWrVxp8vvvjiFAqFkufOnz9/k9xiWLFiRcaPH7/NM4pPHWfnj56S3T73H1k785ksvOVXKaxfvcVzNTU1JZ+lV69eJc8AAAAAAAAAAAAAgM5E8QmALuf1bU+ve/LJJ/Poo4+WPLfY255eN3r06GzYsGGr7xWfOkBZefp/9j+yy0dOyaoX781rUy5KoWHrv0fz589vx+EAAAAAAAAAAAAA4O2he0cPAAAt9ebiU5IMGTIkH//4x0uaW1FRUZJ7582bl4kTJ+bb3/72Zu/Wr1+fmTNnliSXrejWPQO+/F/Z4ZCPZflTk7L8kd9mzz32yD777LPxn7333nuTnwcPHtzRUwMAAAAAAAAAAADAW47iEwBdzpaKT3fffXf+/ve/57DDDitZbqk2PiXJ8OHDc/rpp6esrGyT59OnT09TU1PJckkGDRr0/wtM++yXF3f6UGrq++WU9/TOmf95fvbY46r06NGjo8cEAAAAAAAAAAAAgLed8o4eAABaavr06Vt8PmTIkJLmlmrjU5K88sorufvuuzd7/uqrr5Ysk+SCCy5IbW1tnn322Vz124mZe9DXsqBxx1xy0mG56PRP5x3veIfSEwAAAAAAAAAAAAB0EMUnALqcLW18SpJbbrkls2bNKlluKTc+Jf/Y+vRmik+lNW7cuNTX12fukjU5adyTmbFwZa46/YiccMTeHT0aAAAAAAAAAAAAALztKT4B0KU0NTVl5syZW303YsSIkuSuWbMms2fPLsndr3vooYfy7LPPbvJs6tSpJc18u6upqcnlN/0xJ457IotWrc+E730onzpkUEePBQAAAAAAAAAAAABE8QmALmb+/PlZu3btVt9fd911qa2tLXru1rZMFdubtz7Z+FRavfZ6d0a9VJYkmXTmUfnAfv07eCIAAAAAAAAAAAAA4HWKTwB0KdsrIK1fvz6jR48uem5FRUXR79ySP/zhD5k1a1aSpL6+PtOnT2+X3LejPgd8IAO/8etsWLkkv/iXvnnX4B07eiQAAAAAAAAAAAAA4A0UnwDoUpqzeenyyy/P8uXLi5o7bdq0ot63NU1NTRk5cmSSZNasWamvr2+X3LebHQ79ZHY/4ZepXzQ3tTf9NBOvHtvRIwEAAAAAAAAAAAAAb6L4BECX0pzi04oVK3LFFVcUNbe9Nj4lyXXXXZdFixbl1VdfbbfMt5MdP3BcBnz5v7Juzkup+91/p2nN8kyaNCk1NTUdPRoAAAAAAAAAAAAA8AaKTwB0Kc0pPiXJqFGjsnbt2qLlttfGpyRZu3ZtLrvsMsWnEtjl499O/0+fkdUVj2XhreemsOEff0YaGhpy+eWXd/B0AAAAAAAAAAAAAMAbKT4B0KU0t/hUV1eXG264oSiZhUKhXYtPSTJ27Ni8+OKL7Zr5llZWnt2++MPs/OGTsvKFu7PotmFJY8MmR6688sqsWbOmgwYEAAAAAAAAAAAAAN5M8QmALqOpqSmzZs1q9vlhw4aloaFh+we3Y968eVm9enWb72mJRYsW5YknnmjXzLeqsu49s/tXf55+7/1clj1+c5b85bKk0LTZuSVLlmTChAkdMCEAAAAAAAAAAAAAsCWKTwB0GXPnzs369eubfb6qqiqTJk1qc25FRUWb72iNefPmdUjuW0lZz74ZeNJ56fPOD2XJveOy/LGbt3l+1KhRKRQK7TQdAAAAAAAAAAAAALAtik8AdBnTp09v8TdDhgxpc5Glo4pPtE35Drtk8ClD0muvQ7Lo9hFZ+fwd2/1m6tSpuffee9thOgAAAAAAAAAAAABgexSfAOgyZsyY0eJvXnzxxdxzzz1typ02bVqbvqf9dd9lcAafOjzdd90jC289P2umPtLsb0eNGlXCyQAAAAAAAAAAAACA5lJ8AqDLaE3xKfnH1qe2sPGpa+kxcP8MPnV4ynv1Td3v/ifrql9o0fd3332333MAAAAAAAAAAAAA6AQUnwDoMlpbfHrkkUfyxBNPtDrXxqfO65RTTsl73vOejT/32uefMviUISk01af25p9lw4Lprbp3zJgxxRoRAAAAAAAAAAAAAGglxScAuozWFp+S1m99Wr16debOndvqXErrmGOOycsvv5wXXnghJ//k4gz6xq/TsHJxaif8NA2La1p97w033JAlS5YUcVIAAAAAAAAAAAAAoKUUnwDoEhoaGlJZWdnq72+//fa8/PLLLf5u+vTWbQyifcyePTtlZWWZVt8/T3f/5xy+34CMO/HgnH7isdlpp51afe+aNWty9dVXF3FSAAAAAAAAAAAAAKClFJ8A6BJmz56dhoaGNt0xbNiwFn9TUVHRpkxKq3r27Fzx0Kz87A8v5aPv3D03n/Ev+coXPp1rr702tbW1mTRpUo477rj06NGjxXdfeumlqa+vL8HUAAAAAAAAAAAAAEBzKD4B0CKFQqFDcmfMmNHmO26++eZUV1e36Jtp06a1OZdSKcuz9ftk6D0VOe59e+bq0z+Qvj27b3zbp0+fnHjiifnjH/+Y2traXHnllfnYxz7W7NtramoyZcqUUgwOAAAAAAAAAAAAADSD4hMALXLrrbd2SG4xik+NjY255JJLWvSNjU+dVHm37Pal/5ulAw/Pd47aL7/5+vvSs/vW/1rTv3///Nu//VseeeSRVFdX5+KLL86hhx663ZhRo0YVc2oAAAAAAAAAAAAAoAUUnwBokbPPPjsLFy5s99xiFJ+S5Oqrr27R/DY+dT5l3Xtl96/9Iv3+6VNZ9cTE/OrL7055eVmzv993331z9tln56WXXsrf/va3nHXWWdlrr722ePbJJ5/M008/XazRAQAAAAAAAAAAAIAWUHwCoNlWrVqVysrKDtmCU6zi07p163LppZc262xTU5PiUydT3rtfBn7j1+mz//uz+J5Ls/jRm7J48eJW3VVWVpbDDjssw4YNy+zZs/PAAw/kQRe+twAAIABJREFUe9/7XnbaaadNzo0ePboYowMAAAAAAAAAAAAALaT4BECzVVZWJkkuu+yyLFu2rF2zi1V8SpKxY8dm5cqV2z1XU1OTtWvXFi2XtunWb7cMOmVoeg1+Zxb9aWhW/f3PSZLZs2e3/e5u3fLJT34yV199derq6nLrrbfm+OOPT8+ePTNp0qTU1NS0OQMAAAAAAAAAAAAAaBnFJwCa7fXi04oVKzJ27Nh2y92wYUOqqqqKdt+yZcty5ZVXbvdcRUVF0TJpm+7998rgbw1P9512T92kX2XN9Cc2vitG8emNevfunRNOOCGTJ09ObW1tLr/88jz33HNFzQAAAAAAAAAAAAAAtk/xCYBmmzVr1sZ/HzVqVFatWtUuuVVVVWlqairqnSNHjsz69eu3eWbatGlFzaR1eg4+KINPHZay7j1TN/HnWT/npU3eV1dXlyx71113zRlnnJGvfvWrJcsAAAAAAAAAAAAAALZM8QmAZntj8Wnx4sUZP358u+TOmDGj6HcuWLAgN9544zbP2PjU8Xrve1gGnXxRChvWpvamn2ZD3azNzhR74xMAAAAAAAAAAAAA0DkoPgHQbG8sPiXJiBEjsm7dupLnlqL4lCTDhg1LY2PjVt8rPnWsvod8NANPOjcNy+tSe9NP07B0/hbPKT4BAAAAAAAAAAAAwFuT4hMAzVZZWbnJzwsWLMj1119f8txSFZ9mzJiRyZMnb/X9tGnTSpLL9vV73xcz4Cs/zfr501N789lpXLVkq2cVnwAAAAAAAAAAAADgral7Rw8AQNfQ0NCQ6urqzZ4PHTo03/ve99KjR4+SZZeq+JQkQ4YMyYknnpiysrJNnq9cuTLz5s0rWS5bt/NHvpldPnpq1sx4OotuG5pCw4b06NEj73jHO7Lvvvtu9s/+++/f0SMDAAAAAAAAAAAAACWg+ARAs8ydOzcNDQ2bPa+urs7EiRNz+umnlyy7lMWn559/Pvfdd18++9nPbvJ8+vTpJctkczvssEPese9+6fXhU7N0wHvzrp5LctoJ784B//Vg9t133+yxxx4pL7eoEgAAAAAAAAAAAADeTvwfxAA0y6xZs7b67uKLL05TU1NJctetW5c5c+aU5O7XDRkyZLNnFRUVJc0k+eQnP5m//vWvWbRoURYvXZ5P/c9vs3TAe/PvHz8g95z3rXzrlG/mqKOOyl577aX0BAAAAAAAAAAAAABvQ/4vYgCapbKycqvvKioqMnny5JLlFgqFktz9ugceeCDPPPPMJs+mTZtW0kySxx57LHvssUd699s5//rb53LHiwvy8y8ekp8f8+6UlZV19HgAAAAAAAAAAAAAQAdTfAKgWba18SlJLrroopIUlGbMmFH0O7fkzVufbHwqvfr6+lwy9sqcctVTeWLW4gw78b3596MP7OixAAAAAAAAAAAAAIBOQvEJgGbZXvHphRdeyN1331303PYqPk2ZMiVTp07d+LONT6XXbcfd8/vFe6WidmXGfeuIfP0D+3T0SAAAAAAAAAAAAABAJ6L4BECzbK/4lCQXXnhh0bc+tVfxKUmGDx+eJGlqasr06dPbLfftqMdu+2TwacNT1nunnLDbgnz2PYM6eiQAAAAAAAAAAAAAoJNRfAJguwqFQiorK7d77oknnsjDDz9c1Oz2LCBNmDAhc+fOzZw5c7Ju3bp2y3276bnnIRl06rCkrDy1N5+dW68Ykqampo4eCwAAAAAAAAAAAADoZBSfANiuxYsXZ8WKFc06e8EFFxQ1uz03PtXX12fkyJGpqKhot8y3m94HHJFB37ggTWtXpm7CWal/rTozZszIHXfc0dGjAQAAAAAAAAAAAACdjOITANs1a9asZp+9//778/TTTxcld82aNZk3b15R7mqu8ePH5/nnn2/XzLeLHd7ziQz82i9Tv6QmtTf9NA3L6za+u+SSSzpwMgAAAAAAAAAAAACgM1J8AmC7WlJ8SpILL7ywKLkzZ84syj0tsWbNmkyZMqXdc9/qdjziKxlw7E+yvuaV1E38eZrWLNvk/SOPPJLnnnuug6YDAAAAAAAAAAAAADojxScAtquysrJF52+//fa8+OKLbc6dMWNGm+9ojb/97W8dkvtWtcvHTkv/z/xbVk97PHWTzk1hw9otnhs5cmQ7TwYAAAAAAAAAAAAAdGaKTwBsV0s3PiXJRRdd1Obcjio+NTQ0dEjuW05Zefp/4X9n56O+kZV/uzuL/jQ0aazf6vFbbrklc+bMaccBAQAAAAAAAAAAAIDOTPEJgO1qTfHplltuyfTp09uU21HFJ4qgW4/sftzZ2fGwz2fZE7/Lkj9flhSatvlJY2NjLr300nYaEAAAAAAAAAAAAADo7BSfANiu1hSfCoVChgwZ0qZcxaeuqaxnnww66bz0fddRWXLflVn+6IRmfzt+/PisWLGihNMBAAAAAAAAAAAAAF2F4hMA27R27drMnz+/Vd/eeOONmT17dquzFZ86r/322y/PPvtsfvzjH2evvfba+Ly87y4Z9M2L02vv9+S124Zn5V9vb9G9K1asyLXXXlvscQEAAAAAAAAAAACALkjxCYBtqqqqavW3DQ0NGT58eKu+XblyZWpra1udTWnNnTs373vf+3LJJZdkzpw5eeihh3Laf/zf7HX6JenRf+8s/MP5WTP14VbdPWrUqDQ0NBR5YgAAAAAAAAAAAACgq1F8AmCbZs2a1abvr7766lYVmGbOnNmmXEqrsbExc+fOTZKUl5dn4MGHZ+pex6T/4L3zsw/2zokfeU/69evXqrtnz56dKVOmFHNcAAAAAAAAAAAAAKALUnwCYJvaWnxav359Ro4c2eLvpk+f3qZcSq+ysjJJ8kzVknz9yifTvbwsk878cL5/8pdy4403pq6uLrfcckuOP/749OrVq0V3X3LJJSkUCqUYGwAAAAAAAAAAAADoIhSfALqAxsbGDst+vdzSFldccUWWLFnSom9mzJjR5lxKq6qqKve+WpfTrnk6u+/YK7f+x1F556AdN77v27dvTjrppEyePDl1dXW57rrr8rnPfS7dunXb7t1PP/10nnzyyVKODwAAAAAAAAAAAAB0copPAF3Afffdl5kzZ3ZIdls3PiXJqlWrMmbMmBZ9o/jU+d03a3XOnPDXHDJ4x9x65lHZa5c+Wz2788475zvf+U7+/Oc/Z/78+Rk7dmw+8pGPbPP+Sy65pNgjAwAAAAAAAAAAAABdiOITQBcwc+bMXHTRRR2SXYziU5KMGTMmK1eubPZ5xafObacPnpCnCgflqAN3y81n/Ev679Cz2d8OHDgw3//+9/PYY49l9uzZGTZsWA4//PDNzk2ZMqVof/4AAAAAAAAAAAAAgK5H8QmgC6iurs5vf/vbVFVVtWtuY2Nj0TKXLl2aK664otnnFZ86q7Ls8onvZtdPfje9F76Sa759ZHbo1b3Vt73jHe/IWWedleeffz5Tp07NOeeck4MPPjhJUigUMnr06GINDgAAAAAAAAAAAAB0MYpPAF1AVVVVGhsbc/HFF7dr7vz587Nhw4ai3Tdy5MisXbt2u+eWLVuWRYsWFS2XIinvlt2O+T/Z+UMnZMVfb8/SO0emZ/fi/VXikEMOybnnnpuKior89a9/zU9+8pPce++9Wbp0adEyAAAAAAAAAAAAAICuQ/EJoAuorq5Oklx//fWZM2dOu+XOmjWrqPfV1dXlmmuu2e452546n7LuvbL78f+Tfv/8mSx7dEKW3ndlFi6sy6pVq4qfVVaW97///Rk+fHheeeWV9OnTp+gZAAAAAAAAAAAAAEDnp/gE0AVUVVUlSerr6zN06NB2yy128SlJhg0btt0tUopPnUt5rx0y8Bvnp8+BH8jiP1+W5U/8buO710t5JcsuL0/v3r1LmgEAAAAAAAAAAAAAdE6KTwCd3IoVK7JkyZKNP1999dWZN29eu2SXovg0d+7cTJgwYZtnFJ86j279+mfQqUPTa/DBWfSnoVn1t7s3ef96KQ8AAAAAAAAAAAAAoNgUnwA6uTdv1NmwYUOGDRvWLtmVlZUluXfIkCFpbGzc6nvFp86h+657ZvCpw9J9p4FZeOu5WTPt8c3OlOrPCAAAAAAAAAAAAACA4hNAJ/fm4lOSjB8/PgsWLCh5dik2PiX/KDZNmjRpm+/pWD0HHZjBpw5LWc8+qfvdf2fd7L9v8ZyNTwAAAAAAAAAAAABAqSg+AXRyWyqWrFu3LiNGjCh5dqmKT0ly0UUXpampabPnhUIh06dPL1ku29f7He/NoG9enELD+tROOCsbamdu9aziEwAAAAAAAAAAAABQKt07egAAtm1LG5+SZNy4cfnZz36WgQMHliR36dKlWbp0aUnuTpKXXnopd9xxR77yla9s8nzx4sVZtmxZyXLZtr4HH5UBx56V+qXzs/CWX6Vx1eKN7/r3758DDjgg+++//8Z/3vve93bgtAAAAAAAAAAAAADAW5niE0Ant7Xi05o1azJy5MgMGTKkJLmVlZUlufeNLrzwwhx77LEpKyvb+GzGjBklz2XLdj3y2Oz0yTPSd01dPtZ3Zt513n9vUnTaaaedOnpEAAAAAAAAAAAAAOBtRPEJoJOrqqra6ruxY8fmJz/5SQYMGFD03FmzZhX9zjd75plncv/99+czn/nMxmeKT+1jwIAB+eEPf5gDDzww++23Xx56rU/GPzk/nzpkYC475Zj06dmto0cEAAAAAAAAAAAAAN7myjt6AAC2bWsbn5Jk9erVGTVqVEly26P4lPxj69MbKT61j0WLFuXoo4/OySd/M39ZtHPGPzk/Xzt8r1x52hFKTwAAAAAAAAAAAABAp6D4BNCJLV26NMuXL9/mmTFjxmTp0qVFz26v4tNDDz2Uxx9/fOPPik/tZ8jwEfnR7/+W65+ozr9+dP+MOOmw9OjmrwYAAAAAAAAAAAAAQOfg/24G6MS2te3pdStXrszo0aOLnl1ZWVn0O7fmjVufFJ/aR1mP3vlr3yNz29/n5+wvHpL/+dK7U15e1tFjAQAAAAAAAAAAAABspPgE0IlVVVU169zo0aO3uxmqpdpr41OS3H333Xn++edTKBQUn9pBeZ+dMujkC9N738NyyIrncubRB6asTOkJAAAAAAAAAAAAAOhcFJ8AOrHmbHxKkmXLlmXs2LFFy12/fn3mzp1btPua46KLLsrChQuzcuXKds19u+m24+4ZfOrQ9By4f16bclEeuPrCzJs3r6PHAgAAAAAAAAAAAADYjOITQCfW3I1PSTJy5MiilYaqq6tTKBSKcldzTZ48Offee2+7Zr7ddN9t7wz+1rB069c/db//ZdbOfDr19fUZM2ZMR48GAAAAAAAAAAAAALAZxSeATqy5G5+SZMmSJbn88suLkltZWVmUe1qiUCgUbX4213OPgzP41GEpK++e2pvOzvqaVza+GzduXFasWNGB0wEAAAAAAAAAAAAAbE7xCaATa0nxKUlGjBiR1atXtzl31qxZbb6jNZ566qkOyX2r673/+zPo5IvStG51aif8JPWvbbpJbMWKFRk/fnwHTQcAAAAAAAAAAAAAsGWKTwCdVKFQSFVV1fYPvsGiRYsybty4Nmd3VPGpUCh0SO5bWd93fzwDT/hlGpbOT+1NZ6Vhed0Wz40aNSobNmxo5+kAAAAAAAAAAAAAALZO8Qmgk1q8eHGrtjcNHz48a9eubVN2ZWVlm76nc9jx/V/OgGN/kvXzKlJ789lpWr1sq2fnzZuX3/3ud+04HQAAAAAAAAAAAADAtik+AXRSLd329Lq6urpcddVVbcruqI1PNM9HP/rR7L333ts8s/NHT03/z56ZtTOeTt0tv0phw5rt3jt8+HBbtwAAAAAAAAAAAACATkPxCaCTqq6ubvW3Q4cOzbp161r1baFQsPGpk/viF7+Y2bNn5/HHH88Pf/jD7LHHHv//ZVl5+n/u+9nlI9/Myr//Oa/98eKksb5Z97788su55557SjQ1AAAAAAAAAAAAAEDLKD4BdFKt3fiUJPPnz8+1117bqm8XLFiQtWvXtjqb0ps5c2bKy8tz1FFHZfTo0ampqcnDDz+cM7//v7P313+VHQ//YpY/eUuW3HNpUmhq0d3Dhw8v0dQAAAAAAAAAAAAAAC2j+ATQSbVl41OSDBkyJBs2bGjxd7Y9dX4zZ87c5Ofy8vIc/sEPZ/lhp6Tbfh/Iye/qkZPf0ze77757i+9+8MEH89xzzxVrVAAAAAAAAAAAAACAVlN8Auik2rLxKUnmzp2bG264ocXfzZo1q025lN6bf48WrVqfb171VJ6pWpLffOOwDPnu53LFFVdk/vz5uffee3PGGWekf//+zb7f1icAAAAAAAAAAAAAoDNQfALYhtWrV3dYdls3PiXJRRddlPr6+hZ9o/jU+c2fPz9r1qxJksxdsiYnXvFEZi5clatO/0COP3zvjee6d++ez3zmMxk/fnxqa2tzzz335Lvf/W522WWXbd5/66232vwFAAAAAAAAAAAAAHQ4xSeAbTjvvPM6JLdQKBSl+FRdXZ0JEya06BvFp66hsrIyFbUrcsIVT2Tpmvrc9K//kk8eMnCr53v06JHPf/7zufbaa1NXV5c777wzp59+enbaaafNzjY1NWXkyJGlHB8AAAAAAAAAAAAAYLsUnwC2orGxMaNHj87f//73ds+uq6vLunXrinLXhRdemIaGhmaft+mna/jL87Py9XFPprysLJPO/HCO2HfXZn/bs2fPHHPMMbnhhhuycOHC3HbbbTn11FPTr1+/jWeuvfbaLFq0qBSjAwAAAAAAAAAAAAA0i+ITwFbU1dVlw4YNHbL1qRjbnl43a9asTJw4sUXn6dz6HHhkLnu1PAP69cqt//HhHDxox1bf1atXrxx77LGZMGFCFi5cmMmTJ+fkk09OeXl5Lr/88iJODQAAAAAAAAAAAADQMopPAFsxZ86cJMmUKVPyt7/9rV2zq6qqinrfBRdckMbGxu2eW7lyZV577bWiZlNcOxz6qez+tV+kX8OKTDrzw9l7175Fu7tPnz45/vjjM3HixCxcuDBHH3100e4GAAAAAAAAAAAAAGgpxSeArXi9+JSk3bc+FXPjU5JMnz49kyZN2u452546tx2PPD4DvvzjrJvzUga8dFN269erZFl9+/ZVfAIAAAAAAAAAAAAAOpTiE8BWvLH49Mc//jEvvPBCu2UXe+NTkvz6179OU1PTNs9UVlYWPZfi2OXo76T/p76X1RWPZuGt56ZqRkVHjwQAAAAAAAAAAAAAUFKKTwBb8cbiU5Kce+657ZZd7I1PSfLqq69m8uTJ2zxj41MnVFae3b74f7Lzv5yYlc/fmUW3DU8aGzJ79uxs2LCho6cDAAAAAAAAAAAAACgZxSeArZg9e/YmP9922215/vnn2yW7FBufku1vfVJ86lzKuvfM7sf/d/q997NZ9tjNWXLvFUnhH79/TU1NJSnIAQAAAAAAAAAAAAB0FopPAFvx5o1PSftsfWpqatqsdFUsL774Ym677batvld86jzKeu2QgV8/P30O+mAW/+WKLH/85s3O+P0CAAAAAAAAAAAAAN7KFJ8AtmJLxafbb789zz33XElzFyxYkPr6+pLdf/7556dQKGzxXWVlZclyab5uO+yawacMSa8935VFtw3Pqhfu3OK5mTNntvNkAAAAAAAAAAAAAADtR/EJYAtWrVqVJUuWbPHdeeedV9Lsqqqqkt7/wgsv5K677trseX19fck2TdF83XfZI4O+NTzddxmchbeelzUVj271rI1PAAAAAAAAAAAAAMBbWfeOHgCgM5o7d+5W391xxx159tlnc+SRR5Yku7q6uiT3vtH555+fY445JmVlZRufzZkzJ42NjSXPZut6DDwgg75+XlJWnrqJ/50NtTM2ed+nT58cdNBBOfDAA3PQQQflU5/6VAdNCgAAAAAAAAAAAABQeopPAFswZ86cbb4/99xzc+edd5Yku9Qbn5LkmWeeyV/+8pd8/vOf3/jM9qCO1Wuff87AE36ZbFiT/i9NyEeOfn8OPPCkHHTQQRvLTnvssccmZTUAAAAAAAAAAAAAgLcyxSeALdhe8emuu+7KM888kw9+8INFz26PjU9Jct555+Vzn/vcxiJNZWVlu+SSlJeX58gjj8zBBx+cgw46KOsGHJJbanbIO3btkwlnfCl77vLtjh4RAAAAAAAAAAAAAKDDlXf0AACd0faKT8k/tj6VQntsfEqSJ598Mg888MDGn218aj9NTU0544wz8tvf/jbv/MJ38ru5O+S9e++Syd//aPbcpW9HjwcAAAAAAAAAAAAA0CkoPgFswezZs7d75u67785TTz1V9Oz22viUJOeff/7Gf1d8al9Dhw3L2Aem5+eTX8rHD949E/71Q9mlb8+OHgsAAAAAAAAAAAAAoNNQfALYguZsfEqS8847r6i5DQ0Nzc4uhkceeSQPP/xwEsWn9lWWRXt/PCP+MiNffd+euer0D6Rvz+4dPRQAAAAAAAAAAAAAQKei+ASwBc0tH91zzz158skni5Y7b968NDY2Fu2+5vj1r3+dQqGQysrKds192yrvlt2+/OPsdORX02fOU7nkpMPSo5v/HAMAAAAAAAAAAAAAvJn/0xrgTRobG1NTU9Ps8+eee27Rsqurq4t2V3Pdf//9ufPOO7Nq1ap2z367KevRKwO/9sv0O/STWfrwDamYeEEefPCBjh4LAAAAAAAAAAAAAKBTUnwCeJO6urrU19c3+/xf/vKXPPHEE0XJrqqqKso9LXXBBRd0SO7bSXnvfhn0jQvTe//Ds/juMVnx1KQkyZAhQzp4MgAAAAAAAAAAAACAzknxCeBN5syZ0+JvirX1qSM2PiXJ008/3SG5bxfddtwtg04dmp6DDshrfxySVS/+ZeO7+++/P88++2wHTgcAAAAAAAAAAAAA0DkpPgG8SWuKT/fee28ef/zxNmd31MYnSqd7/70z+FvD033H3VN3yzlZO+PJzc4MHTq0AyYDAAAAAAAAAAAAAOjcFJ8A3qQ1xaekOFufOmrjE6XRc4+DM/jUoSnr1iO1N5+d9XNf2uK5yZMnZ9q0ae08HQAAAAAAAAAAAABA56b4BPAms2fPbtV39913Xx577LE2Zdv41LntvPPOmThxYk488cT06dNnm2d77/e+DDr5wjRtWJvaCT9N/cLKrZ4tFAoZNmxYsccFAAAAAAAAAAAAAOjSFJ8A3qS1G5+S5Jxzzmn1txs2bMi8efNa/T2lt3z58nzhC1/IpEmT8tprr+XWW2/NySefnH79+m1yru8hH8vAE89Jw7La1E04Kw3LFmz37htvvDE1NTWlGh0AAAAAAAAAAAAAoMtRfAJ4k7YUnx544IE88sgjrfp27ty5aWpqanU27WPGjBlJkh122CEnnHBCJk6cmNdeey1/+tOfctppp2X3o07MgK+clfXzp6X25rPTuHpps+6tr6/Pb37zm1KODgAAAAAAAAAAAADQpSg+AbxJW4pPSXLuuee26rvq6uo25dI+pk+fvtmz3r1759hjj83hp/0ifT/2nRw2oDxf6D0zu+7Qq0V3X3nllVmyZEmxRgUAAAAAAAAAAAAA6NIUnwDeYNWqVW0unjz44IN5+OGHW/yd4lPXsKXiU2NTIb/60ysZff+MnHTE3pn84y/m+muuSm1tbe699978+7//e3bfffft3r169eqMHTu2FGMDAAAAAAAAAAAAAHQ5ik9Ap7Nu3boOy547d25R7mnN1qeqqqqiZFNaby4+rW9ozA9/90JufGp2/v3oAzLsxPeme7d//Oe1R48e+cxnPpNx48ZlwYIFefDBB/ODH/wge+yxx1bvHzNmTFavXl3SXwMAAAAAAAAAAAAAQFeg+AR0Og8++GCefPLJDsmeM2dOUe556KGH8tBDD7XoGxufuoY3Fp9WrW/I965/Lne+uCD/fcwh+fkX352ysrItftetW7d84hOfyKWXXpqampo89thj+dGPfpR99tlnk3OLFy/ONddcU9JfAwAAAAAAAAAAAABAV6D4BHQ6NTU1+dWvftUh2bNnzy7aXeecc04KhUKzz9v41DVMnz49hUIhi1etzylXPZUnKxdnxEmH5d8+fmCz7ygvL89HPvKR/OY3v8ns2bPz9NNP56yzzsoBBxyQJBkxYkTq6+tL9UsAAAAAAAAAAAAAAOgSFJ+ATqempib33XdfHnnkkXbPLtbGpyR55JFHWrT1ycanrmHVqlV5YfrsnDTuyUyrXZnxpx2RE4/Yu9X3lZWV5YMf/GCGDRuWmTNn5vnnn89pp53WYVvPAAAAAAAAAAAAAAA6i+4dPQDAm9XU1CRJfvGLX+Thhx9OWVlZu2UXs/iU/GPr0yc+8Ynt/hrWrVuX+fPnFzWb0ugx4B35Xze/mqaybpnwrx/Kkfv1L9rdZWVlOfzww3P44YcX7U4AAAAAAAAAAAAAgK7Kxieg03m9+PToo4/mvvvua9fsYhefHn300TzwwAPtnktp9NrrkAw6ZWgaGhpyy5kfLmrpCQAAAAAAAAAAAACATSk+AZ3O68WnJPnlL3+ZQqHQbtmlKCCdc8452/01VFVVFT2X4up9wAcy8BsXpGntinx8w7M5ZPBOHT0SAAAAAAAAAAAAAMBbmuIT0Om8sfj09NNP56677mqX3MbGxk2yi+Xxxx/P/fffv80z1dXVRc+leHY49JMZeMIvU7+4JrU3/TTzpr/Y0SMBAAAAAAAAAAAAALzlKT4BncqKFSuyYsWKTZ6119anurq61NfXl+Tu7W19UnzqvHb8wHEZ8OX/yro5L6du4s/TtGZ5pk+f3tFjAQAAAAAAAAAAAAC85Sk+AZ3KvHnzNnv2wgsvZMqUKSXPnjNnTsnufuL/sXfnYVrX5f7A38OwC+4saoWVuWYWWaadk9lybD+mpR5t0zY7nV91zlFRERC3VDBNDTW3LFxwyXI3rdRK3AEBQdRQYBhmYUB2mOX5/dFSB/xZAAAgAElEQVQlR5J1eBbGeb2uq6v5fj/LfT/X4Mw/877uxx7Lgw8+uM71mTNnlqw27bftx76Z7T/53Syd/tfU3zYihVXLkyQvv/xyWlpaKtwdAAAAAAAAAAAAAMBbm+ATsEWZM2fOWt+PGDEibW1tJa396quvlvT+M844Y51Tn0x82sJUdckOn/1Rtjnwq1k84b403nlB0vp/Qafm5mbfMwAAAAAAAAAAAACAEhN8ArYo6wo+TZkyJbfccktJa5dy4lOSjB8/Pn/4wx/Wumbi0xakulv6HXZq+rzv37Lwbzem6Q+/SApvDt3NmDGjAs0BAAAAAAAAAAAAAHQegk/AFmVdwafkH1OfWlpa1rm+uUodfEr+8Rn+eerTsmXLUl9fX/LabFhV994ZcOSZ6b37gWl68Iq89tcb17lX8AkAAAAAAAAAAAAAoLQEn4AtyvqCTzNmzMgNN9xQstrlCD498cQTeeCBB9Z498orr5S8LhvWZattM/CY89Jjl73ScOcFWfzs3W/a06NHj+yzzz758pe/nF133bX8TQIAAAAAAAAAAAAAdCJdK90AwButL/iUJCNHjswxxxyTbt26Fb12OYJPyT+mPh166KGpqqpKIvi0Jei67cD0P/KsVG+1XRpuPzMDCk3Z/d/+Lbvvvnv22GOP7L777tl9993z9re/PdXV1ZVuFwAAAAAAAAAAAACgUxB8ArYoGwo+zZw5M9ddd12+973vFb12uYJPTz75ZO6777587nOfS/KPz0T59e/fP7vvvnt22utDmbzDx1JV3TVnfWrnfP7cv6Vnz56Vbg8AAAAAAAAAAAAAoNPrUukGAN5oQ8GnJDn77LOzcuXKotZdsmRJmpqainrn+pxxxhkpFApJTHyqhOOPPz51dXUZdf3vMm2nQ7Pt1n1z548OzhEfHyz0BAAAAAAAAAAAAACwhRB8ArYYy5Yt26jw0ezZs3PVVVcVtfbs2bOLet+GPPXUU7n33nuTCD5Vwg033JBxf52Wb1z7ZPpv3SO3/+Cg7Na/b6XbAgAAAAAAAAAAAADgDQSfgC1GTU3NRu8955xzsmzZsqLVfvXVV4t218Z6ferTzJkzy167s+u6+8cy5K6Xs/dOW+e2Ew7Kztv2qnRLAAAAAAAAAAAAAAD8E8EnYIsxZ86cjd47b968XH755UWrPWvWrKLdtbGefvrp3HPPPSY+ldnWBxyRHT/346yaNSmXHv6ebLdV90q3BAAAAAAAAAAAAADAWgg+AVuMTQk+Jcl5552XJUuWFKV2JYJPSTJ8+PDMnz+/IrU7n6psd8i3s93Hj8vS5x9O7S1n5KrLL6t0UwAAAAAAAAAAAAAArIPgE7DF2NTgU2NjYy699NKi1K5U8GnChAkVqdvpdKnODp//72z94S9n0dN3pvGuC5O2llx66aVZtGhRpbsDAAAAAAAAAAAAAGAtBJ+ALcamBp+SZNSoUXnttdc2u3algk+UXlXXHul3+Onp895PZMGjv86CP/4ySSFJsnDhwowZM6ayDQIAAAAAAAAAAAAAsFaCT8AWoz3BpwULFuSiiy7a7NqCT1u+ffbZJ7169dqkM1169kn/o85Kr3cOzvz7L82i8be8ac/PfvazLFu2rFhtAgAAAAAAAAAAAABQJIJPwBZj9uzZ7Tp30UUXZf78+e2u29ra2q7QFeX1jW98I42NjbnjjjvyjW98I9ttt91691f32SEDjjkvPQa+J42/Pz9LJj2w1n0NDQ25+uqrS9EyAAAAAAAAAAAAAACbQfAJ2GK0N3y0aNGijB49ut116+rq0tzc3O7zlMe0adPSu3fvHHbYYbn++utTV1eXhx56KD/84Q+z8847r7G363Y7Z+DXLkjXrfun/tYRWTbjsfXePWrUqKxataqU7QMAAAAAAAAAAAAAsIkEn4AtwooVK9LQ0NDu85dccknq6+vbdfbVV19td13KZ/r06Ws8d+vWLZ/85Cdz2WWXZfbs2Xn88cczZMiQ7PbhT2Tg10alqmuP1N10albMem6Dd8+ZMye//vWvS9U6AAAAAAAAAAAAAADtIPgEbBHmzp27WeeXLVuW888/v11nZ82atVm1KY/p06enUCisda1Lly454IAD8sXvnJjuh56UnfvvkP/oPzfv3WWbjb7/vPPOS0tLS7HaBQAAAAAAAAAAAABgMwk+AVuEOXPmbPYdY8aMaVeASvCpY1i4cGHq6urWuX7Pc7U57rqn8rbteufOHx2cC4adlGeeeSavvPJKLr744hx88MHp0mXdv/Zefvnl3HLLLaVoHQAAAAAAAAAAAACAdhB8Alb729/+VrHaxQg+rVixIueee+4mnxN86jimT5++1ve/efzV/NdNz+Z9b9smt3z/wAzYuufqtUGDBuXHP/5xHn744cybNy/XXHNNvvCFL6R79+5vuufcc89NW1tbyfoHAAAAAAAAAAAAAGDjCT4Bq5133nmZMWNGRWoXI/iUJFddddUmB5kEnzqOadOmrfFcKBTy84dezLDfTckn9uif33z7gGzTu9s6z/fr1y/HH3987rrrrjQ2NmbcuHE5+uij07dv3yTJ1KlTc+edd5b0MwAAAAAAAAAAAAAAsHEEn4DVXn311YwYMaIitYsVfFq1alXOPvvsTToj+NRxvHHiU1tbISPunJqLHpqRIwa/LVd8/YPp1b16o+/q27dvjjzyyNx0001paGjIvffem+9+97u5+uqrUygUStE+AAAAAAAAAAAAAACbQPAJWG3u3Lm5+eabM2nSpLLXLlbwKUmuvfbavPzyyxu9X/Cp43h94tOqlrb86OYJ+fX4V/O9j70ro7/6vnSrbv+vtB49euSzn/1sfvnLX+b3v/+94BMAAAAAAAAAAAAAwBZA8AlIkqxcuTLz589PkgwbNqzs9YsZfGptbc2ZZ565UXuXLFmSpqamotWmtKZPn56lK1vy7eufyt3P1ebUz+6Z0z63V6qqqopWo7q6Ol26+PUIAAAAAAAAAAAAAFBp/rIbSJLU1tau/vquu+7K448/Xtb6xQw+JcnYsWMzffr0De4z7aljqWl8LUdd+Vgee3l+LvjK+/L9g99d6ZYAAAAAAAAAAAAAACgRwScgSVJTU7PG89ChQ8tWu7m5OfPmzSvqnW1tbRk5cuQG9wk+dRzVfftl4LHnZ8a8xbniax/Mkfu/vdItAQAAAAAAAAAAAABQQoJPQJJk7ty5azz/6U9/yh//+Mey1K6trU2hUCj6vTfffHMmT5683j2CTx1Dtx3enoFfH5XqrbbLN3ddnE/vPaDSLQEAAAAAAAAAAAAAUGKCT0CSNwefkn9MfSpFIOmfzZkzp2R3jxgxYr3rgk9bvu4775EBx56fVHXJvBtPyfJZUyrdEgAAAAAAAAAAAAAAZSD4BCRZe/DpiSeeyF133VXy2qUMPt1xxx155pln1rku+LRl6/nOwRlw1DlpW7EkdWNPSnPDK5k+fXql2wIAAAAAAAAAAAAAoAwEn4AkSU1NzVrfn3766Wlraytp7VIGn5Jk+PDh61wTfNpy9d7r4PQ/YnhaFtRk3tiT0/JaXZIIPgEAAAAAAAAAAAAAdBKCT0CStU98SpLJkydn3LhxJa1d6uDTvffem/Hjx691TfBpy9T3g19Mvy+dlJVzns+8G09N27KFq9dmzJiRlpaWCnYHAAAAAAAAAAAAAEA5CD4BSdYdfEr+MTGpubm5ZLVLHXxK1j71qbW1tSy12TTb/uvXsv2nvp9lLzyWultHpLBq2Rrrzc3NmTlzZoW6AwAAAAAAAAAAAACgXASfgCTrDz699NJLuf7660tWuxzho4ceeiiPPPLIGu/mzZtX0kAXm6iqS7Y/9L+yzUFHZ/HE+9Pw+/OS1rV/f6ZNm1bm5gAAAAAAAAAAAAAAKDfBJyCLFy/O4sWL17vnzDPPzIoVK0pSv1xTl4YNG5ZCobD6edasWWWpy0ao7pYd/31I+r7/M3ntsZvT9MBlSaHtTdt69OiRfffdd43vIwAAAAAAAAAAAAAAb01dK90AUHnrm/b0utmzZ+fKK6/Mj3/846LWbm1t3aj6xfCXv/wlDz30UD796U8nEXzaUlR175X+hw9Lz0HvS9NDv8ziZ+7M9ttvn7322it77rnnGv8/aNCgVFdXV7plAAAAAAAAAAAAAADKQPAJ2Ojg0bnnnptvf/vb6dOnT9Fq19XVpbW1tWj3bciwYcPyqU99KlVVVYJPW4BBe+ybHv/231nVa8d8sV9TvvKz/81ee12dHXfcMVVVVZVuDwAAAAAAAAAAAACACupS6QaAytvY4FN9fX0uueSSotaeM2dOUe/bkCeeeCL33HNPEhOfKmWvvfbKhAkTMn1OYwZ9++fpss1Oue74A3LJ/349H/vYx9KvXz+hJwAAAAAAAAAAAAAABJ+ApKamZqP3jho1KgsWLCha7XIHn5Jk+PDhKRQKgk8VMm3atEye3ZSv/WpCXlvenBu+e0A+vkf/SrcFAAAAAAAAAAAAAMAWRvAJ2OiJT0mycOHCjB49umi1KxF8mjBhQu644w7Bpwrp8bZ9MuKRBenapSq3fv/ADH7HdpVuCQAAAAAAAAAAAACALZDgE7BJwack+fnPf576+vqi1K5E8Cn5x9SnV155pSK1O7Ne7/5w+h95Zla+1pBT9u+e9wzoW+mWAAAAAAAAAAAAAADYQgk+Aampqdmk/UuXLs1Pf/rTotSuVPBp6tSpWbhwYUVqd1ZbvfeT6Xf40DQ3vJp5NwzJ5ReeU+mWAAAAAAAAAAAAAADYggk+AZs88SlJxowZk9mzZ2927UoFnyivrT98eHb8/H9nxauTUnfzaWlbvigPPPBAnnzyyUq3BgAAAAAAAAAAAADAFkrwCTq5QqHQruDTqlWrctZZZ212fcGnLd8uu+ySiy++OIccckiqq6s3+fy2Hz8u2x1yfJZOezT1t5+ZQvOK1WvF+DcEAAAAAAAAAAAAAMBbk+ATdHJNTU1ZtWpVu85ee+21efHFF9tdu62tLTU1Ne0+T3nU1dXlBz/4Qf70pz+lvr4+Y8eOzVe/+tX06dNn/QerumSHz/0k2xxwRBY9c3ca7xqdtLasseXuu+/Os88+W8LuAQAAAAAAAAAAAADoqASfoJPbnOBRa2trzjjjjHafb2xsbHfoivJpaWnJSy+9lCTZfvvtc+yxx+aWW25JY2Nj7rvvvvzgBz/ILrvsssaZqq490u/w09Nn309l4V/GZsFDVySFtrXeb+oTAAAAAAAAAAAAAABrI/gEndzcuXM36/xNN92UyZMnt+vsnDlzNqs25TN16tQ3vevRo0c+85nPZMyYMZk9e3aeeuqpDBs2LPsO/nD6H3lmer17/8x/4Bd57bGb13v37373u0yaNKlUrQMAAAAAAAAAAAAA0EEJPkEnt7nBp0KhkGHDhrXrrOBTx7G24NMbVVVVZf/9988PTzwtO399VPoM2idf3L4+H95+Zaqrqzd4/9lnn12sVgEAAAAAAAAAAAAAeIsQfIItQKFQqFjtzQ0+Jcnvf//7PPHEE5t8TvCp43j++ec3uGdm49Iccfljmd20LL867oBcNuTb+eMf/5iGhoaMHTs2Rx55ZPr27bvWs7fddtsGw1UAAAAAAAAAAAAAAHQugk9QYS0tLfnNb35Tsfo1NTVFuef000/f5DOCTx3HhkJJU2pey1cufyzLVrXmpu99JP/ynh1Xr2233XY59thjM27cuDQ0NOT+++/PD37wg+yyyy5r3HHOOeeUpHcAAAAAAAAAAAAAADomwSeosPr6+gwbNiwrV66sSP1iTHxKkoceeih//vOfN+mM4FPHMWPGjKxatWqta4+91Jijf/l4enarzm0nHJj3vW3bdd7To0ePHHrooRkzZkxmz56dp59+OsOGDcv73ve+jBs3LtOnTy/VRwAAAAAAAAAAAAAAoIMRfIIKq62tzaxZs3LFFVdUpH6xgk9JMnTo0BQKhY3eL/jUcbS0tOTFF1980/v7JtfmW9c9lZ237Znbf3BQ3tWvz0bfWVVVlQ9+8IM588wzM2nSpLz88stpbm4uZtsAAAAAAAAAAAAAAHRggk9QYfPmzUuSnH322Vm8eHHZ6xcz+DR+/Pjcc889G71f8Kljef7559d4vvGJWfnPG5/Nvm/bJrd8/8AM3KbnZt2/6667Zt99992sOwAAAAAAAAAAAAAAeOsQfIIKez341NjYmJ/97Gdlrd3S0rK6frGcfvrpaWtr2+C+QqEg+NTBTJ06Nck/vneX/enFnHbH5Hx8934Z++0Dsm3v7hXuDgAAAAAAAAAAAACAtxrBJ6iw2tra1V+PHj06DQ0NZatdX1+/USGlTTFp0qTceuutG9y3YMGCLF++vKi1Ka2pU6emra2QkXc9n9F/mJEvf2CX/PIb+6dX9+pKtwYAAAAAAAAAAAAAwFuQ4BNU2BsnLi1ZsiQ//elPy1Z77ty5Jbl3+PDhaWlpWe8e0546nqnTXshPxk3Mrx57Jd/+l3fmwq/ul27Vfo0AAAAAAAAAAAAAAFAa/mIdKuyNE5+S5Be/+EVmzZpVlto1NTUluXfGjBn59a9/vd49gk8dS1W3Hmna56u5c9LcDPnMnjn983ulS5eqSrcFAAAAAAAAAAAAAMBbmOATVNgbJz4lyapVq3LGGWeUpXapJj4lyciRI7Ny5cp1rgs+dRxdevbNgKPPSY9B++VHH9khP/j4u1NVJfQEAAAAAAAAAAAAAEBpCT5Bhf3zxKckuf766/P888+XvHYpg0+zZs3KL3/5y3WuCz51DNV9d8yAY89P9/7vSsPvfpq3N8+udEsAAAAAAAAAAAAAAHQSgk9QQYVC4U0Tn5Kkra0tw4YNK3n9UgafkuScc87J0qVL17om+LTl67rD2zLwa6PSte8OqbtleJa/+HimTp1a6bYAAAAAAAAAAAAAAOgkBJ+gghYtWpTly5evde23v/1tnnzyyZLWr6mpKen9dXV1ufTSS9e6Jvi0Zeu+0+4ZeOwFqerSNfNuPCUrZ09JEsEnAAAAAAAAAAAAAADKRvAJKmht057e6JRTTkmhUChZ/VJPfEqSCy64IAsXLnzTe8GnLVfPdw7OgKPPTduKpZl3w0lprp+5eu3555+vYGcAAAAAAAAAAAAAAHQmgk9QQbW1tetd//Of/5yHHnqoZPXLEXxasGBBLrzwwje9F3zaMvXe62Ppf8SwtCyYm3k3nJSWhWuG82bMmJFVq1ZVqDsAAAAAAAAAAAAAADoTwSeooA1NfEqSU089tSRTn1auXJn58+cX/d61ueiii1JfX7/6edGiRVm8eHFZarPx+g7+Qnb84olZWTM98248JW1L3zypq6WlJS+++GIFugMAAAAAAAAAAAAAoLMRfIIK2tDEpyR55plncvvttxe9djmmPb1u6dKlOe+881Y/m/a05dnmX47N9p8+IctffCJ1twxPYdWyte7r3bt3ampqytwdAAAAAAAAAAAAAACdUddKNwCd2cZMfEqSoUOH5rDDDkvXrsX7T7acwackGTNmTP7nf/4nb3vb2zJ79uyy1mY9qrpk+0+fkL4f+FwWT3ogTQ/8Iim0pXfv3tl7772z9957Z5999ln9v3e84x3p0kVmFgAAAAAAAAAAAACA0hN8ggramIlPSTJjxoz86le/yne+852i1S538GnlypU566yzcuWVV5r4tKWo7pqB/z4kPd5zYN6+ZFq+8PG35b3/dWf23nvvDBo0SMAJAAAAAAAAAAAAAICKEnyCCtrYiU9JMnLkyBx77LHp1atXUWqXO/iUJNdee21OOukkwacK6tmzZ0477bTste8HcsOsrTJh7rKc/vm98p1//XylWwMAAAAAAAAAAAAAgDUY5wEVtLETn5Jkzpw5GTNmTNFq19TUFO2ujdXS0pIzzjhD8KmCVqxYkUKPPrl+9rZ5bt7y/OzI/fKdf31XpdsCAAAAAAAAAAAAAIA3EXyCCtqUiU9Jcu655+a1114rSu1KTHxKkhtvvDHTpk2rSG2S6q375+qZW+fFusW56hsfzOGD31bplgAAAAAAAAAAAAAAYK0En6BCVq1alcbGxk0609TUlNGjRxelfqWCT4VCIc8991xFand23XYclIFfG5VCjz75XO+X84k9B1S6JQAAAAAAAAAAAAAAWCfBJ6iQ+vr6dp276KKLUldXt9n1a2pqNvuO9lq8eHHFanc0O++8c1Hu6bHLXhlw7PlJkrobhuQ3F43MkiVLinI3AAAAAAAAAAAAAACUguATVEhtbW27zi1dujTnnHPOZtev1MQnNs3FF1+cv//977n00ktz6KGHpnv37pt8R693fyj9jzo7bUsXZt7YE9Pc+GoaGxszZsyYEnQMAAAAAAAAAAAAAADFIfgEFTJv3rx2n73iiisyc+bMdp9fvHixaT8dxOTJk/POd74z//Vf/5X7778/8+fPz29/+9scf/zxGTBgwAbPb7XPJ9Lv8NPT3Phq5t1wcloXNaxeGzVqlH8HAAAAAAAAAAAAAABssQSfoELaO/EpSZqbmzNixIh2nzftqeOYPHnyGs99+vTJl7/85VxzzTWZO3dunnzyyQwfPjwf+MAH3nS274e+nB2/8D9ZMWty6m4emrbli9ZYb2xszGWXXVbS/gEAAAAAAAAAAAAAoL0En6BCNmfiU5KMHTs2U6ZMadfZmpqazapN+fxz8OmNunTpkg996EMZOXJknn322cyZMydXXnllvvDFL2bHT34n23/i21k6/S+pv+2MFFYtX+sdo0ePzuLFi0vVPgAAAAAAAAAAAAAAtJvgE1TI5gafCoVChg4d2q6zJj51HH//+9+zZMmSjdq7yy675Phvfyd7fv2sbLX/YfnXnZIjdnotb9tp4DrPzJ8/39QnAAAAAAAAAAAAAAC2SIJPdFrLl699Ak651NbWbvYdd955Zx577LFNPif41HEUCoVMnTp1o/auaG7NCWOfza3PzMmPP/me/PpHn8sVl1+eWbNmZeLEiTn77LPzkY98JFVVVWucGz16dBYtWlSK9gEAAAAAAAAAAAAAoN0En+i0LrnkkoqGPTZ34tPrTj311BQKhU06I/jUsUyePHmDe15b3pxvXPNk/ji9LiO/tE/++9O7rw44VVVVZb/99svQoUMzfvz41NbW5rrrrssRRxyRPn36pKmpydQnAAAAAAAAAAAAAAC2OIJPdFpTpkzJqFGjKla/GBOfkuTRRx/NAw88sElnampqilKb8thQ8Kl+0YocdeX4TJi9ID8/+gP55kG7rnf/gAED8q1vfSu33XZbGhsb8+CDD6alpSWtra1F7BoAAAAAAAAAAAAAADaP4BOdVn19fX72s58VLYC0KQqFQtEmPiX/mPrU1ta20ftNfOpY1hd8enX+0nzlivGZ1bQs13zzQ/nSfjtv0t09evTIpz71qQwfPjzV1dWb2yoAAAAAAAAAAAAAABSN4BOdVl1dXZYtW5aRI0eWvfbChQuzcuXKot03ceLE3HLLLRu9X/CpY5k8eXIKhcKb3k+peS1HXD4+i1c058bvfiQf271fBboDAAAAAAAAAAAAAIDSEHyi06qvr0+SXH311XnhhRfKWruY055ed/rpp6e5uXmD+wqFguBTB9PY2Ji6uro13o1/eX7+45ePp3t1VW494aC8/+3bVqg7AAAAAAAAAAAAAAAoDcEnOqW2trY0NDQkSVpbWzN06NCy1q+trS36nS+//HKuvfbaDe6bP39+Vq1aVfT6lNbkyZNXf33/lHn55nVPZsA2PXP7fx6U3fr3qWBnAAAAAAAAAAAAAABQGoJPdEoLFixIS0vL6ufbb789jz/+eNnql2LiU5KMHDkyy5YtW+8e0546pteDTzc/OSv/ecMz2WfnrXPr9w/MTtv0qnBnAAAAAAAAAAAAAABQGoJPdEr19fVvenfyySenUCiUpX4pJj69fu+ll1663j2CTx3Tc5Mn5xd/fimn/HZy/vU9/XLDdw7Idlt1r3RbAAAAAAAAAAAAAABQMoJPdEp1dXVveveXv/wl99xzT1nql2riU5Kcd955WbBgwTrXa2pqSlabUqnK4yt3yagHXshh7985V39z//Tu3rXSTQEAAAAAAAAAAAAAQEkJPtEprW3iU5KccsopaW1tLXn9Uk18SpKFCxdm1KhR61w38amD6VKdHb7wP1nxjgPzrYMG5WdHvj/dqv3oBgAAAAAAAAAAAADgrc9fz9MprW3iU5JMnTo1v/nNb0pev5QTn5Lk4osvXme4SvCp46jq1iP9Dx+WPvsckgWPXJ//2KNbunSpqnRbAAAAAAAAAAAAAABQFoJPdErrmviUJMOGDcvy5ctLWr+UE5+SZPny5TnrrLPWuib41DF06dkn/Y86Oz3f+YHMv//SLHr81kyZMqXSbQEAAAAAAAAAAAAAQNkIPtEprWviU5LMmTMnl112WUnrl3riU5JcddVVeemll970vqampuS12TzVfXfIgGPPT48Bu6Xh9+dlyaQHkiSTJ0+ucGcAAAAAAAAAAAAAAFA+gk90Suub+JQk5557bhYsWFCS2itXrkxTU1NJ7n6jlpaWDB8+/E3vTXzasnXdfpcMPHZUuvbtl7pbh2f5jPGr1wSfAAAAAAAAAAAAAADoTASf6JQ2FHxauHBhfvrTn5ak9vqmTRXbTTfdlIkTJ65+bmlpKWt9Nk33ge/JwGMvSFXXbpl34ylZOWvNoJPgEwAAAAAAAAAAAAAAnYngE53SxoR/LrnkksyePbvotWtra4t+5/oMHTp09df19fVpa2sra302Ts9d358B/3Fu2lYtz7yxJ6e5/u9v2vPSSy9l2bJlFegOAAAAAAAAAAAAAADKT/CJTmlDE5+SZOXKlRkxYkTRa8+bN6/od67Pvffem0cffTRJUlNTU9babJzee/5L+n9lRFoWzkvd2JPSsnDt4bhCoZBp06aVuTsAAAAAAAAAAAAAAKgMwWhAgK8AACAASURBVCc6nWXLlmXJkiUbtff666/PlClTilq/3BOfkuTUU09NoVDI3Llzy16b9evzgc9lxy+dnJVzX8i8G09J69IFSZKePXtm8ODB+eY3v5kLL7wwf/jDH1JbW5vBgwdXuGMAAAAAAAAAAAAAACiPrpVuAMptY6Y9va6trS2nnnpq7rrrrqLVL/fEpyR57LHHcs899wg+bWG2+egx2fZfjknV3Cn5yIqns9+Q/82+++6bfffdN7vttluqq6sr3SIAAAAAAAAAAAAAAFSM4BOdTl1d3Sbtv/vuu/Poo4/mYx/7WFHqV2LiU/KPqU9f+tKXKlKb//PRj340H9x//9QM+Giefq13DttvYEaf89l0rTaADwAAAAAAAAAAAAAA3shf2tPpbMrEp9cNGTIkhUKhKPUrMfEpSaZMmZK//vWvFanN/9n3/YPT8uFv5OnXeuf7B78rFx09WOgJAAAAAAAAAAAAAADWwl/b0+ls6sSnJHn88cdzxx13FKV+pYJPSfLUU09VrDZJVfde+d38Abnnudqc9rk9c+pn90pVVVWl2wIAAAAAAAAAAAAAgC2S4BOdTnsmPiXJqaeempaWls2uX1tbu9l3tNfy5csrVrujGTRoUD7ykY8ULZjUpdfWGXD0Oen+9n2zz5Jn8r2Pvbso9wIAAAAAAAAAAAAAwFuV4BOdTnuDTzNmzMg111yzWbULhUJFJz6x8fr06ZPx48enrq4uY8eOzTHHHJPtt9++XXdVb90vA4+9IN12HJSG356dB644My+99FKROwYAAAAAAAAAAAAAgLcWwSc6nbq6unafPeOMM7J06dJ2n29qakpzc3O7z1M+06dPz4oVK9KvX78ce+yxueGGG1JfX5/HHnssp59+egYPHrxR93Tb8R0Z+LVR6bLVtqkfNyzLX34qra2tOfPMM0v8CQAAAAAAAAAAAAAAoGMTfKLTae/EpySZN29eLr744s06T8fQ2tqaqVOnrvGuuro6Bx54YM4666w888wzmTt3bq699tp85StfydZbb/2mO7rvvGcGHHN+kqrU3XhKVtY8v3rthhtuyPTp00v9MQAAAAAAAAAAAAAAoMMSfKLT2ZyJT0ly/vnnp6GhoV1na2trN6s25TVp0qT1ru+000457rjjcuutt6axsTEPP/xwTj755Lz3ve9Nz3d9MAOOPjttyxen7oaT09zwyhpn29racsYZZ5SueQAAAAAAAAAAAAAA6OAEn+h0NmfiU5IsXrw455xzTrvOmvjUsWwo+PRG3bp1y8EHH5zzzz8/Z/76vux81MjsvFWX7Nf4ULo3L17rmXHjxuW5554rVrsAAAAAAAAAAAAAAPCWIvhEWRUKhc0OHm2OlpaWNDY2bvY9Y8aMycyZMzf5nIlPHcumBJ9ed81fZ+a/x03Kh3fdIQ+e9oXc+9txaWpqyh/+8If85Cc/ye67777G/hEjRhSrXQAAAAAAAAAAAAAAeEsRfKKsli5dmuHDh1es/vz581MoFDb7nubm5px++umbfM7Ep45l4sSJG/3vpVAo5IL7p+esu5/PZ987MNcd96H07dktSdKjR498+tOfzkUXXZQXXnghL774Yi655JJ85jOfyf33359nnnmmlB8DAAAAAAAAAAAAAAA6JMEnyqqxsTFXX311pk2bVpH6dXV1RbvrxhtvzIQJEzbpjIlPHctrr72WWbNmbXBfS2tbTrl9csY8/HKOOeAdueyYwenZrXqd+3fbbbf8v//3/3Lfffdl/vz52XHHHYvZNgAAAAAAAAAAAAAAvCUIPlFWDQ0NaW1tzZAhQypSv76+vqj3bernMPGp45k0adJ611c0t+Y/b3g2456enR99Yrecc9h7U92laqPv7927dwYNGrS5bQIAAAAAAAAAAAAAwFuO4BNl1djYmCS566678sgjj5S9fjEnPiXJgw8+mAcffHCj95v41PGsL/i0aEVzvnntk/nD83U544t753/+bY9UVW186AkAAAAAAAAAAAAAAFg3wSfKqqGhYfXXJ554Ytra2spav9gTn5LklFNO2ejPYeJTx7Ou4FP94hU56srH88yrC/Lzo9+fb330nWXuDAAAAAAAAAAAAAAA3toEnyir1yc+JcnTTz+dcePGlbV+KYJPzz777EZ9juXLl2fhwoVFr09pTZw48U3vXp2/NF+5fHxeaVyaa771ofz7+3epQGcAAAAAAAAAAAAAAPDWJvhEWb1x4lOSnHbaaVm5cmXZ6tfV1ZXk3qFDh2bVqlUVqU1pvfzyy1m8ePHq56lzX8sRl4/PohXNufG7B+Tg3ftVsDsAAAAAAAAAAAAAAHjrEnyirN448SlJXnnllfziF78oW/1STHxKkpkzZ+bKK69c757a2tqS1Kb0Jk+enCR54u/zc/SVj6dbdVVuO+HAfOAd21W4MwAAAAAAAAAAAAAAeOsSfKKs/nniU5KcffbZWbBgQVnql3Lq0plnnplFixatc33evHklq01pTZo0KX+YOi9fv/bJ9N+6R277wUHZrX/fSrcFAAAAAAAAAAAAAABvaYJPlNU/T3xKkgULFuScc84pS/1STXxK/vHZRo8evc51E586rnumNeWEsc9kr522zq0nHJRdtu1V6ZYAAAAAAAAAAAAAAOAtT/CJslrbxKckufTSSzNz5syS1i4UCiWd+JQkF1544TonO5n41DFt/eEjMqX3+/PR3XbMjd85INtv1b3SLQEAAAAAAAAAAAAAQKcg+ERZrW3iU5KsWrUqQ4cOLWntxYsXZ+XKlSWtsWzZsowcOXKtayY+dTRV2faQ47PdIcdlxYy/5ZdfG5ytenStdFMAAAAAAAAAAAAAANBpCD5RNi0tLWlqalrn+k033ZSnn366ZPVLPe3pdVdddVVmzJjxpvcmPnUgXaqzw+d+km0+fHgWPXNX6u44L7NfLe1EMgAAAAAAAAAAAAAAYE2CT5TN+kJPrzvppJNSKBRKUr++vr4k9/6z1tbWtU6vEnzqGKq69ki/Lw9Nn30/mYWP/iYLHroySSGTJk2qdGsAAAAAAAAAAAAAANCpCD5RNg0NDRvc8/DDD+eee+4pSf1yBZ+S5LbbbssTTzyxxrva2tqy1ad9uvTYKv2POiu93r1/5t9/WV4bP271muATAAAAAAAAAAAAAACUl+ATZdPY2LhR+04++eS0tLQUvX5dXV3R71yfk08+efX0qra2trLXZ9NU99khA449Pz0GvieNvz8/Sybdv8b6xIkTK9QZAAAAAAAAAAAAAAB0ToJPlM3GTHxKkmnTpuXaa68tev1yTnxKkkcffTT33XdfkmT+/PklCXNRHF232zkDv3ZBum7dP/W3jsiyF/72pj0mPgEAAAAAAAAAAAAAQHkJPlE2GzvxKUmGDx+eJUuWFLV+JSYuDRkyJK2trZk3b17Za7Nxug/cLQO/NipVXXuk7qZTs2LWc2vdN2fOnDQ1NZW5OwAAAAAAAAAAAAAA6Ly6VroBOo+NnfiU/COkdOGFF2bEiBFFq1/uiU9JMmXKlIwdOzY77bRT2WuzYT0H7Zd+Xx6atuWLUnfL8LQsmPt/az175r3vfW/222+/vP/9789+++2XPn36VLBbAAAAAAAAAAAAAADoXASfKJtNmfiUJKNGjcr3v//9DBw4sCj1KzHxKUmGDRuW4cOHV6Q269Z7j49mxy+cmOYFNcnDl+VTB7wv++339dUhp/e85z3p2tWPSAAAAAAAAAAAAAAAqBR/1U/ZbMrEpyRZunRpRowYkSuvvLIo9Ssx8SlJZs+enTvuuKMitVlTly5dss8++6T/gYfnpe32z27bdMkVP/pydrvmh5VuDQAAAAAAAAAAAAAA+CddKt0AncemTnxKkquvvjrPP/98UepXauJTkvzxj3+sWO2OaMCAASW5d+DAgfnmBTfnpe0+lE/sOSB3/e+h2e0dO5ekFgAAAAAAAAAAAAAAsHkEnyibTZ34lCRtbW0ZMmTIZtdetWpVFi5cuNn3tNfKlSsrVrsjeuSRRzJp0qScf/75OeSQQ9KtW7ci3FqV5Xt/MZc+PDOHD94lV379g+nVvboI9wIAAAAAAAAAAAAAAKUg+ETZtGfiU5LcfffdefjhhzerdntCV1TOxIkT8773vS8nn3xy/vSnP2X+/Pn53e9+lxNOOCGDBg3a9Au7dM2OXzwxW3/wi1n13H0Zfug7063ajz8AAAAAAAAAAAAAANiS+ct/yqJQKGxW+Oikk05KW1tbu8/X1dW1+yzlN2HChDWe+/btm3//93/P5ZdfnpkzZ2b69Om5+OKL85nPfCY9e/Zc711V3Xqm/1eGZ6u9D86CP1+b2vt+kUt+/vNStg8AAAAAAAAAAAAAABSB4BNlsXTp0qxcubLd559++umMGzeu3efr6+vbfZby++fg0xtVVVVljz32yI9//OPcd999aWpqyv3335+f/OQn2XPPPdfY26XX1hlw9DnpOWi/NN57cRY9+dskyYUXXpimpqaSfgYAAAAAAAAAAAAAAGDzCD5RFpsz7el1p512WrvDUyY+dSwTJkxIoVDYqL29evXKoYcemosuuijTpk3LzJkzc8UVV+SzRxyTnb8+Kt367ZqGO87J0skPrT6zaNGiXHDBBaVqHwAAAAAAAAAAAAAAKALBJ8qiGMGnV155JZdddlm7zpr41LE0NDRk7ty57Tq766675hOHHZMFHzw+2+40KEM/uk1+dMQh2W+//dbYd8kll6S2trYY7QIAAAAAAAAAAAAAACUg+ERZNDY2FuWes88+O01NTZt8zsSnjmfChAntOvfsrAX56pXj09JWyLjvHZjvH/7JnHfeeZk4cWJqampy3XXX5aijjkrPnj1z7rnnFrlrAAAAAAAAAAAAAACgWASfKItiTHxKkoULF7YrrGLiU8fTnuDTwy/U59irnsg2vbrl9hMOyt47b73G+s4775xvfetbufnmm9PQ0JDjjjsuhUKhWC0DAAAAAAAAAAAAAABFJPhEWRRr4lOSXHrppZk5c+YmnTHxqePZ1ODT7yfW5DvXP5137rhVbjvhoLxjh97r3V9dXZ3Bgwenqqpqc9oEAAAAAAAAAAAAAABKRPCJsijWxKckWbVqVYYOHbpJZ0x86ng2Jfh03d9m5sc3T8z+u26Xm7//kfTr26OEnQEAAAAAAAAAAAAAAOUg+ERZFHPiU5LcdNNNefrppzd6v+BTx/PKK69kwYIF691TKBQy+oEXMvKu53PoPgPyq+M+nK17ditThwAAAAAAAAAAAAAAQCkJPlEWxZz49LoTTzwxhUJhg/va2toEnzqoiRMnrnOtta2Q0+6Yksv+/FKO/tDb84tjBqdnt+oydgcAAAAAAAAAAAAAAJSS4BNlUeyJT0nyyCOP5O67797gvoULF6alpaXo9Sm9CRMmrPX9iubW/PCGZ3PTk7Pyw0PenZ8evm+6VvtxBgAAAAAAAAAAAAAAbyWSApRFKSY+JcmQIUM2GGqqq6srSW1Kb23Bp8UrmnPcdU/l/qnzMuwLe+ekQ/dMVVVVBboDAAAAAAAAAAAAAABKSfCJsijFxKckmTZtWq699tr17qmvry9JbUrvn4NPDYtX5uhfPp6nXmnKxUe9P9/+l3dWqDMAAAAAAAAAAAAAAKDUBJ8ouebm5ixYsKBk9w8fPjxLlixZ57qJTx3X9OnTs3z58iTJ7KZl+eoVj+XlhiW56pv757AP7FLh7gAAAAAAAAAAAAAAgFISfKLkmpqaSnp/XV1dRo8evc51E586rtbW1kyePDnTahfl8Msfy4JlzbnhOx/JIXv0r3RrAAAAAAAAAAAAAABAiQk+UXINDQ0lrzFq1KjU1taudc3Ep47tzvFTc+SV41NdVZVbTzgwHxy0XaVbAgAAAAAAAAAAAAAAykDwiZJrbGwseY1ly5ZlxIgRa10z8anj6vXuD+fGuTukX98euf0/D8ruA/pWuiUAAAAAAAAAAAAAAKBMBJ8ouXJMfEqSa665Js8///yb3gs+dUxbvfeT6Xf40HRZPC+3nXBQdtm2V6VbAgAAAAAAAAAAAAAAykjwiZIrx8SnJGlra8uQIUPe9L6urq4s9SmerT98eHb8/H9nxauTMnfskGzdw48qAAAAAAAAAAAAAADobKQJKLlyTXxKkrvvvjsPP/zwGu9MfOpYtv34cdnukOOzdNqjqb/9zCxfvDAvvPBCpdsCAAAAAAAAAAAAAADKTPCJkivXxKfXnXjiiWlra1v9bOJTB1HVJTt87ifZ5oAjsvjZu9N41+jk/7N393FaF3S+/9/XMNzfiPesmlpqqSkpqAVWFj+Pd63Varq2eezk9tA2I9NARQPNXOuI1nZWClcLS9NKsz2ddPE+b0ATRkRFWzXMNhBkGIbbYWBmrvPHntj8mQnyvebrXPN8Ph4+grm+13W9xsfD/ns/Pp0dSZJ58+aVHAcAAAAAAAAAAAAAAHQ3wydqrjsvPiVJU1NTfvzjHydJ1q1blzVr1nTr97PlKo39suPfXJQhBx6Z1od/lJa7pyfV/xqvGT4BAAAAAAAAAAAAAEDvY/hEzXX3xackufDCC7N+/fq88sor3f7dbJlK/8HZ6eSvZeDeh2b5Xd/Jylk3v+YZwycAAAAAAAAAAAAAAOh9DJ+oue6++JQkL730UqZNm2b49BbXZ/C2GfF330j/Xd6Z5l9ckTXz7vizz82bNy/VarWb6wAAAAAAAAAAAAAAgDI1lh1A/Svj4lOSXHbZZZk2bVop380ba9x2l+x88qVpGLRNXrnlkqx/af6rXh84cGBGjhyZgw8+OAcffHA6OjrSt2/fkmoBAAAAAAAAAAAAAIDuZvhETVWr1VIuPiVJa2trrr/++lK+m7+s3857ZaeTLkkqDVl684UZ3N6csePGbRo5HXzwwXnXu96VPn36lJ0KAAAAAAAAAAAAAACUxPCJmlqzZk02bNhQ2vffd999pX13T3TyySdnhx12yF133ZUXXnihJt+x2+hx6fvhL2Rgn2q++J6GHPPlu7P77runUqnU5PsAAAAAAAAAAAAAAICeyfCJmirr2tMfdXZ2lvr9Pc2AAQMybdq0JMnChQtz9913584778y9996bVatWbfXnX3HzXbn2qY7sucOg/PD092bENgO2+jMBAAAAAAAAAAAAAID61FB2APWt7OETW6apqWnTn9/xjnfkzDPPzG233Zbly5dn1qxZufjiizNmzJg0NGz5/3UMec/RmTZvfQ7YdVh+euYYoycAAAAAAAAAAAAAAOAvMnyippqbm8tOYAs8++yzWbt27Wt+3tjYmLFjx+aSSy7J7Nmz09zcnFtvvTVnnHFG9thjjzf83GFjTs72x4zPuoVN+fz+nRk+qF8t8gEAAAAAAAAAAAAAgDpi+ERNufjUs3R1dWX+/Plv+Ny2226bE088Mddcc01efPHFPPfcc7n66qvz0Y9+NEOGDPmTJyvZ9v87I9t+8LSsefq+LLvtslzylQtTrVZr90sAAAAAAAAAAAAAAAB1obHsAOqbi089T1NTU8aOHbvZz1cqleyzzz7ZZ599ctZZZ2XDhg159NFH82933p3bFg1O+4gDs2rOv2bFfd9LUs2sWbNy++2356//+q9r90sAAAAAAAAAAAAAAAA9notP1JSLTz1PU1PTVr2/X79+OeR9Y7Nor+PTPuLAfOGDb8t3z/hvOf30z2S33XZLkkyaNCmdnZ1F5AIAAAAAAAAAAAAAAHXKxSdqysWnnufxxx/fqvevWLshn7l+Tp78Q2u+ccKBOeWw3ZOMzN/+7cmpVqv5zW9+k7vuuiu/+c1v8u53v7uYaAAAAAAAAAAAAAAAoO4YPlFTLj71PM8880za2toycODALX7v4ta2nPb9x/L7lnX57qmjc/S7R7zq9Uqlkv322y/77bdfUbkAAAAAAAAAAAAAAECdaig7gPrm4lPP09nZmfnz52/x+154ZU0+8d3ZWbpyfX54+mGvGT0BAAAAAAAAAAAAAABsCcMnasrFp56pqalpi55/4j9ac9L02dnQWc2Pz3xf3veO7WtUBgAAAAAAAAAAAAAA9BaNZQdQ31x86pm2ZPj04HPL8rkbm7LDkP654e8Pyx7bD65hGQAAAAAAAAAAAAAA0FsYPlEzGzduTGtra9kZvAmbO3z6xfzF+fJPn8jeOw3NDz5zaHYaNqDGZQAAAAAAAAAAAAAAQG/RUHYA9Wv58uVlJ/AmLViwIG1tbX/xmR/M/l3O/vG8HLz7tvnxGe8zegIAAAAAAAAAAAAAAApl+ETNLFu2rOwE3qTOzs48+eSTf/a1arWab979XC7+xYIcud/O+eHph2WbgX27uRAAAAAAAAAAAAAAAKh3hk/UTHNzc9kJbIWmpqbX/Kyzq5qv/OvT+V/3Pp+TD9kt3/3UqAzo26eEOgAAAAAAAAAAAAAAoN41lh1A/XLxqWd7/PHHX/X39o7OnPOTJ3LHU0vyDx/aK+cd/a5UKpWS6gAAAAAAAAAAAAAAgHpn+ETNuPjUs/3pxac17R0544dzM/u3y/OVj+yXz37gHSWWAQAAAAAAAAAAAAAAvYHhEzXj4lPP9vTTT2f9+vVZ01HJZ2bMyTMvr8o3T35PThi1W9lpAAAAAAAAAAAAAABAL2D4RM24+NSzdXR05N5Hn8iVc9fn5ZVtufa00Rm3785lZwEAAAAAAAAAAAAAAL2E4RM14+JTz9Z3hz1y/t1L09B3QG78+/fmkD23KzsJAAAAAAAAAAAAAADoRQyfqBkXn3qu/rvulx0/cXE2btyYX4wfl3eNGFp2EgAAAAAAAAAAAAAA0Ms0lB1A/XLxqWca+I5DstPffi1d61ZmwMPfMXoCAAAAAAAAAAAAAABK4eITNePiU88z+N3jsv1xZ2fD0oV55dZLsmzjurS3t6d///5lpwEAAAAAAAAAAAAAAL2Mi0/URLVadfGphxl66Mezw1+fm/W/fypLf3xhutatzMaNG/PUU0+VnQYAAAAAAAAAAAAAAPRChk/UxOrVq7Nx48ayM9hMw4/4dLYb99ms/c3DeeXWS1Ld0Lbptccff7zEMgAAAAAAAAAAAAAAoLdqLDuA+uTaUw9Racj2x3whQ0YeldXz7kjL3dOTaterHmlqaiopDgAAAAAAAAAAAAAA6M0Mn6iJ5ubmshN4A5XGftnho+dl0D7vS+vDN2XlrJv+7HOGTwAAAAAAAAAAAAAAQBkMn6gJF5+2zKBBg9LV1ZX169d3y/dV+g/OTidOTv/d9k/L3dOz+vFfvuaZoUOH5uCDD87YsWO7pQkAAAAAAAAAAAAAAOBPGT5RE4ZPW2bEiBFZsGBBZs+enXvuuSf33HNP5s6dm2q1Wvh39Rm8bXY6+dL03X63NP+fK7Pu2QczbNiwjBo1KqNHj970z957752GhobCvx8AAAAAAAAAAAAAAGBzGD5RE83NzWUn9CgLFy7M2rVrM27cuIwbNy6XX355Wlpa8qtf/WrTEOr555/f6u9pHD4iI075xzQO2TYfqDyb46b8Q0aPvi577bWXkRMAAAAAAAAAAAAAAPCWYvhETbj4tOXmzp2bo48+etPft9tuu5xwwgk54YQTkiQvvfRS7r333k1DqC39d3zSGefk+V2OSioNmfGZw3LQ2/6m0H4AAAAAAAAAAAAAAIAiOfFCTbj4tOXmzJnzF1/fY489cvrpp+emm27KkiVLMn/+/Fx11VUZOnToG352/7cdkF8PHpP+fRtzy+fG5KC3DS8qGwAAAAAAAAAAAAAAoCZcfKImXHzacm80fPpTDQ0NGTlyZEaOHJkjjjgiQ4cOzcsvv7zpItRjjz2Wzs7OJMnAfd6XHT96Xja2LskHhj6fvXc6sla/AgAAAAAAAAAAAAAAQGEMn6gJF5+23Ny5c9/U+0aPHp0keec735kjjjgil156aVauXJkHHngg37v/2czvt3/aX34ur9zy1Xy3T1cmfP7vs/POOxeZDgAAAAAAAAAAAAAAULiGsgOoTy4+bbnFixdn8eLFhXzWsGHD8odh+2d+/wPywXftnIcuPSkzrrk6J5xwQq677rpCvgMAAAAAAAAAAAAAAKCWXHyiJlx8enPmzJmTj33sY1v1GV1d1fzjHc/mew+/mI8dtEumfuI96dfYkL33PC2nnXZaQaUAAAAAAAAAAAAAAAC15eIThduwYUNWrlxZdkaPNGfOnK16/8bOrnz5lvn53sMv5n+M3TPfOvmg9Gv0nzkAAAAAAAAAAAAAANDz1PziU6VS+V2S1Uk6k3RUq9VDav2dlGv58uVlJ/RYWzN8WrehI5//0eP51b8vy8Sj35XPf2ivVCqVAusAAAAAAAAAAAAAAAC6T82HT//Ph6vVanM3fRclW7ZsWdkJPdbcuXNTrVa3eLDUum5DTr9+Tp74j9Z8/YQD88nDdq9RIQAAAAAAAAAAAAAAQPdoKDuA+tPcbOP2ZrW0tGThwoVb9J6XV7blpOmP5OlFq/KdT40yegIAAAAAAAAAAAAAAOpCdwyfqknuqlQqTZVK5Yxu+D5K5uLT1pkzZ85mP/vbZWvyie8+kpdXrs/1px+aYw74qxqWAQAAAAAAAAAAAAAAdJ/uGD4dXq1WRyU5NslZlUrlg3/6YqVSOaNSqcytVCpzDWbqg4tPW2dzh0/z/6M1J01/JO0dnfnxGe/L2L12qHEZAAAAAAAAAAAAAABA96n58KlarS7+f//7SpKfJzns//f6v1Sr1UOq1eohO+64Y61z6AYGbFtnc4ZPDz2/LJ+89tEM6tcnt3xubA7YdZtuKAMAAAAAAAAAAAAAAOg+NR0+VSqVwZVKZegf/5zkqCRP1/I7KZ+LT1vn8ccfT2dn5+u+/ssnF+f06+dk9+0G5Wf/MDZv32FwN9YBAAAAAAAAAAAAAAB0j1pffNo5ycOVSmV+kseS3F6tVmfW+DspmYtPW2ft2rV59tln/+xrNzz6UsbfPC8HvW1475d2swAAIABJREFUfnLmmOw8bEA31wEAAAAAAAAAAAAAAHSPxlp+eLVaXZjkPbX8Dt56XHzaenPmzMkBBxyw6e/VajXfvvf5/NM9z+fI/XbK1X83KgP69imxEAAAAAAAAAAAAAAAoLZqffGJXsjFp603Z86cTX/u7Kpmyv9ekH+65/l8YvRumX7qaKMnAAAAAAAAAAAAAACg7tX04hO9k4tPW2/u3LlJkvaOzpz70/m5/cmXc+YH35ELjt03lUql5DoAAAAAAAAAAAAAAIDaM3yiUNVq1fCpAPPnz0/L6nX54k+eysMvNGfSsfvmzCP2KjsLAAAAAAAAAAAAAACg2xg+UahVq1Zl48aNZWf0eB19BuTk7zyUF1d2ZuonRuakQ95WdhIAAAAAAAAAAAAAAEC3MnyiUMuWLSs7ocfrM2zH7Hzypfld64Zc898Py5H771x2EgAAAAAAAAAAAAAAQLdrKDuA+tLc3Fx2Qo/Wd4fdM+LUqekzeNuMbHnQ6AkAAAAAAAAAAAAAAOi1DJ8olItPb16/XfbNzn/3P5NUsuSmC/L87JllJwEAAAAAAAAAAAAAAJSmsewA6ouLT2/OgHeMzo4fn5TO1S155aeT07FyaZ5Z3pC1a9dm8ODBZecBAAAAAAAAAAAAAAB0OxefKJSLT1tu8P4fyk4nTM7G5X/Ikh9NTMfKpUmSrq6uPP744yXXAQAAAAAAAAAAAAAAlMPwiUIZPm2ZoYd8NDscPyHtf1iQpTdPSte6la96fc6cOSWVAQAAAAAAAAAAAAAAlKux7ADqS3Nzc9kJPcbwD56WbcacnLX/PivN/+fKpHPja54xfAIAAAAAAAAAAAAAAHorwycK5eLTZqg0ZLujz8rQ9xyd1U/8W1ru+m5S7XrNYyNGjMi2225bQiAAAAAAAAAAAAAAAED5DJ8oVL1dfNpuu+3y2c9+Ng8//HAee+yxdHR0bN0H9umbHY+fmEHvGpvW2T/OyoduTJIMHz48hxxySA499NBN/+y6666pVCoF/BYAAAAAAAAAAAAAAAA9j+EThaq3i08tLS0ZOHBgZs2aldWrV+fhhx/Offfdl/vuuy/z5s1LtVrd7M+q9BuUnU6cnAG7H5htfnt3/mb0Djn0cz/KoYcemr333tvICQAAAAAAAAAAAAAA4E8YPlGoerv4lCRTp07NGWeckV122SXHHntsjj322CTJ7Nmzc/jhh2/WZ7x9v/dkx5MuSfOGvpn6iQNzwuiP1DIZAAAAAAAAAAAAAACgx2soO4D60d7enlWrVpWdUbh169Zl8uTJr/n5e9/73gwZMuRVP9t1112zzz77ZIcddtj0s8Ztdk77B85Ka0fffO9/HJoTRu9e82YAAAAAAAAAAAAAAICezsUnCrN8+fKyE2pmxowZOfvsszNy5MhNP+vTp08mTJiQwYMH59BDD82oUaMydOjQTa+/9NJLufnfHsz3fzsw7R2dGT7vhznisuPKyAcAAAAAAAAAAAAAAOhxDJ8ozLJly8pOqJlqtZqJEyfmzjvvfNXPL7744td9z5LOIfnRyztl++0a88PTD0t15cFpa2vLoEGDap0LAAAAAAAAAAAAAADQ4zWUHUD9aG5uLjuhpu66667XDJ9e99kFS/Lfv/9YdhrWP7f+w9jss/PQvPOd7zR6AgAAAAAAAAAAAAAA2EyGTxSmni8+/dGECRPS2dn5F5/56Zz/yOdubMp+fzUst3xubHYdPrCb6gAAAAAAAAAAAAAAAOqH4ROFqfeLT0ny9NNPZ8aMGX/2tWq1mukP/Dbn/ezJHL73Drnps+/NdoP7dXMhAAAAAAAAAAAAAABAfTB8ojC94eJTkkyePDlr1qx51c+6uqq5/I5n841/+02Of88u+d6nD83g/o0lFQIAAAAAAAAAAAAAAPR8hk8UpjdcfEqSJUuW5Morr9z0942dXZlw6/xc+9CL+fSYPfLtvz0o/Rr9pwUAAAAAAAAAAAAAALA1rDMoTG+5+JQkU6dOzeLFi9O2oTOfu6Eptz2+KOf+t3fmko++Ow0NlbLzAAAAAAAAAAAAAAAAerzGsgOoH73l4lOSrFu3LhdMuTTrRp+Wpt+vyGUfPyCnvm+PsrMAAAAAAAAAAAAAAADqhuEThelNF5/6DNku91QPzKD/WJFpfzcqxx34V2UnAQAAAAAAAAAAAAAA1JWGsgOoH73l4lPjtrtkxKlT0zhsp4z499uMngAAAAAAAAAAAAAAAGrA8IlCVKvVXjF86rfzXhnxqStSaeyfpTdPyqzbvp+ZM2eWnQUAAAAAAAAAAAAAAFB3DJ8oxMqVK9PR0VF2Rk0N2H1kdv7k11PtaM+SH52XDUt/mySZMGFC3f/uAAAAAAAAAAAAAAAA3c3wiUIsW7as7ISaGvSuw7PTSV9Nx6pXsuTGielYsXjTawsWLMj1119fXhwAAAAAAAAAAAAAAEAdMnyiEM3NzWUn1MyQg47NDh87P+1LnsvSH52fzjUtr3lm8uTJWbNmTQl1AAAAAAAAAAAAAAAA9cnwiUL88eLTMcccU3JJsbYZe0q2P/qstP12bl75yZR0ta/9s88tWbIkU6dO7eY6AAAAAAAAAAAAAACA+mX4RCFWrVqVa665Jp/61KfKTilIJdseeWaGf+DUrHnq3iz7+T+m2tH+F98xderULFq0qJv6AAAAAAAAAAAAAAAA6pvhE4U45ZRTcsYZZ6S5ubnslK3X0Jgdjp+QYaOPz8rHbsvyO/4p6ep8w7e1tbVlypQp3RAIAAAAAAAAAAAAAABQ/wyfKERjY2OSZPny5SWXbJ1K3wHZ6RNTMnj/I7Li/hlpvf/7Saqb/f4ZM2bkySefrF0gAAAAAAAAAAAAAABAL2H4RKF68sWnhoHDsvMp/5gBe7wnzXd8O6se+9kWf0a1Ws2ECRNSrW7+WAoAAAAAAAAAAAAAAIDXMnyiUD314lOfoTtmxKf+Z/rt9PYs+/nlWfvU3W/6s+6+++7ceeedBdYBAAAAAAAAAAAAAAD0PoZPFKonDp8at98tI069In2GbJelP5mcthd+vdWfOWHChHR0dBRQBwAAAAAAAAAAAAAA0DsZPlGo5ubmshO2SL+/emdGfOqKVBoas+RHF6T9DwsK+dwFCxbk+uuvL+SzAAAAAAAAAAAAAAAAeiPDJwrVky4+DXj7qOx8yuXpWr8mS26ckI3LXiz08ydPnpw1a9YU+pkAAAAAAAAAAAAAAAC9heEThalWqz3m4tOg/T6YnU6cko4Vi7LkR+elY+XSwr9jyZIlmTp1auGfCwAAAAAAAAAAAAAA0BsYPlGYdevWpb29veyMNzR09PHZ8aPnpX3Rs1ly06R0rW39s881Njbm/e9/f/r37/+mv2vq1KlZtGjRm34/AAAAAAAAAAAAAABAb2X4RGF6wrWnbT5warY78syse+6RLP3plFQ3rHvdZzs6OjJmzJi0trbm/vvvz5QpU/KBD3wgffv23ezva2try5QpU4pIBwAAAAAAAAAAAAAA6FUMnyjM8uXLy074CyrZ7qizMnzsKVk9/84s+9evJ50b3/Bd3/72t7N48eJ86EMfyle/+tU8+OCDaW1tzd13352LLrooY8eOTWNj41/8jBkzZmT+/PlF/SIAAAAAAAAAAAAAAAC9guEThXkrD5/6jdg7Qw8+Nqvm/GtaZv5zUu3arPdt2LAh559//qt+NmjQoBx55JG57LLLMmvWrKxYsSIzZ87M+eefn/e+973p06fPq56vVquZMGFCqtVqYb8PAAAAAAAAAAAAAABAvTN8ojDNzc1lJ7yuSmO/JEnbC49t8XtvvfXWPPTQQ6/7+pAhQ3L00UfnG9/4Rh599NG0tLTk9ttvz4QJEzJ69Og0NDTknnvuyZ133vmm+wEAAAAAAAAAAAAAAHqbxrIDqB9v5YtPW+ucc87JY489loaGN94KDhs2LMcdd1yOO+64JElra2seeuihLFq0qNaZAAAAAAAAAAAAAAAAdcPwicK8lS8+ba2mpqbceOONOe2007b4vcOHD8/xxx9fgyoAAAAAAAAAAAAAAID69cbna2Az1fPFpyS58MILs3bt2rIzAAAAAAAAAAAAAAAAegXDJwpTzxefkmTRokW58sory84AAAAAAAAAAAAAAADoFQyfKEy9X3xKkiuuuCKLFi0qOwMAAAAAAAAAAAAAAKDuGT5RmN4wfFq3bl0uuuiisjMAAAAAAAAAAAAAAADqnuEThWlubi47oVv84Ac/SFNTU9kZAAAAAAAAAAAAAAAAdc3wicL0hotPf3TOOeekWq2WnQEAAAAAAAAAAAAAAFC3DJ8oxPr167N27dqyM7rNQw89lNtuu63sDAAAAAAAAAAAAAAAgLpl+EQhetO1pz8677zz0t7eXnYGAAAAAAAAAAAAAABAXTJ8ohDNzc1lJ3S7hQsX5p//+Z/LzgAAAAAAAAAAAAAAAKhLhk8UojdefEqSr33ta1m2bFnZGQAAAAAAAAAAAAAAAHXH8IlC9MaLT0myatWqXHLJJWVnAAAAAAAAAAAAAAAA1B3DJwrRWy8+Jck111yTZ555puwMAAAAAAAAAAAAAACAumL4RCH+OHzq379/ySXdr7OzM1/+8pfLzgAAAAAAAAAAAAAAAKgrhk8Uorm5OQcddFCOOOKIslNKMXPmzMycObPsDAAAAAAAAAAAAAAAgLph+EQhPvjBD2bWrFlZv3592Sml+fKXv5yOjo6yMwAAAAAAAAAAAAAAAOqC4ROFOOGEEzJo0KCsWLGi7JTSPPPMM7n22mvLzgAAAAAAAAAAAAAAAKgLhk8UqqWlpeyEUk2ZMiWtra1lZwAAAAAAAAAAAAAAAPR4hk8UqrcPn5qbm3P55ZeXnQEAAAAAAAAAAAAAANDjGT5RmPXr16etra3sjNJ9+9vfzsKFC8vOAAAAAAAAAAAAAAAA6NEMnyjMihUryk54S9iwYUPOO++8sjMAAAAAAAAAAAAAAAB6NMMnCmP49F9+9rOf5cEHHyw7AwAAAAAAAAAAAAAAoMcyfKIwLS0tZSe8pZx77rnp6uoqOwMAAAAAAAAAAAAAAKBHMnyiMC4+vVpTU1NuvPHGsjMAAAAAAAAAAAAAAAB6JMMnClNvF5/22GOPfOELX8iBBx74pj9j0qRJWbt2bYFVAAAAAAAAAAAAAAAAvYPhE4Wpt4tPra2tmTJlSp588sk0Nzfn5z//eb70pS9l1KhRaWjYvP90Fi9enCuvvLLGpQAAAAAAAAAAAAAAAPXH8InC1NvFp5UrV2by5MlJku233z4f//jH861vfStNTU1paWnJL3/5y0ycODGHHXZY+vTp87qfc8UVV2TRokXdlQ0AAAAAAAAAAAAAAFAXDJ8oTL1dfEqSf/mXf8kTTzzxmp9vs802+chHPpIrrrgiv/71r7NixYrceeedufDCC3P44Yenb9++m55dt25dLrzwwu7MBgAAAAAAAAAAAAAA6PEayw6gftTbxackqVar+dKXvpT7778/lUrldZ8bOnRojjrqqBx11FFJ/nPs9Oijj+aBBx7Igw8+mFtuuSXjx4/PIYcc0l3pAAAAAAAAAAAAAAAAPZrhE4Wpx+FTkjzwwAO57bbbcuKJJ272ewYNGpRx48Zl3LhxSZL29vYsX768VokAAAAAAAAAAAAAAAB1p6HsAOrHihUryk6omQkTJqStre1Nv79///7ZZZddCiwCAAAAAAAAAAAAAACob4ZPFKZeLz4lye9+97t885vfLDsDAAAAAAAAAAAAAACg1zB8ojD1fPEpSS6//PIsWrSo7AwAAAAAAAAAAAAAAIBewfCJQlSr1bofPq1bty6TJk0qOwMAAAAAAAAAAAAAAKBXMHyiEKtXr05nZ2fZGTV3ww035NFHHy07AwAAAAAAAAAAAAAAoO4ZPlGIlpaWshO6zdlnn52urq6yMwAAAAAAAAAAAAAAAOqa4ROFWLFiRdkJ3eaxxx7LjTfeWHYGAAAAAAAAAAAAAABAXTN8ohC96eJTklxwwQVZs2ZN2RkAAAAAAAAAAAAAAAB1y/CJQvSmi09J8vLLL+frX/962RkAAAAAAAAAAAAAAAB1y/CJQvS2i09JctVVV2XhwoVlZwAAAAAAAAAAAAAAANQlwycK0dsuPiVJe3t7Jk6cWHYGAAAAAAAAAAAAAABAXTJ8ohC98eJTktx22225//77y84AAAAAAAAAAAAAAACoO4ZPFKK3Dp+S5Etf+lI6OjrKzgAAAAAAAAAAAAAAAKgrhk8UYsWKFWUnlObJJ5/MddddV3YGAAAAAAAAAAAAAABAXTF8ohAtLS054IADys4ozVe+8pVePf4CAAAAAAAAAAAAAAAomuEThTjmmGMyffr0sjNKs3z58lx66aVlZwAAAAAAAAAAAAAAANQNwycKcd5556W9vb3sjFJdffXVefbZZ8vOAAAAAAAAAAAAAAAAqAuGTxRm5cqVZSeUqqOjI+eee27ZGQAAAAAAAAAAAAAAAHXB8InC9PbhU5LMnDkzd9xxR9kZAAAAAAAAAAAAAAAAPZ7hE4VpbW0tO+Et4ZxzzsmGDRvKzgAAAAAAAAAAAAAAAOjRDJ8ojItP/+m5557L1VdfXXYGAAAAAAAAAAAAAABAj2b4RGEMn/7LV7/61bzyyitlZwAAAAAAAAAAAAAAAPRYhk8UxvDpv6xatSqTJ08uOwMAAAAAAAAAAAAAAKDHMnyiMK2trWUnvKVce+21eeKJJ8rOAAAAAAAAAAAAAAAA6JEMnyhMvV18+shHPpIrrrgixx9/fLbbbrstfn+1Ws3ZZ5+darVagzoAAAAAAAAAAAAAAID6ZvhEYept+PT2t789EydOzC9+8YssW7YsCxYsyPTp03Pqqadmjz322KzPePDBB3PrrbfWuBQAAAAAAAAAAAAAAKD+GD5RmHobPn3ve9/L73//+yRJQ0ND9t9//5x55pm54YYb8rvf/S6///3vc/PNN+fzn/98Ro4cmUql8mc/Z+LEiWlra+vOdAAAAAAAAAAAAAAAgB7P8InCtLa2lp1QqLa2tkyYMOF1X3/b296WU045JdOmTcv8+fPT0tKS22+/PZMmTcr73//+9OvXL0ny0ksv5aqrruqubAAAAAAAAAAAAAAAgLrQWHYA9aPeLj4lyS233JL77rsv48aNe8Nnhw8fnuOOOy7HHXdckmT9+vVpamrKQw89lHnz5qW1tTXDhw+vdTIAAAAAAAAAAAAAAEBdMHyiEOvXr8+GDRvKzqiJL37xi5k3b1769u27Re8bMGBADj/88Bx++OE1KgMAAAAAAAAAAAAAAKhfDWUHUB/q8drTHy1YsCDTpk0rOwMAAAAAAAAAAAAAAKBXMXyiEK2trWUn1NTFF1+cpUuXlp0BAAAAAAAAAAAAAADQaxg+UYh6vviUJKtWrcqkSZPKzgAAAAAAAAAAAAAAAOg1DJ8oRL0Pn5JkxowZ+fWvf112BgAAAAAAAAAAAAAAQK9g+EQhesPwKUnGjx+frq6usjMAAAAAAAAAAAAAAADqnuEThWhtbS07oVvMmTMnM2bMKDsDAAAAAAAAAAAAAACg7hk+UYjecvEpSSZNmtRrhl4AAAAAAAAAAAAAAABlMXyiEL1p+LRs2bJcfPHFZWcAAAAAAAAAAAAAAADUNcMnCtGbhk9JMm3atDz99NNlZwAAAAAAAAAAAAAAANQtwycK0draWnZCt+rs7Mz48eNTrVbLTgEAAAAAAAAAAAAAAKhLhk8UorddfEqSX/3qV/npT39adgYAAAAAAAAAAAAAAEBdMnyiEL1x+JQkEyZMyNq1a8vOAAAAAAAAAAAAAAAAqDuGTxSitw6f/vCHP+Tyyy8vOwMAAAAAAAAAAAAAAKDuGD5RiNbW1rITSnPllVfmhRdeKDsDAAAAAAAAAAAAAACgrhg+UYiVK1dm4MCBZWeUYsOGDTnnnHPKzgAAAAAAAAAAAAAAAKgrhk9stWq1mlGjRmXkyJFlp5Tml7/8Ze64446yMwAAAAAAAAAAAAAAAOqG4ROFuP3227N+/fqyM0p19tlnp729vewMAAAAAAAAAAAAAACAumD4xFarVCrp169fVq9eXXZKqV544YV861vfKjsDAAAAAAAAAAAAAACgLhg+UZi1a9eWnVC6yy67LIsWLSo7AwAAAAAAAAAAAAAAoMczfKIw69atKzuhdGvXrs3EiRPLzgAAAAAAAAAAAAAAAOjxDJ8oTFtbW9kJbwk333xzHnjggbIzAAAAAAAAAAAAAAAAejTDJwqxcePGdHR0lJ3xljF+/Hj/PgAAAAAAAAAAAAAAALaC4ROFWLNmTdkJbylPPfVUpk+fXnYGAAAAAAAAAAAAAABAj2X4RCFWr15ddkLhGhsbt+r9kydPzrJlywqqAQAAAAAAAAAAAAAA6F0MnyhEPQ6fxo8fn9mzZ+eqq67KiSeemBEjRmzR+1tbW3PRRRfVqA4AAAAAAAAAAAAAAKC+GT5RiHobPvXr1y9jxozJmDFjcu655+bWW2/N4sWL8+KLL+amm27KF77whYwaNSp9+vT5i59z3XXXZe7cud1UDQAAAAAAAAAAAAAAUD8ayw6gPqxZs6bshEJt2LAhM2fOzEknnbTpZ5VKJXvuuWf23HPPfPKTn0zyn7/3nDlz8sgjj2T27Nl55JFH0tLSsuk91Wo148ePz6xZs9LQYGcIAAAAAAAAAAAAAACwuQyfKES9XXxKku9///v57Gc/mzFjxrzuM0OGDMmHP/zhfPjDH06SdHV15bnnnts0hJo9e3YeffTR3HDDDfn0pz/dXekAAAAAAAAAAAAAAAA9nuEThajH4VOSnHXWWZkzZ0769OmzWc83NDRk3333zb777pvPfOYzSZIVK1Zk4cKFtcwEAAAAAAAAAAAAAACoOw1lB1Af6nX4NG/evFxzzTVb9RnbbrttRo8eXVARAAAAAAAAAAAAAABA72D4RCHWrFlTdkLNXHTRRXnllVfKzgAAAAAAAAAAAAAAAOhVDJ8oRL1efEqS1tbWXHDBBWVnAAAAAAAAAAAAAAAA9CqGTxSinodPSTJjxozMnj277AwAAAAAAAAAAAAAAIBew/CJQtT78ClJzjrrrHR0dJSdAQAAAAAAAAAAAAAA0CsYPlGINWvWlJ1Qc0888USmT59edgYAAAAAAAAAAAAAAECvYPhEIXrDxack+cpXvpKlS5eWnQEAAAAAAAAAAAAAAFD3DJ8oxJIlS8pO6BYrV67M+eefX3YGAAAAAAAAAAAAAABA3TN8ohCtra1lJ3SbH/zgB3n44YfLzgAAAAAAAAAAAAAAAKhrhk8Uoq2treyEbnXWWWelo6Oj7AwAAAAAAAAAAAAAAIC6ZfhEIdatW1d2Qrd68skn853vfKfsDAAAAAAAAPi/7N15jJX1+ffxawA5SusvQU1bbVNrtaat0YjUULekNpI0MUZitDUmqEVWZbEIiBoVg8VSRVrFmuC+tJZGWxfUUsWlRYsLIA6LVEQYFlFElhmWWe/nDwOGB209Z5Yvc9+vV3JiOHPuk/cQ/POTCwAAAAAAcsvwiTaxc+fO1Akd7tprr43169enzgAAAAAAAAAAAAAAAMglwydarampKRobG1NndLitW7fGuHHjUmcAAAAAAAAAAAAAAADkkuETrVZXV5c6IZmHHnoo/vnPf6bOAAAAAAAAAAAAAAAAyB3DJ1qttrY2dUJSl112WSEvXgEAAAAAAAAAAAAAALQnwydarejDp0WLFsUdd9yROgMAAAAAAAAAAAAAACBXDJ9otbq6uvj2t7+dOiOp6667Lj744IPUGQAAAAAAAAAAAAAAALlh+ESrHXnkkdGvX7/UGUnV1tbG2LFjU2cAAAAAAAAAAAAAAADkhuETrXbwwQdHfX196ozk/vjHP8bLL7+cOgMAAAAAAAAAAAAAACAXDJ9oEzt37kydsE+47LLLorGxMXUGAAAAAAAAAAAAAABAp2f4RJswfPrU4sWL4/bbb0+dAQAAAAAAAAAAAAAA0OkZPtEm6uvrUyfsM66//vpYt25d6gwAAAAAAAAAAAAAAIBOzfCJNuHi02fq6upizJgxqTMAAAAAAAAAAAAAAAA6NcMn2oTh054eeeSRePHFF1NnAAAAAAAAAAAAAAAAdFqGT7SJPA6fjjzyyOjSpfL/RYYPHx6NjY1tWAQAAAAAAAAAAAAAAFAchk+0iR07dqROaHODBg2KzZs3xwsvvBA33XRTnH322fH1r3/9Sz+/ZMmSuO2229qxEAAAAAAAAAAAAAAAIL+6pQ4gH/J28emoo46K73znO3HggQfG6aefHqeffnpERGRZFjU1NTF37tx47bXXYu7cuTF//vyor6//3O+ZMGFCnH/++fHNb36zI/MBAAAAAAAAAAAAAAA6PcMn2sQXDX86q7Vr10afPn32er+qqioOP/zwOPzww+MXv/hFREQ0NDTEwoULdw+h5s6dG++9915ERNTV1cWYMWPikUce6dB+AAAAAAAAAAAAAACAzq5L6gDyIW/Dpx07dsSIESMiy7L/+dnu3bvHiSeeGMOHD4+HH344li9fHhs2bIiZM2fGtddeGxs3bow333yzA6oBAAAAAAAAAAAAAADyw8Un2kRjY2PqhDY3c+bMeOKJJ6Jfv35lP3vIIYfEmWeeGWeeeWY7lAEAAAAAAAAAAAAAAOSfi0+0iTwOnyIiRo4cGXV1dakzAAAAAAAAAAAAAAAACsfwiTbR1NSUOqFdrF69Om644YbUGQAAAAAAAAAAAAAAAIVj+ESbaG5uTp3QbqZOnRrV1dWpMwAAAAAAAAAAAAAAAArF8Ik2kefhU3NzcwwbNixaWlpSpwAAAAAAAAAAAAAAABSG4RNtIs/Dp4iIV155Je67777UGQAAAAAAAAAAAAAAAIVh+ESbKMI1pHHjxsXHH3+cOgMAAAAAAAAAAAAAAKAQDJ9otSKQJLQTAAAgAElEQVSMniIiPvnkk7jyyitTZwAAAAAAAAAAAAAAABSC4ROttmDBgtQJHebee++NOXPmpM4AAAAAAAAAAAAAAADIPcMnWu3qq69OndChhg0bFo2NjakzAAAAAAAAAAAAAAAAcs3wiVbbsGFD6oQOtWjRovjd736XOgMAAAAAAAAAAAAAACDXDJ9otebm5tQJHW7ChAmxatWq1BkAAAAAAAAAAAAAAAC5ZfhEqxVx+LR9+/YYNWpU6gwAAAAAAAAAAAAAAIDcMnyi1ZqamlInJPHEE0/Ek08+mToDAAAAAAAAAAAAAAAglwyfaLUiXnzaZcSIEbFt27bUGQAAAAAAAAAAAAAAALlj+ESrFXn4VFNTExMnTkydAQAAAAAAAAAAAAAAkDuGT7RakYdPERFTpkyJxYsXp84AAAAAAAAAAAAAAADIFcMnWq2lpSV1QlJNTU0xbNiwyLIsdQoAAAAAAAAAAAAAAEBuGD7Ral/5yldSJyT3r3/9Kx544IHUGQAAAAAAAAAAAAAAALlh+ESrde/ePXXCPmHMmDGxcePG1BkAAAAAAAAAAAAAAAC5YPhEq2VZljphn7Bx48YYP3586gwAAAAAAAAAAAAAAIBcMHyi1QyfPnP33XfHq6++mjoDAAAAAAAAAAAAAACg0zN8otUMn/Y0dOjQaGxsTJ0BAAAAAAAAAAAAAADQqRk+0WotLS2pE/Yp1dXVcdttt6XOAAAAAAAAAAAAAAAA6NQMn2g1F5/2dv3118fq1atTZwAAAAAAAAAAAAAAAHRahk+0Wl6HT+edd14cd9xx0bVr17Kf3bZtW4waNaodqgAAAAAAAAAAAAAAAIrB8IlWy+vwqW/fvrFw4cLYunVrzJkzJ6ZOnRoXXHBBfO973/tSz//tb3+Lp59+up0rAQAAAAAAAAAAAAAA8qlb6gA6v5aWltQJbe6www6LpqamiIjo0aNHnHLKKXHKKafs/vmmTZti3rx58cYbb+x+rVmzZq/vGT58eJx++unRo0ePDmsHAAAAAAAAAAAAAADIA8MnWq25uTl1Qps799xzY9iwYV/48549e8YZZ5wRZ5xxxu731q9fv8cQ6o033oiVK1fGjTfeGJMmTeqIbAAAAAAAAAAAAAAAgNwwfKLV8njxadq0adG/f//40Y9+9KWf+cY3vhFnnXVWnHXWWRERkWVZrFy5MhYuXBjNzc3RtWvX9soFAAAAAAAAAAAAAADInS6pA+j88jh8amlpicGDB0dTU1PF31FVVRVHHHFE9OvXz+gJAAAAAAAAAAAAAACgTIZPtFpzc3PqhHaxYMGCuO2221JnAAAAAAAAAAAAAAAAFJLhE62Wx4tPu1x77bWxatWq1BkAAAAAAAAAAAAAAACFY/hEq+V5+LR9+/YYPnx4ZFmWOgUAAAAAAAAAAAAAAKBQDJ9otTwPnyIiZs6cGY899ljqDAAAAAAAAAAAAAAAgEIxfKLV8j58iogYOXJkbNmyJXUGAAAAAAAAAAAAAABAYRg+0WpFGD598MEHcfXVV6fOAAAAAAAAAAAAAAAAKAzDJ1qtCMOniIg777wz5s6dmzoDAAAAAAAAAAAAAACgEAyfqNhHH30UO3fujCzLUqd0iCzLYvDgwdHY2Jg6BQAAAAAAAAAAAAAAIPcMn6jY2rVr44YbbijMxaeIiOrq6pg6dWrqDAAAAAAAAAAAAAAAgNwzfKJiVVVV8dvf/jaamppSp3SoCRMmxPvvv586AwAAAAAAAAAAAAAAINcMn6hYVVVVtLS0RGNjY+qUDrVjx44YNmxYZFmWOgUAAAAAAAAAAAAAACC3DJ+oWFVVVUREIQdAs2bNihkzZqTOAAAAAAAAAAAAAAAAyC3DJyq2a/hUVKNGjYpNmzalzgAAAAAAAAAAAAAAAMglwycqVvTh00cffRTjx49PnQEAAAAAAAAAAAAAAJBLhk9UrOjDp4iI6dOnx5w5c1JnAAAAAAAAAAAAAAAA5I7hExUzfPrUkCFDoqGhIXUGAAAAAAAAAAAAAABArhg+UTHDp08tWbIkbr755tQZAAAAAAAAAAAAAAAAuWL4RMUMnz4zceLEePfdd1NnAAAAAAAAAAAAAAAA5IbhExUzfPpMfX19DBs2LLIsS50CAAAAAAAAAAAAAACQC4ZPVMzwaU+zZ8+Ohx9+OHUGAAAAAAAAAAAAAABALhg+UTHDp72NHj06Nm7cmDoDAAAAAAAAAAAAAACg0zN8omJduvjn8//7+OOPY+zYsakzAAAAAAAAAAAAAAAAOj3LFSrm4tPnu+++++Kll15KnQEAAAAAAAAAAAAAANCpGT5RMcOnLzZ06NCor69PnQEAAAAAAAAAAAAAANBpGT5RsTwPn6qqqmLy5Mlx8cUXx7HHHhtdu3Yt6/lly5bFTTfd1E51AAAAAAAAAAAAAAAA+dctdQCdV56HT1mWxdFHHx3jxo2LiIgdO3bE22+/HfPnz4958+bF/Pnzo7q6Opqamr7wO2666aY4//zz4/vf/35HZQMAAAAAAAAAAAAAAOSG4RMVy/PwqVu3bvHee+/t/vMBBxwQffr0iT59+ux+r76+PhYtWhTz5s3bPYZ6++23o6GhISIiGhoaYujQofHiiy/m+u8KAAAAAAAAAAAAAACgPRg+UbG8jnkOOOCAePPNN+OHP/zhf/1cqVSK3r17R+/evXe/19DQEEuWLNk9hJo3b17MmDEjzj///PbOBgAAAAAAAAAAAAAAyBXDJyqW1+HTjh07YuzYsTFz5syyf8fu3bvH8ccfH8cff3xccsklERGRZVl7ZAIAAAAAAAAAAAAAAORal9QBdF55HT5FRDzzzDMxY8aMNvmuPP89AQAAAAAAAAAAAAAAtBfDJyqW90HPyJEjY+PGjakzAAAAAAAAAAAAAAAACsnwiYrlffi0YcOGGDNmTOoMAAAAAAAAAAAAAACAQjJ8omJ5Hz5FRNx///3x/PPPp84AAAAAAAAAAAAAAAAoHMMnKlaE4VNExJAhQ2L79u2pMwAAAAAAAAAAAAAAAArF8ImKFWX4tGLFipgwYULqDAAAAAAAAAAAAAAAgEIxfKJiRRk+RURMmTIl5s+fnzoDAAAAAAAAAAAAAACgMAyfqFiRhk8tLS0xcODAaGpqSp0CAAAAAAAAAAAAAABQCIZPVGTr1q2FGj5FRCxYsCCmTp2aOgMAAAAAAAAAAAAAAKAQDJ+oyA033BB1dXWpMzrcddddF++9917qDAAAAAAAAAAAAAAAgNwzfKIiNTU1MWHChNQZHW7nzp0xZMiQyLIsdQoAAAAAAAAAAAAAAECuGT5Rka5du8b999+fOiOJ2bNnxwMPPJA6AwAAAAAAAAAAAAAAINcMn6hIt27dUickNXr06Pjwww9TZwAAAAAAAAAAAAAAAOSW4RMV6dq1a+qEpDZt2hSXX3556gwAAAAAAAAAAAAAAIDcMnyiIkUfPkVE/PnPf46ZM2emzgAAAAAAAAAAAAAAAMglwycq0q1bt9QJ+4Rhw4ZFbW1t6gwAAAAAAAAAAAAAAIDcMXyiIi4+fWrNmjVxzTXXpM4AAAAAAAAAAAAAAADIHcMnKuLi02emTZsW//73v1NnAAAAAAAAAAAAAAAA5IrhExVx8ekzWZbFoEGDoqGhIXUKAAAAAAAAAAAAAABAbhg+UREXn/a0ePHimDx5cuoMAAAAAAAAAAAAAACA3DB8oiIuPu3txhtvjKVLl6bOAAAAAAAAAAAAAAAAyAXDJyri4tPeGhoaYtCgQdHS0pI6BQAAAAAAAAAAAAAAoNMzfKIiLj59vldeeSWmT5+eOgMAAAAAAAAAAAAAAKDTM3yiIoZPX2zcuHGxdu3a1BkAAAAAAAAAAAAAAACdmuETFenWrVvqhH1WbW1tXHbZZZFlWeoUAAAAAAAAAAAAAACATsvwiYrk/eLTgQceGM8991zceuut0b9//zj22GPL+p2feOKJ+Otf/9qOhQAAAAAAAAAAAAAAAPnmbA8VyfvFp9ra2jjggAPiV7/61e73du7cGUuWLIkFCxbEW2+9tftVV1f3ud8xfPjw+OlPfxo9e/bsqGwAAAAAAAAAAAAAAIDcyPd6hXaT94tPEREvv/xynHLKKbv/vP/++8cJJ5wQJ5xwwu73WlpaYsWKFXsMoRYsWBDr1q2L9evXx5VXXhnTp09PkQ8AAAAAAAAAAAAAANCpGT5RkTxffDrttNNi2rRpceyxx/7Pz3bp0iWOOuqoOOqoo+Lcc8/d/f5HH30UCxcujIULF8Ynn3wSBx10UHsmAwAAAAAAAAAAAAAA5E5+1yu0qzxffJozZ05s3749qqqqKv6Or33ta9G3b9/o27dvG5YBAAAAAAAAAAAAAAAUR5fUAXROeR4+ZVkWAwYMiPr6+tQpAAAAAAAAAAAAAAAAhWX4REW6dcv3sbClS5fGjTfemDoDAAAAAAAAAAAAAACgsAyfqEieLz7t8pvf/CYWLlyYOgMAAAAAAAAAAAAAAKCQDJ+oSN4vPkVENDU1xYABA6KpqSl1CgAAAAAAAAAAAAAAQOEYPlGRIlx8ioiYP39+3HLLLakzAAAAAAAAAAAAAAAACsfwiYoU4eLTLhMmTIhly5alzgAAAAAAAAAAAAAAACgUwycqUpSLTxER9fX1cckll0RLS0vqFAAAAAAAAAAAAAAAgMIwfKIiRRo+RUS88sorcccdd6TOAAAAAAAAAAAAAAAAKAzDJ8rW1NQU3bp1S53R4a666qpYuXJl6gwAAAAAAAAAAAAAAIBCMHyibDfffHPhLj5FRGzbti0GDRoUWZalTgEAAAAAAAAAAAAAAMg9wyfKNnny5Fi+fHnqjCSef/75uO+++1JnAAAAAAAAAAAAAAAA5J7hE2WrqqqKyZMnp85IZvTo0bFu3brUGQAAAAAAAAAAAAAAALlm+ETZunfvHmvWrEmdkcyWLVvi0ksvjSzLUqcAAAAAAAAAAAAAAADkluETZdtvv/1SJyT3xBNPxF/+8pfUGQAAAAAAAAAAAAAAALll+ETZunfvnjphnzBixIj4+OOPU2cAAAAAAAAAAAAAAADkkuETZXPx6VMbNmyIUaNGpc4AAAAAAAAAAAAAAADIJcMnyubi02f+9Kc/xVNPPZU6AwAAAAAAAAAAAAAAIHcMnyibi097Gjp0aGzevDl1BgAAAAAAAAAAAAAAQK4YPlE2F5/2tG7duhg7dmzqDAAAAAAAAAAAAAAAgFwxfKJsLj7t7e67747Zs2enzgAAAAAAAAAAAAAAAMgNwyfK5uLT5xs0aFBs27YtdQYAAAAAAAAAAAAAAEAuGD5RNhefPt/7778f11xzTeoMAAAAAAAAAAAAAACAXDB8omwuPn2x2267LV599dXUGQAAAAAAAAAAAAAAAJ2e4RNlc/Hpi2VZFpdcckns3LkzdQoAAAAAAAAAAAAAAECnZvhE2Ypw8emQQw6p+Pd85513YuLEiW1cBAAAAAAAAAAAAAAAUCzdUgfQ+RTh4tP//d//xdq1a+Pdd9+N6urqePvtt3e/Vq9e/T+fnzx5cpx77rnRq1evDqgFAAAAAAAAAAAAAADIH8MnylaEi08rVqyIlStXxjHHHBPHHHNMnH/++bt/tmnTpli0aNEeY6jq6urYtm3b7s80NzfHgAED4vXXXy/EUAwAAAAAAAAAAAAAAKCtGT5RtqIMeZ599tk4+uij93q/Z8+ecdppp8Vpp522+72WlpZYuXLlXmOoW2+9Na688sqOzAYAAAAAAAAAAAAAAMgFwyfKlueLT1VVVXHOOefEz3/+8+jbt++Xfq5Lly7x3e9+N7773e9Gv379dr/f0NDQHpkAAAAAAAAAAAAAAAC5Z/hE2fJ88SnLsti0aVOcd955UVVV1ervy/NIDAAAAAAAAAAAAAAAoD11SR1A55P3Mc8LL7wQ06dPT50BAAAAAAAAAAAAAABQaIZPlC3PF592GTNmTKxatSp1BgAAAAAAAAAAAAAAQGEZPlG2vF98ioioq6uLgQMHRpZlqVMAAAAAAAAAAAAAAAAKyfCJshXh4lNExPPPPx933XVX6gwAAAAAAAAAAAAAAIBCMnyibEW4+LTLFVdcEatWrUqdAQAAAAAAAAAAAAAAUDiGT5StKBefIiLq6upi0KBBkWVZ6hQAAAAAAAAAAAAAAIBCMXyibEW6+BQR8dxzz8Xdd9+dOgMAAAAAAAAAAAAAAKBQDJ8oW5EuPu1yxRVXRE1NTeoMAAAAAAAAAAAAAACAwjB8oixZlhXu4lNERG1tbQwaNCiyLEudAgAAAAAAAAAAAAAAUAiGT5Tl0UcfjS5divnP5h//+Efcc889qTMAAAAAAAAAAAAAAAAKoZgLFiq2YMGCePLJJ1NnJDN69OioqalJnQEAAAAAAAAAAAAAAJB7hk+UpXv37jFjxozUGcnU1tbG4MGDI8uy1CkAAAAAAAAAAAAAAAC5ZvhEWUqlUrS0tKTOSGrWrFlx7733ps4AAAAAAAAAAAAAAADINcMnytK9e/fUCfuE0aNHx+rVq1NnAAAAAAAAAAAAAAAA5JbhE2UplUqpE/YJW7dujcGDB0eWZalTAAAAAAAAAAAAAAAAcsnwibK4+PSZv//973H//fenzgAAAAAAAAAAAAAAAMglwyfKYvi0p8svvzzWrFmTOgMAAAAAAAAAAAAAACB3DJ8oS6lUSp2wT9m6dWsMHjw4sixLnQIAAAAAAAAAAAAAAJArhk+UxcWnvT377LPxwAMPpM4AAAAAAAAAAAAAAADIFcMnymL49Pkuv/zyWLt2beoMAAAAAAAAAAAAAACA3DB8oiylUil1wj5py5YtMXjw4MiyLHUKAAAAAAAAAAAAAABALhg+URYXn77YM888Ew8++GDqDAAAAAAAAAAAAAAAgFwwfKIsLj79d6NGjYq1a9emzgAAAAAAAAAAAAAAAOj0DJ8oi4tP/92WLVtiyJAhkWVZ6hQAAAAAAAAAAAAAAIBOzfCJshRl+PSTn/wkzj777DjyyCOjqqqqrGeffvrpeOihh9qpDAAAAAAAAAAAAAAAoBi6pQ6gcymVSqkTOkRTU1M8/vjjERGxffv2WLp0aSxevDgWLVq0+781NTVf+PyoUaPijDPOiMMOO6yjkgEAAAAAAAAAAAAAAHLF8ImyFOXi06uvvhobN26Mgw8+OHr06BG9e/eO3r177/GZ2traWLJkyR5jqMWLF8e6deti8+bNMWTIkHjyySfLvhgFAAAAAAAAAAAAAACA4RNlKsrFp5aWlpg1a1ZccMEFX/iZAw88MPr06RN9+vTZ4/1NmzbtHkKtXbs2vvWtb7V3LgAAAAAAAAAAAAAAQO4YPlGWIlx8Oumkk+LMM8/ca9D0ZfXs2TNOPfXUOPXUU9u4DAAAAAAAAAAAAAAAoDgMnyhL3odPVVVVcfPNN8cpp5ySOgUAAAAAAAAAAAAAAKDQuqQOoHMplUqpE9pVlmVx8cUXx7Zt21KnAAAAAAAAAAAAAAAAFJrhE2XZb7/9Uie0u+XLl8f48eNTZwAAAAAAAAAAAAAAABSa4RNlqaqqiu7du6fOaHfTpk2L2bNnp84AAAAAAAAAAAAAAAAoLMMnylaE4VNExIABA2Lr1q2pMwAAAAAAAAAAAAAAAArJ8ImyFWX4VFNTE6NHj06dAQAAAAAAAAAAAAAAUEiGT5StVCqlTugw99xzTzz99NOpMwAAAAAAAAAAAAAAAArH8ImyFeXi0y4DBw6MjRs3ps4AAAAAAAAAAAAAAAAoFMMnyla04dP69etjxIgRqTMAAAAAAAAAAAAAAAAKxfCJspVKpdQJHe6RRx6JRx99NHUGAAAAAAAAAAAAAABAYRg+UbaiXXzaZdiwYfHhhx+mzgAAAAAAAAAAAAAAACgEwyfKVsSLTxERH3/8cQwdOjSyLEudAgAAAAAAAAAAAAAAkHuGT5StqBefIiIef/zxePjhh1NnAAAAAAAAAAAAAAAA5J7hE2Ur8vApImLEiBGxZs2a1BkAAAAAAAAAAAAAAAC5ZvhE2UqlUuqEpLZs2RIDBw6MLMtSpwAAAAAAAAAAAAAAAOSW4RNlK/rFp4iIWbNmxV133ZU6AwAAAAAAAAAAAAAAILcMnyhb0S8+7TJ69OhYsWJF6gwAAAAAAAAAAAAAAIBcMnyibC4+fWrbtm0xYMCAaGlpSZ0CAAAAAAAAAAAAAACQO4ZPlM3w6TMvv/xy3H777akzAAAAAAAAAAAAAAAAcsfwibKVSqXUCfuU8ePHx7Jly1JnAAAAAAAAAAAAAAAA5IrhE2Vz8WlPO3fujIsuuiiamppSpwAAAAAAAAAAAAAAAOSG4RNlM3za22uvvRY333xz6gwAAAAAAAAAAAAAAIDcMHyibKVSKXXCPun666+P6urq1BkAAAAAAAAAAAAAAAC5YPhE2Vx8+nyNjY1x4YUXRkNDQ+oUAAAAAAAAAAAAAACATs/wibK5+PTF3nrrrbjxxhtTZwAAAAAAAAAAAAAAAHR63VIH0PkU4eLT+PHj47DDDoulS5fufn344Ydf6tlJkybFWWedFSeeeGI7VwIAAAAAAAAAAAAAAOSX4RNlK8LwacWKFXHTTTft8d6mTZv2GELteq1cuTKyLNv9uebm5rjoooti/vz5sf/++3d0OgAAAAAAAAAAAAAAQC4YPlG2UqmUOqHdPfvss9HQ0LDHyKtnz55x8sknx8knn7zHZ7dv3x7/+c9/9hpETZw4MX796193dDoAAAAAAAAAAAAAAEAuGD5RtiJcfKqtrY2XX345+vbt+z8/26NHjzj++OPj+OOP3+P95ubm9soDAAAAAAAAAAAAAADIPcMnypb3i08HH3xwnHnmmXHIIYe06nu6du3aRkUAAAAAAAAAAAAAAADFY/hE2fJ88alXr14xd+7cXP+OAAAAAAAAAAAAAAAAnUGX1AF0PnkeBS1YsCDuuOOO1BkAAAAAAAAAAAAAAACFZ/hE2UqlUuqEdnXVVVfF4sWLU2cAAAAAAAAAAAAAAAAUmuETZcvzxaeIiPr6+ujfv380NDSkTgEAAAAAAAAAAAAAACgswyfKlveLTxERCxYsiIkTJ6bOAAAAAAAAAAAAAAAAKCzDJ8qW94tPu0yaNCnmzp2bOgMAAAAAAAAAAAAAAKCQDJ8oW1GGTy0tLdG/f//Ytm1b6hQAAAAAAAAAAAAAAIDCMXyibKVSKXVCh1m+fHmMHTs2dQYAAAAAAAAAAAAAAEDhGD5RtqJcfNrlzjvvjFmzZqXOAAAAAAAAAAAAAAAAKBTDJ8pWtOFTRMQvf/nL+OSTT1JnAAAAAAAAAAAAAAAAFIbhE2UrlUqpEzrcBx98EJdeemnqDAAAAAAAAAAAAAAAgMIwfKJsRbz4FBExY8aMeOSRR1JnAAAAAAAAAAAAAAAAFILhE2Ur6vApIuLSSy+NNWvWpM4AAAAAAAAAAAAAAADIPcMnylZVVRX77bdf6owkNm/eHAMGDIgsy1KnAAAAAAAAAAAAAAAA5JrhExUp8tWn5557Lv7whz+kzgAAAAAAAAAAAAAAAMg1wycqUiqVUickNXbs2Fi2bFnqDAAAAAAAAAAAAAAAgNwyfKIiRb74FBGxY8eOuPDCC6OpqSl1CgAAAAAAAAAAAAAAQC4ZPlGRol98ioh4/fXXY9KkSakzAAAAAAAAAAAAAAAAcsnwiYoU/eLTLhMnTow333wzdQYAAAAAAAAAAAAAAEDuGD5REcOnTzU1NUX//v1jx44dqVMAAAAAAAAAAAAAAAByxfCJipRKpdQJ+4x33nknrrrqqtQZAAAAAAAAAAAAAAAAuWL4REVcfNrT73//+5g9e3bqDAAAAAAAAAAAAAAAgNwwfKIihk97u/jii2Pz5s2pMwAAAAAAAAAAAAAAAHLB8ImKlEql1An7nDVr1sTIkSNTZwAAAAAAAAAAAAAAAOSC4RMVyfPFp6qqqoqffeihh+Kxxx5rwxoAAAAAAAAAAAAAAIBi6pY6gM4pzxefsiyLp59+Og466KBYtmzZHq/ly5dHfX39f31+yJAhcfLJJ8ehhx7aQcUAAAAAAAAAAAAAAAD5Y/hERfJ88SkiYvbs2TFlypT48Y9/vMf7zc3NUVNTs9cgatmyZbF27dqIiNi4cWMMHDgwZs6c2arrUQAAAAAAAAAAAAAAAEVm+ERF8j58evzxx+OWW27Za7jUtWvXOOKII+KII46In/3sZ3v8rK6uLt59993dQ6h33nknfvCDH3RkNgAAAAAAAAAAAAAAQG4YPlGRUqmUOqFdrVixIqqrq+O444770s989atfjV69ekWvXr3asQwAAAAAAAAAAAAAAKAYuqQOoHPK+8Wnk046KWpra1NnAAAAAAAAAAAAAAAAFJaLT1QkrxefzjnnnJg2bVoceuihqVMAAAAAAAAAAAAAAAAKzcUnKpLXi09PPfVUfPTRR6kzAAAAAAAAAAAAAAAACs/wiYrkdfjU2NgY/fv3j507d6ZOAQAAAAAAAAAAAAAAKDTDJypSKpVSJ7Sb6urquPbaa1NnAAAAAAAAAAAAAAAAFJrhExXJ68WnXaZMmRIvvfRS6gwAAAAAAAAAAAAAAIDCMnyiInm++BQRkWVZXHTRRbFly5bUKQAAAAAAAAAAAAAAAIVk+ERF8n7xKSKipqYmRo4cmToDAAAAAAAAAAAAAACgkAyfqEgRhk8REQ8++GA8+uijqTMAAAAAAAAAAAAAAAAKx/CJipRKpdQJHWbIkCHxwQcfpM4AAACA/8fevQfZXRd2H/+czWY3V9hclj6AODLIM23zPOViq04rjOYBASllkl0MCQky3GEAgbaD9VLDNDSKjlg7kuFSKRcpSEKQSohgKQ4tBSKKoQW5GgqBJBgToUk2WbLn+eN5NiXktnv2d87JL3m9Zhg55+zv9/38gX++5wsAAAAAAAAAAHsV4RM12bRNmn4AACAASURBVFtufEqSX//61znzzDNTrVabPQUAAAAAAAAAAAAAAGCvIXyiJntT+JQkixcvzrx585o9AwAAAAAAAAAAAAAAYK8hfKIm7e3tzZ7QcH/2Z3+W5557rtkzAAAAAAAAAAAAAAAA9grCJ2qyt934lCQbNmzIrFmz0tvb2+wpAAAAAAAAAAAAAAAAezzhEzXZG298SpIlS5bkqquuavYMAAAAAAAAAAAAAACAPZ7wiZrsjTc+9ZszZ04ef/zxZs8AAAAAAAAAAAAAAADYowmfqMneHD5t3rw5s2bNyrp165o9BQAAAAAAAAAAAAAAYI8lfKIm7e3tzZ7QVC+88EL+/M//vNkzAAAAAAAAAAAAAAAA9ljCJ2qyN9/41G/evHm5//77mz0DAAAAAAAAAAAAAABgjyR8oiZ7+41P/c4888z86le/avYMAAAAAAAAAAAAAACAPY7wiZq48en/WbFiRc4777xUq9VmTwEAAAAAAAAAAAAAANijCJ+oifDpv91999255ZZbmj0DAAAAAAAAAAAAAABgjyJ8oibt7e3NnrBbufjii7Ns2bJmzwAAAAAAAAAAAAAAANhjCJ+oyfDhw5s9Ybfy9ttv5/TTT8/mzZubPQUAAAAAAAAAAAAAAGCPIHyiJi0tLeKn93jkkUfyjW98o9kzAAAAAAAAAAAAAAAA9gjCJ2rW1tbW7Al10dJS+/8tvvCFL+TnP/95gWsAAAAAAAAAAAAAAAD2Tq3NHkB5tbW1Zd26dc2eUbi+vr488cQT6enpyfPPP7/VPy+++GI2bdq0w2d7e3sza9asPPHEExkxYkQDVwMAAAAAAAAAAAAAAOxZhE/UrL29vdkT6uZf/uVfctlll+Woo47a6vvNmzfnP//zP7cJop5//vm88sorqVarefrpp/OlL30pX/va15q0HgAAAAAAAAAAAAAAoPyET9Ssra2t2RPqZsGCBbnsssu2+X7YsGE5+OCDc/DBB+e4447b6reenp689NJLW26G+s1vfpN99923UZMBAAAAAAAAAAAAAAD2KMInarYnh0+PPvpo3njjjey///4DfmbEiBGZNGlSJk2aVMdlAAAAAAAAAAAAAAAAe4eWZg+gvNrb25s9oW4mTJiQX/ziF82eAQAAAAAAAAAAAAAAsNdy4xM129NufDrggAMyZcqUdHV15aijjkprq/97AAAAAAAAAAAAAAAANIuyg5oVfePTtGnTcueddxb6zl35wAc+kK6urnR1deUjH/lIWlpcggYAAAAAAAAAAAAAALA7ED5RsyJvfLrmmmty0UUX5Uc/+lFWr15d2Ht35Oijj843v/nNHH744alUKnU/DwAAAAAAAAAAAAAAgMFxvQ01Kyp8+ta3vpVLL700ra2tmTJlSiHv3JW1a9fmiCOOED0BAAAAAAAAAAAAAADspoRP1Ky9vX3I7/j2t7+diy++eMvnrq6uIb9zIJYuXZoXXnihIWcBAAAAAAAAAAAAAAAweMInajbUG5/mzZuXCy+8cKvvJk+enI6OjiG9d6AWLFjQkHMAAAAAAAAAAAAAAAAYPOETNRvKjU/XXXddzj///G2+b2try8knnzyUWQM2f/78hpwDAAAAAAAAAAAAAADA4AmfqFktNz5VKpXceOONOffcc3f4N93d3UOZNWBPPvlkfvnLXzbkLAAAAAAAAAAAAAAAAAZH+ETNBhs+VSqVfOc738lZZ52107879thjM3bs2KFMG7AFCxY05BwAAAAAAAAAAAAAAAAGR/hEzdrb2wf8t5VKJX//93+fM844Y0DvPemkk4awbOCETwAAAAAAAAAAAAAAALsn4RM1G+iNTy0tLbnlllty+umnD/jd3d3dtc4alMceeyyvvvpqQ84CAAAAAAAAAAAAAABg4IRP1Gwg4VNLS0tuvfXWzJw5c1DvPv744zN69Ohapw3K3Xff3ZBzAAAAAAAAAAAAAAAAGDjhEzVrb2/f6e/Dhg3L7bffnhkzZgz63SNHjsyJJ55Y67RBmT9/fkPOAQAAAAAAAAAAAAAAYOCET9RsZzc+DRs2LP/wD/+QadOm1fz+7u7ump8djH/913/NG2+80ZCzAAAAAAAAAAAAAAAAGBjhEzXb0Y1Pra2tufPOO3PKKacM6f0nnHBCRowYMaR3DES1Ws3ChQvrfg4AAAAAAAAAAAAAAAADJ3yiZtu78am1tTXf+9730tXVNeT3jxkzJieccMKQ3zMQ8+fPb8g5AAAAAAAAAAAAAAAADIzwiZq9N3waPnx45s+fnylTphR2Rnd3d2Hv2pkf//jHWbVqVUPOAgAAAAAAAAAAAAAAYNeET9Ssvb19y7+3tbVlwYIFOfnkkws944//+I+3e7NU0fr6+nLPPffU/RwAAAAAAAAAAAAAAAAGRvhEzfqDpLa2tixcuDAnnXRS4Wfss88+Oe644wp/7/bMnz+/IecAAAAAAAAAAAAAAACwa8Inatbe3p729vZ8//vfz6c+9am6ndPV1VW3d7/bQw89lNWrVzfkLAAAAAAAAAAAAAAAAHZO+ETN9t1339x77705/vjj63rOn/zJn6S1tbWuZyTJ5s2bc++999b9HAAAAAAAAAAAAAAAAHZN+ETNjjnmmHzyk5+s+znjxo3LMcccU/dzkmT+/PkNOQcAAAAAAAAAAAAAAICdEz5Rs0ql0rCzuru7G3LOgw8+mLVr1zbkLAAAAAAAAAAAAAAAAHZM+EQpnHzyyRk2bFjdz+nt7c0//uM/1v0cAAAAAAAAAAAAAAAAdk74RClMnDgxH//4xxty1oIFCxpyDgAAAAAAAAAAAAAAADsmfKI0uru7G3LO4sWL8/bbbzfkLAAAAAAAAAAAAAAAALZP+ERpTJkyJZVKpe7nbNy4Mffdd1/dzwEAAAAAAAAAAAAAAGDHhE+Uxm/91m/l6KOPbshZ8+fPb8g5AAAAAAAAAAAAAAAAbJ/wiVLp6upqyDmLFi3KunXrGnIWAAAAAAAAAAAAAAAA2xI+USpTp05tyDkbNmzII4880pCzAAAAAAAAAAAAAAAA2JbwiVI58MAD84d/+Id1e/+HPvShzJ07N88//3yOP/74up0DAAAAAAAAAAAAAADAzrU2ewAMVnd3dx599NHC3vfRj3403d3dmTp1ag4++ODC3gsAAAAAAAAAAAAAAEDthE+UTldXVy6//PKan69UKvmjP/qjLbHTQQcdVOA6AAAAAAAAAAAAAAAAiiB8onTe//735w/+4A+yZMmSAT/T0tKSJLn4kkty6fQTcsABB9RrHgAAAAAAAAAAAAAAAAUQPlFK3d3duwyfhg0blsmTJ6e7uzsfmXxCHl7Wk6lHfiIHjB/VoJUAAAAAAAAAAAAAAADUSvhEKXV1deWKK67Y5vvhw4fn2GOPTVdXV04++eRMmDBhy2+HfbCRCwEAAAAAAAAAAAAAABgK4ROldMghh+SII47Iz372s7S3t+e4445Ld3d3TjrppHR0dDR7HgAAAAAAAAAAAAAAAEMkfKK0vvjFL2bjxo058cQTs88++zR7DgAAAAAAAAAAAAAAAAUSPlFaU6dObfYEAAAAAAAAAAAAAAAA6qSl2QMAAAAAAAAAAAAAAAAA3kv4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbkf4BAAAAAAAAAAAAAAAAOx2hE8AAAAAAAAAAAAAAADAbqfu4VOlUjm+Uqk8V6lUXqxUKp+r93nsHTZu3NjsCQAAAAAAAAAAAAAAANRRXcOnSqUyLMm3k5yQ5HeTTK9UKr9bzzPZO8ydOzdvv/12s2cAAAAAAAAAAAAAAABQJ/W+8enDSV6sVqsvV6vVTUnuSHJync9kL7B69eqcccYZqVarzZ4CAAAAAAAAAAAAAABAHdQ7fDowyavv+vza//8OhqSzszN33313rr766mZPAQAAAAAAAAAAAAAAoA7qHT5VtvPdVlf0VCqVcyuVyk8qlcpP3nzzzTrPYU+x3377JUk+//nP50c/+lGT1wAAAAAAAAAAAAAAAFC0eodPryU56F2f35fk9Xf/QbVavb5arf5+tVr9/c7OzjrPYU/RHz719fXl1FNPzSuvvNLkRQAAAAAAAAAAAAAAABSp3uHTkiSHViqVgyuVSluSU5PcW+cz2Qu8O5JbvXp1urq60tPT08RFAAAAAAAAAAAAAAAAFKmu4VO1Wn0nyUVJfpjk2STfq1ar/1HPM9k79N/41O/JJ5/MhRdemGq12qRFAAAAAAAAAAAAAAAAFKneNz6lWq0uqlar/7NarR5SrVavqvd57B3eGz4lyU033ZTrr7++CWsAAAAAAAAAAAAAAAAoWt3DJ6iHjo6OtLa2bvP9xRdfnMcee6wJiwAAAAAAAAAAAAAAACiS8IlSqlQq6ezs3Ob73t7edHd3Z+XKlU1YBQAAAAAAAAAAAAAAQFGET5TW9sKnJFm+fHmmTZuW3t7eBi8CAAAAAAAAAAAAAACgKMInSmu//fbb4W8//vGPc8UVVzRwDQAAAAAAAAAAAAAAAEUSPlFaOwufkuSaa67JHXfc0aA1AAAAAAAAAAAAAAAAFEn4RGl1dnbu8m/OOuusPP300w1YAwAAAAAAAAAAAAAAQJGET5TWrm58SpL169dn6tSpWbt2bQMWAQAAAAAAAAAAAAAAUBThE6U1kPApSV588cXMmjUrfX19dV4EAAAAAAAAAAAAAABAUYRPlFZnZ+eA//YHP/hB5syZU8c1AAAAAAAAAAAAAAAAFEn4RGkN9ManfrNnz86iRYvqtAYAAAAAAAAAAAAAAIAiCZ8orcHc+JQk1Wo1p512Wl566aU6LQIAAAAAAAAAAAAAAKAowidKa7A3PiXJ2rVrM3Xq1Kxfv74OiwAAAAAAAAAAAAAAACiK8InSGjt2bNrb2wf93NKlS3POOeekWq3WYRUAAAAAAAAAAAAAAABFED5RWpVKJZ2dnTU9e/vtt+dv//ZvC14EAAAAAAAAAAAAAABAUYRPlNp+++1X87N/+qd/mkceeaTANQAAAAAAAAAAAAAAABRF+ESpDSV8euedd3LKKafk9ddfL3ARAAAAAAAAAAAAAAAARRA+UWqdnZ1Den7lypXp7u7Opk2bCloEAAAAAAAAAAAAAABAEYRPlNpQbnzq92//9m+57LLLClgDAAAAAAAAAAAAAABAUYRPlNpQb3zqd+211+bmm28u5F0AAAAAAAAAAAAAAAAMnfCJUivixqd+559/fn76058W9j4AAAAAAAAAAAAAAABq19rsATAUtYRPhx56aA4//PCsWrUqK1euzMqVK7NmzZr09PRk6tSpefLJJzNhwoQ6rAUAAAAAAAAAAAAAAGCghE+UUrVaTaVSSWdn56CfXb9+fW6//fa0tv73f/6bNm3Km2++mZUrV2bdunXCJwAAAAAAAAAAAAAAgCZrafYAqMU999yTN998s6Ybn5YvX54f/vCHW33X1taWAw88MEceeWTe//73FzUTAAAAAAAAAAAAAACAGgmfKKUNGzZk+vTpGT9+/HZ/P+200zJ8+PAdPn/jjTfWaxoAAAAAAAAAAAAAAAAFaG32AKjFxIkT80//9E/5yle+klGjRmX9+vVbfps6dWpuvvnmbNy4MfPnz0+SDNunM2P+1//JhLdfyjkzpuaMM85o0nIAAAAAAAAAAAAAAAAGQvhEKU2cODFJMnfu3Oy3335bwqejjjoq3/3udzNs2LCcffbZmT9/ftra2nLMlOn5j//xydx81ofzsUM7mzkdAAAAAAAAAAAAAACAAWhp9gCoRX/4lCSrV69OkkyaNCnf//73M2LEiCTJsccem2uvvTbLly/PX/7lXyZJWiqVxo8FAAAAAAAAAAAAAABg0IRPlNK7w6fNmzdn+PDhWbhwYcaNG7fl+5aWllxwwQVb/S0AAAAAAAAAAAAAAADlIHyilEaNGpWRI0du+dzb25s5c+akWq02cRUAAAAAAAAAAAAAAABFET5RWhMmTNjq8y233JLrrruuSWsAAAAAAAAAAAAAAAAokvCJ0po4ceI23332s5/NE0880YQ1AAAAAAAAAAAAAAAAFEn4RGltL3zatGlTuru786tf/aoJiwAAAAAAAAAAAAAAACiK8InS2l74lCSvvvpqZsyYkc2bNzd4EQAAAAAAAAAAAAAAAEURPlFaOwqfkuTBBx/M7NmzGzcGAAAAAAAAAAAAAACAQgmfKK2dhU9JMmfOnNx3330NWgMAAAAAAAAAAAAAAECRhE+U1oQJE3b5NzNnzszLL7/cgDUAAAAAAAAAAAAAAAAUSfhEae3qxqckWbt2bbq6urJx08YGLAIAAAAAAAAAAAAAAKAowidKayDhU5I89dRT+eY3v1nnNQAAAAAAAAAAAAAAABRJ+ERpDTR8SpJF9y2q4xIAAAAAAAAAAAAAAACKJnyitAYTPvV7/oXn67AEAAAAAAAAAAAAAACAogmfKK0JEyYM+pnZX56d1atX12ENAAAAAAAAAAAAAAAARRI+UVojR47MqFGjBvXMypUrM3PmzPT19dVpFQAAAAAAAAAAAAAAAEUQPlFqEydOHPQzixcvzl/91V/VYQ0AAAAAAAAAAAAAAABFET5RarWET0ly5ZVXZvHixQWvAQAAAAAAAAAAAAAAoCjCJ0qt1vCpWq1mxowZWbZsWbGDAAAAAAAAAAAAAAAAKITwiVKrNXxKkjVr1qS7uzs9PT0FLgIAAAAAAAAAAAAAAKAIwidKbSjhU5I8+eSTueSSSwpaAwAAAAAAAAAAAAAAQFGET5TahAkThvyOG264ITfddFMBawAAAAAAAAAAAAAAACiK8IlSG+qNT/0uvPDC/OxnPyvkXQAAAAAAAAAAAAAAAAyd8IlSKyp86unpSVdXV9asWVPI+wAAAAAAAAAAAAAAABga4ROlVkv4NHr06IwdO3ab73/5y19m1qxZ6evrK2IaAAAAAAAAAAAAAAAAQ9Da7AEwFLWET4ccckieeuqprF+/PitWrNjyzxtvvJEVK1bkqaeeypFHHlmHtQAAAAAAAAAAAAAAAAyU8InS+slPfpL9999/0M8tXbo0P/3pT/OhD30ohxxySA455JA6rAMAAAAAAAAAAAAAAGAoWpo9AGp1/vnnp6+vb7u/HXbYYTt99u/+7u/qMQkAAAAAAAAAAAAAAICCCJ8orXXr1uXss8/O6NGjt/p+0qRJeeihh/Lxj398u8994hOfyDHHHNOAhQAAAAAAAAAAAAAAANSqtdkDoFbjxo3LAw88kI6Oji3fHXTQQVm8eHHGjx+fs846Kw8//HCSZGJnZ5Lk1ttuS/dR/7sZcwEAAAAAAAAAAAAAABgENz5RWv3B09q1a5MkEyZMyAMPPJD3ve99SZKpU6fmtNNOy6JFi3LX976XJDlg//2bMxYAAAAAAAAAAAAAAIBBceMTpTVu3LitPt9yyy357d/+7S2fR40aldtuuy1J8vjLqxu6DQAAAAAAAAAAAAAAgKFx4xOl9d7w6Wtf+1o2b97cpDUAAAAAAAAAAAAAAAAUSfhEab03fHr44Ycze/bs5owBAAAAAAAAAAAAAACgUMInSqujo2Ob7+bMmZPFixc3YQ0AAAAAAAAAAAAAAABFEj5RWu+98anfzJkz8+qrrzZ4DQAAAAAAAAAAAAAAAEUSPlFaOwqfVq9enVNPPTW9vb0NXgQAAAAAAAAAAAAAAEBRhE+UVkdHxw5/e/TRR/P5z3++gWsAAAAAAAAAAAAAAAAokvCJ0trRjU/9vv71r+fee+9t0BoAAAAAAAAAAAAAAACKJHyitHYVPiXJZz7zmSxbtqz+YwAAAAAAAAAAAAAAACiU8InS6ujo2OXfrF27Np/+9KfT29vbgEUAAAAAAAAAAAAAAAAURfhEaY0dOzYtLbv+T3jJkiWZN29eAxYBAAAAAAAAAAAAAABQFOETpdXS0jKgW5+SZMGCBXVeAwAAAAAAAAAAAAAAQJGET5TauHHjBvX3ry1fXqclAAAAAAAAAAAAAAAAFEn4RKkN9ManfldeeWU2bNhQpzUAAAAAAAAAAAAAAAAURfhEqQ32xqeXX3opl156aZ3WAAAAAAAAAAAAAAAAUBThE6U22PApSa6//vrcdtttdVgDAAAAAAAAAAAAAABAUYRPlFpHR0dNz5133nl55plnCl4DAAAAAAAAAAAAAABAUYRPlFotNz4lyfr163PKKadk3bp1BS8CAAAAAAAAAAAAAACgCMInSq3W8ClJnnnmmVxwwQWpVqsFLgIAAAAAAAAAAAAAAKAIwidKbSjhU5Lceuut+c53vlPQGgAAAAAAAAAAAAAAAIoifKLUOjo6hvyOiy66KEuXLi1gDQAAAAAAAAAAAAAAAEURPlFqQ73xKUl6enrS3d2dt956q4BFAAAAAAAAAAAAAAAAFEH4RKkVET4lyQsvvJBzzz031Wq1kPcBAAAAAAAAAAAAAAAwNMInSq2jo6Owd915552ZN29eYe8DAAAAAAAAAAAAAACgdq3NHgBDUcuNT4cddli+8Y1v5LXXXsvy5cu3+t+rr746H/3oR3PkkUfWYS0AAAAAAAAAAAAAAAADJXyitFatWpXx48cP+rmlS5fmgx/8YCZPnrzd36vV6lCnAQAAAAAAAAAAAAAAMEQtzR4Atbr//vvzgx/8IGPHjt3mt53dBFWtVnPrrbfu8PdKpVLIPgAAAAAAAAAAAAAAAGonfKK0xowZkzPPPDNjxozZ6vt99tknDz30UD784Q9v97kRI0bkrbfeasREAAAAAAAAAAAAAAAAaiR8orTGjh2bNWvW5De/+c2W70aOHJn77rsvhx9+eD7zmc9s88zll1+eN954I1/96lcbORUAAAAAAAAAAAAAAIBBEj5RWmPHjk2SrF+/PknS2tqaBQsW5GMf+1iS5NRTT82hhx6aL37xi/nud7+bJDnxxBPT0dHRnMEAAAAAAAAAAAAAAAAMWGuzB0Ct+sOnfp/73OdywgknbPk8fvz4PPfcc6lUKnn85dVJXmvwQgAAAAAAAAAAAAAAAGrlxidKa8yYMVt9vvHGG7Nq1aqtvqtUKo2cBAAAAAAAAAAAAAAAQEGET5TWe298WrFiRc4444z09fU1aREAAAAAAAAAAAAAAABFET5RWu8Nn5Lk/vvvzzXXXNOENQAAAAAAAAAAAAAAABRJ+ERptbW1pa2tbZvv/+Iv/iJLlixpwiIAAAAAAAAAAAAAAACKInyi1LZ361Nvb29OPfXUvPXWW01YBAAAAAAAAAAAAAAAQBGET5Ta9sKnJHn55Zdz3nnnpVqtNngRAAAAAAAAAAAAAAAARRA+UWo7Cp+S5I477shNN93UwDUAAAAAAAAAAAAAAAAURfhEqe0sfEqSiy66KM8++2yD1gAAAAAAAAAAAAAAAFAU4ROltqvwacOGDZk2bVo2btrYoEUAAAAAAAAAAAAAAAAUQfhEqe0qfEqSp59+Otd++9oGrAEAAAAAAAAAAAAAAKAowidKbSDhU5Lcc889dV4CAAAAAAAAAAAAAABAkYRPlNqYMWMG9fcrVq6o0xIAAAAAAAAAAAAAAACKJHyi1AZ641O/q666Kr29vXVaAwAAAAAAAAAAAAAAQFGET5TaYMOnZ/7jmXz5y1+u0xoAAAAAAAAAAAAAAACKInyi1AYbPiXJV77ylTz44IN1WAMAAAAAAAAAAAAAAEBRhE+UWi3hU7VazaxZs7Jy5co6LAIAAAAAAAAAAAAAAKAIwidKrZbwKUlWrlyZ008/PX19fQUvAgAAAAAAAAAAAAAAoAjCJ0qt1vApSR544IF8/etfL3ANAAAAAAAAAAAAAAAARRE+UWpDCZ+S5Atf+EIee+yxgtYAAAAAAAAAAAAAAABQFOETpTbU8Omdd97J9OnTs3bt2oIWAQAAAAAAAAAAAAAAUAThE6U21PApSZYtW5Zzzz031Wq1gEUAAAAAAAAAAAAAAAAUQfhEqRURPiXJXXfdlRtuuKGQdwEAAAAAAAAAAAAAADB0widKbcyYMYW967Of/Wz+/d//vbD3AQAAAAAAAAAAAAAAUDvhE6XW2tqaESNGDOqZgw46KBdeeGFOPPHETJo0aUs81dPTk2nTpmX9+vX1mAoAAAAAAAAAAAAAAMAgtDZ7ANTqnXfeSaVSydixY9PT0zPg51atWpW//uu/zr777pskqVarWbNmTV555ZUsW7Ysr7zySn7nd36nXrMBAAAAAAAAAAAAAAAYADc+UVobN27M3LlzM3bs2G1+a2nZ8X/aGzduzIIFC7Z8rlQqGT9+fI444ohMmTJF9AQAAAAAAAAAAAAAALAbED5RWiNHjsyVV165TeRUqVRy88035/d+7/d2+OzChQvrPQ8AAAAAAAAAAAAAAIAhaG32AKhVS0tLhg8fnldffXWr76+77rrMnDkzr7/+epYuXbrVb0cdfXQumDo7n/rUpxo5FQAAAAAAAAAAAAAAgEFy4xOlNnr06GzcuHHL57/5m7/JOeeckySZPn16hg0blsmTJ+eKK65Iksz+8pczZcqUtLe3N2UvAAAAAAAAAAAAAAAAA+PGJ0pt1KhRW/7905/+dC655JItnw86SZUmXgAAIABJREFU6KCsWLEiEydOzOMvr87N1z/WjIkAAAAAAAAAAAAAAADUwI1PlNro0aO3/PuiRYvy0ksvbfX7xIkTGz0JAAAAAAAAAAAAAACAAgifKLV33/j0X//1X5kxY0Z6e3ubuAgAAAAAAAAAAAAAAIAiCJ8otXff+JQkTzzxRGbPnt2cMQAAAAAAAAAAAAAAABRG+ESpvfvGp35z587NP//zPzdhDQAAAAAAAAAAAAAAAEURPlFq2wufqtVqZs2aldWrVzdhEQAAAAAAAAAAAAAAAEUQPlFqo0eP3u73y5cvzznnnJNqtdrgRQAAAAAAAAAAAAAAABRB+ESpbe/Gp34LFy7MDTfc0MA1AAAAAAAAAAAAAAAAFEX4RKnt6ManfpdeemmeffbZBq0BAAAAAAAAAAAAAACgKMInSm1nNz4lyYYNGzJ9+vRs2rSpQYsAAAAAAAAAAAAAAAAogvCJUtvVjU9J8vOf/zzXX399A9YAAAAAAAAAAAAAAABQFOETpbarG5/63XXXXXVeAgAAAAAAAAAAAAAAQJGET5TaQG58erc1a9bUaQkAAAAAAAAAAAAAAABFEj5RagO98anfV6/+avr6+uq0BgAAAAAAAAAAAAAAgKIInyi1wYZPS55Ykm9961t1WgMAAAAAAAAAAAAAAEBRhE+U2ujRowf9zBVXXJGnnnqqDmsAAAAAAAAAAAAAAAAoivCJUhvsjU9JsmnTpkyfPj3r16+vwyIAAAAAAAAAAAAAAACKIHyi1Gq58SlJfvGLX+Tyyy8veA0AAAAAAAAAAAAAAABFET5RarXc+NTvuuuuy8KFCwtcAwAAAAAAAAAAAAAAQFGET5RarTc+9Tv77LPz2muvFbQGAAAAAAAAAAAAAACAogifKLWh3PiUJL/+9a8za9asbN68uaBFAAAAAAAAAAAAAAAAFEH4RKkN9canJHn44Ydz9dVXF7AGAAAAAAAAAAAAAACAogifKLXhw4entbV1yO/50pe+lMcff7yARQAAAAAAAAAAAAAAABRB+ETpFXHr0+bNmzNjxoy8/fbbBSwCgP/L3r0H6V0X9h7/7LokgTgwMipChgM1mlM7eCGlYmWKw0EEscqRAdFSQTFEEjKJCUzDRcHCDMeZWi5JDSKVVAsCKSEECAmUg6adEi6iBZMQIAlyaZoIAUmym93s5Tl/dLInV9jd3+/Zp7+H12smk32+z++38/lj/33PFwAAAAAAAAAAAAAoSvhE5e23336Dev6d73xnDj/88LS27vznv3bt2px//vllTgMAAAAAAAAAAAAAAGCI2ho9AIoabPjU1taWVatWpbW1NS+++GKef/75rF27tv/fY489lo9//ON1WgsAAAAAAAAAAAAAAMBACJ+otHnz5g06fPr973+fBx54IJ///OczduzYjB07tk7rAAAAAAAAAAAAAAAAGKrWRg+AIhYtWpT29vbdzidPnpz3v//9e33v1ltvrecsAAAAAAAAAAAAAAAAChI+UWmjRo3KCy+8sNPZueeem9mzZ+fLX/7ybs/vv//+Oe+883L++ecP10QAAAAAAAAAAAAAAACGQPhEpY0aNSq9vb39n7/+9a/nhz/8YVpbW/vDp/333z8nnXRSkuSf7vinXH/99TnmmGMashcAAAAAAAAAAAAAAICBET5RaSNHjuz/+SMf+UhuvPHGtLb+15/1hz/84SxevDgbNmzIxRdfnCRpe0dbQ3YCAAAAAAAAAAAAAAAwOMInKm3UqFH9P69YsSK//OUvd/r+pJNO2ukZAAAAAAAAAAAAAAAAqkH4RKXtGDX19vbmL//yL7Nly5YGLgIAAAAAAAAAAAAAAKAMwicqbdfbnFavXp0ZM2Y0aA0AAAAAAAAAAAAAAABlET5RaSNHjtzt7MYbb8zChQsbsAYAAAAAAAAAAAAAAICyCJ+otF1vfNpuwoQJWb9+/TCvAQAAAAAAAAAAAAAAoCzCJyptb+HTq6++mnPOOSe1Wm2YFwEAAAAAAAAAAAAAAFAG4ROVtrfwKUkWL16cOXPmDOMaAAAAAAAAAAAAAAAAyiJ8otLeLHxKkgsvvDBPP/30MK0BAAAAAAAAAAAAAACgLMInKm3kyJFv+n1nZ2fOPPPM9PT0DNMiAAAAAAAAAAAAAAAAyiB8otLe6sanJPn1r3+dm266aRjWAAAAAAAAAAAAAAAAUBbhE5U2kPApSX72s5/VeQkAAAAAAAAAAAAAAABlEj5RaQMNn2q1WpJkS3t7PecAAAAAAAAAAAAAAABQEuETlTbQ8Gm7WbNm1WkJAAAAAAAAAAAAAAAAZRI+UWkjR44c1PP/98EHc+utt9ZpDQAAAAAAAAAAAAAAAGURPlFpg73xKUkmTZqUF198sQ5rAAAAAAAAAAAAAAAAKIvwiUobSvj0xhtv5Oyzz05fX18dFgEAAAAAAAAAAAAAAFAG4ROVNpTwKUl+8Ytf5Oqrry55DQAAAAAAAAAAAAAAAGURPlFpbW1taWlpGdK7l1xySZ588smSFwEAAAAAAAAAAAAAAFAG4ROV1tLSMuRbn7q7u3PmmWdm69atJa8CAAAAAAAAAAAAAACgKOETlTfU8ClJVqxYkYsuuqjENQAAAAAAAAAAAAAAAJRB+ETlFQmfkmTWrFm5//77S1oDAAAAAAAAAAAAAABAGYRPVF7R8ClJvva1r+XVV18tYQ0AAAAAAAAAAAAAAABlED5ReSNHjiz8O9avX59vfvObqdVqJSwCAAAAAAAAAAAAAACgKOETlVfGjU9Jcuedd+Yf/uEfSvldAAAAAAAAAAAAAAAAFNPW6AFQ1GDDp4MOOigPPPBA1qxZk+eeey6rV6/u/3/atGk59thjM3bs2DqtBQAAAAAAAAAAAAAAYCCET1Taxo0b09LSMqh3NmzYkI6Ojnzxi1/c7buOjo50dnaWNQ8AAAAAAAAAAAAAAIAham30ACiis7Mzq1ev3u386KOPzsEHH7zX9+bNm7fH8/322y8HHnhgafsAAAAAAAAAAAAAAAAYGuETldbW1pZXXnllp7Ojjz46999/f04//fQ9vnP44YfnkEMOGY55AAAAAAAAAAAAAAAADJHwiUpra2vb6fP26OmAAw7YKXx638HvS5LMuf76rF27NhdeeOGw7gQAAAAAAAAAAAAAAGBwhE9U2o7h0/7775/FixfngAMOSJJ88pOfzOWXX57HH388t912e5Lkf44bl5aWloZsBQAAAAAAAAAAAAAAYOCET1TajuHTpk2bcvPNN/d/bm1tzXe/+90cddRRkToBAAAAAAAAAAAAAABUi/CJSttnn312+jxz5sw8++yzDVoDAAAAAAAAAAAAAABAWYRPVNqONz4lydatW3PWWWelp6enQYsAAAAAAAAAAAAAAAAog/CJSmttbU1LS8tOZ48++mj+5m/+pkGLAAAAAAAAAAAAAAAAKIPwicrb9danJLn88svz5JNPNmANAAAAAAAAAAAAAAAAZRA+UXl7Cp+6u7tz1llnpaurqwGLAAAAAAAAAAAAAAAAKEr4ROXtKXxKkqeeeipXXHHFMK8BAAAAAAAAAAAAAACgDMInKm9v4VOSfO9738sjjzwyjGsAAAAAAAAAAAAAAAAog/CJynuz8Kmvry9nn312urq6hnERAAAAAAAAAAAAAAAARQmfqLw3C5+S5Nlnn80NP/rRMK0BAAAAAAAAAAAAAACgDMInKu+twqckmX/HHcOwBAAAAAAAAAAAAAAAgLIIn6i8gYRP27V3dNRxCQAAAAAAAAAAAAAAAGURPlF5gwmf5syZU8clAAAAAAAAAAAAAAAAlEX4ROUNJnxasnhx7rnnnjquAQAAAAAAAAAAAAAAoAzCJypvMOFTkpx77rnZuHFjndYAAAAAAAAAAAAAAABQBuETlTfY8GnDhg2ZPHlyndYAAAAAAAAAAAAAAABQBuETlTfY8ClJ5s2bl9tuu60OawAAAAAAAAAAAAAAACiD8InKG0r4lCSTJ0/Of/7nf5a8BgAAAAAAAAAAAAAAgDIIn6i8oYZPr7/+eiZMmJBarVbyIgAAAAAAAAAAAAAAAIoSPlF5Qw2fkuS+++7Lj3/84xLXAAAAAAAAAAAAAAAAUAbhE5VXJHxKkunTp+e3v/1tOWMAAAAAAAAAAAAAAAAohfCJyisaPm3ZsiVf+9rX0tfXV9IiAAAAAAAAAAAAAAAAihI+UXlFw6ckWbp0aWbPnl3CGgAAAAAAAAAAAAAAAMogfKLyygifkuSiiy7KqlWrSvldAAAAAAAAAAAAAAAAFCN8ovIGGz4dcMABueKKK/KVr3wlRx55ZPbdd98kSWdnZ84+++z09PTUYyYAAAAAAAAAAAAAAACDUM5VOdBAfX19g3r+jTfeyBlnnJFx48b1v//SSy/l6aefzqpVq7J8+fJ87GMfq8dUAAAAAAAAAAAAAAAABkj4ROU988wzu529+93vTq1Wy8aNG/f4zoIFCzJz5swkSWtraw477LAcdthhOemkk+q6FQAAAAAAAAAAAAAAgIFpbfQAKGrbtm07fX7f+96XpUuX5rTTTtvrO7/+9a/rPQsAAAAAAAAAAAAAAIAChE9UXmvr//8zHjNmTJYuXZo/+qM/yhe/+MXdnj3nG9/IypUrc9tttw3nRAAAAAAAAAAAAAAAAAaprdEDoKjt4VNra2sWLFiQcePGJUmOO+64nHzyyTnxxBNz+MdPyNS71ubMv/iLfOgD727kXAAAAAAAAAAAAAAAAAbAjU9U3vbwqa+vL3/7t3/bfz5ixIgsWrQoU6dOzUHvfW+j5gEAAAAAAAAAAAAAADAEwicq78ADD+z/+fbbb8+dd97ZwDUAAAAAAAAAAAAAAACUQfhE5X3oQx/a6fOkSZOycePGBq0BAAAAAAAAAAAAAACgDMInKq+lpWWnz7/73e8ybdq0Bq0BAAAAAAAAAAAAAACgDMInmtItt9ySu+++u9EzAAAAAAAAAAAAAAAAGCLhE5W3641P233zm9/Ma6+9NsxrAAAAAAAAAAAAAAAAKIPwiaa1fv36TJ8+vdEzAAAAAAAAAAAAAAAAGALhE5W3txufkuSnP/1pFi1aNIxrAAAAAAAAAAAAAAAAKIPwiaY3ceLEbNmypdEzAAAAAAAAAAAAAAAAGAThE5X3Zjc+Jcm6devygzk/GKY1AAAAAAAAAAAAAAAAlEH4xNvCfYvua/QEAAAAAAAAAAAAAAAABkH4ROW91Y1PO2rv6KjjEgAAAAAAAAAAAAAAAMoifOJt5YYbbmj0BAAAAAAAAAAAAAAAAAZA+ETlDebGp0X33psHH3ywjmsAAAAAAAAAAAAAAAAog/CJt50JEyZk8+bNjZ4BAAAAAAAAAAAAAADAmxA+UXmDufEpSV544YXMnDmzTmsAAAAAAAAAAAAAAAAog/CJt6Xrr78+P//5zxs9AwAAAAAAAAAAAAAAgL0QPvG29Y1vfCNbtmxp9AwAAAAAAAAAAAAAAAD2QPhE5bW0tAzpveeffz6XXHJJyWsAAAAAAAAAAAAAAAAog/CJt7XZs2fnX/7lXxo9AwAAAAAAAAAAAAAAgF0In6i8od74tN0555yTjo6OktYAAAAAAAAAAAAAAABQBuETb3tr1qzJpZde2ugZAAAAAAAAAAAAAAAA7ED4ROUVvfEpSa677rr827/9WwlrAAAAAAAAAAAAAAAAKIPwCZLUarWcc8452bp1a6OnAAAAAAAAAAAAAAAAEOETTWCwNz6NHDky48ePz6hRo3Y6f/bZZ3PZZZeVOQ0AAAAAAAAAAAAAAIAhamv0ACiqr69vUM93dXVl0aJFec973pM1a9Zk+fLl/f+WLFmSL3/5y/njP/7jOq0FAAAAAAAAAAAAAABgIIRPVN769et3O2ttbc2oUaPS0dGxx3fuvffeTJgwIePGjcu4ceNy6qmn9n9Xq9XqthUAAAAAAAAAAAAAAICBaW30AChq1xuf2tracuutt+aMM87Y6zv33HPPXr9raWkpbRsAAAAAAAAAAAAAAABD48YnmsqoUaMyf/78nHzyyRkxYkTmzp270/cf+ehH86WpZ+ULX/hCgxYCAAAAAAAAAAAAAAAwEMInKq9Wq/X/PGfOnJx88slJkhNOOCEHHXRQjjvuuBxx3P/OjWuTa66+Op/8wLsbNRUAAAAAAAAAAAAAAIABam30AChqx/Dphz/8YXp7e5Mko0ePzrp163Lrrbfm05/+dKPmAQAAAAAAAAAAAAAAMATCJyrvXe96V//Pjz32WGbNmtX/ubXVnzgAAAAAAAAAAAAAAEAVqUKovFNOOWWnz5deemnWrl3boDUAAAAAAAAAAAAAAACUQfhE5dVqtZ0+b926Neeee+5u5wAAAAAAAAAAAAAAAFSH8InK6+vr2+3soYceyty5cxuwBgAAAAAAAAAAAAAAgDIIn6i8PYVPSTJjxoysW7dumNcAAAAAAAAAAAAAAABQBuETlbe38OmNN97IlClThnkNAAAAAAAAAAAAAAAAZRA+UXm9vb17/W7BggWZP3/+MK4BAAAAAAAAAAAAAACgDMInKm9vNz5td/7552fT5s3DtAYAAAAAAAAAAAAAAIAyCJ+ovLcKnzZs2JA5P/jBMK0BAAAAAAAAAAAAAACgDMInKu+twqckWbx48TAsAQAAAAAAAAAAAAAAoCzCJypvIOHTdlu3bq3jEgAAAAAAAAAAAAAAAMoifKLyBhM+3TT3pjouAQAAAAAAAAAAAAAAoCzCJypvMOHTnXcuyLJly+q4BgAAAAAAAAAAAAAAgDIIn6i83t7egT9cq2XChAnp6uqq3yAAAAAAAAAAAAAAAAAKEz5ReYO58SlJVq5cmauuuqpOawAAAAAAAAAAAAAAACiD8InKG2z4lCRXXXVVnnrqqTqsAQAAAAAAAAAAAAAAoAzCJypvKOFTT09PJkyYkN7e3josAgAAAAAAAAAAAAAAoCjhE5U3lPApSR5//PFcd911Ja8BAAAAAAAAAAAAAACgDMInKm+o4VOSfPvb386aNWtKXAMAAAAAAAAAAAAAAEAZhE9UXpHwaevWrZk4cWJqtVqJiwAAAAAAAAAAAAAAAChK+ETl9fb2Fnr/oYceyk033VTSGgAAAAAAAAAAAAAAAMogfKLyitz4tN0FF1yQdevWlbAGAAAAAAAAAAAAAACAMgifqLwywqc33ngjkydPTq1WK2ERAAAAAAAAAAAAAAAARQmfqLwywqckWbhwYe64445SfhcAAAAAAAAAAAAAAADFtDV6ABQ12PCpra0ty5cvz29/+9s8+eST/f9WrVqVKVOm5Pjjj8+BBx5Yp7UAAAAAAAAAAAAAAAAMhPCJyhts+NTT05MVK1bk1FNPzYknnth/3tXVlZUrV+b1118XPgEAAAAAAAAAAAAAADRYa6MHQFF7Cp+mTZuWL33pS3t9Z9GiRbudjRw5MkceeWTGjh1b6j4AAAAAAAAAAAAAAAAGT/hE5fX29u70+Yorrsg111yTP//zP9/t2bZ92vKZz3wmf/ZnfzZc8wAAAAAAAAAAAAAAABiCtkYPgKJ2vPHp9NNPz3e+850kyUknnZSWlpaMGTMmn/jC5/N4krsW3JXjP3xog5YCAAAAAAAAAAAAAAAwUG58ovJ2DJ+WLFmSl19+OUnynve8J88880xefPHFXHjBhUmSfffdtyEbAQAAAAAAAAAAAAAAGBzhE5U3atSoHHbYYUmSzZs3Z+rUqf3fffCDH0xLS0ujpgEAAAAAAAAAAAAAADBEwicq76/+6q8yYsSI/s8LFizIwoULG7gIAAAAAAAAAAAAAACAooRPVN6oUaOybdu2nc6mTJmSzZs3N2gRAAAAAAAAAAAAAAAARQmfaAq7hk8vv/xyLrvssgatAQAAAAAAAAAAAAAAoCjhE01h1/ApSWbNmpUnnniiAWsAAAAAAAAAAAAAAAAoSvhEU+ju7t7trK+vLxMnTkxPT08DFgEAAAAAAAAAAAAAAFCE8ImmsKcbn5LkV7/6VWbPnj3MawAAAAAAAAAAAAAAAChK+ERT2Fv4lCTf+c53suF3vxvGNQAAAAAAAAAAAAAAABQlfKLyent709fXt9fv29vbc+011wzjIgAAAAAAAAAAAAAAAIoSPlF5b3bb03YPP/zwMCwBAAAAAAAAAAAAAACgLMInKm8g4dN2W9rb67gEAAAAAAAAAAAAAACAsgifqLzBhE833fTjOi4BAAAAAAAAAAAAAACgLMInKq+7u3vAzy5ceHceffTROq4BAAAAAAAAAAAAAACgDMInKm8wNz6lVsvEiRMHFUsBAAAAAAAAAAAAAAAw/IRPVN6gwqckTz31VK699to6rQEAAAAAAAAAAAAAAKAMwicqb7DhU5Jcfvnlef755+uwBgAAAAAAAAAAAAAAgDIIn6i8oYRPW7duzeTJk1Or1eqwCAAAAAAAAAAAAAAAgKKET1TeUMKnJFmyZEnmzZtX8hoAAAAAAAAAAAAAAADKIHyi8oYaPiXJtGnT8vvf/77ENQAAAAAAAAAAAAAAAJRB+ETldXd3D/ndDRs25KKLLipxDQAAAAAAAAAAAAAAAGUQPlF5RW58SpIbbrghDz/8cElrAAAAAAAAAAAAAAAAKIPwicorGj4lycSJE0v5PQAAAAAAAAAAAAAAAJRD+ETllREsrVixIt///vdLWAMAAAAAAAAAAAAAAEAZhE9UXlk3NV155ZVZvXp1Kb8LAAAAAAAAAAAAAACAYoRPVN5gw6eWlpZce+21OffcczN+/Pjss88+SZLOzs5MmjQptVqtHjMBAAAAAAAAAAAAAAAYhLZGD4Ciuru7B/V8rVbLEUcckWnTpiX5r3Bq+fLl+dWvfpUnnngiv/zlL/Mnf/In9ZgKAAAAAAAAAAAAAADAAAmfqLw93fh0zDHH5J3vfGfuv//+Pb7zwAMP5Pjjj0+SjBgxIuPHj8/48eMzYcKEum4FAAAAAAAAAAAAAABgYFobPQCK2jV8OuWUU/LP//zPOe200/b4/IgRI7Jp06bhmAYAAAAAAAAAAAAAAMAQufGJytsxfDryyCNzxx13pK2tLSeeeGL/+WGHHZauJFf9n/+Tiad8KqNHj27AUgAAAAAAAAAAAAAAAAbKjU9U3o7h0/Lly7N69eokyaGHHprbbrstL774Yn76058mSY7++MdFTwAAAAAAAAAAAAAAABUgfKLyent7c9xxxyVJuru7M2nSpNRqtSTJGWeckUMPPbSR8wAAAAAAAAAAAAAAABgC4ROVN2PGjHzgAx/o//yLX/wit9xySwMXAQAAAAAAAAAAAAAAUJTwico74IAD0tnZudPZjBkz8vrrrzdoEQAAAAAAAAAAAAAAAEUJn2gKu4ZPr7zySi6++OIGrQEAAAAAAAAAAAAAAKAo4RNNYdfwKUl+9KMf5ZFHHmnAGgAAAAAAAAAAAAAAAIoSPtEU9hQ+1Wq1nHfeeenp6WnAIgAAAAAAAAAAAAAAAIoQPtEU9hQ+JcmTTz6Z2bNnD/MaAAAAAAAAAAAAAAAAihI+0RT2Fj4lyWWXXZZXXnllGNcAAAAAAAAAAAAAAABQlPCJptDV1bXX77Zs2eLWJwAAAAAAAAAAAAAAgIoRPtEU3uzGpyRZunTpMC0BAAAAAAAAAAAAAACgDMInmsJbhU/9z73JzVAAAAAAAAAAAAAAAAD89yF8oikMNHy65Zab67wEAAAAAAAAAAAAAACAMgifaAoDDZ9uv31eVq5cWec1AAAAAAAAAAAAAAAAFCV8oikMNHzq7enJ5MmTU6vV6rwIAAAAAAAAAAAAAACAIoRPVF5fX1+2bds24OeXLl2af/zHf6zjIgAAAAAAAAAAAAAAAIoSPlF5XV1dg37nggsuyGuvvVaHNQAAAAAAAAAAAAAAAJRB+ETldXZ2DvqdV199NRdddFEd1gAAAAAAAAAAAAAAAFAG4ROVN5TwKUluvPHGPPzwwyWvAQAAAAAAAAAAAAAAoAzCJypvqOFTkpx33nnp7u4ucQ0AAAAAAAAAAAAAAABlED5ReUXCp9/85jeZNWtWiWsAAAAAAAAAAAAAAAAog/CJyuvq6ir0/uWXX56XXnqppDUAAAAAAAAAAAAAAACUQfhE5RW58SlJ2tvbM23atJLWAAAAAAAAAAAAAAAAUAbhE5VXNHxKkgULFuTee+8tYQ0AAAAAAAAAAAAAAABlED5ReWWET0kyZcqUdHR0lPK7AAAAAAAAAAAAAAAAKEb4ROUNJXz63Oc+l4MPPninsxdeeCFXXnllWbMAAAAAAAAAAAAAAAAoQPhE5Q0lfPrud7+bdevW5eWXX85dd92VSy+9NJ/5zGcyd+7crFixog4rAQAAAAAAAAAAAAAAGIy2Rg+AovYUPr33ve/NIYcckn//93/f4zsPPvhgjjrqqIwZMyZjxozJKaeckiSp1WrZunVrXfcCAAAAAAAAAAAAAADw1tz4ROXtGj598IMfzLJly/L1r399r+889NBDezxvaWnJfvvtV+o+AAAAAAAAAAAAAAAABs+NT1TejuHT6NGj86//+q856KCDcsIJJ+z27Gmnn56/OP57OfbYY4dzIgAAAAAAAAAAAAAAAIPkxicqb8fwqb29PQsXLkyS/OEf/mGmTZuWn/3sZ7nrrruSJJPOOy+f/exnM3r06IZsBQAAAAAAAAAAAAAAYGCET1ReZ2dnvvrVr/Z/vvjii7Nx48a0tLTk2muvzVe+8pW8613vauBCAAAAAAAAAAAAAAAABkv4ROV99atfzcyZM/s/v/baa/n2t7/dwEUAAAAAAAAAAAAAAAAUJXyi8saOHZv29vadzm644YY88cQTDVoEAAAAAAAAAAAAAABAUcInmsKu4VOtVsuUKVPS19fXoEUAAAAAAAAAAAAAAAAUIXyiKWzZsmW3s0ceeSQ/+clPGrAGAAAAAAAAAAAAAAAg79avAAAgAElEQVSAooRPNIVdb3zabubMmXn99deHeQ0AAAAAAAAAAAAAAABFCZ9oCnu68SlJXnnllVx22WXDvAYAAAAAAAAAAAAAAICihE80hb2FT0kyZ86crFmzZhjXAAAAAAAAAAAAAAAAUJTwiabQ3t6+1+/6+vpyzbXXDuMaAAAAAAAAAAAAAAAAihI+0RTe7ManJPnNU08N0xIAAAAAAAAAAAAAAADKIHyiKbzZjU87PdfRUeclAAAAAAAAAAAAAAAAlEH4RFN4qxuftvvJT35S5yUAAAAAAAAAAAAAAACUQfhEUxjojU8L7rwzy5cvr/MaAAAAAAAAAAAAAAAAihI+0RQGeuNTX19fpkyZklqtVudFAAAAAAAAAAAAAAAAFCF8oikM9ManJFm6dGluv/32Oq4BAAAAAAAAAAAAAACgKOETTWGgNz5td8EFF2Tz5s11WgMAAAAAAAAAAAAAAEBRwieawmBufEqSdevW5corr6zTGgAAAAAAAAAAAAAAAIoSPtEUBnvjU5Jcc801efrpp+uwBgAAAAAAAAAAAAAAgKKETzSFoYRPPT09mTp1amq1Wh0WAQAAAAAAAAAAAAAAUITwiabQ3t4+pPcefPDBzJ8/v+Q1AAAAAAAAAAAAAAAAFCV8ovK2bduW7u7uIb8/Y8aMIYdTAAAAAAAAAAAAAAAA1IfwicorGi299NJLueqqq0paAwAAAAAAAAAAAAAAQBmET1Teli1bCv+O73//+3nuuedKWAMAAAAAAAAAAAAAAEAZhE9UXtEbn5Jk27ZtmTp1amq1WgmLAAAAAAAAAAAAAAAAKEr4ROUN5canffbZZ7ezJUuWZOHChWVMAgAAAAAAAAAAAAAAoKC2Rg+AooZy49Njjz2Wzs7OLFu2LI888kiWLVuWl156Kd/61rdy4oknZt99963DUgAAAAAAAAAAAAAAAAZK+ETl7enGp9bW1hxyyCF5+eWX9/jOsmXLMmnSpHziE5/oP/uP//iPPProo1mzZk2OOOKIuu0FAAAAAAAAAAAAAADgrbU2egAUteuNT6NHj87dd9+d6dOn7/Wdn//857udjRkzJqeeeqroCQAAAAAAAAAAAAAA4L8BNz5ReTve+NTa2pr7778/xxxzTA4++ODdnv2D9/9BPn3Kp3LyyScP50QAAAAAAAAAAAAAAAAGSfhE5W0Pn/bbb790dHTk3nvvzTHHHJOPfvSj+dM//dOMHz8+/+Oo/5U5q5K/v/Hv88kPvLvBiwEAAAAAAAAAAAAAAHgrrY0eAEW1t7fnc5/7XA499NAkydVXX53Vq1fnHe94Rx5++OH83d/9XT517KcavBIAAAAAAAAAAAAAAIDBED5ReZ/97Gdz1113pb29PUmybdu2zJgxo8GrAAAAAAAAAAAAAAAAKEL4ROV97GMfS1tbWzZt2tR/ds8992TJkiUNXAUAAAAAAAAAAAAAAEARwieaQl9fXzZv3rzT2be+9a1s27atQYsAAAAAAAAAAAAAAAAoQvhEU2hvb0+tVtvp7Jlnnsns2bMbtAgAAAAAAAAAAAAAAIAihE80hU2bNu3x/K//+q+zfv36YV4DAAAAAAAAAAAAAABAUcInmsLewqfNmzfnkksuGeY1AAAAAAAAAAAAAAAAFCV8oinsLXxKkrlz5+bpVU8P4xoAAAAAAAAAAAAAAACKEj7RFN4sfEqSWdfNGqYlAAAAAAAAAAAAAAAAlEH4RFN4q/Bp5cqVw7QEAAAAAAAAAAAAAACAMgifaAqbN28e0HPtHR11XgIAAAAAAAAAAAAAAEAZhE80hbe68Wm7m2++uc5LAAAAAAAAAAAAAAAAKIPwiaYw0PBp/vz5efbZZ+u8BgAAAAAAAAAAAAAAgKKETzSFgYZPvT09mT59ep3XAAAAAAAAAAAAAAAAUJTwiaYw0PApSe67774sWrSojmsAAAAAAAAAAAAAAAAoSvhEUxhM+JQk06dPT1dXV53WAAAAAAAAAAAAAAAAUJTwiaYw2PDpueeey3XXXVenNQAAAPD/2LvTcKvrev//r8VmMwqKgljOqWlmigMqnH6N6vnp8VippWZlZiXWKfOPpeZIgBqpUTmAOQ+JY2bpMbWyVGZHtHBCGZRxA5uZPa3/jd+R4wDC3mttYS8ej+viuvb6Du/v+xb3ntcHAAAAAAAAAAAolfCJitDc8ClJBg8enJkzZ7bCNgAAAAAAAAAAAAAAAJRK+ERFaEn4tGTJkpx55pmtsA0AAAAAAAAAAAAAAAClEj5RERYvXtyi92666aaMHTu2zNsAAAAAAAAAAAAAAABQKuETFaElJz695Qc/+EGamprKuA0AAAAAAAAAAAAAAAClEj5REUoJnyZOnJgbbrihfMsAAAAAAAAAAAAAAABQMuETbd7KlStTV1dX0oyzzjortbW1ZdoIAAAAAAAAAAAAAACAUgmfaPNKOe3pLXPmzMnPfvazMmwDAAAAAAAAAAAAAABAOQifaPPKET4lya9//etMnjy5LLMAAAAAAAAAAAAAAAAojfCJNq8l4dPIkSNzzjnn5LOf/Wy6dOmSJGloaMipp56aYrFY7hUBAAAAAAAAAAAAAABopvbrewEo1ZrCpw4dOqSurm619zp37pzBgwcnSerr6/Pss8/miSeeyBNPPJHx48fngAMOaLV9AQAAAAAAAAAAAAAAWDsnPtHmLV68+D3XzjnnnJx77rlrfOexxx5b9Xd1dXX222+/nHrqqbnjjjtETwAAAAAAAAAAAAAAABsAJz7R5r37xKdf/OIXOf300/P444+v9vldd901W2+99QexGgAAAAAAAAAAAAAAAC3kxCfavLfCp06dOiX539Oc+vbtmy5dumSvvfbKUUcdlSS56667Mnny5Jx//vnrZ1kAAAAAAAAAAAAAAADWifCJNm/RokXZfffdc8ghhyRJ7rvvvjzyyCPp2LFj5syZk2eeeSY//OEPkyQ9evRYn6sCAAAAAAAAAAAAAACwjoRPtHn77LNPRo8enYaGhlXXfvSjH6WhoSFdu3Zdj5sBAAAAAAAAAAAAAADQUsIn2ryDDjoom266aRYuXLjq2gsvvJCrr756PW4FAAAAAAAAAAAAAABAKYRPVIy3h09Jct5552XBggXraRsAAAAAAAAAAAAAAABKIXyiYtTW1r7jd01NTQYNGrSetgEAAAAAAAAAAAAAAKAUwicqxrtPfEqSK664IpMnT14P2wAAAAAAAAAAAAAAAFAK4RMVob6+PkuXLn3P9YaGhgwcOHA9bAQAAAAAAAAAAAAAAEAphE9UhNra2jXee+CBBzJ+/PgPcBsAAAAAAAAAAAAAAABKJXyiIixcuPB97//m8ss/oE0AAAAAAAAAAAAAAAAoB+ETFWFt4dO0qVM/oE0AAAAAAAAAAAAAAAAoB+ETFWFt4dNbahctauVNAAAAAAAAAAAAAAAAKAfhExWhtrZ2nZ678cYbWncRAAAAAAAAAAAAAAAAykL4REVY1xOf/njfH/PCCy+08jYAAAAAAAAAAAAAAACUSvhERVjX8KmpqSmnnXZaisViK28EAAAAAAAAAAAAAABAKYRPVIR1DZ+S5OGHH86f/vSnVtwGAAAAAAAAAAAAAACAUgmfqAjNCZ+SZODAgamrq2ulbQAAAAAAAAAAAAAAACiV8ImK0Nzw6eWXX85vfvObVtoGAAAAAAAAAAAAAACAUgmfqAjNDZ+S5Gc/+1nmzJnTCtsAAAAAAAAAAAAAAABQKuETFaG2trbZ7yxatCjnnntuK2wDAAAAAAAAAAAAAABAqYRPVISWnPiUJNdcc02effbZMm8DAAAAAAAAAAAAAABAqYRPVISWhk9NTU350Y9+lGKxWOaNAAAAAAAAAAAAAAAAKIXwiYrQ0vApSR599NH8/ve/L+M2AAAAAAAAAAAAAAAAlEr4RJvX0NCQxYsXlzTj9NNPz4oVK8q0EQAAAAAAAAAAAAAAAKUSPtHmLVq0qOQZr732WoYPH16GbQAAAAAAAAAAAAAAACgH4RNt3sKFC8syZ+jQoZk5c2ZZZgEAAAAAAAAAAAAAAFAa4RNtXm1tbbPfOfHEE9O/f/9UV1evurZkyZKcffbZJe9TV1dX8gwAAAAAAAAAAAAAAICNnfCJNq8lJz4deuiheeKJJ1JbW5tHH300gwcPziGHHJK77747Tz75ZEn7XHLJJSW9DwAAAAAAAAAAAAAAgPCJCrC68Omwww7LKaecssZ3Hn/88SRJ586d8+lPfzrnnHNO/vznP6empibbb799SfsMGzYskyZNKmkGAAAAAAAAAAAAAADAxk74RJv37vBp4MCBue+++3LYYYet8Z2XX355tdfbt2+fnj17tniXlStXpra2Nj/5yU9aPAMAAAAAAAAAAAAAAADhExXgrfCpuro61113XS655JJUVVWlf//+SZJCoZCddtwuSfKlH5yf119/PQ888ECr7FJTU5MkefDBB/Pwww+3yjcAAAAAAAAAAAAAAAA2BsIn2ryFCxemZ8+e+etf/5oTTzxx1fXNN988f/vb3zJ//vxMevT+fPWA7TJ6XsdcOaE2DY1NrbLLvHnzVv394x//OI2Nja3yHQAAAAAAAAAAAAAAgEonfKLN22677TJhwoR88pOffM+9z3zmM9lss83Srl0hQ7+4R374uZ1z+8Tp+d6tT2VFffmjpLeHT88++2xuueWWsn8DAAAAAAAAAAAAAABgYyB8os076aSTssMOO6z1uUKhkP/vkF1zwX/unof+OTsnXDc+i1bUl3WXt4dPSXL22Wdn2bJlZf0GAAAAAAAAAAAAAADAxkD4xEbnm/+2Y351bJ88OXVBjhk5NnMWryjb7HeHT2+88UaGDx9etvkAAAAAAAAAAAAAAAAbC+ETG6Uv9Nk6136zb16ftzRHXzUmU2uWlmXuu8OnJLn44oszZ86csswHAAAAAAAAAAAAAADYWAif2Gh9+qO98rvvHJBFK+pz1FVj8sKbtSXPXF34tHjx4gwaNKjk2QAAAAAAAAAAAAAAABsT4RMbtb2365G7BvRLdVUhx44cm7FTakqat7rwKUlGjhyZyZMnlzQbAAAAAAAAAAAAAABgYyJ8YqO385bdcvcp/bNl9475xnXj89ALs1o8a03hU2NjY84444wWzwUAAAAAAAAAAAAAANjYCJ8gyYc365y7BvTP7h/qngG3PJk7Jkxv0Zw1hU9Jct999+Xvf/97S1cEAAAAAAAAAAAAAADYqAif4H/06Noht377gPzbzj3zk7ufy1WPvppisdisGe8XPiXJ6aefnqamplLWBAAAAAAAAAAAAAAA2CgIn+BtunZsn2tP6Jv/3OvD+fmDkzP0/n+lqWnd46e1hU8TJ07M7bffXuqaAAAAAAAAAAAAAAAAFU/4BO/SoX27/OqYPjmh3/a55vHXcvpdz6a+ce2nNC1btizLly9f63NnnXVWVqxYUY5VAQAAAAAAAAAAAAAAKpbwCVajXbtCLjji4xl48Edzz1Nv5OSbn8zyusb3fWdtpz29ZerUqbn88svLsSYAAAAAAAAAAAAAAEDFEj7BGhQKhfzg87tk6Jf2yN9enJOvXTsutcvq1/j8uoZPSTJkyJDU1NSUY00AAAAAAAAAAAAAAICKJHyCtTj+gO1zxVf3yaQZtfnKyDGZVbtitc81J2Sqra3NkCFDyrUiAAAAAAAAAAAAAABAxRE+wTo47BMfyg0n9s2MBcty1FWjM2Xukvc805wTn5LkiiuuyCuvvFKuFQEAAAAAAAAAAAAAACqK8AnWUf+de2bUd/tlRX1jjh4xJs/NWPiO+80Nn+rr63PWWWeVc0UAAAAAAAAAAAAAAICKIXyCZvjENpvmrlP6p0uHqhx39dg88cr/xk7NDZ+S5K677sqYMWPKuSIAAAAAAAAAAAAAAEBFED5BM+3Ys2vuPqV/tunRJSdePyH3PzczScvCpyQZOHBgisViOVcEAAAAAAAAAAAAAABo84RP0AK9u3fKHSf3y57bbJr/uu2p3Dx2aovDpzFjxuSee+4p84YAAAAAAAAAAAAAAABtm/AJWmjTLtW5+aQD8rldt8y59z6flzrs3OJZZ5xxRurq6sq4HQAAAAAAAAAAAAAAQNsmfIISdO5QlRFf3zdH7rN1FmzdPz0OGpCk0Ow5r776akaMGFH+BQEAAAAAAAAAAAAAANoo4ROUqLqqXS45eq80vvBQuu97eHoe8eOkXftmzxk0aFAWLlzYChsCAAAAAAAAAAAAAAC0PcInKINCIZnz0Igs+Nt16fqxT2XLo89LobpTs2bMnz8/F110USttCAAAAAAAAAAAAAAA0LYIn6AMlixZkrq6uiwaf0/mPTA8nbbfK72PHZp2nbs3a86vfvWrTJ06tZW2BAAAAAAAAAAAAAAAaDuET1AG8+bNW/X30kmPZO7vh6a61w7Z6vifp6pbr9W+s8suu6RDhw7vuLZy5cqcffbZJe+zaNGikmcAAAAAAAAAAAAAAACsT8InKIO3h09JsvyV8Zlzx3mp6tojW31tWKq32PY973z/+9/PggUL8sgjj+SnP/1p+vXrl6qqqtx6662ZOHFiSfs88sgj+dvf/lbSDAAAAAAAAAAAAAAAgPVJ+ARl8O7wKUm27rA8+9Q+lrSrSu/jf54OH971HffHjRuXLl265POf/3yGDh2a0aNHZ8GCBXnggQcyffr0kvaZNWtWzjzzzBSLxZLmAAAAAAAAAAAAAAAArC/CJyiDd4dPhxxySCZMmJDvHXdEZt/y4zStWJLexwxNpx33WfXM2LFj3zOnW7duOfTQQ/OlL32ppH1mzZqV8ePH59577y1pDgAAAAAAAAAAAAAAwPoifIIyeHv4dMYZZ+SBBx7I5ptvnv333z8NtbMz65afpGHBG+l99Pk5+Ntn5de//nVGjRrVavvMmjUrSXL22WenoaGh1b4DAAAAAAAAAAAAAADQWoRPUAY1NTXp3Llzbrvttlx88cWpqqpKkmy22Wa57LLLct8dt+SJwV/OgTv3yktb/Fs22efw7L///q22z1vh07/+9a/cfPPNrfYdAAAAAAAAAAAAAACA1tJ+fS8AlaBbt24ZPXp0+vTp8557p5122qq/bzhxy5w66ukM+uM/U7OkLgMP+WgKhULZ93krfEqS888/P8cdd1w6depU9u8AAAAAAAAAAAAAAAC0Fic+QRn85Cc/WW309G6dqqty5fH75rj9t83lf3slP/39pDQ2Fcu+z9vDp+nTp+fKK68s+zcAAAAAAAAAAAAAAABak/AJyqA5pzZVtSvkwi99It//7E65bfz0fP/Wp7KivrFsuxSLxXeET0ly4YUXpra2tmzfAAAAAAAAAAAAAAAAaG3CJ1gPCoVCfvzvu+Xcw3fPgy/MyjevH5/FK+rLMnv+/Pmpr3/nrJqamlx66aVlmQ8AAAAAAAAAAAAAAPBBED7BenTSJ3fM8GP6ZOLrC3Ls1WMzd/HKkme++7Snt1x22WWZPXt2yfMBAAAAAAAAAAAAAAA+CMInWM++uPfW+e0J++XVuUvy5RGjM33+spLmrSl8Wrp0aYYOHVrSbAAAAAAAAAAAAAAAgA+K8Ak2AJ/ddcvc+u0Ds2BZfY68anT+NXNRi2etKXxKkhEjRuS1115r8WwAAAAAAAAAAAAAAIAPivAJNhD7bt8jdw7ol6pCIV8ZOSbjX5vfojnvFz7V19fnvPPOa+mKAAAAAAAAAAAAAAAAHxjhE2xAPtq7W+7+Xv/06tYxX792XB755+xmz3i/8ClJbr311jz33HMtXREAAAAAAAAAAAAAAOADIXyCDczWm3XOXQP6Z7etuuXkW57MnROnN+v9mTNnvu/9YrGYs88+u5QVAQAAAAAAAAAAAAAAWp3wCTZAm3ftkN9958D032mL/Piu5zLy76+u87trO/EpSf70pz/l8ccfL2VFAAAAAAAAAAAAAACAViV8gg1U147tc80J++XwPT+Ui/57ci584F8pFotrfW9dwqckOfPMM9dpHgAAAAAAAAAAAAAAwPogfIINWMf2VfnVsXvnG/22z9X/mJLT73wuDY1N7/vOuoZPTzzxRB544IFyrAkAAAAAAAAAAAAAAFB2wifYwFW1K2TQER/PaQd9NHc/NSMn3/xkltc1rvbZurq61NTUrPPss846K42Nq58FAAAAAAAAAAAAAACwPrVa+FQoFC4oFApvFAqFZ/7n32Gt9S2odIVCIacetEsGf3GP/PXFOfnGdeNSu6z+Pc/NmTOnWXMnTZqU2267rVxrAgAAAAAAAAAAAAAAlE1rn/j0y2Kx2Od//j3Qyt+Civf1A7fPb47bO89MX5hjrh6T2YtWvOP+rFmzmj3z3HPPTV1dXblWBAAAAAAAAAAAAAAAKIvWDp+AMjt8zw/n+m/un2nzl+Woq0bntXlLV91rSfj0+uuv5+qrry7nigAAAAAAAAAAAAAAACVr7fDpvwqFwnOFQuG6QqHQo5W/BRuNT+7SM7d958Asq2vMl0eMzvNv1CZJZs6c2aJ5gwcPzpIlS8q5IgAAAAAAAAAAAAAAQElKCp8KhcIjhULh+dX8+0KSq5LslKRPkplJLl3DjO8WCoWJhUJh4ty5c0tZBzYqe227We4c0C8d21fl2KvHZvSr81p04lOSzJkzJ8OHDy/zhgAAAAAAAAAAAAAAAC1XUvhULBYPKhaLe6zm3x+KxeLsYrHYWCwWm5L8Nsn+a5hxdbFY3K9YLO7Xq1evUtaBjc5OvTbJ3af0z4c365RvXjchT88rtnjWsGHDMm/evDJuBwAAAAAAAAAAAAAA0HIlhU/vp1AofOhtP7+U5PnW+hZszLbatFPuOLlf9ti6e57qtHc22evfWzRn8eLFueiii8q8HQAAAAAAAAAAAAAAQMu0WviUZFihUJhUKBSeS/LZJKe14rdgo7ZZlw659dsHpuOCKdni//4g3ft9pUVzrrjiikybNq3M2wEAAAAAAAAAAAAAADRfq4VPxWLx68Vi8RPFYnHPYrF4RLFYnNla3wKSzh2qUv/Xy7Pk+b+mx6e+kR6f/26SQrNmrFy5MoMGDWqdBQEAAAAAAAAAAAAAAJqhNU98Aj5AxWIxs2e+mZr7f5lFE+5N9/2OSM//HJi0a9+sOTfccEP+9a9/tdKWAAAAAAAAAAAAAAAA60b4BBVi8eLFWbZsWZJiFvz1mix49Pp03f0z2fKoc1Oo7rjOc5qamnLOOeeUZaeZMx30BgAAAAAAAAAAAAAAtIzwCSrErFmz3vF70bi7U/Pfv0qnHfqk97FD065Tt/e888Mf/jCPPvpofvrTn2a//fZLoVBIktxzzz0ZN25cyTsNHDgwjY2NJc8BAAAAAAAAAAAAAAA2PsInqBDvDp+SpPHlx7Pt1AfTYcuPpPfxP09Vt57vuD9p0qR8+tOfztChQzNhwoTMmTMno0aNykknnZQrr7wyxWKxpJ0eeuih3HbbbSXNAAAAAAAAAAAAAAAANk7CJ6gQ7w6fdt5554wdOzYX/ddxmX3HeWnfbYts9bVfpP0W26x65qmnnkpTU9Oq3z179swxxxyTa665JjfccENJ+yxfvjw1NTUZNGhQ6uvrS5oFAAAAAAAAAAAAAABsfIRPUCHeHj594QtfyIQJE7Lnnntm7733Tt2MFzLrd2em0K59tvrqz7PFR/fNQQcdlAEDBmTFihWrnVcoFFIoFFq8zxtvvJEkeeWVV3LTTTe1eA4AAAAAAAAAAAAAALBxar++FwDKY9asWWnXrl2GDBmSM844I+3a/b+ucZNNNsmJJ56YXr16ZYc9Ouemad2y8JghOfdr++ZTH+3VavvMmDFj1d+DBw/O17/+9XTo0KHVvgcAAAAAAAAAAAAAAFQW4RNUiMbGxjz00EP5/Oc//55711577aq/j1y0IidcPyEn3Tghl36lT47Y68Otss/bw6epU6fm2muvzSmnnNIq3wIAAAAAAAAAAAAAACpPu/W9AFAeQ4YMWW309G5bdu+UUd89MHtv1yOnjno6N45+vVX2eXv49NZ+y5cvb5VvAQAAAAAAAAAAAAAAlUf4BBWiurp6nZ/dtHN1bvrW/jnoY71z/n0v5LKHX0qxWCzrPu8On958882MHDmyrN8AAAAAAAAAAAAAAAAql/AJNlKdqqty1fH75Cv7bZNf/+XlnHPv82lsKl/89O7wKUkuuuiiLF26tGzfAAAAAAAAAAAAAAAAKpfwCTZi7ava5edH7ZlTPrNTbh03LT+47amsbGgsy+zVhU9z5szJ5ZdfXpb5AAAAAAAAAAAAAABAZRM+wUauUCjkjP+7W875j4/lgUmzcuL1E7JkZUPJc1cXPiXJsGHDsmjRopLnAwAAAAAAAAAAAAAAlU34BCRJvv1/PpLLvrJXxr02P8ddPTbzlqxs8ay6urrMnj17tffmz5+f4cOHt3g2AAAAAAAAAAAAAACwcRA+Aascuc82+e039s3LcxbnyyPGZPr8ZS2aM3PmzPe9f9lll2XBggUtmg0AAAAAAAAAAAAAAGwchE/AO3xut9659dsHpGbJyhx11ehMnrWo2TNmzJjxvvdra2tz6aWXtnRFAAAAAAAAAAAAAABgIyB8At5j3+03z50D+qdQSL4yYkwmvj6/We+vLXxKkuHDh2fu3LktXREAAAAAAAAAAAAAAKhwwidgtXbdqlvuGtA/W2zSMcdfMy5/nTx7nd9dl/Bp6dKlGTZsWCkrAgAAAAAAAAAAAAAAFUz4BKzRtpt3yZ0D+uWjvbvlOzc9mbufXHvQlKxb+JQkV1xxRWbOnFnKigAAAAAAAAAAAAAAQIUSPgHvq+cmHXPbdw/MgR/ZPAPvfDbXPDZlre+sa/i0fPnyXHTRRaWuCAAAAAAAAAAAAAAAVCDhE7BWm3Rsn+u+2TeHfWKrDLn/X7n4vyenWCyu8fl1DZ+SZOTIkZk+fXo51gQAAAAAADREJPcAACAASURBVAAAAAAAACqI8AlYJx3bV+U3x+2T4w/YLiP+/mrOuPu5NDQ2rfbZ5oRPdXV1GTJkSLnWBAAAAAAAAAAAAAAAKoTwCVhnVe0KGfLFPXLq53fJHRNnZMAtT2VFfeM7nmloaMjMmTObNfe6667LlClTyrkqAAAAAAAAAAAAAADQxgmfgGYpFAo57eCPZtARH89fJs/ON64dn9rl9avuz549O42Nje8z4b0aGhoyePDgcq8KAAAAAAAAAAAAAAC0YcInoEVO6L9DfnXs3nl6+oIcM3JM5ixakSSZMWNGi+bddNNNefHFF8u5IgAAAAAAAAAAAAAA0IYJn4AWO2KvD+faE/pm2vxlOXrEmEytWdri8KmpqSmDBg0q84YAAAAAAAAAAAAAAEBbJXwCSvKpj/bK775zYBavqM9RV43JU6/NafGsUaNG5fnnny/jdgAAAAAAAAAAAAAAQFslfAJK1mfbzXLngP7pUFXI7XM/nI7bfqJFc4rFYs4///wybwcAAAAAAAAAAAAAALRFwiegLHbecpPc/b3+qa5fkt5fGZTOu/Rr0Zx77rknTz31VJm3AwAAAAAAAAAAAAAA2hrhE1A2H9q0c3o8fUPqZk9Jry+emU32PKRFc84777wybwYAAAAAAAAAAAAAALQ1wiegrGa+/kpm3352Vrz+TLY49IfpfuCXmz3j/vvvz9ixY1thOwAAAAAAAAAAAAAAoK0QPgFl09TUlDfeeCPF+pWZc/fgLH3h0fT49Anp8blvJyk0a1a5Tn165ZVXUiwWyzILAAAAAAAAAAAAAAD44AifgLKZO3du6uvr/9+PpobM+9OlWTTxvnTv+8Vs8R+nJe2q3vNO//79c+GFF+aTn/xk2rX73/+SHn744fzjH/8oeac//OEPefjhh0ueAwAAAAAAAAAAAAAAfLCET0DZzJgx411Xilnwl6vT8cU/Z5M9Ppctjzw3heqO73hi/vz5Oeuss/LYY49l7ty5GTVqVL7xjW+kV69eOeecc0o+rWnq1Km54IILnPoEAAAAAAAAAAAAAABtjPAJKJt3h09du3bNrbfemt+dc0JqHvxNOu24d7Y8Zkjaddpk1TMvvfRSli9fniTZfPPNc8wxx+TGG2/MrFmzcumll2bZsmUl7TR16tSMGTPGqU8AAAAAAAAAAAAAANDGCJ+Asnl7+LTHHntk4sSJ+epXv5qPf/zjWf78I5n7h4vTsffO6X38z1PVbYsUCoXssssumTlz5ntmtWvXLn379k3Xrl1L2mnatGlJ4tQnAAAAAAAAAAAAAABoY4RPQNm8FT5961vfyrhx47LbbrslSTp16pS+fftmn17tcmDdk9mk17bpM/DmPPfa7EyePDkf+chHWm2nqVOnJolTnwAAAAAAAAAAAAAAoI1pv74XACrHggULcsMNN+SEE054z70xY8as+vv5N2rzzevH5xs3PZPrv9k3e227Wavss3jx4ixYsGDV7wsuuCAHH3xwCoVCq3wPAAAAAAAAAAAAAAAoHyc+AWUzbNiw1UZP77bH1pvmrgH907VjVY777dg89vLcVtln2rRp7/jt1CcAAAAAAAAAAAAAAGg7hE9A2XTv3n2dn92hZ9fcPaB/ttu8S751w4T86bk3y77Pu8OnJDn//PNTLBbL/i0AAAAAAAAAAAAAAKC8hE/AerNl9065/eR+2XvbHvnBbU/n5jGvl3X+1KlT33Nt7Nixeeihh8r6HQAAAAAAAAAAAAAAoPyET8B6tWnn6tx00v75/G5b5tw/vJBfPvxS2U5kWl34lCQXXHCBU58AAAAAAAAAAAAAAGADJ3wC1rtO1VUZ8bV9c/S+2+RXf3k55/3hhTQ2lR4mTZs2bbXXnfoEAAAAAAAAAAAAAAAbPuETsEFoX9Uuvzh6z5z8qY/k5rFT88NRT2dlQ2NJM9d04lPi1CcAAAAAAAAAAAAAANjQCZ+ADUahUMhZh30sZx26W+5/bmZOumFilqxsaPG8NZ34lDj1CQAAAAAAAAAAAAAANnTCJ2CDc/Knd8ovjt4zY6bU5Pjfjk3NkpXNnlFfX5833njjfZ9x6hMAAAAAAAAAAAAAAGy4hE/ABunL+22bkV/bN5NnLc6XR47JjAXLmvX+m2++maampvd9xqlPAAAAAAAAAAAAAACw4RI+ARusg3bvnVu+fUDmLl6Zo68ak5dmL17nd6dOnbpOzzn1CQAAAAAAAAAAAAAANkzCJ2CD1neHzXPHyf3SVCzmyyPG5MmpC9bpvXUNn8aOHZs///nPpawIAAAAAAAAAAAAAAC0AuETsMH72Ie65+5T+qdHl+ocf83Y/O3FOWt9Z9q0aes836lPAAAAAAAAAAAAAACw4RE+AW3Ctpt3yV2n9M/OW26S79w4Mb9/esb7Pr+uJz4lybhx45z6BAAAAAAAAAAAAAAAGxjhE9Bm9NykY277zoHpu8PmOe32Z3Pt46+t8dnmnPiUOPUJAAAAAAAAAAAAAAA2NMInoE3p1qk615/YN4fusVUG/+mfGfbg5NUGS8058Slx6hMAAAAAAAAAAAAAAGxohE9Am9OpuiqXf3WffPWA7XLlo6/mzLsnpaGxadX9YrHY7PApceoTAAAAAAAAAAAAAABsSIRPQJtU1a6QoV/cIz/43M65feL0fO/Wp7KivjFJUlNTk+XLlzd7plOfAAAAAAAAAAAAAABgwyF8AtqsQqGQgYfsmvP/c/c89M/ZOeG68Vm0or5Fpz29xalPAAAAAAAAAAAAAACwYRA+AW3eif+2Y351bJ88OXVBjh05Ni+8Oq3Fs8aNG5cHH3ywjNsBAAAAAAAAAAAAAAAtIXwCKsIX+myda07YL6/NW5pLn03ab9q7xbOc+gQAAAAAAAAAAAAAAOuf8AmoGJ/Zdcv87jsHZHlDIb2/9otU99qxRXPGjx/v1CcAAAAAAAAAAAAAAFjPhE9ARdl7ux7Zeep9SVNjtjr+4nTc5uMtmuPUJwAAAAAAAAAAAAAAWL+ET0DFmfPKc5l1y0/SuGR+eh8zOJ13PqDZM5z6BAAAAAAAAAAAAAAA65fwCag406ZNS+PiuZl16xmpm/Naen3pp+n6iYObPaecpz498cQTZZkDAAAAAAAAAAAAAAAbC+ETUFGWLVuWuXPnJkmali/K7FFnZ8XUZ9PzsFPTff+jVvvOVlttlSOOOCKdO3d+x/VynfrU0NCQU045JY2NjSXPAgAAAAAAAAAAAACAjYXwCago06dPf8fvYv2KzLnrZ6l/ZUx6fPbEbPbZbyUpvOOZlStX5t57701NTU3uv//+DBgwINtss02S8pz6NGPGjEyaNCn33HNPSXMAAAAAAAAAAAAAAGBjInwCKsrUqVPfc+37p5ycP5z1pSx68o/ZdP8js8VhP0raVa26v2DBgrz55pvp3LlzDjvssFx11VWZNm1ann766Rx++OF5+eWXS9ppypQpSZKhQ4eWHFEBAAAAAAAAAAAAAMDGov36XgCgnKZNm7bq78022yzXXnttjjzyyNTX12fJ369L09KF2exTX0+7zt0y7w8/T7FhZZJk0qRJ2XrrrVe9WygU0qdPn/Tp06fknd4Kn5599tncf//9Ofzww0ueCQAAAAAAAAAAAAAAlc6JT0BFeevEpwMPPDBPP/10jjzyyCRJdXV1Pvaxj2XxuDtT/cxd6bJT3+z34xtzyx335OWXX87BBx/caju9FT4lyZAhQ5z6BAAAAAAAAAAAAAAA60D4BFSU6dOn54wzzsg//vGP7LDDDu+498c//jFLly7Nyw9enyu/tm8WFrrnphlbZJNe26SqqqrVdnp7+DRu3Lj85S9/abVvAQAAAAAAAAAAAABApRA+ARXl/PPPz8UXX5zq6ur33Ntuu+3SqVOnJMlhn/hQrj+xb2YsWJajrhqdKXOXtNpOr7766jt+DxkypNW+BQAAAAAAAAAAAAAAlUL4BFSUHXfccZ2f/bede2bUd/tlRX1jvjxiTCbNqG2Vnd5+4lOS/P3vf89jjz3WKt8CAAAAAAAAAAAAAIBKIXwCNmqf2GbT3DmgXzpVV+XYq8dk9Cvzyjp/4cKFmT9//nuuDx06tKzfAQAAAAAAAAAAAACASiN8AjZ6H+m1Se75Xv9s06NLvnn9hDwwaWbZZr/22murvf7nP/85EydOLNt3AAAAAAAAAAAAAACg0gifAJL07t4pd5zcL3tus2m+/7uncsvYqWWZO2XKlDXec+oTAAAAAAAAAAAAAACsmfAJ4H9s2qU6N590QD6765Y5597n8+u/vJxisVjSzPcLn+69995MmjSppPkAAAAAAAAAAAAAAFCphE8Ab9O5Q1VGfn3fHLnP1rns4ZdywX0vpKmp5fHT+4VPSXLhhRe2eDYAAAAAAAAAAAAAAFQy4RPAu1RXtcslR++V7/yfHXPjmKk59fZnUtfQ1KJZawufbr/99rz44ostmg0AAAAAAAAAAAAAAJVM+ASwGu3aFXL2f+yesw7dLX989s2cdOOELF3Z0Ow5awufisViLr744pauCQAAAAAAAAAAAAAAFUv4BPA+Tv70Thl29J554pV5+eo14zJ/ad06v9vQ0JDXX399rc/dfPPN6/QcAAAAAAAAAAAAAABsTIRPAGvxlf22zciv75fJMxfl6BGj88bC5ev03owZM9LQsPZTohobGzNs2LBS1wQAAAAAAAAAAAAAgIoifAJYBwfv3js3fWv/zF20MkdfNTqvzFm81nemTJmyzvOvvfbavPnmm6WsCAAAAAAAAAAAAAAAFUX4BLCODvjIFrn95H6pbyzm6BFj8vS0Be/7fHPCp7q6ulxyySWlrggAAAAAAAAAAAAAABVD+ATQDLt/uHvuOaV/Nu1cna/+dlz+/tLcNT7bnPApSUaMGJG5c9c8DwAAAAAAAAAAAAAANibCJ4Bm2m6LLrlzQL/s2LNrTrphQv7wzBurfa654dPy5cvzy1/+shwrAgAAAAAAAAAAAABAmyd8AmiBLbt1yqiTD8y+2/fIqaOeyfVPvPaeZ5obPiXJ5ZdfngULFpRjRQAAAAAAAAAAAAAAaNOETwAt1L1TdW781v45ZPfeGfTHf+bSh15MsVhcdb8l4dPixYtz+eWXl3NNAAAAAAAAAAAAAABok4RPACXoVF2VK4/fJ8f23Ta/+esr+envn09jUzG1tbWpqalp0czhw4dn8eLFZd4UAAAAAAAAAAAAAADaFuETQInaV7XLRUd+It//7E65bfy0fP/Wp/LiK80/7ekt8+fPz4gRI8q4IQAAAAAAAAAAAAAAtD3CJ4AyKBQK+fG/75ZzD989D74wKz99cHoKHTq3eN4ll1yS5cuXl3FDAAAAAAAAAAAAAABoW4RPAGV00id3zPBj+mTK4nbpfdxFaddlsxbNmTNnTq655poybwcAAAAAAAAAAAAAAG2H8AmgzL6499bZZ+n4VG+xTbY6fljab9q7RXOGDRuWurq6Mm8HAAAAAAAAAAAAAABtg/AJoBUsfmlcZo86J+06d0vvr/0i1b12+P/Zu9M4r8t6b+CfGRZZBFwQccVdyywVEVGPpd12KssWNE0tUzOxuzotp+2cU6dFzSx3YFhUcMMdlaNli0t2AhREcEYG2RQC2UUYloFZ/veDbrkjtln+c8vMeb8fzf93Xdf3+jySJ35eV6NnLFiwIHfddVfRMhUKhaLNAgAAAAAAAAAAAACAlqb4BNAC5s6dm41vzsiSMd9PCvXpfcG12WW/9zZ6zi9+8YvU1tYWJdPDDz+ctWvXFmUWAAAAAAAAAAAAAAC0NMUngCKrq6vLG2+8kSSpWT4/i+/5burWvp1e5/08nQ89catnSktLs88++2zxfe7cubn//vuLkmv8+PG54447ijILAAAAAAAAAAAAAABamuITQJEtWLBgs1ea6lYvy+J7v5fa5fOz12f/PV3fd8YWZ+rr6zNjxoxMnDgxP/jBD3LkkUduWrv66qtTX1/f7FyzZs3Kr3/969TU1DR7FgAAAAAAAAAAAAAAtDTFJ4Aimzt37hbfBhx/TO744rGpnv9Kep717XQ/8TNb7HnttdfSv3///OIXv8iMGTNSWVmZa665Jt27d8+jjz7a7FwzZ87M/Pnz88ADDzR7FgAAAAAAAAAAAAAAtDTFJ4Ai+/viU2lpaX7yk5/kueeey0dOPy1rnvxV1lY+n91Pvyy7feiSzc5VVlZu9vuoo47KD3/4w7zwwgs566yzmpWppqYmr7/+epLk2muvLcoLUgAAAAAAAAAAAAAA0JLav9sBANqaOXPmJEn69OmTe++9N6eccsqmtSMPPzQv/9evU79+dXr0H5jefQ7LSe3m5uj3HJV+/fptc2anTp2alemNN95IbW1tkuTVV1/Nb37zm3ziE59o1kwAAAAAAAAAAAAAAGhJik8ARTZ37tycf/75KSsry2677bbZ2i9/+cu0b98+Rx11VB6oqMpNTyft3nNmvnbB8enUoV2LZZo1a9Zmv6+99lrFJwAAAAAAAAAAAAAAdmqKTwBF9q1vfSsnnnhiSkpKtlg788wzN/39zX32yZ67dsyPx72aL9z+Qm67uF96dO7QIplmzpy52e+//OUv+e///u+ceuqpLXIfAAAAAAAAAAAAAAA0V+m7HQCgrenfv/9WS09b84UBB+XWzx+XqX99O+cNn5Clq6tbJNM/vviU/O31KQAAAAAAAAAAAAAA2FkpPgG8yz7x/n0z6ksnZv5b6/LZsvF5ffnaot/xjy8+JckTTzyRioqKot8FAAAAAAAAAAAAAADFoPgEsBM49fCeue/yk7JuY13OHTY+FQtXFXX+1l58SpLrrruuqPcAAAAAAAAAAAAAAECxKD4B7CQ+cMBueWjQgOzSvl3OHzEx4+csL8rc6urqzJ8/f6trY8aMybx584pyDwAAAAAAAAAAAAAAFJPiE8BO5NC9ds0jV56cfXfrlC/dMSlPVSxq9sw5c+akUChsda2uri7XX399s+8AAAAAAAAAAAAAAIBiU3wC2Mn07tEpD14xIO/br3u+eu+U3Pfi1l9raqiZM2dud/22227LsmXLmnUHAAAAAAAAAAAAAAAUm+ITwE5oty4dc8+X++e0I/bKD8eWZ8izs7f5atOOzJo1a7vr69evz+DBg5s0GwAAAAAAAAAAAAAAWoriE8BOqkvH9hn5xRPymeP2y69+91p+9sT01Nc3vvy0oxefkuTWW2/NmjVrmhITAAAAAAAAAAAAAABahOITwE6sQ7vSXH/uB3LpKQdn1F/eyLcenJqNtfWNmrGjF5+SZOXKlRk5cmRTYwIAAAAAAAAAAAAAQNEpPgHs5EpLS/KjT7wn3/vokXl86pu5/K7JWbextsHnG/LiU5Jcf/312bhxY1NjAgAAAAAAAAAAAABAUSk+AbQCJSUl+eqHDsu1nz0mf561LBeMfCEr1+64pFRVVZXFixc36I6FCxdmzJgxzY0KAAAAAAAAAAAAAABFofgE0Iqcf+KBKbuob6YvWp1zh0/Im2+v3+7+WbNmNWr+L3/5y9TX1zcnIgAAAAAAAAAAAAAAFIXiE0Ar889H985dl56YJauqc07Z+MxeumabextbfJoxY0bGjRvX3IgAAAAAAAAAAAAAANBsik8ArdBJh+yZ+684KRvrCjl32PhM/evbW903c+bMRs++9tprUygUmhsRAAAAAAAAAAAAAACaRfEJoJU6et8eeeTKAenWqUMuGDkxz89ctsWexr74lCQvvPBCnn/++WJEBAAAAAAAAAAAAACAJlN8AmjF+uzZNQ8PGpA+e3bNZXdOyrhpb2623pQXn5K/vfoEAAAAAAAAAAAAAADvJsUngFauV/dOuf8rJ+W4A3fPv9z/cu4c/8amtaa8+JQkTz31VKZOnVqkhAAAAAAAAAAAAAAA0HiKTwBtQI/OHXLXpSfmw0ftnf8c92pu+MPMLF++PG+99VaTZ1533XVFTAgAAAAAAAAAAAAAAI2j+ATQRnTq0C7DLjo+5/bdP7c8PSs/fGRqUtL0/8w/8MADmTt3bhETAgAAAAAAAAAAAABAwyk+AbQh7duV5rpz3p9BHzw0f3h9Q3qe/d2kXfsmzaqvr8+vf/3rIicEAAAAAAAAAAAAAICGUXwCaGNKSkryg48dlb6l89L1qH9Kr3N+kpKOnZs0a9SoUVmyZEmREwIAAAAAAAAAAAAAwI4pPgG0Ue3n/CnLn7ghnQ48Jnuff01KO3dv9Izq6urccsstRc1VW1tb1HkAAAAAAAAAAAAAALRNik8AbdSsWbOy9tVnsuyRn6dDzwPS+8Lr0q57r0bPGTJkSFavXl20XIMHDy7aLAAAAAAAAAAAAAAA2i7FJ4A2qFAoZObMmUmS9XMnZ+kDP0pp193S+6JfpUPPPo2atWrVqgwfPrwouWpqavLjH/84S5cuLco8AAAAAAAAAAAAAADaLsUngDZo8eLFWbt27abfGxZWZsm930+S7H3hL7PLfu/Z6rmnnnoqt9xyS0477bSUlJRs+n7jjTdmw4YNzc41e/bsVFVVZejQoc2eBQAAAAAAAAAAAABA26b4BNAGvfPa09/r2WFjvt+3ferXrUqv836ezoecsMWedevW5etf/3r+9Kc/ZeHChRkyZEhOP/30LFmyJHfffXezc02fPj1JMmTIkKxfv77Z8wAAAAAAAAAAAAAAaLsUnwDaoFmzZm32e+DAgSkvL8/XLvl81o27KjXL/5q9Bv4oXY8+Y7N9f1+Y2mefffLVr341zzzzTBYtWpQ+ffo0O1dlZWWSZPny5UUpUgEAAAAAAAAAAAAA0HYpPgG0Qe8UmLp165bRo0fnoYceyp577pmSkpIcfmDvLLn/31I9vzw9P/HtdOv36fTu3TunnXZaevfuvdV5vXr1yplnntnsXO+8+JQkN954Y+rr65s9EwAAAAAAAAAAAACAtqn9ux0AgOKbNWtWTj311Nx999056KCDNlu79NJL88lly3LIYYfliRWdMuGML2fQB3+R73/0yJSUlLRorndefEqSGTNm5Le//W3OOuusFr0TAAAAAAAAAAAAAIDWSfEJoA266KKL8ulPfzrt2rXbYm3QoEGb/j6/vpAfP16RYX+ak7fWbsg1nzkm7du1zGOAdXV1mTFjxmbfrr/+esUnAAAAAAAAAAAAAAC2qmX+73YA3lUDBw7caunpH7UrLclVn35fvvHhw/Pg5AW58t4pqa6pa5FM8+bNS3V19Wbfnn322bz88sstch8AAAAAAAAAAAAAAK2b4hPA/3AlJSX59plH5KdnH50/Vi7JF+94Maura4p+z/Tp07f6/frrry/6XQAAAAAAAAAAAAAAtH6KTwAkSS4++aDcfP5xeXn+ypw3fGKWVlXv+FAjVFZWbvX7Aw88kAULFhT1LgAAAAAAAAAAAAAAWj/FJwA2OfsD++b2i/tl3oq1OadsQuatWFu02dt68am2tja33HJL0e4BAAAAAAAAAAAAAKBtUHwCYDOnHbFX7v1y/1RV12Rg2YS8+uaqoszd1otPSTJixIhUVVUV5R4AAAAAAAAAAAAAANoGxScAtnDcgbvnoUED0rFdSc4fPjET565o1rxCobDNF5+SZNWqVbn99tubdQcAAAAAAAAAAAAAAG2L4hMAW3VYr255+MqTs3ePTvniHS/md68ubvKshQsX7vBFp5tuuim1tbVNvgMAAAAAAAAAAAAAgLZF8QmAbdp3t8556IoBee8+3XPlPS/lgUnzmzSnsrJyh3vmzZuXsWPHNmk+AAAAAAAAAAAAAABtj+ITANu1e9eOGXN5/5x6+F75/iPlGfrc7BQKhUbNmD59eoP2XX/99Y2eDQAAAAAAAAAAAABA26T4BMAOdenYPrd98YR86th9c91Tr+WqJytTX9/wglJDXnxKkhdffDF/+ctfmhoTAAAAAAAAAAAAAIA2RPEJgAbp2L40N37u2Hzp5INy+3+/nu88NC01dfUNOtvQF5+Sv736BAAAAAAAAAAAAAAAik8ANFhpaUn+85PvzXf/+cg8+vLCfOWuyVm/sW6H5xr64lOSPP7445k1a1ZzYgIAAAAAAAAAAAAA0AYoPgHQKCUlJfnfpx+Waz5zTP40c1kuuv2FvL1u4zb3L1u2LMuXL2/w/EKhkJtuuqkYUQEAAAAAAAAAAAAAaMUUnwBokgv6H5ghFxyf8gWr8rnhE7J4VfVW9zXmtad3jBo1KitWrGhuRAAAAAAAAAAAAAAAWjHFJwCa7GPH7JPRl/bLm29XZ2DZ+MxZtmaLPdOnT2/03PXr12fYsGHFiAgAAAAAAAAAAAAAQCul+ARAs5x8aM/c/5WTUl1Tl3OHTcgrC97ebL0pLz4lyeDBg7Nhw4ZiRAQAAAAAAAAAAAAAoBVSfAKg2d63X488fOXJ6dKxXT4/YmL+e9byTWtNefEpSRYvXpwxY8YUKyIAAAAAAAAAAAAAAK2M4hMARXFwz6555MqTc8AeXXLJ6BfzxCtvJmn6i09JcsMNN6RQKBQrIgAAAAAAAAAAAAAArYjiEwBFs3f3TnngigE59oDd8vX7Xs7IZ2dk4cKFTZ5XUVGR3//+90VMCAAAAAAAAAAAAABAa6H4BEBR9ejcIXdf1j8fPqpXrv7dnPQ45fPNmnfDDTcUKRkAAAAAAAAAAAAAAK2J4hMARdepQ7sMu6hvju2+PrudemH2OHNQUtK0f3J+//vfp7y8vMgJAQAAAAAAAAAAAADY2Sk+AdAi2rcrzeFvv5hVLzySbsd/Ij0/+a9Ju/ZNmlXsV59qa2uLOg8AAAAAAAAAAAAAgOJTfAKgxVROn563nxuVlc/eka7vOS29zvnPlHTs3Og59957bxYtWlS0XGPHjs2bb75ZtHkAAAAAAAAAAAAAABSf4hMALaaysjJJsvrFsVn+5I3pdOD7s/d5V6e0c/dGzampqcngwYOLlmvKlCkpKysr2jwAAAAAAAAAAAAAHUuwJgAAIABJREFUAIpP8QmAFrF+/fq8/vrrm36vrXg6y8ZenQ579UnvC3+Zdt322uq5r33tazn33HPTqVOnzb6XlZVl7dq1RclWXl6eYcOGpbq6uijzAAAAAAAAAAAAAAAoPsUnAFrEa6+9lkKhsNm3mnlT8rFOs9Ou6+7p/YVfpcOeB2xx7vDDD8+DDz6YpUuX5p577slZZ52V9u3bZ+XKlRk9enRRslVUVGT58uUZM2ZMUeYBAAAAAAAAAAAAAFB8ik8AtIjp06dv9vvoo4/OxIkTM/zq7yXP3JSUlGbvC69Lx32P2mzf3LlzkyTdunXLhRdemCeeeCJLlizJiBEj8sorr2xRpmqsVatWZf78+UmSm2++udnzAAAAAAAAAAAAAABoGYpPALSIysrKJElpaWm+//3v56WXXkrfvn2TJIfssUuW3PPd1K+vyt7nXZVOh/TddG7JkiVbzNpjjz1y+eWXZ/jw4SkpKWlWroqKik1/v/LKK3nuueeaNQ8AAAAAAAAAAAAAgJbR/t0OAEDbNH369BxxxBG58847c9JJJ222duqpp6Zz587Zr+P0TOtyatp/7if5l/575EunH50ePXq0aK6/Lz4lf3v16fTTT2/ROwEAAAAAAAAAAAAAaDzFJwBaxJlnnpm77747Xbp02WLtqquu2vR3VXVNvnLXS7lx4op06/lWLj21ZYtP5eXlm/0eN25c5syZk0MPPbRF7wUAAAAAAAAAAAAAoHFK3+0AALRNgwYN2mrp6R9169Qhoy7pl48e3Ts/e2J6fvW7GSkUCi2W6x+LT4VCIYMHD26x+wAAAAAAAAAAAAAAaBrFJwDedZ06tMuQC4/P5088MEOenZMfji1PbV190e8pFAqpqKjY4vvtt9+e1atXF/0+AAAAAAAAAAAAAACaTvEJgJ1Cu9KSXPOZ9+XrZxyW+yf9Nf97zJRU19QV9Y5Fixblrbfe2uJ7VVVVRo8eXdS7AAAAAAAAAAAAAABoHsUnAHYaJSUl+c5Hjsx/fvK9+d2rS3LxHS9mdXVN0eZv7bWnd9x6662pry/+K1MAAAAAAAAAAAAAADSN4hMAO51LTjk4N59/bF6atzLnD5+YZVUbijK3vLx8m2uzZ8/Ob37zm6LcAwAAAAAAAAAAAABA8yk+AbBT+tSx++W2i0/I68vX5pxh4zN/xbpmz9xe8SlJbrrppmbfAQAAAAAAAAAAAABAcSg+AbDT+tCRvTLm8v5Ztb4mA4eNT+Wi1c2aV1FRsd31p59+eod7AAAAAAAAAAAAAAD4/0PxCYCd2nEH7p6HrhiQ9qUl+dzwCXnx9beaNKeuri6vvvrqDvfdcsstTZoPAAAAAAAAAAAAAEBxKT4BsNM7fO9uefjKk7NXt13yhdtfyB+mL2n0jDlz5qS6unqH++6+++4sX768KTEBAAAAAAAAAAAAACgixScAWoX9duuchwednKN6d8uge17Kg5P/2qjzFRUVDdpXXV2dkSNHNiUiAAAAAAAAAAAAAABFpPgEQKuxR9eOGXP5STn50D3zvYdfybA/zWnw2fLy8gbvHTJkSGpqapoSEQAAAAAAAAAAAACAIlF8AqBV6bpL+9x+cb984v375Nrfzsg1v6lMfX1hh+ca+uJTkixcuDCPPPJIc2ICAAAAAAAAAAAAANBMik8AtDod25fmlvOPy8UD+mTE83Pz3YdfSU1d/XbPNObFpyS5+eabmxMRAAAAAAAAAAAAAIBmUnwCoFUqLS3JT84+Ot8+84g8MmVBBt39UtZvrNvq3vXr12fWrFmNmj9x4sS88MILxYgKAAAAAAAAAAAAAEATKD4B0GqVlJTkGx8+PFd9+n155rWl+cLtL2TVupot9s2YMSP19dt/EWprvPoEAAAAAAAAAAAAAPDuUXwCoNW76KQ+GXLB8Xllwap8bviELFldvdl6eXl5k+Y+9NBDWbhwYTEiAgAAAAAAAAAAAADQSIpPALQJHz9mn4y6pF8WrFyXzw4dn7nL1mxaq6ioaNLM2traDB06tFgRAQAAAAAAAAAAAABoBMUnANqMUw7rmfu/MiDVNXU5d9iElC9YlaTpLz4lyfDhw7N+/fpiRQQAAAAAAAAAAAAAoIEUnwBoU47Zv0ceGjQgnTq0y/kjJmT87OXNKj6tWLEiY8aMKWJCAAAAAAAAAAAAAAAaQvEJgDbnkL12zdivnpz9d++Si0e9mJVd+zRr3k033ZRCoVCkdAAAAAAAAAAAAAAANITiEwBt0t7dO+XBKwbkoO6l6fnpH2TXD3y0ybMqKiry7LPPFjEdAAAAAAAAAAAAAAA7ovgEQJvVo0uHfKLr61k/Z3L2/OjX0mPAeU2eddNNNxUx2d+sWbOm6DMBAAAAAAAAAAAAANoKxScA2rTXppdn2aNXZ03FM9nttC9k9w9/JUlJo+c88cQTmTNnTtFy1dXV5aqrriraPAAAAAAAAAAAAACAtkbxCYA2rby8PKmvy4onb8zqFx9N9xPOTs9Pficpbd+oOYVCIbfeemvRcs2ePTtDhw5NVVVV0WYCAAAAAAAAAAAAALQlik8AtFmFQiEVFRXv/MrKZ2/PymdHpet7P5Re5/w4JR06bfVcv379st9++23x/Y477sjq1auLkm3atGmpqqrK3XffXZR5AAAAAAAAAAAAAABtjeITAG3WwoUL8/bbb2/2bfWLj6Tn3KfSqc+x2fv8q1PaufsW584444zMmzcvTz/9dC655JJ07/63PVVVVRk1alRRsk2dOjVJMnjw4BQKhaLMBAAAAAAAAAAAAABoSxSfAGizysvLN/u96667pqysLC/ef3M6T7knHXsdnN4X/jLtuu212b558+alXbt2OeOMM3LHHXdk8eLFefDBB3P22Wdn2LBhqaura3a2adOmJUkqKyvzzDPPNHseAAAAAAAAAAAAAEBbo/gEQJtVUVGx6e+PfOQjqaioyKBBg1JaWprDOq3Nkgd+lHa77pHeF12X9nvuv2nvvHnzNpvTuXPnnHvuuXn88cfz5z//OdXV1c3O9s6LT8nfXn0CAAAAAAAAAAAAAGBz7d/tAADQUsrLy9OjR4/ccMMNueSSS1JSUrJprU+fPmn/3HPpMnFEak6+IgddekvO6jYvJx7aK4cffvg2Z/bs2bPZuZYvX54333xz0+9x48Zl3rx56dOnT7NnAwAAAAAAAAAAAAC0FV58AqDNOuigg/Lqq6/m0ksv3az0lCQ33nhjqqqqMmPCH/Psv52VfffaLb/beFT2O+HM9OvXr0VzTZs2bbPf9fX1GTZsWIveCQAAAAAAAAAAAADQ2ig+AdBm/exnP8t+++231bWOHTtuKkMduGeXPDRoQA7u2TWXjZ6Ux6cubNFcU6dO3eLbyJEjU11d3aL3AgAAAAAAAAAAAAC0JopPAJCkV7dOuf+Kk9K3z+75l/unZvRfXm+xu/7xxackWbFiRe6///4WuxMAAAAAAAAAAAAAoLVRfAKA/6t7pw6589IT85H37p2f/Nf03PD711IoFIp+z9ZefEqSW2+9tUXuAwAAAAAAAAAAAABojRSfAODvdOrQLkMvPD7nnXBAbnlmdv79sYrU1RevjLRhw4ZUVlZudW3KlCl54YUXinYXAAAAAAAAAAAAAEBrpvgEAP+gfbvSXDvwmHz1Q4dmzAvz87UxU7Khtq4osysrK1NbW7vN9cGDBxflHgAAAAAAAAAAAACA1k7xCQC2oqSkJN/76FH5j7Pek99WLM4loyalqrqm2XOnTp263fUHH3wwS5YsafY9AAAAAAAAAAAAAACtneITAGzHl//pkNx43gfy4utv5fMjJ2b5mg3Nmjdt2rTtrtfU1GTkyJHNugMAAAAAAAAAAAAAoC1QfAKAHfjMcftn5BdPyOyla3JO2fj89a11TZ61oxefkqSsrCw1Nc1/XQoAAAAAAAAAAAAAoDVTfAKABjj9qF6598snZeW6mgwsG58Zi1c3ekahUNjhi09J8uabb+axxx5rSkwAAAAAAAAAAAAAgDZD8QkAGqhvn93z0KABKS0pyeeGTcikN95q1PkFCxZk5cqVDdo7ePDgpkQEAAAAAAAAAAAAAGgzFJ8AoBGO2LtbHr5yQHruuksuuu2F/HH6kgafnTp1aoP3Pv/883nllVeaEhEAAAAAAAAAAAAAoE1QfAKARtp/9y55aNCAHNm7W66456U8/NKCBp2bNm1ao+4ZMmRIU+IBAAAAAAAAAAAAALQJik8A0AR77rpLxlx+UgYcsmf+9aFpGfH8nB2eaWzx6Z577snKlSubGhEAAAAAAAAAAAAAoFVTfAKAJtp1l/a5/Usn5Kz375NrfjMjv/hNZQqFwjb3T506tVHz161bl1GjRjU3JgAAAAAAAAAAAABAq6T4BADNsEv7drnl/OPyhZP6ZPjzc/O9h19JbV39FvuqqqoyZ86OX4X6R0OGDEl9/ZbzAAAAAAAAAAAAAADaOsUnAGimdqUl+dmnjs43/9fheeilBRl0z5RU19Rttqe8vHy7r0Fty9y5c/PUU08VKyoAAAAAAAAAAAAAQKuh+AQARVBSUpJv/q8j8rNPHZ2nZyzJF29/MavW12xanzZtWpNnDx48uBgRAQAAAAAAAAAAAABaFcUnACiiLw44KLecf1xe/uvKnDd8Qpaurk7SvOLTb3/728yePbtYEQEAAAAAAAAAAAAAWgXFJwAosk9+YN/c8aV+mf/WugwcNj5vLF+bqVOnNmvm0KFDi5QOAAAAAAAAAAAAAKB1UHwCgBbwT4fvlfsuPylrqmszsGx8KhdVNWveHXfckTVr1hQpHQAAAAAAAAAAAADAzk/xCQBayAcO2C0PDTo57VKfHp/9SXY54Jgmz1q1alXuvffeIqYDAAAAAAAAAAAAANi5KT4BQAs6rNeu+fLBq1NbtSx7f+5n6XzEgCbPGjx4cAqFQhHTJW+++WZR5wEAAAAAAAAAAAAAFIviEwC0sHmVU7Pk3u9nw5LZ2etTP8iuH/jnJs2pqKjI888/X9Rs11xzTZYvX17UmQAAAAAAAAAAAAAAxaD4BAAtbOrUqamvXpOlD/xHql9/OXt+9OvpftK5TZo1ePDgomabMGFCRo0aVdSZAAAAAAAAAAAAAADFoPgEAC1s2rRpSZJCzYYsHfvzrKl4Jrt/8OLs/uHLk5Rs9cxuu+2WkpIt1x599NEsWLCgKLk2btyY8vLyDB8+PPX19UWZCQAAAAAAAAAAAABQLIpPANCCli9fnoULF/6/D/V1WfHkjamd/od0P+FT2fMT305K221x7qMf/WjmzZuXa665JkceeeSm73V1dRk2bFhRsr366qupqanJnDlz8oc//KEoMwEAAAAAAAAAAAAAikXxCQBa0DuvPf29yy67NK+M/nG6zX0mux59enp99kcp6bDLZnsWLFiQAw44ID/84Q9TWVmZiRMn5sorr8zuu++eESNGZMOGDc3ONmXKlE1/Dx06tNnzAAAAAAAAAAAAAACKSfEJAFrQ3xefDjnkkDz99NO57bbbsscee+TI+nlZ8dtb0ung47L3eVentNOum/YuWLBg098lJSXp379/hg4dmkWLFqWsrCxz585tdra/Lz498cQTmT9/frNnAgAAAAAAAAAAAAAUS/t3OwAAtGVTp05NaWlpvv3tb+enP/1punTpsmlt//33z5pHbk7d+qrsdfZ3c8CXbsz+cx5Ln7165OCDD97qvF122SUDBw4sSra/Lz7V19dn5MiR+fnPf16U2QAAAAAAAAAAAAAAzaX4BAAtqKSkJC+++GL69u27xdo3vvGNfOlLX8r++++fWauSy+96KfUHfis/vax/Duu161amFU9tbe1mr1ElyW233ZYf/ehH6dixY4veDQAAAAAAAAAAAADQEKXvdgAAaMtGjRq11dJTkhxyyCE59thj07Nnzww4tGfu/8pJ2VhXn3OHjc/Uv77dorlee+21rF+/frNvixcvzmOPPdai9wIAAAAAAAAAAAAANJTiEwC0oNLShv9T+779euThQSdn107tc8HIifnzrGUtlmvKlClb/V5WVtZidwIAAAAAAAAAAAAANIbiEwDsRA7q2TWPDDo5B+7RJZeOnpT/mvZmi9yzreLTc889l8rKyha5EwAAAAAAAAAAAACgMRSfAGAn06t7pzxwxYAcd8Du+cb9L+euCW8U/Y5tFZ+SZNiwYUW/DwAAAAAAAAAAAACgsRSfAGAn1KNzh9x12Yn58FF758ePv5ob/jAzhUKhKLPr6+vz8ssvb3N99OjRWbt2bVHuAgAAAAAAAAAAAABoKsUnANhJderQLsMuOj7n9t0/tzw9Kz96vCJ19c0vP82ZMydVVVXbXF+9enXuu+++Zt8DAAAAAAAAAAAAANAcik8AsBNr3640153z/gz64KG5Z+L8fOO+l7Ohtq5ZM6dMmbLDPWVlZUV7YQoAAAAAAAAAAAAAoCkUnwBgJ1dSUpIffOyo/PvH35Mnyxfl0tGTsmZDbZPnNaT4NGXKlEyaNKnJdwAAAAAAAAAAAAAANJfiEwC0EpefdkiuP/cDmTj3rXx+xMSsWLOhSXMaUnxKkqFDhzZpPgAAAAAAAAAAAABAMSg+AUArMrDv/hnxhb6ZuaQq5w6bkAUr1zXqfKFQaHDx6YEHHshbb73VlJgAAAAAAAAAAAAAAM2m+AQArcyH37N37vly/yxfsyEDy8Zn5pKqBp+dP39+g8tM1dXVGT16dBNTAgAAAAAAAAAAAAA0j+ITALRC/Q7aIw8OGpBCITl32IS8NK9hZaaGvvb0jrKystTX1zclIgAAAAAAAAAAAABAsyg+AUArdVTv7nnkypOzR9eOufC2F/LsjKU7PNPY4tPs2bPz9NNPNzUiAAAAAAAAAAAAAECTKT4BQCt2wB5d8tCgATms16758l2TM3bKgu3ub2zxKfnbq08AAAAAAAAAAAAAAP+/KT4BQCvXc9ddct/lJ6X/wXvk2w9Oy21/nrvNvU0pPo0bNy4LFmy/UAUAAAAAAAAAAAAAUGyKTwDQBnTr1CGjLumXjx/TO1c9WZlfPjUjhUJhsz2LFi3K4sWLGz27rq4uI0eOLFZUAAAAAAAAAAAAAIAGUXwCgDZil/btcuvnj88F/Q9M2XNz8v1HXkltXf2m9aa89vSOkSNHpqamphgxAQAAAAAAAAAAAAAaRPEJANqQdqUlufrT78s3Pnx4Hpy8IFfeOyXVNXVJkpdffrnJcxctWpRx48YVKyYAAAAAAAAAAAAAwA4pPgFAG1NSUpJvn3lEfnr20flj5ZJ88Y4Xs7q6plkvPiVJWVlZkRICAAAAAAAAAAAAAOyY4hMAtFEXn3xQbj7/uLw8f2XOGz4xU6bPbta8p59+Oq+99lqR0gEAAAAAAAAAAAAAbJ/iEwC0YWd/YN/cfnG/vLF8TWo++I203613s+YNGzasSMkAAAAAAAAAAAAAALZP8QkA2rjTjtgr3zq2XUp36ZLeF/4qHXod3ORZo0ePzrp164qYLlm1alWWL19e1JkAAAAAAAAAAAAAQOun+AQA/wO8PWdqFo/5fgr1tel9wbXZ5YD3NW3O22/ngQceKGq2KVOm5M477yzqTAAAAAAAAAAAAACg9VN8AoD/AaZMmZLaFQuy+J7vpm7NW9n7cz9L58P6N2nW0KFDi5pt8uTJGTFiRAqFQlHnAgAAAAAAAAAAAACtm+ITAPwPMGXKlCRJXdXyLL7ne9m4dG72+sy/pesxZzZ61uTJkzN58uSiZZs0aVJmzpyZP/3pT0WbCQAAAAAAAAAAAAC0fopPANDGrV69OrNmzdr0u766Kkvu/49Uz5uWnh//l3TvP3Cr5/r27Zsnn3wyAwcOTIcOHTZbKysrK1q+d0pUw4cPL9pMAAAAAAAAAAAAAKD1U3wCgDZu6tSpW3w7/v1HZ9y/fjy7rpiR3T90SXY//bIkJZvtWbp0aT7+8Y/n4YcfzsKFC3PjjTfmmGOOSZLcd999WblyZbOzrVixIq+//nqSZOzYsVm2bFmzZwIAAAAAAAAAAAAAbYPiEwC0cVOmTNn0d9euXXPDDTdk4sSJ6d+vb46tnprVk8el+4mfyZ5nfSspbbdp7+LFi1NfX58k2WuvvfLNb34z06ZNy6RJk3LJJZdk3Lhxzc720ksvbfp748aNufPOO5s9EwAAAAAAAAAAAABoG9q/2wEAgJb1TvHprLPOypAhQ9KnT59Na/vus09W3vOr1K17O7uf9sWUdu6W5Y9dmx67ds6+++6bqqqq9OjRY9P+kpKSnHDCCTnhhBNSKBSanW3SpEmb/R4xYkS+853vpKSkZBsnAAAAAAAAAAAAAID/KRSfAKCNW7RoUR588MGcc845WxSKPvWpT+WAAw7IPvvsk8qNnTOqpF9OuemPGXXJidmtS8ftzi1GOWny5Mmb/Z41a1aee+65nH766c2eDQAAAAAAAAAAAAC0bopPANDGjR07Nt26ddvq2imnnJJTTjll0+8TyhflX+6fms8Nn5C7Lu2f3j06tWi2fyw+Jcnw4cMVnwAAAAAAAAAAAACAlL7bAQCAlrWt0tPWfOyYfTL60n558+3qDCwbnznL1rRYrsWLF2fBggVbfB87dmyWLl3aYvcCAAAAAAAAAAAAAK2D4hMAsJmTD+2Z+79yUqpr6nLusAl5ZcHbLXLP1l57SpKamprceeedLXInAAAAAAAAAAAAANB6KD4BAFt433498vCVJ6dLx3b5/IiJ+cvs5UW/Y1vFpyQZMWJE6uvri34nAAAAAAAAAAAAANB6KD4BAFt1cM+ueeTKk7P/7l1yyahJefKVRUWdv73i0+zZs/Pss88W9T4AAAAAAAAAAAAAoHVRfAIAtmnv7p3y4BUD8v79e+Rr903J3RPnFWVuoVDIpEmTtrtnxIgRRbkLAAAAAAAAAAAAAGidFJ8AgO3q0aVD7r6sf844sld+9FhFbv7jrBQKhWbNXLBgQZYuXbrdPY8++ugO9wAAAAAAAAAAAAAAbZfiEwCwQ507tsuwL/TNwOP3z41/nJn/HPdq6uubXn6aPHnyDvfU1NRk1KhRTb4DAAAAAAAAAAAAAGjdFJ8AgAbp0K40vz73/fnKaYfkrgnz8o37X87G2vomzWpI8SlJRo4cmfr6pt0BAAAAAAAAAAAAALRuik8AQIOVlJTk3z7+nvzwY0fliVcW5bI7J2XthtpGz5k0aVKD9s2ZMyfPPPNMo+cDAAAAAAAAAAAAAK2f4hMA0GhXfPDQXHfO+zN+zopcMHJi3lq7scFnC4VCg198SpLhw4c3JSIAAAAAAAAAAAAA0MopPgEATfK5Ew7IsIv6ZsbiqpwzbHwWvr2+Qedef/31rFy5ssH3PPbYY1m8eHFTYwIAAAAAAAAAAAAArZTiEwDQZGe+d+/cfVn/LKvakIFDx2fWkqodnmnMa09JUltbm9GjRzcxIQAAAAAAAAAAAADQWik+AQDNcuLBe+TBKwakrlDIOcMm5KV523/NadKkSY2+Y+TIkamvr29qRAAAAAAAAAAAAACgFVJ8AgCa7T37dM/YK0/O7l065KLbXsizry3d5t7GvviUJHPnzs0f//jH5kQEAAAAAAAAAAAAAFoZxScAoCgO2KNLHhp0cg7Zq2suv3NyHnt54RZ76uvr89JLLzVp/ogRI5obEQAAAAAAAAAAAP4Pe3ce4HVd74v/+Z0BQREQlcVUNNdcS00FrE7nnLyWlmUuuZ2yTrlU59Y52bFz2m7bWcrbrZOlJAiyDlsc1zQUBMYZVhHcUBZBEFlEBGaGwWFmfn/0kw4Bwsx8hxh4PP6az+f9eT9frz/558kXgDZE8QkAKJrunTuk7MY+OffYQ/P1UU9n0JMvb3P+0ksvZePGjc3Kvu+++7Jy5cpirAkAAAAAAAAAAAAAtAGKTwBAUXXu2D6DPn9uPnpar/zggedz+6MvprGxMUkya9asZudu2bIl99xzT7HWBAAAAAAAAAAAAAD2copPAEDRdWxfml9fd3auOe/o3DFpYf51/DOpb2hsUfEpSe6+++40NDQUaUsAAAAAAAAAAAAAYG/W7i+9AACwbyotKeTfLjsjh3XqkDsmLcy66ro8M3tOizKXLFmSCRMm5KKLLirSlgAAAAAAAAAAAADA3sovPgEAraZQKOTWi07O9z5+ah55bmVePubiFA44sEWZ/fv3L9J2AAAAAAAAAAAAAMDeTPEJAGh1X/jAu/ONfoel/RHvSc9r/j0lBx3S7Kz7778/r732WhG3+6Py8vKiZwIAAAAAAAAAAAAAzaf4BADsEQevfSGrx/0w7Q89Kr2u/2nade3ZrJz6+vrcc889Rd4u+epXv5rNmzcXPRcAAAAAAAAAAAAAaB7FJwBgj5g1a1ZqX34qq0Z9OyUdD07P63+W9t2PbVbW3Xffnfr6+qLttnz58sydOzf3339/0TIBAAAAAAAAAAAAgJZRfAIA9oiZM2cmSd5a8WJWDb8taahPr2v/Ix2OOq3JWUuXLs2ECROKttuMGTOSJAMGDChaJgAAAAAAAAAAAADQMopPAECre+uttzJ37tytz3Vrl2XlsH9OffW69LjqhznwhPN2eK9Lly75wQ9+kN69e2931r9//6LtN3369CTJhAkTsnTp0qLlAgAAAAAAAAAAAADNp/gEALS6Z599Nm+99dY27w4ueSv/9N5COm1Zn+6XfTudzvjIdveqqqry7W9/O4sXL84jjzySK664Iu3atUuSPPDAA1mxYkVR9nu7+NTY2JhBgwYVJRMAAAAAAAAAAAAAaBnFJwCg1c2cOXOb52uuuSbz58/PN756Uy7YPCu1S+fm8Iu/ni7nfXqb7xoaGrJ27dqUlpbmoosuypgxY/Lqq6/mZz/7WY4//vjcc889Ld6tvr4+s2bN2vp8zz33pL6+vsW5AAAAAAAAAAAAAEDLKD4BAK3u7WLRCSeckD/84Q8ZMWJEevXqlSQ5sueV32W6AAAgAElEQVThWT32h6l+YUq6/fUXcsiHP7/N3VWrVm3z3KNHj9x6662ZP39+rrrqqhbv9txzz6W6unrr87JlyzJhwoQW5wIAAAAAAAAAAAAALaP4BAC0umeeeSbf//7388wzz+TCCy/c5uzss8/OlZdfls/0rsmp7dek6/mX58rb78+TFZV5+eWXc8opp+wws1Ao5KSTTmrxbtOnT9/u3YABA1qcCwAAAAAAAAAAAAC0TLu/9AIAwL5vxIgROe6443Z49slPfjKf/OQnkySNjY35r8cX5v899lIGvliaO845Ou3albbqbjsqPt1///1ZvXp1evTo0aqzAQAAAAAAAAAAAICd84tPAECr21np6c8VCoV87SMn5kefOj0TX1ydz94zPetr6lp1tx0Vn+rq6jJ06NBWnQsAAAAAAAAAAAAAvDPFJwBgr/N3fY7JHdecnaeXvZnP/LYyqzbUtsqcjRs35rnnntvh2YABA9LY2NgqcwEAAAAAAAAAAACAXVN8AgD2SpeceUQG3XBelr1Rk8vvrMjLr1cXfcasWbN2Wm6aP39+Kioqij4TAAAAAAAAAAAAANg9ik8AwF7rAycenpE39knNW/W54s6KPPvq+qLmT58+/R3PBw4cWNR5AAAAAAAAAAAAAMDuU3wCAPZqZx51SMbe3Dcd25fm6t9OS8XC14uWPWPGjHc8HzVqVDZs2FC0eQAAAAAAAAAAAADA7lN8AgD2esd1PzjjbumXdx3SMTcMmpnfP/NaUXJ39YtPNTU1KSsrK8osAAAAAAAAAAAAAKBpFJ8AgDahV9eOGX1T35xxVNd8ecRTGT59aYvyli9fnhUrVuzyuwEDBrRoDgAAAAAAAAAAAADQPIpPAECbcchBB2TY35+fvz65R749/tn86vEFaWxsbFbWrn7t6W0zZ87MvHnzmjUDAAAAAAAAAAAAAGg+xScAoE058IDS9P+7c/Lps47M/53wUn7wwPNpaGh6+Wl3i09JMnDgwCbnAwAAAAAAAAAAAAAto/gEALQ57UtLcvuV780XP/DuDK5Ykq+PejpvbWloUkZTik9Dhw5NbW1tU9cEAAAAAAAAAAAAAFpA8QkAaJNKSgr59iWn5Fsfe0/un7siXxwyKzVvbdmtu1u2bMmsWbN2e9a6desyfvz45q4KAAAAAAAAAAAAADSD4hMA0GYVCoXc/FfH56eXn5nyBWty7d3Ts676rV3ee+6551JTU9OkWQMGDGjumgAAAAAAAAAAAABAMyg+AQBt3lXnHp07rz8nz7+2IVf2r8yKNze94/fTp09v8oyJEydm8eLFzV0RAAAAAAAAAAAAAGgixScAYJ9w0Wm9MuQL52XV+tpcfmdFFq7euNNvm1N8SpJ77rmnuesBAAAAAAAAAAAAAE2k+AQA7DP6HHdYym7qk7r6xlxxV2XmvLJuh981t/g0aNCgbNmypSUrAgAAAAAAAAAAAAC7SfEJANinnPaurhl3S9906dg+1949PZNfWrPN+YYNG/L88883K3vFihV55JFHirEmAAAAAAAAAAAAALALik8AwD7nmMM6ZewtfXPs4Z3yxXtn5r6nX916Nnv27DQ2NjY7e8CAAcVYEQAAAAAAAAAAAADYBcUnAGCf1KNzx4y6qU/O6t0tXx/1dAY/+XKSZPr06S3KffDBB7Ny5cpirAgAAAAAAAAAAAAAvAPFJwBgn9WlY/sM+cJ5ufCUnvk/Dzyfn//hxUxrYfGpvr4+9957b5E2BAAAAAAAAAAAAAB2RvEJANindWxfmt9cd3Y+8/6j818TF2Z2TkwKLfsn0IABA9LY2FikDf+kNTIBAAAAAAAAAAAAoK1SfAIA9nntSkvyH5efkevP7p7Sk/8qh1/6z0lpu2bnLVy4MFOmTCnihn80e/bsvPrqq0XPBQAAAAAAAAAAAIC2SPEJANgvFAqFvK/klbzx+N3p9J4PpMcVP0jhgAObnTdw4MAibvdHU6dOzZAhQ4qeCwAAAAAAAAAAAABtkeITALDfmD59ejbOui+vP3B7Oh59Wnpe/W8pOahrs7LGjBmTN998s6j7VVRUZPDgwWlsbCxqLgAAAAAAAAAAAAC0RYpPAMB+Y/r06UmS6uefyOrf/TjtDz86va77aUq79GhyVm1tbUaMGFG03RobG1NRUZGXXnoplZWVRcsFAAAAAAAAAAAAgLZK8QkA2C9s2bIls2fP3vpcu3hWVo/6TkoO6ppe1/8s7Q8/Zqd3P/axj6W0tHS79wMGDCjafq+88kpWrFiRJBk8eHDRcgEAAAAAAAAAAACgrVJ8AgD2C88++2xqamq2ebf51fnpU1WRjh07pOd1/5kOR56yw7u/+c1vsmzZsvz4xz9O7969t76fM2dOnnrqqaLsV1FRsfXvsrKy7XYFAAAAAAAAAAAAgP2N4hMAsF+YPn36Ns9nnnlmysvLM2bAL/ORzEtD9Zvp8Zkf58Djz93u7po1a3LEEUfk29/+dhYvXpyHHnool156aUpKSjJw4MCi7Pc/i08bN27M+PHji5ILAAAAAAAAAAAAAG2V4hMAsF+YMWNGkqRz5875xS9+kdmzZ+eCCy5Ikhxz+MFZOfyfU/f60nT/9HfS6bS/2ebu66+/vvXv0tLSXHzxxbnvvvuyZMmSnHjiiWloaGjxfv+z+JQkgwYNanEmAAAAAAAAAAAAALRl7f7SCwAA7AkzZszItddem9tvvz1HHHHENmdHHHFEenU7OIc9MyJ1nb6Qwsf/KR+68OKcf0hVunfvnlNOOWWHmUcffXS+/vWvt3i3qqqqzJ07d5t3EydOzNKlS3PMMce0OB8AAAAAAAAAAAAA2iLFJwBgn9fQ0JBf//rX+dCHPrTD8xtuuCE33HBDkmTzlvr806i5eeiZ5IPnHZdbPvqeFAqFVt1v5syZqa+v3+ZdY2Njhg4dmu985zutOhsAAAAAAAAAAAAA9lYlf+kFAABaW0lJyU5LT3+uQ7vS/Nc1Z+X6Pr3Tf/Li/PPYedlS39Cq+1VUVOzw/eDBg9PY2NiqswEAAAAAAAAAAABgb6X4BADwZ0pLCvnRJ0/P1/72xIyZvTw3D3sqtXX1u77YTDsrPi1atCjl5eWtNhcAAAAAAAAAAAAA9maKTwAAO1AoFPKPF56UH37ytDw+f1U+O3BG1m+qK/qchoaGVFZW7vR80KBBRZ8JAAAAAAAAAAAAAG2B4hMAwDv4bN9j819Xn5U5y9blM/0rs3pDbVHzX3zxxaxbt26n56NHj05VVVVRZwIAAAAAAAAAAABAW6D4BACwC59477tyzw3n5pU3anLFXZVZura6aNkVFRXveF5dXZ1x48YVbR4AAAAAAAAAAAAAtBWKTwAAu+GDJ3bPyC/1ycbaulx+Z2WefXV9UXJ3VXxKksGDBxdlFgAAAAAAAAAAAAC0JYpPAAC76b1HH5IxN/fLAaWFXPPbaalctLbFmbtTfHriiSeyePHiFs8CAAAAAAAAAAAAgLZE8QkAoAlO6HFwxn25X3p27ZjPDZqRR55d2eystWvXZv78+bv17ZAhQ5o9BwAAAAAAAAAAAADaIsUnAIAmOqLrgRlzU9+c9q4u+fLw2Smb8UqzcqZNm7bb3957771paGho1hwAAAAAAAAAAAAAaIsUnwAAmqFbpwMy/Ivn54Mnds+3fvdMfj1pYRobG5uUUVFRsdvfLlmyJJMnT27qmgAAAAAAAAAAAADQZik+AQA000EHtMuAz70/n3rfu/KzR1/Mjx58IQ0Nu19+akrxKUkGDx7cxA0BAAAAAAAAAAAAoO1SfAIAaIH2pSX5+VXvy+cvODb3PPly/mn006mrb9jlvbq6usyYMaNJs8aOHZuNGzc2d1UAAAAAAAAAAAAAaFMUnwAAWqikpJDvffzUfPOik/PfT6/Il4bMSs1bW97xzrx581JTU9OkOTU1NRkzZkxLVgUAAAAAAAAAAACANkPxCQCgCAqFQr7y1yfkPz59Rqa8tCbXDZieN2ve2un3lZWVzZozaNCg5q4IAAAAAAAAAAAAAG2K4hMAQBFdfV7v/Oa6c/Lcig258q7KvLZ+0w6/q6ioaFZ+eXl5Fi5c2JIVAQAAAAAAAAAAAKBNUHwCACiyj57eK/d+/ry8tr42V9xZmUVrqrb7prnFpyQZPHhwC7YDAAAAAAAAAAAAgLZB8QkAoBX0Pf6wlN3YJ5u31OfKuyozd9mbW89effXVLF26tNnZ9957b+rr64uxJgAAAAAAAAAAAADstRSfAABayelHds3Ym/ulU4fSXHP3tExdsCZJUllZ2aLc5cuXZ9KkScVYEQAAAAAAAAAAAAD2WopPAACt6NjDO2Xczf3S+9CD8oXBM/PgvBWpqKhoce6gQYOKsB0AAAAAAAAAAAAA7L0UnwAAWlmPLh0z6qa+OevobvmHkXPy2JLNLc783e9+l/Xr1xdhu+3V19e3Si4AAAAAAAAAAAAANIXiEwDAHtD1wPYZ8vfn5cMnHp4NJ12crhdc26K82trajBo1qkjbbWvgwIGtkgsAAAAAAAAAAAAATaH4BACwh3RsX5obTngrVc9MyCEfuDaHXnhzUmj+P8cGDx5cvOX+f2vXrs13v/vd1NXVFT0bAAAAAAAAAAAAAJpC8QkAYA+aPq0yax/+ZdZPG5vOZ388h3/i1qS0XbOyKisrM3/+/KLu9+STT2b16tV55JFHipoLAAAAAAAAAAAAAE2l+AQAsAdVVFQkSd6cPDjrJg1Mp1M+lB5XfD+FAw5sVt69995bzPVSXl6eJBkyZEhRcwEAAAAAAAAAAACgqRSfAAD2kMbGxq3FpyTZMGN8Xn/o5+nY+8z0vPonKTmwy07vduvWbYfvhwwZkvr6+qLtOHXq1CTJAw88kHXr1hUtFwAAAAAAAAAAAACaSvEJAGAPWbRoUdasWbPNu+pnJ+agp4alY8/j0uu6n6a0S/cd3h01alQeeuihXHLJJSkUClvfr1ixIhMmTCjKfjU1NZk9e3aSZPPmzRkzZkxRcgEAAAAAAAAAAACgORSfAAD2kP/5a09Jcsghh+RXv/pVnnlkRD7WcWFKOh2SXtffnvaH997u7ptvvpmLL744Dz74YBYuXJhvfvObOfTQQ5MkgwYNKsp+M2bMSF1d3dbnIUOGFCUXAAAAAAAAAAAAAJpD8QkAYA95u/hUKBRy44035qWXXspXv/rVtGvXLqd0PyCrht+WJOl57X+mw5Hv2ebuunXrtv593HHH5ac//WmWL1+eQYMGZcWKFducN1d5efk2z08++WQWLVrU4lwAAAAAAAAAAAAAaA7FJwCAPaSioiJ9+/bNzJkz079//3Tv3n3rWbdu3VL3+tKsHPbNNGzakJ5X/yTHf/DSnH/++fnYxz6WXr16bZd34IEH5oYbbsjUqVPTuXPnFu/358WnJBk2bFiLcwEAAAAAAAAAAACgOdr9pRcAANgf1NXV5bbbbss111yTkpLtu+eXXnpplixZkm7dumVz4YB8fvDMzD/gptx25Zm57Kyjdpnfrl3L/llXX1+/9Rep/qchQ4bke9/7XgqFQovyAQAAAAAAAAAAAKCp/OITAMAe0L59+1x33XU7LD0lSZcuXXLMMcekS5cu6d65Y0Z+qU/Oe/eh+cdRczOw/OVW32/evHnZuHHjdu8XL168w0IUAAAAAAAAAAAAALQ2xScAgL1Q547tM+jz5+Zjp/fKjx58Pj99ZH4aGxtbbd7UqVN3ejZ06NBWmwsAAAAAAAAAAAAAO6P4BACwl+rQrjR3XHt2rj2/d37zxKJ8a9wz2VLf0CqzysvLd3o2atSo1NbWtspcAAAAAAAAAAAAANgZxScAgL1YaUkhP/nU6fnff3NCRs1ali8Pfyq1dfVFndHY2PiOv/j05ptv5sEHHyzqTAAAAAAAAAAAAADYFcUnAIC9XKFQyD/9r5Pzfz5xav7w/Kp87p4Z2VBbV7T8xYsXZ+XKle/4zdChQ4s2DwAAAAAAAAAAAAB2h+ITAEAbccMF784vr35fZi9dl8/0n5bVG2uLkvtOv/b0tocffjhr1qwpyjwAAAAAAAAAAAAA2B2KTwAAbcgn33dkBt5wbpa8Xp0r7qzM0rXVLc4sLy/f5TdbtmxJWVlZi2cBAAAAAAAAAAAAwO5SfAIAaGP+6qTuGfGl87Ohti6X31mZ51asb1He7vziU5IMGTKkRXMAAAAAAAAAAAAAoCkUnwAA2qCzenfL2Jv7pn1pIVf3n5Zpi9c2K2f16tV56aWXduvbWbNm5YUXXmjWHAAAAAAAAAAAAABoKsUnAIA26oQenTPuln7p0aVDPnvPjPzhuZVNzigvL2/S90OHDm3yDAAAAAAAAAAAAABoDsUnAIA27F2HHJixN/fLqUd0yc3DZmf0zGVNut/U4tOwYcPS0NDQpDsAAAAAAAAAAAAA0ByKTwAAbVy3Tgdk+BfPzwdO7J5/Hjcvd01elMbGxt26O3Xq1CbNWrZsWSZPntycNQEAAAAAAAAAAACgSRSfAAD2AZ06tMuAz74/l773XfmP38/Pvz38Qhoa3rn8VFVVlTlz5jR51pAhQ5q7JgAAAAAAAAAAAADsNsUnAIB9xAHtSvKLz7wvN/Q7NndPfTm3jp2buvqGnX4/bdq01NfXN3nO2LFjU11d3ZJVAQAAAAAAAAAAAGCXFJ8AAPYhJSWFfP8Tp+YbF56U3z31am4aOjub3tpxuam8vLxZM6qqqvLf//3fLVkTAAAAAAAAAAAAAHZJ8QkAYB9TKBTyD397Yn5y2emZ9OLqXD9wetbX1G333dSpU5s9Y+jQoS1ZEQAAAAAAAAAAAAB2SfEJAGAfdd35x+TX156dZ5avz1X9K7Nyfe3Ws7q6ukybNq3Z2RMmTMiKFSuKsSYAAAAAAAAAAAAA7JDiEwDAPuziM47I4M+fm+XranL5nRVZvKYqSTJnzpzU1NQ0O7ehoSEjRowo1poAAAAAAAAAAAAAsB3FJwCAfVy/Ew5P2Y19U1tXnyvuqsy85W+mvLy8xblDhw4twnYAAAAAAAAAAAAAsGOKTwAA+4Ezjuqasbf0y0EHlOaa307Lw7MXtThz3rx5mTt3bhG2215tbW2r5AIAAAAAAAAAAADQdig+AQDsJ959eKeMu6Vfjup2YBa868IcdPIFLc4cMmRIETbb3h133JHq6upWyQYAAAAAAAAAAACgbVB8AgDYj/Ts0jE/+dvu2fzaSzn8k7fl4Pd9rEV5w4cPz5YtW4q03Z889NBDue+++4qeCwAAAAAAAAAAAEDbofgEALCfeXpGRVaP+l42LZqVwy76Srr2u7rZWatWrcpjjz1WxO2SzZs3Z9q0aRk+fHhRcwEAAAAAAAAAAABoWxSfAAD2M+Xl5Wncsjlrxv8kVc88lkM+eH26feSmJIVm5Q0ZMqSo+82cOTO1tbV59NFHs3r16qJmAwAAAAAAAAAAANB2KD4BAOxnpk6d+sc/Guqz9uFfZP30celyzidy+CduTUraNTlv/Pjx2bBhQ9H2mzx5cpKkvr4+o0ePLlouAAAAAAAAAAAAAG2L4hMAwH5kxYoVWbx48Tbv3nxiUKqfHJZOp/5VelzxvRTad9zh3R/96Ef54Q9/mCOOOGKb97W1tRk3blzRdpwyZcrWv4cNG1a0XAAAAAAAAAAAAADaFsUnAID9SHl5+Xbvbrjhhswb/fN8pMvKdDzmvel59U9ScmCX7b7r0KFDvvvd72bJkiUZOXJk+vXrt/VsyJAhRdmvrq4uTz755Nbn6dOnZ+HChUXJBgAAAAAAAAAAAKBtUXwCANiP/M/iU9++fTNjxowMGjQoRxxxRPr1KmTN+J+kffdj0+u6/0xp5+7b3F2/fn2S5IADDsjVV1+dJ598MrNmzcrnPve5TJs2LUuXLm3xfnPmzEl1dfU270aMGNHiXAAAAAAAAAAAAADaHsUnAID9yNSpU3PkkUdm+PDhefLJJ3PuueduPevatWs2LZyR1aO/l9JO3dLr+p+m/WFHJ0kKhUJqa2u3yzvnnHMyePDgLF26NPX19S3eb/Lkydu9GzZsWBobG1ucDQAAAAAAAAAAAEDb0u4vvQAAAHtGbW1tPvWpT+XWW29Np06dtjs/77zzMmzYsHTt2jVvFg7O/525KYd+5bf59WdOywXvOTIlJTvvzPfo0SM9evRo8Y47Kj4tWLAgs2bN2qakBQAAAAAAAAAAAMC+T/EJAGA/0bFjx3z/+9/f6fnRRx+d6667buvzh/rU5O/umZ4bRz6XO6/vkA+f3PJi0zupr69PeXn5Ds+GDRum+AQAAAAAAAAAAACwn9n5f9sPAMB+rfdhB2Xszf3y7sM75Yv3zsp9T7/aqvPmzZuX9evX7/CsrKwsW7ZsadX5AAAAAAAAAAAAAOxdFJ8AANip7p07pOymPnn/sd3ytbKnM+jJl1tt1uTJk3d6tnr16jz22GOtNhsAAAAAAAAAAACAvY/iEwAA76hLx/YZ/PnzctFpPfODB57P7Y++mMbGxqLPmTJlyjueDx8+vOgzAQAAAAAAAAAAANh7KT4BALBLHduX5jfXnZNrzjs6d0xamH8d/2zqG4pXfmpoaNhl8Wn8+PGprq4u2kwAAAAAAAAAAAAA9m6KTwAA7JbSkkL+7bIz8tW/PiEjZ7ySrwx/KrV19UXJfv7557N27dp3/Ka6ujr33XdfUeYBAAAAAAAAAAAAsPdTfAIAYLcVCoXcetHJ+d7HT80jz63M5wfNzMbauhbn7urXnt42fPjwFs8CAAAAAAAAAAAAoG1QfAIAoMm+8IF35xefeV9mLnkjV/92WtZs3NyivMmTJ+/Wd48++mhWr17dolkAAAAAAAAAAAAAtA2KTwAANMunzjoyd3/u/Vm0pipX3lWRZW/UNCunsbFxt4tP9fX1GT16dLPmAAAAAAAAAAAAANC2KD4BANBsf31yjwz/Yp+sq6nLp++syAuvbWhyxoIFC7Jq1ard/n7YsGFNngEAAAAAAAAAAABA26P4BABAi5xzTLeMublvSguFXNW/MjNefqNJ93f3157eNn369CxcuLBJdwAAAAAAAAAAAABoexSfAABosZN6ds64L/dL984d8ncDp+ex53f/F5ymTJnS5HkjRoxo8h0AAAAAAAAAAAAA2hbFJwAAiuLIQw7M2Jv75T29OuemYbMzZtayXd5pbGxs8i8+JcmwYcPS2NjYnDUBAAAAAAAAAAAAaCMUnwAAKJpDOx2QEV/qk37HH5Zvjp2X/pMXveP3S5YsybJluy5I/bkFCxZk1qxZzV0TAAAAAAAAAAAAgDZA8QkAgKLq1KFdBnzu/fn4mUfk338/P//28As7/XWmKVOmNHvOsGHDmn0XAAAAAAAAAAAAgL2f4hMAAEXXoV1pfnn1Wfls32Py2ymLc+uYedlS37Ddd5MnT272jLKysmzZsqUlawIAAAAAAAAAAACwF1N8AgCgVZSWFPKDS0/LP37kpIx7anluGjo7m96q3+ablhSfVq9enccff7ylawIAAAAAAAAAAACwl1J8AgCg1RQKhXztIyfmR586PRNfXJ3P3jM96zfVJUmWL1+exYsXtyh/2LBhxVgTAAAAAAAAAAAAgL2Q4hMAAK3u7/ockzuuOTtPL3szn+lfmdUbajNlypQW544fPz7V1dVF2BAAAAAAAAAAAACAvY3iEwAAe8QlZx6RQTecl2Vv1OTTd1bk4amzWpxZXV2d++67rwjb7djGjRtbLRsAAAAAAAAAAACAd6b4BADAHvOBEw/PyBv7pOat+pR3OC8H9Dy+xZnDhw8vwmbbq66uzu23394q2QAAAAAAAAAAAADsmuITAAB71JlHHZK7rjgpWzZvSs9r/j0dep/RorxHH300q1evLtJ2f1JeXp4hQ4aksbGx6NkAAAAAAAAAAAAA7JriEwAAe9zSZ2dk5bBvZsuGNel55Q9z4El9m51VX1+f0aNHF3G7P5o0aVKWLFmSGTNmFD0bAAAAAAAAAAAAgF1TfAIAYI+bMmVK6qvWZtWI27J51cJ0/+S3cvB7L2p23vDhw4u43R9NnDgxSVJWVlb0bAAAAAAAAAAAAAB2TfEJAIA9bvLkyUmShtqqrC77Tja9/FQO++g/pEvfq5qVN23atCxcuLBo+61fvz6zZ89OkowaNSr19fVFywYAAAAAAAAAAABg9yg+AQCwR73xxht55plntj43btmcNb/7caqenZhuH/psuv3tjUkKO7x7ySWX5PLLL09Jyfb/jB0xYkTRdpwyZUoaGhqSJK+99lqmTp1atGwAAAAAAAAAAAAAdo/iEwAAe9SOSkRnnHZqRnztozn/kOp0ef+lOfwT30hK2m33Xe/evTN27NgsWrQo3/jGN9KlS5etZ8OGDUtjY2NRdpw4ceI2z2VlZUXJBQAAAAAAAAAAAGD3KT4BALBHTZ48eevfPXr0yG9/+9vMmTMn/+vCC/PpdyfrnhiUTqd+OD0u/24K7Ttsc3fjxo1JkmOPPTa33357li9fnl/96lc58cQTs2DBgsyaNasoO/558Wns2LGpq6srSjYAAAAAAAAAAAAAu0fxCQCAPWrKlCnp0KFDvvWtb2XBggX50pe+lNLS0iRJly6ds2H6uKz9/S/T8dj3pefVP0lJx85b775dfHpb586d89WvfjXz58/Pgw8+mCVLlrR4v9dffz3z5s3b5t3atWvz+OOPtzgbAAAAAAAAAAAAgN3X7i+9AAAA+48NGzbk5JNPztixY3Psscdud37cccfl5ptvTufOnbP2wCV54l0n5axvDs1NJ9fl6MMOzlFHHbXD3JKSklxyySVF2fGJJ57Y4fuRI0fmox/9aFFmAAAAAAAAAAAAALBrik8AAOwxnTt3zvDhw3d6fvLJJ+fOO+/c+jxt8dp86d5ZGfTKwRly4fk5ocfBrb7jxIkTd/h+/Pjx6d+/fzp27NjqOwAAAAAAAAAAAACQlPylFwAAYP9RKDJfmTkAACAASURBVBSa9H2f4w5L2U198lZ9Y668qyJPL3uzlTb7k0mTJu3w/caNG/P73/++1ecDAAAAAAAAAAAA8EeKTwAA7NVOe1fXjLulbzp3bJ9r756WKS+tabVZK1asyPz583d6XlZW1mqzAQAAAAAAAAAAANiW4hMAAHu9Yw7rlLG39M0xh3XK3987M/fPXdEqc3b2a09ve+CBB1JVVdUqswEAAAAAAAAAAADYluITAABtQo/OHVN2Y5+c1btbvlY2J/dWLCn6jF0VnzZt2pT777+/6HMBAAAAAAAAAAAA2J7iEwAAbUbXA9tnyBfOy0dO6Znv3/9cfj7hpTQ2NhYtf+LEibv8pqysrGjzAAAAAAAAAAAAANg5xScAANqUju1Lc+d1Z+eq9x+V/3p8Qb7z38+mvqHl5aclS5bk5Zdf3uV3jzzySNatW9fieQAAAAAAAAAAAAC8M8UnAADanHalJfnPy8/MLR8+PsOnv5J/GPlUNm+pb1HmpEmTduu7urq6jB8/vkWzAAAAAAAAAAAAANg1xScAANqkQqGQ2z76nnznklPy8DMr8/lBM1O1eUuz8yZOnLjb344cObLZcwAAAAAAAAAAAADYPYpPAAC0aV/84HH5+VXvzfSX38g1v52W16s2NzmjsbGxScWniRMnZtWqVU2eAwAAAAAAAAAAAMDuU3wCAKDN+/TZR+Xuz56TBas35sq7KrPsjZom3V+wYEFWrFix2983NDRk7NixTV0TAAAAAAAAAAAAgCZQfAIAYJ/wN+/pmeFfPD9rqzbn8jsr8uLKjbt9tym/9vS2srKyJt8BAAAAAAAAAAAAYPcpPgEAsM8455hDM+bmfikUkivvqsisJW/s1r3mFJ/Ky8vzyiuvNPkeAAAAAAAAAAAAALtH8QkAgH3Kyb06Z9wt/XL4wR1y/cDpmTh/1Tt+39DQkCeeeKJZs0aPHt2sewAAAAAAAAAAAADsmuITAAD7nKO6HZQxN/fNST0750tDZmfc7OU7/fa5557LmjVrmjWnrKysuSsCAAAAAAAAAAAAsAuKTwAA7JMOO7hDRnypT/ocd2i+MWZuBkxdvMPvJk6c2OwZs2fPzoIFC5p9HwAAAAAAAAAAAICdU3wCAGCfdXCHdrnnhnNz8Rm98uOHXsh//H5+Ghsbt/lm0qRJLZrhV58AAAAAAAAAAAAAWofiEwAA+7QO7Urzq2vOznXn985dkxfltnHzsqW+IUlSX1+fJ554okX5I0eO3K5MBQAAAAAAAAAAAEDLKT4BALDPKy0p5MefOj1f+9sTM3rW8tw87KnU1tVnzpw5Wb9+fYuyX3jhhTz77LNF2hQAAAAAAAAAAACAtyk+AQCwXygUCvnHC0/KDy49LY/PX5XPDpyRRx6fXJTssrKyouTsyLJly1otGwAAAAAAAAAAAGBvpvgEAMB+5XP9js0vrz4rc5aty9AVh6e0U7cWZ5aVlaWxsbEI223vX/7lX1JbW9sq2QAAAAAAAAAAAAB7M8UnAAD2O5e+913pf/1ZqS09OD2v+2naHdKrRXmLFy/OzJkzi7Tdn9TV1eX+++/PH/7wh6JnAwAAAAAAAAAAAOztFJ8AANgvdVz3claW/WtKOhyUXtf9LO17HNeivLKysiJt9iczZ87Mxo0bM3r06KJnAwAAAAAAAAAAAOztFJ8AANgvTZw4MW+99lJWDr8tjQ116XXtv6fD0ac3O2/UqFFpaGgo4obJY489liS57777smnTpqJmAwAAAAAAAAAAAOztFJ8AANgvTZw4MUmy5Y3lWTnsm9mycW16XvXDHHhin2blrVixIuXl5cVccWvxqaqqKo8++mhRswEAAAAAAAAAAAD2dopPAADsd2pra1NRUbH1uX7j2qwaflveWrU43T/1Lzn4zAt3eveYY47Ju9/97h2ejRw5smg7VlVVpbKycuvz6NGji5YNAAAAAAAAAAAA0BYoPgEAsN+prKzM5s2bt3nXqX1yyyl1OblrYw772NfS5fwrdnj35JNPzksvvZQxY8bk/PPP3+Zs7NixqaurK8qOU6dOzZYtW7Y+P/DAA9m0aVNRsgEAAAAAAAAAAADaAsUnAAD2O5MmTdr6d7t27fKVr3wlCxcuzPf+9Vv5+jkdU/XcpHT78A3p9jdfTFLY5m5NTU3atWuXK664IpWVlSkvL89ll12WQqGQ119/PRMnTizKjo899tg2z1VVVXnkkUeKkg0AAAAAAAAAAADQFig+AQCw33m7nHTZZZflueeeyx133JEePXokSbp2PjhrH/x5Nsy6L13O/VQOu+Qfk5LSrXdramq2/l0oFHLBBRfkd7/7XV588cV8+ctfzv3331+UHf+8+JQko0ePLko2AAAAAAAAAAAAQFvQ7i+9AAAA7ElVVVUpFAqZOnVqPvCBD2x33q1bt5x55hk5qObZbF5+WHL63+So40/O+6pmpfNBHXLsscfuMPfEE0/Mr3/9622KUc21atWqzJs3b7v3DzzwQGpqanLQQQe1eAYAAAAAAAAAAADA3k7xCQCA/UqHDh0yZcqUFAqFHZ6feuqpmTt37tbnkTNeybfHJxtOPi2/uOHcHHLQAe+YX4xS0tu/SPXnqqur8/vf/z6XX355i2cAAAAAAAAAAAAA7O1K/tILAADAntS+ffudlp525Jrzeuc3152dZ1/dkCvvqsxr6ze14nZ/9Pjjj+/0bPTo0a0+HwAAAAAAAAAAAGBvoPgEAAC78NHTj8jgL5yb19bX5oo7K7NoTVWrzWpsbMyECRN2ev7ggw+murq61eYDAAAAAAAAAAAA7C0UnwAAYDf0O/7wlN3YJ5u31OfKuyozd9mbrTJn0aJFeeWVV3Z6XlNTk4cffrhVZgMAAAAAAAAAAADsTRSfAABgN51+ZNeMvblfOnUozTV3T8vUBWuKPuOxxx7b5TejR48u+lwAAAAAAAAAAACAvY3iEwAANMGxh3fKuJv7pfehB+ULg2fmwXkripq/O8Wnhx56KFVVVUWdCwAAAAAAAAAAALC3UXwCAIAm6tGlY0bd1DdnHd0t/zByToZWLilKbn19fSZOnLjL7zZt2pSHHvr/2LvzML3L8l7g33dmsidAICQgqywiq4BswXraqlSsKwrKWlxZ1LYeW9fW1mIVxZ4jRRFQxKqgEIaESWZJJgkJhCQEwpYQAiEJECAkIXvIMut7/vAQiVlI5n2HGZjP57pyXb/f73me+77/ZK6L7/vUlaUnAAAAAAAAAAAAQHcl+AQAAB2we79e+e3nTsl73z4036mZk6snzEuxWCyp5iOPPJJVq1bt1N4RI0aU1AsAAAAAAAAAAACguxN8AgCADurbqzLXX/jOnP3O/XP1hKfybzVz0tbe8fDThAkTdnpvfX191q1b1+FeAAAAAAAAAAAAAN2d4BMAAJSgqrIiPz77uFz6l4fkd/c9m3+49eE0tbZ1qNauBJ82bdqU2traDvUBAAAAAAAAAAAAeCMQfAIAgBIVCoV86wNH5tt/+/bUzXoxn/ufmXm5qXWXamzcuDFTpkzZpTMjRozYpf0AAAAAAAAAAAAAbySCTwAAUCaX/K9D8+Ozj8v0hStywS/vy4qXm3b67LRp09LUtPP7k6ShoSFr167d1TEBAAAAAAAAAAAA3hAEnwAAoIzOOemA3HDhO/PEknU554bpeX7Vhp06N3HixF3u1dTUlDFjxuzyOQAAAAAAAAAAAIA3AsEnAAAos/cdNSw3f/7UvLSuKWdfNz3zlq57zTMTJkzoUK8RI0Z06BwAAAAAAAAAAABAdyf4BAAAneDkg/fMiEuHp71YzDnXT8+Dz67a7t5Vq1Zl5syZHeozduzYrFmzpqNjAgAAAAAAAAAAAHRbgk8AANBJjtx3t9xx+ekZ3L9XLrjxvkx6ctk2902aNCnFYrFDPZqbmzN69OhSxgQAAAAAAAAAAADolgSfAACgEx2wZ/9UX356Dhs6MF/4zcyMevj5rfZMmDChpB4jRowo6TwAAAAAAAAAAABAdyT4BAAAnWzIwD75wxdOy8kH75n/fduj+dW9T2+xPnHixJLqjxs3LqtXry6pBgAAAAAAAAAAAEB3I/gEAACvg0F9e+XXnzk5Hzhmn3yv9vFcNfaJFIvFLFq0KPPmzSupdktLS2pqaso0KQAAAAAAAAAAAED3IPgEAACvk769KvOz80/M+acemJ9PXpBvjZyd8RNKu+3pFSNGjChLnW1ZsmRJVqxY0Wn1AQAAAAAAAAAAALalqqsHAACAnqSyopDvf+yYDBnQO9fcNT97bmhKKnslbS0l1W1sbMyqVasyePDgMk36J+PHj09LS0s++9nPlr02AAAAAAAAAAAAwPa48QkAAF5nhUIhX/2bI/LvHz4qK/sfkGGfvCKF3v1Lqtna2po777yzTBNuqbGxMdXV1Z1SGwAAAAAAAAAAAGB7BJ8AAKCLnLz7+rw0+qr02e/I7HP+lanov0dJ9UaMGFGmyf6kvb0948ePz4QJE7J69eqy1wcAAAAAAAAAAADYHsEnAADoIhMmTMiGufdk2R1XpGrwftnnwqtStfuwkuqtWLGijBMms2fPztKlS9PS0pIxY8aUtTYAAAAAAAAAAADAjgg+AQBAF5kwYUKSZNPTD2Xprd9ORd+BGXbhj9Nr77d2qF5ra2vuvPPOco6YxsbGzc/V1dVlrQ0AAAAAAAAAAACwI4JPAADQBVpaWjJ58uTN780vzsuSW76etLdlnwt+mD77H73ds3369EmfPn22uTZixIiyzvnq4NO4ceOydu3astYHAAAAAAAAAAAA2B7BJwAA6AIzZszI+vXrt/jWuuL5HL98YoYM6J1hn/pe+h126jbP7rfffnn22Wfzr//6rxk8ePAWaxMnTszy5cvLMuOGDRsyZcqUze9NTU2pq6srS20AAAAAAAAAAACA1yL4BAAAXWDChAlbvL/rXe/K1KlTUzvid7nyfXunednT2fusb2fAsWdsdXbTpk0ZNmxYvve972XRokW5+uqrc+CBByZJ2traMmrUqLLMOGXKlDQ1NW3xrbq6uiy1AQAAAAAAAAAAAF6L4BMAAHSBiRMnJkmOPPLI1NTUZMqUKTn99NOTJEN375+lt/5LNj37aIb87T9mt1M+scXZjRs3bn4eOHBg/vEf/zHz58/PLbfckne84x0ZMWJEWWYcP378Vt8aGhq2uqkKAAAAAAAAAAAAoDNUdfUAAADQ06xbty7PP/98brzxxlx88cWpqtryP8v79euXYsumLKu+Int/6KsZ/NefycAh+6Ry9pj07dsne+yxx1Y1e/XqlfPPPz/nnXdeJk2alLa2tlRWVpY0Z2Nj41bfNm7cmIaGhpx99tkl1QYAAAAAAAAAAAB4LYJPAADQBebMmZP+/ftvc+3www/PunXr0rdv31RUVOY/xszJb/KBfPziz+dHnzguvSq3f3FroVDIe97znpLne/HFFzN79uxtrlVXVws+AQAAAAAAAAAAAJ1O8AkAAF5ngwYN2uF6ZWVlBg4cuPn9ux85OkMG9sn/GT8vaza05Gfnn5h+vUu7zem1jB8/frtrtbW12bhxY/r169epMwAAAAAAAAAAAAA92/Z/Kh4AAOgWCoVC/v69h+f7Zx2Tu55clot+NSNrNrR0as/Gxsbtrq1fvz7jxo3r1P4AAAAAAAAAAAAAgk8AAPAGccGpB+Xa80/MrOfX5JM3TM/StZs6pU97e/sOb3xKkurq6k7pDQAAAAAAAAAAAPCKkoJPhULhnEKhMKdQKLQXCoWT/mztW4VCYX6hUHiyUCi8v7QxAQCAJPnbY/fN/3zm5Dy/akM+/vNpWfjSy2XvMWvWrCxbtmyHe8aMGZOmpqay9wYAAAAAAAAAAAB4Rak3Pj2W5ONJ7nn1x0KhcFSSc5McneTMJD8vFAqVJfYCAACSnH7YkNx6yfBsamnLOddPz+zn15S1fmNj42vuWbt2bSZMmFDWvgAAAAAAAAAAAACvVlLwqVgszi0Wi09uY+mjSW4tFotNxWLx6STzk5xSSi8AAOBPjt1/99x+2fD07VWZc38xPdPmLy9b7fHjx+/Uvurq6rL1BAAAAAAAAAAAAPhzpd74tD37JXnuVe/P//9vAABAmRyy98CM/OLp2X9w/3z61w+kfvaLJdfcsGFDpkyZslN777zzzjQ3N5fcEwAAAAAAAAAAAGBbXjP4VCgUJhQKhce28e+jOzq2jW/F7dS/pFAozCwUCjNfeumlnZ0bAABIMmy3vhlx6fAct//u+dLvH8rN9z1bUr0pU6akqalpp/auXr06kyZNKqkfAAAAAAAAAAAAwPa8ZvCpWCy+r1gsHrONfzU7OPZ8kgNe9b5/ksXbqf+LYrF4UrFYPGnvvffetekBAIDs3r9Xfve5U/PXRwzNv975WK6Z+FSKxW3+7sBramxs3KX91dXVHeoDAAAAAAAAAAAA8FpeM/jUQaOTnFsoFPoUCoW3Jjk8yf2d1AsAAHq8fr0rc8NF78zHT9wv/3f8vHx39Jy0t+96+GlXg0933nlnWltbd7kPAAAAAAAAAAAAwGspKfhUKBTOKhQKzycZnqSuUCiMS5JisTgnyYgkjycZm+RLxWKxrdRhAQCA7etVWZH/Ovsd+cK735rfTH82/3jbI2lubd/p84sXL85jjz22Sz2XL1+ee+65Z1dHBQAAAAAAAAAAAHhNJQWfisXiqGKxuH+xWOxTLBaHFYvF979q7fvFYvHQYrF4RLFYbCh9VAAA4LVUVBTyLx88Kt/6wNsz5tHF+dxvHsj6pp27kWn8+PEd6lldXd2hcwAAAAAAAAAAAAA7UlLwCQAA6J4u/ctDc9XZx2Xq/OU5/8YZWbm++TXPNDY2dqjXyJEj09bmglcAAAAAAAAAAACgvASfAADgTeqTJx2QGy46KU+8uDbnXD8tL6zeuN297e3tmTBhQof6LF26NFOnTu3omAAAAAAAAAAAAADbJPgEAABvYmccNSy//ewpWbauKWdfNy3zl63b5r5Zs2Zl2bJlHe5TXV3d4bMAAAAAAAAAAAAA2yL4BAAAb3KnHrJXbrtkeFrbizn7+ul5eNGqrfY0NjaW1GPkyJFpb28vqQYAAAAAAAAAAADAqwk+AQBAD3DUW3bLHZednt379cr5v5yRu+e9tMV6qcGnF154ITNmzCipBgAAAAAAAAAAAMCrCT4BAEAPceBe/XP7ZcPz1iED8rn/eSA1j7yQJNmwYUOmTJlScv3q6uqSawAAAAAAAAAAAAC8QvAJAAB6kKGD+ubWS0/LOw8anH+89ZH8eurTueeee9Lc3Fxy7erq6hSLxTJMuW33339/p9UGAAAAAAAAAAAAuh/BJwAA6GF269srv/nsKfmbo4blP8Y8np9MnF+WuosWLcrMmTPLUuvPbdq0KV/5ylc6pTYAAAAAAAAAAADQPQk+AQBAD9S3V2V+fsGJOffkA/Jk5Vuz5/u/lBRK//Ogurq6DNNtbcqUKZk+fXoWLFjQKfUBAAAAAAAAAACA7kfwCQAAeqiqyop8+dQ9s2babRl0/Acy5KPfSCp7lVTzjjvuSLFYLNOEfzJ27NgkyahRo8peGwAAAAAAAAAAAOieBJ8AAKAHmzhxYlZP+V1WTvxFBhzxrgw757sp9O7X4XoLFizIo48+WsYJ/0jwCQAAAAAAAAAAAHoewScAAOjBGhsbkyTrZo7O8jH/lT77H51h512Ziv57dLhmdXV1ucZLkixatCiPP/54kmTatGl58cUXy1ofAAAAAAAAAAAA6J4EnwAAoIdqb2/P+PHjN7+vf3xylo38XnrttX/2ueCqVO0+rEN1b7/99hSLxXKNufm2p1fU1NSUrTYAAAAAAAAAAADQfQk+AQBAD/Xoo4/mpZde2uLbpoUPpuLuazNgz70z7IKr0mvIQds9f/fdd+eDH/zgVt/nzZuXOXPmlG3OPw8+jRw5smy1AQAAAAAAAAAAgO5L8AkAAHqoxsbGLd733nvvXHPNNXlyakP++yMHJylm2AU/Sp/9jtrm+VNPPTW1tbV59NFHc8EFF6SysnLzWnV1dVlmbGlpyYQJE7b4NmnSpKxataos9QEAAAAAAAAAAIDuS/AJAAB6qFeCT4MGDcoVV1yRBQsW5O///u/Tp0+fHD50YJb87mtpX78qQz/1vfQ79JStzjc1NSVJjjvuuNx8882ZN29evvjFL6Zv37654447yjLj9OnTs27dui2+tba2pra2tiz1AQAAAAAAAAAAgO5L8AkAAHqg9evXZ+bMmfnqV7+ahQsX5jvf+U4GDRq0eb13795pW/dSltzyjbS89Gz2/vi/ZMAx79miRnNz8xbvhxxySK699to888wz+chHPpLFixeXPOfYsWO3+X3UqFEl1wYAAAAAAAAAAAC6t6quHgAAAHj9vfzyy5k9e3YOPPDAba4PHTo0DQ0N6dOnT9oqeuWaBzdm1ge/mm/++/dzwTuHpXfv3hk8ePA2zw4bNizf//73yzLn9oJPY8eOzYYNG9K/f/+y9AEAAAAAAAAAAAC6H8EnAADogYYNG7bD9b59++bMM8/c/P7ud7XlqyMezY0zX0xl/93zzQ8cnEKh0KkzLlmyJA8//PA21zZu3Jhx48blrLPO6tQZAAAAAAAAAAAAgK5T0dUDAAAA3V+fqspcc+4Juei0g3LDPQvztepZaW1r79Se48aN2+H6yJEjO7U/AAAAAAAAAAAA0LXc+AQAAOyUyopCrvjo0dlrYO9cPeGprN7QnJ+df2L69qrslH5jx47d4XptbW2am5vTu3fvTukPAAAAAAAAAAAAdC03PgEAADutUCjkK+97W7730aMz8YlluehXM7JmY0vZ+7S1taWxsXGHe1avXp3JkyeXvTcAAAAAAAAAAADQPQg+AQAAu+yi4Qfnp+edkEeeW51P3TA9y9ZuKmv9mTNnZuXKla+5b9SoUWXtCwAAAAAAAAAAAHQfgk8AAECHfOi4t+TXnz4li1ZuyMevm5anl68vW+2xY8fu1L4777wz7e3tZesLAAAAAAAAAAAAdB+CTwAAQIf9xeFD8ocvnJYNzW055/ppeeyFNWWpu7PBpyVLluS+++4rS08AAAAAAAAAAACgexF8AgAASvKOA/bI7ZcNT5+qypz7i/syfcGKkuqtWLEi999//07vHzlyZEn9AAAAAAAAAAAAgO5J8AkAACjZoXsPzB2Xn5637NE3F990f8Y+9mKHa02YMCHt7e07vX/UqFEpFosd7gcAAAAAAAAAAAB0T4JPAABAWeyze9+MuHR4jtlvt3zxlofyh/sXdahOQ0PDLu1fuHBhZs2a1aFeAAAAAAAAAAAAQPcl+AQAAJTNHv1755bPn5a/fNve+dbI2bl20vxduo2pvb09Y8eO3eW+o0aN2uUzAAAAAAAAAAAAQPcm+AQAAJRVv96V+cXfnZSzTtgvPx73ZK6ofTzt7TsXfpo1a1aWLl26yz1Hjhy5y2cAAAAAAAAAAACA7q2qqwcAAADefHpVVuT/nPOODO7fOzdNfTor1zfnx2e/I72rdvzbCx257SlJZs+enfnz5+ewww7r0HkAAAAAAAAAAACg+3HjEwAA0CkqKgr5zoeOzNfPPCI1jyzOF347MxuaW3d4pqPBpyQZNWpUh88CAAAAAAAAAAAA3Y/gEwAA0GkKhUK++FeH5YcfPzZTnnop5/9yRlatb97m3rVr12bq1Kkd7iX4BAAAAAAAAAAAAG8ugk8AAECnO/eUA3Pdhe/M4y+uzTk3TM/i1Ru32nPXXXeltXXHN0LtyPTp07N48eJSxgQAAAAAAAAAAAC6EcEnAADgdfH+o/fJbz97Spau2ZSzr5uW+cte3mK9oaGh5B41NTUl1wAAAAAAAAAAAAC6B8EnAADgdXPaIXvl1ktPS3NbMedcPy2PPLc6SVIsFjN27NiS648cObLkGgAAAAAAAAAAAED3IPgEAAC8ro5+y+654/LhGdS3V87/5X25Z95LeeKJJ7Jo0aKSa0+ePDkrV64sw5TbNmnSpDQ1NXVafQAAAAAAAAAAAOBPBJ8AAIDX3UF7DUj1ZcNz0F4D8rnfPJBr7ry3LHVbW1tTW1tbllrb8oc//CGTJk3qtPoAAAAAAAAAAADAnwg+AQAAXWLobn1z6yWn5YQDB6dh9b4ZeMIHy1J31KhRZanz54rFYurr61NTU9Mp9QEAAAAAAAAAAIAtCT4BAABdZvd+vXL9ucdk08IHstffXJ7d/+L8kmuOHTs269evL8N0W5o1a1ZeeOGFjB49Ou3t7WWvDwAAAAAAAAAAAGxJ8AkAAOhSM6bdm6V3/GdentWYPd51fvY84/Kk0PE/VTZt2pRx48aVccI/qqurS5IsXrw4Dz74YNnrAwAAAAAAAAAAAFsSfAIAALrU2LFjk2J7VjRckzXTb8+gEz+YIR/5WlJZ1eGaI0eOLOOEf1RfX7/5uaampuz1AQAAAAAAAAAAgC0JPgEAAF2qoaFh8/Pqe36TlXfdmAFvf3eGnv3dFHr361DN2traNDc3l2vErFixItOnT9/8LvgEAAAAAAAAAAAAnU/wCQAA6DILFizIU089tcW3dQ/cmZUNV6ffQcdl2Lk/SEW/3bZ7/mtf+1oOOOCArb6vWbMmkyZNKtucjY2NaW9v3/z+2GOPZeHChWWrDwAAAAAAAAAAAGxN8AkAAOgy48aN2+K9UCjkoosuyiOjbsh/ffTw9BpyQPa54KpU7jZ0m+c//elPZ/78+bnpppty+OGHb7E2atSoss1ZV1e31Te3PgEAAAAAAAAAAEDnEnwCAAC6zNixYzc/f/zjH8/s2bPz29/+Noccckj+6m1Dsuy276RiwB7Z58Ifp9eQg7Y639ramt69e+czn/lM5s6dm1tvvTXHHXdckuTOO+9MW1tbyTO2tbVtMecrBJ8AAAAAAAAAAACgcwk+AQAAXaKpqSl33XVXzjzzzMycOTN33HFHJQKBSAAAIABJREFUjj766M3rVVVVaXphbpbe8o0kybALfpQ++x25RY3W1tbNz5WVlfnUpz6VRx55JKNHj87BBx+c++67r+Q577///qxYsWKr71OmTMny5ctLrg8AAAAAAAAAAABsW1VXDwAAAPRMy5YtS0NDQ9797ndvc71fv375zne+k6qqqmysWJr6DYemz4U/yof3WpojBrWmqqoqBxxwwFbnCoVCPvzhD+dDH/pQ1q1bV/KcdXV12/ze3t6eurq6XHzxxSX3AAAAAAAAAAAAALYm+AQAAHSJAw44YJvBpVf06dMnV1xxxeb3f3q5KZ/59QMZ/WJlrnrPcfnEO/ffYf1CoZDddtut5Dnr6+u3u1ZTUyP4BAAAAAAAAAAAAJ2koqsHAAAA2BlDBvbJHy45Lacdsmf+6fZHc+OUhZ3ec/HixXn44Ye3uz5u3Lhs3Lix0+cAAAAAAAAAAACAnkjwCQAAeMMY2KcqN3365PztsfvkP+vm5kdjn0ixWOy0fg0NDTtc37BhQyZOnNhp/QEAAAAAAAAAAKAnE3wCAADeUPpUVean552YC049MNdNXpBv3DErrW3tndKrrq7uNffU1NR0Sm8AAAAAAAAAAADo6aq6egAAAIBdVVlRyH9+7JgMGdgn/z3xqaza0JKfnndC+vaqLFuP5ubmjB8//jX3jRkzJu3t7amo8LsSAAAAAAAAAAAAUE7+zzwAAOANqVAo5H+f8bb8x0eOzoS5S/N3N92ftZtaylZ/ypQpefnll19z39KlSzNjxoyy9QUAAAAAAAAAAAD+SPAJAAB4Q7v49IPz3+eekIcXrcqnbrgvy9ZtKkvd+vr6nd5bU1NTlp4AAAAAAAAAAADAnwg+AQAAb3gfecdb8quLT86zK9bn7Oum59kV60uuWVdXt9N7BZ8AAAAAAAAAAACg/ASfAACAN4X/9ba9c8vnT826TS35xHXTM2fxmg7XWrBgQZ588smd3v/EE09k3rx5He4HAAAAAAAAAAAAbE3wCQAAeNM44cDBuf2y4eldWci5N9yX+xau6FCd+vr6XT7j1icAAAAAAAAAAAAoL8EnAADgTeWwoYNSffnpGbZ73/zdTfdn3Jwlu1yjrq5ul88IPgEAAAAAAAAAAEB5CT4BAABvOm/Zo19uv3R4jtp3t1x+84O57YFFO312/fr1mTx58i73nDZtWpYuXbrL5wAAAAAAAAAAAIBtE3wCAADelAYP6J3ff+HU/MXhe+cbd8zOzyfPT7FYfM1zd911V5qamna5X7FYTG1tbUdGBQAAAAAAAAAAALZB8AkAAHjT6t+7Kjf+3Un56PFvyVVjn8x/1s1Ne/uOw0/19fUd7ldTU9PhswAAAAAAAAAAAMCWqrp6AAAAgM7Uu6oiP/nk8Rncv3d+de/TWbW+OT86+7j0qtz6dyCKxWLq6uo63Gv8+PFZv359BgwYUMrIAAAAAAAAAAAAQNz4BAAA9AAVFYX8+4ePytfef0RGPvxCLvntzGxsbttq35w5c/Lcc891uM+mTZsyfvz4UkYFAAAAAAAAAAAA/j/BJwAAoEcoFAr50l8flis/fmzunvdSLvzVjKze0LzFnlJue3pFTU1NyTUAAAAAAAAAAAAAwScAAKCHOe+UA/PzC07M7OfX5JM3TM+SNZs2r9XX15dcv7a2Nm1tW98mVU7t7e2dWh8AAAAAAAAAAAC6A8EnAACgxznzmH3zP589OYtXb8onrpuWBS+9nFWrVmXq1Kkl116+fHmmTZtWhim3rbm5OX/4wx86rT4AAAAAAAAAAAB0F4JPAABAj3T6oUNy6yWnZVNLW865fnpuunNC2W5qqqmpKUudbbn33nvzu9/9rtPqAwAAAAAAAAAAQHch+AQAAPRYx+y3e6ovPz39e1fm53N7pe9B7yhL3ZqamhSLxbLU+nNjxozJpEmTsm7duk6pDwAAAAAAAAAAAN2F4BMAANCjvXXIgNx+6WlpWb0kQ8/5bvq//S9Krjl//vzMnTu3DNNtqVgsZsyYMWlubs748ePLXh8AAAAAAAAAAAC6E8EnAACgx3tu3mN5/rf/nKbF8zLkI1/PwOM/UHLNmpqaMky2pSeffDILFixI8sebnwAAAAAAAAAAAODNTPAJAADo8erq6lJsWp9lI76TjfMfyF7v/1J2f9d5JdXsjODTq8NOdXV1aWtrK3sPAAAAAAAAAAAA6C4EnwAAgB6vvr4+SVJsbc5Lo76fl2ePzx5/cUH2POOypNCxP5tmzJiRxYsXl3PMLYJPL730Uu6///6y1gcAAAAAAAAAAIDuRPAJAADo0ZYsWZKZM2f+6UOxPSvq/ztrZtyRQSd+KEM+/M9JZdV2zw8fPjy9evXa5tqrg0qlWrlyZaZOnbrFt9ra2rLVBwAAAAAAAAAAgO5G8AkAAOjRxo4du9W3Y489Njf9w4fzz+87NAOO/F8Zeva/p9Cr7zbPf/Ob38z8+fPzxS9+Mb17995iraampmxzNjQ0pL29fYtv5QxWAQAAAAAAAAAAQHcj+AQAAPRodXV1m5+PPPLI3HbbbXnkkUdy1lln5dK/PDTL636Svgcel2Hn/iAV/Xbb6nx7e3sOPPDAXHvttXn66afzla98JX37/jEkNXHixKxbt64sc24r5DR79uw8++yzZakPAAAAAAAAAAAA3Y3gEwAA0GO1tLSksbExhx9+eG6++ebMnj07n/zkJ1NR8cc/lSoqKrL+sYl5aeT302vvg7LPBT9K5aC9t6jx6luY3vKWt+QnP/lJnnnmmXzta19Lr169Mm7cuLLMua2bqRK3PgEAAAAAAAAAAPDmVdXVAwAAAHSVhQsX5uqrr85FF12Uqqqt/zyqqKjIe9/73lRWVmbTs7V57q0fysFf+GkOXVSf/q1rU1FRkX333Xerc8OGDctVV12Vr3/965k7d27Jc957771Zs2bNNtfGjBmTL3/5yyX3AAAAAAAAAAAAgO5G8AkAAOixjjjiiBxxxBHbXS8UCpkwYcLm97kvrs3FN92fJbtdkJs+fXLeedDgHdYfMmRI3v3ud5c8545udZo8eXLWrVuXQYMGldwHAAAAAAAAAAAAupOKrh4AAADgjeLIfXfLHZefnsH9e+XCG2dk0pPLXpe+tbW1211rbm5OY2Pj6zIHAAAAAAAAAAAAvJ4EnwAAAHbBAXv2z+2XnZ5D9h6QL/xmZu58+IVO7ffkk0/mqaee2uGeHd0IBQAAAAAAAAAAAG9Ugk8AAAC7aO9BfXLrJafl5IP3zFdueyQ33ft0p/XamVBTXV1d2traOm0GAAAAAAAAAAAA6AqCTwAAAB0wqG+v/PozJ+fMo/fJFbWP58fjnkixWCx7n9ra2tfcs3z58syYMaPsvQEAAAAAAAAAAKArCT4BAAB0UN9elbn2ghNz3ikH5tpJC/KtkbPT2tZetvqrVq3Kvffeu1N7d+ZmKAAAAAAAAAAAAHgjEXwCAAAoQWVFIT8465j8/XsOy60PPJcv/f6hbGppK0vthoaGtLXtXC3BJwAAAAAAAAAAAN5sBJ8AAABKVCgU8k9/c0T+/cNHZdycpbn4pvuzdlNLyXVra2t3eu+cOXPy9NNPl9wTAAAAAAAAAAAAugvBJwAAgDL5zLvemv8+9/g8+OyqnHvDfXlpXVOHa7W0tKShoWGXzuxKUAoAAAAAAAAAAAC6O8EnAACAMvro8fvlxotPytPL1+fs66dl0YoNHaozderUrF69epfOjBkzpkO9AAAAAAAAAAAAoDsSfAIAACizvzpiaH7/hVOzZmNLPnH9tMx9ce0u1+jI7U2TJ0/O2rW73gsAAAAAAAAAAAC6I8EnAACATnDCgYNTfdnwVFUU8skbpuf+p1fu0vmO3N7U0tKSxsbGXT4HAAAAAAAAAAAA3ZHgEwAAQCc5bOigVF9+eoYO6pOLfjUj4x9fulPn5s2bl3nz5nWoZ0cCUwAAAAAAAAAAANAdCT4BAAB0ov326JfbLzs9b993t1x284MZMfO51zxTW1vb4X719fVpa2vr8HkAAAAAAAAAAADoLgSfAAAAOtmeA3rn958/Nacfule+Xj0r19+9YIf7S7m1afny5bnvvvs6fB4AAAAAAAAAAAC6C8EnAACA18GAPlX51cUn50PH7ZsfNjyRH9TPTXt7cat9q1atypQpU0rqVUpwCgAAAAAAAAAAALoLwScAAIDXSe+qilxz7gm5ePhB+cU9C/O16llpaWvfYs+4cePS1tZWUh/BJwAAAAAAAAAAAN4MBJ8AAABeRxUVhXz3I0fnq2e8LXc89Hwu+92D2dj8p6BTOUJLjz/+eBYuXFhynR1paWnp1PoAAAAAAAAAAAAg+AQAAPA6KxQK+Yf3Hp7//NgxuevJZbnoVzOyZkNLWltb09DQUJYenX3r089+9rMUi8VO7QEAAAAAAAAAAEDPJvgEAADQRS487aBce/6JmfX8mnzyhumpu+verFq1qiy1OzP4VCwWc/XVV2fu3Lmd1gMAAAAAAAAAAAAEnwAAALrQ3x67b379mZPz/KoN+dbEFaka/Jay1L377ruzZs2astT6c48++mgWLVqUurq6TqkPAAAAAAAAAAAAieATAABAl3vXYUNy6yXDs6G5JftccFV6Dzu05Jqtra1pbGwsw3Rbq6mpSZLU19d3Sn0AAAAAAAAAAABIBJ8AAAC6hb4bl+WF3/xTiq1NGXbelel74HEl1xwzZkwZJtva6NGjkyT33ntvp90qBQAAAAAAAAAAAIJPAAAA3UBtbW1aVy3Okpu/lta1yzL0nP9I/7edXlLN+vr6tLW1lWnCP3ruuefy0EMPJencW6UAAAAAAAAAAABA8AkAAKAbeOV2praXV2bpLd9I05J5GfKxb2bgO87scM0VK1Zk+vTp5RoxyZ9ue3pFfX19WesDAAAAAAAAAADAKwSfAAAAutjq1aszZcqUze/tTeuz7LZ/y8YFM7PXmV/O7qd/aofnd9999+2uvRKoKpeampot3uvr69Pe3l7WHgAAAAAAAAAAAJAIPgEAAHS5cePGpbW1dYtvA/r2ymcPb80HjxqSPd59UQa/95IkhW2e//a3v53GxsYMHz58q7VyBp/WrFmTyZMnb/Ft2bJlefDBB8vWAwAAAAAAAAAAAF4h+AQAANDFXh1OGjBgQL71rW/l6aefzg+v/H5+euEp2fDQmOx20kcy5MP/lFRUbXW+UCjkjDPOyNSpU7cKQM2dOzcLFiwoy5wNDQ1paWnZ6nt9fX1Z6gMAAAAAAAAAAMCrCT4BAAB0odbW1jQ0NGTAgAH55je/mWeeeSY/+MEPMmTIkCRJRUUhL9/726ya9OsMOOqvMvTsf0uhV99t1tpeAKpctz7V1NRs83tdXV1Z6gMAAAAAAAAAAMCrCT4BAAB0occeeyyXXHJJnnnmmVx55ZWbA0+v1q9fv7TMrs/aCT9P34OOz77nX5n+g4emX79+6devX6qqtrwF6s8DUCtXrix5zubm5u3e7PTAAw9k6dKlJfcAAAAAAAAAAACAV6t67S0AAAB0luOPPz7HH3/8DvesWLFi83PjnCX58h+q8vZ/uS2//dyp2W+Pfts990oA6owzzih5zrvvvjtr167d7vrYsWNz8cUXl9wHAAAAAAAAAAAAXuHGJwAAgDeQvzl6n/zus6dk2dqmnH3dtMxftu516VtTU7PD9bq6utdlDgAAAAAAAAAAAHoOwScAAIA3mFMP2Su3XTo8LW3FnH399Dy8aFWn9isWixk9evQO9zQ2NqalpaVT5wAAAAAAAAAAAKBnEXwCAAB4AzrqLbtl5OWnZ/d+vXL+L2fk7nkvdVqvhx9+OM8999wO96xZsybTpk3rtBkAAAAAAAAAAADoeQSfAAAA3qAO3Kt/br9seN46ZEA+/5sHUvPIC53Sp6amZqf21dXVdUp/AAAAAAAAAAAAeibBJwAAgDewoYP65tZLT8uJBw7OV257JP8z9emy99jZ4FN9fX3ZewMAAAAAAAAAANBzCT4BAAC8we3Wt1d+89lTcsaRw/LdMY/n/zY+mWKxWJbazzzzTB599NGd2jtnzpw8++yzZekLAAAAAAAAAAAAgk8AAABvAn17VebnF5yYc08+INfcNT//cudjaWsvPfw0evToXdpfV1dXck8AAAAAAAAAAABIBJ8AAADeNKoqK3Llx4/NF//q0Px+xqJ8+fcPpam1raSaNTU1u7S/vr6+pH4AAAAAAAAAAADwCsEnAACAN5FCoZCvn/n2/OsHj0zDY0vymV8/kHWbWjpUa9WqVbn77rt36cxdd92VjRs3dqgfAAAAAAAAAAAAvJrgEwAAwJvQ5999SH7yqXfk/qdX5rxf3pflLzftco36+vq0te3ajVEbN27MpEmTdrkXAAAAAAAAAAAA/DnBJwAAgDeps07YP7/8u5Myf9nLOfu6aXlu5YZdOl9TU9OhvvX19R06BwAAAAAAAAAAAK8m+AQAAPAm9tdvH5pbPn9aVm1oySeum5YnlqzdqXNNTU1paGjoUM+6uroUi8UOnQUAAAAAAAAAAIBXCD4BAAC8yb3zoMG5/bLhqSgU8snrp+eBZ1a+5plJkybl5Zdf7lC/Z555JnPnzu3QWQAAAAAAAAAAAHiF4BMAAEAP8LZhg1J9+fAMGdgnF944IxMeX7rD/TU1NSX1q6+vL+k8AAAAAAAAAAAACD4BAAD0EPsP7p/bLxueI/YZlEtvfjDVDz6/zX3t7e0ZPXp0Sb3q6upKOg8AAAAAAAAAAACCTwAAAD3IXgP75PdfOC3DD9kr/3z7o/nlPQu32vPQQw9l8eLFJfW59957s2bNmpJqAAAAAAAAAAAA0LMJPgEAAPQwA/tU5VefPikfPG7ffL9+bq5smJtisbh5vaampuQera2tGT9+fMl1dqS9vT0bNmzo1B4AAAAAAAAAAAB0HcEnAACAHqhPVWWuOfeEXHTaQbnh7oX5evWstLa1JylP8ClJ6urqylJne2bOnJnGxsZO7QEAAAAAAAAAAEDXqerqAQAAAOgalRWFXPHRo7PXwN65esJTWbWhJf98+uDMnj27LPUbGhrS3t6eiorO+c2NUaNGZdWqVfnYxz7WKfUBAAAAAAAAAADoWoJPAAAAPVihUMhX3ve27DWgd/5t9JzMnf9MCn0GpNi0vuTaS5cuzUMPPZSTTjqpDJNubdSoUdm4cWOKxWIKhUKn9AAAAAAAAAAAAKDrdM7PbgMAAPCGctHwg/PT807IC029s8/5P0zlgMFlqVtXV1eWOn9u7ty5efLJJ7No0aLMnTu3U3oAAAAAAAAAAADQtQSfAAAASJKcvn/fvHTHf6Rqj30y7MIfp2qPfUuuWV9fX4bJtjZy5MjNz2PHju2UHgAAAAAAAAAAAHQtwScAAACS/PF2pg0LH8rSP3w7Fb37ZZ8Lr0qvoYeUVPOBBx7IsmXLyjThn4waNWrzc0NDQ9nrAwAAAAAAAAAA0PUEnwAAAEiS1NTUJEmalzyVJbd8I8XWluxz/g/T54BjO1yzWCyWPZi0aNGiPPjgg5vf77nnnqxfv76sPQAAAAAAAAAAAOh6gk8AAABk06ZN+X/s3Wl81eWdN/7vScIuq4ho3Ze6UncQbMe5p6NVp3ZDrAu3rbWtdP7eHce7rV3HTmfaOna960zVutWqkJCEgBtLNhKQJSCLoCgghEXWsBMgIeT8H3TMlLLnnJMgeb8fnfO7ruv7uZ6GF5/zGzduXNP3ho0rY82L346GbevjxFt/Ep0+OrDZs1977bV0XLHJ6NGj9/peX18f5eXlac0AAAAAAAAAAACg9Sk+AQAAEGVlZfu8NWnPtg1x3opX49zeHeKEz34vjrvkUwc8f/vtt8cjjzwSxx9//D5r48ePj927d6ftrkVFRfs8+8vSFgAAAAAAAAAAAMcGxScAAABizJgxe32/4YYb4vXXX4/y8a/GSw9cF8nVb8XxN/yf6Hb1kP2e79q1a3z729+OpUuXxk9/+tPo2bNn09qWLVtiypQpablnTU1NVFZW7vN87NixkUwm05IBAAAAAAAAAADA0UHxCQAAoI1rbGyMl156KSIibr755pg+fXqMHTs2Bg0aFBERndvnREPZf8X2+WXR89ovRc+/+2pEJPaakZX15z8vu3btGt///vdj6dKl8eMf/zi6desWERGvvfZaWu768ssvR2Nj4z7PlyxZEosWLUpLBgAAAAAAAAAAAEcHxScAAIA27o033ohBgwbFrFmz4qWXXor+/fvvs6dxz+7Y8OpvYuuM0dHtqs/F8Z9+ICIru2n9g+LTB7p37x4PPfRQLF26NH7wgx/s9y1NzVFUVHTAtXHjxqUlAwAAAAAAAAAAgKNDIplMtvYdmlx55ZXJmTNntvY1AAAA2pSGhobIyck56J758+fH7t27Y8+ePTHqne0xfH5tXNqnXfyfKzpH+6xk9O3bN84999wDnq+pqYlevXrtU5A6Etu3b4/evXtHXV3dftdvuOGGGDt2bLPnAwAAAAAAAAAA+/pu4ZtR/u66mP79v2/tq3CMSiQSbySTySv3t3bw/9kGAADAMe9QpaeIiIsvvrjp85VXRnysanl8v2he/OdbiXj2y/2jR+f2Bz3fu3fvlO85bty4A5aeIiImTpwYO3fujE6dOqWcBQAAAAAAAAAAQOtr/k9tAwAA0Gbd1v+0eGzoFfHWqq0x5PGpsXrLzoxnFhUVHXR9165dUVFRkfF7AAAAAAAAAAAA0DIUnwAAAGiWT13UN567u3+s3rIrBv9+Sixetz1jWfX19fHqq68ect/YsWMzdgcAAAAAAAAAAABaluITAAAAzTbw7OMj9+tXR/2exhjy+JSYs2JzRnLKy8tjy5Yth9w3bty4jOQDAAAAAAAAAADQ8hSfAAAASMnFH+keBcMGxXEdc+KOJ6fFpEXr055RVFR0WPsWLlwYS5YsSXs+AAAAAAAAAAAALU/xCQAAgJSd0btLFA4bFKf16hxf+eOMeHnuqrTN3rNnT4wePfqw93vrEwAAAAAAAAAAwLFB8QkAAIC06NOtY+TdOzAuO7VnfDN3dvxpanVa5k6bNi3Wrl172PvHjh2bllwAAAAAAAAAAABal+ITAAAAadO9U7v40z3945Pnnxj/Muat+HXxwkgmkynNLCoqOqL9ZWVlsWvXrpQyAQAAAAAAAAAAaH2KTwAAAKRVx3bZ8fjQy2PIFafE70oXxY/GzI89jc0rPyWTySMuPu3YsSMmT57crDwAAAAAAAAAAACOHopPAAAApF1OdlY8csvHYti1Z8cL05bHN3NnR13DniOeM2/evFiyZMkRnxs7duwRnwEAAAAAAAAAAODoovgEAABARiQSifjujefHD266IF59c3Xc88eZsb2u4YhmHOnbnj4wbty4Zp0DAAAAAAAAAADg6KH4BAAAQEZ97W/Oil8NuSSmLtkQdzw5LTZsrzvss80tPr399tuxfPnyZp0FAAAAAAAAAADg6KD4BAAAQMYNvuKUePKuK2Lh2m0x5PGpsXLTjkOeWbp0acydO7fZmWPHjm32WQAAAAAAAAAAAFqf4hMAAAAt4u/OPzFeuGdA1Gyvi8GPTYmFa7cddH9z3/b0gXHjxqV0HgAAAAAAAAAAgNal+AQAAECLufKMXpE/bFBERAx5fGq8sWzjAfemWnwqKSmJ+vr6lGYAAAAAAAAAAADQehSfAAAAaFHn9e0aBcMGRa8u7ePOp6ZH+Tvr9tmzdu3aeP3111PK2b59e0yZMiWlGQAAAAAAAAAAALQexScAAABa3Km9Okf+sIFxTp/j4qt/mhmjZq3ca/2ll16KZDKZcs7YsWNTnnEo69evz3gGAAAAAAAAAABAW6T4BAAAQKvofVyHGPG1q2PAmb3igZFz46lJS5rWioqK0pKR6eJTQ0ND/PCHP8xoBgAAAAAAAAAAQFul+AQAAECr6dqxXTx791VxU7++8e+vLoj/GPdObNmyJUpLS9Myf968efH++++nZdb+TJo0KXJzc2P37t0ZywAAAAAAAAAAAGirFJ8AAABoVR1ysuPR2y+POwacFo9NfC/ueaIs6nc3pG3+uHHj0jbrrxUWFsbWrVtj+vTpGcsAAAAAAAAAAABoqxSfAAAAaHXZWYn46ecujm9+8tyYubF9nPC570Uip31aZmeq+NTY2BhFRUURETF+/PiMZAAAAAAAAAAAALRlik8AAAAcFRKJRPzjJ06L2spno9O5A6LPkH+NRPvOKc8tLi6Ohob0vUHqA9OnT49Vq1ZFhOITAAAAAAAAAABAJig+AQAAcNQoKSmJmqmFUfPyL6PDR86Pvnc8HFldeqQ0c8uWLTFt2rQ03fB/FBYWNn2eOXNm1NTUpD0DAAAAAAAAAACgLVN8AgAA4KhRVFQUERE7FlTGuoKfRE7Pk6Lvnb+InB59U5o7duzYdFyvSTKZjFGjRu31vaSkJK0ZAAAAAAAAAAAAbZ3iEwAAAEeFhoaGeOmll5q+76qeHWtzfxBZHTpH3zt/Ee36nNns2ekuPs2ZMyeWLl2617Px48enNQMAAAAAAAAAAKCtU3wCAADgqPD6669HTU3NXs/qVy+MhvG/iO7dusTJQx+JDqdefMDzF1xwQQwdOjQSicQ+a7Nnz441a9ak7a5/+banD0yYMCGSyWTaMgAAAAAAAAAAANo6xScAAACOCkVFRXt9P/XUU+PRRx+NJXOmxITv3BCJXVvjxFt/Ep3OGbDf8yeeeGI8//zzMW/evBg8ePA+6+l8I1NhYeE+z1atWhXz589PWwYAAAAAAAAAAEBbp/gEAABAq0smk03Fp3PPPTeefvrpWLx4cdx3333RqVOnOLlHp2hf+Z9Rv25JnPD570eXftftMyMnJyciIi666KIoKCiImTNnxo033ti0Pm7cuLTcdcGCBbFgwYL9rqWzXAUAAAAAAAAAANDWKT4BAADQ6mbPnh3du3ePESNGxIIFC+J6ctuFAAAgAElEQVQrX/lKtG/ffq89jbu2xdrcH8au6jnR+6Z/im4D9n6r0wfFpw9cccUV8dprr8WkSZPi2muvjQkTJsSePXtSvuuoUaMOuKb4BAAAAAAAAAAAkD45h94CAAAAmXXWWWfFnDlzIivrwL/P8dBDD8WmTZuibndDjN+8JRb97d3xib+/KS7PWhZ79jTEueeeu99zH//4x6O8vDxKSkpi3bp1cdJJJ6V018LCwgOuTZo0KXbs2BGdO3dOKQMAAAAAAAAAAADFJwAAAI4CPXr0OOSeoUOHNn1+oDEZP3nl7fjjlIiPXnZ5/MctH4t22QcuTSUSibjuuutSvueSJUti9uzZB1yvq6uLioqKuPHGG1POAgAAAAAAAAAAaOsO/L/CAAAA4CiVlZWIh26+ML51/Udj1Oz34+t/mhk76/dkPLeoqOiQe8aPH5/xewAAAAAAAAAAALQFik8AAAB8KCUSibjv786Nn32+X1QsXB9Dn54em3fUZzSzsLDwkHsUnwAAAAAAAAAAANJD8QkAAIAPtTsGnBb/dcflMW/llrj1iamxZsuujOS8//77MXXq1EPue+edd2LZsmUZuQMAAAAAAAAAAEBbovgEAADAh96N/U6KP37lqli1eVcMfmxKLFm/Pe0Zo0ePPuy93voEAAAAAAAAAACQOsUnAAAAjgmDzu4duV+/Onbt3hO3PD413ly5Oa3zCwsLD3uv4hMAAAAAAAAAAEDqFJ8AAAA4Zlz8ke5R8I1B0bl9dtz+h2nx+uKatMytqamJioqKw95fWloaDQ0NackGAAAAAAAAAABoqxSfAAAAOKac2btLFH5jUJzaq3Pc/eyMePXN1SnPHDNmTDQ2Nh72/i1btsT06dNTzgUAAAAAAAAAAGjLFJ8AAAA45pzYrWPk3TswLjm1e9w3YlY8P21ZSvMKCwuP+Mz48eNTygQAAAAAAAAAAGjrFJ8AAAA4JnXv1C6ev2dAfPL8PvGj0fPj/5UsimQyecRztmzZEiUlJUd8TvEJAAAAAAAAAAAgNYpPAAAAHLM6tsuOx4deEYMvPyV+U7IwHnrprWhsPLLy0yuvvBK7d+8+4uwZM2bEhg0bjvgcAAAAAAAAAAAAf6b4BAAAwDEtJzsrfjnkY/H1vzkr/jR1WXwzd3bUNzQe9vnCwsJm5SaTyWa9KQoAAAAAAAAAAIA/U3wCAADgmJdIJOL7N10Q37vx/HjlzdVxz3Mzorau4ZDnamtrY9y4cc3OHT9+fLPPAgAAAAAAAAAAtHWKTwAAALQZ9157djxyy8diynsb4o4np8XG2vqD7h83blzs3Lmz2Xnjx4+PZDLZ7PMAAAAAAAAAAABtmeITAAAAbcqtV54ajw+9It5Zsy1ueXxKvL/5wMWmwsLClLJWrVoVb731VkozAAAAAAAAAAAA2irFJwAAANqc6y48MZ6/Z0Cs31YXg38/JRat3bbPnrq6unjllVdSzho/fnzKMwAAAAAAAAAAANoixScAAADapP5n9oqR9w6MPclkDHliasxavmmv9ZKSkti2bd9C1JFqieLT2rVro7GxMeM5AAAAAAAAAAAALUnxCQAAgDbrgpO6xahvDIoendrFnU9Oj4nvrmtaGzVqVFoyKisrY8eOHWmZdSDPP/98zJs3L6MZAAAAAAAAAAAALU3xCQAAgDbt1F6dI3/YoDjrhC7x1edmxpg570dDQ0OMGTMmLfPr6uqisrIyLbMOJD8/P0pKSjKaAQAAAAAAAAAA0NIUnwAAAGjzTujaIXK/fnVcdUav+KfcOfGj50tjw4YNaZs/fvz4tM36a9XV1VFVVRXFxcUZywAAAAAAAAAAAGgNik8AAAAQEV07totn774qbriob4x4tyF6fGJo2mZnsvhUUFAQERGVlZVRV1eXsRwAAAAAAAAAAICWpvgEAAAA/61ju+x49PZLY8/Ciug+6Lbo9an7IhKp/+m8YMGCWLFiRRpuuK/8/PyIiNi5c2dMmTIlIxkAAAAAAAAAAACtQfEJAAAA/kLV9GmxsugXsWVKbnS99Ibo/dkHI7LbpTw3E299qq6ujqqqqqbvJSUlac8AAAAAAAAAAABoLYpPAAAA8BdGjRoVERGbJ70QG0v+EF3OuyZOHPKvkWjfKaW5mSg+FRQU7PVd8QkAAAAAAAAAADiWKD4BAADAf0smk1FYWNj0fdsbL0XNy7+MDqdcGCfe/vPI6tyj2bNLSkqioaEhHddskp+fv9f3mTNnxqZNm9KaAQAAAAAAAAAA0FoUnwAAAOC/zZo1K5YtW7bXs9q3J8a6wp9Epz6nx2l3/zZyup94wPOdO3eOyy+/fL9rmzdvjhkzZqTtrtXV1VFVVbXXs8bGxigvL09bBgAAAAAAAAAAQGtSfAIAAID/NmrUqL2+Z2dnx1133RVvvPJ8FNx3bSQ6dIkTh/4i2p1wxn7P9+jRI2bMmBEjR46M8847b5/18ePHp+2uBQUF+31eXFyctgwAAAAAAAAAAIDWpPgEAAAAEZFMJqOwsDAiIjp27Bj33XdfvPfee/Hcc8/FhRdeGJef1jN6zf5jROOe6HvHw9HhlIv2mdG+ffvIysqKIUOGxPz58+Ppp5+OU089tWk9ncWn/Pz8/T4vKSlJWwYAAAAAAAAAAEBrUnwCAACAiFiwYEGsXr06vve970V1dXU8+uijcfrpp++1p3HzqljzwndiT+2m6HPrT6LT2f33Wm/Xrl3T55ycnPjKV74SCxcujN/85jfRu3fvqKqqik2bNqV81+rq6qiqqtrv2uLFi6O6ujrlDAAAAAAAAAAAgNaW09oXAAAAgKNBx44dY/ny5dG9e/cD7rn++uvj7LPfi50by2Nxp09Fn8E/jOOXjIuOq+ZEfX19nHbaafude//998c999wTv/3tb2PGjBlx/fXXp3TXgoKCg66XlJTEV7/61ZQyAAAAAAAAAAAAWpviEwAAAETEWWeddcg9Dz/8cNPn2rqGGPbCGzEpcVN8774H4t5rzz7o2a5du8aPfvSjlO8ZEZGfn3/QdcUnAAAAAAAAAADgWJDV2hcAAACAD6MuHXLi6S9dFZ/+2Enx87HvxM9eWxDJZDLjudXV1VFVVXXQPaWlpdHY2JjxuwAAAAAAAAAAAGSS4hMAAAA0U/ucrPjdbZfFlwaeHn+oXBLfyn8zGvZktnBUUFBwyD01NTUxd+7cjN4DAAAAAAAAAAAg0xSfAAAAIAVZWYn48Wcuigeu+2gUzloZ9z7/Ruys35OxvPz8/MPaV1xcnLE7AAAAAAAAAAAAtATFJwAAAEhRIpGIb37y3Pj3z10cZe+ui7uemR5bduxOe051dXVUVVUd1t6SkpK05wMAAAAAAAAAALQkxScAAABIk6FXnx7/efvlMWfF5vjiH6bG2q270jq/oKDgsPdOmjQpdu1Kbz4AAAAAAAAAAEBLUnwCAACANPqHj50Uz365f6zYuCMGPzYlltbUpm12fn7+Ye/dtWtXvP7662nLBgAAAAAAAAAAaGmKTwAAAJBmHz+3d4z4+tWxo35P3PLYlJj//paUZ1ZXV0dVVdURnSkpKUk5FwAAAAAAAAAAoLUoPgEAAEAGfOyUHlEwbGB0bJcdt/1hWkxZXJPSvIKCgiM+U1xcnFImAAAAAAAAAABAa1J8AgAAgAw564TjovAbg+LkHh3jy8/OiLHzVjd7Vn5+/hGfmTVrVmzYsKHZmQAAAAAAAAAAAK1J8QkAAAAyqG/3jjHy3oHR75Tu8Y/DZ8Xw6cuPeEZ1dXVUVVUd8blkMhnl5eVHfA4AAAAAAAAAAOBooPgEAAAAGdajc/t44Z4B8b/O6xPfL5oX/1m2KJLJ5GGfLygoaHZ2cXFxs88CAAAAAAAAAAC0JsUnAAAAaAGd2mfHE//7ivjCZR+JX05YGP/68tvR2Hh45af8/Pxm55aUlDT7LAAAAAAAAAAAQGvKae0LAAAAQFvRLjsrfjnkkujVpX08NXlpbKytj18OuSTa5xz4d0mqq6ujqqqq2ZlLliyJJUuWxFlnndXsGQAAAAAAAAAAAK3BG58AAACgBWVlJeIH/3BBfPfG8+Oluaviq3+aGTvqGw64v6CgIOVMb30CAAAAAAAAAAA+jBSfAAAAoIUlEokYdu3Z8cjgj8XkRevjjienx6ba+v3uzc/PTzlP8QkAAAAAAAAAAPgwUnwCAACAVnLrVafG40OviLdXb40hT0yNVZt37rVeXV0dVVVVKeeUlpbGnj17Up5zKGvXrs14BgAAAAAAAAAA0HYoPgEAAEAruv6ivvH8V/rH2i27YvBjU2Lxum1NawUFBWnJ2LhxY8yZMyctsw5kzZo18etf/zqjGQAAAAAAAAAAQNui+AQAAACtbMBZx0fuvVfH7j3JuOXxqTF7+aaIiMjPz09bRnFxcdpm7U9BQUFMmDAhoxkAAAAAAAAAAEDbovgEAAAAR4GLTu4ehd8YGN06tos7npweIyfNj6qqqrTNLykpSdus/cnLy4s5c+bEhg0bMpoDAAAAAAAAAAC0HYpPAAAAcJQ4/fguUfCNgXFG7y7x3Vero/MFf5O22ZMnT46dO3embd5fWrlyZUyePDkiIsrLyzOSAQAAAAAAAAAAtD2KTwAAAHAU6dO1Y+Tde3Vkb14evW/+VnS9/NNpmVtXV9dUTkq3/Pz8ps+lpaUZyQAAAAAAAAAAANoexScAAAA4ymxc834sfur+2LloevS6blh0//idaZlbUlKSljl/LS8vr+lzWVlZRjIAAAAAAAAAAIC2R/EJAAAAjjIFBQURe3bH+tE/j21zx0ePa26PXtf/Y0QitT/ji4uL03TD/7F06dKYPn160/eFCxfGypUr054DAAAAAAAAAAC0PYpPAAAAcJTJz8//84dkY2wc92hsmToyul52U/T+zHcisnOaPXf27NlRU1OTplv+2ciRI/d55q1PAAAAAAAAAABAOig+AQAAwFGkuro6qqqq9nq2ufJPsbH0yehy/sfjjLseiUT7Tgedcdxxxx1wrbS0NC33/EBeXl7GMwAAAAAAAAAAgLZJ8QkAAACOIgUFBfs869evX/z+n26JXw6+OOKEc+LE234WWZ27H3DGggUL4sEHH4yOHTvus1ZSUpK2uy5atChmz569z/PS0tJIJpNpywEAAAAAAAAAANomxScAAAA4iuTn5zd9/tu//dt47bXXYu7cuTF06NC45arT47RlY6Nd71Oj752PRHa3Pvud0bdv33j44Ydj0aJFcc8990RW1v/8+V9cXJy2UtL+3vYUEfH+++/HokWL0pIBAAAAAAAAAAC0XYpPAAAAcJSorq6OmTNnxuDBg2P69OlRXl4eN954YyQSiaY97WoWxtrcH0ZWp27Rd+gvol3v0/eakZ2dHTk5ORERccopp8RTTz0V8+bNi89+9rMREbFs2bJ477330nLf3NzcA66VlpamJQMAAAAAAAAAAGi7FJ8AAADgKLFt27ZYsGBBFBQURP/+/fe75/jjj48TEtui7rWfRyIR0ffO/4gOH7mgab1jx477nLnwwgtj9OjRMXny5LjmmmuipKQk5bu+9dZb8dZbbx1wXfEJAAAAAAAAAABIVU5rXwAAAAD4s379+h1yT15eXtPnlZt2xF1PV0WnL/8qfj34whh4eteoq6s74NlrrrkmJk2aFCtWrEj5rn95j/0pLy+PxsbGyMrymysAAAAAAAAAAEDz+N9HAAAA8CF1Ss/OkT9sYJzXt2t8M/+tKF+6I0466aSDnkkkEnHaaaellJtMJg9ZfNq4cWPMnTs3pRwAAAAAAAAAAKBtU3wCAACAD7Hjj+sQw792dVx9Vq/4v/lz48nKJRnPnDt3bixcuPCQ+8rKyjJ+FwAAAAAAAAAA4Nil+AQAAAAfcsd1yIlnvnxV/EO/k+Knry2In49dEMlkMmN5ubm5h7WvtLQ0Y3cAAAAAAAAAAACOfTmtfQEAAAAgdR1ysuN3t18WPbu0iycqlsTG7fXx8y/0i5zs9P7mSTKZjLy8vMPaW1lZGfX19dG+ffu03gEAAAAAAAAAAGgbvPEJAAAAjhHZWYn4t89eHP/0yXMj/42VMeyFWbFr9560ZsyYMSOqq6sPa29tbW3MmDEjrfkAAAAAAAAAAEDbofgEAAAAx5BEIhH/fN1H4yefvShK31kbdz1dFVt27k7b/MN929MHSktL05YNAAAAAAAAAAC0LYpPAAAAcAy6a+AZ8bvbLovZKzbFF5+YGuu27kp5ZmNjY4wcOfKIzig+AQAAAAAAAAAAzaX4BAAAAMeomy85OZ758lWxfOOOuOXxqbFsQ21K86ZOnRorV6484jM7duxIKRcAAAAAAAAAAGibFJ8AAADgGPaJc0+IEV+7Orbt2h2DH5sa89/f0uxZubm5R3xm9+7dMXny5GZnAgAAAAAAAAAAbZfiEwAAABzjLjm1R+QPGxQdcrLi9j9Mi6nvbTjiGXv27ImCgoJm5ZeVlTXrHAAAAAAAAAAA0LYpPgEAAEAbcE6f46LgGwOjb/eO8aVnq2Lc/DVHdL6ysjLWrDmyMx8oLS1t1jkAAAAAAAAAAKBtU3wCAACANuKk7p0if9jAuOjkbvGPL74RuVXLD/tsXl5es3PfeOON2LRpU7PPAwAAAAAAAAAAbZPiEwAAALQhPTq3jxe/OiA+ce4J8d1R8+K/yhdHMpk86Jndu3dHYWFhszOTyWRUVFQ0+zwAAAAAAAAAANA2KT4BAABAG9O5fU489aUr43OXnhy/GP9u/NsrC6Kx8cDlp7KysqipqUkps7S0NKXzAAAAAAAAAABA25PT2hcAAAAAWl677Kz49a2XRs8u7eOZ15fGxtq6+MWQS6Jd9r6/kZKXl5dynuITAAAAAAAAAABwpLzxCQAAANqorKxE/MunL4xvf+q8GD1nVXztTzNjR33DXnvq6+ujqKgo5awFCxbE6tWrU55zKDNmzMh4BgAAAAAAAAAA0DIUnwAAAKANSyQS8f/9r3Pi4S/0i8qF62PoU9Nj8476pvUJEybE5s2b05JVVlaWljkH8+CDD8bWrVszngMAAAAAAAAAAGSe4hMAAAAQt/U/LX5/5xUxf9XWGPL41Fi9ZWdEROTl5aUtI9PFpxUrVkR5eXlMmjQpozkAAAAAAAAAAEDLUHwCAAAAIiLihov7xnN394/VW3bFLY9NjbdX1MTo0aPTNr+0tDSSyWTa5v21D0paEydOzFgGAAAAAAAAAADQchSfAAAAgCYDzz4+cr9+ddQ17IkhT0yL+uNOStvsZcuWxZIlS9I2768NHz48IiLKy8szlgEAAAAAAAAAALQcxScAAABgLxd/pHsUDBsUDTu3x4m3/yw6nnFp2maXlZWlbdZfevfdd2P27NkRETF79uzYvHlzRnIAAAAAAAAAAICWo/gEAAAA7OOEThGr/vR/o2Hzmuhzy0PR+fyPp2VuaWlpWub8tREjRjR9bmxsjEmTJmUkBwAAAAAAAAAAaDmKTwAAAMA+XnnlldhesyrWDP9u1K16N3p/5jtx3GU3pTy3rKwsGhsb03DD/5FMJmP48OF7PSsvL09rBgAAAAAAAAAA0PIUnwAAAIB95OXlRUREsq421o38l9i5uCqOv/4fo/s1d6Q0d/369fHWW2+l44pNZs2aFYsWLdrr2cSJE9OaAQAAAAAAAAAAtDzFJwAAAGAvW7dujddee63pe7KhPtYX/Sy2zyuOHh+/I07+zD9HJJr/TwqlpaXpuGaTESNG7PNszpw5sXHjxrTmAAAAAAAAAAAALUvxCQAAANjLmDFjoq6ubq9nHTu0jyGn18et/XpGuws+Gb1v/lZEds4BZzzzzDPxyU9+cr9rZWVlabtrY2Nj5Obm7vM8mUxGZWVl2nIAAAAAAAAAAICWp/gEAAAA7CUvL6/pc+/evePHP/5xLF++PB77/e/jkTsHxdnb3owuF/xN9LnloUi077TfGddcc00UFxfHuHHjol+/fnutVVRURENDQ1ruOmnSpHj//ff3uzZx4sS0ZAAAAAAAAAAAAK1D8QkAAABosmnTppgwYUKcc8458dhjj8Xy5cvjoYceihNOOKFpT++aOVHz6q+j42kfixNv+2lkdeq2z5xOnTpFIpGIT33qUzF79uz44x//GKecckpERGzdujVmzpyZlvuOGDHigGvl5eVpyQAAAAAAAAAAAFqH4hMAAADQZNGiRZGXlxfvvPNODBs2LDp12veNTjt37oza+WWxftS/R7vep0ffOx+J7G4n7LWnc+fOTZ+zs7PjS1/6UixcuDAefvjh6NatW5SVlaV81/r6+sjPzz/g+ptvvhk1NTUp5wAAAAAAAAAAAK0jp7UvAAAAABw9+vfvf8g9zz33XGzdujV27NgRs5ZviZ9O7hAn3P9sDDu/IXokdsaOHTuia9eu+5zr1KlTPPjgg3HPPfekpfhUXFwcGzduPOieysrK+MIXvpByFgAAAAAAAAAA0PIUnwAAAIAj0rNnz+jZs2dERFxwQcQVl2yNu56uiscWtotnvvw3ccXpPQ96vnfv3nHrrbemfI8RI0Ycck95ebniEwAAAAAAAAAAfEhltfYFAAAAgA+38/t2i8JvDIpeXdrHnU9Ni/J312U8c8eOHTF69OhD7ps4cWLG7wIAAAAAAAAAAGSG4hMAAACQslN7dY78YQPjnD7HxdeemxlFs1dmNO/ll1+O2traQ+6bP39+rF+/PqN3AQAAAAAAAAAAMkPxCQAAAEiL3sd1iBFfuzr6n9kr/jlvbjw9eWnGskaMGHHYe731CQAAAAAAAAAAPpwUnwAAAIC06dqxXTx791VxU7++8W+vvB2PjHsnkslkWjM2b94cY8eOPez9ik8AAAAAAAAAAPDhlNPaFwAAAACOLR1ysuPR2y+PHp3nx+8nvhcbttfHTz9/ceRkp+f3V0aNGhX19fWHvb+8vDwtuQAAAAAAAAAAQMtSfAIAAADSLjsrET/93MXRu0v7+F3Z4ti0oz5+d/tl0bFddsqzhw8ffkT7FyxYEGvWrIm+ffumnA0AAAAAAAAAALSc9PzUMgAAAMBfSSQS8cD158WPb74wJry9Nr70TFVs3bU7pZlr1qxp1hucKioqUsoFAAAAAAAAAABanuITAAAAkFFfvubM+H+3XRpvLNsUX3xiWqzbtqvZs0aOHBmNjY1HfK45ZSkAAAAAAAAAAKB1KT4BAAAAGffZSz8ST3/5qqiuqY1bHpsayzbUNmvO8OHDm3Vu4sSJzToHAAAAAAAAAAC0HsUnAAAAoEVc+9ETYvjXBsTWXbtj8GNT4+1VW4/o/JIlS2L69OnNyn733Xdj1apVzToLAAAAAAAAAAC0DsUnAAAAoMVcdlrPKBg2MNplJ+KLT0yN6Us2HPbZ3NzclLK99QkAAAAAAAAAAD5cFJ8AAACAFnVOn65R+I1B0adbh/jfz1TFhLfWHNa5ESNGpJSr+AQAAAAAAAAAAB8uik8AAABAizu5R6coGDYoLjypWwx74Y0YOWPFQffPmzcv5s+fn1JmeXl5SucBAAAAAAAAAICWpfgEAAAAtIqeXdrHi18dEB8/94T4TuGb8XjFe5FMJve7N9W3PUVELF68OFauXJnyHAAAAAAAAAAAoGUoPgEAAACtpkuHnHjqrivjM5ecHA+PfSd+9tqCaGzcu/yUTCbTUnyKiJg4cWJa5hzM1q1bY9GiRRnPAQAAAAAAAACAY53iEwAAANCq2udkxW+/eGl8edAZ8eSkpfGtgrmxe09j0/q0adOiuro6LVnl5eVpmXMwo0aNiuLi4oznAAAAAAAAAADAsU7xCQAAAGh1WVmJeOjmC+Nb1380Rs16P+59/o3YWb8nIiJtb3uKaJk3Pr344otRUVGR8RwAAAAAAAAAADjWKT4BAAAAR4VEIhH3/d258dPPXxzl766LoU9Pjw3bdsbIkSPTlrFkyZJYvnx52ub9tdWrV0dZWVlUVFREMpnMWA4AAAAAAAAAALQFik8AAADAUeXOAafHf91xecxbuSU+89vyqKltSOv88vLytM77S7m5udHY2Bhr166NRYsWZSwHAAAAAAAAAADaAsUnAAAA4KhzU7+T4o93XxVrttVH36GPRE7Pk9M2e+LEiWmb9ddeeOGFps8VFRUZywEAAAAAAAAAgLZA8QkAAAA4Kl1xatfYPOrHkcjpEH2H/iLa9z0nLXMz9cand955J2bNmtX0XfEJAAAAAAAAAABSo/gEAAAAHJXGjh0bG9+bG2te/E4k63fGibf9LDqefknKc5ctWxZLly5Nww339uKLL+71vaKiIpLJZNpzAAAAAAAAAACgrVB8AgAAAI5Kw4cPj4iIhk2rYs2L34mGreuizy0/js7nXZPy7IkTJ6Y84y8lk8mm+35g5cqVGSlYAQAAAAAAAABAW6H4BAAAABx1tm3bFi+//HLT9z3bN8baFx+MujULo/dnH4xul/9DSvPLy8tTveJepk2bFkuWLNnneUVFRVpzAAAAAAAAAACgLVF8AgAAAI46Y8aMiV27du31rLGuNs5a/lpc1DMZPa/7RnQfdNtBZwwdOjTOPPPM/a5NnDgxkslk2u77wgsv7Pe54hMAAAAAAAAAADSf4hMAAABw1Bk+fHjT5+zs7PjiF78Y06ZNiymVE2PMtz8dp+5ZFT0+MTR6/v29EZHY74zPf/7zsWDBgvjVr34VPXr02GttxYoV+31DU3Ps3r07Ro4cud+1ysrKtGQAAAAAAAAAAEBbpPgEAAAAHFVqamqiuLg4unbtGg888EC89957kZubGwMGDIiIiHbZWfHRTdNjy/TC6HbFzdH75m9FZOXsM6dLly7RoUOHphn3339/tGvXrmm9vLw8LfedMGFC1NTU7Hdt6dKlsWLFirTkAAAAAAAAAABAW6P4BAAAABxVqqqq4pFHHomVK1fGr371qzj99NP32bOjtjY2T3w2NpU/E10uvDb63PIvkWjXcRaKSMsAACAASURBVK89xx13XNPnXr16xW9+85t4++23Y/DgwRERMXHixLTc98UXXzzoekVFRVpyAAAAAAAAAACgrdn355ABAAAAWtFNN90UN91000H33H///XHzzTdHbW1tTF+/JkrPvCwue+DZuKK2KhpqN0dtbW2cdNJJ+5w755xzoqCgIF5//fX49a9/HclkMhKJRLPvun379hgzZsxB91RUVMTQoUObnQEAAAAAAAAAAG2V4hMAAADwoTNgwIAYMGBARER8LSKK314b9w2fFYvP+Ew8f8+A+EiPTgc9f80118SgQYNSvsfo0aNjx44dB93jjU8AAAAAAAAAANA8Wa19AQAAAIBUXXfhifH8PQNi/ba6uOWxKbFo7bZDnkkkEim97Ski4oUXXjjknkWLFsXq1atTygEAAAAAAAAAgLZI8QkAAAA4JvQ/s1fkfX1gNDQmY8gTU2PW8k0ZzVu7dm0UFxcf1t7KysqM3gUAAAAAAAAAAI5Fik8AAADAMePCk7tF4bBB0b1Tu7jzyekx8d11GcvKy8uLxsbGw9pbUVGRsXsAAAAAAAAAAMCxSvEJAAAAOKacdnznKBg2KM7s3SW++tzMGDPn/YzkvPjii4e9V/EJAAAAAAAAAACOnOITAAAAcMw5oWuHyL336rjyjJ7xT7lz4tnXl6Z1/qJFi6Kqquqw97/99tuxfv36tN4BAAAAAAAAAACOdYpPAAAAwDGpW8d28ce7+8enLjox/vXlt+NXE96NZDKZltlH8ranD1RWVqYlGwAAAAAAAAAA2grFJwAAAOCY1bFddvz+zivi9v6nxqNli+P7RfNjT2Nq5adkMtms4lNFRUVKuQAAAAAAAAAA0NbktPYFAAAAADIpOysRP/t8vzi+S4f4z/LFsam2Pn5726XRsV12s+bNmDEjFi9efMTnFJ8AAAAAAAAAAODIeOMTAAAAcMxLJBLxrU+dF//y6Qtj3Ftr4u5nZ8S2XbubNas5b3uKiJg3b15s3LixWWcBAAAAAAAAAKAtUnwCAAAA2oyvfPzM+O0XL40Z1Rvjtj9Mi/Xb6o7ofENDQ+Tm5jYrO5lMxuTJk5t1FgAAAAAAAAAA2iLFJwAAAKBN+dxlH4mnvnRlLFlfG0MenxIrNu447LOlpaWxbt26ZmdXVFQ0+ywAAAAAAAAAALQ1ik8AAABAm/O35/WJF782IDbv3B1feGxKLFi99bDOvfDCCynlKj4BAAAAAAAAAMDhU3wCAAAA2qTLT+sZ+fcOjOxEIm59YmpULd140P21tbVRVFSUUub/z96dh1ld3nfj/xxm2EEEZAnuS0hccAEX5GlM84uNSZtqa9BoXJtUxVqfJG1M0zTNHrM2NauyDjOssmg1cYsJBph9GEBABFRQQLaRfQaGYWbO748mPCAMDHO+B8bh9bouruuc7/e+P++bf891vedesGBBbN++PaMZAAAAAAAAAABwolB8AgAAAE5Y7+/XPWb+07Do071j3DG2LH6/dGOTa59++umoqanJKK+xsTGKiooymgEAAAAAAAAAACcKxScAAADghHbqyZ1jxohh8cH+3eO+iZUxfd6aQ66bNGlSInlz5sxJZM6RlJaWHpMcAAAAAAAAAADIFsUnAAAA4ITXq2uHmHzP0Bh2bu94aMaiGDn7jQPeV1VVxQsvvJBI1uzZsxOZczj19fXxwAMPRDqdznoWAAAAAAAAAABki+ITAAAAQER07ZgbY+66PD558fvi+88ti4effXVfcWjatGlRX1+fSM68efOipqYmkVlN+cMf/hDz58+PlStXZjUHAAAAAAAAAACySfEJAAAA4E865ubEz265LO68+swYNWdlPDRjUdQ3NMakSZMSy6ivr4/i4uLE5h1KQUFBREQUFhZmNQcAAAAAAAAAALJJ8QkAAABgPzntUvGt6y+ML147MGZUro07Rs6N0orKRDNmz56d6Lz97dy5M5588smIiJg7d27WcgAAAAAAAAAAINsUnwAAAADeJZVKxeevfX985+8uipLVO6Pvzd+JVMeuic3PZvFp5syZsXv37ohw4xMAAAAAAAAAAO9tik8AAAAATbj9qjOiQ8WE6DhgYPT/zA8ip2vPROaWl5fvKyclraCgYN/n5cuXx6ZNm7KSAwAAAAAAAAAA2ab4BAAAANCEBQsWxGuzpsWm6d+M3B79ov/tP47cngMynltXVxdlZWUJnPBAb731Vrz00ksHPCsqKko8BwAAAAAAAAAAjgXFJwAAAIAmTJw4MSIiat96OTZO/WqkOnSO/rf9MDr0Ozfj2bNnz854xrtNmjTpoGdz585NPAcAAAAAAAAAAI4FxScAAACAQ2hoaIipU6fu+1634fXYMPGhSNfXRb9bvx8dzxiU0fyki0/pdDomTJhw0PPCwsJEcwAAAAAAAAAA4FhRfAIAAAA4hJdeeinWr19/wLP6reui+qlvx8kdGmPALd+LzgOvPuyMCy+8MDp16nTIdyUlJbFnz57Ezjtv3rxYtmzZQc/nz58f1dXVieUAAAAAAAAAAMCxovgEAAAAcAiTJk064Pu5554bP//5z2PN8sUx5xt/H31yd0efG74S3S65rskZd955ZyxbtixuvfXWg97V1tZGRUVFYuctKCg45POGhoYoKytLLAcAAAAAAAAAAI4VxScAAACAd9m9e3fMnDkzIiI+8pGPxFNPPRXLly+PBx98MLp37x4nd+kQ1zS8HLtXzY/eH38wTrr65kPO6d69e5x55pkxefLkKCkpiaFDhx7wfvbs2Ymct66uLqZOndrk+7lz5yaSAwAAAAAAAAAAx5LiEwAAAMC7vPjiizF8+PBYuHBhzJo1K66//vrIyck5YM3u6u1R9cR3o3rJrOh5zZ3R86P3RkTqgDXdu3ff93no0KFRXFwcU6ZMiTPOOCMiIubMmZPIeZ9//vl45513mnxfWFiYSA4AAAAAAAAAABxLucf7AAAAAACtzSc/+cm4/vrrD7vmmmuuicbGxtixc1Ms37I44vLro89pZ0eqfGJU79gWO3fujB49ehywJ5VKxS233BI33HBDPPLII/GLX/wi9u7dG+3bt8/ovAUFBYd9X1JSkkgOAAAAAAAAAAAcS6l0On28z7DP5Zdfnp43b97xPgYAAADAUUmn0/HY7JXxw+eXxTUD+8Rjtw+OLh2O/PdmNmzYEF26dImTTjqpxdlbt26N/v37R11d3WHXlZeXxxVXXNHiHAAAAAAAAADgxPSVmYvipeWbouyr1x7vo9BGpVKpynQ6ffmh3rU71ocBAAAAaGtSqVTc/5fnxg8/NSgKX6uKz4wui601hy8iRUT0798/o9JTRMS0adOOWHqKiJg7d25GOQAAAAAAAAAAcKwpPgEAAAAk5NNXnBGP3j4klq7fETeNLIl123ZnPbOgoKBZ6woLC7N8EgAAAAAAAAAASJbiEwAAAECCrruwfxR89srYuL02hj9aHK9vqs5a1uuvvx7FxcXNWltYWBjpdDprZwEAAAAAAAAAgKQpPgEAAAAkbOg5vWPqfUOjriEdNz1WHAvXbMtKzsSJE5u9tqqqKlasWJGVcwAAAAAAAAAAQDYoPgEAAABkwYUDesTM+6+O7p3ax2dGl8acFVWJzk+n01FQUHBUe+bOnZvoGQAAAAAAAAAAIJsUnwAAAACy5MzeXWPG/VfHmb27xufyK+Lpl9clNruoqChWrVp1VHsKCwsTywcAAAAAAAAAgGxTfAIAAADIor7dO8Xj9w2Ny87oGZ+fuiDyi99MZO6ECROOeo8bnwAAAAAAAAAAeC9RfAIAAADIspM6tY+Cz14Z157fL77x9Cvx0xdXRDqdbvG82traePzxx49638qVK2PduuRunQIAAAAAAAAAgGxSfAIAAAA4Bjq1z4lHbxscN19+Wvz8D6/F1/5nSTQ0tqz89Jvf/Ca2b9/eor2FhYUt2gcAAAAAAAAAAMea4hMAAADAMZKb0y5++KmL4/6/PDcmla2OB6fMjz31DUc9p6CgoMVnUHwCAAAAAAAAAOC9Ivd4HwAAAADgRJJKpeLfPv7B6N21Q3z3mVdj266KGHXn5dGtY/N+ptm0aVM8//zzLc6fO3dui/cCAAAAAAAAAMCx5MYnAAAAgOPgHz90Tvz05kuibNWWuHVUabxTvadZ+6ZOnRr19fUtzl20aFFs3769xfsBAAAAAAAAAOBYUXwCAAAAOE5uHHxajL5zSLy2aWfc/FhJrNmy64h7CgoKMspsbGyMkpKSjGYAAAAAAAAAAMCxoPgEAAAAcBz9fx/sF5P+8ap4p3pPDH+sOJZv2Nnk2qVLl0ZlZWXGmYWFhRnPAAAAAAAAAACAbFN8AgAAADjOhpzZK6aPGBYRETc9Vhzz3txyyHUTJkxIJG/u3LmJzGlOzo4dO45JFgAAAAAAAAAAbY/iEwAAAEAr8IH+3WPm/cPilG4d4/axZTFr2cYD3jc0NMTEiRMTySovL489e/YkMutwxo0bF6WlpVnPAQAAAAAAAACgbVJ8AgAAAGglTuvZJaaPuDoG9use9xRUxszKtfve/fGPf4y1a9ceZnfz1dbWRmVlZSKzmlJTUxMzZsyIoqKirOYAAAAAAAAAANB2KT4BAAAAtCK9u3WMyfcMjaHn9Ip/nf5yjJm7MiIiJkyYkGhOYWFhovPe7Yknnojq6mrFJwAAAAAAAAAAWkzxCQAAAKCV6dYxN8bdfUX8zaD3xXefeTW+8/SimDFjRqIZc+fOTXTeu+Xn50dERGlpadTX12c1CwAAAAAAAACAtknxCQAAAKAV6pibEz+/9bK4fegZMbZ4TXS65nMRqeR+yikqKorGxsbE5u1v9erVMWvWrIiIqKmpiUWLFmUlBwAAAAAAAACAtk3xCQAAAKCVymmXiu/ccFH0Xl8W3S7+WPT5+69GKrdDIrO3bt0aS5cuTWTWu02YMCHS6fS+70VFRVnJAQAAAAAAAACgbVN8AgAAAGjF1q1bFwsnfi+2vPhYdD7vyuh787cj1bFrIrMLCwsTmbO/dDod+fn5BzxTfAIAAAAAAAAAoCUUnwAAAABascmTJ0djY2PsnP/beOc3P4mOAz4Q/T/zg8jp2jPj2XPnzk3ghAcqLS2N11577YBnik8AAAAAAAAAALSE4hMAAABAK5VOp6OgoGDf912vzolNM74duSf3j363/ShyT+6f0fxs3Pg0fvz4g56tXbs2Vq9enXgWAAAAAAAAAABtm+ITAAAAQCv18ssvx5IlSw54Vvvmgtg49T+iY7cecfY9v4z2fc8+7IzOnTs3+W716tWJFpJ2794djz/++CHfufUJAAAAAAAAAICjpfgEAAAA0Ertf9tTRETHjh3j7rvvjpLfTonf/dsnolOH9tH/Mz+Ijqdf1OSMT3/60/HCCy/EBRdccMj3Sd769PTTT8f27duzngMAAAAAAAAAwIlB8QkAAACgFaqvr4/JkydHRMSpp54a3/ve92LNmjWRl5cXgwcPjvP6dovhJ78V9Ts3R7+bvx2d3z/0kHN69OgRH/vYx2LhwoXx85//PHr27HnA+7lz5yZ25vz8/CbfufEJAAAAAAAAAICjpfgEAAAA0Aq9+OKLMXDgwJg2bVqsWrUqvvrVr0afPn0OWNNYvTk2Tvq3qNu4Mvr83b9Ht4v/6qA5PXr0iIiI9u3bx4MPPhivvfZaPPDAA5GTkxMRyd3EtG7dunjhhReafL948eLYsWNHIlkAAAAAAAAAAJwYFJ8AAAAAWqFrrrkm5syZEzfddFO0b9/+kGv69OkTl5x/XnQuGxMNby+J3p/4fJx01fAD1vy5+PRnvXv3jl/+8pexcOHC+OhHPxpLliyJLVu2ZHzeSZMmRWNjY5PvGxsbo7S0NOMcAAAAAAAAAABOHLnH+wAAAAAAHKxr165HXPPAAw/EAw88EBERexsa40vTX46n4u4Y8YWH4o5BXWPnjh1x+umnH3LvRRddFC+++GI8/fTTsWbNmujVq1eLz5pOpyM/P/+I64qKiuJjH/tYi3MAAAAAAAAAADixKD4BAAAAtAHtc9rFf998afTq2iHyit6MulSH+NHwq6J9TtMXfqdSqbjhhhsyzq6srIxXXnnliOuKiooyzgIAAAAAAAAA4MSh+AQAAADQRrRrl4qvf/KCOKVbx/jxC8tj6666+PVtg6NLh+z+BNSc254iIkpLS6O+vj5yc/0kBQAAAAAAAADAkTX9J38BAAAAeM9JpVLxwEfOi+/fOCjmrKiK28eUxbZddVnLq6uriylTpjRrbU1NTSxatChrZwEAAAAAAAAAoG1RfAIAAABog2698oz49W2DY8nbO+Kmx0pi/fbdWcl55plnYvPmzc1eX1RUlJVzAAAAAAAAAADQ9ig+AQAAALRRH7/ofTH+s1fE+u21MfzRknijqjrxjPHjxx/VesUnAAAAAAAAAACaS/EJAAAAoA0bdu4pMfXeobGnviFueqwkXl6zLbHZVVVV8eyzzx7VHsUnAAAAAAAAAACaS/EJAAAAoI276NQeMWPEsOjaMSduHV0aha+9k8jcyZMnR319/VHtWbt2baxevTqRfAAAAAAAAAAA2jbFJwAAAIATwFmndI2ZI4bFGb26xD+ML4/fLlqX8cz8/PwW7XPrEwAAAAAAAAAAzaH4BAAAAHCC6HtSp3j8vqvjstN7xoNTFsSE0rdaPGvRokWxYMGCFu1VfAIAAAAAAAAAoDkUnwAAAABOID06t4+Cz10ZH/1g3/jP/1kSj/x+RaTT6aOe09LbniIUnwAAAAAAAAAAaB7FJwAAAIATTKf2OfHY7UNi+JDT4pHfvxZff+qVaGhsfvmpvr4+Jk2a1OL8RYsWxc6dO1u8HwAAAAAAAACAE4PiEwAAAMAJKDenXfx4+MVx34fPiQmlb8X/nbog9tQ3NGvvCy+8EBs3bmxxdmNjY5SWlrZ4PwAAAAAAAAAAJwbFJwAAAIATVCqVin//xPnx1b/+YDyzaH18bvy8qN5Tf8R948ePzzi7qKgo4xkAAAAAAAAAALRtik8AAAAAJ7h7rzk3fnLTJVGycnPcNro0NlfvaXLtli1b4umnn844U/EJAAAAAAAAAIAjUXwCAAAAIIYPOS1G3j4klm3YGTeNLIm1W3cdct3jjz8edXV1GeeVlpZGff2Rb5fKVDqdjueeey7rOQAAAAAAAAAAJE/xCQAAAICIiLj2gn4x8R+viqqde2L4oyWxYuPOg9aMHz8+kazq6upYvHhxIrMOp7i4OLEzAwAAAAAAAABwbCk+AQAAALDPFWf1imn3XR2N6XTc9FhJVL61dd+7ZcuWRXl5eWJZRUVFic1qSl5eXpSUlGQ9BwAAAAAAAACA5Ck+AQAAAHCA8993Usy8f1j07NI+bhtTGi8t3xQREfn5+YnmZLv4VFNTE48//nisWbMm1q5dm9UsAAAAAAAAAACSp/gEAAAAwEFO79UlZtw/LM7r2y3uyZ8XT1SuiQkTJiSake3i08yZM6O6ujoiwq1PAAAAAAAAAADvQYpPAAAAABzSKd06xpR7hsYVZ/WKf5m+KHb0H5Lo/DVr1sSaNWsSnbm/vLy8fZ8VnwAAAAAAAAAA3nsUnwAAAABoUvdO7SPvH66I3rtWR69r742TP3RHovOzdevTypUr449//OO+74pPAAAAAAAAAADvPYpPAAAAABxW3e6aeHXsQ7FzwXPRY9ino9fHH4xIJfOzUraKT+PHjz/ge2VlZdTW1mYlCwAAAAAAAACA7FB8AgAAAOCwpk+fHrt31cSW3/0qthVNie6XXBd9bvhKRE77jGdno/jU2NgY+fn5Bzzbu3dvzJ8/P/EsAAAAAAAAAACyR/EJAAAAgMPa//ak7YWTYsuLj0WXDwyLfjd/O1IdumQ0++WXX46dO3dmeMIDzZo1K1avXn3Q85KSkkRzAAAAAAAAAADILsUnAAAAAJr0xhtvRGFh4QHPds7/bVQ9/aPoeOr5MXDEr6Jdl5NbPL+xsTFKS0szPeYB8vLyDvlc8QkAAAAAAAAA4L1F8QkAAACAJhUUFBz0bNCgQfHfX7gtRt0xOBq7nhL9b/9R5Pbo1+SMwYMHxyOPPBI9evQ45PuioqLEzrtt27Z44oknDvmuuLg40ul0YlkAAAAAAAAAAGSX4hMAAAAAh9TY2Liv+JSTkxM333xzzJ49O15++eW4995747qLT4+7ztge7Tp1i363/zja9zn7kHP69OkTn//852PFihVxzz33RCqVOuB9ksWnqVOnRm1t7SHfrV+/PlavXp1YFgAAAAAAAAAA2aX4BAAAAMAhzZkzJ3bv3h1f//rX46233orHH388rrnmmgOKS932vBMbJn05orEh+t/2g+h42oUHzenZs2dERPTt2zdGjRoVFRUVMWzYsH3vS0tLo76+PpEz5+XlHfZ9SUlJIjkAAAAAAAAAAGSf4hMAAAAAh3TWWWfF6tWr41vf+laceuqph1yzffv2qN+8NjZM/HI0VG+Jfp/+TnQ+76oD1px88skHfB8yZEgUFhbGxIkTY8CAAVFdXR2LFy/O+LxLly6N8vLyw65RfAIAAAAAAAAAeO/IPd4HAAAAAKB1Ouuss4645j//8z/jS1/6Umzbti3eXP9O/OeL66Ldp74WNwyoiXNTm2Lr1q0xZMiQg/alUqm47bbb4oYbboiHH3445s2bF5dddllG5z3SbU8REcXFxRllAAAAAAAAAABw7Cg+AQAAANBiqVQqunTpEl26dIkBAwbE0xddECMmVsb/vJaKr3zi8vj6h8897P5u3brFww8/HHv37s3oHHv37o0JEyYccd3ChQtj9+7d0blz54zyAAAAAAAAAADIvnbH+wAAAAAAtB1dO+bG2LuuiL+9ZED84Lll8fCzr0ZjY/qI+9q3b59R7nPPPRcbN2484rr6+vqYN29eRlkAAAAAAAAAABwbik8AAAAAJKpDbrv42acvjbuuPjNGzVkZD81YFHsbGrOamZeX1+y1xcXFWTwJAAAAAAAAAABJyT3eBwAAAACg7WnXLhXfvP7COKVbx/ivF1fEtl118cvPDI7OHXISz9q0aVP89re/bfb6kpKSxM8AAAAAAAAAAEDy3PgEAAAAQFakUql48KPvj+/9/UUxa/mmuGNsWWzftTfxnEmTJkV9fX2z15eUlEQ6nU78HAAAAAAAAAAAJEvxCQAAAICsuu2qM+NXnxkci9Zuj5tHlsTGHbWJzU6n05GXl3dUezZt2hSrVq1K7AwAAAAAAAAAAGSH4hMAAAAAWffXg94X4//hili7dVfc+OviWFlVncjc+fPnx+LFi496X3FxcSL5AAAAAAAAAABkj+ITAAAAAMfEsPNOian3Xh21exvipsdKYvHa7RnPHDduXIv2lZSUZJwNAAAAAAAAAEB2KT4BAAAAcMwMOq1HzLh/WHTukBO3jCqJ4tffafGs2tramDx5cov2Kj4BAAAAAAAAALR+ik8AAAAAHFNnn9I1Zt4/LE7r2SXuzquIZxevb9Gcp556KrZt29aivYsWLYrq6uoW7QUAAAAAAAAA4NhQfAIAAADgmOt3UqeYdt/VcfFpPeKByfNjYulbRz0jLy+vxfkNDQ1RUVHR4v0AAAAAAAAAAGSf4hMAAAAAx0WPLu1jwueuio98oG987X+WxM//8Fqk0+lm7V27dm387ne/yyi/pKQko/0AAAAAAAAAAGSX4hMAAAAAx03nDjkx8o4hcePgU+OnL66Ibz79SjQ2Hrn8VFBQ0OySVFMUnwAAAAAAAAAAWrfc430AAAAAAE5s7XPaxU+GXxK9u3aI0XNXxdZde+MnN10SHXIP/Td70ul05OXlZZxbUlIS6XQ6UqlUxrOO5FjlAAAAAAAAAAC0JW58AgAAAOC4a9cuFf/xNxfEv3/ig/H0y+vic/kVUbOn/pBrCwsL4/XXX884c/PmzfHaa69lPKc5pk+ffkxyAAAAAAAAAADaEsUnAAAAAFqN+z58bvxo+MVR9Po78ZkxZbGlpu6gNUnc9vRnJSUlic1qSjqdjm9961uxdu3arGcBAAAAAAAAALQlik8AAAAAtCo3X356jLzj8li2fkfc9FhxvL1t97531dXVMW3atMSyjkXxqaysLJYuXRplZWVZzwIAAAAAAAAAaEsUnwAAAABodf7qgn5R8NkrY9POPTH80eJ4fdPOiIiYMWNG1NTUJJZTXFyc2KymjB07NiJC8QkAAAAAAAAA4CgpPgEAAADQKl11Tu94/N6ro74xHcMfK4kFq7fGuHHjEs1YsmRJ7NixI9GZ+6uuro6pU6dGRERpaWnWcgAAAAAAAAAA2iLFJwAAAABarQsGnBQzRwyLHp3bx62jSqJibXK3PUVEpNPpKC8vT3Tm/qZNmxbV1dUREVFZWRn19fVZywIAAAAAAAAAaGsUnwAAAABo1c7o3SVmjBgWneuro++nvh5dzr8m0fklJSWJztvf2LFj933etWtXLFmyJGtZAAAAAAAAAABtjeITAAAAAK1ery658c60/4g9a5dGn+u/HN2H/G1is4uLixObtb9XX331oNmlpaVZyQIAAAAAAAAAaIsUnwAAAABo9f7whz/E2lWvx8bp34hdy4uj17X3RY8P3Z7I7NLS0mhsbExk1v72v+3pz8rKyhLPAQAAAAAAAABoqxSfAAAAAGj18vLy/vdDw96oeuoHsfPlF+LkYbdEr+seiEhl9hPXtm3bYvny5Qmc8v+pq6uLgoKCg54rPgEAAAAAAAAANJ/iEwAAAACt2tatW+PJJ5/8fw/SjbHl+V/E9uLHo/uln4izbvtORE77jDJKSkoyPOWBfvOb30RVVdVBz1999dXYtm1bolkAAAAAAAAAAG2V4hMAAAAArdqUKVNiz549Bzzr1KlT/N25OXH3xd0ifeol0e+mb0aqQ+cmZ3Tt2jXuvvvuJt8XFxcnddyIiBg7dmyT7yoqKhLNAgAAAAAAAABoqxSfN3/QQQAAIABJREFUAAAAAGjV8vLy9n0+99xz4yc/+UmsXbs28vLy4puf+XB89vx20fG0C6Pfrd+Pdl16HHJG3759Iy8vL4qLi2Pw4MEHvU/yxqc1a9bECy+80OT7srKyxLIAAAAAAAAAANoyxScAAAAAWq0lS5bE/Pnz4/rrr4/nn38+VqxYEf/6r/8avXv33rfmvPZbY9MT34n2vU+L/rf9OHJ79Dtozp/XX3311VFeXh4jR46MXr167Xu/dOnS2LZtWyJnHj9+fDQ2Njb5XvEJAAAAAAAAAKB5FJ8AAAAAaLXq6+tj1apV8dRTT8V1110X7dod/HPWli1bonZlZWyc+rVo17l79LvtR9H+lDMPWLN/ySknJyfuvffeWLFiRdx///37ZpaWlmZ83sbGxhg3btxh15SWlkY6nc44CwAAAAAAAACgrcs93gcAAAAAgKZceumlR1xz4403xvnnnx+bN2+O5Rt2xNT1vaPzZx+Ji7YWRsOGFbFly5YYNGjQQft69+4dv/71r+Oee+6Jf/7nf46SkpL4+Mc/ntF5X3rppXjzzTcPu+add96JVatWxTnnnJNRFgAAAAAAAABAW6f4BAAAAMB72oABA2LAgAH7vn922+64Y2xZLG3/0fjVFx6Kay/od9j9l112WRQWFsbixYszPsuYMWOata6srEzxCQAAAAAAAADgCNod7wMAAAAAQJJOPblzzBgxLD7Yv3vcN7EyZlSuPeKeVCoVF198cUa5W7ZsiSeffLJZa0tLSzPKAgAAAAAAAAA4ESg+AQAAANDm9OraISbfMzSGnds7vjT95Rg1542sZ06aNCn27NnTrLVlZWVZPg0AAAAAAAAAwHuf4hMAAAAAbVLXjrkx5q7L45MXvy8efnZZfP/ZVyOdTmclK51Ox5gxY5q9fsGCBc0uSQEAAAAAAAAAnKgUnwAAAABoszrm5sTPbrks7hh6ZoycszIemrEo6hsaE8+prKyMRYsWNXt9XV1dLFy4MPFzAAAAAAAAAAC0JYpPAAAAALRpOe1S8e0bLowvXPv+mFG5NkZMrIzavQ2JZowdO/ao95SVlSV6BgAAAAAAAACAtkbxCQAAAIA2L5VKxReuHRjfueHC+MOyTXHH2LLYvntvIrN37doVkydPPup9ik8AAAAAAAAAAIen+AQAAADACeOOq8+KX9x6WSxcsy0+PbIkNu2ozXjmjBkzYseOHUe9r7S0NONsAAAAAAAAAIC2TPEJAAAAgBPKJy8eEHl3Xxmrt+yKTz1WHG++U5PRvLFjx7Zo38qVK6OqqiqjbAAAAAAAAACAtkzxCQAAAIATzl+8/5SYcs/QqNnTEMMfK44lb29v0ZwVK1bEnDlzWnyO8vLyFu8FAAAAAAAAAGjrFJ8AAAAAOCFdcvrJMX3E1dExNyduGVUaJW9sPuoZ48aNy+gMpaWlGe0HAAAAAAAAAGjLFJ8AAAAAOGGd26dbzLx/WAw4uVPcNa48nl+yvtl76+vrIz8/P6P8srKyjPYDAAAAAAAAALRlik8AAAAAnND69+gU0+67Oi469aT4p0nzY0r56mbte/bZZ2PDhg0ZZZeXl0djY2NGMwAAAAAAAAAA2irFJwAAAABOeCd36RCT/nFofHhgn/j3JxbHr156PdLp9GH3jBkzJuPc7du3x/LlyzOe01xH+j8BAAAAAAAAALQmik8AAAAAEBGdO+TEqDsvj7+/7NT48QvL49u/XRqNjYcuCq1fvz6effbZRHLLysoSmXMkVVVV8fvf//6YZAEAAAAAAAAAJEHxCQAAAAD+pH1Ou/ivmy6Jz/3F2ZFX9GZ8cdrCqKtvPGhdfn5+NDQ0JJJ5rIpPBQUFUVhYeEyyAAAAAAAAAACSkHu8DwAAAAAArUm7dqn42t+cH6d06xg/fH5ZbNu1Nx69fXB06fC/P6Wl0+kYO3ZsYnmlpaWJzWpKOp2O0aNHx9lnn531LAAAAAAAAACApLjxCQAAAADeJZVKxf1/eW788FODYu5rVfGZ0WWxtaYuIiLmzJkTr7/+emJZixcvjl27diU271Dmzp0by5cvj4qKikin01nNAgAAAAAAAABIiuITAAAAADTh01ecEY/ePiSWrt8RN40siXXbdid621NERENDQ1RWViY6891Gjx4dERGbN2+OVatWZTULAAAAAAAAACApik8AAAAAcBjXXdg/Cj57ZWzcXhs3/rownvh9UeIZZWVlic/8s61bt8aMGTP2fS8vL89aFgAAAAAAAABAkhSfAAAAAOAIhp7TO6beNzR2Vu+OnsO/Ex3eNzDR+aWlpYnO29/EiROjtrZ23/eKioqsZQEAAAAAAAAAJEnxCQAAAACa4cIBPaLD3F9E455d0e+W70Wnsy5NbHa2bnxKp9MxevToA5658QkAAAAAAAAAeK9QfAIAAACAZli4cGEsLPx9bJz05ajfuj76Dv9GdPnghxKZvXbt2nj77bcTmbW/srKyWLx48QHP5s+fH/X19YlnAQAAAAAAAAAkTfEJAAAAAJph7NixERHRULM1Nkz599jz9rI45fqHottlf5PI/Gzc+vTu254iInbt2hVLly5NPAsAAAAAAAAAIGmKTwAAAABwBLW1tTFp0qR939N7amLT9G/E7tfKovfH7o/eH74z44yki087duyIqVOnHvJdeXl5olkAAAAAAAAAANmg+AQAAAAAR/Dkk0/G1q1bD3iWrq+Lfm/8NgZ1rY5uQ2+OXn91f0Tq8D+3XXjhhU2+S7r4NGXKlNi1a9ch31VUVCSaBQAAAAAAAACQDYpPAAAAAHAEY8aM2fe5Y8eOceedd0ZRUVEsWrggnv7azXHj+d2i++C/iVOufygiJ7fJOeXl5TFq1Kjo1avXQe8qKiqivr4+sTOPHj36sOcAAAAAAAAAAGjtFJ8AAAAA4DBWrlwZs2bNioEDB8ZPf/rTePvttyM/Pz+GDRsWqVQqUqlUfGJAXWyZNSa6fvBD0Xf4NyPVofNBc7p16xZdunSJe+65J1asWBH33ntvpFKpfe937doVr7zySiJnnj9/flRWVjb5fvHixbF79+5EsgAAAAAAAAAAskXxCQAAAAAOY82aNTFr1qxYtmxZfPGLX4zevXsftOadd96JnRX/E+/89r+i0xmDot8tD0e7zicdsOaUU07Z97l3794xcuTIKC0tjSFDhux7XlZWlsiZD3fbU0REQ0NDLFiwIJEsAAAAAAAAAIBsUXwCAAAAgMP48Ic/HB/5yEcOuJ3p3S666KL49re/HZ/76KC4YPPc6NTvrDjzcz+PM86/NDp3/t/bn/YvPv3ZlVdeGWVlZfHoo49Gz549o7S0NOPz1tTUxKRJk464rry8POMsAAAAAAAAAIBsyj3eBwAAAACA97pBgwbFoEGD9n2f9+aW+Oz4iuh8+4/jd5+9Kk4/KSdqamoOuTcnJydGjBgRn/rUpyI/Pz/js0ybNi127tx5xHUVFRUZZwEAAAAAAAAAZJMbnwAAAAAgYZef1SumjxgWERE3PVYcSzfVRp8+fQ67p0+fPvGlL30p4+zRo0c3a50bnwAAAAAAAACA1k7xCQAAAACy4AP9u8eMEcOid7eOcfvYspi1bGPWM5csWRIlJSXNWvv666/Hli1bsnwiAAAAAAAAAICWU3wCAAAAgCw5vVeXmD7i6nh/3+5xT0FlPDF/bVbzmnvb05/NmzcvSycBAAAAAAAAAMic4hMAAAAAZNEp3TrGlHuHxtBzesW/THs5xsxdmZWc2tramDBhwlHtKS8vz8pZAAAAAAAAAACSoPgEAAAAAFnWrWNujLv7ivjrQf3ju8+8Gj98flmk0+lEM2bOnBlbt249qj0VFRWJngEAAAAAAAAAIEm5x/sAAAAAAHAi6JibE7+4dXD07LIkHv3jG7G5ek88/PeDIjcnmb9NNHr06KPeU1ZWFul0OlKpVCJnAAAAAAAAAABIkuITAAAAABwjOe1S8d2/uyhO6dYxfvaH12Lrrr3xi1svi07tczKau3z58pg9e/ZR79u4cWOsXbs2Tj/99IzyAQAAAAAAAACyIZk/JwsAAAAANEsqlYov/tXA+Nb1F8bvX90Yd44rjx21ezOaOWbMmBbvraioyCgbAAAAAAAAACBbFJ8AAAAA4Di4a9hZ8bNbLosFq7fGp0eWxqadtS2aU1dXF/n5+S0+R3l5eYv3AgAAAAAAAABkk+ITAAAAABwn118yIMbedUW8tbkmhj9aEm9trjnqGU899VRUVVW1+AxufAIAAAAAAAAAWivFJwAAAAA4jq4Z2Ccm3zM0dtbujU89WhKvrNt+VPtHjx6dUX5FRUU0NjZmNAMAAAAAAAAAIBsUnwAAAADgOLv09JNj+ohh0SEnFbeMLI3SlZubtW/lypXx4osvZpS9c+fOWL58eUYzAAAAAAAAAACyQfEJAAAAAFqB8/p2ixn3D4t+PTrFnePK44VXNhxxz9ixYxPJrqioSGROc9TX1x+zLAAAAAAAAADgvU3xCQAAAABaiQEnd47p910dF7zvpLh/YmU8XrG6ybX19fWRl5eXSG55eXkic5rj0UcfPWZZAAAAAAAAAMB7m+ITAAAAALQiPbt2iMn3XBV/8f4+8W8zF8ejf3wj0un0QeueeeaZWL9+fSKZx+rGp6VLl8ZPf/rTY5IFAAAAAAAAALz3KT4BAAAAQCvTpUNujLnz8rjh0gHxw+eXxfeeeTUaGw8sP40ePTqxvIULF8aePXsSm9eU0aNHx5tvvhlVVVVZzwIAAAAAAAAA3vsUnwAAAACgFeqQ2y7+++ZL4+5hZ8WYwlXxpekvx96GxoiIWLNmTTz33HOJZdXV1cWiRYsSm3cou3fvjvz8/IiIqKyszGoWAAAAAAAAANA2KD4BAAAAQCvVrl0qvvG3F8RD130gnljwdtxbMC921zXEuHHjorGxMdGsioqKROe924wZM2Lr1q0RETFv3rysZgEAAAAAAAAAbYPiEwAAAAC0YqlUKh74yHnx/RsHxewVVXHbmNIYO2FK4jnl5eWJz9zfqFGj9n3OdskKAAAAAAAAAGgbFJ8AAAAA4D3g1ivPiF/fNjgWrdkW9R/+v5HTrXei87NZRnrllVeisLBw33c3PgEAAAAAAAAAzaH4BAAAAADvER+/6H1x1lvPRO5JfaL/7T+O3F6nJjb71VdfjR07diQ2b3/73/YUEbFu3bpYt25dVrIAAAAAAAAAgLYjo+JTKpW6KZVKvZJKpRpTqdTl+z0/K5VK7U6lUgv/9O+xzI8KAAAAACe29evXxx+njYoNk78Sqdz20f+2H0WH/uclMjudTkdlZWUis/a3e/fuKCgoOOi5W58AAAAAAAAAgCPJ9ManJRFxY0TMOcS7N9Lp9KV/+jciwxwAAAAAOOGNHz8+GhoaYu+mlbFh4pejsW539Lvl4eh05iWJzK+oqEhkzv6mT58e27ZtO+i54hMAAAAAAAAAcCQZFZ/S6fSr6XR6eVKHAQAAAAAOrbGxMcaMGbPve/229bFx4kNRv31j9L3pm9Hlg3+RcUZ5eXnGM95t5MiRh3yu+AQAAAAAAAAAHEmmNz4dztmpVGpBKpWanUqlPpTFHAAAAABo81566aVYuXLlAc8aarbG1plfjx7126LvDV+Jbpd+4ohzOnTo0OS7pItPS5YsieLi4kO+mzdvXqTT6UTzAAAAAAAAAIC25YjFp1Qq9ftUKrXkEP9uOMy29RFxRjqdviwi/iUiJqdSqZOamH9vKpWal0ql5lVVVbXsfwEAAAAAbdyoUaMO+H7BBRfEI488Em+vej3Kf3RH/J+zT4re1z0QPf7PrYed8/zzz8c//dM/RSqVOujdmjVrYsOGDVk78/6qqqpi9erViWUBAAAAAAAAAG3PEYtP6XT62nQ6fdEh/j11mD170un05j99royINyJiYBNrR6XT6cvT6fTlffr0aen/AwAAAADarKqqqnjyySejU6dOcdddd0VRUVEsWbIkPv/5z0evXr2iU/uc+Jcru0f14hfj5L+4LXpeOyIiDi42RUQMHDgwfvWrX0V5eXkMGTLkoPcVFRWJnHnXrl1RUFBw2DXz5s1LJAsAAAAAAAAAaJuOWHxqiVQq1SeVSuX86fM5EfH+iFiZjSwAAAAAaOv+f/bePDqyrL7z/CYFtbBWFZiiCwON8djGHhrGgO2qGTDtHrspDvZM29DGNhi7Bw+Yxac9nPJpPLjpcRtsY1x4gc5VqSW070tKKWVqTWVKCilCoX2XQvsWEYp9X978IYfQEst77977blTl73NOnVOS4kmfvPe+/X7vb2xsDC+99BJ2d3dRUlKC559//kLFJpfTAVfHP8JrbsAbP/hJvOU3XgRe9eoLvyu9+NCHPvQhmM1m/PCHP8Sb3vSmM3+LB7W1tfB6vTk/Q8EngiAIgiAIgiAIgiAIgiAIgiAIgiAI7aRSKdkKiMfjshWIhwSm4NOlS5f+w6VLl7YBPAeg/dKlS13/8qOPApi6dOnSJIB6AF9SFOWITZUgCIIgCIIgCIIgCIIgHk4+8YlP4Ktf/SqeeuqprJ95/etfjxdeeAHv8U8hZWvE6977Ubz1U/8Vl17z+MlnnnzySTz66KMnXz/yyCP48pe/jMXFRXz2s58FAIyOjnJxvnbtWt7PUPCJIAiCIAiCIAiCIAiCIAiCIAiCIF4eJJNJ2QrY3d2VrYCJiQkkEgmpDvPz8zCbzVIdtre30dDQINWBeHhgCj4pitKkKMqPK4rymKIozyiK8u//5fsNiqL8nKIo71cU5ecVRWnjo0sQBEEQBEEQBEEQBEEQRCaee+45dHR0wGKxYLOrCH/3qX+D1//Ez+NX//oWOvvuo7m5GZcvX8647TPPPAOTyYS+vj4Eg0EoisLkMj09jeHh4byfs1gszH+LIAiCIAiCIAiCIAiCIAiCIAiCEEMhVJTx+/2yFWC322UroKurK/+HBFNUVCRbAX/1V38Ft9st1eHy5cuYnJyU6lBaWooHDx5IdTCZTLh3755UB+LhgSn4RBAEQRAEQRAEQRAEQRBEYfLpD70DVz/3Iay7Y/hbaxwf+uVfw2c+85mc23zsYx9DT08P80usq1evqvqcx+PB6uoq098iCIIgCIIgCIIgCIIgCIIgCIIPhbBYWTKZRCQSke6wubkp1SGVSuH+/ftSHZLJJEpKSqQ6xONxfPvb35bqEIvF8OKLL0p3+NrXviY1iBaLxfDNb34TLpdLmkMkEkFVVZWqBRhFEQ6HUVNTIzV0lEwmYTKZpDooilIQ4Svi4YGCTwRBEARBEARBEARBEATxCuV//9lnUP6FX4TDH8Vv/Y8hLB/kXxHv0UcfxSOPPKL7b4ZCIZhMJtWft1gsuv8WQRAEQRAEQRAEQRAEQRAEwUYhBF2CwaBsBRwcHMhWwOTkpPTqOv39/dLboq+vD2azWbpDa2urVIf+/n5UVVVJdejt7UV1dbVUh87OTjQ2Nkp1aG9vR0dHB+LxuFSH5eVlzM/PS3O4ffs2HA4HhoaGpDm0trbC4/FIDdu0trbC6/VKDSb29PRgd3cXDx48kHYeN5vNWFxcxPT0NLxerxQH4uGCgk8EQRAEQRAEQRAEQRAE8Qrmw//6adR+8TmkFAWfujIM64Zb6N+rqamBz+dT/XkKPhEEQRAEQRAEQRAEQRCEsSQSCdkK0qu5AMDu7q5sBenVXACgoqJCtgK+853vyFbAt771LYTDYakO//zP/4y5uTmpDiUlJVJDDWkH2RVECqGKSaE4jIyMIJlMSnVYXl7G4eGhVIdwOAybzSbVAYDUMVFWVibdoRDa4bSDrNBRuhKbw+HAysqKFId0OyiKgpGRESkOxMMFBZ8IgiAIgiAIgiAIgiAI4hXOe//VG9Hwx8/jqde+Bp+9YUbforiXQ1evXtX0+bGxMUEmBEEQBEEQBEEQBEEQBACpk5XT+Hw+6VVlgsEgPB6PVAePx4PJyUmpDpubm2hra5Pq4HA4cPPmTakOGxsb+Kd/+iepDna7HX/zN38j1cHn8+HFF1+Uepzwer146aWXpAbRgsEgKioqpD6vDoVCqK2tlTqZPxAIoKGhQaqDz+dDY2OjdAfZ7eD3+1FfX4/p6WlNi83xJN0Xfr8f09PTUhyOjo5OzlmyAnlOpxPt7e0A5IVVHQ7HiYOscelyuU76QpbD/v4+urq6AACjo6OIxWKGO+zt7Z047O7uYmNjw3AHr9eLpqamk69l9EckEjlTDU52SJN4OKDgE0EQBEEQBEEQBEEQBEE8BLzj6dei/o+fx3ve+jr8UakFzbYd7n9jcnISZrNZ0zbj4+MFMfmGIAiCIAiCIAiCIHghO9wBANFoVLYCXC6XbAXMzMzIVkBbW5v0MVFRUSG9ikllZSWWlpakOjQ0NEivYlJbW4uenh6pDiaTCYODg1IdKisr0dfXJ9WhENrBZDLhwYMHSKVS0hzq6+uxv78v9XhZW1uLSCQiddJ0Y2MjAoGAVIempib4/X6pDvX19QgGg9IdwuEwhoaGpO0baYetrS1sbW1JcWhoaEAoFEIqlZJWSaWuru7k+kHWmKiurj4Jt8hyqKqqOqmU+DA7VFdXIx6PAzhe1FDG/UZFRcXJO0VZFbgqKirOHJtkhOHq6urOVM6UMSZaW1vPLChAwSfCCCj4RBAEQRAEQRAEQRAEQRAPCW95/WOo+qNfwof/9dP4zzUTuHnfzvX3X7t2TfM2gUBA+qQXgiAIgiAIgiAIVmSHGoDCCLocHR3JVsDExIRsBbS2tspWwEsvvSRbAd/4xjdkK+DrX/+69MDPt7/9bSkrwZ/m+vXr0qtul5SUSJ8QWVpaKt1BdjsoilIQ7ZB2kHX+VBQFZWVlsFgsZyYOy3DweDyYm5uT4gAcj0lA7oTlQnAoLS0lh1MOVqtV2vkz7eDxeDA/Py/VAZDXH4XmIKvSUaG1g6xz12mH1dVV7O/vS3WIRqOwWq2G/v30NcxpjB4TheAA/Oi8KdPhfDuYzeaTcB5BiIKCTwRBEARBEARBEARBEATxEPGGx1+D4j/8MD7+c2/DX96aw991LXB5SRMMBlFeXq5rW9kTbwiCIAiCIAhCK4UQckkmk9Im6qYJhUJwu93SHRYXF6U6uN1utLe3S3XweDy4ceOGVAe3242/+7u/k+qwt7eHv/zLv5TqsLu7i29961tSHba2tvCd73znZEV2WQ43btzA9va2NAe73Y47d+7AYrFIc5ifn4fZbJZaZWhlZQX379+XOpF+YWFBejtsbGygt7dXajssLi5ieHgYQ0ND0q4lhoeHsby8jPHxcYRCISkOU1NTsNls2Nvbw/r6uhSHdDvEYjFpx4gHDx5gdXX15P9lsLq6elL1Stb+uby8fPK3ZbXD5uYment7AUBalaHt7W10d3cDANbW1qSEGtbX19Hf3w8AiMfjUvaNtbU13Lt37+RrGWOiEBzsdvtJX8hyWFtbO1MVT4bDwsICRkdHT762WCyGB/JmZ2fPBHwODg5Ojt1GMTMzg/Hx8TPfM7o/5ufnL7zLM9phYmIC09PTUh1sNtuFColGO6ysrFz4m/Pz84YuQpJMptDZ2Xnme8FgEFNTU4Y5EA8nFHwiCIIgCIIgCIIgCIIgiIeMx1/zCH74ez+P3/mFd+KHfav4RuM0Ekm2l7nV1dXw+Xy6tpU5AYkgCIIgCEIthRJ0kU0gEJCtgOXlZeltcf/+fRweHkp16O7ulr6IQGNjo/SKEU1NTbh7965Uh6qqqpPJsrKoqamR7lBdXS3dwWQyYXBwUOoxu7y8HFNTU/B4PNIcTCYTAoGA1IlnJpMJiqJgeHhYmkNZWRkAeZP5gcKo3kHtcEy6HUZHR6WFAtMO+/v7sNv5VmJXS7ovEomEtOuIQqzeIdtBViWV9JgE5LXDaQebzYZgMGi4Q/qcBRwHuRcWFqQ6AHKO2af7ApAzJsjhGJPJdObrkZERwyupnG+Hra0tbG1tGepwvqKMjEDeeQfA+DFRqA5Gn7uytYOR936ZHGZmZgy998vkABh73giHQxlDwrKfDxGvfCj4RBAEQRAEQRAEQRAEQRAPIY+86hK+8x/+Z3ztV34S1WNb+ErlOCJx/ZNHr127pntbCj4RBEEQRHaMntiSCZfLJVsBy8vLshXQ1NQkWwFFRUXSAz/f+973pFUHSHP58mXMz89Ldbh586bUyfzk8COKi4ulTuZPOxRKO8gM/BQXF2N8fNzwVdjTKIqCkpISOJ1OrKysSHMoLi6Goigwm81SHQB5QZd0X8h0SKVSJ5MCZTkkk8mTicuF0g4yqpicboeFhQUp15aKopy0QzgcxsTEhOEOyWRSesgkHA6jpqbm5GsZYZtEIoGKioqTrx/WdgiHw6itrT35WkY7pFKpM2NyfX0du7u7Uh2SyaThgbzTx4c0RvdHoTjIDvycHw+F4jA5OQm/32+YQ6a+MLqSyunrh9MY2R+nrx9kOSQSCZSXlxekg5Hnrmx9YeT9ZzweR2Vl5YXvG1mBKxaLZXQwcrGHTMeoNEaNSwXI+lyQgk+EaCj4RBAEQRAEQRAEQRAEQRAPKZcuXcLXf+2n8a1f/1l0zR7gD4pH4Y9oX/F2YmICo6Ojuj1sNltBTOomCIIoFAqhqkw0GpWtgJ2dHdkK0iuIAMcBD5koioJvfOMb0h2++tWvSt03UqkU/uzP/kxq9Q5FUfDSSy9JWX08TSKRwPXr12G1WqU5xGIxmEwmqSETv9+P2tpajIyMSHNwuVxobm6W2g52ux19fX1SHTY2NtDb2yvVYWZmBhaLBVarFZFIRIrD/Pw8zGYz9vf3sb6+LsVhdnYWY2NjSCQS0o4Ro6OjJ6FIWSGT0dHRk+O0LIehoaGT4Jcsh+Hh4ZPQsiyHwcHBk4o6skKBd+/ePQkRTE1NGTppOk1/fz82NzcBAEdHR1haWjLcoaen58y1vYxj9oMHD85MipUxKbOvrw/b29tSHVpbW+H1eqU6dHUUUaHgAAAgAElEQVR14eDgQKrD+XaQEQpsbm6Gz+c7+dputxseOhocHLxw3WB0f5w+RslyOH3OkuVgNpuxuLgo1eH8cRIwft+4f//+hWp4q6urZ44ZMhxSqZShgfZMfZH+vlFkOj4Y7dDb25vx2aCRDt3d3djb27vwfSNDR3fv3sX+/v6F79tsNsMWpenp6cl4jnI6nYZdW96+fRsOhyPjz4waE7dv34bT6ZTqMDAwcOG8abSDy+lEPJ75nS4FnwjRUPCJIAiCIAiCIAiCIAiCIB5y/vB/fTf+8TMfgGXdjc9cG4HDr22y+9WrV5n+fiQSwezsLNPvIAiCHRkrf5/n9KQfGSiKgrm5OekOsqvKJBIJfP/735fqEI1G8ed//udSHTweD1588UWpDnNzc9L7wmq1orS0VGoYzmq14s6dO1lf7BtBf38/VldXDV99/DRDQ0NYXFyUGra5c+cOdnd3pTrcunULTqdTqkNtbS1CoZDUsE1lZSVisRhGRkakhQLTK4CbzWZpCxmUlpZCURSsr69nnAxmBOnKOvF4HOPj41Ic0pV1ADmBgvMOsoIu1A6F6SCrCthpB6fTKaV65OlKCUZPms7kAMiZjHi6LwrFQca+UYgOw8PDhj8LOD8mZ2ZmDF9c4LzD0dHRhdCJ0Q6A8fvG+fHwsDoUQl9kcjD6/JmpL4zeNzI5AMb2Bzkck2lMFpKDUeeubA7z8/M4OjqS6pBIJJgWJOThABgXAsvlYNS4LIR2yHZ8AICxsTHEYjHhDks57qu2t7elPr8lXvlQ8IkgCIIgCIIgCIIgCIIgCPwfH3g7bnz+Q1hzBPGpK0PYdKlbKS4QCKCiooL571ssFubfQbz8UBRFetgmkUhIrd4BAG632/AJNufZ3NxEb2+vVIfl5WWYTCapDlar9WTysiwGBwdRVlYm1aG9vR3Nzc1SHVpaWtDe3i61wk9lZSUmJyfhdrulORQVFcFut+Pw8FCaw40bNxCLxWCz2aQ5FBUVAYDUoEshOciYNJ3m5s2bAOS2QyE5pKvbyCB9vtrf38fGxobhfz+VSp1MuAmFQpienpbicPq8LSPoEo/HUV5efvK1jEnsiUTizLWDDId4PH7mOk6GQzgcRlVVVUE5jIyMIJlMGuoQDAZRU1Nz8vXm5uaZCjNGEAqFUF1dffJ1IpEwPDgcCARQV1d35ntGjwmPx3NhQQOjJ9L7/X7U19ef+Z7R7eD1eqW3QygUQm1t7QUHI+81fD4fGhsbz3zP6MDP7u4u7ty5c+Z7Ho/H0MU/jo6O0NLScuZ7iqIYel23t7eHrq6uC983snrH7u5uxurCRu4bmY6TRjv4/X40NDRc+L6RgbxwOHzmnJVmZWXFsCpDkUgko0M8Hjfs/JnpOJnGqH0jGAxmHJOAceOyEBxy9UUhtMPk5KQhFSwznTfTuN1uQyphe73enM9Hjbim8ng8OR2MGBM+ny/nIl1GOLhcLrS1tWX9uRHHKZfLhVu3bmX9+ejoKOLxuFCHQCCQ8byZJhKJCF+MJRaLYfVfqgtng6o+ESKh4BNBEARBEARBEARBEARBEACAj/30W1H5R78IbziO37oyhPm9/JVXqqurubzoMjL4JGty6mmMenGei8XFRQQCAakOIyMjmJ+fl+pw69YtQye3ZKK8vFz6y6CbN29KnUAOHIcrjFqlMhvXrl2TWs0FAK5fvw6z2Sw18HPjxg3YbDZDVojM5eByuWC326X8fUVRcP36dQCQNiZisdjJRHZZQZdQKHQygVumQ2VlpVQHt9t9MrFA1rHS7/efTH6S5eBwONDa2grgeDKijOPUzs4Obt++DeC4IpqM8PLCwsLJBCdZgR+bzXYmjCgj8NPX13cmcCXDYWBgAOvr6ydfywi6dHR0nAmnymiHrq6uM9WuZDh0dnaeuccZGhoy/BjR0tICr9d78vXMzMyZr2U4BAIBzMzMGOrQ1NR04R7d6H2jEBwaGhoQDAbPfM/oe66ampoLFTONbof6+nqEQmcXtjG6HWpraxGJRM58z6jV6NNkGpO7u7uGBofr6uouVG4xOvBTUVGRMUxi5JioqanJ2PdGOhRCO5SXl2d0MPL5VGNj44XjJHB8nZnp+yJoaGi4cIwCjA3ktbS0ZK0+btQxu7W1Net9jVHjsrm5OeszfqMcmpqasj6rLgQHowLtufrCqEoqjY2NWdvBqAqW9fX1OSueGTEmMl3DnMaIY3ZtbW3OCuxGOGS6hjmNEX1RXV2dM1RkRAWuqqqqnA7hcFj4olGZ7nHOI/rc1d7ejkiOMQlQ8IkQCwWfCIIgCIIgCIIgCIIgCII44X9551Oo/9JzePWrLuE/Xh3GqD33y4KrV69y+btGBp9KS0sNe4Gfje9///vY3d2V6nD16lVMTExId7BardIdZFYcUxRFetgmkUigqKhIaugoFouhuLhYqkMgEEBVVRUsFovhK/OncbvdqK+vx/7+PnZ2dqQ4bG9vo6OjA7FYDFNTU1Ic7Hb7yerXsoIu4+PjJ8dIWQ6tra1wOp1SHerr608mgckK2zQ0NEh3qKqqOploIiuYWFtbe3L9MjMzY8gKy+cpLy8/meSxt7eHra0twx3KysrOTBKVcd44XxlQRsjkvIOMfaMQ26EQHGQEfs47TE5OGn6/k67+lcbhcGBtbc1Qh/PtoCiK4efPTJVDjQ66nO8Lcigsh+HhYUPvNTI5LC4unlxjynKIRCKGVhPN5AAYOyayORg1MVRRFJSWlkp1ACDdoRDaIZfDxMSEYYsUZXNIJpOGXWNn2y8A4/qjEByy9QU5/Ijx8fGcwQsjHPx+vyGLXuQak4Ax/ZGrHYxyoHZQ52BEhbx8DktLS8Ir1edzAMRf16lxEB1Ey7dfAOLHpZp2oOATIRIKPhEEQRAEQRAEQRAEQRAEcYaffOsbUP/Hz+Otb3gMnysy4+5c5upE4+Pj3AIjk5OTOVeu44WiKPjBD34gNfATjUZx8+ZNqYGfcDiM0tJSqQ5utxs1NTVSQ0fr6+vo6uqS6jAyMoKZmRmpwafOzk5sb29jbGxMWpWh1tZWOBwOLC4uZl1pVzTV1dUIBAIIBoNYWFiQ4lBeXn6ykqisMVFcXHzywlxWEO3mzZsn/y/L4caNGwXlICv4VFRUVFAO4+PjUiqRnXZwuVxYXV2V6qAoiuHHCEVRzjgAxodtFEU5c3yQ4RCPxy9M8jDaIRKJoLy8/Mz3jA78eL3ekyposhx8Ph/q6+vPfM9isRh6jDg8PER7e/uZ7+3v7xtaQcTpdJ5UYkuTTCYNPUY4nU60tbVd+L6RgYLt7e2T0PTD7LCxsYHe3l6pDpubm+jp6cnoYNS9ht1uR39//4Xvz83Nwe12G+KwsLCQ8fzg9/sxOztriMPa2hru3buX8WdGHbOXl5ezjj+jJkRubW1lHJNGOqysrGSdCGvU/mm1WrOOPaPaYWFhIes9hdlszllFgRc2my1rJb6VlRVDKrRbrdas1YyMCh1tbGygr68v68+NGBN2ux0DAwNSHXZ3dzOeu4102NvbQ2dnZ9afDw0NCQ81ZLuGSWPEvpHrWA0c34eJvr7N5wCIHxPb29vo7u6W6rC1tZXxetJIh7W1NQwODub8jOiAycrKSt5/59jYmNB3Wrmuo9J4vV6h15Zq+gIQez0zPz+vav8XOS7n5uZUvUMS6bC+vp7xHieTg6j7LofDceEZSCampqakLNhEPBxQ8IkgCIIgCIIgCIIgCIIgiAu8/cknUPel5/Ez/+qN+FK5FbWWiyv6X7t2jdvfi8fjhqyYODo6iomJCYyPjwv/W9loamqCw+GQGjqqr6/H0dGR1MCPyWRCJBKR6nDjxo2TyeOyAj/pqmlTU1OGhP8ykd6XZVYZSjsoiiJt3zh9TJMRdElX/5LpkEqlzgQbZDgkEgnpwadgMIjKysqTr2VU+Nnc3MSdO3dOvh4dHRU+2ek8S0tLZybL2u124Su4nmdlZeXMZLhoNIrJyUlDHTJdNxgddJmfn78wQdloh7GxsQuTaYx2uH//PlZWVs58z+iwTWdn54VJf0Y7tLa2Xpi4b7PZDFkBPU11dfVJUDfN6uqqoceI2traC//maDRq6AIH5eXlSCQSF75vZMiksrIy40RxIx0qKiqkO5hMpozn6ofNoaysLKODzWZDKBQyxCFbO7hcLiwvLxviUFZWlvVnRp27CqFyRq52KITqHUbtG9nGJFAYfWE2mzOeS3iTqy/W1tawv78v1SEUChlynZ+rLwBjxkQ+B9GT+YHc+wVgzP5pMply/tyIvigvL895n221Wi9c8/KmoqIip4Pb7Ra+OE95eXneZx6ix0S+MQmIHxOF4KCmLwqhHUZGRoRWsMx3nASO7z9FBvLUOESjUaHPsdU4AGLPG2odRI5LNRWGALHtoNZBZOgo33kzzcHBgbDqy5WVlaquW1OplLQFtIhXPhR8IgiCIAiCIAiCIAiCIAgiI0+/7lFUfuEX8fx73ow/q5/ClYEfVTfw+/2oqKjg+veMCMBcuXIFAKSGjtJBF5mBn7SDrHZQFOXEwWazGTLJ5zzxePwk4HF4eIjt7W3DHdJVr9I+U1NThjvs7OycWaVPRpUhu91+ZmVZGQ6Tk5Nn/q4MB7PZfGblaRmBn+7u7jNVKmQ4dHZ2Ynd39+Tr8fFxQ1b+Pk19ff2ZymMOh8PQ6h0AUFJScuZFuc/nM7wS2fnKOoDxVZ8yORgdtjlf5ahQHB7Gvsg2Jo0MBRYXF1/43srKCpxOp2EOmdohkUgYel2XqR0AY0Ng2RyMmkivKAq1w79QUlIi1SFXX4ielKnGwahAgaIoWfsikUgYcv+ZywEwZkykUinpoaNkMplzYmIhtINRDvnCV6IXF8g3Jqenp4VXHM7XDsFgUHjgJxaLoaqqKudnRO8b+fYLQHzgJx6Pn1ngIhOi2yEWi0l3UBQl7wTu4eFhodfYahxEnz/zHR+A4zEj8vypph0AsWOCHArLId+YBMRWUlHr4Pf7hS1il++8eRpR/UEO2h1EncPVXD+kEVWBK5lMXqi6nY2DgwMhVeLVHqPSiBoTao4Poh0IgoJPBEEQBEEQBEEQBEEQBEFk5XWPvRpFn/8wfv39z+Jvbi/gOx3zSKUUVFdXIxAIcP1boidiHR0dobq6GoC8wM/CwgL6+/tPHGRUGZqZmTl56bCwsCDsRWkuHjx4gLm5OQBAJBI5+X8jaWtrOzOBQkYQraKi4szKsTLCNjdv3jwzmUWGw40bN858LSNsc/369YJzsFgshlf4Oe+wsLAAr9cr1SESiRhSETCXA2BsyCSVSkkPHSUSiYwv1I12yPRC3UiHSCSSMehtZOAnHo9nnGgyMjJi2HVEKBTKOFnWarUaVq3Q5/Ohtrb2wvfdbrdhFUQODw/R1taW8WdGjYmtra0z1eBkOMzPz2fdD40K/CwsLGSdtG+Ug9VqPRNYPo1RgZ+JiYmsFa6Gh4cNOUbkcpiZmREeKACO/63ZjgN+v/9CtTqjHdI/F839+/dzruxtxLh88ODBhcp8RjsMDg7CbrdLdejp6clZSdeISYD37t3D+vp61p+PjY0hFosJdejr68PW1sXq4Wn29/dz9hUP8u2bRqxGPzAwkHcRBdFjor29HS6XS6pDb29v3grToh1u374Nh8OR8zOiw1cdHR15+2J4eFhoaHdoaCjnsRoAPB6P0Gd1+c5ZaUSOCYvFgvn5eakO4+PjWa8njXIYHR1VtciKSIeRkREsLS3l/dzQ0JCw52RqHTY3N4UtnjU6OorFxcW8n0ulUsLu/UZGRlTfX4saE/fv31d9fSDK4d69e6oXQBLlMDAwgM3NTakOWvrCarUKqULd09NzZoGsXESj0QsV23nQ3d2t2gEQ0x8PHjzQFKgS4TA5OampwjYFnwhRUPCJIAiCIAiCIAiCIAiCIIicPPrqV+Eff/sD+Pxz78K1e2t4sX4KV65dnBTOiujARVlZ2UnIZG5uDqFQSOjfy8S1a9dO/n9/f1/TCxNepCstAccrxdlsNsMd0pW30sgIHZ1uBxkOiqKcGQ+A8aGjZDJ5IXRktEM8Hr+wOr7RDqFQ6MKqjZOTk2dCaaLx+XwnwczT31Mz6YIXh4eHaGlpOfM9RVEMDYru7u6eqUCWxsgg2vz8fMYXs0Y69PT0ZJxgYWTgp6OjI+Pq2kYGfjo7O7G3tyfVoampCW63+8L3JycnhUzoyMStW7cyTtA8PDzMOaGZJw0NDRnDC7FYTNOkBxZqa2uzXrsZFXQpLy/PWqXSqHFZVlaWNcxiVDtkq2pjpEOuVYYLoR0mJycRDAaFO+Rqh6OjI0OuI3K1QyqVMuT8mcsBMCbokm/layMcXg7tYMTkt3wOZrNZeMXhfA52uz3jNY6RDpFIRPizADUrwosel2pWxn8YHNT0hej9U20lFZGhXTUO4+PjQp8XqnEQWUlFrQMgdkyQw8vPQVSoQYuD2+0WVgm7ECqpkEPhOKitcpR2EHHu0tIO6+vrecPFoh1EVcjT4gCIGRPkoM/BqOrLxMMHBZ8IgiAIgiAIgiAIgiAIgsjLq151Cf/tN34O/8+v/hQaxrex9a4XcOnVj3H9G7Ozs8ImFyiKciZsk0qlMDk5KeRvZSMcDl+YbGJ05algMHjhxZ3RDi6XC/X19We+Z3ToyG63X6iWYHTYxmw2X5jIYnQ73Llz58LKkRaLxdBKZO3t7Rcm/W1ubuLw8NAwh7q6ugtVjRKJhKHHiKqqqozHPyPDNmVlZYjH41IdSkpKMr4QNdKhqKgo4/eNDB0VssPo6KhhL62zOayursLpdBrikKnyFnB8jBCximwmsrUDYFzYJls7PEwOiqLk7AsjwjbZqsGddhB9Ds9WgSzN2NhYxnMJTxKJRE6Hra0tYauwp4lEIqisrMz682QyKfzaMhaLZaxIdxrR41KNg+jJ/KFQCDU1NdIdzgfYjXYIBAIZq+KddxB5jAgGg3kd5ubmMgaKeREIBFBXV5fzM6FQSOh1vsfjQVNTU97PiRwTgUDgwj13JkROpPf5fGhoaJDqEA6H8+6boh0KoS8cDgc6Ojryfk5k4Mfn86GxsTHv5/b29oQF+10uV9bKnadJJBLCzuFOpzPjQh+ZEDUmwuFw3vOmaIdQKJT3fCHaIRqN5ryWO42o82csFlPtsLKyIuQ5WSQSUXWcBMSFGiKRiOoxCYgZE1raQaRDpirLRjvI7otQKJT3Wu40VquV+7krGAxqcnA6ndwXnFB7/XAa3v2htS8A/lUTfT6fqutqkQ5er1e6g5p73vPMzs5yve+Kx+N57/3PIzrITTy8UPCJIAiCIAiCIAiCIAiCIAhVXLp0CX/y7/4n/GxwEk+850N462//JV712Ou4/f5kMilsAlJ/fz8WFxfPfM/owE9dXd2Flw1GO9TU1Fyo2GB02Ka0tBTRaPTM94xuh+vXL1YsMzrwc77aE3A8EdCI6gBpMrWDx+PBysqKYQ6Z2gEwNoiWqR0AY8M2sh0URblQ/ctoh1QqJd0hFotlXb1yfHxc+GR+4HhCXrYX6lNTU4YcI/b29rJOyPP7/cJWWD7NwcEBbt26lfXnRoTA1tfX0d3dnfXnRoRtdnZ2cPv2bakOq6ur6O/vl+owPz+fM8BhhMPY2Bjm5uay/tyIUODg4CDW1tay/nxvbw9bW1tCHTo7O3FwcJD15+FwGFNTU0Id7ty5k7dSiujAT0tLCzwej1SHW7du5Q2Big7b3Lp1Cy6XK+dnRLdDY2Mj/H5/zs+Iboempqa8DhaL5cI9EE8aGxvzXiO4XC4sLy8Lc1DTDoDYY3Z9fb2qayWRY6K2tlZV5ViRDg0NDaraQWTYpr6+XlVlEJEOzc3NGStWnkfkavRqx+T29vaFRUl4UVlZqarKmcjAT11dnepKMaLGRHV1ter7Od4TltNUVVWpdhDVDmr3C5EOas8XgLhA3q1bt1RPCHe5XBeeKfOgvb0973XUaUScN9ra2jRNjBcxJlpbW/NeV4t2aGlpubAgktEObW1tmtphZGSEewVLrX2xubnJfcEJLccHQMy5q6mpCYFAQNM2vM8baq7tz8N7XDY3N2vqCxEOWq4f0vAOq9bV1am6tj/N/Pw8jo6OuDno6QuA7714V1eXrgCuERV/iYcPCj4RBEEQBEEQBEEQBEEQBKEav9+PwZK/hrPlb/HY234Kz/zu3+CR1z/N7feLmmRxutpTGqMqNaS5evXqhe8ZHTrK1A5Gho4URckYdJmcnEQsFjPEIR6PZ6yW4Ha7YbfbDXHweDwZVxJNpVKGjcu9vT20trZm/JlRIZPNzU10dnZKdZibm8v6As6o8JXNZsu6HxrlMDg4mHUij1FVhvr6+rLug3Nzc7pe8GqlpaUl6yTycDiMmZkZ4Q7l5eVZj4epVMqQY3ZZWVnOyZ9GjImysrKck3iMcCguLs75cyPCNmVlZUilUll/XgjtYESlo3wO09PTwo8RuSotAccrMs/Ozkp1AMT3R76+IIcfITps83Jph+Hh4ZzHMVbOV9TNxOrqas7AHitq2iEWiwm9zlfTDoDYcammHUQ7FEI7qHUQOQlQSzuIWvxDrcPMzIymyeZayLagwXn8fr+w63y1DoC4MUEOL08HUeErLQ5ra2vY39+X6iAqkKf2GJVGxJjQ0g6vZIeXY19MTk5qDsbwdggEAtwrqWjtC4B/f2htB3IoLIehoSGu9356HBwOB9fFHvQ4AHzvN/Q68BwTeo4PvB0IIg0FnwiCIAiCIAiCIAiCIAiCUE1lZSUCgQBCiw9wWP/f8Oo3PYO3/d538eqnnuXy+0UEgQ4ODtDY2Hjh+0YGfqampjK+7LBarYZVGbLZbBknCywuLqpe7ZWVgYGBjOGKaDQqfLJwmpaWlqwTH40KolVUVGRdrdCooEtxcXHWYINRDkVFRVnHv1EO2SoMAcaFr7JVewKAiYkJodUB0uRqh93dXezs7Ah3yNUOiqIYsn/magdA/JjIVXkrjeigi6IoKCoqyvkZ0YEfNe0g2iGZTOadwG1EX+QLuthsNqHHiGQymXdyw8bGRt7qOyzE4/G8kzxSqZTQY0QoFEJVVVXez4kMmfh8PtTX10t1ODw8RFtbW97PiQwUOJ1OtLS05P2cyHbY2dnB3bt3835uZGRE2HX+/v5+zmpwaWZnZ4UFCtQ6eL1ezM/PC3HY2NhAb2+vqs+KGhNaHETtG3a7HX19fVIdCqEd1tbWMDAwoOqzoibgLS0tqR5r4+PjmlewV4Pdbs9ZqfE0+/v7Qhb/WF1dxeDgoKrPKooi5LpO7bE6jYgxoaUvADH7xtTUFGw2m+rPiwjbrK2tqR4PgJi+mJ+f1/SMgffEbeD4nKzlOeTW1hb3Sp5a9wuAf39sbW3lrKprhMPBwYGqaxiRDg6HI2uVZaMc9vf3sy5GlA3e+8be3h66uro0bbOyssI10K7HIZlMcn0eoKcvAL5jQk87AHzPG9vb25qPDwDfdtja2kJPT49Uh83NTdXX9qeZmJjgFsjb2dnR1Rdut5vbvZ/W64fT8BqXq6urun8XL4ft7W3N5+40vMaly+VS9SxIpANBnIaCTwRBEARBEARBEARBEARBqEJRlDNViyIbkzio+gYuveZxvO33votHn3kP898QMWm1qKgoY9WI2dlZIRONMpGp2hNw/LLdiEBBLgfAuOpXuRyMCh3Jdji/H8lwSKVSOUMFRoSOEolEzgn9Y2NjwkOBkUgk52T6xcVFYZOF0wSDQVRUVGT9eSwWw9TUlFAHt9uNurq6nJ8RHfhxOp1oamqS6rC+vp73RbLooMvY2Fje1eZFOwwODuZdGVW0w4MHD7C0tJTXQWQFke7u7rwTDbe2toSew+/du4eVlZWcn4nFYpoms2rl7t27qv6NIsdER0cHDg8P835OZBiusbFRVUhcpENtbS1CoZBUh4qKipyV2NKIDB1VVlYiHo/n/ZzVakUkEhHikK8SWxqn05l3H9aLyWTKWZkvjaIowvbP8vJyVQ6AuKBLWVmZ6utFUePSZDKpdhDZDmopBAez2azqWCLSQUSgANC2Gns8Hhdy72cymTR9XsSY0NIXgJgJkSaTSdO1oigHLRRCFRMRVfq0joeZmRl4PB6uDlrbwev1cl+cpxCqd5SXl2vuXxEOWp/18HaorKxUfQ0j0kHruZD39W1FRYXmdjg6OspaLVyvg55jDs9zl579AuA7JvT0hQgH2e2g5/gA8A3k6XVYWlpS9dxCDVruL07DM5Cnd78A+I0JrdcPIhy0XsuJcNA7JoHjZ+lqnp/ko7q6GrFYTNe2m5ub2N7eZnYgiNNQ8IkgCIIgCIIgCIIgCIIgCFVYrdYLk2tjB6vYr/gzPHIphXf+4Ut48qd+gelvLCwswO/3M/2O0ySTSVy7di3rz0QHCgAgEAjkfEliROUpv9+fM1xhhMPh4SEaGhqy/tyIwM/q6mrO1QqNCPyMjo5ienpaqkNPT0/Olb1tNpuQyYin6ezszPnSy+l0YmNjQ6hDU1MTjo6Ocn5G9Lisra3NO5le9JioqKjIO3lGdOjIZDLlfYEq2qG4uDjvi2TRDvkqLQHiKx2pcZiZmeG2iqxeB5/Px3XClR4HQGzgR62DyDFRCA75ql6lERm2eTk5jI+PCwn8KIqStwpamvX1dezv73N3AKDaIR6PCwn2a2kHQEygQFGUvJXYjHDQ0g4i9o1UKlUQ7aDVgXewP5VKaZpMPzs7C7fbzdVBazsEg0Hu9+Fa2wHgPy6TyaTmCZq8x6XW/QLgP5lfT1/wbgetY1KUg9Z2mJyc5Po8LJFI5HwOlAmPx4O5uTluDqlUSvN+wbsKWDKZ1DVxmee+kUgkUF5ernk7npVU9OwXAN920LNfAPyrDOlph6WlJTgcDqkOsViM2zMqvX0B8BsTLA689o2XezsUggOvcxeLA69zF4sDwOdagtWBx5goBAc91w+F5jA2NsZcoZ21L8LhMJfFklgcAM2ERcQAACAASURBVLFVwYmHEwo+EQRBEARBEARBEARBEAShivNVah5//HH8/u//PnpbqjHy3z+Fd//Ym/DGX/8GXvtTz+f8PX/xF3+BX/mVX8n4M0VRuE5S7OrqyhmeMCLwU11dnfMFoBGBn8rKypyT1I1wKCkpybnCnBEO169fz/lzq9UqtIIIgKxBvDQrKyvcJyNqdQiHw9xXN9bqAIgPmeQbDw+Dg6IoBeGQqwKZEQ7JZFJVqGBubk5V1Rc9BINBVFVV5f3czs6OsCpDXq83b/Uv4Pjlv6hjts/nQ21trarPigrbOJ1ONDc3S3Xwer2or6+X6uB0OtHS0iLVYX9/H+3t7aodRFQKXFtbQ19fn6rPLi4u5g3U6mF+fl71BH1RgZ/x8fGcwe3ziAi6TExMYGJiQqrD0NBQ3qp4oh3GxsY0TewTMcmoEBzu37+PtbU11Z8fGxvTvUp1LofV1VXVn9/f38f6+jpXh3v37uVc0CATvI/ZWvsC4D8m7t27p7lteTv09vZqXs2cd+jo/v37mscD73YYGBjQvIDFyMgI14U3RkdHNQfk19fXsbu7y81Bz36RSqW43vN0dXXh4OBA83Y8x+Xg4KDmMcnboaenR1ff8nTo7u7G3t6eVIexsTEsLCxo3m58fBzhcJiLg9ls1rV4hcfjwfz8PBeHiYkJ3eFbXsfLqakpTde0p+E1JiYmJjRd24twGB8fz1vx2ggHvc8/h4eHdVVpOg9LX/CqYMnSF6lUisuCMHqPUWl4jAk91w+8HUZGRjTdb4pwsFgsTMdcHsFEPde0p1lcXGQOq7I6RKNR5nePo6OjTPsFwD4m5ubmmBdlE1HVlHi4oeATQRAEQRAEQRAEQRAEQRB58fl8JxOyP/CBD+CHP/wh9vb2UFpaio985CN425uewD/8xrsQ3V/CW/7P/4LXv//jWX/XRz/6UXR3d8NkMuHHfuzHLvyc52Tqy5cv5/y5iImh5zkfGDuP6PCVoii4cuWKVIdUKpU36DI9PS2kQkGaWCyWd2V6v9/P9HIxH16vF9XV1Xk/JzIEdnBwoGpCv8gqQzs7O6omsot0WF5eVjWRXaTD7OysqgnRIgM/FotF1aSfsbExYaHA4eFhVZOnt7e3uU5GPE1XV5eqiaqKogg7XtbV1aleJVdUlaHq6mrVk9pEBV1qamoQCoVUfVZUO1RUVOQM6hrhoKUvCqEdxsbGhFQKLCsrUz2ZzOFwME1KyYbW1dhF9IeWyjqAmP1TbcWpNCICP1rboRAcRAR+tDqYzWYukzJPo3W/WFxchNPp5OqgtR2i0SiX1a5Po6daA+8xUQgOWvtChIPsKiZ6HXhXAdPjMD09Da/Xy81Bz4rwvKuA6WkHgO+YIIdjZFcxYXHgWW1Jr8PU1BS3hTf0jodEIsHtuYjsCiLk8Mpx4BXIY3Hw+/26w0Kn0btvpuHRH6zVXMjhGB7nDVYHHoE8Voe1tTXmCtCsDgD7/QYPB9ZxSQ4EkRkKPhEEQRAEQRAEQRAEQRAEkZdbt27hc5/7HCwWC2w2G7785S/jySefPPOZsNeFw5r/ivCqBW/++Ffxpud+O+PveuaZZ3Dp0iV89rOfxeLiIr74xS+e+Tmv0MfGxkbecIXowI/FYsn777FYLEIqFKQZGxvLu5Lo8vIyPB6PMIfe3t68q6HH43HdK1yqobm5GYeHh3k/JzJ0VFFRoWpCv0iHkpISVZPTRQZ+bt68qSpEI9JBTYUhQGzoSE2lJQBYWFgQVmVIrYPf72da9TQXavsCENcfWhxEhUy0OIgKHRVCOxQVFan+rIh2UBRFk4OowI8Wh/X1deZJJefR2g6hUIj7OVxRFOlhm2QyqXkiGm+HeDyOsrIyqQ6RSASVlZVSHaLRKMrLyzVtwztQEAwGUVNTo2mbmZkZrufwcDisqjrgaXw+n6bqTPmIRCKaHQC+x+xAIKCqQuF5eIZtgsGg6gqFohwCgYDq6oAiHV6u7WCz2RAMBrk4eL1eNDY2at7O5XJhaWmJi0MwGNS1XyiKwm3/1NsXAL8xEYlEVC02ItJB7/EB4Dcx9OjoCK2trVId9I5J4PheQ20APxc+nw9NTU26tl1fX+dSadfr9aquJnueVCrFZf+MRqO69wuAz5hg2Td5OcTjcVRUVEh30HpNexoe17exWIypHZaXl1U9X83noPX+4jTxeJz5mSGrA8A+JsjhmGg0quv+4jSsoSPW4yRw/J6JJZAXiUQ032+ex+/3Mz2b4dEXANuYCIVCuq8fXkkOrOfN0w56zxvJZJLpnJVmYmICgUCA+fcQRBoKPhEEQRAEQRAEQRAEQRAEkZff+Z3fweXLl/HBD34w62f8fj9e/8SjcDR9G4HpHjz50c/hqX/3fwO4dOZzzzzzzMn/P/XUU7hy5QqGhobwvve9DwC/0MeNGzfyPtSfmZkRWmUoX7Un4LhCgZpKI3rJV+0pjcjqV2raARAbRMtXcSqNqNCRoiiq20FU4CeVSqkONohySCaTqifTW61W7hUKgOOX+monsu/s7AipMhSJRGAymVR9VlSVoUAgoOlltojQkc/n0/RSX4TD/v4+2trapDosLCxoehkuInQ0NTWl6fg3MjLCPbQ7Ozur6d82PT3NbcJyGovFommSSDgc5h74mZ6e1nwM5j0mrFar5n8X7yDa8PCw5sAlb4eenh5sbW1Jdejs7MTBwYGmbXiHjlpaWjQH5MfGxhCLxbg5tLW14ejoSNM2e3t72Nzc5ObQ0NCgebKOoihc98/m5mZdlVl4jonm5mZdCybwdGhoaNB1/OcZttEzHng71NXV6WoHs9nMLbTb2Nioy2FjY4NLoAAA6uvrdTkkk0lu9351dXW6nyvwGhONjY26JxTyctC7bwL8wjatra26F3Xh5dDU1KS7L3hUagCOq6jqPQ/zqNQAsLVDKBTKu4CPGurq6pgmofMYEyzHB14ObW1tcLvdUh1Y9k1eDrdv34bD4dC9vcViYX6G3NXVxRQacrlczIvS3L59m7kSJ+t5o6OjAy6Xi+l3sI6J9vZ26Q48+oLVgUdfjIyMMJ27bt26xXSMAgC73Y69vT3d27MeJ4HjQB7LtSXrcTINy5hob2/XfN+dCZYgWlNTE/x+P7MDSzvwdND77JTHmASOn3vrrY5+9+5dLu9Fksmk0MXliIcPCj4RBEEQBEEQBEEQBEEQBJGXS5cu5f3Mxz72Mfh8PoQCfoz+4Gv45E8+gTd+6Dfwwl/W4Fv/33/HV77yFXz605/Gm9/85gvbPvfcc7Barfje976H/f19Li+a1AQ8EomEsCpDXq9XdahAVNjG4/GoXhlOVOhof39f9eq2otphZWUFPT09qj4rKvAzNjaGqakpqQ79/f1YWVlR9dnp6WmmCULZuHv3LjY2NlR9NhAIYGFhgbtDW1ubpokmIvqjsbFR04tkES8Ha2pqNE1EE+FQVVWlqgqaSIeysjJNk39FhI60VrWxWCzcqwxpqe4DHB/btQZCeDukUinu5w2tDgD/oEshOGgdk+TwI8xms6qqhiIddnZ2uIbqi4uLNW8TjUa5TFhmcQD4hm1ezg48wzZaq6CJcGBpB16hXb3tMDU1xWUSHYtDMBjkdg+s1wHgt2+wOPAKupDDK8PBZrNpujcR4eD3+zE7O8vsUFpayrQ9j/4oBAetVTNFOBRCO7CMSeD4/Ml6fcvaDqurq5oXAzgPazvEYjHmRaNYHQD2McHaFzwcqB2O4dEOk5OTTNeWPBxYqwzxcADY+oPHeADYAj+vJIdC6AuWsCovB6fTqbu6Ky8HQH9/FIIDQWSCgk8EQRAEQRAEQRAEQRAEQXDliSeewE+8+934wRd+Bf/lhZ/BXPC1WH37r+Jv//4fUFtbi0ceeSTjdq95zWvw9a9/HbOzs8yBi5aWFtUr1IoK/FRUVKhe7ViUg8lkUt2WokJHxcXFqifoi3JQW+0JOJ7sxDtQoNVhe3ubywrLLA6JRILrhOU0169f1/R5EaEjLe0gykFrO4gI/LwcHcbGxrgGChRFUV0FLc3u7i63CgXAcVBX64vkUCjEZUJkmmg0ivLycs3b8QyBxWIx1VXQRDmEQiFNVdBEOESjUV3twDPwEw6HUVlZqXk7nuGOQCCgqRpcmomJCW6h3aOjIzQ1NWnezufzYX5+novDwcEBbt26pWtbXv2xtbWFO3fuSHXY3d1FZ2enVIe1tTX09/fr2pZX4GdzcxPd3d26tuXVDtvb27rHw+joKJdr7LW1NQwMDOjadnd3l0sVMLvdjr6+Pl3bplIpLtdUq6uruHfvnu7teYzL9fV13e0A8Jn8xjIeAD7tsLy8zPRv4eGwsbGB3t5e3dvzqAJmt9t1HyeB4/MNa6h+d3cXXV1durdPJBLM936bm5tMfQGw7xsLCwvM16esDltbW6oXnxHlYLfbmY6TPBxWV1eZJqADx9f5LPvn/v6+7uuoNG63m2lRmr29PaZ9Mw1Lf7hcLt3X1bwcjo6ONFWbzgbLecPpdEpvB4fDgfb2dmYHlkAeLweWCpZOp5OLQyqV0n3M59UOgP4xcXBwgNu3bz/0Dvv7+1yOkywODocDHR0dXBxsNpuuKqBbW1u673nPE4vFdL1r2t7e5uYA6OsPHuduVgePx6N6MUNRDgSRDQo+EQRBEARBEARBEARBEAQhjC/98nvw3d/6N3iw4sTv3jDjKBjLu8073/lOPPvss0x/98qVK6o/y7paZyYURdHkICLwoygKrl69qvrzIsJXqVRKU8hkZmaGe5WhaDSqaVX4UCjEvcqQz+fTPJme95hwOBxobGzUtA3vwM/e3h5aW1ulOqyvr+Pu3buatuEd+FleXtY8KZB3O0xPT2ueGDE5Oal7pcxM2Gw2zccdn8+HxcVFbg737t3D8vKy5u14Bl1u3bqlqQJZGp5Bl+bmZk0VyEQ4tLa2wul0SnWor6+Hz+eT6tDa2qqrL8bGxpBMJrk4NDY2wuv1at5ueXkZLpeLi0NdXZ2minRpEokEt+uZyspKxGL5r1szwStkUl5ernuiKy+HsrIy3RVyeDmYTCbdkxp5hY5YVjoeGRnhEto1mUy6+2JpaUnXMfY8LOMhFAqprn6aC9ZVp3mMCdYKIq8Uh1dCXwwPD0uvYjI/P6/r3H8a1nYIBALMVcD0BLfPwzomKioqmPuTdVImy7Gal0MhVDHh1Q4sv4N1vwCOQ/V6rkl5OgSDQUxOTurevqKigst9AsuYKASHqqoqxONxqQ7V1dW67y94OfBqB6vVqvv5UFVVFZcwPEsgr7KyktuiV3r7g1dfsDrIbofKykpuzzIKwUFvII/XcRLQHybnuV8kEgldz9PLy8u5VegF9I2JQnDgOR70OtTW1nJ9DzA8PMz130Q83FDwiSAIgiAIgiAIgiAIgiAIofzHD78DVz77Qczv+fDpK0PY9fANtpxnaWlJ08qyIgI/IyMjmiYOWa1Wri9UgOMXbVoqgqyursLtdnN1uHPnDtbX11V/PplMMk3oyERzc7PmiZ68Q0eVlZUIhUKatuEddCkrK9P8Qp23Q0lJieYXqLxDR0VFRZr3tbGxMa77p9YKQ8DxS+u9vT2pDvF4nOv+qccB4DsmCsGhqKhI13Y8w1cvZ4eRkRFu++fNmzd1bbe4uMjt/Km3HYLBILcqYHrbAeA3JlgceAXRZDsoilIQDlrC4+fhEXxibQceVcBSqRTTJHKv18tcBUxRFJSUlDD9DtYxwcOBNdTA2he8HKgd+DiMj48z7Z88HI6OjphC9clkkkvIhOV4qSgKFweWMcFjvwDYJvPzOEYBbO3Aqy9Y2iGZTHIJoY2Pj2t+hpGGVzvs7e1pep503oFH6CiZTOq+vk2lUlwcAOiuGsWrLwD947IQHABwOT4Ax8cIvfefvBwWFxd1B9p59YXeSioAv3YA9I8JXu3A4kDtwN9hfHxcV5Uhng5ut1vzvR/P42QaPf0h26EQ2kGEg9ZzuAiH2dlZeDweTdvwdvD5fNyeWxIEBZ8IgiAIgiAIgiAIgiAIghDOr/3c22D6T7+AQ18Uv3V5CCuHfmF/S0uVI+C48kk0GuXqoKXaEwA4nU5sbm5KdQD4h8C09gXAP3Qk20Fr5a00PENHiqJoqrwlwiGVSukKmUxOTnLbPxOJhK7J0x6PBysrK1wcYrGY7skNvPojEonongzHK9QQCoVQUVGha1teoSO32436+npd2/Jqh52dHdy+fVuqg54qaGmsViuXFYq3trbQ1dWla9u9vT1sb28zO6ysrGBgYED39jzG5ebmJu7cuaN7ex5Bl7W1NfT29kp1WFpa0j25k5eDzWaDzWbTvT2PwM/Y2Bjm5uZ0b2+1WpnPn4ODg1hdXdW9/ebmJnZ2dpgchoeHsbS0pHv7RCLBfF3X19eHjY0Npt/BOibu37/PfC3CGnQZGhrSVSWRp0N/fz9zX7A63Lt3T/dE/DSsVYZ4tMP6+jp2d3d1bz84OAi73c7kwLp/8ugLgG1M9PX1cbkOYZnM/+DBA6ZjNQ+H+/fvM48HgK0vLBYL03nztIPe/XN4eJj5OAmw7Z+9vb3M517geP/Ue/9pNpuZzt2n0Tsu79+/j7W1NakOg4ODXI5RLA4TExPM1dxYHWw2G2ZmZrg46A3MzszMcHve6XA4dO3nc3NzXJ+x6Tle8mwHQN+YmJ6eZrrP4uEwNTUl3WFmZgbj4+PcHEZGRjRXUpmenubqsLm5qfmaaHJykusCS8lkUvOzGd4OgPYxwfNYnUbrMxXe+yagvR1GR0eZFiTI5qDlum5sbEx3JblsLC0tweFwqP68iPGgKIqmZxJLS0vcqmefhrWiKEGkoeATQRAEQRAEQRAEQRAEQRCG8Is/8WbUfPE5xJMKPnVlGLZNvtWFACAcDmsOFcTjcW4v4YHjVaNra2s1b8fz5bPL5UJdXZ1Uh93dXbS1tWnejmfoaGlpCX19fZq34zkZwWKxYGJiQtd2vKqY3Lt3T9fEo8XFRXi9Xi4Ovb29uiYexeNxTE1NcXHo6OjQPYGMV9imtbUVh4eHUh0aGhp0V6fh5VBfX697bPFyqKioQCQS0bWtxWLRPKkkEyUlJbonVs7Pz3PZP1mquUQiES77Z0lJCdPxjkfQhaWiDC+HQmgH2RVlALYxCRxPOmY9f7I6zM3NaV5N9zysYzIWizFPXGJtB4A98PNKcWCdNEQOx/BYGX9ychKBQECqA2sVMF4VAlj2DZ6VM17ODrxWQi+EdmCZiMirHSYmJnTvn7zawe12657wyrN6h94xQRVE+DvoDeTzbgc917c8x8PKyoquZxk8HeLxuK7ndbIriJDDK9tBz7mLt4Pf79cclODtAGjvj0Jw4FWZj8WhENpBhMPQ0JCmZ6ciHLRWdxXhAGi7ruN53jyNljEhYr8A2J8HEEQaCj4RBEEQBEEQBEEQBEEQBGEYP/vsG9H4x8/jTU+8Br973YyBJfWrnamhvr4eR0dHmrfjGfgpKyvTNZmep0NpaamuVf55ho6Kiop0BQN4toOeKkfA8YTIWCwm1cHhcHCrAqbXAeDXH9evX9e9La8gGjkco6fyVhpeoSOWdpicnNQdWEqjKAqTQyAQYJqwDBxXQSsqKtK9vaIozGMimUwyT2RnDbqkUinmgAdr9atEIiE98JNKpZj7grUdkskkczuYzWamKiaJRIJ5osnu7i5T9Y1oNKq7It1pWI6XoVAIVVVVzA4soYZAIKArRM/TIRgMoqamhtmBZXKN1+tFQ0MDswNrX+hZVOE8Y2Njuqv0BYNBLg4bGxu6Q+g+n093pcbTJJNJ3edPv9/PZb8A9I9LXu3A4sDr+MDiUCh9weP4AByfM/Tsn6FQiMu+Ceir1ADwOz4A+io1AMfnbh7nzTR6xkQ4HOZyzkqjZzK/z+dDU1OTVIdIJILq6mqpDjz3C0BfJZVgMMjtGAUcX99qrR4Vi8VQWVnJzQHQvm8UgkMikUB5eTlXB63jMplMSncQ0Q5DQ0OaAnkiHFZWVnBwcKD68/F4nMu93mm0nrsSiYTuKuy50DImRPSFVgcRfaHVIZFICHHQEpiNx+Pcj5PAcWUzn8+n6rOi2sHn82F2dlbVZ6PRKNfrh9OoHRO8rydPo3ZMiDhvplHbDqlUSljwiSo+Ebyg4BNBEARBEARBEARBEARBEIbyzje/FnVfeg7vfsvr8IXSMbRM7HD73ZcvX9a1Ha9wh6IouHr1qq5teYWOWBx4tUMymdQdKpibm0MwGGR2iEajuidwR6NR1S/mcuHz+ZhemPEIurhcLqYJeTwcHA4H0wQsHmGb7e1tdHR0SHVYX1/H3bt3mRxYq5gsLy+jv7+faXs94dLTLCws6F41GzieFKCnitpprFYrc6Ui1jHR398Pu93O9DtYgy7d3d3Y2tqS6tDb26t5Et95WENHnZ2d2NvbY/odZrOZaf/s6+tjbgfWKkM8xoPP52MKBfLoC4BtTLS2tjIf5wC2oEtjY6PqSUq5YGmHuro6LtdjrO3g9/u5OOjdP2tqapjDtsDxuU/vuKqvr+fSF6FQSPe5j1dfAPrHRF1dHcLhsFSH+vp6hEIhLg56wzY820HvxDNeYxLQPmn6tAOvvlhYWIDL5dK8Hc++CIfDuq5vm5qauO2bgL5x2djYyFRFjYdDW1ub7oq2mdCzbzQ3N3M5d7M48ByTwHFfaA20t7a2Mle9PM3MzIzm39fc3Mx1v9BTSaWpqYnrfgFoHxMdHR1wOp3SHfQcX3k63L17F/v7+1Iduru7dQe/s2GxWDQteCWiHVwul6ZKKl1dXZpCSmrRct4Q5aBlTNy5c4cccNwXeqrI5UNLlSFR42FtbU31/nb79m04HHwXBgSOwytqnweIOD6kUTsmeF/L6XG4deuWdAcR5+40ZrNZ1UILfX19zM8Gs2G327k88yMICj4RBEEQBEEQBEEQBEEQBGE4b33D46j+4i/h59/5FP5zzQRKHrBN/gaOq4DoncQ2Pj7O/PcB4N69e1hYWNC1rdVqZQ41AMeT6ZeWlnRta7fbuUxK6Ozs1P2CJJVKMYcagOMJWCz/Fh5BtKqqKqZJgTxCRyaTSVf1L54OpaWluisM8HIoLi5mqkJis9mY/g3AcRU0ln3c4/FgZWWFyYGl2lMa1n2DhwNr6IiHA2vgh6XaUyE5sIaOeDhYrVam/ZOHg9vtxvLyslQHgO14yVp5Kw3LmODlwBK2KYR2YK3+laYQ2sFqteq+DuHVDoeHh7qDprwcAP1jgqeD3jHB00Fv4KcQHFir4hWaw/j4uK6QBE8Hp9Op6/zJ0wHQt2/wdtATdOHtoGdcslZqPE8htIMeB97tYLPZNIf7eDt4PB7Mzc1JdVAURfP5k7cDoK16hygHreOyEBx475uA9kCeCAetgVkRDtFoVNPiVSIcAG1jQsSYJAd9DqLGw+TkpOrQp6h20FJlSJQDoL4/XukOas+fr3QHi8Wi6r5LpIPahRZEOgBU9YngAwWfCIIgCIIgCIIgCIIgCIKQwhsffw1K/9Mv4Fff+wz+W9scXrqzyBQK0FvlCACmpqYQi8V0b5/mypUrurd1uVzY2NhgdmBpB4BP1SeWdgD4hI5Y24E1bMNSeSsNazsoioJr164x/Q7WgAkPh/n5eaYVm5PJJHPQJRKJYGZmRvf2iUSCyyRylnEZj8e5TG5gGROxWIzLC1QWh0AggMrKSqkObrebqRJbGpYqQ06nE83NzcwOy8vLukOmR0dHTNXg0kQiEd1VTA4ODnDr1i1mB0B/qMHtdqOxsVGqg8vl4jIeWBwODw/R1tYm1WFrawtdXV3cHPQEbu12O3p7e7k4bG1tYWdHe2XV5eVlpsp8p4nFYrDZbJq3W1tbQ19fHxcHQF+oYX5+njnceRo9gYLV1VXcu3dPqsP6+rr0vlheXuY6QWp4eFjz/sm7L5aWljSv5r2yssJt3wSOrw213vutra1hYGCAmwOgfVzy7gs9Drz7Qo/D5uYmenp6uDpo3c82Nja4nbPSaN0/9/f30dnZydVheXlZU/WFnZ0dpsq+mUgkEpru/VZXVzE4OMjVAdA2Jvb29rhdR+l12NnZQXd3t1SH7e1t7vsmoC185XA4uN3jnMZqtaquhOlwONDe3s7d4ejoSHWVIbfbjZaWFu4OgPpjtsfj4XafdR6141JkO7ycHI6OjtDa2irEYXh4WFWVIZHtsLm5ie3tbakOyWRS1QI9IvsCUDcmRLYDoO6Y7XK5uD0DyYSadhB5jFLrcHBwgNu3bwtzWFlZyVvZ6/DwUKhDPB7P+55H1Ln7NPn6w+/3c3lezeJAEGqg4BNBEARBEARBEARBEARBENJ4/DWP4H/83s/jMx9+B/6pdwX/b/MMkintk7j9fj9MJpNuj1gspno1wGwcHh4yvxhgDR0dHh4yT55mddja2kJHRwfT72AN/CwsLDBPyGN1sFqtuib6nndgqVL04MEDzM/PMzlsbW3lfTmYi4GBAaYqKMBxeIqlKtvdu3exubnJ5ACwhY5u376N3d1dZgeWsE1bWxsODw+lOrS0tGie5Mvboa6ujilIl2Z6elrzKuxpKioqmCqxpTk8PMT6+rqubU0mE3MVszR6+4NXOwD6gy4mkwmJREKqQyG0Q0VFBZcAOKC/okx5eTm3vhgfH9fVpmVlZVyqbwLHE4jUTso8De/Vt/WMiUKopMJ7lWE9gZ9XYjsUgoOWSdNpePfF0dGR5gq5Ila+1tofoipnaKGsrOwV6VAolVS0nINMJhO3c1Yam82mqWKxCAev16vp2UxFRYWqyeZa0TIuTSYT0317NrSMSxH7hVYHUX2hxaG8vFx6X5SXl3PfLwBgdnYWHo9H1Werqqq4XVefJhaLqX5WJsoBUN8ftbW13O6zWBy0XveIcJDdDjU1NdzuN89jtVpVVVIR6aC2ylBNTY2wvgDU9YfIdgDUBX5EOxRCO6hxqK6u5vZcLhMjIyN5j8Mijw/AcUg+XyCvD98hywAAIABJREFUsrJSyPXDafJd11VWVgo7Z6XJNyZEnjfVOtTX1+t+1s3LgSDUQMEngiAIgiAIgiAIgiAIgiCk8upHXoW//s334Sv/9j2oNG/iq5XjiCa0veyorKxEIBBg8mAN/JSUlDC/rGIN2xQXF0t3uHHjBvNEE1YH1gpDwHGogWVyAg8Hn8/HFBq6fv06swPAFvjh5cASdCEH/g56J3KxVt5Ks7y8jKOjI6kOyWRSVyBPURRuDgBUraabyaGoqIgcODvoDR3xqAaXRk8VMN7tMDc3B6/XK9UhGo1iYmJC0zapVIprXwDax0QymURxcTFXB63BimQyKT10lEqlpAd+EokE90nkZrNZ00QmEe2wvr6uKYidSqW4h21isZim82cymZQethHRF1odROybWh0KoR1EOYyOjqq+j06lUkLG5O7ururFGhRFEdIOyWRS9b2fKAdA/ZhQFEVIIFCrg6h2UDsxVNSY1OIgsh1GRkZU7Z8iHba2tlTtnyIdFEVRfT0jygFQPyZE7ZsvNweRfTE0NKTq3k9kOywtLamqkCfSQU0lFdEOgLoxIXI8kMOPUBO+Eu2gJkwu2iEYDGJyclKqA5B/TJCDsQ65zhtGONhsNuHhKuKVDwWfCIIgCIIgCIIgCIIgCIKQzqVLl/Div/8Z/MUnfxa3Z/bxh8Vj8EfUTTxSFAWXL19mdmAJPqVSKVy9elW6A4+wDYtDIpHgMqF/cXFRd0WWSCTC5SVNIpHA1NSUrm39fj8qKyuZHQD9ITC3243a2louDnqDTy6XC/X19VId9vf30draysVBb+hoZ2cH7e3tXBxsNpuucOPGxga6urq4OBwcHGBra0vzduvr67h79y4XB0DfmJibm9NV9SMbesI24+PjeSceiHYYHR1lrnJ4Gj2BH97toMdheHgYCwsL3BympqY0v7y32WzM1QFP43K5sLq6qmmb8fFx3ee7TCiKonn/HB0dxdzcHDcHQPuYGBwcxNraGlcHrWGb3t5eXcdXng53797Fzs6OVIe+vj5sbGxwdZiamtJUxaSrqwv7+/tcHYLBIGZmZlR/vre3l0vFyvNo6Y+BgQHdlQVzoeVc3Nvbm3eVcNEOfX19QvpCq4OodlAbmBU1HrRUMRkYGOB+fACO7yHVBmb7+/uFjAdA/UT64eFh5qq6rA5DQ0NYWVmR6mCz2TQdV0U4jI6Ocr2ePM3w8LCqRWUGBweF7JsAsLa2pup8KLIvwuGwqv3TYrEwV7zOhZoxMTY2Jmw8AOom809PTzNVzM6HmnaYmprieo+jx2FxcVH3whRqGBsby1slZXl5mevzh/M4HI685wLR7QDkv55ZXFzU9dxCC/nGxMLCAtNCQjwcjOiLQnAYGRnJWb3HiPGwsbGR857WiHZIJBI5x9z8/DzTQmNqyTUmRB+j1DhMTk5yfTaYjVznz6mpKc0L5+jhwYMHWa/rRJ+70+zt7WW9ZrTb7RgYGBDukG/fIAg1UPCJIAiCIAiCIAiCIAiCIIiC4f/6396Nf/jtD2DUfoTfuT4CZyD3S2TgeNI3jxckLC8Xenp6uEyWtVgsuiupdHd3c3HY2NhQtVpnJtrb2zWtIp8NRVF0T5JoaGjQXQnmPHpDR1VVVZom1+ZC70vQ8vJypopVPBxMJhNisZhUh5KSEk3VFXIxOzurq1+Li4uZq6CliUQiuiaUFRcX6z62ZELPC8qioqKCcOBJITjomTAioh209i1vh+XlZbhcLqkOyWRSc3iYtwOgPfDDu8oRORSWg9Vq1XQu5l1xCjgOAGsJdIlw0FLFBBC3IryWiWUi2gHQFnwS1Q5aHES1g5a+ENUOWqoMiWoHh8OhOjArslKC2jFRCNU7RDqoHZevdIdC6AuLxZI31ACIXRnf7XarCtFQFRNyMNJBTWBWtMPy8jIODw+lOkSj0bzPLY2onJHvmC2qGtxpCqWKCTkch0gCgYBUB7/fj+npaakOQO7+MGK/yOdA7XCMUe0wPj6OcDgs1SHXdZ1RDkD2/jBqPORyIAjVKIpSMP998IMfVAiCIAiCIAiCIAiCIAiCIHoXDpSf/maH8svf7VU2XcGcn/385z+vAGD+77HHHlNisZgu39/8zd/k4gBAWVtbk+5w+/ZtXQ4vvPACN4e///u/1+XwkY98hJvDH/zBH+hy+OAHP8jN4fnnn9f891OplPK+972Pm8Nb3vIWJZVKaXZ473vfy80BgHJ4eKjJIZlMKu95z3u4Oty7d0+zw7ve9S6uDleuXNHkkEgklHe84x1cHV588UVNDvF4XHn729/O1eGTn/ykJodIJKK8+c1v5urwrne9S5NDMBhU3vjGN3J1eOyxx5RoNKrawe/3K69//eu5OgBQFhcXVTuEQiHlTW96E3eHjo4O1Q4+n0953etex93hu9/9rqZ2ePLJJ7k7fOUrX5Hu8IlPfEK1QzAYVN7whjdwd9Cyf3q9XuWJJ57g7nDp0iXF6/Wqcjg6OlIee+wx7g4AFLPZrMrB5XIpjz76qBCHmpoaVQ5ut1t5/PHHhTh8+9vfVuXgdDqFtcNnP/tZ6e3w3HPPqXLw+XzKa1/7WiEOb3vb21RdW4psBwCKy+XK6+DxeIQcH9L/jY6OqnIQ2Q6lpaVSxwMA5Zvf/KZ0h09/+tN5HUSdL9L/feADH8jrIOJ68vR/Tz75pJJMJqU6AFD29vZyOkQiEeXpp58W6jA0NJTTIRwOC7mOOv3ftWvXcjoEAgEh1/an//vTP/3TnA7RaFR5y1veItThU5/6VF4H0ePh/e9/f06HSCSiPPXUU0IdnnjiiZz3fvF4XHnmmWeEOgBQFhYWpDs0NTVldUgkEsqP//iPC3f43ve+l9UhmUxyfw6T6b8vfOEL0tsh13PLRCLB/VlQpv+efvrprOeuRCKhPPvss8IdACg7OztS+wKA0t3dLd3hBz/4gXSHP/mTP8noYNS+CUD5+Mc/Ln1MPvvssxnvu5LJpPLOd77TEIdXvepVis/nu+AQi8WUt771rYY4AFAGBgYuOBh1zkr/l+m6zmiHL33pSxnHw7vf/W5Nv+fpj39NefuXS3U5vPDCCxn3DYI4DQCLkiVrRBWfCIIgCIIgCIIgCIIgCIIoOP7tT78VFV/4JbhDcfzW5SEs7Psyfu7o6Ag1NTVc/mY0GsXc3Jzm7XZ3d9HS0sLFAdBXZYi3g9aKFQCwvr6Ozs5Obg562mFubg6Dg4NSHaxWq672y4bNZtNcschsNudcXVMrTqcTGxsbmrZ58OAB5ufnuTkA2qs+9ff3q17BXpTD3bt3NbddPrRWGerq6tJUaUOEQ2dnJ3Z2drg7KBqqDLW0tGiuCJSPjY0NHBwcqP58Q0MDfL7M5zO9RKNRTVUP6+rqcq4ArBctlW0aGhrg9Xq5O2ipflVbW8utMt9ptLRDU1MTPB7PK9ZB7f7Z0NAAv9/P3WHj/2fvvsOjKtP/j99JSAIJvQlIV5qiIiBlEQVFF7Gs2EWsoGDdta3uV1xlV5HeRbr0IqEISO/SCRB6L4GQACGNQELa3L8/8pvZmcyZmTOaKe6+X9d1rms3c87w8Zzn1Hnu88THS1JSkql5586d6/Ltv7+Hqpo+b8yePdvUyBK/hdmRVGbNmlVsIzX+1gxz584tthErf2sGX64HsyOp+HI97N6921Rb++mnnyQrK8snGS5evChnz571OJ8v14OIuePlvHnzfHJ8sDLTJn766SefrgczGWJiYnzWHoIlw5YtWzyeu2JiYnzaHvbv3+/xnLho0aJiv560l56e7nGUIV9nEPHcJn755ZdiG+nZFU9vo1+yZIlPrqPseVoPCxYs8Mm1vT1P62HZsmVy5coVn2dwt3/6oz0cOHDAbbtfunSppKWl+TRDdna221GGVq5c6dX96W/lrk0EQ4b169dLQkJCwDMU93OY35LBH+shNjbW5XXKunXriv1ZkJHU1FQ5duyY4Wdr166VxMREn2cQcb09/LUtyGAugz/2TZHCc3hBQYHT3/3ZJhMTEw2fS2/cuFHOnTvnlwwWi8Xwed3KlSs9jt5XnDZv3myYwR/nLHcZVq1a5dcMRvvG5s2b5cyZM37LsG3bNrFYLH779/Dfh8InAAAAAAAAAEGpRZ0KMq93WwkNCZHnxm6T2LPOnRimTp1arJ3AfkvByuTJkw1/xPojZ/gtBT8TJkzwqgjBVxmK0+HDh73uGD9+/PhizZCdne11QV5xZxDxvuCnuLfFb8ngi/XgbcFPMKyHiRMnFnuG2NhYr445vshw+fJlr4rKfJFBxLs2MWnSJJ9k8Kbg5785gzcFP8GwHiZPnuyTDPv27TPdKdtXGVJTU+XkyZOm5vXVthAxvz18tR5EzBfb+DKD2X3jxx9/9FkGs+vBlxnMFuT5MsPp06dNdWqaMmWKzzLk5ubKnj17AppBxFyhCxn+dzLs2LHD48sefJ0hMTHRY0dYX2dw1THU3tSpU32aQcRzoYuv14OZDKyHQv5YD3v27HFbdOiPDElJSW4LZv2RwWKxuL2m8kcGEfdtwh9tkgyOGVxdW/qrPRw5csRl0Z+/MuTm5rp8lu2vDCKu20QwZPBXmyTDf8TFxRkWBvuzPVy9elUOHToU0AwixtuDDMGTwZ/7hYjIwYMHnQr3/Z0hPT292F+Yh/8xroaCCsTUokWLYh/uCgAAAAAAAMAf2/nU69px0Hpt+MUyXXP4ou3vFotFGzZsqCJSbNM777zjVbb8/HytVatWsWZ48MEHA56hZs2aXmXIzc3VatWqFWsGEdG0tDTTGbKysrRChQrFnmHz5s2mM1y9elVLly5d7BkmTpxoOkN6erqWKlWq2DN8+umnpjOkpqZqyZIliz3Do48+ajpDcnKyRkREFHuG+vXrm85w8eJFLVGiRLFnCA0N1czMTFMZkpKSfJJBRHT//v2mMiQmJmpYWJhPMsydO9dUhtOnT/vk3xcR7dOnj6kMx48f91mGl156yVSGI0eO+CxD8+bNTWU4efKkzzJUqFBBCwoKPGY4fPiwzzKIiJ4/f95jBl+2SRFz564zZ874NMO0adM8Zjhx4oRPM/z973/3mOHQoUM+zdClSxePGeLi4nyaoU6dOh4z7Nu3z6cZwsPDNTs7220GX++bIqLHjx8P6LYQEV24cGHA18OQIUPcZvDlOcs6vfvuuwFfDx07dnSb4dixYz7P4Om+6+jRoz7PEBISounp6S4z+PLcbT/t2bMn4BlmzZoV8Ax9+/Z1meH8+fMaEhLi8wyvvfZawDO0adPGZYaLFy/67P7CfqpatapaLBbDDImJiRoaGuqXNnHp0iXDDPHx8X7ZFiKiGzZsMMyQnJys4eHhfskwffp0wwyXL1/22T1v0enLL780zHDp0iW/ZXjqqacMM6SkpPjkGYjR1KhRo4BniIiIMLy2zMjI8MkzMVfTiRMnnDJcvXpVo6Ki/JZhyZIlAV8PAwYMCHgGo3NXenq6T55PuppatmwZ8PVQpkwZzc/PD2gGEefnIoHIsGbNmoDumyKiY8aMCfh66N27t0OGzMxMjY6O9muGTp06OWTw5/nCOpUvX97hmWFqaqrfM4iIJiUlBTzD8uXLbRmuXbv2m37Pqtj5fb35nam/OcO4ceOcjpeAPRGJVRe1Roz4BAAAAAAAACCo1awQJfN6t5VG1crIW9N3y/zdCSIismHDBjl+/Hix/ltm3n5ub8WKFR7fCv1bMqgXIyf5IkNCQoKpt9FbLV68WC5evFisGUS82x4xMTGSlpZW7Bm8GXlqzpw5hm+T/L28GeFn1qxZpkf68IY3o9rMnDmzWEdis89gdt+YNm2a5ObmFnuG06dPy5UrV0zNO3XqVI9vrv8tLBaL6X1jypQpPskgYr5NTJkypVhHpPstGXw5kkowjCgTDBn279/v9k3w/siQlpYmJ06cCGgGEXOj6/hyRJk/UgZfv1U2WNaDp3OXrzPEx8dLUlJSQDPk5eV5HNXU1xlEPI9s448Mnka/8sfblj2th2DI4I+3b3saZcgfGRISEtzey/kjg6q6vZbw15vQ3bWJadOm/c9kcDeKyfTp04t1lOVgzrB7926X97WzZs3y2f2FvcuXL8upU6cMP5s5c6ZYLBafZxBx3S79tS1EXLeJ2bNnS15eXsAz+Oqe12yGWbNm+S3D5s2bDbf73LlzffIMxMixY8cMn4v4M0Nubq7h87p58+b55JmYK0ZtIiYmxtS9sa8zBHo9BMO2mDdvnk+eT7qyd+9euX79usPf/L0tMjMz5eDBgwHNIOK8PYIhw/z58/26b4oUHrPt+Xu/EHFeDwsWLHBqp762fft2h/OkP88XVkVHGQpEBhHH7REMGRYuXOiT37O8yQB4i8InAAAAAAAAAEGvUulImfVmG2lbv5J8PG+fTNh0WsaOHVvs/86+ffu86qzgiwxpaWly5syZgGYQEY+dU+2NGzfOJxm8KTryVQZvio7Gjx8f0Ayq6rP1sHv3blOdy1TVZ+shOTlZzp07ZyrDhAkTfJJBxFy7VFWZOHGizzKYKfgJhgwWiyXgGfLz833akX3Xrl0eOz3m5+f7tBP5yZMnJSUlxe08eXl5Pu24nJ+f77Egz9frQcRzoUteXp7POy57ylBQUBDwoiN/ZPBU3FFQUODz9rBr1y6313X+aA+pqaluC/Jyc3NlxowZPs0g4r5N+CuDuzbhj23hKUNubq7MnDkzoBny8/P9th5cdZYvKCjwS4Z9+/a57GDlr/WQlZUl+/fvN/ysoKAg4AU//toWIq47nlksFr+th2DI4Gpb+DPD9u3bDe+7VNUvRYkiIidOnJDLly8HNENeXp7L+y5/bQsR43bpz/UgYtwuVTXg60Ek8NvC3xm2b99uWOjlzwyuCvL82SZFjNulvzMYtQl/bgsy/MfWrVudri39ncHo3OXvDAUFBU7Pqfy9X4g4twl/rwcyBFeGgwcPSnp6ekAzXLt2zeG+KxAZRBwL0QKVwb5NBOL4EIwZAG9R+AQAAAAAAADgD6F0ZAmZ9FpLefTO6vLtsiOyJrl0sf8b2dnZDm9+c+fcuXOybNmyYs8gYr7g5/z58z7LYLbw6dSpU7J69eqAZjh06JDPfiwxuy327NnjVaGWNw4cOGDqDaWxsbGyb98+n2S4du2aHDt2zON8O3fulAMHDvgkg4i5IrDNmzfL0aNHfZbBTLHNxo0bTY0881uZWQ8bNmxw+Yby4mBmPWzYsEFOnz7tswy7d+/2WKy6cuVKuXDhgs8ypKene9zWy5Yt88moePY8bY9ffvnFsANrcfI08tTKlSslMTExoBmWLl0a8PWwZs0aSUhI8GkGT4VP69atK/bRIovav3+/27cIr1692qf7pkjhdZ2rogaRwn3T1+1BxP32WLJkicfCxeLgrthm6dKlpkcz9FWGFStWeDXaqC8y+Gs97Nq1y+VbnVeuXOnz84WISGJiosti8rVr1/r8GCVSWEji6npm9erVHkcpKy6u2sTatWt9foyyclVss2bNmoBn2LBhg6kXD/gyw8aNGyU+Pt4vGVwV5Pkzw9WrV+XQoUNOf9+xY0exj3jtjtG+4e8MRm0iLi7OZ/e8ZjPs2bPHcBv5itGzju3bt/v0frOorVu3Or3s4eDBg169MOf3Ktpx2/o3b0du/z2ysrKc2t/+/fslLi7ObxlEnNvEkSNHvBql2xcZjh49GvAMp06dkl9//TWgGc6cOSMbN270a4ai15anT5+WTZs2+TXDlStXHM4Pp0+f9vu2EHE8Zp88edJptB1/sG8TgVoPRTP4uz0UzXDmzJmAZNi2bZutmPzs2bOyYcMGv2eIj4+33VsFqj2oqu2ZxLlz52T9+vV+zyDynzZx7Ngx0yPX+zKDmRHCfZ0hUOthx44dkpeXJ+fOnZN169YFJMOpU6f88gwI/50ofAIAAAAAAADwhxFZIkxGvnC33BZ+Rcq0ekoqPfJXkZDifcxptuPGxIkTPY7y8UfOYLaIJ9Aj64j4bqQlkcIfoa5evRrQDHl5eW47bvsjg4i5YptgyODLNiliruDnfyHDgQMHJCsrK6AZsrKyPHY69OWIU1aetsekSZN8nsHTD/b+WA+eMgTDevBHhtjYWMM3wfszQ0JCgtvO8v7IUFBQ4PZ6xh8ZRNy3icmTJ/slg7tim2DI4OvRv+wzuBplyF8ZDh486PK6zl8Zbty44bLTvr8yiLguMiFDoUCP5uLvDK5GGfLntoiPjzc8d/kzg9FIDSKMpEKGwGaIjY11ehGKv0cpSE9Pd3pJkL8z2HfcDlQGEec24a+R+ewVLeYIhvUQiAxFRxkKxLY4fPiwpKamBjTDjRs3HAoAA5FBxLFNkIEM9sXkgcqQmZlpezmXP0Y4dsW6PQK1HkT+c96YPn26y3tyX7Ouh0CNtGSfIZDbYs+ePZKVlRXQ9WAt5A5kexBh1Cf8DqoaNFOLFi0UAAAAAAAAANzJz8/XOnXqaLl2L2qdz5Zqlaf6aEiJCBWRYpnee+89jxlyc3O1evXqxfZvFp0eeOABjxny8vK0Ro0aPstQo0YNjxlycnK0SpUqPssgIpqSkuI2Q1ZWlpYvX96nGdavX+82Q2ZmppYuXdqnGUaPHu02w9WrVzU6OtqnGd599123GTIyMjQqKsqnGTp06OA2Q2pqqpYsWdKnGapWraoWi8VlhpSUFI2MjPRpBhHRy5cvu8xw5coVjYgovuOiq2nz5s0BzzB+/HiXGRITEzUsLMznGdztG/7K8Oc//9llhoSEBA0NDfV5hlq1arnMcPHiRS1RooTPM4SFhen169cDuh5ERGNjYw0zJCcna3h4uF8yzJ8/3zBDSkqKX/ZNEdEBAwYEfD28/PLLhhmSkpL8sm+KiDZr1izgbbJkyZKam5vrlMFfxyjrdPbsWacMly9f9svxwTqtXr06oO1BRHT48OEB3S9ERN9//32nDGlpaX65hrFOXbp0ccrgz2OUiGjdunUN14Ovryftp7CwML127VpAt4WIaFxcnEOGjIwMLVWqlF8zzJs3L+AZ/v3vfztkuHr1qs/vcYpO3bt3d8iQlZWl5cqV82uGdu3aOWTIzs72e4ZKlSo53Hfl5ORo5cqV/ZpBRDQtLc2W4caNG1qxYkW/Z7C/7wpEexARHTt2rC1DXl6eVqtWze8Z+vTpE/AMzzzzjEOGm266ye8ZmjRpYsuQn5/v02eDrqbIyEi9ceNGQDOIiB45ckRVVQsKCrRu3boBybB06VJbhnr16gUkw+DBgwOe4Y033gj4tmjbtq0tQ506dQKSoVy5clpQUBDQbSEimpCQEPAMa9asUYvFovXr1w9YhtGjR6vFYtEGDRoELMP7778f8G3RoUOHgK+Hm2++WfPy8rRmzZoByyBSuG/UqlUroBnWrFmjN998c0AzDB8+/He1h4qd39eb35n6uzJ89NFHCrgiIrHqotaIEZ8AAAAAAAAA/KGsWLFC4uPjJWPLbElZNUZK3dpKqj73LwmJjC6W7zcz2tLSpUslKSmpWP49VxnUw9vWli5dKomJiT7LkJiY6PG/ceHChZKcnOyzDCKet8dPP/0k6enpPs3gaZShOXPm2N5iGagMs2fPluvXrwc0w6xZszyOAPR77d692+0oZzNnznR6G3Zxu3z5spw7d87l59OnT5ecnByfZhBxvz1mzJghubm5Ps/gbqSj6dOnBzzD1KlTDUcv+G/N4Oq8MXXqVJ+NDmjv/PnzLs9L06ZNk/z8fJ9ncDfK0LRp0/yyHkREduzYYfj3GTNmuB0Nqji5Gulo1qxZftk3RVyPMjRz5ky/rQdXGaZPn+6XfVNEZP/+/YbXCf5sk65GGfLnehAxHsVk5syZfjk+WBm1CX+vB6MMs2fP9tt+IWK8LebMmeOXaxirbdu2Oe0Ds2fP9tsxSkTk7NmzTueuuXPn+vx60l5BQYHTSLdz587167YQcW4T8+bNk+zs7IBmiImJCXiG+fPn+/wex1OGn3/+WTIyMvyaITY21qENBiJDSkqKHD9+3Pb/ly9fLleuXPFrBhHHY/Yvv/ziMLqLv9i3icWLF/t9W4g4vpV/9erVcvHiRb9nsB/pKFAZtmzZYrvvWrVqlVy6dMnvGY4cOSIpKSkiIrJ27VqfPht0JScnxzbKUKAyiPynXf76669y9uzZgGbYvHmznDlz5n8+QyC3xe7du+XGjRuyadMmiY+PD0iGjIwMOXTokPz6668B2xYihdsjkO3BPsPp06cDmmHbtm1y4sSJgGYI9LbYsWOHbNmyJaDr4cKFCzJ37lxJSEgIWAYRkfHjx8v58+cDmmHGjBluR2n3h8WLFwe0PYgw4hN+OwqfAAAAAAAAAPyhjB071va/r+1dJlcWD5TIGo2kWrf+EhZd4Xd/f1xcnMeOj/YZfCEjI0NOnToV0AwinouOxo0b5/MMRTsBBmOG8ePH/09kiIuLc9sR1R8ZMjMz5dixY4afqapfMoi4LjryZwZXxTaqKhMmTAh4hokTJ/7PZIiLizPsIK2qMmnSJL9kSEtLM/zB2mKxyOTJk/2SQcS44Mef68FdBn+uB6OiI3+vB1eFT/7OULQgz9/r4eTJk06dpM22h9DQ4vkp3WKxOJ03VFV+/PFHj8uWKFGiWDKIOBfbmM0QHh7u0wxmtkVkZKRPM5hZD1FRUcWWwajoyEyG0qVLF1uGuLg4p6J5MxnKlStXbBnS0tIcihpERKZMmeJxuUqVKhVbBhHnNmEmw0033VSsGYq2CTPbombNmj7NYGY91K1bN+AZGjRoUKwZihbkmclw2223FWuG06dPOxR0mMlwxx13FGsG+6IGsxlatmxZrBlEHDtEmsnQvHnzYj1v/ZYMLVu2lOjo4nkxj1GGqVOnepy/devWUqHC738+9nsyNGvWTKpXr16sGXbs2GErEjabobiPU0lJSbaiDjMZmjdvLo0bNy7WDCL/OV6aaZMtWrSQFi1aFHsGa5swsx5atmwp9957r8+Vas+8AAAgAElEQVQymD0+PPzwwz7LYLY9/OUvf/FJBlU13R66detW7BmOHTsmV65cMbUeWrVqJT179iz2DLm5uRIbG2tqPbRu3Vr+9re/FXsGkcLtYWY9tGnTRvr06RPQDG3btpUBAwYENEObNm1k9OjRAc9g5vr7t4iLizP1fPJPf/qTzJo1y+t7XzPPLbKzs2XYsGEe52vTpo3MnDlTqlSp4lWGsLAwU/P98MMPHufp0KGDxMTEeH3+joiIMDXfvHnzTGfw9vq6ZMmSpuZbuXKlx3k6deokixYtkvvuu8+rDKVKlTI1n6tnhvas68Hb85bZDHv27PH7Sy7wX8LVUFCBmFq0aFEsQ1wBAAAAAAAA+O909uxZDQkJURFxmErWuUtrfThPG3w4S6vUu83pc2+ngwcPusxw8uRJl8uVKFFCu3btqjVq1PjdGebMmeMyw6lTpwzXgzXDU089pbfccsvvzvD111+7zHDs2DGXy4WHh+uzzz6rTZs2/d0ZnnrqKZcZ9u/f73K5yMhI7datm7Zs2fJ3Z6hfv77LDHv27HGboXv37tq+ffvfnSE0NFQzMzMNM+zevdvlciVLltTu3bvrww8//LsziIjGxsYaZoiNjXWb4ZVXXtGuXbsWS4apU6caZti+fbvLZUqVKqWvv/66du/evVgyfPrpp4YZtmzZ4nKZqKgofeONN7RXr17FkuGRRx4xzLB161aPGT7++ONiyeBq3/CUoUePHvr1118XS4bQ0FC9du2aU4b169e7XKZ06dLaq1cvHTJkSLFkEBHdvn27U4YNGza4nD86OlrffPNNHTNmjOl/w9Vx3zoZ7Rvu1kN0dLS+9dZbOn36dNMZSpQo4fbzv//9704ZNm/e7LY9vPnmm/rzzz+bzhAREeH286efftqrbVG6dGnt3bu323mKTqVKlXL7eYMGDZwy7Ny50+166Nmzp+7cuVNDQ0NNZYiKivKYMTc31yGDu3OW9Ti5c+dOLVeunKkMZcqU8TjP2bNnHTK4O1+UKlVKe/ToobGxsXrzzTebylChQgWP8yxdutT0Mcq6X+zdu1cbNWpkOoOnfaNfv34OGX799Ve3bfLtt9/Wffv2aYsWLUxvC0/b48UXX3TIsG3bNrfty7oeOnbsaCpDRESEVqtWze08LVu29Ko99OzZU3fv3u3VNcStt97qcXsVFBTYMri7foiOjtZevXppXFycvvzyy6Yz3Hab5/uR8+fP2zLExcWZWg8ffPCB6Qx33nmnx3k2bNhgy3Do0CGX85UsWVLfeOMNjY2N1T59+pjOcPfdd3s8d02aNMmW4cCBA27XQ48ePXT37t06YMAA0xmaN2+ukZGRbuf56KOPbBkOHz7scT3s3r1bx44d69W2KF++vNt5HnvsMVMZ7NfDrFmzTGdo3Lix1qpVy+089td1J06ccLseXn/9dY2NjdVly5aZzlCnTh2P94fh4eGalZVlKoN1W7g7nhadKlasqPfff7/H+azPA06dOuVynsjISH3ttdd0165dbu9Li05hYWH63HPPeZxv/vz5qqqakJDg8togIiJCX375Zd2xY4eeP3/edAYR0e7du3u85hg0aJCqql64cMFthldeeUV37Nih6enpXmV45ZVXtGTJkm7neeONN1RV9fLlyy7PteHh4frSSy/ptm3b1GKxaFhYmOkM3bp183gt0bFjR1VVvXjxosvvtt8Wqqply5Y1neG5557TOnXquJ2nSpUqarFYNDEx0eW2iIyM1FdffVV37typqmr6WkpE9C9/+Yupa46kpCRNTU11eVwtUaKEvvjii7plyxa1WCx6xx13mM7QqVMnfeCBBzzOt3PnTk1LSzOdoV27dqYztG7dWrt16+ZxvmnTprldD+Hh4dqtWzdbm+zcubPpDA0aNNCPPvrI47XlZ599punp6S73oYiICO3evbtu375dLRaLqf8u61S2bFn99ttvPd5vPPnkkx4z2O8XvXv3Np1BRHTUqFFapUoVt/M0bNhQMzMzNTo62uW26N69u21bfP75515lGDp0qNarV8/tPCVLltTU1FQtXbq0ywz2x6jvvvvOqwz9+vXT5s2be5xv//79LjMUbQ/ff/+9Vxn69Oljqh3PnTvXbQbr+UJVvXoOISL617/+VV977TWP8/Xt29dle7A/d6uqV88hRERffvll/fzzzz0+k3jhhRdcroeiGbx5DiFS+Cxw2LBhHs8zzZo1c5vBei2n6v45gdF0991366xZszyeZ0qXLu3yHrXoenD3e4vRVK1aNV2zZo3efvvtHud1ta6s501rhuTkZK8yiBQ+Jzfz3N/V8dT+mlZV9caNG15n2Lhxoz777LMe53P1HKvotlBVj9dnRafFixfrO++84/Ha0tW5LSoqSnv16qX79++3ZahUqZJXGSZNmqT9+/d3uf9bJ1cZo6KitHfv3nrgwAFbBk/H/6JT//79ddKkSVq1alWvt6NI4XOd9957Tw8fPmzLcPfdd3v1He+8844uXbpUGzRo8JsyREdH69tvv+3w++iDDz7oNF/Fzu/rze9MNfyOrl276ubNm02duzZt2qSAERGJVRe1RgEvdrKfKHwCAAAAAAAA4M4XX3zh9HC8UaNGOnDgQF0Xd0rv/tcqrfXBTA2vWt/tA/VOnTpp7dq1XX7uqrBCVfWzzz5zmeHixYuqqm6/2zq1b9/e7cP/Tz75xGUGox/qGzdurIMGDdJLly6pqpoqOmrWrJn++c9/dvm5fQe8oowKJ2677TYdOnSoXr58WVVV27Rp4zFDnTp1tEePHi4/r127tssM7733ntP8TZs21REjRmhKSoqqqqmOM1FRUdq3b1+3nSKt31fU22+/7TTvHXfcoSNHjtTU1FRVVX388cdN/bA0bNgwrVixosvPN27caJjBqPNI0QxmO7kMGTLE7Y96Y8aMMczw1ltvGWYYNWqULYPZgp9+/fq57XT17rvvGmYwakd33XWXfv/995qenq6qqp988ompDF9++aXb7dahQwfDDEadMJo1a6Y//PCDZmRkqKqaLvj54IMPtFevXi47DFeuXFktFotThjfeeMNwPYwZM8a2HswW/Lzyyiv61Vdfud03kpOTnTK8/vrrLjNY18PEiRNNZejcubOOHTvWbYdEo33jpZdecpqvRYsWOn78eL169aqqqukOw02bNtWlS5e63TdGjBjhlMGok/wdd9zhsB6WLFliKkOVKlV0586dbos533nnHacMRsV+d955p0MGbzraHDlyxO2+cf/995tqD02bNnXYN911+i867dy507CdW6eaNWua2hZ33XWXjh071tYevOlos2LFCv3yyy/ddni6cuWKQwajY+Dtt9+uo0aNsq2HlJQU0xlmzJihw4YNc1vssmfPHocMRufNxo0b6/Dhw23H6tzcXNMZhg0bprNnz3Zb8F20kNvovNmkSRMdOXKkpqWl2eYz29Hm448/1vXr17vt8PTFF184ZOjZs6fhthg9erRtW6iqVq5c2VSG559/Xg8dOuT2muPxxx/3uF9Yjw/WNqmqWrduXVMZ2rZtq4mJiW4LfOvVq+eQ4c033zTcFvZtUlX1rrvuMpWhXr16mpGRoZ988onLDk0lSpSwFTWoqr777rtO8zRq1EhHjBjh0B7MFCqIFHbaysnJ0QEDBrjt8GTfkcho32zcuLGOHDnSYT08+uijpveNS5cu6fTp090Wgv3000+27/7rX//q9HmDBg102LBhtn1T1fiY7mrat2+fLlu2zG2Hp++++8723Z9++qnT57feeqsOGTLE4TrYaJu5mpYvX647d+7UVq1auZynR48etu82ur+49dZbdejQoQ7rweh+zNU0YcIEPXXqlD7xxBMu52nTpo3b777lllt08ODBDuvBm07Lffv21cuXL2vPnj1dXtdVrFjRdl3nKsOQIUMc1oM3nZbffPNNvXbtmvbp08ftdV1SUpKqGt93169fXwcNGuRwfpsxY4bpDF26dNG8vDwdMWKE2wJba+e3L7/80jBD0W2xePFi0xnuvPNOtVgsOnfuXK1Zs6bL+caPH6+qql999ZXTZ/Xq1dOBAwc6rIeNGzeazlC5cmVVLSxOd1cUYi3I69+/v9NntWvX1n79+tnuu1XdvxTEaMrNzdW9e/e67az75JNPqqoaFhvWrl1bv/vuO4cMZ86c8SrDmTNn9OzZs2476zZu3FhVVUeMGOH0Wc2aNfWbb76xPYdRVc3IyPAqw5YtWzQ5OVl79+7tcv+MiorS3NxcHTp0qNNntWrVctoW+fn5XmWYO3euZmVlad++fd1e/xw7dkwHDhxoaluoqseiFftpyJAhmp+frxMmTHBbaBITE2NY+Fm9enXt27evJiYmOmRwt58VnT799FO1WCwaExPjthBs2LBhOm7cOKe/V6tWTb/++munDGaKka3TSy+9pKqFBeruOhr36tXLcD3UqFFD//Wvf9mOpVZmno1Zp/vuu09VC4tg3T2va9eunY4fP95wv/j2229tzwatHnnkEdMZrNeM58+f1xdffNHlfFWqVPEqw/PPP286Q3h4uFosFk1LS9MPP/zQbSHYqFGjnP528803Ox0fVM0/l7JOycnJmp2drd98843bfcrofOEqgzfXMSKicXFxtv3T3f2J0XM5o+Okquo333zjVYYlS5aoxWLRJUuWuH3RltH1stFxUlV15MiRXmX44YcfVLXwpQX33HOPy/maNWvm9LfatWtr//79nZ5fTZkyxasM//d//6eqhcXZ7p6LGG2nOnXq6IABA5wyLFy40KsMr7zyiqqqXrp0SXv06OHy3GX0d1cZ1q1b51WGBx98UFVVMzMz9YsvvvBYCGZmW7h7IYbRZL0+yMvL05EjR3p8yUDRNml03jx+/LhXGcqUKaOqqhaLRefMmePxJQP2U926dZ2uJ1ULi6y9ySAitnvW9evXm3r5hadtkZ2d7XWGQ4cOqarqvn37tEOHDqaXu/XWW3XYsGEO9/7WdepNIbuI6C+//KKqhQX73ry0xFUGVTX1oh37yXoPkZ6erh9//LHHImbr1KRJE/3+++8dngVZmX0mZJ2sz79ycnJ04MCBLgsgi04NGzbUESNGODwDsTL6DdNd4ZP1xQVmzl32zyQAe0LhEwAAAAAAAIA/utzcXL3ppptUpPDNY2+88YZu3rzZoeP/4YRUvbn3ZK31t580spbrTkSjRo3SzMxM/fjjjw1/RPnggw8MM+Tk5Ng6gURFRelrr72mv/76q0MGi8Vi6ge/zz//XPPy8nT48OGGP0BY3ypslMH61rioqCh9/fXXndaDqrnOui+//LLtxzmjjpnVqlUzzJCdnW176551W2zdutUpg5m34lk7yW/atMllh5SiP0Sqql6/ft3WYS46Olp79uxpe3OpPTNvfrS+3fz48eOGb7ATEV21apVThszMTFuH8+joaO3Ro4dhhtatW3vMEBERoRaLRS9fvuzyDaZDhgxxm8E6mo/1LbL2OnXqZOpHruTkZL1+/bp+8cUXGh4e7vT566+/bpjB2obdrQezozXs3btX8/Pz9fvvvzfsFNmqVSunDBkZGbYOztb2sHPnTqcMr7zyiqkMixcvVlXVRYsWGRYyli5dWvPz8x2+Oz093fb2TOtoPrt27XLKYLbDsLXIbNu2bYYdN0RET58+7bQerJ1xrO1hx44dThnMvuW4T58+qlq4b7jqdLVs2TK3GXr06GG4Lfr162cqw6uvvqqqhW95NyoUEPnP2+itUlJSbJ16rdvCaLQyow6URpP1eJyVleWy2MXaSc4qLS3N1nGxZMmS+uqrrxoeJ3/88UdTGZo0aaKqhT8ajxs3zrBIsujvbEYZjI4PMTExpjJYO3WoFnYyNjrGR0dHa15enm2+q1ev2vbNyMhIffnll21vX7e3Zs0aUxlExDb63datW13uG/Yjqdjvm+7Wg7tRX4pO1k4dJ06ccNmJ0H7fuH79uu0twxEREfrSSy85XT+oetfRZs2aNaqqbotd7ItVs7OzbZ02SpQooc8++6yuW7fOKYM3HW2mT59u286uil3+9re/2b47KyvLdlwPDw/X559/Xjds2OCU4fr166YzWEdSsnZINioEs3bMUlW9du2abZ7w8HB94YUXdOPGjU4ZCgoKTI++9fbbb6uq2jrTG7352jpSQ9H9IiIiQrt162Z4LaeqpkbVEnEsVt+0aZPLDk/WTo/Xr1+3fbe1Paxfv94wg9lOy/bHoMOHD7u89rAWNdi3ybCwMH366ad17dq1hhnMjiJavXp12zIJCQkuO+taRxmyb5NhYWH6zDPPGO4Xqqpt27Y13S6tx0F3hWAffvihqhZe21uv20NDQ7Vr1666evVqh1GprLp06WI6g/U4eOPGDZdvvrYW5OXl5dnuBUJDQ/WJJ57QFStWGGZw1wG66GR9o39BQYFOnjzZ8M3X1vOb/b2epwxGHXtdTdZRc1RVly9frg0bNnSaJzw8XLOzszU/P99WyBkSEqKPPfaYLl++3DCDUaGYq2nkyJG25Xbt2uXy3uDo0aOal5en1atXt2V4/PHHXWb497//bTqD/YiMp06d0r/85S+G8y1YsEDz8/Nt+31ISIg++uijumzZMsMMRp3NXU3du3e3LXfp0iWXhWD9+/fXgoIC2zV4SEiIdunSRX/55RfDDFOnGne4M5rsX17grhDs1Vdf1YKCAoeOhp07d9YlS5Y43QOoetdpuWHDhrbl8vLydPTo0YadKtu0aaMWi0UbN25s+9tDDz2kixYtMszgTfFV6dKlbctZLBadPXu24bmratWqWlBQoE2aNLH9rVOnTi4zeDtihH3HynXr1rk81l+5csWhCOWBBx7Q+fPnO1xzWp09e9arDEeOHHHIf++99xrOt2vXLodC4AcffFAXLlxomOHKlSteZbB/1uCuEGzy5MkOzzfcZcjJyfEqw+TJk23LpqWl6d/+9jeX5y7782H79u117ty5TqOMWnkadcF+sh8d01oIZjQ6xTPPPKN/+tOfbP+/Xbt2OmfOHM3JyTHM4M2I7PYvWcnPz9fx48cbPltr2rSpV+vB7CiiIqJPPPGEbTmLxaKLFy82LDSJjIx0yOBuv1D1rvjq7rvvdlh206ZNLu+77F9a88ADD+iCBQtcZvBmJPKqVas6LHv48GGXy9sXkXbs2FFjYmJcZvCm+EpEHL7HXSGY/fWFpwzeXMeIOI6ga90/jZ5l2x/HO3bs6LY9mH0pkHXavHmzbVl315b2z/DcHaNUVf/1r395lcH+hRoFBQX6448/2q4d7Sf7Y9dDDz2kP//8s+E5S1V1+PDhXmUo+uxp+fLlHvdvTxkmT57sVYa//vWvDsvv2rXL432Kpwzz58/3KkPRUbZPnTqlTz75pNtl3F0/qKquXr3aqwz2Ly5QVY9FzCKej1HuRuk2moq+rO369ev6z3/+020Rs6dtcfToUa8yhISEOFwf5+Xl6ZgxY9y+WO3BBx90uy1+S/HVhQsXbMtbLBadN2+eyyJm6/2Fq3sc1cJnJt5m2LJli8N3bN261eXLo6z3F+4yePNMyDrZv9zEuj1dPTMMCQnRrl27unwGYmV2RHbrNHjwYIflExMT9dVXX3U5/xNPPKGrVq1yuR5UjX/jc1f49PHHHzss7+7c5e7Fi/jfJhQ+AQAAAAAAAPijmzdvnrZt21YnTpxo+PYzVdVz585pWJlKWr3H91r744VaqoHxD38xMTG2Zfbs2eP0psh27doZfv+cOXO0VatWOm7cONtIGUWlpqaa+hFi+PDhtmXOnz+vTz31lMPnZcuWNfzBYe7cuR4zmB2t4dNPP7Utk5aWpu+8847TD4T2P1xZzZgxQ1u3bq0TJkxwuS0sFothJ5Wi0/PPP29bJicnR7/77jun5ZYvX+70/ZMnT/aYQdVcAVjbtm0dcs+cOdOpY+a3337r9N0TJ07Uli1but0WqubezFerVi2HZTZu3OhUCPbCCy8YZmjevLnDiEJG3L1N3DqFhYU5tLkjR45ox44dHeZp2rSp03dPmDBBW7RooWPHjnWboV27dqbapX2bS0pKchq5JyIiwqlT09ixY7V58+YeM3Tu3NlUhu3bt9uWuXbtmn722WdOHb8OHjzo8N1jxozRFi1a6Lhx49y2SXdvNHd1nLK+Hb9oB/iiI6mMHTvWaXQnI+5GWbOf7Ecxsv5wXbRT5Ndff/2bMnz44YdeH6dUC9++XbQ9P/vssw7zjBw50mmkLSN9+vQxleG5555zWM6oEOzWW291mGfMmDHaqFEjHTZsmMsR41RVBw0aZCpD+/btHZZLTk52Gq2l6Egq33//vakMRm8rN5qKjhaTlZVlOCJYXFycbZ4JEyZogwYNdMiQIU5vsrU3Z84cUxkiIyMdOgTk5+fr6NGjnToC2O8/P/zwgzZs2FCHDh3qdj0sXbrUVAYRcXh7ucVi0UWLFjl16vjnP/9pm2fq1Kl6yy236MCBAw2Lea22bt1qOoP9elYtPG8U7TBsfRu0qurs2bO1du3a+s033zi9hd7ewYMHTWcoWvhoNOpR69atbZ/PnDlT69Spo99++63TW8ftnTt3znSGcePGOSxrVAhWpkwZW6eeqVOnap06dbRfv35uM5i9nhP5T5GoVWZmpn7++edOBcQnT55UVdVJkyZp3bp1tX///k5vwrfnTadla5GolfXN10X3jYULF6qq6vTp07VGjRrat29fw2s9e2ZHjHj44YcdlrOO2lD0zdcDBgxQ1cJr2urVq+tXX32lCQkJbjOY7bRsdJ2yYcMGp/NGz549VbWwTZrNYLbTcrly5ZyWPXz4sD700EOG+8b8+fP1pptu0j59+ui5c+fcZvCm0/L169cdljUqBLOOHrl06VKtUqWK/uMf/3DoXGvE3egTRacTJ044LOuqw1NqaqouXrxYK1eurJ9//rmeOXPGbYZnnnnGdIb169c7LGsdEazoiyc2b96sy5Yt00qVKulnn33mMYPRyHGuphkzZjgsW1BQoFOmTHHqrDtp0iSvMnz00UemM/Tv399peaNCsE8++URXr16tFStW1E8//VRPnTrlNkPfvn1NZ3j//fedlt+5c6dTu37iiSd07dq1WrFiRf3kk088ZvCm03LXrl2dljcqBGvQoIFu2LBBy5cvrx999JFTWy7Km07L9udFq+TkZKeRXsPDw3XDhg1atmxZ/eCDD/To0aNuMyxatMh0hqL3nqqF9zxGozbMnz9fy5Qpo++//75DkZCRtWvXms4QGhrq9LwjLy9PR40a5TRqw4gRI7R06dL67rvv2orPXdm7d6/pDCLidC1gsVh01qxZTvc8n376qZYpU0bfe+89h1EDjZw4ccKrDLt27XL6DqMRwZ588knbevCU4dKlS15lWLBggdN3GBWa3HHHHRoVFaVvvfWW7tu3z20Gb0YRFTEeXTo+Pt6pUKVKlSpaqlQp7dGjh9Popka8Gfmq6Cihqq4LwUqVKqU9e/Z0uiY3YlSc4Woqek2n6rrQJCoqSt955x2P+4Wqd8VXDzzwgNPy+fn5OnbsWNtLkKxTyZIlTWdwNwJk0alRo0ZOy1vvu+rXr+8wb0REhL799ttOz2iMeFN8Zf/iD3tGhWAlSpQwncHsMyHrZPRM49ChQ04vGQgNDTWdwewzIetktH1djarSu3dvU+3B7DMh67Ry5Uqn77C+ZKDofddLL73k8Zylajyyo7tpwoQJTt+Rk5OjgwcPdnpe98gjj5jKYDSaoLup6DM41cJry2nTptmK561T69atTWWYNGmSVxms91JFrVq1yqFYWqTwmsrTOUu18HcfbzI88sgjht9jNJpl5cqVTe0Xq1at8irDnXfeafg9Z86ccbpfCQ8P1wMHDnjMsG3bNq8yVKhQwfB7UlJS9L333nO671qxYoXHDEeOHPEqg4g4PIu0clXEbH0JiTvePBOyTkbtzNULOOxf0ONKenq61xlWr15t+F1Lly51GonZOrKqOwUFBW6L+YymiRMnGn6X0Wh51peQeGL0kgZ3hU///ve/Db/H6NxVsWJFt0VX+N8lbgqfSggAAAAAAAAA/AF07txZnnnmGbfzXLx4UQoyU+TSzM+kyjNfSZUnP5e0dRMl58IRh/myS1WR/QnpIiISVqWejJu3QmJi5smYMT9IVtZ1OZh4VfbGp0pYWKjDcrXuaicT5v9ZRETOXrWIXE13ynDmTLxEVLvV439PftkatgwipeWrEZPkgadfk4GDBsrFixflhogs235Iateu5bBczTv/JBPmP+w2Q3LyFVMZpGIduwwivf7xrbR7/EXp1+87OXHiuIiILNgQK/fdd5/DYvVa3C/jYx4t/O/NKBDJcM6QdT1LCsrdLBHl3EeIqNbAIUOX7r2l2QNPyIABA2Tr1q0iIrJ8xyGp0bSNw3INWneS8Q91dZshPz9frpYoLxHVyrvNUKb27Q4Zmt7XReavby9jxnwvCxYsEFWVjQfOymMJjv9GwzadZNKfnxYR19tCVSVFoz1uj4q33uaQoXz9O2Xa0g0yc+YsmThxguTk5MjOkxcd5hERubXVA/KjhwwiIskFpTxmqFSpkhxMvPqfP5SuJsOmzpcVK1bKsGHDJC0tVU6k5MqOE0lSqlQp22wNWj8okzs/4zHDxdxIU+0yKSdcrtj+O0vK3/uPlo5PvyYDBvSX+Ph4ERFZuHGPNGnS2LZMo7YPy4+PPu8xQ+KNEqYypIWUcVjX3d77XNp0eU769x8ge/fuERGRRZv2SkG5m23zNGnXWSY//qKIuG6TIiLnr4eYypAZXtEhQ4enXpFF93WR4cOHy8qVK0VEZOWuI9Kk3X/madimk0zt8pyEhIRIfKaKZBpniM9UUxlyom9yyNCwTSeJWbtTJkycKLNmzRKLpUA27D8tXRO8z3A6Pd9UBq1QyyFD2bpNZcridfLTTz/J2LHjJDs7S3aecNw3bm//iEx5sruEhIS4bQ8nU3NNZe3tqM4AABu3SURBVAi/6RbHfa9UFRkwYbb8ed06GTJkqCQnX5Zz10Q2HzonZcuVFRGR+i07ytzVL0hISIgkZIkkZBlnOJacbSpDqZsbF9n/S8h7/xwoHZ56RQYMGCBHjx4VEZGYdTvlrrvussvwoscMhy9eM5WhXL3bnI5BT/X8m7Tq/IwMHjxYtmzZIiIiizbtkZBKdUREpNZd98q8tU9LSEiIXMgWuZBgnOFg4lVTGSpXqSoHLmQ4/K39X16SRe27yKhRo2Tp0iUiUnjeaND6QRERqdv8fvlpzfMe18O+8+nmzp0iciE7TC7a/bfUa3G//LRmu0z5cYpMmz5N8vLyZMO+07b1VbXxPRKzbpeEhoZIUo5Ikov1sOeMyfO3iCQXRDmdN6YuWS/z5s2TsWPHSVbWddl6NME2T7l6d8iiTXslLCxULueLXHaV4dRl0xnSQ8s6tomyNWTolBhZs2atDBs2TJKTL8vBxKsSezpZIiLCpcItd8nCjXskLCxULuWJXHKR4fiJJNMZsktWKdIuS8mn342STs/1kIEDB8jJkyclR0QWb46TW265RSo1aG4qw7lzCaYzOF7TFXrx3c/kT4+9IIMHDZbtO7aLiEjMul3ySGQlualJK1mwYbeEhYXKxVxxaEv2UlJSTGcIrVzXKcP9XV+WRfc/Jt9/P1oWL14sIiLLth+U+i07SPn6d8rSrfslLCxMrljE7rzrKCcnV/LL1pCIsp4zRFS71SlDg9YPSsy6nf9/35gueXm5smbPcemckC5RNRvL0q37pUSJEpKiIikuMoiIXC1RQSKqRXnMEF3L+ThV4Za7ZOqS9RITEyNjx46Va9euyebD52R/QrqUrn2b6QzpIWVNbY8KNZzbg5SpLoMmzZUNGzbKsKFDJelikhy4kCG7/v/+9su2AxIeHi5pIpLmJsMVS5S581Z4hJxIyZGQ1Fy7v0bL5wPHyMMv9JRBgwbJyZMn5aqI/LLtoEiFWrJs+yGJiAiXDBHn/HYu5Zm7nhMRuZgTIVlFvuv1j7+S+57sLoMHD5bY2FgREZm7epvcfHNtWbb9kERGRshVDxkSb4SbznDFEu30XZ27vSUtHnpKRo0aKcuXLxeRwnPXfffdJ8t3HDaVwez1nIjI1RLlnb7r7gf/Igs2PCgTJ06UOXPmSEFBgazYeVhefrmF6Qxnr5q7nhMRuRFV1em7ajRtI7NWbJY5c+bIhAkTJTs7SzbsPy33d60qK3YelsjISLnmIYPZ6zkRkYJyNZ2+K7J6A/lh7jJZtmyZjBo1UlJTU2X78UR5s2Rl0xlOpOSYzlCian3n74qoKP8aPUUeeWm7DBkyWOLj4yU+UyUhK0xW7joiJUuWlCwPGY5ezjKdoWSNRgbfVULe6dNfHnz2dRk0aJDs27dPRER2nbokK3cdlaioUpLjIcPBxEzTGcrUaWD4Xc/1/kT+9NgLMnz4cNm4caOIiGw9miCrdh2VqOgoyfWQYX+C+WupsmXLOd57/n/3Pdldfu7wmPzwww+ycOFCUVXZfjxRVsUelejoaMn3kGHPWfPXUiIiCVmhTtcCt7d/RGLWdZApU36UGTNmSF5ensSevmxbD3keMhw+bf5aSkTkcn5Jp++reGszmbpkvSxYsEB++GGsZGZelf0J6bb14ClDfLz5aykRg2s6EZEy1WXgxDny2KZNMmzYMLlw4YKcSMmVJb/GSdWqVUQ8ZEhLS/Mqw/XISs7fF1pW/m/wWOnc7S0ZNGiwnDx5QjJEZPrixdK4cWOPGfLy8kxfx4iI5ERXM/y+1z/+Sjo89aoMHTLEdl3373795KGHHvKYQVXlWkRFiahWxlQGrVDb8PseeamXtHz4aRk9epQsW7ZMRER6vNVLer7Z0+N+ISKSHlrO9PYwuqYTEWn76POyqH0XGT9+nMybFyMWS4E88uij0usfX5vKkKKlTWeIrtXE8Pvqtbhf5qzaJrNnzZJJkyfJjRs35Pbbb5fe/9dPCkxkuJxf0nSG8jfdZPh95erdIZMXrZWff14kY8aMkYyMDKlQoaL0+se3UhAS4jFDUo7565iQkFA5nV4goUWfaZStIYMn/yQbN26SoUOHSlJSooiIdHvvH1JQtozHDAlZoV7tn0k5EZLv9J1R8km/kfLwC2/KoEGD5OjRwmfv7R5/0fD+qKj4TPEqQ4o6X9OJiLz81y/kvie7y9ChQ23PkRu2eUhySxvvz/ZOpxd4leFaREXD73zo+R7SvNOT8v3338uSJYXPJKo2bmkqw4kUc8+lrG5EGbfLuzo+LgvWPyiTf5wsM2fOlPz8fIms3tBUhqOXzT2XsrKUr2X4nTc1uUdmLNsk8+bNkx9+GCvZ2VmSE32T5JWp7jHDoSRzz6WsDK/ppPC+eNTMn2XNmjUydOhQuXLlimSGhEpmiQoeM+xPyPAqg/NzOmu48vLlsAnyyEu9pH///zzLPnLpuljKu8+w75x3585yRveeIiISKm9+9m954JnX5LvvvrNdW+45e0Wqe1gPB7x4LiUiEh4eLsev3JCQkBynz5584wNp0+U5GTRokGzatElERGJPXZaWnvaLk5e8yiBSeGzNM/jeFg91lYVtH5JRo0bJokU/i8VSIHvjUz0fq5Muep3B6N5TpPA3xdkrt8ikSZNl1qxZkp2dZSrD1auZEn7TLV5luBZufJwqdXMjGR+zUn766SeZPGmSpKWnyen0Atl27IJER0e7/D6LRSWrZGWJqFbJ4e9hpVxfXFWoUMHw77fddpusWrVKfv75Z/nwww/l7NmzkpqaKseOHZMmTZqY/C8EREIKC6OCQ8uWLdX6cAsAAAAAAAAAvHXjxg05deqUJCUlybnEizLlRAk5l2eucwEAAAAAAAAAAAAAwFi05bq0uLhU0tLSJC0tTdLT0yUtLU2GDx8uzz77rNtls7OzZciQIfLdd9/JiBEjpGfPnn5KjT+KkJCQ3ara0vAzCp8AAAAAAAAA/LfKK7DIjtOpkpNf4NVy23fskOioKLnjjjt8lMyzM2fOyPnz551GW/Kn5ORk2bVrl3Tp0iVgGbKysmTZsuXyzDNPByxDQUGBLFm6VB5+6CGJivI82oAvqKrs2LFDqlWrLnXr1glIBhGREydOyLXr1+XuZs0CluHixYty7PhxuT+A+8a1a9fk182b5ZHOnQOWIS8vT5YtWy5PPPG4hISEBCSDqsq6devknnvukbJlTb5G2wf2xsVJ+XLlpF69egHLcO7cObly5Yo0b948YBkyMjLk0KHD8qc/tQ1YhpycHNm6dat07NgxYBkKCgpk3bp10qlTp4DuGzt27JAmTZpIuXIehj70oYMHD0n58uWkZs2aAcuQcOGCXMvMtL2VPxDS09PlxImTcs89hr+X+0VOTo7s3LVL2t97b8AyWCwW2bhxo3To0CFg+4aIyK5dsXLbbbdJdHRgrqlERI4dOy5ly5aR6tWrByzDpUuXJD09Qxo1ahiwDBkZGXL27FnbSIGBcOPGDdl/4IC0uueegGWwWCyyffuOgJ4/reeNli1bSokSJQKW4/CRI3JT1apSqVIlzzP7SEJCguTnFwT0nictLU0SExPl9ttvD1iG7Bs35MjhwwG9tszPz5c9e/ZIq1atApbBum+0bt06oOeu3bv3yG233yalSpYMWIZTp09LVKkoqV69WsAypKSkSGpqqjRo0CBgGTIzr0l8fLw0bRq4/TMvL08OHjwod999d8AyWFQldteugO+f27Ztl1at7gn4uatqlapSuXLgzl3x8fGiKgE9dyVfuSKXLl4K6L5x/fp1OXz4SEDvu/Ly8mTHjh1ybyDvu1Tl119/lfb33iuhoaEBy7F792655ZZbpHz58gHLcPLkSQkPD5c6dQK3b1y6fFmuJCcH9LruamamHDt6LLDPJHJzZeeOHdK+ffuAZSh8JrFJOnS4P+DPJBo0uDWg+8bx48clIiIyoOeNhAsX5EpysjT7jb/z1K9SWupVdj1alBnnz5+X2NhY6dq16+/6Hvz3ofAJAAAAAAAAAAAAAAAAAAAAAAAAQNBxV/gUuJJiAAAAAAAAAAAAAAAAAAAAAAAAAHCBwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAAAAAAAAAAAABBh8InAAAAAAAAAAAAAAAAAAAAAAAAAEGHwicAAAAAAAAAAAAAAAAAAAAAAAAAQYfCJwAAAAAAAAAAAAAA8P/au3sQze4qjuO/k0QbTRGJyhLjK3YWKiFNJKRQ0TSrhWKqWGmhoJ1i4zYBEQ12gmIgii8IGg1WKgixCnlBzOqiBll1zbJr2EJTWXgs5lkZl5nFZp//ce7nA8Pc584Wpzzzn/vdCwAAAAAwjvAJAAAAAAAAAAAAAAAAGEf4BAAAAAAAAAAAAAAAAIwjfAIAAAAAAAAAAAAAAADGET4BAAAAAAAAAAAAAAAA4wifAAAAAAAAAAAAAAAAgHGETwAAAAAAAAAAAAAAAMA4wicAAAAAAAAAAAAAAABgHOETAAAAAAAAAAAAAAAAMI7wCQAAAAAAAAAAAAAAABhH+AQAAAAAAAAAAAAAAACMI3wCAAAAAAAAAAAAAAAAxhE+AQAAAAAAAAAAAAAAAOMInwAAAAAAAAAAAAAAAIBxhE8AAAAAAAAAAAAAAADAOMInAAAAAAAAAAAAAAAAYBzhEwAAAAAAAAAAAAAAADCO8AkAAAAAAAAAAAAAAAAYR/gEAAAAAAAAAAAAAAAAjCN8AgAAAAAAAAAAAAAAAMYRPgEAAAAAAAAAAAAAAADjCJ8AAAAAAAAAAAAAAACAcYRPAAAAAAAAAAAAAAAAwDjCJwAAAAAAAAAAAAAAAGAc4RMAAAAAAAAAAAAAAAAwjvAJAAAAAAAAAAAAAAAAGEf4BAAAAAAAAAAAAAAAAIwjfAIAAAAAAAAAAAAAAADGET4BAAAAAAAAAAAAAAAA4wifAAAAAAAAAAAAAAAAgHGETwAAAAAAAAAAAAAAAMA4wicAAAAAAAAAAAAAAABgHOETAAAAAAAAAAAAAAAAMI7wCQAAAAAAAAAAAAAAABhH+AQAAAAAAAAAAAAAAACMI3wCAAAAAAAAAAAAAAAAxhE+AQAAAAAAAAAAAAAAAOMInwAAAAAAAAAAAAAAAIBxhE8AAAAAAAAAAAAAAADAOMInAAAAAAAAAAAAAAAAYBzhEwAAAAAAAAAAAAAAADCO8AkAAAAAAAAAAAAAAAAYR/gEAAAAAAAAAAAAAAAAjCN8AgAAAAAAAAAAAAAAAMYRPgEAAAAAAAAAAAAAAADjCJ8AAAAAAAAAAAAAAACAcYRPAAAAAAAAAAAAAAAAwDjCJwAAAAAAAAAAAAAAAGAc4RMAAAAAAAAAAAAAAAAwjvAJAAAAAAAAAAAAAAAAGEf4BAAAAAAAAAAAAAAAAIwjfAIAAAAAAAAAAAAAAADGET4BAAAAAAAAAAAAAAAA4wifAAAAAAAAAAAAAAAAgHGETwAAAAAAAAAAAAAAAMA4wicAAAAAAAAAAAAAAABgHOETAAAAAAAAAAAAAAAAMI7wCQAAAAAAAAAAAAAAABhH+AQAAAAAAAAAAAAAAACMI3wCAAAAAAAAAAAAAAAAxhE+AQAAAAAAAAAAAAAAAOMInwAAAAAAAAAAAAAAAIBxhE8AAAAAAAAAAAAAAADAOMInAAAAAAAAAAAAAAAAYBzhEwAAAAAAAAAAAAAAADCO8AkAAAAAAAAAAAAAAAAYR/gEAAAAAAAAAAAAAAAAjCN8AgAAAAAAAAAAAAAAAMYRPgEAAAAAAAAAAAAAAADjCJ8AAAAAAAAAAAAAAACAcYRPAAAAAAAAAAAAAAAAwDjCJwAAAAAAAAAAAAAAAGAc4RMAAAAAAAAAAAAAAAAwjvAJAAAAAAAAAAAAAAAAGEf4BAAAAAAAAAAAAAAAAIwjfAIAAAAAAAAAAAAAAADGET4BAAAAAAAAAAAAAAAA4wifAAAAAAAAAAAAAAAAgHGETwAAAAAAAAAAAAAAAMA4wicAAAAAAAAAAAAAAABgHOETAAAAAAAAAAAAAAAAME519+oZ/qOq/pbkT6vnYIzbk7y4eggAYDk7AQCQ2AkAgAN2AgAgsRMAAPYBAOCAneDkeEN3v/qoH4wKn+Cwqnq6u+9aPQcAsJadAABI7AQAwAE7AQCQ2AkAAPsAAHDATrANN60eAAAAAAAAAAAAAAAAAOBawicAAAAAAAAAAAAAAABgHOETk31t9QAAwAh2AgAgsRMAAAfsBABAYicAAOwDAMABO8EGVHevngEAAAAAAAAAAAAAAADgv3jjEwAAAAAAAAAAAAAAADCO8InRqupMVf21qn61+7p/9UwAwH5U1fuq6ndV9XxVfXb1PADAGlV1vqqe250LPL16HgBgP6rqkaq6XFVnD917VVX9rKr+sPt+28oZAYAb75idwHMEALAxVXVnVf2iqs5V1W+q6lO7+84KAGBDrrMTOCs44aq7V88Ax6qqM0le6u4vrZ4FANifqro5ye+TvCfJhSRPJXmgu3+7dDAAYO+q6nySu7r7xdWzAAD7U1X3JnkpyTe7+227e19McqW7v7D7T1Ju6+7PrJwTALixjtkJzsRzBACwKVV1Ksmp7n62qm5N8kySDyT5aJwVAMBmXGcn+HCcFZxo3vgEAMBEdyd5vrv/2N3/TPK9JKcXzwQAAADsSXc/keTKNbdPJ3l0d/1oDv6YCQCcYMfsBADAxnT3xe5+dnf9jyTnktwRZwUAsCnX2Qk44YRP/D/4ZFX9evcKe6+iBYBtuCPJXw59vhC/oADAVnWSn1bVM1X1sdXDAABLvba7LyYHf9xM8prF8wAA63iOAAA2qqremOQdSZ6MswIA2KxrdoLEWcGJJnxiuar6eVWdPeLrdJKvJnlLkrcnuZjky0uHBQD2pY6413ufAgCY4J7ufmeS9yf5RFXdu3ogAAAAYCnPEQDARlXVK5P8IMmnu/vvq+cBANY4YidwVnDC3bJ6AOjud/8v/66qvp7kJzd4HABghgtJ7jz0+XVJXlg0CwCwUHe/sPt+uaoeS3J3kifWTgUALHKpqk5198WqOpXk8uqBAID96+5LV689RwAA21FVL8vBA87f7u4f7m47KwCAjTlqJ3BWcPJ54xOj7X4ZueqDSc6umgUA2Kunkry1qt5UVS9P8pEkjy+eCQDYs6p6RVXdevU6yXvjbAAAtuzxJA/urh9M8uOFswAAi3iOAAC2p6oqyTeSnOvuhw/9yFkBAGzIcTuBs4KTr7p79QxwrKr6Vg5eOddJzif5eHdfXDoUALAXVXV/kq8kuTnJI9390OKRAIA9q6o3J3ls9/GWJN+xEwDANlTVd5Pcl+T2JJeSfD7Jj5J8P8nrk/w5yYe6+8qqGQGAG++YneC+eI4AADalqt6V5JdJnkvyr93tzyV5Ms4KAGAzrrMTPBBnBSea8AkAAAAAAAAAAAAAAAAY56bVAwAAAAAAAAAAAAAAAABcS/gEAAAAAAAAAAAAAAAAjCN8AgAAAAAAAAAAAAAAAMYRPgEAAAAAAAAAAAAAAADjCJ8AAAAAAAAAAAAAAACAcYRPAAAAAAAAAAAAAAAAwDjCJwAAAAAAAAAAAAAAAGAc4RMAAAAAAAAAAAAAAAAwzr8BqZEQAVACgmgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(60, 60))\n", - "plt.plot(xcord,ycord,label='3rd Contour')\n", - "\n", - "t = 40\n", - "factor = 1\n", - "n = 0\n", - "\n", - "u0 = U_xy[40].values[0]*factor\n", - "v0 = U_xy[40+N_image].values[0]*factor\n", - "\n", - "\n", - "for j in range(len(xcord)):\n", - " \n", - " u = U_xy[t].values[j]*factor\n", - " v = U_xy[t+N_image].values[j]*factor\n", - "\n", - " \n", - " a = plt.quiver(xcord[j], ycord[j], u, v,\n", - " angles='uv', scale_units='xy', scale = 0.9)" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "id": "f7b2ae2e", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAGOCAYAAACABOR8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydZWAc95n/P7O80korsshiNDPGDInjMDbUYNP2etfeXa93PW7/V7rSFa6cXpMmTROHOY4Tx3HMIKOMYmbtarVMM/8XqxVYdmNbM2tZmc8baVer3yNL3vnOw4IkSaioqKioqFwsmiv9A6ioqKioXF2owqGioqKickmowqGioqKickmowqGioqKickmowqGioqKickmowqGioqKicknoLuXFaWlpUkFBgUI/ioqKiorKeOHQoUM9kiRNOt/XLkk4CgoKqKiokOenUlFRUVEZtwiC0Hihr6mhKhUVFRWVS0IVDhUVFRWVS0IVDhUVFRWVS0IVDhUVFRWVS0IVDhUVFRWVS0IVDhUVlUHcwYBiZ5/ur1XsbJXYogqHiorKIH+qOqzY2W+1fYwn5FXk7E7PIUXOVTk/qnCoqFxleAJBRc6t7uthc9MZwqIo+9n2QD8dvm5OOGpkPxug2b0dm/+sImerjEYVDhWVq4g+r4+Xj55Q5OxNNUeRJIlen0f2s6ucDQAc61Pm4h4SPZyxP4ckyS96kmhDXXg3ElU4VFSuEsKiyE+27SIYDst+dnVfDwe7mgHo8rpkPz8qHFWuBjwhn+znB0UP/cEGWj27ZD+bUC343pL/3KsYVThUVK4Snqs4xon2ThJNRtnPfqHm6ODn3T55hUOURKqckekVYSnMyf5qWc8HCEkRL6mq7yVCosx5FE0mkvuPSP7d8p57FaMKh4qKzOw91UgoLG/IZF9DM68dPwVAglFe4ahx9HBgwNsA6PK6ZT2/zduNOzwU/lIiXBUUI+cHxH5q+2X2DrQZAEiu/0UKnpL37KsUVThUVGRCFCVe2H6UnZV16LTyvbXaHP384uO9g4+tZpNsZwNsqj464rHcoapomCrKWae84aqwFESUhsqIG5xb8IQ6ZTtfEAygTQUpiOT8PlKoRbazr1ZU4VBRkYFAMMSv3tzNm3tPMrs4W7ZzfcEQP/hgB97gUCVVgoyhqlpH7whvAxQQDlfDiMdhKcypfvmqq0LiyGS+RIizfS/Kdj4AmszIR9GF5PwOkmiX9/yrDFU4VFTGSL/bx/ee38a+05E4/uwieYRDkiR+s3M/zX2OEc9bZRSOTTVHKbGmYdQObVjollE4gmKIZk8HM62lAMRrzSxMnkGlQ748x7k5DY2gp9Nbgc13WjYbgjZr6EG4C6n/u0iS/En+qwVVOFQ+dYiifKWVrT0OvvH0FqpbuwHITE4gMyVBlrM3n6piZ10DGkEY8XyCSZ5QlSRJ/PWMpfxg6Q0ExUil1n8sWI9eo5Wt/NQvBvjH8kfZkLkcAK2g5b78G7kr5zpZzodIYlwj6Ek1TQcg3TSX1Vk/RauRMaQX9TgGjdYhOf8HSZK/wu1q4JIWOamoXM0EgiHe33OGyRlJzJ2SM+bzTjZ08LNXd+LxD8XX5QxTLS7IZX15Mf/w6mba+vsx6/V4g0EsRoMs5wuCQLIxjganDVGSsOiNLJyUw8yUTERJQnuOYF0OFl0cAEFfCIDQwIU2QR8/5rOjCOhYnP5vhKUgvb6T2APVGLXJmHQpstlAe45w6EoQNKkQPAGG2fLZuUpQPQ6VCY8oSuw5Vs+//vwt9h5rYHbZ5DGf+fGxWn7wwkcjRAPkC1MBpMbHUdNtGxSNH912PYWpKeg08r5tG519AOQlJCEIAmadHq3MNrRC5LywAnfoiYY8rIYirIYiBHT4w3a84R55jUSFQ1c88IQf4r+I8CkUDVCFQ2WCc6a+k28/8R5PvLyHXoeH29fNQqMZ2520KEpMTrPyxZuWotdpB5836LRMzUsf6488gq1nI0nk5UX5ZFsT+c/r18h6PkCTM5Lozbcky352FL0mEtwIiiHFbGgFPVZDAQB2f5W8h2sywbgKIfGbIJgg1AzBI/LauIpQhUNlQtLR08//Pvcx339yK/WtNgAKslOYPy13zGdrNAIlk9No7XEQDIWxxpsx6nVMy8/AoJcv+usOBNhT3wTA+vLInW6SzKW4AI1R4UhQTjh0QkRgRUTCCowFiZJsLAOgzy9vk6GgiUOw/DWCxoJgiuRnJO/rstq4mlBzHCoTCqfbxxsfVbLtYPWoJPgd62YjyBC3B2jqsvP2vkgz2KMbFtLa6yDOqJfl7Ci7ahsJhMPkJSdRMilV1rOH0+iKhKryE5IUsxH1OABCYgitVp48zbkkG8uod76LPSCzxwEIwsDf13QT+N6G4AmkUA2CrkR2W+Md1eNQGTe4vP4xd1zbHB60Wg1xppEXptK8ScwszbrAd10aoijx+3f3ExZFFpbnsrA8lxsXTWXxlHxZzo/y4dnI/or15cWyCd65eENBOj1OAPIUDFVphaGQnhJ5jihJhshF3BVsJSjKP3MLQNCmgWEFAJL3DUVsjHdU4VC5otidXj48VM33n9vGG7tOjrnjOj87hblTcvAHRsbS71wvn7expeIsde29xJsMPHzdQgD0Oi3WePnCSPW9dmp6etFrtKwqKZTt3HNpHvA2UkxxJBjkn4EVRSNoBsUjKCmX5zBoE4jXRQoU7H5lRrgDCObbIp8E9iCF5etSv1pQQ1UqMafL7qLibDMHzzRT09qDhMTUvAzuWTtnzGdXN3Xz0z9tJxgKM7M0izP1XZQXTGJKYYYMPzl097l4accxAO5fO49ki1mWc88l6m0sLsiRtVP8XAYrqizKhami6AQtYSlMSFS29yHZWIo71IbdX026eez/p86HoMtHMsyFwJHI5Nz4xxWxM15RhUNFcSRJoqXbwcGzzVScbaapc+S4hjRrPF+5Y/mYvY361l5+8sw2/MEQM0oy+dv7V/F/r+zl+uVTx3RuFEmS+MN7B/AHQ0zLz2DVrCJZzj2XQDjMjtoGANaXKxs/j0ViPIpO0OEnQEhBjwMieY4W98f0KZDnGI5gvhUpcATJtxXM9yBo5Gn8vBpQQ1UqiiNJUNfWy7bD1aNEw6DT8vd3rSRxjGGepnY7P/rjh3j9IaYWZvCV+1ah12m55/p5FE6WJ7G860Q9lfXt6HVaPnf9YsXyDvsbmnH5/aRbLMzIlsdTuhCNrsjfQ8n8RhS9JhKqCincbZ1sjIw3cQTqCUvKbEsEQDcTdEUgBcC3WTk74xBVOFQUR6MRWDwtn1nn6ap+/KYlFGSOrcO3pbOPHz61FY8vSGleGn/3wCqMhogznWKNG9PZURxuH3/aGtnHfdeKWbKNFTkfWwfCVOvKi0aNG5GbaA9HQYw8DlC2lwPArE3HoLEiSkH6Aw2K2REEYTDXIfneRZICn/AdEwdVOFQUp7qlm3//v3fZcSxyQRSIXAxvXDKNa6YXjOns9p5+fvjUh7i8AYomp/IPD67FJHNZLMAzH1Tg9vkpyEhh46Ipsp8fpbPfRWVbBwICa0qVCYVF6Q/4sPu9CECuxaqoLQDdgMehZB8HREepRLwOu8z9HKMwLAVtOoj94P9IWVvjCFU4VEYgihI2t4fqrh721TXx3skqXD7/ZZ0VDIV5YdtRvv3MB3TanaQkxPMv968jIyWBWUXZ3LNmbInLzl4nP3hyK/1uH3lZyXztoTWYTfKLxuHqFvadbkQjCDx+w2LZx3EMZ2tVRFzn5mSRZpFvntP5aBpIjGfEJWDSyf97O5chj0PB8NEA0UZA2TvIz0EQtAimmwGQvG8qsvN8PKImxz+luP0Btp2tpcflweb20Ov20uuOfC4OTEa1GI3847XLsVxGVU9jp53fvbmXpq5IKGTFzCIevG4+cSYDs4qzuGPFzDGN/uixu/jhU1vpc3rJyUji64+sIz5O/uojbyDIU1sOAnDDoqkUjjGs9pcIiyLbq+sAWFde/AmvHjsN0fxGDMJUMNQ9rrTHAUN5jr5ANZIkIggK3iOb1oH3BQi3Q+AAGJcoZ2ucoArHp5R4owGL0ciz+48SEke/kXOSrfzLhlVkWS8tlh8WRd7Ze5pXdhwnLIokxpl47IZFLCgfGvXxwPp5Y7prtzk8fP/JrfQ6PGSlJfJPj6zFooBoALyw/Sg2p4eM5ATuWDFTERtRjrS00+v2YDWZWJA39kGMn8TQjCrlS3FhKFSlZB9HlAR9HlrBQFB04Q51YNHLN3zyXATBBKbrkTwvI/leB4NyhRPjBVU4PqU4fX4cXh/xRgMO78iFNHNzs/nqumXEX+L47vbefn731l5qWiOTSReU5/LoxkWjGuPGIhp9Ti8/eGorPX1uMlIsfP3RdVgV6qWoaulm6+FIjPzxjYswyjiH6nxEezdWlRai12o/4dVjJ9rDEYtSXBgKVSndxwGgEXRYDSXY/Kew+6sUFQ4ATDeA9w0IVkHoNOinKWvvCqMKx6eMuh4b752sYkd1A8Hw6DfwLbOm8uDiuZcURhJFia2Hq9j04RECoTBxRgMPbVjAshkFst55OVxefvjUVjp7naQlxfP1x9aTnChP1dS5BENh/m/zfiRJYvXsYqblZ37yN40Bu8dLRVMrAOvKlA9TSZJEkyt2FVUwFKpSuo8jSrKxdEA4qsm1rFbUlqBJAuNqJN8HSN7XEVThULnaCYbD7K9vYfPJs5zp6B58vnhSChunl/PGsVO0O5x8ccUi1k65tItWb7+bJ97ax8mGDgBmFGbx+ZsWk5oob2LX5fHz4z9uo627n5TEOP75sfWkWpVLHr+x9yStPQ6s8WbuWzNXMTtRPq6uJyyJlKdPIjdZ+QqnXr8HdzCAVqMhKz5RcXswNOgwFh4HDJuUq3Aj4CDmW8H3AQQqkEItCLqxLwsbr6jCMU7oD/gRJZFEg0m22n2728v7p6v54HQNdk9kL7NOo+Ga4nyun15GWXoqgiDw/ulq/t9N65iadfG7JCRJYmdlPX/aUoE3EMSg03Hfurmsn18qe3zX7Q3w46e30dzZR5LFxD8/tp5JyRZZbQynubuPN/ecBOCR6xZgMSs38gMiv8utwwYaxoJox/jkeOtgY57SaGPscUQGHmrwhLrwhx0YtcoKsqDNRjIshsB+8L0Jlr9W1N6VRBWOcUJQDPP3O96iP+An0WAkyWgmyWgi2WgmyWge+Bh5PD0144JvdkmSONvZw7snzrKvvpnwQOI7JT6ODdNKWT+lhKS4kTmHf75u1ajn/hIOt48n3z3AoapmAEonT+ILNy8hK1X+O1efP8hPnvmIhjYbifEmvv7YejJSlWu+E0WJ/xuYfLugLDL5VmlOd3QPbvm7pihPcXswbNRIjBLjEHuPQ6cxkaDPxRlsxO6vJjNugeI2I2NI9iP5t0PcfQia2IQBY40qHOMEnaBhQ14ZL1Qfp8/vo8/vG/WamamZPDJ13nlFIxAKsaumkXdPVlHfYxt8flpWOhunl7GoIPeCs6AuRTQOnmnmqc0H6Pf40Gm13LlyJjcumTbmrXrnwxcI8j/PfERtSw8Ws4F/emQt2ZOUvWv84FAVNW09mI16HrluQUyqYz4c6N1YXpSPWa98PwUM9XDEKjEOxGQ67rkkG0sHhKMqNsKhn4KknwLBM+B7F+IeUNzmlUAVjiuAM+Cn1tFLdV8vNY5eah29dHouvDugMDGZh6fOZ96k7FEXss5+F1tOVfPhmVpc/kijnkGnZVVpIddPL6MgVZ4Lg9sX4JktFew+UQ9AXkYyX7rlGnLTlbljDQRD/PzPH1Pd1E2cSc8/PbKO3ExlL3LdDhcvfHwUgPvWzCU5QZnE+3DcgQC76xqB2PRuRGmMcQ8HDPM4FJ5VNZxkYylNrq2KLHa6EIL5NqTg95F8W8B8B4KgTNXflUQVDoXxBAPUOmxUO3qo6YuIRcfA4pzhCMBkSyJ9fh+uYGTmTUachQenzGVFduGIvIckSRxv7eDdE1UcampFGmjYy0i0sHF6GWvKii6rae9CVNa18/u392FzetAIAjddM53bl88YsW9bToKhML94fgen6zoxGXT848Nryc9WrvEOIr/Tp947iD8YYkpeOmtmx2ar2+5hW/5KFdzyNxxRkgb3cMQyVDVYVaXwrKrhJBsiCfL+QCMh0YdOI//q3VHoF4A2G8Jt4PsQzDcpbzPGqMIhI95QkFqHjVpHLzV9PVQ7eml19Z/3tVnxCZRYUylNSqM0KZWixBRMOj0Pvv8CSUYT95TOYkN+2YiwlCcQZHtVHZtPVtHWN3Tu3NxsNk4vY25utqwhI18gxKZtR9h6KHK3lpmSyBdvXkppTppsNs4lFArzq007qaxux6jX8bWH1lKkoL0oe042cKyuDb1Oy+MbFysSejsfgwMNy5Tb8ncuHR4ngXAYo1ZHRtzIfFFYFBUbqeIORW6IYulxmHQpmLWT8Ia7cQTqSDUpXyYrCBow34Lk+i2S700wXY8gTKxL7cT618jEYdtZjFoDZQm5I3YlD8cXClHfb6PG0Ut1Xw+1jl6anQ6k87w2I84yKBIlSakUW1Ow6Ed7BG3ufm4unMqtRdMwD5sd1GJ38N7JKrZX1eMNRub8mA161pYXc/20UrKT5E9KV7d089s399Jpj3hH1y0o5561cxRtgguLIr95aTdHz7ai12n56oOrKc2fpJi9KP1uH89sPQTA7ctmkpUSm/LUEVv+SgtiYhOGOsZzLUkjPNkTXZ2YdDpKUpTxfI7YGhElSTGPo9PXTIZpdDFDkrEEr6cbu78qJsIBgHE1eJ6HcA8E9oBxZWzsxghVOM5DsiGBH515HqNWz5SEfKYmFmIRkmh3e6gZyEs0OfsGZzoNJ80cR6k1IhAl1lRKktJIvMiVnNnxidxbNhuIVPdUNLWy+cRZjrd2DL4mN9nKxhnlrCwpwGyQP5EaDIV5dUcl7+w7hShJpCTE84WblzCjUNkGOFGUeOLlPRw61Yxep+HvHlgl29a+T+LP2w7j8vrJT0/mxsXyLH26GKKd4ovyc0g0XVwIxRsIjvnv3nCBUeqbTlVyQ0mZIsIhSiLNHjtGnV8xj2NXz9vcmPUQJu3I/p5kYxntnr2xzXMIBjDdiOR5Dsn7OhhWTKgxJFeFcLzVuhtnyBNTmyatgaY+H/sbzuIOnEGSwKjVY9YaMWuNGDQ6UkxxQ56ENZWSpFSSjGNPhDXZ+vjee9vpdroB0AgCiwpy2DijnOlZ6Yr9BwyFRf7r6fdp6IhUZa2cVcRnr40MJlSaF98/wv7KRrQagb+5dyUzSrIUtwlwoqGDXSfqByffjnUL4cUyYsvfRTZd7jrdQLLFxPTcsYl400B+Iy9hKL9xoquT450dLMxSZkZWo7sXfzhICL9ifRz9QRv7ez9gVfptI54fbAT01yJKYTTC5eXmguFO9NpLuJkxXQ/eVyDUAMHjYJh9WXbHI1eFcFTYztDt74u53bAILn/Eq9BrBeJNISzGMAkmH9ekl/Bg0TqSDPI3omUmWvAFQySajFw7tZRrp5YwKUHZEdsAOq2GeaWTsfV7+NwNi5lfHrvO19ULSqg42cR9G+cxp1z5AX9RSiencdPiaQgCFGXFJjkNkZuBLy1fxIHGFmZmf7IQNPf08cTW/Xzn3g1jtr0ht4z8hGRmpQ6J86ZTlQB0edxjPv98nOhrRoMJMSwxI1GZfSZ+0UelYx8zrEtJNQ5d4C26bPIt12E1FMF5g8kXR6/zWZItd2HU5V/U6wWNBcx3AhrQxa5iLhZcFcKxNmM+3vDl7YS4HCQkPug4SEqcH0OmBotJINFgYLq1kJlJxUxPLMSiV67EzqDT8Y0b1pKTbMWgUOXShbhl2QzWzy8b8yrXSyUzLZH//rubFavUuhBGvY771s4drEwbC6FQGK1Wc1EeoU6jYWlhHksLP7nhz+MP8D9v7cQfDJEgQxf77LRsZqcNDf072R3xNgC63BcuCx8LJ/pa0GAADLhD8nvMohQmKEauETt73uTW7McH/w6CoGFq8tj7KbSaBFpt3yAv9SfotBd3kyHE3TVmu+ORq0I4VqWPbeHPpXLK0YAvHGCyJZmZOUXMtBZRYskZHAsdC4omKVt+eiF0Wk3MRSNKrEVjOGMN/7k9fl7fcowHbl8k008UQZIkfr1lH+32SBWdHMJxLptOVg5+3q2AxxEIhzjb3z74eH9PLasz5M0lBcShhtlmTzUNntMUxsubCNdrswiJ3bTav0luyo/QaCZef8bFclUIx5XgP6c/TKYpdUIltFSUoavHyc/+sI050+UP7b1ZcYqDNZHRLnFGg+w5mFPdXRzrHCq+6HLLLxxnne0Eh40ZOdnXgivow6KX7wbFHx45aWFX99vkxZWhlbEMVq+LeGn+UB1tfd9jcvI3J1yZ7cWiro49D9OsBWSZ01TRUPlEquu7+O4vN9PZ08/Mcnl3PlQ2drBp17HBx0p4G8+fPD7isSsQGCz5losTfS0jHoclkUO2ellt+EXviMd9wR6O9+2R1YZeO5QT8gQO0dn/S1lCnFcjqnCoqFwm+4/U8z9PbMXl9mMy6iktvPjpwp9Ej9PN/27ePaLkW27hONUT8TaMupF3zXKHqyrtzSQZIsUdgiCQaU5if0+trDbOFQ6AA7ateELy5Wz02nSGXzL7ve9jcz8v2/lXE6pwqEx4enqcbNt6Ura7Q0mSeHtrJU88t4tgKBKCmVqSiU6mHE0wFOanb++i3zMy/JIos3BoEPj9jbexIjdSJbQyv4CcRKuslVWBcIjVmVP59uw7gcjv7kfz7mVd1nREGXeP+0UfAhqs+kjSepb1GtZl3E1fsEc2G4KgGxCPIXpdz+LwfCCbjasFVThUJiwej5/XXj7It77xKtmTk2UJPYZCYZ58YQ+vbTk64vmZU+QLU4VEkX+4aQX/edc6IFI0oBEE2YVjStokMiwWGhyRUvdlOXn85NrrybLIN7beoNVxXdZMzLqhXqCwJDI/pRCNIO/l59bJn2NuUqRD2x7spsQyk2xzgaw29NqRf+ekuFsJhlsJi7HtM7vSfDozOyoTmnBIZOeOM7zz1hHcbj+lZZmUTxl7Q2EoLPLki3s5cGR0fH7mFPl6T8wGPWaDnhd2R/IbK6YWUpKZSod99HDMsSJKEs39Aw2B1iRMOj2TE+SfSKAb1nQXEkX0Mt+yFsfPQBAEzNpIX1WHr2lMzX4XQq/NQqdJRSOYCIRb0WnTSIm/U1YbVwOqcKhMGCRJovJ4M6++fJCuTsfg87feLs9eDZ1WwxfuX86GlVP5zv9uHsw/TM5IIiVJ3gZNjz/AvuomANZML6YsOw27a3Qcf6x0uV34Q2H0Wo2snsa56IRIf4skSQTEEGbknUYQ/fumGDIwaEwERB+9/g4mmeRtJjXq8rCa1+MPNdHZ/1P63G+QHHcLghCbPSrjBVU4VCYEjQ09vPryAaqrOkY8P31GDkXF8iWtRVHimVf2I0oSs6fm0NDSy8yp8ne67znbiD8YIifVSulAR3uyRf6+gUZHRGBzE5NkW1l8PgRBQCdoCEphQjLmNs5FI2jIMhXQ6DlDm69BduGwxt2AIGgx6ovodT1DSOzB6fuYRPN6We2Md9Qch8oVQZIk2jr6OHSsccxJa4fDw7YPT9Lc1Dvqa7fcNn9MZ5/L1l1naGjpJc5s4OG7l3D3jfNkL8MF2HYiUnW0dkaJomXhjY6BgYdW5fdyGAYmTQcU3seRZY4k+9u9DbKfLQyEvgRBT1LcrQDY3K986spyVeFQiRmiKFHX2M0rbx/mP/77Df7755uZnJU05guj1RrHQ4+sYMo5d/5z5xWQmyff/Kkem4vX3oskxT9z03ysCWaWzCuUtQwXoLHbTm1HLzqNhhXTCmQ9e5StAY8jLwbCoRvY86H0zvFsUyEAbb56RS/o1riNaAQzgVAjnsAhxeyMR9RQlYqihMMiVXWdHDnexJETzfQ5ItUnAgJfeXwNmelj3yEuihJPP7mDo0ca0Om0WJPisPW6uOnWeWM+O4okSTzzyj4CwRBTSzJZvjAytE4QBLRaeT2Cjwa8jQUlOSSalR3/EvU48q3K7nKHodWxQYWFI8OUi0bQ4g714wzZSdQrM75Hq4nHar4Bu+cV7O5XiDcqv9N8vKAKh4oi+P1BXnrrMBVHG3B7Rg+ovO2GOcycNvYRHaIo8ewzu6g4WIdGq+Hzf7UWu91NfV0XWVny3UXvPVTHyap29DotD965WLHwUTAUZufpBiASplKSYDhMizMyAyvfqvzu8cHVsQpvANRp9KQbc+jwNdLmbVBMOACS4m+lz/M6nsAxfMFqTPpSxWyNJ9RQlYoiGI16rl8znbzJo9+082fns3HdjDHbkCSJTX/ew7491QiCwOOfX83MWbnMm1fAjTfPHfP5UfqdXja9WQHArdfNJiNNuQ2BB2tbcPn8pCXGMzNP2eVZ7S4noigRp9eTalZ+YJ9hYEhoQGGPAyBroH+j3degqB29No0E02oA7O5XFLU1nlCFQ0URJEni5Nk26hq7Rzyfk5XMo/deM+Y7dkmSeHHTfnbtPIsgCDz2+GrmzCsAwJJgIi1NvtLS59+swO0NkJedwnUrld0QuK2yBoDV04sU33sebfzLt449z3QxRKdLK53jAMg2FQDKJMjPJTn+DgCcvl0EQ+2f8OqJgRqq+pQTFkX63D5sTg82p4dep4ecVCuzCi+/Ya7P4eHpF/Zy4kwrAAW5aTQ09xBnNvI3j63BaBxbzbskSbz2ykE+/ugUIPDQoyuYv7BwTGdeiGOnWzhwtAGNIPDI3UvQKrghsMvhorKpA0EQWDNd+cU/TcOEIxYMeRzKVlUBZJoilVW9gQ58YQ8mbZxitoz6QuINC3AHKrB7Xic98UuK2RovqMLxKeJgdTOnmjqxuSICYXN66XN7R1SebJw/hQ3zyi7rfEmSOHikgT+/cgCP149Op+XOG+exdsUU/vbfNvHFh1eSljr2jYlvvXGYre+fAOCBh5axeIkyuQCfP8ifXtkPwHWrppGfo+yGwGhSfFZ+FmmJym98bHQMdYzHgqEch3J9HFHidBaS9JPoC3bT4WukIF5ZTzE5/k7cgQoc3g9ItTyAVqNcOHM8oArHp4ipOelsPnSG05SiiDkAACAASURBVM1do76m1Wj43LWLWDPr8u50nS4ff35lP4eONQJQkJvKY/cvJysjUq3zxYdWMK1s7GM/Nr9zlPfejYziuOe+pSxbfnkidzG88u4R7A4P6akJ3HrdLMXsQCTJv/1kHQBrZ8RmzWhUOGLRwwHDq6qU9zgAss0F9AW7afc2KC4cZsMsTLpSfKFq+jzvkGq5T1F7VxpVOD4lhEWRk82diOe52UswG/nqrSuZmnt5/QjHTrbw9At7cLp8aDQabr5uFhvXzRgR1pGjgur99yp5643DANx592JWrVHuYlDT0M1He84C8PBdSzDolX2rHGtsw+bykGA2Mr9Y+Z3rvlCQzoE1sXkxKMWF4X0cynscAFnmQk71H6RN4QQ5RMqyk+PvoN3xA/o8b5EcfwcaQf79KeMFVTgmOA63j23Ha9h6rBqbc/QEz9xJSfzj7atIt156CMnrC/Di6xXsOhBJ6GZnJPHYA8sUCel89OFJXn/1IBCZPbXu2umy24gSDIb540t7kYAVi0qYUqJsdRMMhalWTitCr1V+hW5zfz+SBEkmE4nG2KwKjlXneJRogrzT10xIDKLTKDtPymJajt71R4LhTvq920iK26iovSuJKhwTlJr2HrYcrmLf2SZC4UgVS2KciXWzSzAb9Dz38RHmFefw5ZuuwWy49DfU2ZoOnnp+D712FwIC162Zxq3Xz0Gvl/+it3PHGV56IZJruOGmuWzYqGzY6J1tJ2jvcmBNMHP3jfI1EV4Ih9tHRW2kkGDNjCLF7cFQmCpWiXGIDDoE5fs4olj1qcRpLXjCLrr9rYMlukohCFqS4m6n2/lb+tyvYjVvQJB5dPx4QRWOK4Q7EOC/tn+EPxQiyWQiyWQi2Wwe+NxMsjnyMclkIsFovKgBdMFQmL1nG9lyuIq6jqG5TSXZaVw/t5xFZbnodVo+OFLFrYun85nlsy+55DMQDPHaO0fYuuM0AGkpCTx2/zWUFmVc2i/gItmzu4rnn42sAN2wcRY33jxHETtRWjv6eHfbQOL99kXExykfbthxuo6wKFKWPYnc1NhcyGNdUQXDPY7YCIcgCGSZC6l1VdLma1BcOACs5muxuf5MINyK278Pi+kaxW1eCVThuELEGww8Once//LB+1xonI5Bq+Gm8nLunDadBOOFL2C9/W62Hqth2/Gawa1xeq2Wa6bmc+2cMoqzRoaOrplaQLzp0sdaNzT18IfndtPRFZlvtGppGXfdMh/TGMtrL8SB/bU8+/RuANaum84tt81XtN9AFCX++NJewqLIvBm5zJ+Zp5itKJIksa0yEqZaE6OkOAzzOJJi6XHEro8jSrapgFpXZaSfQ/nmeDQaM9a4G7G5N2Fzv0y8cWlMemRijSocMSIQDlNvt1PT20ut3UZNr40mR995RUMjwLqiYu6bNYu0uPPXn0uSxOnmLrYcOcvB6pbBktrUxHiunVPKmpnFJMadP3Z9qaIRCou88/5x3tlaiSRJJCXG8dA9SxUZJx7l8KF6nn5yByCxavVU7vzMIsXfgNv2nKWuqQezUc/9ty1S1FaUqrYe2uz9mAx6lpYpL1RRBoUjMXbCoR/o41B6VtVwhneQS5IUk4t4UtzN2N2v4guewRc8hdmgXD7uSqEKhwIEw2Ea+/qosdmosfVS3dtLk8NBWBytEgathkB4qMpkaW4On509h9wLVLp4A0F2n2pgy+GztPQOLSuakZ/JdXPLmFc8Ga1Gvrhqa7udPzy3m+ZWGwCL5hVy/x3KhnCOHW3kyd9/jCRJXLO8jLvvXaL4G77H5uLVzUcAuPumeSRblWsYG862E5HCgqVleZeVa7ocnAE/Nm9kKVRuYmwqqmBY53iMchwAacZsdIIBX9iDPdhNikHeScbnQ6dNJtG8Dod3Mzb3y0xWhWNi4gz6sOiMl3VxCokiTQ4HNb29VNt6qbPZaOjrIxgeXXKYZDJRmppKSUoKJQMf/3jkMB/VNzAjPZ2H5s5hStqk89ppt/XzwdFqPj5Rh8cfAMCo17FyehHXzS0lJ03eO0dRlHh/+0ne2HyUUFgkPs7Ig3cvYf7sfFntnMvJEy38/ncfIYoiixYXc/9nlyk+ekOSJJ59dT/+QIiyogxWLIrNoDqPP8jeqsiWP6UHGg4nmt9Ij4/HrI/d5rpYdo5H0QpaMk25tHhrafc2xEQ4IDKGxOF9D7d/P4FQMwZdbkzsxgpVOIAaZxe/O7uD+an5zE/NZ0ZSNgbt6F9NWBRp6e+nprd30Juot9tHeAxREo1GSlNTKE5JHfyYajaPECdJkuj3+/nmmjXMy8oaJVyiKHGsoY0th6s4Vt82+HxmciIb5pWxcnohcUZ5V3ACdPc6efK53dTURxoFZ0/P4cG7l2JNVHYQ3pnTbfzu1x8ihkXmLyjiwUdWKC4aAPuO1FN5tg29TsvDdy2JiU2APWcbRm35iwXRHRwFMZiIO5xYdo4PJ8tcEBEOXwPTrbEJQRp0k7EYl+Ly78HufpUM69/FxG6suCqEo9PbT1jB/2zppgSMWh0ftJ3ig7ZTGLQ6ZiZPpiQuA0PIREe/m+oBkfCHRrvZCUYDxSkplKQMeBMpKUyKj/9ED0YC/nP1mlEVUx5/gI+O1/L+kSq6HJEmLUEQmFs0mQ3zypiRl6nIxU2SJHbsrealNyvwB0IYDXruvX0hyxYVKx4qqq7q4De/3EooFGb23HweeWylonOhovS7fGx6IzL59pZrZ5E5KXajIj6K0Za/c2m6AolxiH0fR5TBxU4xGHg4nOT4O3H599Dv3Uaq5SF02tgKtZJcFcLxnePv0Ontj5m9QDjEoZ5G3uupobsnhFGrI05nwKIzYjWaRngRpakpZMRbLuuNf6ESW4fbx7PbIx3S8SYja2YVc+2c0stq0rsURFFi1/6aSMimOINH71tGWoqyNqPU13URDIaYMTOXz31+NVpdbOrfu3qcCIJAbnYy162aFhObEMlVaTSamGz5OxdBELAYDOTFMDEOkbBRitGCRRfbjupMcx5aQYdRY4pJI2AUs2EqZv00guEuAuHWCSUcwqWsVlywYIFUUVGh4I9zfv710Kt0+pyK2vCFg6PKBF3uMB6Hhilpk7gmu4DVOUXkWJMuqqdirDy97RB5aUlcMzUfo8LjLobT3ung5Jk21q6YErOQTZSKg3XMnpOvSBPhX8Ll9uPy+GPqbUSxuTykWGKTiB+OJElIDN28SJJERXMrC/PGPhrmQrxaX8na7BKSjMqFPG2BPlIMowUxloIxnGC4G50mCUGIve2xIgjCIUmSzrvW8KoQDqUJimH+7sAmenwuBEFgijWT+an5LEjNJzsutndlKirnwx8MKXoDcaSljY9rG/j7Vco1rP1nxWauyShgY65yM8aerHuBRws/MyF7J2LNXxKOqyJUpTQVPQ2UJWZwX+Ei5qbkYtHHZnaPisrFIIoSm7Ye4eGNCxU5X5IkXjhaiUbB8Rj+cIjT9i4kCcWEQ5REzjrrOO44zewkZcKOvrADraBHr4m9lziemJiDVC6RpenF/P209azIKFVFQ2Xc8frOSuraej/5hZfJsbYOqrp66Ha5FbNx0t5BUAxz0t5Bn9+riA1fOLLb/p22jwiIQUVsCAgc6vkVohTbBP94QxUOFZUx0t2lXOHG0epWXt9ZSYJCDZeSJPHCkUoAbB6PYiPPj/VGyslFSWJfV6MiNnxiRDgcwX52dO9XxIZBk4DdX8cx21NcSph/oqEKh4rKGDh2pJH33j6qyNlddie/eX03koRiwnG8rYOzXZG98JIk0esePXpfDqLCAbC7s14RG96wb/Dz7V37cATkF3RBEIjXpdPq3stZx2uyn3+1oAqHisplIEkS294/wRO/+pCSMvn3dQSCIX7+0g48vkjIJeECc8fGgiRJbBrwNqL0uOUPV/X5vdQ7bYOPT9iUCVdFQ1UAQTHI5o6PZbcBEK+PdJ/X9L9No0sZG+MdVThUVC6RcFjkhWf38vIL+5Ekiekz5S1hlSSJP24+SFNn3+BzSngcx9s7B72NKN0u+T2O47b2EY9FSWK/AuGq4R4HwBH7CRrdrbLbidMNrRCotD1Dl7fyL7x6YqIKh8qE5fThBlwOeS+EXm+A3/7iA3Zsj+wjyctPI1HmgYgfHa5h57G6Ec/JLRyR3MbxUc8rkSA/1jvy4q0RBHZ3Nshu51zhAHirbSuizFMn4nXD58lJHOr5NX2BBlltjHdU4VCZcLQ19PDrb7zCzrePYJHxom63ufjJ99/hZGXL4HPTZsg7Wr6urZc/bRndKyW3cHS73SzMy+Fvli8BwGo2kZecJLtwSJKEPxzmvxfdOLhz/AeLb6IoMRVvSN7Kp2ioyqiNzG+7Jm0+RZZc2rydstqJ141cWhaW/Bzs/hmeUPcFvmPioQqHyoSh3+7m+V+8zw++8gxnDjdw44PLZTu7saGHH37nLVpbbCOenzFL3qmn1ngTP/3b21g+KzJfSa+LdNHLneNIt1i4fea0wSqqkrRUfnjzBmZly5+v+dqsVUxLzhjcx5GoN/FI2ULMOnm7qUVJ5IH825ifPBMAjaDhhqy15MRlyWonTjdywm68LoOihA30+ZVJ+o9H1AZAlauegC/Ittcq2PryQQIDyeR5K8uZXHj+EfWXfH4gxOGD9eTmp+I4PhT6io83UlAk75juVGs8Xn+QA6cj49a/du9qXt5+jESFqqqa7JE8Sm6SFYNOx/IiecfmD+/g1mu0eAkqtshpWdpCdBotEhJ7eg7R6G755G+6DEzaJDSCjkmmmXR6j+AJdZMdtxizLkURe+MR1eNQiTly1b+Losj+rSf59hef5N1n9wyKhqARuOGzy2SxAWAw6Lj97oVMmZodOX/gYjhl+mRF5nntO9lAIBhm8iQr0woy+Nq9q0lKUGa+U+OAcOQlKz9aR+kNgNFFUQVxkWKFVm8n/nBAdjuCoCHfsoYFaX9DqrEcCZF65wey2xnPqMKhEhOCwTAnjjbx7JM7OFoxdpdeFEXeeHIHz/18C44e14ivLVo3jfTJ8k4i7elx8uZrhwC498FryJ6czAyZq6mifHw0Mm591ZzIOHuL2YhJge2AkiTRZI/s5sifAMIRxWpIJNlgRZREWrztn/wNl8G0pHsQBA3FiRsBaHRtJygq0wMzHlFDVSqK4fMFOXmsiWOHGzhxrBm/L8g1K8uZs6BwzGdrNBpuf3w1JTNz+f23Xh96Xqdh431Lx3z+cCRJ4rmndxMIhCifms3yleVkZlrJyJL/Ytvcaae2tRetVmDZzLH/nv4SfV4fLr8fQRCYnKT8ZGDDQHI8EIOd4/nxk7EHHDS4mym2yL+1UhiY6zXJNBOLPhtXsI0m18eDQjLRUYVDRVZcTh+VRxo5eriBsydbCQaHLhJFJRl85sFlsk0ubazq4JkfvwuAKd6Azx1g2fWzSMmQd4/2gb01nDnVil6v5b6Bn7+0XN6Ea5SotzGvLIfEeGXnpjX1RbyN7MQEDFrlR9nHyuMAKIjL5aj9FA0K9HEMRxAEihOu55jtSeqdWylMuBaNMPEvq2qoSkU2+uxufvuzLTz75A5OHG0aIRrWpDge//J62XZttNR18ZtvvILfE6B0Vi5/+9+fQW/QseHeJbKcH6W/38vLmyJzj266dR7pGcrdmQdDYXZVRsJ4q+cqv4O8KYb5DYixcMRHwoiNnhbZ+zjOZXL8EkzaJHxhO61uZWZkjTdU4VCRjaTkeL78TzeQkzdyf7ZOp+HzX7kWa5I8PRVtDT386t9fxuP0UTgtm89/4zZyijO4/6sbSEyOl8VGlJee34fb7Sc3L5W1182Q9exzOXS2Gbc3QEpiHDMKlfFohjNYUZUsr4d2IYaEQ/md4xmmNExaI/5wgA6fsv0VGkFHYcK1ANQ6N38qhh9OfJ9KZQShUBi704u934Ot34O930MwJHLdknJMxrElYGurOnjm99vp6R65rfHeh5dTWCxP2Wpni41f/vtLuPu95JVl8qX/ugOTOdLwNX/lFFlsRKk81sShA3VoNAKffXSF4jvQhyfFY7F9MVpRFYvEOMTW49AIGvLjJnPWWUeDu4Vsc8Ynf9MYyLOsosrxJq5gG92+StLNsxS1d6VRhWMC43B5efPjE9gcEZGw9Xvod40cyzA53crf379qTKIRDIZ5+9UKPnyvEkmSSEm1sGLNVN54+SCrr53O0hXlY/2nANDd3scv/+1FXH0eJhen86Vv3YlJof4Gny/I83/aA8D6DTPJPceLkpvuPhcn6joQBFg5u0hRWxCZF9U8UFEV61BVLJLjAAXxuQPC0cw1afMVtaXXxJFvWU2dcwu1/ZtV4VC5erFazEwtzOC3L+8mGBodHphTPpm/umsZ5jGIRnNjD08/sZ32VjsAS1eUcef9SwkGwpw+2cod98iTc7B1Ovjlv76Io9dNVkEaX/7OXcQnKJc8fuOVCvrsbtLTE7nhlrmK2YmyY2A21fTCTNKSLIrb63a58YdC6LVaMhOUtwdgiKHHAUN5jgZ3C5IkKb5OtjDhWuqdH9DrP0ufv54ko7JVcVcSVTgmMA1tNo5Wnb+q5Mbl07hr/ZzLDomEwyLvv32Ud984jChKJCSauf/RFcyaGyl9NJkkHv+bdWh1Yw/v9PU4+cW/vYS920l6Tgpf/u5dxCcq0xAHUFvdyY6PIkMM73t4GQaDsm8TUZT4+EgNAKvmKJ8Uh6H8Rk6SFa0mNqlO/YCdYDg2wpEbl4VW0OAIOukL9pNsUDaXY9alMDl+CS3uPdQ632O+8UuK2ruSqMIxwQiFwlScauaD/Wepae4Z9XWdVsNjty1m2RjCIR1tfTzz++001keSjnMXFHLvw8uxDPMABEEg3jJ2j8Bhc/GLf3uJ3g4HadlJfPl7d5OQJG8CfDjBYJg/P70LSZJYtqKc8inZitmKUlnXjt3pxWI2ML9cmabCc4k2/uUlxSYxDkOhqpDCVU5D9vRMNmfR5Gmlwd2iuHAAFCVcT4t7D+2eCtyh7nMm6U4cVOGIEZIk8cyBI/R5fCTHmbGaTSSZTSM+TzAZ0VymO23v97D9UA0fHazGMZDH0GoFFk3PZ/3iMn75wk7CosTf3ruS0rzL+88sihIfbz3JGy8dIBgMExdn4DMPLmPBkmJFwgDOPg+/+veX6W61k5KRyFe+9xmSUpUNq2x55xgd7X0kWuO47e6FitqKsn3A21g2q2hwqKHSDJbipsQmvwGgH+gVCYRjt6+7ID5nUDjmJk9X3F6iIYdJphl0+05Q37+FGSmfVdzmlUAVjhghCALXTSnl66+/hztw/vk5GkFgauYkvrBsIbkXkbCUJInqpm62Hqii4mQTYTFSBpicaGbtwlJWzS/BaomEdNKTLXzxrmWkWi/vbr23x8mzf9hB1enICtBpM3O5/9EVJKcoc/fvdvr41X+8REdTL0mTEvjK9z5D8qQERWxFaWu1s+XdYwDc88BS4uOVSbwPx+HycqQ6Moxv9Zxixe1FiTb/XQmPIxgjjwMiwrGjez8N7uaY2SxO3Ei37wTN7l2UWW/DoI1NDimWqMKhIKIk0drnoLbbRk2PjdoeG4HQ+eO7yXFm7pk3k7XlxYN7Cy6EPxBiX2UDW/efpaljaEtceUE66xeVMW9qLrpzSke/9uBajJcRq5ckiX07q3jpub34fUGMRh133LuEZaunKJZs9Lh8/Po/XqatvofElHi+8r27Sc1U9gInihLP/nEX4bDInHkFzJ1foKi9KLsr6wmHJYonp5KTHpu7/5Ao0uqI7OOOVUUVDCXHAzHKcUBk9AhAp68Hb9iHWatsNz5AqnEKVkM+jkAjDa5tlFlvUdxmrFGFQyZESaLd4aSmu5e6nohQ1PfY8IX+slsebzBw2+xp3DSjHKPuL/85uu0uPjxQxY7Dtbi9Ea/FoNeybHYhaxeVkZd54cF+lyMa/Q4Pzz21k8qjkRHfxaWZPPj5VUxKV6572ucN8NtvvkpzTSeWpDi+8r27mZQt78DC8/HxtlM01HVhNhv4zP3ydp9fCEmSBns3YtEpHqXN0U8oHMas15MWL+/2wr/EYI4jRlVVABZdPJOMKXT7bTS5WylPVN6rEwSBooTrOdL7OxqcH1KccD1ajUFxu7HkUykcNY5eDnQ2sygjl+LElEu+c5YkiU6ni5puG7U9vdR2R7wJb3D0RjOzXk9RWjLFaakUp6XQ5XLz54NHMWi1bJxexh2zp5NgunBIRBQlTta18+H+Ko5WtRJtSp2UbGH94jKWzy3CYpY/pHLkYB3PP70Lt8uPTqfh5jsXsnbDTEUb0/y+AL/75qs0nGknLsHEl797Fxm5yvZPQCQM9+arkcm3t9+9kCSZu88vRE1LD209/RgNOpZMk38Q34Vo7hvq31C6RHU4se7jiJIfn0O330aDuyUmwgGQFbeAM45X8IZ6aHHvJj9hTUzsxopPpXAUJabwk6M7eL76KKmmOBam57AwPZfZaVkYtSN/JZIk0eVyU9dto6anl9oeG7XdtvPmKYw6HYWpyZRMiohE8aQUsq2JIxLev9m5n7Vlxdw7fyZplgtfoLz+ILuO1LF1/1k6eoc6sWeVZrF+cTkzS7IVuYi73X5e/NNuKvZF7oRz8lJ5+Auryc5RdklNwB/iiW+9Tu3JVswWI1/+7l1kFyhfkSJJEpue3YPfH6S0LJNrZGpWvBi2H40kxRdPyxtz1/6lEOsZVVGi5bihGIwcGU5BfA4VtuPUe5RZ7HQ+NIKW4oQNnLD/mVrnFvIsqwYn6k4Ergrh+PnxXdh9XlnPjN719Po8vNdUxXtNVRi0WuakZQ8Kyf7aZl44VInT7x/1/QatlsLUZIrSUgaFYnJS4ifWxN+3YDZJ5r8cZ21qt/PdJ9/H54+EueJMelbMLWbtwlIy05QLE4VDIj/+1ht0dTrQaAQ23DSH62+Ziy4GlT6v/2E71ceaMZr1/PW37iSnWNkREVFOHG/mZGULer2WBx5eHpNRHwA+f5D9pyIhwNUx6t2IMliKG6MZVVGGPI7YVVVBpIMcoNnTRkgMDy58Upqc+OWcdbyGJ9RFp+8YmWblG0ljxVUhHCd6O+nwOD/5hWMkEA5zoLOZiq4WdqY2UKJNxen3o9NoKEhNHvAiIiKRm2z9xCT2+fgk0QCYnGHFbNSTao3n2sXlLJ1VEJM7Uq1Ow+prp/Pxh6d4+AuryZdp9erFsPH+pbTUdnHb51aRr9DI8vMxfWYu99y/lLAoka5wAn44RoOOf/3sOg5XtVCSkxYzuwD3zZvForwcytNja3dWSjZfn72GNFNsQoFR0gzJ3JS9jpy4rJiG5nQaI1OT7kYrGEk3zYyZ3VggXMokxwULFkgVFRUK/jjnZ29HIz6Za7/fb6rihK1z8LFFb2DBgKcxb1I2Fr0Rh9dHj8tNbkpSTPYVDMfW7yE5wRzT/+gQyamEQmHFu6XPRyzGQqioqFwcgiAckiRpwfm+dlV4HEsz5U0c9gd8/ObEXnIsVhal57IwI4epSemjwkxWswnrRXgISpCSGLtql+FoNMIVEQ1AFQ0VlauEq0I45MYTCvKz5beQHa/8ukwVFZUIoiRd9mQElfHFxEnzXwKZcQmqaKioDKOxt++TXzRGjna30+N1K2pDlEQ8odHFLCry8qkUDhWVq4lAUNkqJFGUeGLHAcU31x3uamVPW5OiNvxiiHfaYp+H/bShCoeKyjimvbufHYdqFbVxsKGFsx3dOH3K3qkf7WpnV1uDojY8IT/vdxyh06esB9Xjb1P0/PGOKhwqKuMUnz/IL5//eNTcMTkRRYmXKioB6HYqF0ay+7w0OO2ctnXT6/UoZscT8hMWRV5s3KWYDYAG92kq+3YramM8owqHisplIIoih/cp5wlIksRTr++jtctBgkLrcQEqGlto6I1sb+x2KSccR7vbAZCQ2NPeqJgdTzjiNR2x13HKodxEXKs+lZ3db1DvOqmYjfGMKhwqKpdIwB/kDz//gI42u2I2Pth7hv2VkQtsQrwyJeGSJPHiwcrBxz1O5TyBo91DoZ1drcoJhzc8FG7b1LiDsEIj3K36NCQk3u94lk6fcv+e8YoqHCoql4DD7uZn336LYwcbmD47TxEbVQ1dbHrv8OBji0J7QQ42DHkboJzHIUkSRwY8DoBTti5sPmVEanhFVYunlx1dyngEVn1k+GZICvFO21M4AqO3bU5kVOFQmVAEA0E6GroUObu1qZcff+M1muq6sSSayC2Uf2RHn9PDrzbtQBSHKpyUCFWd622AcjmOZqdjhFBISIpVV3nCIxP8r7fsw61Aea5Ra8akjTTpesNu3m77A96wsqXG4wlVOFQmBJIkUfH+Mb5738/Q6eUfD3PqWDM/+X9vYO+NXBymzspFcxmzyv4SobDIrzftGlz9CyAIEK/A2PyDDa0jvA1QTjiOdI+uQFKquurcHg5n0MtbrfsVsRX1OgD6gj282/YUIXH0aoWJiCocKlc9dccb+fHnfs2T//4cZfOLSZss7w6PnVtP8ZsfbcbvG7oozJgrf5jqpfePUNU40luKNxtln9grSRJHm9q4Z+EsEgdG6iTHmRUTjpO9XdxUOIVkY2SN8X3lswmJkiLhqnM9jqVpU2j12Oj1yz8k1aof6XF2+BrZ2vk8YgxX414pPpUjR1QmBt0tvbzxy80c/jASctEbdGx8fJ1s54uiyOvP72fbO8dHPC9oBKbMzJHNTsSWxPK5RaxbXMZ//OJtAsEwep1GkTCVIAh8YdUiAqHwYCnu9+7YwDvHz+ALhjDp5b0sfGnWYpJNZo52t2P3e5mdlsX95bMJKXCB9YshHixcw4HeKs72tzIlcTIr0qfLbgcgUT/yBmWGdQmpxmycQRtWQ2wnD8ca1eNQURy300dXm3wNWe5+D6/89G2+dff/DIoGwIo7l5CcLt9o9IA/xLTZudxw5/wRzxeUpBNvkbfSSaMRyM1M5nRdB4FgmKy0RL728DqSrcoNu2y1V1L0YgAAIABJREFUOxAliQSTkTRLHI8sm49Rgd0ryaaIpzG4OlYSEQRh8LGc3J6zhDUZMylNyAag2tn+Cd9x+Vj1qRg1JgrjpwHgDNqZYV064UUDVI9DRSH6el0cP1jP8QN19NncfPU7d8hy7ondZ3j6G5tw949c7GU0G7jukdWy2IhiMhsonz6ZrW8fAyBlkgVbt4vps3NltTOcjysivSEr55cwpTCDtCTldlcMLnRKGVohq+SE4uhqgoDMKxKGk6iPCG1pQmSnS7VLuQ7vJP0krs28n2RDBg3u0zR6ztLr7yDVmKmYzfGCKhwqstHd3sexA/Uc3V9LY01k14nRZOBr371Ttjv0Gcum8NUn/opffuUP9HX3Dz6/5t7lJKYkyGJjOAd2VXPmeAs6vZYv/+tNvPjHXUybo0wZbktnH3UtPWg0AtfMLQQgLdmiiC2ApoHBhrkpsVlgFV0dG4zB6thiS2RpU6e3j/6gZ1BQ5CTDlDcotMWWWdS4jnHUvp11mffKbmu8oQqHypjobu/jwM4qjh+oo62pd9TXH/zyOrJy5dtXLooiHz67k77ufgRBQJIk4hLMrH9wpWw2ovQ7PLzypz0A3HjXAtIzrdz32AqS05S5mO84FNlBPndKDlaLWREbw2m2DeweT4nN7vHoytbgwNpmJYnTGckxp9Ls6aHa2cb8FPnX8w73zuYmr6LGdYxq1xEWh67HoovtPvdYo+Y4VMZEQlLkTq673THqaxvvWsjsRUWy2ZIkiU3ff529b1eg0Qg8/v0HSEq3sv6zK4lLkP9C+8qf9uBx+ckpSGXtDbMASE1PlL0MFyAYCrPnaD0AqxbEZgd5ky3yN8tPjc1FzhAVjrDywgHEJM8RJd2Uy2RzMWFJ5HifsnOyxgOqxzHBCQbD9PV7sDk82B0e7P0ebH0eFs7Kp6wwfcznG016Eq1xkYaDYcxcUMj1d5136+RlIUkSL/34TXa9th+NRuCRb9/H3LUz6WmxseKuJbLZiXLiSCOH9tQiaAQe+MJqtAoOGgQ4fLoZl8dPcmIcM0qyFbUF4AkE6RnoFM9Jjm2oKhCDUBVE8hzbOo9T7YzNJNu5yatp9dZy0rGP+cnrMGqV9xqvFKpwTDC276/m+OlWbA43docHp3tkXbtOq+HhOxfLIhp9vS7+/JttnDkeGSZnjjPi9fjJmJzCQ19eL9uduSRJvPa/77L9xT0IgsCD3/wMC66bDcD6B1fKntD1eQNs+sPOyPk3ziK3QPkqmZ0Do9NXzCuWvW/jfETDVKmWeOKNBsXtwVByPBahKhjyOJrc3fjDQYxavaL28uLKSTVk0Bvo5FT/PuYmr1HU3pVEDVVNMJbMKUAURZra7KNEI9Fi4utfvJZl84vHZEOSJA7sOMt3v/b/2bvP8Dju+9z7390FtqEtsOiNBEAQ7BVgFYsoqrnJkmVZxbJ8HMc+juPEPjlJzpOcWI594jTHiWO5O7FlyZZkWZREdYq9F5BgB0D03hcLbMPWeV4sAYJFZcWdAUH9PtfFS8QC4g2QwNzzLzPzLHWnO0hMTOD+/7GOB764AYvVxJf+8m7M1vgdjF796Ta2P70XgIf/5j5WfmTZxPvU2AW09bmjOB0eMnNSuftT8Rs1vZPBYTfnmnrQ6WDddf7bvF/j01TFGi2Mw6Q1Do2mqjJMKWSYUggrEVo8farn6XQ6lqRvBOC08wBhRd0HcE0lGXHcREZdPvYea6Sj9+prJorz0vnaYxuxp1/f9k7XiI/nfrGHU0ejZ8gzZuXwuT/dTHa+jY7mAT7/57eTnR+/OfM3/msHb/z3TgA+85f3sPaTK+L2Z19LU30v+96O3hjv4S+ux2hU/0dkf00zigLzynLJUnEX1WTtGi+MA5g0HnFAdLrqiN9Fg6ubOanxvWjz2nlLODL0Ju7QCA2uk8xJVf/EYypIcajocGM7gy4PaVYzaVYLNquZNIuZFHN8byPR3DHIjgP1HDvdRigcnT/W63RELj4KdPmCIr74wBpMpusbqp8+1sKzP9+Na8SLwWDg7k9XsvmeZRPz/4UlmXEdAbz9mz288tNtANz/jY+x4YE1cfuzryUYDPHML/egKLDm1jnMnl+gah5Erxgf3021Ybk2i+IwaUeVRgvjAAkar3FAdLrqyOAFTRbIAQy6BBbZ1nJw8HVODu+mImW5qtfGTBUpDhXNzs3kv/YcY8Q7dtnrOp2ONKsZ28UyuXtxBUtnxLYgGgyGOXa6jR0H62npvLQNdtaMTDatrmB41Mvzr9fw8dsWcs/mRddVVD6Pnz/8ej9H99QBkF9s59E/3UzhFXP/8fwB2fXsAV784esA3PPVu9j08Lq4/dnvZNvLNfR2OUm1WbjnoZWq5wGca+rBMeIlyWJk2Tz1Liy80sRUlUYL4wBGffRwo9VUFUB5cvTnqsnVQ0SJoNepPzs/L3UV1Y4dDAX6aPfWMyNpjuqZWpPiiDNFURhye2nqd9Dc7yDJZLyqOBRFwenxUZiRxgMrFzEr5/3flM/h9LDr8AX2Hm2cWMNITNCzckkJm1bPZmZh9M96Y885vvzwLaxcPPO6vp76M508/eMdOIfc6HQ6Nn9iKXd/uopEFadw9m05wvP/thWAj/7xZu78vPqLjN0dDrZtPQnAA5+/Je63FHkne6qjo401S0pJVOF2H9fi9I4x6htDr9NRkJ6qSSZMvgBQu+IosGZgMRjxhQN0eocoTspSPdNksDA/bTU1w7upGd4lxTFduQJ+/OEQmZb4377B4fbS3O+gqX+I5n4HzQOOq4riSiVZGTyyZgmLivPeV4aiKNQ197HzYD015zonpqDstiRuXT2bdVVlVz0l7va1c0i4jgNRwB/k5d8eZu+b0Rv8ZeWm8dmvbqa0Qt3bKRzceoxn/nELAHc8tpGP/PFmVfMgelHh736xh3AowuKqmSyJ47Un72bUM0ZNbScA6zVaFIdL01Q5qSkYE7Q7BGi9qwpAr9MzKyWPM842GlzdmhQHwCLbWk4799Lla6Z/rINss3ajSS18KIrDZEjgz7a/SprJzIq8QqpyCyhLt6OPcWrF6R2juX9oYjTR1D+E0+O76uMMej0zMm2UZtvJSU3mtwdrAMhNS+Ezqxazelbx+5o6GvMHOVTTws6D9XT1XbrAbt6sXG5bU8HiuYXv+OdcT2m0XOjlqR/tYKAneoBZf+dCPvHIakxmdbczHnuzht/+vxcA2PTQLdzz1bs0mR/eu+0crY39WKxGPv3YLarnjTt4soVwJEJpoZ2i3HTNciemqezaTVPBpDWOsLa3HS9PyeeMs41Gdw+3sViTzOQEG+XJS6lzHadmeA935n1Wk1ytTIviODfYT+A650UXZ+exo62JJqeDZ2pPk262sCK3kKq8AhZn52G+xplXy4CDmtZumi6WhMN99fMDdDodxXYbpdkZlGXbKc3OoNhuw3jxwH24sZ00q4X7VyzgtnmzSHgfF5I5R728sec8+4814fNHnwFhNiWwdnkpt66qID9HnR/4cDjC678/ytsvnUBRFGwZyTzyJ5uYs0j9s6UTO87w5OPPoSgK6+9fzae+8TFNSmNowMXW3x8F4JMPr8KWod5NBSdTFIV9FxfF12u4KA6XRhwzNNxRBWA0XFzj0HDEAdpeQT7ZkvSN1LmO0+Q+zUhw6LIHP01306I4/qP6IL2e+D6IZXjMx1utDbzV2kCi3sDi7FxunzmL1flFEwesk209PHv41MT/o7s4J1yWbacsJ4PSbDszM23vOtzPTUvhh5/7REzPOFAU2HGgnoiikJuVym1rKlizrBSLymf8er2OjuYBFEWhal0F939hHVaVnnd9Jb/Xj6LA2ntW8MBffkKznSg+r5/0jGRS0iys3lihSSaAPxCiMMeG0+Vj5cKZmuUCZCRbmWlPZ2amdqMcALvZwpz0bAqStVtXAZiZlE26MZmSpBwCkdDEIr3a7KZcZlgr8IU9+MM+UPfHV1M6RVHe+6MuqqysVKqrq1X8dK7tOwd3Mei9vqeFuYN++r1XP+GsOCWNFfmFrMgroiIj87Lpq/qeAd4603BxNJHBzMx0LEZt/vXf2HOO4vwM5s3K1XQ7n3PITVtjP4tXajPPP1nTqVZKFharci+odxMMhvB5AqTa1Hv2xTtmh8KaLYp/mCmKMiXbYgORMRJ1pmm5JVen0x1XFOWaF6JMi+KIh+8d3c+ejhYMOj0LMrNZkV/EitwCcpPjfytuIYSY7t6tOKbFVNX1cvi8JOr1/J+V61mak4c1UZt78wghxM3oQ1EcGRYrf16p7lXHQgjxYSE3ORRCCBETKQ4hhBAxkeIQQggREykOIT7kIhEF15j/vT/wOjl8Xvo9V2+Jj7dQJEwsu0VF7KQ4hLhBKYpCMKT+VdYHGlpp6ht67w+8Tqf6ejnY2a56TrdvhONDbarnfJhJcQhxg3p933m8YwFVMyIRhT8cO8uAS/2RQE1fD/s71T+ge0J+ftN0mEBE3SfwRZQInd4uVTNuVFIcQsQoHFL/Jn3nmnp4YftJkq3q3vLlQEMbPc5RBl3Xd2eG96IoCif7e6kfGlR9usobCtDrG+HNrnOq5uh1el7peZNBv/qjtRuNFIcQMejrcbL9rTOqZgyNePjJc/uxmBIxqHj7lehoI/q1qD3i6BgdYdgXvZO02tNVnlB0veaFthM4A+oWollv5snWZ3CH1B+x3UikOIR4ny7U9fC9f3iF7Bz1btIXDIX50TN7cXv9mo02AAZVLo6avkt3plV7usobik7v+UIBft+q7i2SMozpDAedPN32HIGIutOKNxIpDnFT8Liufi5KPB050MAP/+1NxsaCzFHxWeTPvF5N88VHAacmqfcUwkhE4YXqSyMntUcck4ujfmiQgWvccDRePKFLB/AdPXW0ugdVy7KbMgDo9HXz+44XiSjaPmtkqkhxiGltzBfg1acPsufVk6r8+Yqi8MqLx3nyv/YSDkconZWDxaLOvc72n2hi59GGibfVHHEcbGyje3h04m2Hx0tIpQcsBcNhzg30X56v4nTV+FQVRP/9ft14SLXtuRnGS7emr3M18FrPWx+KrcBSHGJaCocjHHjrDN/+n79mz2snWf/RJXHPCAbD/Opnu3njlUultGCxOg+1au9x8OTWI5e9duXjgOMlElF44djZy15TFAWHR531gHrHIGOhy3c47e9Qb7pq8ogD4LyzmyODLapkTS4OgCOO4+wfPKRK1o3kQ3GTQ3HzUBSF2po2XvrVPno7HADc9eBKklMtcc1xjfr4+RPbaWq8/Ex53sLCuOYAeLx+fvi7vQSv2K2VotJDtA41tqPX6SjJyqBlwIFOp0NRFAZdHrJTk+OeV9PXg91iJaxEcI6NsSArh6bhIQa8HrKs8X/i4uQRB8BcWx5/aDvBMntx3B/ilGG8+imKb/XtJC0xjUW2+XHNupFIcYi4UhSF7g4HZ2raWLF2NhmZ8TsQdbYM8NKv9nHhdMfEa9ZkE5s+sSxuGQCjoz6e+Lc36bxYTONs6VbyC+L/1LxgOMw3Hr2V0w3dPPvGcQx6PeFIRLWpqmUz81k7ewZPvH2QlgEH91ctxB8MqbYld15mNg/MXcC39+3GOdbL3WXlLM1df9UoJF68oQAPlFTyZtc5RgM+Plu6ktKULMIqrD8Y9UZSEpJxhdwX307k3oKPoyN6nYded3NO6khxiOsWiSi0NvVzqrqFU8dbGewf5b6HV8etNEaHPbzy9EGO7DwPV0wfb/5UJWZrfNccUlMt/H/f+iR7d9by3G8vTTvMX1ikypPcbClWbCnw3y9Fsz51+2K6+pyqLY6PP8WywzECQElWOpUlhfiD6hzIl+dGn/mdaIgeRIORMClGEylGdYrxc2WrmJmcSYtrkGODrdSN9FKemoNBpYN4hjGDkqQZNLlb8ISj5bsgbZ4qWTcKKQ7xgYRDERrqujlV3cqp462Mjlw6W61aU86tdy6IW1ZSqoWqjXMYGXJTd/LSomqKzcr6jyyOW85kLtcYr754HIAVq8s4dqiJ+SpMU43r6nfS2D6IXq9j7dJSkiwmRtzq7RSLRBQ6LxZHsT063WJKVPdwYNRHH5EbVGkRftzM5EwA5qTlcmywlfrRPj6uYt6itHksS1/M/sHD7Ojfw76BQyxInTstHxf7fklxiJidOdHGU7/Yjddz9Y3xikuyeOgL6+L6Q2Mw6LEmm2lv7Lvs9Ts/vQKjSZ1nwD//u0N4vAGKi+08+oX1mE2JVMzLVyULYO/xJgCWzikkLTm6XmNPi//8/7jeURfBcBhTYgKZyerlTJZoiBZHIKL+/bcAKtJyAagb6VX1meMr7dGnq67MWM7egYN0j/XQ4mmjNHmmKnk3AimOm4w/EGJ4xMvwqDf634u/kqwmPnbrAhITDdedsXDZDL7wp5v5yffeIDzp7DEl1cKX/vwOjMb4flt1tw3yo8e34HX7KZmTR3Kqhc6WAVbfrs7i45mT7Rw/2oJep+OR/7EOg0HP/Q+vIiHh+v/uriUUCnOgphmA9ctnqZJxpfYhJwCF6Wno9dqcGSdevAo+GNamOEqSM0nUGxgN+OjxjZBvvXohO56sCVaWpS/miKOafYOHpDjEjWvA4eaZrdUMDrsZHvHi8V199eqy+UXcf/fSuJQGQENdD89cvK5hnMGg54t/dju2jPievfZ1DfPEN7fgGR2juDyHr3zzkzSe68Q94iMxzgUF4PMFeOapAwBsvmshRTPsAKqVBkBNXSdur5/0VCsLy9Ub1UzWMRSdpiqyq3swnWx8xBHUaMSRqDcwKzWbWmcPdSO9qhcHwC2ZqzjqOE6Du4m+sX5yzNmqZ06Fm3PJ/0MkKyOZW1eX0z/kumZpfHzTAv7ks9GplusVDIbZ8rtD/Od3X2Vo0IU9M4Wy2dHpgE8/unbi9/Ey0OPkib97AfeIj4LSLL7yzU9ithqZu3QGVbfOjWvWuK0vVOMc9pKdncpH7lmqSsaVxqepbllWqtnZf4cjOuIo1rA4tFrjmGzO+HTVaK8meelGG/NTo9+b+wcPa5I5FWTEEUfdjlGG3F5sVjOpVjMpZpOqB4JQKEz1mXZ2HqonELz8LC4xQc8XPr2GlUtmxiWrvWWA3/x8N71dwwCs2TiH+x5ezb7t58gtSOeWTfE9kDv6R3nim1sYcXjIm2Hnq9+6l6SU6C4jg0pn/00NfezdWQvAQ4+tjfuU27UMOT2cbewGYN2yMtXzxo2POLQsjvFdVVqtccCl4qgf0aY4IDrqODt6nlPOs2zO2Uhaonr3NpsqUhxxlGo18Y8v7aJ/NLqnW6/TkWY1k2a1YEsyY7v4+8KMVG6ZU/KBS2V4xMueow3sPtzAqHsMgARDdO+/ooAtxcLXHttISZH9ur+mcCjCW1treHNrDZFIhNQ0K498cT3zFxcDsHDpDDLjfNM/55CbH/7dCwwPuMguSOdP//6+uF/gd6VgMMxvf70fBVi7bjYVc7WZMtp3oglFgXlluWRnpGiSGQiF6b54c8PijDRNMiE6dQTarXEAzE7JAZ2OHu8IzoAXm9GqemahNZ+SpBm0eNo4NHSUu3I3q56pNSmOOHGP+Wnuc1CRnzVRHBFFYdjjY9jjgwEwJhi4e8kclpUWxFwaiqLQ0DrAjoP1nDjbTjgSvaAhPc3KravKWV81i7/4xxcpzkvnTz+3gfS06/8B6ekc5qmf76a9dQCAZSvL+Mxjt5CUfGn/fW6cL4gbcXj44d+9wFDfKJl5afzpt+8jxab+D/tbr52kt8dJaqqFex9YoXoeRLfE7rs4TbVBo0VxgO7hURRFIdlsIs2q3o0UrzS+OB6KaDdVlZRoojgpg3b3EBdG+1iRWaJJ7rrM1bR42jjqOMHGrFswG7T7e9bCTVkcgXCYHx07zJzMLKryC8m0xvfA4/UHaOl30NTnoLnfQVPfEP0j7nf8eL1Ox6YFs/jUygVkJMf2ufgDIY6cbGHnwQu09wxPvF5Rks3mtXNYMq8Qg0GPPxBi+YIi/sf9qzFd5xRLJKKw+60zbH3+GKFQGGuSic98/haWr1R3KsU14uVHj29hoNtJRnYqX/vOp7DZ438LjCt1dzp467XTAHzms6uxqnSrjyudb+phaMRDksXIsnnq3APrWsbXN4oy0jS91sBoiH5fBjQccQBUpObQ7h6ibqRXs+IoTy4j25RFv3+AY44TrMtao0muVm7K4jAaDBSmpvGT6qP8hKOUpqdTlV/IivxCyjIy0Mfww+ILBGnpjxZEc1/01/gzDK6UZ0ulNCeD0209uMai1zisnFXMg2sWk58R23TOwJCLXYcb2HescWLR25RoYNWyUm5bPZvCvMvP9BMTDHz5oVuu+0AwNODiqZ/vprE+ehvs+YuKePiLG0hT+azf4xrjR4+/SG+HgzR7Ml/7zn2kZ6o/dROJKDz96/2EwxGWLJvB0kptDixwaVF8zZISElXctXWl9ilY3wBIGN+Oq+GIA6LrHG93n6dOw3UOnU7HLZmr2NL1CoeGjrHavoKEON8naypNi6/k7/fsZCDGx01O3vLXPDxM8/Awz507Q7rZTFV+IVX5BSzOzcWc8M67jV48epbnDp5GufI+F0B2WjJlOXZKszMoy8lgZlYGSWYjXn+QP/rp8ywoyuXhtUsoy419naG1c4jvPPEG43dnzrYns2l1BWuXl5L0DvcviscifDgU4QfffRXHkAuTOZFPPbya1RsqNDkrffXpg3S3DpJis/K179yHPUebufdzpztobR7AYknkgUdWa5IJMOYPUlPXCcA6DaepYNKIQ+PiMI5fAKjxiGN8gbzZNUggHJoY+ahtUdp8tvftZjTkosHdxNzUCk1ytaCL5d7xlZWVSnW1uk/UupYvv/oSPe53ngqKVaJez8LsHG4pnsGtM0vf8fGce2tb+NFbB8lMSaIsJ4OSbDtlORmU5mSQbL72AbxjyInD7WNRce4HPuBGIgr/9/uvkJWRzOa1Fcwvz9dsm+bxw03s23GeR7+0EXuWNou1EH2uxu9+uJ27H1xJXvH1L+rH4lRNGwF/iKpV2u1qAnCMeDl1oYtbq8o1zR3xjdEx5CTPloo9xqnT6+Ec89Hn8ZBqMpGXrN33FsDhgWbKUrLIMmubWztaj8VgYYZVnfucqUmn0x1XFKXymu+bDsVRPzQY806Ms/19/O7s6Ym3bSYzlfkFVOUXsCQ3D0vie1/X4AsECYTCmi4gjvMHQte9VvFBRSKKZkUlhLgxvVtxTIupqgp7ZkwfrygKT50+yUybLbq2UVBIeYY9prUNiN5FdPxOolqbqtKA+Ex7CSFuXtOiOGIVjET4i9VryU5Sf0eOEEJ82NyUtxwxGgxSGkIIoZKbsjiEEEKoR4pDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiE+JALhLS5d5SiKAz7fJplCfVIcQhxAwpqdDAPhsO8drpOk6y2ESc7W5s1yTrn7GVwLH73txOXk+IQ4gYTCIZ45cA5TbL21LVwrqtfk6xTfb3s72jTJMvh9/KbhmOaZLV5ehkLBzTJulFIcQjxPg061D+DVRSFX71+lKGR2B4j8EEEw2FePHGOQZc2Z+Y1vT00DTvodbtUz/IE/ezra6bO2ad6li/s51ctrxJWtH3OyFSS4hDiPSiKwhs7znLyTIfqWbtONLL/VAspSerfkXlPfQv9o24GXB7V1wQC4TDnBqIH8QMd7apmAbhD0RHAf104TETlry3LZOPcSAvPtW//0KytSHGIaS0cVvcsLxSO8JvnDrHltRMsmJuvalZT1yBPvRl9bEGKRd3H14bCEV48Hp0OC4TCjF58YqVaLgwN4r/4aAQtisN7sTgaRwfZ09uoala6MQWDTs/BwTNs6z2iataNQopDTEu9vU6eeuoAwaB6i8heb4D//PkO9h9txJ6RTE5WbI//jcWoZ4z/fH4foYtFmPIOT3qMl/HRxrgBl7pTYzW9PRO/bxweoi+OD2a7Fk/o0prDUw3H8IWCqmXpdXrspugTK1/pPsDRofOqZd0opDjEtOJyjfHMM4f5+2+/TF6eDbNZneelDA65+af/fIPahugBb+HcAtWe4BaJKPx4ywEco96J11JVnKoKhSNsOX72stcGVS6Ok309l72t9iK5J3ipOIYDPra0nlI1L8t06TG8T7e9Sd2oNpsApooUh4ibcDhCIBhS5c8OBsO8+eZp/u/f/YE9e+tIS7Wwfr06z3Bubhvguz94nZ7+kYnXFs4tUCUL4IXdpzjX0nvZa8kqTlXtvXD5aAPUHXG4An4aHY7LXlN7usoTunzq7eX2s/T51FuUz5xUHBFF4ZfNW+nyDaiWN9WkOMR1CQbDnDrbwa9/d4BfPLkX/Ts8v/2DikQUjh5t5vHHt/DSyyfw+6PF9JGPLMKowlMSj59q419/tA2Xe2zitYQEAxWzcuOeBXC8voOt+6/eeqvWVFUoHOGF6rOkJ13+rHE1i+NMXx8KCokXvzeSEo2qT1dNnqrSo8OoN6i6PXfyiANgLBzgJ41bcAbU30E2FW7KJwAKdfnGApw510XN6XbO1HYR8AfJyEjmb//XR0kwxK84Ghp6+cMLx2hrG7rsdbs9mTVryuOWM27Q4ebUuQ7yc9Jo77p0hlxRlqPao3wz05L5169+nCde2E9b7zB6vY5IRFFtqsobCPA3H9vIiHeMx1/aTnZqMutmz6RzeOS9/+cPyB3w8+0Nt7GztZndbS18Zv5CZqVnMOTzkpOszgPXPKEAm/LL2dndgILCT9Y+gMPvIaxEMOjif758ZXEssZWzNmsR3rAfGylxz5tqUhzifRl1+Th1tpOa0+3UXughPOnK5sTEBL76xVtJSYnfwS4cjjA87CUjPfmq4vj4x5aQkGCIW9a4zIxkvvDwLfz8N3svK44Fc9SbppqRm07XwMhEafztY7fzxAv7MKtUVKkWM6kWM2c6o1tji+02Hly5mN4R9c6M7yiLlvy+i+vHHkbjAAAgAElEQVQawXCYBdk5quUBPDqrktXZJdQO99HjG6VhpJ9lmUWq5WWabCTo9NyWU8VbvUe44O7g0Zl3YTIYVcucSlIc09yYP4hj1Muwy4tjxItjNPrL7fPziXULmJGXEZec2voeXnnzFE7n1VMan394DUUF8ckZZzDoqaoqoaHh8rn/3Nw0Vqwoi2vWZKfOdXLsZCs6nY6vfH4DP39qHwvnqVccAHtONgGwtLyA2UVZ/M2jm1VbiB/X7nACUJwRPVPOTVP/rHh8qioYUf9CudXZJQDMteXQ4xulVuXiyDCm8tCMO6jKmEuN8wL9Y8McGjrLxuxlqmVOJSmOaUZRFF7ac4aj59pxjHrw+a9ejE5LNvP1BzfErTQAqpaVMDziZcvW45e9fudtC6haVhK3nHGKovDc74+yb/8FdDodixcXcfJkO5/4+FL0enUOqr6xAE//4TAAd946n6ULi3nsM6tV3YYbCoXZfzp6/6aNy2YBkGtXL29cx1B0aqrYbnuPj4wfoyE6SgyE1dlAcS1zbTns7Gmg1tn73h98HRL1Cay0zwdgU/Zynm3fzq7+46zLWqLK1NhUk+K4DmPBEIFQiGSTSbWD2ZV0Oh0fXTuPlm4HXQNXz0vPzEvn6w9tJCPVeo3/+4MZcrh58pmD1F24fEvl/LkF3Pux+J9RKYrCli3V7N5di04Hj31uLQsXFjEy4mPJkhlxzxv34ms1OEe8ZGem8PE7FwGwanmpankANQ1duDx+0lMsLCzLUzVrnKIodFwccRRlpGmSCZCojxZHSIMRx7g5tuiUWMPIAKFIhIQ4b964lhX2+bzafYAh/ygnhy+wPGOO6plak+K4Tt/esoPO4VHSLGbSrGZsF3+lWc2kWS3Rt5PMlGbbsRqv75oDRVFo6hxk+9ELnG3svur9K+cX88V7VsdtIVdRFA4da+LZF44yNhbEaEzg/nsqOXmmncEhN3/8uXWqFObWV2p4e3t0p9EjD69h1aromfiXv3SragXd2NLP7gMXAPjcA6sxJmrzo7G7JnpV87rFpRg0OKgBODw+PP4Aer2ePJt2C7eJFzdOBMLa3PkXoMCaRkqiCVfQT4triPK0LNUzjfoENmQv5bXug+zoq2ZZeoXqU49auymKQ1EUTvX2MicrE3OCOheEXYteB59YPo8nth1k2ONl2OO96mPy0lN5aPViLNdxIAqGwhw+28b2o/W0dF9atE0yJ+IZi14Re9+ti7hn/YK4fYOOunw89dwhTl28P1NpSTZfeGQt2VmpOIY9fObeKqwqbBl9/fVTvPHGaQAe/MxKbrll9sT7bLb4jaImCwbDPPncIRQU1q0qV23r7ZWGRjycaYqO4jYsVW/d5krjo418WwqJhvhvMngnUzHi0Ol0zLXlcHSgnfPOXk2KA2B91hLe7j1Ku7ePBncHs1OKNcnVyk1RHDqdjpO9Pfy/PbtZmJNDVUEhVQUFZCUlxS0jEArTPuSkud9BU98QzQMO2ged73hTs/QkK59euZBb533wM8lBp4dd1Q3sPtGIyxu9oCkxQc/qhTPZXFXBsfPtbDtSx5fuXUPVvPh9Y5441cbTzx3G7RnDkGDgnruXcMem+RNn+x+/azGJifE/4Gzbdoatr9QAcP+nqti4cW7cM67l9R1n6O0fITXFwv0fW65JJsC+U80oCswrySE7Xbsz/3aH9usbcGmNw6/hiAOYKI66kX7u0SgzKcHC6syF7OmvYXvfMSmOqbCvrY2x97jXTJLRSCAc4Xh3D8e7e/jpsWOUpNtYcbFEZtnt6GM8Gz/T0cuhhnaa+odoH3QSvsaZUprVgk4HTk/0yWZWk5FPVs7j7kUVmD7gKGNg2M0zbx3nRH0nkYu9lGVLYlPVbDYsLSP54pn+2aYe/u8f3cmM3PQPlHOlUDjCk787wJHq6GJtYUEGX/jsLRTmX/7nq1Eau3fXsuXF6ML7PfcsY/Pm+XHPuJaunmHe2B69/cbD963AatVm+2QkokzsptqwRLvRBkD70OU7qrRyacShdXFER5C1zl4URdFs2mhT9nL2Dpzk/EgrXb4BCizajHa0MC2K4+lTJ+n5AM8MaBl20jLs5LmzZ0m3mLm9bBafnj8fU8L7+7JbB4bZfrZh4u1Ui5nS7AzKcjIoy7ZTmp1BRrKVx194G89YgLuXVPDJ5fNINl/fFI7FlMipxm4iCiwozWXzygqWlBdcNb//0VvmxfWHYPziPZ1ex123LeTjdy1S5XqJa8nMSiEhwcBddy7k7rsWaZIJYDQmUFaSRbLVxPLF6i28XykQCrFyXjEnLnRRNVfbs9HyHDsef4DynExNc/NTUlhXNINyu7a5pSl2KtKymZ2WRSASxmTQ5rBnN6WxPL2CUCR80+2s0sVy//jKykqlurpaxU/n2n509AhO39i7fkw4EqG6++oF4+sZdbQODHOwoe1iWdjJTLZedaAOhMI8tf8En6ycjz05fnPwB0+3MDMvg/ws7Xa9AHi8fvr6Rymdqf3ZUX//KFlZKZovJCqKgj8QwmzSbn1scvbNtnAqLokoEfTTtDR0Ot1xRVEqr/m+6VAc78fbTY388PARjAY9i3JyqSwoiPs6hxBCfFi8W3FMi6mq96IoCsO+Mf52w3oW5+ZqurNKCCE+bG6K4tDpdDywYMFUfxpCCPGhMD0n34QQQkwZKQ4hhBAxkeIQQggREykOIYQQMZHiEEIIERMpDiGEEDGR4hBCCBETKQ4hhBAxkeIQQggREykOIYQQMZHiEOJDLJabnMZDUOOHOAl1SHEIcYPR8uC6v6lNs6xAOMzrjRc0yzs/3HfNh6+J6yfFIcQNpLazn3PtfZpkBUIhfn3kBP5QSJO8usEBdrQ2aZIFUOvsY1tXvWZ5p4ZbNcuaalIcQrwLnz/ImeYeTbKG3T5+8Np+rBo9UOrtuiaGvT4G3B5N8k729dDqdNLlGtUkzxMM8NuGE7iCfk3yDg3Ws6//vCZZU02KQ4h34Bj18p3fvK1JVigc4Qev7cfp8ZFiub5HD78fgXCYLafOATDg0qo4egE40KHN9JgnFMAV9PP7ppOa5GWb0/hV807OOLWb/psqUhxi2lAUheradmpb1Z/Kae118Piv3qLX4WJOcbbqeb/bV0NdVz+AJsWxva6RYa8PQJMRhyvgp2l4CIADHe2q50F0xAHwWnstnW6n6nnZ5jQUFH584Q3aPQOq500lKQ4xLTR3DfHdX73Ns9tqKC9S93noJy508p0n32bY5WXBzFwSEwyq5h2qb+P1E3UA6HU6kkxGVfMC4TBbTl6aUhlwe1XNAzjd18v4Bq4W57Am01WeULQ4wkqE/75wVPW8bFMaAGORIN+ve4Uhv0v1zKkixSE+MJd3jGO17UQi6m3pHHS6+ckLB/jWL96kvn2AT926iASDet+2bx2t5z+e34s/GF0wXjQrT7UsgM4hJz/ddnji7RSLCZ1Op2rm9rpGHN5LZaHFiGN8mmqcFtNV48UBcHygk+ODnarm5ZjTJn4/EvTw/bqteELarK9o7aZ4dKzQztCIh+r6DqrrOmjoHODrn96AXh//A513LMCr+8/x1uE6gqHolsrC7DRWLpgZ9yyASETh6bePs+3Y5btwFpflq5IH4PUH+bet+yZKCiDValYtD64ebYBWxXH5BoMDHe08MG+hqpmeKxbFf1V/lMUZ+STo1TnxSE20YtIn4o8EAej2Ofjhhdf4izmfIFF/cx1qb66vRqiie3CE6roOqus7aOl2TLz+wKYlLCkviGtWOBJhV3UjL+05zajn8h/8T926WJWS8vmD/OjFA5xs7Lrs9fzMNLJsyXHPg+h6zU+3HaJn+PIpmxSzuusbV442QP3F8V63iz63+7LXWpzDdLtGyU9JVS138ogDoMPt5M3OOj5WPE+VPJ1OR7Y5jQ7v4MRr9aNd/HfTDr406w7VR5JakuKYRhRFwesPMuz2MuTy4nD7GHJ5cLh8ONxeyvMy+eSq+RjicEYVjkR49eB5Dp5poXvw6vnoVfNn8LE18f8BPN3QzaEzLbi8l5dGSX4Gy+YUxj0PwOsPsH5xKcZEA0drLy3cLpml3mjDFwjx0WVzuXVBGf/84m70Oh0RRVF9YdyUkMD37r2bf92+jz6Xm7WlMzja2kkoElHtTPx0fx+3l84iFAmzq7WFzSVl5CYnc26wX9XicAcDlKdl0TAyQJYlmceX3UG7exhFUVQ7iGeZLi+O/znrTuymFPyRIGaDumtXWpLimAY6B5388LWD9Dldl01rTPapNQu5d9WCuJ2RG/R61i0qpa3XcVVxFOfY+KOPrVTlh29pRSHZ6cn8w6/exu27dMZ4/6bFqv2w21OTsJqMPL3tOAAZKVYcLi+LVJymspoSqSjI4rd7awBYVlrA7PwsBkbd7/F/Xp/bKsoYC4bovzg99cdrK/nI/NmMBYMkm9QprY0zSrijdBa/O3saAGOCgQfmLVT1difBSJgHy5bw0eJ5PLzzaQZ8biwJiazNLVEtE6LrHAvSijHo9JxytlI72sXnS29VNXMqTNviUPOs4Z1EIgr/vuMAPSMubFYzNouZNIsZm9VCutVCmsVEutWCzWImyWSM2+dXmGnj0Y3L+McXdl31PmOCga/cvZpVFTPikjVZr2P0sqkpgGSLka8/sAGzUZ2L1HoGR/mnJ3fg9gUoyEqja2CEOTOyWVCm7iL173edxOHykpOewt89djvffvJtKlTevRUKR9h7vhmAjQvKWF5aQPew+ruNOp0jKIpCusVCqtlMaq666ypGQ3RXWuLFEU0wHF2zUvPnN1Fv4P7SxQCUptppHBmkdriPdXmlqmUCzE8r4qMFy+n2OTjlbOXAQC33Fq0kLdGqaq7Wpm1x/PbMKRw+HysKClmck4slUf2rbfV6HY+tXso3nn+dliHHO37c2rIZPLJiCTmp1z8/PuTysuNUAztONxK54r47GclW/ve9GyjJybjunMkCwRC/33mSt45GF4qz0pMZHvUSjkT42v3rVJv373O4+KcntzPiGWNGbjp//dht/OtTO1UdbQBc6Bhge3UDAH/00RXYki385YMbVd+Ge6K5ixHvGLYkC0tL8tHpdBRkpL33/3id2h3RaxqKNMiabLxAghFtb3Q4z5ZD48gg550aFIetGIDylHzKknNpcveyo/c09xWtUjVXa9O2OG4vncX/fO1ltrc0YdTrWZiTS1V+AVX5hWQlJcUlIxJR6B4ZpWnAcfHXEC1Dw+94b5/FhXk8smIxZVn268pVFIW6rgG21VzgaEPHRGHYkiw4PdGLtmblZfK/7llPerLlurKu1NQ1yE9fPkjvUHQP+m3Ly3nwtqV887/f5Lbl5cybmRvXvHGDTjf/9OR2hl0+CrPT+KtHN5FsMfH5j62gJP/6/j7fTTAU5pevHkZBYeOSWRNfX55dvbn3cTvPNgKwcX5pXNal3q/24REAZqTbNMsEJrZRa32H3LnpOWxtO0ftsDb3ABt3d/4ynrjwOjt7T/OR/OWYDdrcSkYL06I4/vzN1+h1X30xTeTiHGkgEuF4TzfHe7r56fFjlNjSoyVSUEh5hh39BzxbfebYKbacPHfV6+MLmeNmZdn57MolLCyIz0G1uc/Bt5+9dKuLuUU53Ll0NnMLs/nyj19g7dwSvnznyrifEYfCEZ7Ysp9Bp4f0FAtf/PiqiXn++9YvYuW84rjmTfbmoTqGRrzkZ6by15+7jZSk6PSJmqUBUNvWR6/DRVqShYc2L1U1azJfIEhDT/RK6o3zyzTLBegeiU6HFWVoWxwTI46wtnesnWuLXvnf5R3FHw5hMmhz2FuaXkKO2Ub/2Aj1o10sTp+pSa4WdLEsUFVWVirV1dUqfjrX9uVXX6LH/f4XDY16PYtz86jKL2RNUTGpH3DR70BTGz/afZjSzAzKssZ/2TnS0sFvj54kPy2Vh6oWsbq0OK5TKYqi8PfPbqfQnsYdS2dTnBX9AR8YcXOwro1PrJin2tTN2eYe9p1u5tE7K0nW4NYX40LhCM9vP8ldq+eQnqrtfHBz9xBef5AFJeqMpt6JPxiitrOfJSXqLcJfS0RR6He5STYZVVsQv5axUBBvMIg5IRGrBlPLk9U7+ylJsU+Ul1YujHZjMyaRbdZ2WjAedDrdcUVRKq/5vulQHANez1VXJ7sCfv56+1sEL07j2C0WKvMLqcovYHFOLqaE6z+rCIbDGHT6q3Yq/efOg8zJzWJTRZlqVzFfa/F/KjYECCE+nN6tOKbFVFWW9eo1i+1nmpiRZqOqIFoWZekZcT+oJr7D2cmfbFil6m0v4No7TqQ0hBA3gmlRHNdyT8VcHlm4eEqy1S4NIYS4kU3bI2Cy8ea5ClMIIaaTaVscQgghpoYUhxBCiJhIcQghhIiJFIcQQoiYSHEIIYSIiRSHEEKImEhxCCGEiIkUhxBCiJhIcQghhIiJFIcQQoiYSHEIIYSIiRSHEEKImEhxCCGEiIkUhxBCiJhIcQhxgwhFtH0Wty8YpN3p1DTzaE+npnmdHm2/vg8LKQ4h3kFY4wP5CyfPapr3Wn09LcPDmuWN+Md48vwJzfIAXmuvpXl0SLO8Pt8Iza5+zfKmihSHENdwuqOXYy3anR3vutDMweZ2zfJ8wSAv1tYy4PFolnl6oJf2USfto9qNAtwhP7+sP4yiKJrkpRotfK/2NQbGRjXJmypSHOKGNxYMcaxZu4P49vONfPe1XczOzdQkr2VomJ8dOEqq2aRJHsBrFy7gDgTo17A4Tvb3ALC/q02zTE8wwLnhXg72t2qSZzFEn0z6L+dfxR0c0yRzKkhxiBtWJKKw83wTf/bUVvQ6bfKeOljDz3YdoSg9jYwkq+qZbr+ff357L4FwmBSNisMXDPLS+fMAmo04FEXh5EC0OA5oWRwhPwBPXjhGIBzWJDPXkkaPb5jv171OMBLSJFNrUhzifVEUhdbBYZ49coo3Tternne6o5e/eu4NfrrjMFkpSSybWaBqXiAU4vvb9rG1JnpAXVKcr2oeQERR+MHuQ/S73QCkms2qZ0J0tOEKBADtiqPH46LfG/06211OOjSarvKGggD0+Vy83HZGk8xscyoAF0Z7+GnDDiKKtmtlWkiY6k9A3LgiEYX63gGOtnRytLmD/lE3s3Oz+NYnb1Mts2PIyVMHajjZ1j3x2oOrFqPTqTfkcHrH+OfXd9PYd2kRdekM9YvjhZNnOd7RNfG2FlNVk0cbAH0eD4qiqPr3C5emqcbt727joVSbqpkA7qB/4vd/aDnNpvxy7OYkVTNzzGkTvz8y2IjdmMzDJWtVzdSaFMcNTFEUPIEAg24vQ57Jv3wMebwAfHFNJQW21LhlBsNhznX1caS5k2MtHYx4L83TZiRb+cu715FoMMQtb5zTO8bvj5xmx7nGyxYyFxTmsrAoN+554zocTv7x1d0MuC6deVtNRipUXt+o6ezm2eOXnwFrURyvTxptAATCYUb9ftJUHu2MT1ON29/ZxkNzFquaCeAJXfpax8JBftt4nD9bsF7VzMnFAfB690kyzSnckbdI1VwtTZviON3fi9FgYHZGJnqVz44me62uniaHA5vZjM1iJt1iIc1sxmaO/j7ZaIz72VpEUfjlgWPsvND8jvOys7Ls/J/b18d1Ht4XCPL9bfsvO9sfl5hg4C/vXo/Naolb3riBUTf/8tpe2gav3hr64Gr1Di6N/UP8wyu7cI/5L3t9UWEuBr16s7h9Ljf/vusgCpfv9FF7jcMXDPJSbe1Vr/d7PKoWR0RRODXQe9lr49NVRSqOOoKRMP7w5WsMO7obuLtoLuVpWarlXlkcAE+17CfDmEylvVS1XC1Nm+JINZn42vZXsZnMVOYWUJVXyNLsPCyJiarmri+Zycu1tfS5rz0XnKDXUZSWxherKlmQkxOXTL1OxxfWVNLpHOVsT99V719XNpOvrl+JMSG+/3wWYyL/30c28o+v776qPL68YQWzsu1xzRuXlZrMvzx4N997fR/HmjsmXl82s0DVnU2zsu384vP38cSOQxxoaJ14Xe1pqkAoxN/esZFtdQ3samhGhw4FRfWz/tO9vdwxaxYDHg97WlvJSUpi0OtlwOOh3K7Ovy1Aw/AgRr2e2dl5nOzvYZbNTprJzIHudh5UsTi8F0cbNqMFZ8DHrNQsPlo8l1a3Q9XiyL6iOIqS7Px5xV1osyFYG9OiOF5uqMUdDJButjA85mN7WxPb25pI0OtZlJVLVW4BK/IKyU5KjmvuwfZ23m5oxD1paD+ZKcHAJ+bM4d7580gyGuOW2+kc4T92HaR50HHV+x6pWsJ9i+epMicdCkf4h1d3cbbz8rPDjyyew4Y56p4pPX/0TLQ0dDrMCQmMBYM8uEr9qYzG/qGJ0lhTPoODDW0sVXlhvCjdRigSoWZ7tJz/bMNqXjp9XvURx8qiIlYWFfFvBw4AcGd5OQtycnB4varmphrN/PyOe9nT0cLJ/h4yLVb+dtWtjPjV3a7qCQa4Z8YC1uWW8r+PbKXHN8rGvFmqz1gkJ5hISjDz8Mw1/Lp5Lx2eIVzBMcpT1Zty1dq0KI5Xm+rp9biuej0UiXCir5sTfd387NQxKnML+NLiKvKSU+KS6/D6ONHdc9Xrel30h+6BhQvJUGHqxp5kpWfEhdFgIMVsYsjjxZyQwNdvXcuKmYVxzxuXYNBTbLfR0DfIvcvm8+yRUywozOVza5aqljlu2cwC3jh1gUfWLKF3xMWAy8PMrHTVc/NtKayvKCHRYOCL66sw6PSkJ8X/3/RKEUXh/iULqG7v4payGSzMz8GYEP+1o2tZXVREstHIguxsKjLVv1Zl/OexNC2D+8rnMzM1+u+aZlJ3hJVrTeULFSsJRyKsyy1ldloWoUgEowprdJPpdDq+MnszS9Jn0OGNbriwm+J7UjvVdLFcUVlZWalUV1er+Olc2zPnTzMaGGN/ZxvOK85SytPtrMwroiqvgJK09LieiXePjnK6txeTIYH/OHgIgFtmFPPIksXkp8ZvQfpaTnf1UmJP5zdHazjT1cv/uWMDM+3qH0gDoRDDnjGyU5P4i+de51v33EaqRZttou4xP8lmE60DwyQa9BRkXD1XrJZIREGv1xEIhTU7gAtxI9PpdMcVRam85vumQ3EAdLlG+ZNtW0k0GFiak0dVbiFVeQWkm9U/O9xaW8vxrm4eXbqEWSrOBV/LK2fqWDdrJjaNDt6TDXt8mpx9CyFuPDdFcRzvje53X5iVq/pQ80pDXi92q/pXEQshxI3i3YpjWqxxACzPVffK4XcjpSGEEJfILUeEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEuAGEIxHNMwd8Hs0zO90jmmc6Az7NMxVF0TxTS1IcQkyiKAqDXq+mmSNjY2xradQ00xXw87u6k5pmKorCz84f0vyg+mxzNb5QUNPMQ4ON+MPaZmpJikPcsLpdLnxB7X74AuEw/37kIINe7c7EI4rCvx7ZRyAc1iwT4KWm87SOOjXN7PaOcmqwhxaXQ9PcTq+TLW3aluRo0MuPG7YTUbQfSWpBikO8p1AkQrdrVLM8l9/PL08c55cnqrEkJmqSOer38/ieHRzv6Wa2PVOTTICnz57kVH8vqSaTZpmugJ9Xmmvp97o1ywQ4OdgNwIGeVk1zPaEAr3Scoc/n0iwzx5zG8aFmnm45cFNOW0lxTDOKomjyjegPhTjU2c73Dx/gy6+9TEiDOfhAOMxLdbV8+dWX2Vpfx0MLFqmeCdDlGuWvtr/JuYF+lubmodfpNMk93NXB83VnAUg1alccLzedxxsKMhIYYywU0ix3ojh6WzU9mHqCfgKRME82HtYsM8ecBsC2ntO80X1Ks1ytJEz1J/B+dHlGyLOmavYDPa55xEGCXk+6yUJyohGdRvkdoyN0u10Meb0M+bwMeD0M+XwM+bzcXVbOJ8rnqJLrDgQ41t3J4a4Ojvd0T0yf/M0tGyhOs6mSCdEyPNDRzm9OnaTXHT0LXlVYSLndrlrmuHMDffzD/j24AwEAKvMKVM+EaFl9/9iBibe1GnG4An62NtdOvD3g81CUkqZ6bjgS4cxQLwDdnlFaXcOUpGaongvREQfA4YFWzg33MD89T/XMLHMKOp0ORVH4XesB7KZkVmbOUj1XK9OiOI71dfJ802mWZxeyMruIZVkFWBLUn8Jw+sd4/OAOFBQSdHrSTGYyzBZsJgur84vYXDxLlTLzBYM8UX0Y59jYxGvmhAS+sWINawqL4543rtU5zJa687SNXJr7fnD+IlYVFKmWCXBuoJ+X62onSkMHPLJwsaqZAG0jTn56/Biei6WhA5blqX9QGQsF+e7BPZet36SazKrnAmxtrsU7aaG43+vWpDgaRgbxXjyAQ3TUoUVxhJUIvkmL1P/dcIh/rbpX9ZPQRH0CGcZkhvzR6bFfNO7CZrRSkZqvaq5WpsVU1cnBbkYDfnZ1NvFPJ3bz0NvP8HdHtvFKay19XvXmLbvdo4x/f4WUCENjXsbCIe6YMYvbVSoNgAyLdeIMGCDLmsQ/b7pD1dIAWJCdQ9qkA9jKgkIenL9Q1czx3NvLLp2NrZ8xkxk29UY442ak2fjWhk2YEhIwGgyUZ2RqdADX8S+b7mR5bj52ixW9TkeaBiMORVHIT0rlM7MXoUfHmrwZ9Gu0JbfF5eD+skXodTruLK4grNGisS8UJNOURK4llUXpBXyhfDWjwbH3/h/jIMecis2YhNlg5N+WPcLsFPVPSrQyLUYcRoPh8rf1eqwJiVgMCZgM6n0JM1LTyUtKocs9it1s5bNzl7CpqBSDXt2+zbRaeWTBYp48XcPczCz+Zs16bGaLqpnjvrBkGa821FM/NMj/WrlWs+nB20vLyGp4I18AAAdHSURBVElK4tcna3hooTZrGwB2i5Un7voYI34/Nb3dmmSaE6Lfs9+8ZRMj/jHOD/ar+n08TqfTcWtRKQAPzF6IUW9gJKDNQfSuogp0Oh2fq1iuSd44g07PP1d+ErMhUZNZisnWZM1mafpMEvUGrAnarWFpQRfLIlVlZaVSXV2t4qdzbc83nebNtnqqcopYkV3Egozcq8pELd8+vJMF9hw+WlqhyQ/3uLFQkJ/VVPOVZSs0+1rH1Q4OkGYykZ+SqmkuQNfoKAWp2ucCBMNhEjX+uxbiRqXT6Y4rilJ5zfdNh+IY8HnINFs1W5yezBcKan6mAtH9/TqYkq9ZCCHerTimxVRVliVpyrKnojQAzXeQCSHE+zUtFseFEELcOKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikOIKRZRFM0zx8JBzTMBPCH/lOQGwiHNMxVFQZmCf1stSHGIG4qiKLgCY5rn9vlctLocmufu721iYMytee7zrTVTUljPtx6fkoPplo5qzTMVFHb0ndY8VwtSHDc4RVEIRMKaZjr9PrZ11tHiGtI0t3l0iG+deAunxsVxYWSAvzn2KnZzkqa57e5hflS7j9REs6a5zoCP1zvO4vB7NM0NKxF29dbT5BrQNBfg0GADJx1tmmbqdXp2953j0GC9prlaSJjqT+D92NFTi9VgZHFGEdYEo2a5Z4e72d3bQLrRSqY5mY255ZgM6v+VOQM+/vPcXnq9o2Sak/jGgo0YTVbVc8ORCD+pPcDOngY25JZxe0GF6pnjtnXW8+PzB9iYX0ZRsk2z3BbXEN868QYzkjNISTRplusLBfn3c7sIKxHMGnxPTfZy+ykCkTADY24yzcma5TaO9uMLBTg80Mys1GzNcgG8IT+/bT3IAlshCXqDZrnZ5lSebN5FrtlGSXKOZrlqmybFUUfjaD/5VhuPlq1iuX2GJrmuoJ9dPQ2syyljc36FJqUBkJRgZGjMQ4Utm6/MvQWjRt/oBr2euek5dHqcfGXuLeh0Ok1yAZZlFrLEns+DpUs1ywQoSbHzWPkKTTMBLAmJfHXuOs4Md2v69wzw0cIFlCTbSTVqO9JJN1r5+rzNzEjO0DRXURQenLGakpQstJ4kW2GfTVVG+U1VGgC6WOYbKysrlepq7ecKjw+1kWNOpcBq0/SHzBsK0OdzUZJi1yxzXK9vlBxziuYHFYgWppZn3+OCkTCJGp4NTqYoypT8XQtxo9LpdMcVRam81vumxYhDqxHGlawJxikpDYBcS+qU5AJTUhrAlJUGIKUhRAxkcVwIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELERIpDCCFETKQ4hBBCxESKQwghREykOIQQQsREikMIIURMpDiEEELE5IYvjogSIRQJT0l2IBJCURTNc8ORMOEp/JqnQigSJqxENM9VFIXgFH3NwUiIyBR8zREl8qH7msNTfBy52dzwxfFfza/yt2d+zlg4oGluo6uLr5/4AfsHz2iaC/C9+mf5bu1TmpfWsaFavn7iB5wbadE0NxQJ8/jZ/+LHDS9qmguwrfcY36j5IV3eAU1z3UEff33qJzzTtl3TXIDft+/kr079mNGgR9PcHt8Q36j5IW/2HNU0F+BnjS/zzbO/1PwgXjfaxtdP/IDDg+c0zVVbwlR/Au+lJCkfvc6AUa/tp5puTKY8pZBcc7qmuQCzU4oIRILodDpNc7PN6ZSnFJJpStM0N0FvoCKlmEyTTdNcgAJLJrOSC0hLTNY012wwMjuliOKkXE1zAYqTcnEEXFgMJk1zUxOTmJ1SRIE1U9NcgLLkAqwJJhJ1Bk1z7cY0ylMKyZ6C44iadLGc1VZWVirV1dUqfjpCCCFuBDqd7riiKJXXet8NP1UlhBDixiLFIYQQIiZSHEIIIWIixSGEECImUhxCCCFiIsUhhBAiJlIcQgghYiLFIYQQIiZSHEIIIWIixSGEECImUhxCCCFiIsUhhBAiJlIcQgghYiLFIYQQIiZSHEIIIWIixSGEECImUhxCCCFiIsUhhBAiJlIcQgghYiLFIYQQ4v9vxw5tIAZiAAjeFfE4/ZcV/EU4DQRkQaSAGWoDs5WcCAcAiXAAkAgHAIlwAJAIBwCJcACQCAcAiXAAkOyZeb6893+tdb53DgAfcczM726QwgEAXlUAJMIBQCIcACTCAUAiHAAkwgFAIhwAJMIBQCIcACQXrqsLH4z+aqoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x = np.arange(0,2.2,0.2)\n", - "y = np.arange(0,2.2,0.2)\n", - "\n", - "X, Y = np.meshgrid(x, y)\n", - "u = np.cos(x)*Y\n", - "v = np.sin(y)*Y\n", - "\n", - "n = 1\n", - "color_array = np.sqrt(((v-n)/2)**2 + ((u-n)/2)**2)\n", - "\n", - "fig, ax = plt.subplots(figsize=(7,7))\n", - "ax.quiver(X,Y,u,v, color_array, alpha=0.8)\n", - "\n", - "ax.xaxis.set_ticks([])\n", - "ax.yaxis.set_ticks([])\n", - "ax.axis([-0.2, 2.3, -0.2, 2.3])\n", - "ax.set_aspect('equal')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "id": "b5b65eb7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ],\n", - " [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2],\n", - " [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4],\n", - " [0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6],\n", - " [0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8],\n", - " [1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. ],\n", - " [1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2],\n", - " [1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4],\n", - " [1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6],\n", - " [1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8],\n", - " [2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. ]])" - ] - }, - "execution_count": 111, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Y" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d902f461", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/contributed/DIC_CT_35/export_msh.py b/contributed/DIC_CT_35/export_msh.py deleted file mode 100644 index f388e3a9..00000000 --- a/contributed/DIC_CT_35/export_msh.py +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env python -# coding: utf-8 - - -import os - -from dolfin import * - -filename = "mesh/DIC_running" - - -os.system("gmsh -2 " + filename + ".geo -format msh2") -os.system("dolfin-convert " + filename + ".msh " + filename + ".xml") -os.remove(filename + ".msh") -# xml to h5 (1-3) -mesh = Mesh(filename + ".xml") -# boundaries = MeshFunction("size_t", mesh, "mesh4_facet_region.xml") -subdomains = MeshFunction("size_t", mesh, filename + "_physical_region.xml") -boundaries = MeshFunction("size_t", mesh, filename + "_facet_region.xml") - - -hdf = HDF5File(mesh.mpi_comm(), filename + ".h5", "w") -hdf.write(mesh, "/mesh") -hdf.write(boundaries, "/boundaries") -hdf.write(subdomains, "/subdomains") -hdf.close() - - -os.remove(filename + "_physical_region.xml") -os.remove(filename + "_facet_region.xml") -os.remove(filename + ".xml") - - -# mesh = Mesh() -# hdf = HDF5File(mesh.mpi_comm(), filename + ".h5", "r") -# hdf.read(mesh, "/mesh", False) -# ndim = mesh.topology().dim() - -# boundaries = MeshFunction("size_t", mesh,1) -# hdf.read(boundaries, "/boundaries") - -# subdomains = MeshFunction("size_t", mesh,2) -# hdf.read(subdomains, "/subdomains") diff --git a/contributed/DIC_CT_35/mesh/DIC.geo b/contributed/DIC_CT_35/mesh/DIC.geo deleted file mode 100644 index 4d55a902..00000000 --- a/contributed/DIC_CT_35/mesh/DIC.geo +++ /dev/null @@ -1,34 +0,0 @@ -L = 50.; - -f0 = 0.2/L; - -eta = 0.01/L; - -xval = ; -yval = 0; -xtip = 0; -tip = 0.3/L; - - - -//+ -Point(1) = {xval, yval+eta, 0, f0}; -//+ -Point(2) = {xval, yval-eta, 0, f0}; -//+ -Point(3) = {xtip-tip, yval+eta, 0, f0}; -//+ -Point(4) = {xtip-tip, yval-eta, 0, f0}; -//+ -Point(5) = {xtip,yval,0,f0}; - - - -//+ -Line(1) = {1, 3}; -//+ -Line(2) = {3, 5}; -//+ -Line(3) = {5, 4}; -//+ -Line(4) = {4, 2}; diff --git a/contributed/DIC_CT_35/mesh/DIC_running.geo b/contributed/DIC_CT_35/mesh/DIC_running.geo deleted file mode 100644 index adcbee96..00000000 --- a/contributed/DIC_CT_35/mesh/DIC_running.geo +++ /dev/null @@ -1,896 +0,0 @@ -L = 50.; - -f0 = 0.2/L; - -eta = 0.01/L; - -xval = -0.09600000000000002; -yval = 0; -xtip = 0; -tip = 0.3/L; - - - -//+ -Point(1) = {xval, yval+eta, 0, f0}; -//+ -Point(2) = {xval, yval-eta, 0, f0}; -//+ -Point(3) = {xtip-tip, yval+eta, 0, f0}; -//+ -Point(4) = {xtip-tip, yval-eta, 0, f0}; -//+ -Point(5) = {xtip,yval,0,f0}; - - - -//+ -Line(1) = {1, 3}; -//+ -Line(2) = {3, 5}; -//+ -Line(3) = {5, 4}; -//+ -Line(4) = {4, 2}; -//+ -Point(6) = {-0.09600000000000002, -0.0064, 0, f0}; -//+ -Point(7) = {-0.09600000000000002, -0.0128, 0, f0}; -//+ -Point(8) = {-0.09600000000000002, -0.019200000000000002, 0, f0}; -//+ -Point(9) = {-0.09600000000000002, -0.0256, 0, f0}; -//+ -Point(10) = {-0.09600000000000002, -0.032, 0, f0}; -//+ -Point(11) = {-0.09600000000000002, -0.038400000000000004, 0, f0}; -//+ -Point(12) = {-0.09600000000000002, -0.044800000000000006, 0, f0}; -//+ -Point(13) = {-0.09600000000000002, -0.0512, 0, f0}; -//+ -Point(14) = {-0.09600000000000002, -0.057600000000000005, 0, f0}; -//+ -Point(15) = {-0.09600000000000002, -0.064, 0, f0}; -//+ -Point(16) = {-0.09600000000000002, -0.0704, 0, f0}; -//+ -Point(17) = {-0.09600000000000002, -0.07680000000000001, 0, f0}; -//+ -Point(18) = {-0.09600000000000002, -0.0832, 0, f0}; -//+ -Point(19) = {-0.09600000000000002, -0.08960000000000001, 0, f0}; -//+ -Point(20) = {-0.08960000000000001, -0.09600000000000002, 0, f0}; -//+ -Point(21) = {-0.0832, -0.1024, 0, f0}; -//+ -Point(22) = {-0.07680000000000001, -0.10880000000000001, 0, f0}; -//+ -Point(23) = {-0.0704, -0.11520000000000001, 0, f0}; -//+ -Point(24) = {-0.064, -0.1216, 0, f0}; -//+ -Point(25) = {-0.057600000000000005, -0.128, 0, f0}; -//+ -Point(26) = {-0.0512, -0.13440000000000002, 0, f0}; -//+ -Point(27) = {-0.044800000000000006, -0.1408, 0, f0}; -//+ -Point(28) = {-0.038400000000000004, -0.1472, 0, f0}; -//+ -Point(29) = {-0.032, -0.15360000000000001, 0, f0}; -//+ -Point(30) = {-0.0256, -0.16, 0, f0}; -//+ -Point(31) = {-0.019200000000000002, -0.1664, 0, f0}; -//+ -Point(32) = {-0.0128, -0.1728, 0, f0}; -//+ -Point(33) = {-0.0064, -0.17920000000000003, 0, f0}; -//+ -Point(34) = {0.0, -0.18560000000000001, 0, f0}; -//+ -Point(35) = {0.0064, -0.19200000000000003, 0, f0}; -//+ -Point(36) = {0.0128, -0.1984, 0, f0}; -//+ -Point(37) = {0.019200000000000002, -0.2048, 0, f0}; -//+ -Point(38) = {0.0256, -0.2112, 0, f0}; -//+ -Point(39) = {0.032, -0.21760000000000002, 0, f0}; -//+ -Point(40) = {0.038400000000000004, -0.22400000000000003, 0, f0}; -//+ -Point(41) = {0.044800000000000006, -0.23040000000000002, 0, f0}; -//+ -Point(42) = {0.0512, -0.23680000000000004, 0, f0}; -//+ -Point(43) = {0.057600000000000005, -0.2432, 0, f0}; -//+ -Point(44) = {0.064, -0.24960000000000002, 0, f0}; -//+ -Point(45) = {0.0704, -0.256, 0, f0}; -//+ -Point(46) = {0.07680000000000001, -0.2624, 0, f0}; -//+ -Point(47) = {0.0832, -0.26880000000000004, 0, f0}; -//+ -Point(48) = {0.08960000000000001, -0.27520000000000006, 0, f0}; -//+ -Point(49) = {0.09600000000000002, -0.2816, 0, f0}; -//+ -Point(50) = {0.1024, -0.28800000000000003, 0, f0}; -//+ -Point(51) = {0.10880000000000001, -0.2944, 0, f0}; -//+ -Point(52) = {0.11520000000000001, -0.3008, 0, f0}; -//+ -Point(53) = {0.1216, -0.30720000000000003, 0, f0}; -//+ -Point(54) = {0.128, -0.31360000000000005, 0, f0}; -//+ -Point(55) = {0.13440000000000002, -0.31360000000000005, 0, f0}; -//+ -Point(56) = {0.1408, -0.31360000000000005, 0, f0}; -//+ -Point(57) = {0.1472, -0.31360000000000005, 0, f0}; -//+ -Point(58) = {0.15360000000000001, -0.31360000000000005, 0, f0}; -//+ -Point(59) = {0.16, -0.31360000000000005, 0, f0}; -//+ -Point(60) = {0.1664, -0.31360000000000005, 0, f0}; -//+ -Point(61) = {0.1728, -0.31360000000000005, 0, f0}; -//+ -Point(62) = {0.17920000000000003, -0.31360000000000005, 0, f0}; -//+ -Point(63) = {0.18560000000000001, -0.31360000000000005, 0, f0}; -//+ -Point(64) = {0.19200000000000003, -0.31360000000000005, 0, f0}; -//+ -Point(65) = {0.1984, -0.31360000000000005, 0, f0}; -//+ -Point(66) = {0.2048, -0.31360000000000005, 0, f0}; -//+ -Point(67) = {0.2112, -0.31360000000000005, 0, f0}; -//+ -Point(68) = {0.21760000000000002, -0.31360000000000005, 0, f0}; -//+ -Point(69) = {0.22400000000000003, -0.31360000000000005, 0, f0}; -//+ -Point(70) = {0.23040000000000002, -0.31360000000000005, 0, f0}; -//+ -Point(71) = {0.23680000000000004, -0.31360000000000005, 0, f0}; -//+ -Point(72) = {0.2432, -0.31360000000000005, 0, f0}; -//+ -Point(73) = {0.24960000000000002, -0.31360000000000005, 0, f0}; -//+ -Point(74) = {0.256, -0.31360000000000005, 0, f0}; -//+ -Point(75) = {0.2624, -0.31360000000000005, 0, f0}; -//+ -Point(76) = {0.26880000000000004, -0.31360000000000005, 0, f0}; -//+ -Point(77) = {0.27520000000000006, -0.31360000000000005, 0, f0}; -//+ -Point(78) = {0.2816, -0.31360000000000005, 0, f0}; -//+ -Point(79) = {0.28800000000000003, -0.31360000000000005, 0, f0}; -//+ -Point(80) = {0.2944, -0.31360000000000005, 0, f0}; -//+ -Point(81) = {0.3008, -0.31360000000000005, 0, f0}; -//+ -Point(82) = {0.30720000000000003, -0.31360000000000005, 0, f0}; -//+ -Point(83) = {0.31360000000000005, -0.31360000000000005, 0, f0}; -//+ -Point(84) = {0.32, -0.31360000000000005, 0, f0}; -//+ -Point(85) = {0.3264, -0.31360000000000005, 0, f0}; -//+ -Point(86) = {0.3328, -0.31360000000000005, 0, f0}; -//+ -Point(87) = {0.3392, -0.31360000000000005, 0, f0}; -//+ -Point(88) = {0.3456, -0.31360000000000005, 0, f0}; -//+ -Point(89) = {0.35200000000000004, -0.31360000000000005, 0, f0}; -//+ -Point(90) = {0.35840000000000005, -0.31360000000000005, 0, f0}; -//+ -Point(91) = {0.3648, -0.31360000000000005, 0, f0}; -//+ -Point(92) = {0.37120000000000003, -0.31360000000000005, 0, f0}; -//+ -Point(93) = {0.37760000000000005, -0.31360000000000005, 0, f0}; -//+ -Point(94) = {0.38400000000000006, -0.31360000000000005, 0, f0}; -//+ -Point(95) = {0.3904000000000001, -0.31360000000000005, 0, f0}; -//+ -Point(96) = {0.3968, -0.31360000000000005, 0, f0}; -//+ -Point(97) = {0.4032, -0.31360000000000005, 0, f0}; -//+ -Point(98) = {0.4096, -0.31360000000000005, 0, f0}; -//+ -Point(99) = {0.41600000000000004, -0.31360000000000005, 0, f0}; -//+ -Point(100) = {0.4224, -0.31360000000000005, 0, f0}; -//+ -Point(101) = {0.4288, -0.31360000000000005, 0, f0}; -//+ -Point(102) = {0.43520000000000003, -0.31360000000000005, 0, f0}; -//+ -Point(103) = {0.44160000000000005, -0.31360000000000005, 0, f0}; -//+ -Point(104) = {0.44800000000000006, -0.31360000000000005, 0, f0}; -//+ -Point(105) = {0.4544, -0.31360000000000005, 0, f0}; -//+ -Point(106) = {0.46080000000000004, -0.31360000000000005, 0, f0}; -//+ -Point(107) = {0.46720000000000006, -0.31360000000000005, 0, f0}; -//+ -Point(108) = {0.4736000000000001, -0.31360000000000005, 0, f0}; -//+ -Point(109) = {0.4800000000000001, -0.31360000000000005, 0, f0}; -//+ -Point(110) = {0.4864, -0.31360000000000005, 0, f0}; -//+ -Point(111) = {0.4928, -0.31360000000000005, 0, f0}; -//+ -Point(112) = {0.4928, 0.31360000000000005, 0, f0}; -//+ -Point(113) = {0.4864, 0.31360000000000005, 0, f0}; -//+ -Point(114) = {0.4800000000000001, 0.31360000000000005, 0, f0}; -//+ -Point(115) = {0.4736000000000001, 0.31360000000000005, 0, f0}; -//+ -Point(116) = {0.46720000000000006, 0.31360000000000005, 0, f0}; -//+ -Point(117) = {0.46080000000000004, 0.31360000000000005, 0, f0}; -//+ -Point(118) = {0.4544, 0.31360000000000005, 0, f0}; -//+ -Point(119) = {0.44800000000000006, 0.31360000000000005, 0, f0}; -//+ -Point(120) = {0.44160000000000005, 0.31360000000000005, 0, f0}; -//+ -Point(121) = {0.43520000000000003, 0.31360000000000005, 0, f0}; -//+ -Point(122) = {0.4288, 0.31360000000000005, 0, f0}; -//+ -Point(123) = {0.4224, 0.31360000000000005, 0, f0}; -//+ -Point(124) = {0.41600000000000004, 0.31360000000000005, 0, f0}; -//+ -Point(125) = {0.4096, 0.31360000000000005, 0, f0}; -//+ -Point(126) = {0.4032, 0.31360000000000005, 0, f0}; -//+ -Point(127) = {0.3968, 0.31360000000000005, 0, f0}; -//+ -Point(128) = {0.3904000000000001, 0.31360000000000005, 0, f0}; -//+ -Point(129) = {0.38400000000000006, 0.31360000000000005, 0, f0}; -//+ -Point(130) = {0.37760000000000005, 0.31360000000000005, 0, f0}; -//+ -Point(131) = {0.37120000000000003, 0.31360000000000005, 0, f0}; -//+ -Point(132) = {0.3648, 0.31360000000000005, 0, f0}; -//+ -Point(133) = {0.35840000000000005, 0.31360000000000005, 0, f0}; -//+ -Point(134) = {0.35200000000000004, 0.31360000000000005, 0, f0}; -//+ -Point(135) = {0.3456, 0.31360000000000005, 0, f0}; -//+ -Point(136) = {0.3392, 0.31360000000000005, 0, f0}; -//+ -Point(137) = {0.3328, 0.31360000000000005, 0, f0}; -//+ -Point(138) = {0.3264, 0.31360000000000005, 0, f0}; -//+ -Point(139) = {0.32, 0.31360000000000005, 0, f0}; -//+ -Point(140) = {0.31360000000000005, 0.31360000000000005, 0, f0}; -//+ -Point(141) = {0.30720000000000003, 0.31360000000000005, 0, f0}; -//+ -Point(142) = {0.3008, 0.31360000000000005, 0, f0}; -//+ -Point(143) = {0.2944, 0.31360000000000005, 0, f0}; -//+ -Point(144) = {0.28800000000000003, 0.31360000000000005, 0, f0}; -//+ -Point(145) = {0.2816, 0.31360000000000005, 0, f0}; -//+ -Point(146) = {0.27520000000000006, 0.31360000000000005, 0, f0}; -//+ -Point(147) = {0.26880000000000004, 0.31360000000000005, 0, f0}; -//+ -Point(148) = {0.2624, 0.31360000000000005, 0, f0}; -//+ -Point(149) = {0.256, 0.31360000000000005, 0, f0}; -//+ -Point(150) = {0.24960000000000002, 0.31360000000000005, 0, f0}; -//+ -Point(151) = {0.2432, 0.31360000000000005, 0, f0}; -//+ -Point(152) = {0.23680000000000004, 0.31360000000000005, 0, f0}; -//+ -Point(153) = {0.23040000000000002, 0.31360000000000005, 0, f0}; -//+ -Point(154) = {0.22400000000000003, 0.31360000000000005, 0, f0}; -//+ -Point(155) = {0.21760000000000002, 0.31360000000000005, 0, f0}; -//+ -Point(156) = {0.2112, 0.31360000000000005, 0, f0}; -//+ -Point(157) = {0.2048, 0.31360000000000005, 0, f0}; -//+ -Point(158) = {0.1984, 0.31360000000000005, 0, f0}; -//+ -Point(159) = {0.19200000000000003, 0.31360000000000005, 0, f0}; -//+ -Point(160) = {0.18560000000000001, 0.31360000000000005, 0, f0}; -//+ -Point(161) = {0.17920000000000003, 0.31360000000000005, 0, f0}; -//+ -Point(162) = {0.1728, 0.31360000000000005, 0, f0}; -//+ -Point(163) = {0.1664, 0.31360000000000005, 0, f0}; -//+ -Point(164) = {0.16, 0.31360000000000005, 0, f0}; -//+ -Point(165) = {0.15360000000000001, 0.31360000000000005, 0, f0}; -//+ -Point(166) = {0.1472, 0.31360000000000005, 0, f0}; -//+ -Point(167) = {0.1408, 0.31360000000000005, 0, f0}; -//+ -Point(168) = {0.13440000000000002, 0.31360000000000005, 0, f0}; -//+ -Point(169) = {0.128, 0.31360000000000005, 0, f0}; -//+ -Point(170) = {0.1216, 0.30720000000000003, 0, f0}; -//+ -Point(171) = {0.11520000000000001, 0.3008, 0, f0}; -//+ -Point(172) = {0.10880000000000001, 0.2944, 0, f0}; -//+ -Point(173) = {0.1024, 0.28800000000000003, 0, f0}; -//+ -Point(174) = {0.09600000000000002, 0.2816, 0, f0}; -//+ -Point(175) = {0.08960000000000001, 0.27520000000000006, 0, f0}; -//+ -Point(176) = {0.0832, 0.26880000000000004, 0, f0}; -//+ -Point(177) = {0.07680000000000001, 0.2624, 0, f0}; -//+ -Point(178) = {0.0704, 0.256, 0, f0}; -//+ -Point(179) = {0.064, 0.24960000000000002, 0, f0}; -//+ -Point(180) = {0.057600000000000005, 0.2432, 0, f0}; -//+ -Point(181) = {0.0512, 0.23680000000000004, 0, f0}; -//+ -Point(182) = {0.044800000000000006, 0.23040000000000002, 0, f0}; -//+ -Point(183) = {0.038400000000000004, 0.22400000000000003, 0, f0}; -//+ -Point(184) = {0.032, 0.21760000000000002, 0, f0}; -//+ -Point(185) = {0.0256, 0.2112, 0, f0}; -//+ -Point(186) = {0.019200000000000002, 0.2048, 0, f0}; -//+ -Point(187) = {0.0128, 0.1984, 0, f0}; -//+ -Point(188) = {0.0064, 0.19200000000000003, 0, f0}; -//+ -Point(189) = {0.0, 0.18560000000000001, 0, f0}; -//+ -Point(190) = {-0.0064, 0.17920000000000003, 0, f0}; -//+ -Point(191) = {-0.0128, 0.1728, 0, f0}; -//+ -Point(192) = {-0.019200000000000002, 0.1664, 0, f0}; -//+ -Point(193) = {-0.0256, 0.16, 0, f0}; -//+ -Point(194) = {-0.032, 0.15360000000000001, 0, f0}; -//+ -Point(195) = {-0.038400000000000004, 0.1472, 0, f0}; -//+ -Point(196) = {-0.044800000000000006, 0.1408, 0, f0}; -//+ -Point(197) = {-0.0512, 0.13440000000000002, 0, f0}; -//+ -Point(198) = {-0.057600000000000005, 0.128, 0, f0}; -//+ -Point(199) = {-0.064, 0.1216, 0, f0}; -//+ -Point(200) = {-0.0704, 0.11520000000000001, 0, f0}; -//+ -Point(201) = {-0.07680000000000001, 0.10880000000000001, 0, f0}; -//+ -Point(202) = {-0.0832, 0.1024, 0, f0}; -//+ -Point(203) = {-0.08960000000000001, 0.09600000000000002, 0, f0}; -//+ -Point(204) = {-0.09600000000000002, 0.08960000000000001, 0, f0}; -//+ -Point(205) = {-0.09600000000000002, 0.0832, 0, f0}; -//+ -Point(206) = {-0.09600000000000002, 0.07680000000000001, 0, f0}; -//+ -Point(207) = {-0.09600000000000002, 0.0704, 0, f0}; -//+ -Point(208) = {-0.09600000000000002, 0.064, 0, f0}; -//+ -Point(209) = {-0.09600000000000002, 0.057600000000000005, 0, f0}; -//+ -Point(210) = {-0.09600000000000002, 0.0512, 0, f0}; -//+ -Point(211) = {-0.09600000000000002, 0.044800000000000006, 0, f0}; -//+ -Point(212) = {-0.09600000000000002, 0.038400000000000004, 0, f0}; -//+ -Point(213) = {-0.09600000000000002, 0.032, 0, f0}; -//+ -Point(214) = {-0.09600000000000002, 0.0256, 0, f0}; -//+ -Point(215) = {-0.09600000000000002, 0.019200000000000002, 0, f0}; -//+ -Point(216) = {-0.09600000000000002, 0.0128, 0, f0}; -//+ -Point(217) = {-0.09600000000000002, 0.0064, 0, f0}; -//+ -Line(5) = {2, 6}; -//+ -Line(6) = {6, 7}; -//+ -Line(7) = {7, 8}; -//+ -Line(8) = {8, 9}; -//+ -Line(9) = {9, 10}; -//+ -Line(10) = {10, 11}; -//+ -Line(11) = {11, 12}; -//+ -Line(12) = {12, 13}; -//+ -Line(13) = {13, 14}; -//+ -Line(14) = {14, 15}; -//+ -Line(15) = {15, 16}; -//+ -Line(16) = {16, 17}; -//+ -Line(17) = {17, 18}; -//+ -Line(18) = {18, 19}; -//+ -Line(19) = {19, 20}; -//+ -Line(20) = {20, 21}; -//+ -Line(21) = {21, 22}; -//+ -Line(22) = {22, 23}; -//+ -Line(23) = {23, 24}; -//+ -Line(24) = {24, 25}; -//+ -Line(25) = {25, 26}; -//+ -Line(26) = {26, 27}; -//+ -Line(27) = {27, 28}; -//+ -Line(28) = {28, 29}; -//+ -Line(29) = {29, 30}; -//+ -Line(30) = {30, 31}; -//+ -Line(31) = {31, 32}; -//+ -Line(32) = {32, 33}; -//+ -Line(33) = {33, 34}; -//+ -Line(34) = {34, 35}; -//+ -Line(35) = {35, 36}; -//+ -Line(36) = {36, 37}; -//+ -Line(37) = {37, 38}; -//+ -Line(38) = {38, 39}; -//+ -Line(39) = {39, 40}; -//+ -Line(40) = {40, 41}; -//+ -Line(41) = {41, 42}; -//+ -Line(42) = {42, 43}; -//+ -Line(43) = {43, 44}; -//+ -Line(44) = {44, 45}; -//+ -Line(45) = {45, 46}; -//+ -Line(46) = {46, 47}; -//+ -Line(47) = {47, 48}; -//+ -Line(48) = {48, 49}; -//+ -Line(49) = {49, 50}; -//+ -Line(50) = {50, 51}; -//+ -Line(51) = {51, 52}; -//+ -Line(52) = {52, 53}; -//+ -Line(53) = {53, 54}; -//+ -Line(54) = {54, 55}; -//+ -Line(55) = {55, 56}; -//+ -Line(56) = {56, 57}; -//+ -Line(57) = {57, 58}; -//+ -Line(58) = {58, 59}; -//+ -Line(59) = {59, 60}; -//+ -Line(60) = {60, 61}; -//+ -Line(61) = {61, 62}; -//+ -Line(62) = {62, 63}; -//+ -Line(63) = {63, 64}; -//+ -Line(64) = {64, 65}; -//+ -Line(65) = {65, 66}; -//+ -Line(66) = {66, 67}; -//+ -Line(67) = {67, 68}; -//+ -Line(68) = {68, 69}; -//+ -Line(69) = {69, 70}; -//+ -Line(70) = {70, 71}; -//+ -Line(71) = {71, 72}; -//+ -Line(72) = {72, 73}; -//+ -Line(73) = {73, 74}; -//+ -Line(74) = {74, 75}; -//+ -Line(75) = {75, 76}; -//+ -Line(76) = {76, 77}; -//+ -Line(77) = {77, 78}; -//+ -Line(78) = {78, 79}; -//+ -Line(79) = {79, 80}; -//+ -Line(80) = {80, 81}; -//+ -Line(81) = {81, 82}; -//+ -Line(82) = {82, 83}; -//+ -Line(83) = {83, 84}; -//+ -Line(84) = {84, 85}; -//+ -Line(85) = {85, 86}; -//+ -Line(86) = {86, 87}; -//+ -Line(87) = {87, 88}; -//+ -Line(88) = {88, 89}; -//+ -Line(89) = {89, 90}; -//+ -Line(90) = {90, 91}; -//+ -Line(91) = {91, 92}; -//+ -Line(92) = {92, 93}; -//+ -Line(93) = {93, 94}; -//+ -Line(94) = {94, 95}; -//+ -Line(95) = {95, 96}; -//+ -Line(96) = {96, 97}; -//+ -Line(97) = {97, 98}; -//+ -Line(98) = {98, 99}; -//+ -Line(99) = {99, 100}; -//+ -Line(100) = {100, 101}; -//+ -Line(101) = {101, 102}; -//+ -Line(102) = {102, 103}; -//+ -Line(103) = {103, 104}; -//+ -Line(104) = {104, 105}; -//+ -Line(105) = {105, 106}; -//+ -Line(106) = {106, 107}; -//+ -Line(107) = {107, 108}; -//+ -Line(108) = {108, 109}; -//+ -Line(109) = {109, 110}; -//+ -Line(110) = {110, 111}; -//+ -Line(111) = {111, 112}; -//+ -Line(112) = {112, 113}; -//+ -Line(113) = {113, 114}; -//+ -Line(114) = {114, 115}; -//+ -Line(115) = {115, 116}; -//+ -Line(116) = {116, 117}; -//+ -Line(117) = {117, 118}; -//+ -Line(118) = {118, 119}; -//+ -Line(119) = {119, 120}; -//+ -Line(120) = {120, 121}; -//+ -Line(121) = {121, 122}; -//+ -Line(122) = {122, 123}; -//+ -Line(123) = {123, 124}; -//+ -Line(124) = {124, 125}; -//+ -Line(125) = {125, 126}; -//+ -Line(126) = {126, 127}; -//+ -Line(127) = {127, 128}; -//+ -Line(128) = {128, 129}; -//+ -Line(129) = {129, 130}; -//+ -Line(130) = {130, 131}; -//+ -Line(131) = {131, 132}; -//+ -Line(132) = {132, 133}; -//+ -Line(133) = {133, 134}; -//+ -Line(134) = {134, 135}; -//+ -Line(135) = {135, 136}; -//+ -Line(136) = {136, 137}; -//+ -Line(137) = {137, 138}; -//+ -Line(138) = {138, 139}; -//+ -Line(139) = {139, 140}; -//+ -Line(140) = {140, 141}; -//+ -Line(141) = {141, 142}; -//+ -Line(142) = {142, 143}; -//+ -Line(143) = {143, 144}; -//+ -Line(144) = {144, 145}; -//+ -Line(145) = {145, 146}; -//+ -Line(146) = {146, 147}; -//+ -Line(147) = {147, 148}; -//+ -Line(148) = {148, 149}; -//+ -Line(149) = {149, 150}; -//+ -Line(150) = {150, 151}; -//+ -Line(151) = {151, 152}; -//+ -Line(152) = {152, 153}; -//+ -Line(153) = {153, 154}; -//+ -Line(154) = {154, 155}; -//+ -Line(155) = {155, 156}; -//+ -Line(156) = {156, 157}; -//+ -Line(157) = {157, 158}; -//+ -Line(158) = {158, 159}; -//+ -Line(159) = {159, 160}; -//+ -Line(160) = {160, 161}; -//+ -Line(161) = {161, 162}; -//+ -Line(162) = {162, 163}; -//+ -Line(163) = {163, 164}; -//+ -Line(164) = {164, 165}; -//+ -Line(165) = {165, 166}; -//+ -Line(166) = {166, 167}; -//+ -Line(167) = {167, 168}; -//+ -Line(168) = {168, 169}; -//+ -Line(169) = {169, 170}; -//+ -Line(170) = {170, 171}; -//+ -Line(171) = {171, 172}; -//+ -Line(172) = {172, 173}; -//+ -Line(173) = {173, 174}; -//+ -Line(174) = {174, 175}; -//+ -Line(175) = {175, 176}; -//+ -Line(176) = {176, 177}; -//+ -Line(177) = {177, 178}; -//+ -Line(178) = {178, 179}; -//+ -Line(179) = {179, 180}; -//+ -Line(180) = {180, 181}; -//+ -Line(181) = {181, 182}; -//+ -Line(182) = {182, 183}; -//+ -Line(183) = {183, 184}; -//+ -Line(184) = {184, 185}; -//+ -Line(185) = {185, 186}; -//+ -Line(186) = {186, 187}; -//+ -Line(187) = {187, 188}; -//+ -Line(188) = {188, 189}; -//+ -Line(189) = {189, 190}; -//+ -Line(190) = {190, 191}; -//+ -Line(191) = {191, 192}; -//+ -Line(192) = {192, 193}; -//+ -Line(193) = {193, 194}; -//+ -Line(194) = {194, 195}; -//+ -Line(195) = {195, 196}; -//+ -Line(196) = {196, 197}; -//+ -Line(197) = {197, 198}; -//+ -Line(198) = {198, 199}; -//+ -Line(199) = {199, 200}; -//+ -Line(200) = {200, 201}; -//+ -Line(201) = {201, 202}; -//+ -Line(202) = {202, 203}; -//+ -Line(203) = {203, 204}; -//+ -Line(204) = {204, 205}; -//+ -Line(205) = {205, 206}; -//+ -Line(206) = {206, 207}; -//+ -Line(207) = {207, 208}; -//+ -Line(208) = {208, 209}; -//+ -Line(209) = {209, 210}; -//+ -Line(210) = {210, 211}; -//+ -Line(211) = {211, 212}; -//+ -Line(212) = {212, 213}; -//+ -Line(213) = {213, 214}; -//+ -Line(214) = {214, 215}; -//+ -Line(215) = {215, 216}; -//+ -Line(216) = {216, 217}; -//+ -Line(217) = {217, 1}; -//+ -Curve loop(1) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217}; -//+ -Plane Surface(1)= {1}; -//+ -Physical Surface("1") = {1}; -//+ -Physical Curve("2") = {112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,217}; -//+ -Physical Curve("3") = {5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110}; -//+ -Physical Curve("4") = {111}; diff --git a/contributed/DIC_CT_35/xy_position_libre.csv b/contributed/DIC_CT_35/xy_position_libre.csv deleted file mode 100644 index c17fafdb..00000000 --- a/contributed/DIC_CT_35/xy_position_libre.csv +++ /dev/null @@ -1,213 +0,0 @@ -X,Y --240.0,-16.0 --240.0,-32.0 --240.0,-48.0 --240.0,-64.0 --240.0,-80.0 --240.0,-96.0 --240.0,-112.0 --240.0,-128.0 --240.0,-144.0 --240.0,-160.0 --240.0,-176.0 --240.0,-192.0 --240.0,-208.0 --240.0,-224.0 --224.0,-240.0 --208.0,-256.0 --192.0,-272.0 --176.0,-288.0 --160.0,-304.0 --144.0,-320.0 --128.0,-336.0 --112.0,-352.0 --96.0,-368.0 --80.0,-384.0 --64.0,-400.0 --48.0,-416.0 --32.0,-432.0 --16.0,-448.0 -0.0,-464.0 -16.0,-480.0 -32.0,-496.0 -48.0,-512.0 -64.0,-528.0 -80.0,-544.0 -96.0,-560.0 -112.0,-576.0 -128.0,-592.0 -144.0,-608.0 -160.0,-624.0 -176.0,-640.0 -192.0,-656.0 -208.0,-672.0 -224.0,-688.0 -240.0,-704.0 -256.0,-720.0 -272.0,-736.0 -288.0,-752.0 -304.0,-768.0 -320.0,-784.0 -336.0,-784.0 -352.0,-784.0 -368.0,-784.0 -384.0,-784.0 -400.0,-784.0 -416.0,-784.0 -432.0,-784.0 -448.0,-784.0 -464.0,-784.0 -480.0,-784.0 -496.0,-784.0 -512.0,-784.0 -528.0,-784.0 -544.0,-784.0 -560.0,-784.0 -576.0,-784.0 -592.0,-784.0 -608.0,-784.0 -624.0,-784.0 -640.0,-784.0 -656.0,-784.0 -672.0,-784.0 -688.0,-784.0 -704.0,-784.0 -720.0,-784.0 -736.0,-784.0 -752.0,-784.0 -768.0,-784.0 -784.0,-784.0 -800.0,-784.0 -816.0,-784.0 -832.0,-784.0 -848.0,-784.0 -864.0,-784.0 -880.0,-784.0 -896.0,-784.0 -912.0,-784.0 -928.0,-784.0 -944.0,-784.0 -960.0,-784.0 -976.0,-784.0 -992.0,-784.0 -1008.0,-784.0 -1024.0,-784.0 -1040.0,-784.0 -1056.0,-784.0 -1072.0,-784.0 -1088.0,-784.0 -1104.0,-784.0 -1120.0,-784.0 -1136.0,-784.0 -1152.0,-784.0 -1168.0,-784.0 -1184.0,-784.0 -1200.0,-784.0 -1216.0,-784.0 -1232.0,-784.0 -1232.0,784.0 -1216.0,784.0 -1200.0,784.0 -1184.0,784.0 -1168.0,784.0 -1152.0,784.0 -1136.0,784.0 -1120.0,784.0 -1104.0,784.0 -1088.0,784.0 -1072.0,784.0 -1056.0,784.0 -1040.0,784.0 -1024.0,784.0 -1008.0,784.0 -992.0,784.0 -976.0,784.0 -960.0,784.0 -944.0,784.0 -928.0,784.0 -912.0,784.0 -896.0,784.0 -880.0,784.0 -864.0,784.0 -848.0,784.0 -832.0,784.0 -816.0,784.0 -800.0,784.0 -784.0,784.0 -768.0,784.0 -752.0,784.0 -736.0,784.0 -720.0,784.0 -704.0,784.0 -688.0,784.0 -672.0,784.0 -656.0,784.0 -640.0,784.0 -624.0,784.0 -608.0,784.0 -592.0,784.0 -576.0,784.0 -560.0,784.0 -544.0,784.0 -528.0,784.0 -512.0,784.0 -496.0,784.0 -480.0,784.0 -464.0,784.0 -448.0,784.0 -432.0,784.0 -416.0,784.0 -400.0,784.0 -384.0,784.0 -368.0,784.0 -352.0,784.0 -336.0,784.0 -320.0,784.0 -304.0,768.0 -288.0,752.0 -272.0,736.0 -256.0,720.0 -240.0,704.0 -224.0,688.0 -208.0,672.0 -192.0,656.0 -176.0,640.0 -160.0,624.0 -144.0,608.0 -128.0,592.0 -112.0,576.0 -96.0,560.0 -80.0,544.0 -64.0,528.0 -48.0,512.0 -32.0,496.0 -16.0,480.0 -0.0,464.0 --16.0,448.0 --32.0,432.0 --48.0,416.0 --64.0,400.0 --80.0,384.0 --96.0,368.0 --112.0,352.0 --128.0,336.0 --144.0,320.0 --160.0,304.0 --176.0,288.0 --192.0,272.0 --208.0,256.0 --224.0,240.0 --240.0,224.0 --240.0,208.0 --240.0,192.0 --240.0,176.0 --240.0,160.0 --240.0,144.0 --240.0,128.0 --240.0,112.0 --240.0,96.0 --240.0,80.0 --240.0,64.0 --240.0,48.0 --240.0,32.0 --240.0,16.0 diff --git a/contributed/NOTCH/Notch_problem.py b/contributed/NOTCH/Notch_problem.py deleted file mode 100644 index 04d46779..00000000 --- a/contributed/NOTCH/Notch_problem.py +++ /dev/null @@ -1,576 +0,0 @@ -# Numpy -> numerical library for Python. We'll use it for all array operations. -# It's written in C and it's faster (than traditional Python) -import logging - -# Yaml (Yet another markup language) -> We'll use it to pass, read and structure -# light text data in .yml files. -# Json -> Another form to work with data. It comes from JavaScript. Similar functions -# that Yaml. Used speacily with API request, when we need data "fetch". -# Communication with the machine: -# Sys -> allows to acess the system and launch commandes. -# Os - > allows to acess the operation system. -import sys - -import dolfinx -import dolfinx.io -import dolfinx.plot -import gmsh -import matplotlib.pyplot as plt -import meshes -import numpy as np -import pyvista -import ufl -from algorithms import am -from dolfinx.fem import ( - assemble_scalar, - dirichletbc, - locate_dofs_geometrical, - set_bc, -) -from models import DamageElasticityModel as Brittle -from petsc4py import PETSc -from pyvista.utilities import xvfb -from utils.viz import plot_mesh, plot_scalar, plot_vector - -# -> this serves to add a path to the code search for things -sys.path.append("../") - -# pdb -> usefull for debugging, it can stop a code operation and allows to read -# variables and do calculations -# pdb.set_trace() #-> point of stop for debugging - -# Mpi4py -> Interface that allows parallel interoperability. MPI stands for' Message -# Passager Interface' and will be used to communicate computer nodes when lauching code -# in a parallel way -# Petcs4py -> we use this library to handle with the data. Given acesses -# to solvers - -# Dolfinx - -logging.basicConfig(level=logging.INFO) - - -# UFL (Unified Format Language) -> we'll be used to represent abstract way to -# represent the language in a quadratic form - -# XDMFF -> format used for the output binary data - -# Install 'gmsh' library -> we'll be used for the mesh. -#!{sys.executable}: to use the current kernel to make the installation - - -# meshes - -# visualisation - -# Parameters - -parameters = { - # In case of evolution (nonlinear) problems, it's necessary to define a max - # and a min. For the elastic solution, just one value in needed. - "loading": { - "type": "ID", # ID -> Imposed Displacement | IF -> Imposed Force - "min": 0, - "max": 1.5, - "steps": 20, - }, - "geometry": {"geom_type": "bar", "Lx": 1.0, "Ly": 0.01}, - "model": { - "E": 1.0, - "nu": 0.3, - "mu": 0, # don't change it -> calculated later - "lmbda": 0, # don't change it -> calculated later - "w1": 1.0, - "ell": 0.01, - "k_res": 1.0e-8, - }, - "solvers": { - "elasticity": { - "snes": { - "snes_type": "newtontr", - "snes_stol": 1e-8, - "snes_atol": 1e-8, - "snes_rtol": 1e-8, - "snes_max_it": 100, - "snes_monitor": "", - "ksp_type": "preonly", - "pc_type": "lu", - "pc_factor_mat_solver_type": "mumps", - } - }, - "damage": { - "snes": { - "snes_type": "vinewtonrsls", - "snes_stol": 1e-5, - "snes_atol": 1e-5, - "snes_rtol": 1e-8, - "snes_max_it": 100, - "snes_monitor": "", - "ksp_type": "preonly", - "pc_type": "lu", - "pc_factor_mat_solver_type": "mumps", - }, - }, - "damage_elasticity": { - "max_it": 100, - "alpha_rtol": 1.0e-5, - "criterion": "alpha_H1", - }, - }, -} -E = parameters["model"]["E"] -poisson = parameters["model"]["nu"] -parameters["model"]["lmbda"] = E * poisson / ((1 + poisson) * (1 - 2 * poisson)) -parameters["model"]["mu"] = E / (2 * (1 + poisson)) -# parameters.get('loading') -> this parameters can be defined and obtained from -# a external file. In the first exemple (mec647_VI_1), the parameters were -# read from a .yml file. - - -def mesh_V( - a, - h, - L, - n, - gamma, - de, - de2, - key=0, - show=False, - filename="mesh.unv", - order=1, -): - """ - Create a 2D mesh of a notched three-point flexure specimen using GMSH. - a = height of the notch - h = height of the specimen - L = width of the specimen - n = width of the load interface - gamma = notch angle - de = density of elements at specimen - de2 = density of elements at the notch and crack - key = 0 -> create model for Fenicxs (default) - 1 -> create model for Cast3M - show = False -> doesn't open Gmsh to vizualise the mesh (default) - True -> open Gmsh to vizualise the mesh - filename = name and format of the output file for key = 1 - order = order of the function of form - """ - gmsh.initialize() - gmsh.option.setNumber("General.Terminal", 1) - gmsh.option.setNumber("Mesh.Algorithm", 5) - hopen = a * np.tan((gamma / 2.0) * np.pi / 180) - c0 = h / 40 - load_len = n - tdim = 2 - - model = gmsh.model() - model.add("TPB") - model.setCurrent("TPB") - # Generating the points of the geometrie - p0 = model.geo.addPoint(0.0, a, 0.0, de2, tag=0) - p1 = model.geo.addPoint(hopen, 0.0, 0.0, de, tag=1) - p2 = model.geo.addPoint(L / 2, 0.0, 0.0, de, tag=2) - p3 = model.geo.addPoint(L / 2, h, 0.0, de, tag=3) - p4 = model.geo.addPoint(0.0, h, 0.0, de, tag=4) - if key == 0: - p5 = model.geo.addPoint(-L / 2, h, 0.0, de, tag=5) - p6 = model.geo.addPoint(-L / 2, 0.0, 0.0, de, tag=6) - p7 = model.geo.addPoint(-hopen, 0.0, 0.0, de, tag=7) - # Load facet - p21 = model.geo.addPoint(load_len, h, 0.0, de, tag=30) - p22 = model.geo.addPoint(-load_len, h, 0.0, de, tag=31) - elif key == 1: - p20 = model.geo.addPoint(0, a + c0, 0, de2, tag=20) - # Creating the lines by connecting the points - notch_right = model.geo.addLine(p0, p1, tag=8) - bot_right = model.geo.addLine(p1, p2, tag=9) - right = model.geo.addLine(p2, p3, tag=10) - # top_right = model.geo.addLine(p3, p4, tag=11) - if key == 0: - top_right = model.geo.addLine(p3, p21, tag=11) - top_left = model.geo.addLine(p22, p5, tag=12) - left = model.geo.addLine(p5, p6, tag=13) - bot_left = model.geo.addLine(p6, p7, tag=14) - notch_left = model.geo.addLine(p7, p0, tag=15) - # Load facet - load_right = model.geo.addLine(p21, p4, tag=32) - load_left = model.geo.addLine(p4, p22, tag=33) - elif key == 1: - top_right = model.geo.addLine(p3, p4, tag=11) - sym_plan = model.geo.addLine(p4, p20, tag=21) - fissure = model.geo.addLine(p20, p0, tag=22) - # Creating the surface using the lines created - if key == 0: - perimeter = model.geo.addCurveLoop( - [ - notch_right, - bot_right, - right, - top_right, - load_right, - load_left, - top_left, - left, - bot_left, - notch_left, - ] - ) - elif key == 1: - perimeter = model.geo.addCurveLoop( - [notch_right, bot_right, right, top_right, sym_plan, fissure] - ) - surface = model.geo.addPlaneSurface([perimeter]) - # model.geo.addSurfaceLoop([surface,16]) - model.mesh.setOrder(order) - - # Creating Physical Groups to extract data from the geometrie - if key == 0: - gmsh.model.addPhysicalGroup(tdim - 1, [left], tag=101) - gmsh.model.setPhysicalName(tdim - 1, 101, "Left") - - gmsh.model.addPhysicalGroup(tdim - 1, [right], tag=102) - gmsh.model.setPhysicalName(tdim - 1, 102, "Right") - - gmsh.model.addPhysicalGroup(tdim - 2, [p6], tag=103) - gmsh.model.setPhysicalName(tdim - 2, 103, "Left_point") - - gmsh.model.addPhysicalGroup(tdim - 2, [p2], tag=104) - gmsh.model.setPhysicalName(tdim - 2, 104, "Right_point") - - gmsh.model.addPhysicalGroup(tdim - 2, [p4], tag=105) - gmsh.model.setPhysicalName(tdim - 2, 105, "Load_point") - - gmsh.model.addPhysicalGroup(tdim - 2, [p0], tag=106) - gmsh.model.setPhysicalName(tdim - 2, 106, "Notch_point") - - gmsh.model.addPhysicalGroup(tdim - 1, [load_right], tag=107) - gmsh.model.setPhysicalName(tdim - 1, 107, "load_right") - - gmsh.model.addPhysicalGroup(tdim - 1, [load_left], tag=108) - gmsh.model.setPhysicalName(tdim - 1, 108, "load_left") - - gmsh.model.addPhysicalGroup(tdim, [surface], tag=110) - gmsh.model.setPhysicalName(tdim, 110, "mesh_surface") - - # Cast3M can't read Physical Groups of points (dim = 0). Instead, we check the number in the mesh and input in manually in the code. - # The number of a node doesn't change if it's in a point of the geometry - if key == 1: - gmsh.model.addPhysicalGroup(tdim, [surface], tag=110) - gmsh.model.setPhysicalName(tdim, 110, "mesh_surface") - - gmsh.model.addPhysicalGroup(tdim - 1, [fissure], tag=111) - gmsh.model.setPhysicalName(tdim - 1, 111, "fissure") - - gmsh.model.addPhysicalGroup(tdim - 1, [sym_plan], tag=112) - gmsh.model.setPhysicalName(tdim - 1, 112, "sym_plan") - - # gmsh.model.addPhysicalGroup(tdim-2, [p20], tag=113) - # gmsh.model.setPhysicalName(tdim-2, 113, 'Crack_tip') - - # gmsh.model.addPhysicalGroup(tdim-2, [p4], tag=114) - # gmsh.model.setPhysicalName(tdim-2, 114, 'Load_point') - - # gmsh.model.addPhysicalGroup(tdim-2, [p2], tag=115) - # gmsh.model.setPhysicalName(tdim-2, 115,'Right_point') - # Generating the mesh - model.geo.synchronize() - model.mesh.generate(tdim) - if show: - gmsh.fltk.run() - if key == 1: - gmsh.write(filename) - return gmsh.model - - -a = 0.075 -h = 0.3 -n = 1 / 50 -L = 1 -gamma = 90 -de = a / 20 -de2 = a / 40 -gmsh_model = mesh_V(a, h, L, n, gamma, de, de2) -# In this moment, it could be necessary to get the data of the cells and facets -# In this case, we are taking info of the facets so that we can define subdomains -# in order to apply Newman Bondary conditions, which means that is a condition -# applied not in the displacement (variable of interest), but in the correspond -# variable (in this case, force/pressure) -mesh, facet_tags = meshes.gmsh_model_to_mesh( - gmsh_model, cell_data=False, facet_data=True, gdim=2 -) - - -# Plot mesh -plt.figure() -ax = plot_mesh(mesh) -fig = ax.get_figure() -fig.savefig("mesh.png") - -# Functional setting -# 'u' represents the displacement in this problem. In order to solve it, the -# continuos field 'u' is replaced by a discrite form u = som[vec(function_forme) -# *vec(nodal_displacement)] -# In order to define the vec(function_forme), the ufl library is used. - -# A VectorElement represents a combination of basic elements such that each -# component of a vector is represented by the basic element. The size is usually -# omitted, the default size equals the geometry dimension. - -# ulf.VectorElement(, , -# degree=, dim= ) - -# Lagrange is a familly type of elements -> polynomial functions of forme; -# The Lagrange elements are going to be defined in the mesh as such we take the -# geometry of elements present in the mesh. - -element_u = ufl.VectorElement("Lagrange", mesh.ufl_cell(), degree=1, dim=2) -element_alpha = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), degree=1) - -# After defining the Finite Element in ufl, a association with dolfinx is made. -# To inputs are necessary, the mesh and the element type created. In some sense, -# we obtain the "discretised model w/ elements definied". -V_u = dolfinx.fem.FunctionSpace(mesh, element_u) -V_alpha = dolfinx.fem.FunctionSpace(mesh, element_alpha) - -# In this model, we also defines functions necessaries to solve the problem. -# This functions are definied in the entire space/model. -# The discrete nodal valeus of -u = dolfinx.fem.Function(V_u, name="Displacement") -# the displacement -u_ = dolfinx.fem.Function(V_u, name="BC_Displacement") -u_imposed = dolfinx.fem.Function(V_u, name="Imposed_Displacement") -alpha = dolfinx.fem.Function(V_alpha, name="Damage") -# Bounds -> the values of alpha must be max([0,1],[alpha(t-1),1]) -alpha_ub = dolfinx.fem.Function(V_alpha, name="UpperBoundDamage") -alpha_lb = dolfinx.fem.Function(V_alpha, name="LowerBoundDamage") -alpha_lb.interpolate(lambda x: np.zeros_like(x[0])) -alpha_ub.interpolate(lambda x: np.ones_like(x[0])) - -# In order to defined a function in a specific subspace of the model, it must be -# specified in the model 'V_u.sub(i)', where i = 0 -> x, 1 -> y, 2-> z. -# Don't forget to collapse, to choose only the DOF associated with the -# subspace. - -# I don't think this part works to definy the body force applied in a geometry. -# It could be better to define it in the energy definition as constant. If not a -# constant, we might need to define as a space function. -# g = dolfinx.fem.Function(V_u, name="Body_pressure") -# with g.vector.localForm() as loc: -# loc.set(-78500.0) - -# Integral measures -> in order to define the energy lately, it's necessary to -# define the integral measures, as such one is a integral. -dx = ufl.Measure("dx", domain=mesh) # -> volume measure -# We include here the subdomain data generated at the gmsh file. -ds = ufl.Measure("ds", subdomain_data=facet_tags, domain=mesh) # -> surface measure -# ds() -# dS = ufl.Measure("dS", domain = mesh) - inner boundaries of the mesh -> -# not usefull - - -model = Brittle(parameters.get("model")) -state = {"u": u, "alpha": alpha} -# The total energy density is calculated this time using a already written -# function of the "model". This return the elasticity energy (with the a(alpha)) -# and the damage energy term. To count for externals forces, it need to substract it -# from the total energy -# - ufl.dot(force,u)*ds(107) - ufl.dot(force,u)*ds(108) -total_energy = model.total_energy_density(state) * dx -if parameters["loading"]["type"] == "ID": - total_energy = model.total_energy_density(state) * dx -if parameters["loading"]["type"] == "IF": - # Getting load parameters - force = dolfinx.fem.Function(V_u, name="Contact_force") - loading_force = -1 * parameters["loading"]["max"] - force.interpolate( - lambda x: (np.zeros_like(x[0]), loading_force * np.ones_like(x[1])) - ) - total_energy = ( - model.total_energy_density(state) * dx - - ufl.dot(force, u) * ds(107) - - ufl.dot(force, u) * ds(108) - ) - -# Boundary sets -# Function that returns 'TRUE' if the point of the mesh is in the region you want -# to apply the BC. - - -def BC_points(x): - # x[0] is the vector of X-coordinate of all points ; x[1] is the vector of - # Y-coordinate - return np.logical_and( - np.logical_or(np.isclose(x[0], -L / 2), np.isclose(x[0], L / 2)), - np.isclose(x[1], 0), - ) - - -BC_entities = dolfinx.mesh.locate_entities_boundary(mesh, 0, BC_points) -BC_dofs = dolfinx.fem.locate_dofs_topological(V_u, 0, BC_entities) -u_.interpolate(lambda x: (np.zeros_like(x[0]), np.zeros_like(x[1]))) - -# FOR IMPOSED FORCE : -if parameters["loading"]["type"] == "IF": - bcs_u = [dirichletbc(u_, BC_dofs)] -# FOR IMPOSED DISPLACEMENT : -if parameters["loading"]["type"] == "ID": - - def ID_points(x): - return np.logical_and( - np.equal(x[1], h), - np.logical_and(np.greater_equal(x[0], -1 * n), np.less_equal(x[0], n)), - ) - - ID_entities = dolfinx.mesh.locate_entities_boundary(mesh, 0, ID_points) - ID_dofs = dolfinx.fem.locate_dofs_topological(V_u, 0, ID_entities) - u_imposed.interpolate( - lambda x: ( - np.zeros_like(x[0]), - -1 * parameters["loading"]["max"] * np.ones_like(x[1]), - ) - ) - bcs_u = [dirichletbc(u_, BC_dofs), dirichletbc(u_imposed, ID_dofs)] - -dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], -L / 2)) -dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], L / 2)) -BC_dofs_alpha = dolfinx.fem.locate_dofs_topological(V_alpha, 0, BC_entities) -if parameters["loading"]["type"] == "IF": - bcs_alpha = [ - dirichletbc(np.array(0.0, dtype=PETSc.ScalarType), BC_dofs_alpha, V_alpha) - ] -if parameters["loading"]["type"] == "ID": - ID_dofs_alpha = dolfinx.fem.locate_dofs_topological(V_alpha, 0, ID_entities) - bcs_alpha = [ - dirichletbc( - np.array(0.0, dtype=PETSc.ScalarType), - np.concatenate( - [dofs_alpha_left, dofs_alpha_right, BC_dofs_alpha, ID_dofs_alpha] - ), - V_alpha, - ) - ] -bcs_alpha = [] -# dofs_alpha_left, dofs_alpha_right -bcs = {"bcs_u": bcs_u, "bcs_alpha": bcs_alpha} - -# Update the bounds -set_bc(alpha_ub.vector, bcs_alpha) -set_bc(alpha_lb.vector, bcs_alpha) - -solve_it = am.AlternateMinimisation( - total_energy, state, bcs, parameters.get("solvers"), bounds=(alpha_lb, alpha_ub) -) - -# solve_it.elasticity -# Loop for evolution -Loads = np.linspace( - parameters.get("loading").get("min"), - parameters.get("loading").get("max"), - parameters.get("loading").get("steps"), -) - -data = {"elastic": [], "surface": [], "total": [], "load": []} - -for i_t, t in enumerate(Loads): - # update bondary conditions - if parameters["loading"]["type"] == "ID": - u_imposed.interpolate( - lambda x: (np.zeros_like(x[0]), -1 * t * np.ones_like(x[1])) - ) - if parameters["loading"]["type"] == "IF": - force.interpolate( - lambda x: (np.zeros_like(x[0]), loading_force * t * np.ones_like(x[1])) - ) - # update lower bound for damage - alpha.vector.copy(alpha_lb.vector) - # solve for current load step - solve_it.solve() - # postprocessing - # global - surface_energy = assemble_scalar( - dolfinx.fem.form(model.damage_energy_density(state) * dx) - ) - elastic_energy = assemble_scalar( - dolfinx.fem.form(model.elastic_energy_density(state) * dx) - ) - - data.get("elastic").append(elastic_energy) - data.get("surface").append(surface_energy) - data.get("total").append(surface_energy + elastic_energy) - data.get("load").append(t) - - print(f"Solved timestep {i_t}, load {t}") - print(f"Elastic energy {elastic_energy:.3g}, Surface energy {surface_energy:.3g}") - - # saving - - -plt.plot(data.get("load"), data.get("surface"), label="surface") -plt.plot(data.get("load"), data.get("elastic"), label="elastic") -# plt.plot(data.get('load'), [1./2. * t**2*L for t in data.get('load')], label='anal elast', ls=':', c='k') - -plt.title("My specimen") -plt.legend() -# plt.yticks([0, 1/20], [0, '$1/2.\sigma_c^2/E_0$']) -# plt.xticks([0, 1], [0, 1]) - -try: - from dolfinx.plot import create_vtk_mesh as compute_topology -except ImportError: - from dolfinx.plot import create_vtk_topology as compute_topology - - -def plot_scalar(alpha, plotter, subplot=None, lineproperties={}): - if subplot: - plotter.subplot(subplot[0], subplot[1]) - V = alpha.function_space - mesh = V.mesh - - # topology, cell_types = dolfinx.plot.create_vtk_mesh(mesh, mesh.topology.dim) - # topology, cell_types = dolfinx.plot.create_vtk_topology( - # mesh, mesh.topology.dim) - topology, cell_types = compute_topology(mesh, mesh.topology.dim) - grid = pyvista.UnstructuredGrid(topology, cell_types, mesh.geometry.x) - - plotter.subplot(0, 0) - grid.point_data["alpha"] = alpha.compute_point_values().real - grid.set_active_scalars("alpha") - plotter.add_mesh(grid, **lineproperties) - plotter.view_xy() - return plotter - - -# postprocessing -xvfb.start_xvfb(wait=0.05) -pyvista.OFF_SCREEN = True -plotter = pyvista.Plotter( - title="Displacement", - window_size=[1600, 600], - shape=(1, 2), -) -_plt = plot_scalar(alpha, plotter, subplot=(0, 0)) -_plt.screenshot("alpha.png") - -xvfb.start_xvfb(wait=0.05) -pyvista.OFF_SCREEN = True -plotter = pyvista.Plotter( - title="Displacement", - window_size=[1600, 600], - shape=(1, 1), -) -# plt = plot_scalar(u.sub(0), plotter, subplot=(0, 0)) -_plt = plot_vector(u, plotter, subplot=(0, 0)) - -_plt.screenshot("displacement_MPI.png") - - -plt.figure() -plt.plot(data.get("load"), data.get("surface"), label="surface") -plt.plot(data.get("load"), data.get("elastic"), label="elastic") -# plt.plot(data.get('load'), [1./2. * t**2*L for t in data.get('load')], label='anal elast', ls=':', c='k') - -plt.title("My specimen") -plt.legend() -plt.savefig("energy.png") diff --git a/contributed/dAlembert_stability.ipynb b/contributed/dAlembert_stability.ipynb deleted file mode 100644 index da3becda..00000000 --- a/contributed/dAlembert_stability.ipynb +++ /dev/null @@ -1,60 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [], - "authorship_tag": "ABX9TyPbMDIEkUhHs22PArd5e2jj", - "include_colab_link": true - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "-g2hHa6LBoQW" - }, - "outputs": [], - "source": [ - "import os" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Stability, stabilities, _instabilities_, bifurcation, and problems\n", - "### From $\\partial$'Alembert" - ], - "metadata": { - "id": "EI7ryWlGDNWT" - } - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "T5BWCDctDcIV" - }, - "execution_count": null, - "outputs": [] - } - ] -} \ No newline at end of file diff --git a/contributed/solveModel/parametersSolve.yml b/contributed/solveModel/parametersSolve.yml deleted file mode 100755 index a5799598..00000000 --- a/contributed/solveModel/parametersSolve.yml +++ /dev/null @@ -1,25 +0,0 @@ -loading: - min: 0 - max: 1 - -geometry: - geom_type: bar - Lx: 5. - Ly: 15 - -model: - mu: 1. - lmbda: 0. - -solvers: - snes: - snes_type: newtontr - snes_stol: 1e-8 - snes_atol: 1e-8 - snes_rtol: 1e-8 - snes_max_it: 100 - snes_monitor: "" - ksp_type: preonly - pc_type: lu - pc_factor_mat_solver_type: mumps - diff --git a/contributed/solveModel/solveEP2.py b/contributed/solveModel/solveEP2.py deleted file mode 100644 index 9b7c2e5b..00000000 --- a/contributed/solveModel/solveEP2.py +++ /dev/null @@ -1,279 +0,0 @@ -# library include - - -import logging -import sys - -import dolfinx -import dolfinx.io -import dolfinx.plot -import matplotlib.pyplot as plt -import meshes -import numpy as np -import pyvista -import ufl -import yaml -from dolfinx.fem import ( - Function, - dirichletbc, -) -from meshes import primitives -from petsc4py import PETSc -from pyvista.utilities import xvfb -from solvers import SNESSolver -from utils.viz import plot_mesh, plot_scalar, plot_vector - -logging.basicConfig(level=logging.INFO) - - -sys.path.append("./") - -# meshes - -# visualisation - - -def plot_vector(u, plotter, subplot=None): - if subplot: - plotter.subplot(subplot[0], subplot[1]) - V = u.function_space - mesh = V.mesh - topology, cell_types = dolfinx.plot.create_vtk_topology(mesh, mesh.topology.dim) - num_dofs_local = u.function_space.dofmap.index_map.size_local - geometry = u.function_space.tabulate_dof_coordinates()[:num_dofs_local] - values = np.zeros((V.dofmap.index_map.size_local, 3), dtype=np.float64) - values[:, : mesh.geometry.dim] = u.vector.array.real.reshape( - V.dofmap.index_map.size_local, V.dofmap.index_map_bs - ) - grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) - grid["vectors"] = values - grid.set_active_vectors("vectors") - # geom = pyvista.Arrow() - # glyphs = grid.glyph(orient="vectors", factor=1, geom=geom) - glyphs = grid.glyph(orient="vectors", factor=1.0) - plotter.add_mesh(glyphs) - plotter.add_mesh( - grid, show_edges=True, color="black", style="wireframe", opacity=0.3 - ) - plotter.view_xy() - return plotter - - -def plot_scalar(alpha, plotter, subplot=None, lineproperties={}): - if subplot: - plotter.subplot(subplot[0], subplot[1]) - V = alpha.function_space - mesh = V.mesh - topology, cell_types, _ = dolfinx.plot.create_vtk_mesh(mesh, mesh.topology.dim) - grid = pyvista.UnstructuredGrid(topology, cell_types, mesh.geometry.x) - - plotter.subplot(0, 0) - grid.point_data["alpha"] = alpha.compute_point_values().real - grid.set_active_scalars("alpha") - plotter.add_mesh(grid, **lineproperties) - plotter.view_xy() - return plotter - - -# Parameters - - -parameters = { - "loading": {"min": 0, "max": 1}, - "geometry": {"geom_type": "bar", "Lx": 5.0, "Ly": 15}, - "model": {"mu": 1.0, "lmbda": 0.0}, - "solvers": { - "snes": { - "snes_type": "newtontr", - "snes_stol": 1e-8, - "snes_atol": 1e-8, - "snes_rtol": 1e-8, - "snes_max_it": 100, - "snes_monitor": "", - "ksp_type": "preonly", - "pc_type": "lu", - "pc_factor_mat_solver_type": "mumps", - } - }, -} - -# parameters.get('loading') -with open("./solveModel/parametersSolve.yml") as f: - parameters = yaml.load(f, Loader=yaml.FullLoader) - -# Mesh -Lx = parameters["geometry"]["Lx"] -Ly = parameters["geometry"]["Ly"] -geom_type = parameters["geometry"]["geom_type"] - - -gmsh_model, tdim = primitives.mesh_ep_gmshapi(geom_type, Lx, Ly, 1, 0.5, 0.3, tdim=2) - -mesh, mts = meshes.gmsh_model_to_mesh( - gmsh_model, - cell_data=False, - facet_data=True, - gdim=2, - exportMesh=True, - fileName="epTestMesh.msh", -) - -# TODO: Plot mesh - - -plt.figure() -ax = plot_mesh(mesh) -fig = ax.get_figure() -fig.savefig("mesh.png") - -boundaries = [ - (1, lambda x: np.isclose(x[0], 0)), - (2, lambda x: np.isclose(x[0], Lx)), - (3, lambda x: np.isclose(x[1], 0)), - (4, lambda x: np.isclose(x[1], Ly)), -] - -facet_indices, facet_markers = [], [] -fdim = mesh.topology.dim - 1 -for marker, locator in boundaries: - facets = dolfinx.mesh.locate_entities(mesh, fdim, locator) - facet_indices.append(facets) - facet_markers.append(np.full(len(facets), marker)) -facet_indices = np.array(np.hstack(facet_indices), dtype=np.int32) -facet_markers = np.array(np.hstack(facet_markers), dtype=np.int32) -sorted_facets = np.argsort(facet_indices) -facet_tag = dolfinx.mesh.MeshTags( - mesh, fdim, facet_indices[sorted_facets], facet_markers[sorted_facets] -) - -# Functional setting - -element_u = ufl.VectorElement("Lagrange", mesh.ufl_cell(), degree=1, dim=2) -V_u = dolfinx.fem.FunctionSpace(mesh, element_u) - -u = dolfinx.fem.Function(V_u, name="Displacement") -g = dolfinx.fem.Function(V_u, name="Body pressure") - -u_ = dolfinx.fem.Function(V_u, name="Boundary Displacement") - -# Integral measure -dx = ufl.Measure("dx", domain=mesh) -ds = ufl.Measure("ds", domain=mesh) -dS = ufl.Measure("ds", domain=mesh, subdomain_data=facet_tag) -x = ufl.SpatialCoordinate(mesh) - -# Data -zero = Function(V_u) -# works in parallel! -with zero.vector.localForm() as loc: - loc.set(0.0) - -one = Function(V_u) -# works in parallel! -with one.vector.localForm() as loc: - loc.set(1.0) - -g = Function(V_u) -# works in parallel! -""" -with g.vector.localForm() as loc: - loc.set(1.0/100.) -""" - -# x = ufl.SpatialCoordinate(mesh) -# g = dolfinx.Expression ('4 *x[1]') - -# boundary conditions -g.interpolate(lambda x: (np.zeros_like(x[0]), np.ones_like(x[1]))) -g.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) - - -def left(x): - return np.isclose(x[0], 0.0) - - -def right(x): - return np.isclose(x[0], Lx) - - -def bottom(x): - return np.isclose(x[1], 0.0) - - -def top(x): - return np.isclose(x[1], Ly) - - -# left side - - -left_facets = dolfinx.mesh.locate_entities_boundary(mesh, 1, left) -left_dofs = dolfinx.fem.locate_dofs_topological(V_u, mesh.topology.dim - 1, left_facets) - - -# right side - -right_facets = dolfinx.mesh.locate_entities_boundary(mesh, 1, right) -right_dofs = dolfinx.fem.locate_dofs_topological( - V_u, mesh.topology.dim - 1, right_facets -) - - -top_facets = dolfinx.mesh.locate_entities_boundary(mesh, 1, top) -top_dofs = dolfinx.fem.locate_dofs_topological(V_u, mesh.topology.dim - 1, top_facets) - -bottom_facets = dolfinx.mesh.locate_entities_boundary(mesh, 1, bottom) -bottom_dofs = dolfinx.fem.locate_dofs_topological( - V_u, mesh.topology.dim - 1, bottom_facets -) - -# energy -mu = parameters["model"]["mu"] -lmbda = parameters["model"]["lmbda"] - - -def _e(u): - return ufl.sym(ufl.grad(u)) - - -en_density = 1 / 2 * (2 * mu * ufl.inner(_e(u), _e(u))) + lmbda * ufl.tr(_e(u)) ** 2 -energy = en_density * dx - ufl.inner(u, g) * dS(4) - -# bcs = [dirichletbc(zero, bottom_dofs), dirichletbc(one, top_dofs)] -bcs = [dirichletbc(zero, bottom_dofs)] - -# solving -D_energy_u = ufl.derivative(energy, u, ufl.TestFunction(V_u)) - -problem = SNESSolver( - D_energy_u, - u, - bcs, - bounds=None, - petsc_options=parameters.get("solvers").get("snes"), - prefix="elast", -) - - -uh = problem.solve() -print(u) - -# plt.figure() -# ax = plot_mesh(mesh) -# fig = ax.get_figure() -# fig.savefig(f"mesh.png") - -# postprocessing - -xvfb.start_xvfb(wait=0.05) -pyvista.OFF_SCREEN = True - -plotter = pyvista.Plotter( - title="Displacement", - window_size=[1600, 600], - shape=(1, 2), -) - -# _plt = plot_scalar(u_.sub(0), plotter, subplot=(0, 0)) -_plt = plot_vector(u, plotter, subplot=(0, 1)) -_plt.screenshot("displacement_MPI.png") diff --git a/demo/demo_bifurcation.py b/demo/demo_bifurcation.py index 605341d6..dbe39fa0 100644 --- a/demo/demo_bifurcation.py +++ b/demo/demo_bifurcation.py @@ -14,25 +14,18 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio +from mpi4py import MPI +from petsc4py import PETSc + from irrevolutions.algorithms.am import AlternateMinimisation from irrevolutions.algorithms.so import BifurcationSolver from irrevolutions.meshes.primitives import mesh_bar_gmshapi from irrevolutions.models import DamageElasticityModel as Brittle from irrevolutions.utils import ColorPrint from irrevolutions.utils.plots import plot_energies -from mpi4py import MPI -from petsc4py import PETSc logging.basicConfig(level=logging.INFO) diff --git a/demo/demo_elasticity.py b/demo/demo_elasticity.py index a4daf9ca..728b2ec5 100644 --- a/demo/demo_elasticity.py +++ b/demo/demo_elasticity.py @@ -15,13 +15,14 @@ import yaml from dolfinx import log from dolfinx.io import XDMFFile, gmshio +from mpi4py import MPI +from petsc4py import PETSc +from pyvista.utilities import xvfb + from irrevolutions.meshes.primitives import mesh_bar_gmshapi from irrevolutions.models import ElasticityModel from irrevolutions.solvers import SNESSolver as ElasticitySolver from irrevolutions.utils.viz import plot_vector -from mpi4py import MPI -from petsc4py import PETSc -from pyvista.utilities import xvfb logging.basicConfig(level=logging.INFO) diff --git a/demo/demo_traction.py b/demo/demo_traction.py index e3d6072b..e75b3809 100644 --- a/demo/demo_traction.py +++ b/demo/demo_traction.py @@ -15,25 +15,18 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio +from mpi4py import MPI +from petsc4py import PETSc +from pyvista.utilities import xvfb + from irrevolutions.algorithms.am import AlternateMinimisation, HybridSolver from irrevolutions.meshes.primitives import mesh_bar_gmshapi from irrevolutions.models import DamageElasticityModel as Brittle from irrevolutions.utils.plots import plot_energies, plot_force_displacement from irrevolutions.utils.viz import plot_scalar, plot_vector -from mpi4py import MPI -from petsc4py import PETSc -from pyvista.utilities import xvfb logging.basicConfig(level=logging.INFO) diff --git a/demo/demo_vi.py b/demo/demo_vi.py index 9851c0ac..5d42a3f0 100644 --- a/demo/demo_vi.py +++ b/demo/demo_vi.py @@ -12,18 +12,15 @@ import pyvista import ufl import yaml -from dolfinx.fem import ( - Function, - FunctionSpace, - dirichletbc, -) +from dolfinx.fem import Function, FunctionSpace, dirichletbc from dolfinx.fem.assemble import assemble_scalar from dolfinx.mesh import CellType -from irrevolutions.solvers import SNESSolver -from irrevolutions.utils.viz import plot_profile, plot_scalar from mpi4py import MPI from pyvista.utilities import xvfb +from irrevolutions.solvers import SNESSolver +from irrevolutions.utils.viz import plot_profile, plot_scalar + petsc4py.init(sys.argv) diff --git a/playground/benchmark-umut-at2/vs_analytics_at2.py b/playground/benchmark-umut-at2/vs_analytics_at2.py index e984ea7c..ab4fd3db 100644 --- a/playground/benchmark-umut-at2/vs_analytics_at2.py +++ b/playground/benchmark-umut-at2/vs_analytics_at2.py @@ -17,34 +17,21 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, -) +from dolfinx.fem import (Constant, Function, assemble_scalar, dirichletbc, + form, locate_dofs_geometrical) from dolfinx.io import XDMFFile -from irrevolutions.algorithms.am import HybridSolver -from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ( - ColorPrint, - Visualization, - _logger, - _write_history_data, - history_data, -) -from irrevolutions.utils.plots import ( - plot_AMit_load, - plot_energies, - plot_force_displacement, -) -from irrevolutions.utils.viz import plot_profile, plot_scalar from mpi4py import MPI from petsc4py import PETSc from pyvista.utilities import xvfb +from irrevolutions.algorithms.am import HybridSolver +from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver +from irrevolutions.utils import (ColorPrint, Visualization, _logger, + _write_history_data, history_data) +from irrevolutions.utils.plots import (plot_AMit_load, plot_energies, + plot_force_displacement) +from irrevolutions.utils.viz import plot_profile, plot_scalar + petsc4py.init(sys.argv) comm = MPI.COMM_WORLD @@ -165,13 +152,13 @@ def run_computation(parameters, storage=None): V_alpha = dolfinx.fem.FunctionSpace(mesh, element_alpha) u = dolfinx.fem.Function(V_u, name="Displacement") - u_ = dolfinx.fem.Function(V_u, name="BoundaryDisplacement") + dolfinx.fem.Function(V_u, name="BoundaryDisplacement") alpha = dolfinx.fem.Function(V_alpha, name="Damage") # Perturbations - β = Function(V_alpha, name="DamagePerturbation") - v = Function(V_u, name="DisplacementPerturbation") + Function(V_alpha, name="DamagePerturbation") + Function(V_u, name="DisplacementPerturbation") # Pack state state = {"u": u, "alpha": alpha} @@ -181,7 +168,7 @@ def run_computation(parameters, storage=None): alpha_lb = dolfinx.fem.Function(V_alpha, name="LowerBoundDamage") dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Useful references Lx = parameters.get("geometry").get("Lx") @@ -193,7 +180,7 @@ def run_computation(parameters, storage=None): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -276,7 +263,7 @@ def run_computation(parameters, storage=None): stable = stability.solve(alpha_lb, eig0=z0, inertia=inertia) - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") plot_AMit_load(history_data, file=f"{prefix}/{_nameExp}_it_load.pdf") diff --git a/playground/benchmark-umut-at2/vs_analytics_at2_2d.py b/playground/benchmark-umut-at2/vs_analytics_at2_2d.py index fcf8df1b..c1d07528 100644 --- a/playground/benchmark-umut-at2/vs_analytics_at2_2d.py +++ b/playground/benchmark-umut-at2/vs_analytics_at2_2d.py @@ -16,34 +16,23 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - assemble_scalar, - form, - locate_dofs_geometrical, -) +from dolfinx.fem import (Constant, Function, assemble_scalar, form, + locate_dofs_geometrical) from dolfinx.io import XDMFFile, gmshio +from mpi4py import MPI +from petsc4py import PETSc +from pyvista.utilities import xvfb + from irrevolutions.algorithms.am import HybridSolver from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver from irrevolutions.meshes.primitives import mesh_bar_gmshapi -from irrevolutions.models import BrittleMembraneOverElasticFoundation as ThinFilm -from irrevolutions.utils import ( - ColorPrint, - Visualization, - _logger, - _write_history_data, - history_data, -) -from irrevolutions.utils.plots import ( - plot_AMit_load, - plot_energies, - plot_force_displacement, -) +from irrevolutions.models import \ + BrittleMembraneOverElasticFoundation as ThinFilm +from irrevolutions.utils import (ColorPrint, Visualization, _logger, + _write_history_data, history_data) +from irrevolutions.utils.plots import (plot_AMit_load, plot_energies, + plot_force_displacement) from irrevolutions.utils.viz import plot_profile, plot_scalar, plot_vector -from mpi4py import MPI -from petsc4py import PETSc -from pyvista.utilities import xvfb petsc4py.init(sys.argv) comm = MPI.COMM_WORLD @@ -70,7 +59,7 @@ def stress(state): alpha = state["alpha"] dx = ufl.Measure("dx", domain=u.function_space.mesh) - return parameters["model"]["E"] * a(alpha) * u.dx() * dx + return parameters["model"]["E"] * ThinFilmAT2.a(alpha) * u.dx() * dx def run_computation(parameters, storage=None): @@ -119,16 +108,16 @@ def run_computation(parameters, storage=None): V_alpha = dolfinx.fem.FunctionSpace(mesh, element_alpha) u = dolfinx.fem.Function(V_u, name="Displacement") - u_ = dolfinx.fem.Function(V_u, name="BoundaryDisplacement") + dolfinx.fem.Function(V_u, name="BoundaryDisplacement") u_zero = Function(V_u, name="InelasticDisplacement") zero_u = Function(V_u, name="BoundaryUnknown") alpha = dolfinx.fem.Function(V_alpha, name="Damage") - alphadot = dolfinx.fem.Function(V_alpha, name="Damage_rate") + dolfinx.fem.Function(V_alpha, name="Damage_rate") # Perturbations - β = Function(V_alpha, name="DamagePerturbation") - v = Function(V_u, name="DisplacementPerturbation") + Function(V_alpha, name="DamagePerturbation") + Function(V_u, name="DisplacementPerturbation") # Pack state state = {"u": u, "alpha": alpha} @@ -138,17 +127,17 @@ def run_computation(parameters, storage=None): alpha_lb = dolfinx.fem.Function(V_alpha, name="LowerBoundDamage") dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Useful references Lx = parameters.get("geometry").get("Lx") # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) - dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) - dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) + locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) alpha_lb.interpolate(lambda x: np.zeros_like(x[0])) alpha_ub.interpolate(lambda x: np.ones_like(x[0])) @@ -231,7 +220,7 @@ def run_computation(parameters, storage=None): _logger.critical(f"-- Solving Stability (Stability) for t = {t:3.2f} --") stable = stability.solve(alpha_lb, eig0=z0, inertia=inertia) - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") plot_AMit_load(history_data, file=f"{prefix}/{_nameExp}_it_load.pdf") diff --git a/playground/nb/JOSS_paper_figures_rayleigh_benchmark.ipynb b/playground/nb/JOSS_paper_figures_rayleigh_benchmark.ipynb new file mode 100644 index 00000000..473f03c0 --- /dev/null +++ b/playground/nb/JOSS_paper_figures_rayleigh_benchmark.ipynb @@ -0,0 +1,5110 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "postproc\n" + ] + } + ], + "source": [ + "import sympy as sp\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import postprocess as pp\n", + "import os\n", + "\n", + "from irrevolutions.utils import eigenspace as eig" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:py.warnings:<>:54: SyntaxWarning: invalid escape sequence '\\#'\n", + "\n", + "WARNING:py.warnings:<>:59: SyntaxWarning: invalid escape sequence '\\p'\n", + "\n", + "WARNING:py.warnings:<>:54: SyntaxWarning: invalid escape sequence '\\#'\n", + "\n", + "WARNING:py.warnings:<>:59: SyntaxWarning: invalid escape sequence '\\p'\n", + "\n", + "WARNING:py.warnings:/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_53684/2705143184.py:54: SyntaxWarning: invalid escape sequence '\\#'\n", + " plt.annotate(f'\\#{count}', datapoint, textcoords=\"offset points\", xytext=(0, -15), ha='center')\n", + "\n", + "WARNING:py.warnings:/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_53684/2705143184.py:59: SyntaxWarning: invalid escape sequence '\\p'\n", + " plt.xlabel('$\\pi^2 a$')\n", + "\n" + ] + } + ], + "source": [ + "import os\n", + "import yaml\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def load_parameters(directory):\n", + " parameters_file = os.path.join(directory, 'parameters.yaml')\n", + " if os.path.exists(parameters_file):\n", + " with open(parameters_file, 'r') as f:\n", + " parameters = yaml.safe_load(f)\n", + " return parameters\n", + " else:\n", + " return None\n", + " \n", + "def load_signature(directory):\n", + " signature_file = os.path.join(directory, 'signature.md5')\n", + " if os.path.exists(signature_file):\n", + " with open(signature_file, 'r') as f:\n", + " signature = yaml.safe_load(f)\n", + " return signature\n", + " else:\n", + " return None\n", + " \n", + "def compute_contour(a_values, bc_square_values):\n", + " a, bcsq = np.meshgrid(a_values, bc_square_values)\n", + " D_values = (np.pi**2 * a / bcsq)**(1/3)\n", + " return a, bcsq, D_values\n", + "\n", + "def plot_phase_space(rootdir):\n", + " successful_points = []\n", + " unsuccessful_points = []\n", + " points_count = {}\n", + "\n", + " for subdir, _, _ in os.walk(rootdir):\n", + " parameters = load_parameters(subdir)\n", + " if parameters is not None:\n", + " a = parameters.get('model', {}).get('a')\n", + " b = parameters.get('model', {}).get('b')\n", + " c = parameters.get('model', {}).get('c')\n", + "\n", + " # Check if the computation is successful based on the existence of mode_shapes_data.npz\n", + " success_file = os.path.join(subdir, 'mode_shapes_data.npz')\n", + " datapoint = (np.pi**2 * a, b*c**2)\n", + " \n", + " if os.path.exists(success_file):\n", + " successful_points.append(datapoint)\n", + " else:\n", + " unsuccessful_points.append(datapoint)\n", + "\n", + " points_count[datapoint] = points_count.get(datapoint, 0) + 1\n", + "\n", + " for datapoint, count in points_count.items():\n", + " # plt.scatter(*datapoint, label=f'Multiplicity: {count}', marker='')\n", + " # plt.scatter(*datapoint, marker='')\n", + " plt.annotate(f'\\#{count}', datapoint, textcoords=\"offset points\", xytext=(0, -15), ha='center')\n", + "\n", + " # Create the plot\n", + " plt.scatter(*zip(*unsuccessful_points), label='Unsuccessful', marker='x')\n", + " plt.scatter(*zip(*successful_points), label='Successful', marker='.', s=200)\n", + " plt.xlabel('$\\pi^2 a$')\n", + " plt.ylabel('$bc^2$')\n", + " plt.legend()\n", + " a_values = np.linspace(0, 100, 100)\n", + " bc_sq_values = np.linspace(0, 100, 100)\n", + " a, bc_sq, D_values = compute_contour(a_values, bc_sq_values)\n", + " plt.contour(bc_sq, a , D_values, levels=5, colors='black', linestyles='dashed')\n", + "\n", + " plt.show()\n", + "\n", + "# Example usage\n", + "# plot_phase_space(dirroot)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File 'time_data.json' not found. Handle this case accordingly.\n" + ] + } + ], + "source": [ + "experiment = '../../test/output/rayleigh-benchmark/MPI-1/bef047fb68f6bc3b5feb6b2f634b15fc'\n", + "experiment = '../../test/output/rayleigh-benchmark/MPI-1/ff9c4acbaf25a77cb9e99342154bed50'\n", + "\n", + "params, data, signature = pp.load_data(experiment)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "modes_data = np.load(os.path.join(experiment, 'mode_shapes_data.npz'), allow_pickle=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "mode = pp.read_mode_data_from_npz(modes_data, time_step=0, num_modes=1, num_points=10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Rayleigh benchmark" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAHBCAYAAACxG4CbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/nElEQVR4nO3de1xU1fo/8M9wV5RJRLkYIXk0IcoLpqKZZopYSsfqaNnxclK/kfVTtIui5+Tte6LLychjaN/UrJOZ3SzsmIaWlxQ1L5iK3RQvJWiIAqKCMvv3x2YmBuay98zsmT2zP+/Xa17IsGZYg8NaPHs961k6QRAEEBERERERkU1+nu4AERERERGRN2DwREREREREJAGDJyIiIiIiIgkYPBEREREREUnA4ImIiIiIiEgCBk9EREREREQSMHgiIiIiIiKSgMETERERERGRBAyeiIiIiIiIJGDwRFRv5cqV0Ol0Zrc2bdpgwIAB+OKLL8za6nQ6zJ071+y+zZs3o0ePHggNDYVOp8Nnn33mvs5LdPnyZcydOxdbtmxp8jXj6z9x4oTb+0VERM7bvXs3RowYgZtuugnBwcGIjIxESkoKnn76aVOb3NxcrFy50qnvo9Pp8NRTT9ltt2XLFuh0OrM5Z+7cudDpdGbtBgwYgAEDBpg+tzVXEXlagKc7QKQ2b7/9Njp37gxBEFBaWorFixdj+PDhyMvLw/DhwwEABQUFuPHGG02PEQQBI0eORKdOnZCXl4fQ0FDccsstnnoJVl2+fBnz5s0DALOJCgDuu+8+FBQUIDo62gM9IyIiZ/z3v/9Feno6BgwYgJdffhnR0dEoKSnB3r178cEHH+DVV18FIAZPERERGD9+vOJ96t69OwoKCpCYmGizXW5urtnntuYqIk9j8ETUSFJSEnr06GH6PC0tDa1atcLq1atNwVPv3r3NHnPmzBmUl5djxIgRuOeee1zSD0EQcPXqVTRr1swlz2dPmzZt0KZNG7d8LyIicq2XX34Z8fHx2LhxIwIC/vjz7uGHH8bLL7/skT6FhYU1mS8tsRdcEakJ0/aI7AgJCUFQUBACAwNN9zVM25s7d65pFWrGjBnQ6XRo3749AGD8+PGmfzdkKW3BmAaxdOlSJCQkIDg4GO+88w4A4IcffsAjjzyCyMhIBAcH46abbsLYsWNRU1MDAPj9998xefJkJCYmokWLFmjbti0GDhyI7du3m57/xIkTpuBo3rx5ptRE49VHa2l7K1asQJcuXRASEoLw8HCMGDECR48eNWszfvx4tGjRAr/88gvuvfdetGjRArGxsXj66adNfSQiIuWcP38eERERZoGTkZ+f+Ode+/btceTIEWzdutU0BxjnqKtXr+Lpp59G165dodfrER4ejpSUFHz++edWv+ebb76JTp06ITg4GImJifjggw/Mvm4pbc+Shml7tuaq7du3Q6fTYfXq1U2e491334VOp8N3331n83sROYsrT0SN1NXV4fr16xAEAWfPnsUrr7yC6upqjB492mL7iRMnokuXLnjggQfw//7f/8Po0aMRHBzs0Pf+7LPPsH37djz//POIiopC27ZtcfDgQdx5552IiIjA/Pnz0bFjR5SUlCAvLw+1tbUIDg5GeXk5AGDOnDmIiorCpUuXsHbtWgwYMACbN2/GgAEDEB0djQ0bNiAtLQ0TJkzAxIkTAcDmalN2djZmzZqFRx55BNnZ2Th//jzmzp2LlJQUfPfdd+jYsaOp7bVr15Ceno4JEybg6aefxrZt27BgwQLo9Xo8//zzDv08iIhImpSUFCxbtgxTpkzBo48+iu7du5td9AOAtWvX4qGHHoJerzelyhnnq5qaGpSXl+OZZ55Bu3btUFtbi02bNuGBBx7A22+/jbFjx5o9V15eHr755hvMnz8foaGhyM3NxSOPPIKAgAA89NBDDr8OW3NVhw4d0K1bN7zxxht45JFHzB63ePFi3HHHHbjjjjsc/t5EkghEJAiCILz99tsCgCa34OBgITc316wtAGHOnDmmz4uLiwUAwiuvvGLWbty4cUJcXFyT7zVnzhyh8a8fAEGv1wvl5eVm9w8cOFC44YYbhHPnzkl+LdevXxeuXbsm3HPPPcKIESNM9//+++9N+m5kfP3FxcWCIAjChQsXhGbNmgn33nuvWbtTp04JwcHBwujRo81eJwDhww8/NGt77733CrfccovkfhMRkWPKysqEO++80zR3BQYGCn369BGys7OFqqoqU7tbb71V6N+/v93nM84jEyZMELp162b2NQBCs2bNhNLSUrP2nTt3Fv70pz+Z7vvmm28EAMI333xjus/S/Ne/f3+zPkmZqw4cOGC6b8+ePQIA4Z133rH7uoicxbQ9okbeffddfPfdd/juu+/w5ZdfYty4cXjyySexePFixb/3wIED0apVK9Pnly9fxtatWzFy5Ei7+5GWLl2K7t27IyQkBAEBAQgMDMTmzZubpNhJVVBQgCtXrjTZVBwbG4uBAwdi8+bNZvfrdDrTnjCj22+/HSdPnnTo+xMRkXStW7fG9u3b8d133+HFF1/E/fffj59++glZWVm47bbbUFZWZvc5PvroI/Tt2xctWrQwzSPLly+3OI/cc889iIyMNH3u7++PUaNG4ZdffsGvv/7q0tfW0COPPIK2bdvijTfeMN3373//G23atMGoUaMU+75ERgyeiBpJSEhAjx490KNHD6SlpeHNN99EamoqnnvuOVy8eFHR79240t2FCxdQV1dnVtnPkoULF+KJJ55Ar1698Mknn2DXrl347rvvkJaWhitXrjjUl/Pnz1vsEwDExMSYvm7UvHlzhISEmN0XHByMq1evOvT9iYhIvh49emDGjBn46KOPcObMGUybNg0nTpywWzTi008/xciRI9GuXTu89957KCgowHfffYfHHnvM4jgeFRVl9b7G84MrBQcH4/HHH8f777+Pixcv4vfff8eHH36IiRMnOpwyTyQH9zwRSXD77bdj48aN+Omnn9CzZ0/JjwsJCbFYMMHaFcDGRSTCw8Ph7+9v9yree++9hwEDBmDJkiVm91dVVUnua2OtW7cGAJSUlDT52pkzZxAREeHwcxMRkfICAwMxZ84cvPbaazh8+LDNtu+99x7i4+OxZs0as7nIWtGf0tJSq/cZ5w+lPPHEE3jxxRexYsUKXL16FdevX0dGRoai35PIiCtPRBIUFhYCsF1cwZL27dvj3LlzOHv2rOm+2tpabNy4UdLjmzVrhv79++Ojjz6ymXKh0+maXHH7/vvvUVBQYHafsY2U1aiUlBQ0a9YM7733ntn9v/76K77++muXlWQnIiLnWbrQBcCUchcTEwNAnAcszQE6nQ5BQUFmgVNpaanVanubN282m9vq6uqwZs0adOjQwW62hD325qro6Gj85S9/QW5uLpYuXYrhw4fjpptucup7EknFlSeiRg4fPozr168DEFMPPv30U+Tn52PEiBGIj4+X9VyjRo3C888/j4cffhjPPvssrl69ikWLFqGurk7ycyxcuBB33nknevXqhZkzZ+JPf/oTzp49i7y8PLz55pto2bIlhg0bhgULFmDOnDno378/fvzxR8yfPx/x8fGm1wIALVu2RFxcHD7//HPcc889CA8PR0REhMVy6jfccAP+8Y9/YNasWRg7diweeeQRnD9/HvPmzUNISAjmzJkj62dBRETKGTJkCG688UYMHz4cnTt3hsFgQGFhIV599VW0aNECU6dOBQDcdttt+OCDD7BmzRrcfPPNCAkJwW233YZhw4bh008/xeTJk/HQQw/h9OnTWLBgAaKjo/Hzzz83+X4REREYOHAg/vGPf5iq7f3www9NypU7QspcNXXqVPTq1QuAeLg9kdt4umIFkVpYqran1+uFrl27CgsXLhSuXr1qaguJ1fYEQRDWr18vdO3aVWjWrJlw8803C4sXL7Zabe/JJ5+02LeioiLhL3/5i9C6dWshKChIuOmmm4Tx48eb+lRTUyM888wzQrt27YSQkBChe/fuwmeffWax2t+mTZuEbt26CcHBwQIAYdy4cWav31htz2jZsmXC7bffLgQFBQl6vV64//77hSNHjpi1GTdunBAaGtqk35ZeJxERud6aNWuE0aNHCx07dhRatGghBAYGCjfddJMwZswYoaioyNTuxIkTQmpqqtCyZUsBgNkc8eKLLwrt27cXgoODhYSEBOGtt96yOV/l5uYKHTp0EAIDA4XOnTsLq1atMmvnaLU9QbA+VzXUvn17ISEhQd4PishJOkEQBLdHbEREREREDvr+++/RpUsXvPHGG5g8ebKnu0MawuCJiIiIiLzCsWPHcPLkScyaNQunTp3CL7/8gubNm3u6W6QhLBhBRERERF5hwYIFGDx4MC5duoSPPvqIgRO5HVeeiIiIiIiIJODKExERERERkQQMnoiIiIiIiCRg8ERERERERCSBJg/JNRgMOHPmDFq2bGl2kjYRESlPEARUVVUhJiYGfn68hmfEuYmIyDPkzEuaDJ7OnDmD2NhYT3eDiEjTTp8+jRtvvNHT3VANzk1ERJ4lZV7SZPDUsmVLAOIPKCwszMO9ISLSlsrKSsTGxprGYhJxbiIi8gw585ImgydjOkRYWBgnKCIiD2FqmjnOTUREniVlXmKyORERERERkQQMnoiIiIiIiCRg8ERERERERCQBgyciIiIiIiIJGDwRERERERFJwOCJiIiokW3btmH48OGIiYmBTqfDZ599JvmxO3bsQEBAALp27apY/4iIyDMYPBERETVSXV2NLl26YPHixbIeV1FRgbFjx+Kee+5RqGdERORJmjzniYiIyJahQ4di6NChsh/3+OOPY/To0fD395e1WkVERN6BK09EREQu8Pbbb+PYsWOYM2eOpPY1NTWorKw0uxERkboxeCIiInLSzz//jJkzZ2LVqlUICJCW1JGdnQ29Xm+6xcbGKtxLIiJyFtP2iNTIUAec3AlcOgs0jwB0OqD6d/N/t4gEYnsBp3c3bdciEojrA/j5e/qVEPm8uro6jB49GvPmzUOnTp0kPy4rKwvTp083fV5ZWckAytdJHds5fhOpFoMnIrUwTqo/rge+/xC4XGb/MTo/QDBY/lrz1sDto4Bb7uVETKSgqqoq7N27FwcOHMBTTz0FADAYDBAEAQEBAfjqq68wcODAJo8LDg5GcHCwu7tL7ubI2M7xm0i1GDwReZIjk2pD1gInALh8HtiVK944ERMpJiwsDIcOHTK7Lzc3F19//TU+/vhjxMfHe6hn5BENV5fOHwP2rwQqz8h7jobjd1gMkPYSkJiuSHeJSB4GT0Tu5IpJ1REMpIhkuXTpEn755RfT58XFxSgsLER4eDhuuukmZGVl4bfffsO7774LPz8/JCUlmT2+bdu2CAkJaXI/+biiPGDDDNeO65VngA/HAL0nc9wmUgEGT0RKc3Z1ydUaBlIto4HkvwGtOzDPnqiBvXv34u677zZ9btybNG7cOKxcuRIlJSU4deqUp7pHamOoA7b9C9jygnLfgxfAiFRBJwiC4OlOuFtlZSX0ej0qKioQFhbm6e6QL1PiKqSSmB5CbsAx2DL+XLxUUR7w5XNAVYn7vzfHbCKXkDP+slQ5kRIMdcCWl8RUC28JnIA/0kO2vCS+BiIisq4oD/hwrGcCJ4BjNpEHMHgicrWiPOC1W5VN31DalheAnCTxtRARUVPXa4EvpgFQQQIPx2wit2HwROQqDVebPHUV0pV4RZOIyLKiPGBhZ8/vYW2o8oy4CsYAikhRDJ6IXMFTq006N/wK84omEZGo4UWyy+c93RsLBHE17HqtpztC5LNYbY/IGUpWWGoeAdw+Eug4xPop9LG9gNO7zU+r/2mD66v6GVehBswC7nqG1Z2ISHtcVRjC1tjuivH7chmwMAEY9hoLSRApgNX2WNGIHKVEhSXjpOpsCVoly6OzuhM5iWOwZfy5qJixMIQj+5taxgDJ46UfCdFw/N6V62iPAeiAke9yrCaSQM74y+CJExTJ4bJJrZ7cSdURSgVSPLCRHMQx2DL+XFTKUCemLjtSOdXZ1Xpnj7toHgFMPwoEBDn2eCKNYPBkBycocoirzmxy1eqSI4yB1KWzwPljwL63nV8540oUycQx2DL+XFSqeDvwzjB5j2ke4bq0uYYXwA6uAa7I3Gvlyr4Q+SgGT3ZwgiLZnEnZaEhte4ZcsmdLJ35geghJxDHYMv5cVOr7D4FPJ0lvr+RqjzNjNrMFiKziIblEruSKszzC2gEj/wMMmKGuScvPX+zTyP8ALaMdfBIBrPBERD6pKA/YMFPGA3TiKo9SaXINx+zmreU9dleuuILG6qlETmHwRGSLK87yGDALyDyk7lWZxHRg2hGxr44yVnjipExEvsCYcSC1JHlYO/etwCemA9N/EFe55Kos4XlQRE5g8ERkjdyJszG1rjZZ44pVqMtlnJSJyPsZ6sQ9rlIzDjxxkSwgSFzlMqZOS1b/mjbM5AHoRA5g8ERkibOpet6w2mSN06tQTOEjIi9mqAN2L5VWHKh5hGcvkiWmi6tdclP4IACVv4nFMIhIFgZPRI05k6rnbatN1jRchQqLkf94pvARkTcqyhP3BG2UePEoLdvzF8mcSeH7eDzHaSKZGDwRNeRoql7vycC4L7x3tcmaxHQg87D42npPlvdYpvARkTcxjv9yjqNwuNCOi5ml8MlI47tygeM0kUwMnoiMHEnVM6ZspGUD8f28e7XJGj9/8bWlZTtQ4YkpfETkBeTucYJOzDSI66Nkr+QxpvCFyQ3oOE4TycHgiQhwLFXPeJaHL6002eNIeghT+IhI7U7ulLHiVL+yk/ai+i6YOZotwHGaSDIGT0QOpeopfJaHmjlS4YkpfESkZlUl0tuGxaj7UPDG2QLNbpD2OI7TRJIweCJtczhVT8UTpzs4VOGJqSFEpEJyDsId8oJ37W1NTAf+8q6MB3CcJrKHwRNpF1P1nMMUPiLydpIzD+r3OPXKUF+qnj3t76yvmioxW4DjNJFNDJ5Im5iq5xpM4SMibyW5SISK9zhJ4ecPpL0k7zEcp4msYvBE2mKoA45tAdZNAVP1XMTRFL51U4DjW3nCPRF5htQiEc1be//4z1RrIpdh8ETaYTz88D/3i2dbSMVUPfscSeG7cgF4N138P+HVTSJyt0tnpbVTw0G4rsBUayKXYPBE2uDI4YcAmKongyMpfABQWcL0ECJyv9A20tqp5SBcV2CqNZHTGDyR75N9+GE9purJ52hqCCBWu2IKHxG5Q1EesPZxO41UeBCuKzg0ToNjNFE9Bk/k+058K3/Fial6jnMkNQQCUPkbULxdsW4REQH4IxPB5tlOXl4kwh7Z43T9GL17KQMo0jwGT+TbivKAj8bKeIAOTNVzAbPUEBnpIR+PZ2oIESlHaiaC2g/CdQVHUvg2zuI+VdI8Bk/ku4xXF69clP4YLUyY7mJMDQmTsV/gygXm1hORcqRW2Ls/VxvzgCMpfNynShrH4Il8k9x9Ts1aAWPzvOvkeG+QmA5kHgbGfC7+jKVibj0RKUFqhT05h6d7O0dS+ACO06RZDJ7IN8na56QDhi8Cbu7vm7ntnubnD3QYIP6MJaWHcP8TESmkRaRr2/kK2anWHKdJuxg8ke+Rs8+pWTjT9NzFmB7S7AZp7bn/iYhcLbaXnRUWH62wJ4UjqdYcp0mDGDyRb5G7z+mhtxk4uVNiOvCXd6W15f4nInKlojxgURcbKXk+XmFPCmOq9ZAXpLXnOE0axOCJfIesfU71Vxfj+yndK2qs/Z1iYQ6pFZ6YV09EzpJyUDoLBon8/IFeGRyniaxg8ES+Q+55Tlq+uuhJfv5A2ksSGzOvnoicJOXCWvMIYEohAycjjtNEVjF4It/AfU7ehfufiMhdpJQnv1wGnN7tnv54C47TRBYxeCLvx31O3on7n4jIHaSWJ5faTks4ThM1weCJvBv3OXk37n8iIqWxPLlzZI3TAvDFNOB6rdK9IvIYBk/k3aSeFm/EfU7q4khe/cmdinaJiHwMy5M7R9Y4DTEFcmECV6DIZzF4Iu9WVSKtHfc5qZfcvHqp/+dERCxP7hpyx+nLZUzhI5/F4Im8V1GemMYlBfc5qZucvPoNWZyQSXHbtm3D8OHDERMTA51Oh88++8xm+08//RSDBw9GmzZtEBYWhpSUFGzcuNE9nSXLWJ7cteSM00ZMtSYfxOCJvJNxUrx83k5D7nPyGlLz6i+f5xVNUlx1dTW6dOmCxYsXS2q/bds2DB48GOvXr8e+fftw9913Y/jw4Thw4IDCPSWLWJ5cGXL3PzHVmnxQgKc7QCSb5CIRTMfwKsa8+g/tlZwXAOjEK5qd7+P/LSli6NChGDp0qOT2OTk5Zp+/8MIL+Pzzz7Fu3Tp069bNxb0ju+SUJ+fFNekkj9MNMNWafAxXnsi7GOqA3UulFYlo3prpGN7GmFffvLWdhvVXNHcvZUoIqZLBYEBVVRXCw8M93RVtYnly5Ugep+sx1Zp8DIMn8h5FeUBOErBxlrT2adkMnLxRYrq4WijFxlnie4ITM6nMq6++iurqaowcOdJqm5qaGlRWVprdyEVYnlxZienA9B/sVDGsx1Rr8jGKB0+5ubmIj49HSEgIkpOTsX37dqttS0pKMHr0aNxyyy3w8/NDZmZmkzYrV66ETqdrcrt69aqCr4I8TsrG38ZaRivXH1KWnP+7yhJOzKQqq1evxty5c7FmzRq0bdvWarvs7Gzo9XrTLTY21o299HFxfer35ljD8uROCwgChr0G+/uf6lPsWTyCfISiwdOaNWuQmZmJ2bNn48CBA+jXrx+GDh2KU6dOWWxfU1ODNm3aYPbs2ejSpYvV5w0LC0NJSYnZLSQkRKmXQZ4m6yBcgJOiDzD94SNxUzLAiZlUYc2aNZgwYQI+/PBDDBo0yGbbrKwsVFRUmG6nT592Uy99nKFO3PPU2VrmAffDugxTrUmDFA2eFi5ciAkTJmDixIlISEhATk4OYmNjsWTJEovt27dvj9dffx1jx46FXq+3+rw6nQ5RUVFmN/Jhsg7C5aToE8wOZWRVJ/IOq1evxvjx4/H+++/jvvvus9s+ODgYYWFhZjdykjG9+51hwJ6lltuwPLlrMdWaNEax4Km2thb79u1Damqq2f2pqanYudO5P3AuXbqEuLg43HjjjRg2bBhLwfo6OZV6OCn6DuMVzTAZKXys6kQucunSJRQWFqKwsBAAUFxcjMLCQlPmRFZWFsaO/aPi2OrVqzF27Fi8+uqr6N27N0pLS1FaWoqKigpPdF+b7KV3954MjPsCyDzEOcLVmGpNGqJY8FRWVoa6ujpERppvxoyMjERpaanDz9u5c2esXLkSeXl5WL16NUJCQtC3b1/8/PPPVh/DTbleTM5BuENe4KToaxLTgczD4v+tFKzqRC6yd+9edOvWzVRmfPr06ejWrRuef/55AOIe3YYp6G+++SauX7+OJ598EtHR0abb1KlTPdJ/zbGb3q0Dij4XU4KZleB6TLUmDVH8nCedzvwXSRCEJvfJ0bt3b/Tu3dv0ed++fdG9e3f8+9//xqJFiyw+Jjs7G/PmzXP4e5KHGK8iSjnPKSwG6JXBSdEX+fmL/7cFi8UrlrbeD8aqTlx9JCcNGDAAgmD9vbZy5Uqzz7ds2aJsh8g2u+ndDVJ7ea6T65md/6SD/Xm7/v+jeDvQYYDy/SNyIcVWniIiIuDv799klencuXNNVqOc4efnhzvuuMPmyhM35XohHoRLDZntgbKFVzSJNInnOnmeI6nWH49ntgB5HcWCp6CgICQnJyM/P9/s/vz8fPTp47oqaIIgoLCwENHR1n9ZuSnXC0ktEsGDcLVDblUnFo8g0g6e66QOclOtr1zg/ifyOopW25s+fTqWLVuGFStW4OjRo5g2bRpOnTqFjIwMAE033AIwbdC9dOkSfv/9dxQWFqKoqMj09Xnz5mHjxo04fvw4CgsLMWHCBBQWFpqek3yE1I3/PAhXW+RUdWLxCCLtsLvnhkdYuI0x1VryHigwW4C8iqJ7nkaNGoXz589j/vz5KCkpQVJSEtavX4+4uDgATTfcAjBtzgWAffv24f3330dcXBxOnDgBALh48SL+53/+B6WlpdDr9ejWrRu2bduGnj17KvlSyJ3kFIngQbjaI/X/fEMWEBDC4JpIC8z23DTG9G63s/n/0Rj3P5F30Qm2dsT6qMrKSuj1elRUVDCFT23kFonIPMTJUGsMdeI5IfaKRxj/YGJap+pwDLaMPxcnGA/G3bkI+Pkr86+FtRMDJ44D7leUB6z7f8CVi/bbNmsFDF/E/yfyCDnjr6Jpe0SysEgEScHiEUTUUMODcY2BU0AIz3VSg8R04C/vSmvL/U/kJRg8kXqwSARJxeIRRARYPxj3eg2wa4n4BzkvsnlW+zu5/4l8CoMnUg8WiSA5WDyCSNtsZitw5Vk1JGcLALzgRd6AwROpA4tEkCPkFI9gKgiRb5FzMC55ljFboNkN0trzghepGIMn8jxj2sXl83YastQsNWK3PHG9y+eZS0/ka3gwrneRs/+JF7xIxRg8kWexSAQ5g8UjiLSLB+N6H6n7n3jBi1SMwRN5FotEkLNYPIJIm3gwrvfhBS/yAQyeyLNYJIJcgcUjiLTH9Ie4pcwFZiuoFi94kZdj8ESewyIR5EosHkGkPYnpQNKDTe8Pi2G2gprxghd5sQBPd4A0ylgkQspep7AYpl2QfcYUnsoS2HxfGXPp+YcVkXcz1ImrEqd2i5/3mQJEdxH3OMX14YqT2sm54BUQwvGaVIMrT+R+LBJBSmAuPZF2FOUBOUnAO8OAyl/F+w59CPgHAfH9OGd4A1ZLJS/F4Incj0UiSCnMpSfyfcbMhcbzSNVZ/pHtTXjBi7wUgydyP6lnbrBIBDlCTi49z38h8i42Mxf4R7bXkXvBa/dS/t+SxzF4Ivcy1En/g5VFIshRUt87l85yIibyJnYzF7iq7HXkXPDaOEtM1+TqInkQgydyH2OO+sZZdhrybA5yktRcek7ERN5F6sU3rip7FzkXSytLmJ5JHsXgidzDWo56EywSQS5glktvJ4DiREzkPVpEurYdqYPUC14AmJ5JnsbgiZQnuboeeDYHuY4xlz7M3hVNTsREXsPuH9nMXPBKci54AWB6JnkSgydSntTqekNeADIPMXAi10lMBzIPi+8tmzgRE3kF0x/Zli7GMXPBq0m+4NUAD9AlD2DwRMqTmnveIpITHrmen7/0FB7ukyBSN0Md0KwV0MLCH9jMXPB+ki941duQxZRrcrsAT3eANCC0jbR2zFEnpUh9bzWPULYfROS4ojwxBbxhJkNIK6DrI8At94qperwA5/38/IFeGUDBYnFPqq2Uf+MBugyayY248kTKKsoD1j5upxFz1ElhUjcjf/4Er2ISqZG1okNXLwK7lgBXLjBw8iU8QJdUjMETKcc42dnMSWaOOrmB1M3IrLxHpD48GFeb5B6gyz2r5CYMnkgZUivsMUed3MU4EbeMstGIf4gRqQ4PxtUuOQfosngEuQmDJ1KG1Ap79+cycCL3SUwHRrxppxH/ECNSFR6Mq21SD9Bl8QhyEwZPpAypk9jlMmX7QdRY9e/S2vEPMSJ14MG42iZ1z6qxeAQDKFIYgydSBivskVqx8h6Rd+HBuNrG4hGkMgyeyPVYYY/UjJX3iLwLD8YlFo8gFWHwRK7FCnukdqy8R+R9EtOBzsOa3s+iQ9rB4hGkEjwkl1xHToW9tBc52ZHnGK9ifvmcjUlWAKATU0A638dAn8jTLpwQP/Z7BmibIKbg8mBcbZFTPCIghH9nkCK48kSuwwp75E1YeY/Ie1T8Bpw9DEAHpDwJ3PYQEN+PgZPWsHgEqQCDJ3IdVtgjb8PKe0TqZ6gDduWK/47oBIToPdsf8hwWjyAVYPBErsMKe+RtWHmPSN2K8oCcJKBgsfh52Y/i51xR0C4WjyAPY/BErsEKe+SNWHmPSL2MBYgap4OzmAuxeAR5EIMnch4r7JG3YuU9InWyWYCIKVkEecUjOHaTCzF4IufIqbDHcrKkRsYUkJZRNhrxjzUit7JbgIgpWZrH4hHkIQyeyDmssEe+gJX3qJFt27Zh+PDhiImJgU6nw2effWb3MVu3bkVycjJCQkJw8803Y+nSpcp31FdJLdLCYi7axeIR5CEMnsg5rLBHvoKV96iB6upqdOnSBYsXL5bUvri4GPfeey/69euHAwcOYNasWZgyZQo++eQThXvqo6QWc2EBIm1j8QjyAB6SS85hhT3yFay8Rw0MHToUQ4cOldx+6dKluOmmm5CTkwMASEhIwN69e/Gvf/0LDz74oEK99GHGlCyrmQ068essQESJ6cD1q8Cnk+y35cUvcgGuPJHjWGGPfAkr75ETCgoKkJqaanbfkCFDsHfvXly7ds1DvfJiNlOyWICIGpFaPOLSWabukdMYPJFjWGGPfA0r75ETSktLERlpvnoZGRmJ69evo6zMctpyTU0NKisrzW7UQMdUwC+o6f0sQESNSb34tXEWzwkjpzF4IvlYYY98FSvvkRN0OvM/3ARBsHi/UXZ2NvR6vekWGxureB+9yskdgKEWaBEFjFsHPLgcGPcFkHmI8wqZk3rxC+AFMHIagyeSjxX2yJex8h45ICoqCqWlpWb3nTt3DgEBAWjd2vJm9qysLFRUVJhup0+fdkdX1c9QBxRvBwpyxc//dA8Qfxdw20NAfD9mMpBlxotfYfZS+HgBjJzD4InkY4U98nWsvEcypaSkID8/3+y+r776Cj169EBgYKDFxwQHByMsLMzspnlFeWJa1TvDgGObxPt+/JKrBCRNYjqQeRgY8oKdhrwARo5j8ETyGOqk/8HICnvkraS+d7n52GddunQJhYWFKCwsBCCWIi8sLMSpU6cAiKtGY8eONbXPyMjAyZMnMX36dBw9ehQrVqzA8uXL8cwzz3ii+97JuJe2cWbDlQtMsyLp/Pylj+E2920TWcbgiaQzXhHcOMtOQ1bYIy/Hzceat3fvXnTr1g3dunUDAEyfPh3dunXD888/DwAoKSkxBVIAEB8fj/Xr12PLli3o2rUrFixYgEWLFrFMuVQ299IyzYpkkho8bcji+E2y6QTjjlYNqayshF6vR0VFBdMkpDJeEbRXJML4xyYLRZC3M73nAdvve77n5eIYbJmmfy7F28VUPXvGfSHueyKyxVAnXtiqLAHHb5JCzvjLlSeyT2p1PYAV9sh3cPMxkftITQfnPkOSwuY5YQ1x/Cb5GDyRfVKr6w15gSVkybdw8zGRe0hNs+JeWpLKeAGsueVql3/g+E3yMHgi++QUiGAJWfI1cjYf86o4kWPs7jPkXlpyQGI6kPaitLYsHkESMXgi+3hFkLSOvwNEyrKZZlUfUKW9yAt0JF9Le6nX9Vg8giRi8ET2xfYCmkfYaMArguTjpFTfax4h/q4QkWMS04EHlzW9n3tpyRlSq6dePs+S+CQJgyeyrSgPWNTFxoG3vCJIGmB2VdzKBHy5TPxd4cRL5Djj/pRmrYEHlonV9biXlpzB4hHkYgyeyDprBxY2xCuCpBVSqu9VlvDKJZEzireJHzsOBm7/i1iWnBfmyFksHkEuxOCJLJNSnrx5BDClkIETaUdiOjDloI00Vl65JHKIoU486+nIWvFznuVErianeASL/5ANDJ7IMinlyS+XAad3u6c/RGpxereNNFaAVy6JZCrKEw80fWcYcKFYvG/zfK7gkutJLR5hc583aR2DJ7KMBxYSWcbfDSLXsZYefukcU2DJ9aQWj/j8Cb73yCoGT2RZaBtp7ViambRG6nueVy6JbLOZHs4UWFKAlOI/APevkk2KB0+5ubmIj49HSEgIkpOTsX37dqttS0pKMHr0aNxyyy3w8/NDZmamxXaffPIJEhMTERwcjMTERKxdu1ah3mtUUR6w9nE7jVienDSKVy6JXMNuejhTYEkBxuIRLaNsNGLwTtYpGjytWbMGmZmZmD17Ng4cOIB+/fph6NChOHXqlMX2NTU1aNOmDWbPno0uXbpYbFNQUIBRo0ZhzJgxOHjwIMaMGYORI0di927uvXEJYwqFzZO2WZ6cNIxXLolcgymw5CmJ6cCIN+00YvBOlikaPC1cuBATJkzAxIkTkZCQgJycHMTGxmLJkiUW27dv3x6vv/46xo4dC71eb7FNTk4OBg8ejKysLHTu3BlZWVm45557kJOTo+Ar0QgpFfYAlicn4pVLIudJTYFlejgpofp3ae0YvFMjigVPtbW12LdvH1JTU83uT01Nxc6djkfxBQUFTZ5zyJAhTj0n1ZNSYQ8A7s9l4ETEK5dEzrGbAsv0cFIQ96+SgxQLnsrKylBXV4fISPM3Z2RkJEpLSx1+3tLSUtnPWVNTg8rKSrMbWSD16orNMs1EGsIrl0SOM0uBbYzp4aQw7l8lByleMEKnM39TCoLQ5D6lnzM7Oxt6vd50i42Nder7+yymUBDJw98ZIuckpgPDFja9n+nhpDTuXyUHKRY8RUREwN/fv8mK0Llz55qsHMkRFRUl+zmzsrJQUVFhup0+fdrh7+/TYnvZWZ5mCgWRGSlXLptHiL9bRGRZQIj4MaIT8OByYNwXQOYhBk6kPO5fJQcoFjwFBQUhOTkZ+fn5Zvfn5+ejTx/H//hOSUlp8pxfffWVzecMDg5GWFiY2Y0aKcoDFnWxkZLHFAqiJqRcubxcJv5u8aolkWXF28SPnYcBtz0ExPfjPEPuw/2rJJOiaXvTp0/HsmXLsGLFChw9ehTTpk3DqVOnkJGRAUBcERo7dqzZYwoLC1FYWIhLly7h999/R2FhIYqKikxfnzp1Kr766iu89NJL+OGHH/DSSy9h06ZNVs+EIgmsnfDeEFMoiCwzXrkMi7behmkfRE0Z6sTA6ccvxc/j+nq2P6RdUvevFm/l6hNBJwiCnbrUzsnNzcXLL7+MkpISJCUl4bXXXsNdd90FABg/fjxOnDiBLVu2/NEhC3uX4uLicOLECdPnH3/8Mf7+97/j+PHj6NChA/75z3/igQcekNynyspK6PV6VFRUcBXKUAfkJNkOnJpHANOPAgFB7usXkbe5XgssTLC9ehsWI6YjafyqOsdgyzT1cynKE4/GaDj3tIwGhr7Mi3TkfsXbgXeGSWsbFiNmHPB96lPkjL+KB09qpKkJyh6pA8a4L8RUCiKyjL9LknEMtkwzPxdjtkOTMwXrL54yy4HczXQhuQR2z7rk+9QnyRl/Fa+2RyrHE96JXIO/S0T22TyMnRvzyUOkVt4DwPcpMXjSOpZaJnIN/i4R2Wf3MHZuzCcPkbJ/1YTvUy1j8KR1LE9O5BosW05kH1doSc0S04HMw0C/Z6W15/tUkxg8aRnLkxO5DsuWE9nHFVpSOz9/4Ob+0travPhMvorBk1axPDmR67FsOZFtdldome1AKiAlkwAAPn+CY7kGMXjSIpsbdus1jwCmFDJwIpIrMR2YctDGFUluNiYNM1uhbYzZDqQSUgtI8GKYJjF40iK7G3Yhphed3u2e/hD5mtO7baTDAtxsTJqWmA7c92rT+5ntQGpizCRoGWWjES+GaVGApztAHsANu0TK4u8YkW1BoeLHiE5A/xniHqe4PlxxInVJTAdC9MC7tgL6BhfDNH6Gn1YweNIibtglUhZ/x4hsM666dhoC3PaQZ/tCZEv179La8WKYZjBtT2sMdeKtWSsbjbhhl8gpUjYbN2sFCAamepA2nSoQP97EeYZUTupFLlbe0wwGT1pSlAfkJAH/uR+4csFKI27YJXKalM3GVy6IqSA5SdxsTNpSXQaU/ST++6benu0LkT2svEeNMHjSCimlyQFu2CVyFamn1bNaE2mJoQ7Yu1z8tz5W3E9CpGasvEeNMHjSAimlyZu1AsbmAZmHGDgRuYrxtPoxn9tIlWW1JtIIY/bDNy+In1ec5soreQdW3qMGGDxpgZTS5FcuADo/puoRuZqfv3izmioLsHQ5+Txr2Q+8Wk/eIjEdGPGmnUYcy7WAwZMWsGwykWfxd5C0zGb2A6/Wkxdh5T0CgydtYNlkIs/i7yBpmd3sB16tJy/BynsEBk/aENvLzi8yS5MTKUpKtabmEeLvKpED6gwCCo6dx+eFv6Hg2HnUGWzscXU3rrySr2DlPQIPyfV9RXliusTlMisNWJqcSHHGak0fjoX4O2fhD9vLZcCiLmI7Fm0hGTYcLsG8dUUoqbhqui88NBAjurbDwM6RgA4ou1SDti1D0DM+HP5+dv7wczWuvJKvkDKWA3/s5WP1Yp/ElSdfJqU8OUuTE7mHlNLl3DyvKrm5uYiPj0dISAiSk5Oxfft2m+1XrVqFLl26oHnz5oiOjsbf/vY3nD9/XtE+bjhcgife228WOAFAefU1LN9xAo8u341Hl+3G1A8K8chbu3DnS19jw+ESRfvUhN2r9cx+IC/Cynuax+DJV0kpT948AphSyMCJyF0S04EpB22k0XLCVYs1a9YgMzMTs2fPxoEDB9CvXz8MHToUp06dstj+22+/xdixYzFhwgQcOXIEH330Eb777jtMnDhRsT7WGQTMW1dka5RvoqTiKjLe248F6464L73PdE6Ope/F7AfyQqy8p2kMnnyVlPLkl8uA07vd0x8iEp3ebSONFuCEqw4LFy7EhAkTMHHiRCQkJCAnJwexsbFYsmSJxfa7du1C+/btMWXKFMTHx+POO+/E448/jr179yrWxz3F5U1WnKRavuOEe1eiEtOBLo80vZ/ZD+StWHlPsxg8+Spu0CVSJ/5uql5tbS327duH1NRUs/tTU1Oxc6floLZPnz749ddfsX79egiCgLNnz+Ljjz/GfffdZ/X71NTUoLKy0uwmx7kqxwKnhowrUa9v+kn5VaiaKvFj8t+AB5cD477gwezkvVh5T7MYPPkqbtAlUif+bqpeWVkZ6urqEBlp/n8QGRmJ0tJSi4/p06cPVq1ahVGjRiEoKAhRUVG44YYb8O9//9vq98nOzoZerzfdYmNjZfWzbcsQWe1teW3Tz+j7ooKrUIIAnCoQ/911NHDbQ0B8P6bqkfdi5T3NYvDkq7hBl0id+LvpNXQ68/8jQRCa3GdUVFSEKVOm4Pnnn8e+ffuwYcMGFBcXIyMjw+rzZ2VloaKiwnQ7ffq0rP71jA9HtD7E3p9ukpVWKrgKVfYTcPk8EBACRHd17XMTeYJpLx9gM4BiISCfw+DJl3UfD27QJVIZuxOuAHQf584eUSMRERHw9/dvssp07ty5JqtRRtnZ2ejbty+effZZ3H777RgyZAhyc3OxYsUKlJRYXs0JDg5GWFiY2U0Ofz8d5gxPlPUYKVy+CmWoA/a/K/679Z8475DvYOU9TWLw5IuK8oCcJGDLC5a/zg26RJ5lr2z5lhfE32FeqfSIoKAgJCcnIz8/3+z+/Px89OljeUXw8uXL8PMzn1L9/cUgQRCU20uUlhSNJX/tjmi961L4AHEV6on39jsfQBnno4LF4udnD/O9Tb6Flfc0h8GTr7F3ttOAWdygS6QGielA5mHxd9ISpnp41PTp07Fs2TKsWLECR48exbRp03Dq1ClTGl5WVhbGjh1raj98+HB8+umnWLJkCY4fP44dO3ZgypQp6NmzJ2JiYhTta1pSNL6dMRCrJ/XGY33bIzw0yCXPKwCYtfYQaq8bHHsCa/MR39vka1h5T1MCPN0BciG7ZzvpgP3vAHc9485eEZEt+1da+YIAQCemenS+j6lObjZq1CicP38e8+fPR0lJCZKSkrB+/XrExcUBAEpKSszOfBo/fjyqqqqwePFiPP3007jhhhswcOBAvPTSS9a+hUv5++mQ0qE1Ujq0xuz7ErGnuBznqq4iIjQY0AGbj57Fih0nZD9vefU19M7ejBdGJCEtycYBz43ZnI/43iYfI7XAz6Wz4u8G3/NeTScomU+gUpWVldDr9aioqJCdY65qxduBd4bZbzfuC7HKERF5lkZ/Z312DHaS0j+XDYdLMDfvCEora2Q/VgdgyV+7Sw+gNPreJo0y1InpqJUlsH4Bu15YjLjvlRlAqiJn/GXankx1BgEFx87j88LfUHDsPGqvG8w+d8tp7dbw/Bgi78LfWXKjtKRo7Jh5D6YN6uTQ4+etK5I+x/G9TVoitfIewLRVH8C0PRk2HC7BvHVFZie6++mAhnNJeGggRnRth4GdIwEdUHapxpQ2UXapBm1bhqBnfDj8/VxVXLYBnh9D5F34O0tu5u+nw9RBHXFLVAtZq1ACxAN1V+4oxvi+8fbnML63SWuMhYA2zLC+7xwA01a9H9P2JKZGbDhcgife229vMVYSY4A1KDEKyXGtsO/kBZyruup8YHW9FliYAFwus9JAJy4XZx7iLyuRGkhJ9WgeAUw/CgS4pgiAGjBtzzJ3/1zqDAIWf/0LXtv0k6zHRetDMGd4ou0UPrvvbc5H5KMMdcDupcBGK8WAGmLaqmrIGX+58iRBnUHAvHVFLgmcAHED7vIdJ7B8xwlJK1eSgqqiPPFqh63ACeDZTkRqYkz1+HAsxN9RC6PM5TJgURfmyJPLNVyFmrX2EMqrr0l6XGmFWMbc5h4o03t7jIUvcj4iH+bnL6+ABHkdBk8S7CkuN0vVc6XG6eMNA6uGGq5WNQmkjOVgbYV3YTHiRMU/vojURUqqhzFHnuezkQLSkqIxsHMkemdvRnl1rd32xplm1tpDGNg5EkEBVrZPJ6YDtz8MfP+B+f2cj8jXSQ2emkco2w9SBAtGSHCuSpnASQ5jUPXIW7twxz/zsWDdEbFAxfXrdsqTQ/zlnFLIiYpIrRLTgSkHbUykPKGelBUU4IcXRiRBB7vb3U2MZcxtHqRbe0n8mPw34MHlYpoSzxokXxfXR7xIYO+36fMnWDjCCzF4kqBtS9ee3O6shoHU/3txsZ2NiRDTfk7vdk/niMgxp3fbSLsFeEI9KS0tKRpL/todUXrpc155dS2eeG+/5QBKEIBfvxP/fftI4LaHxP0dTNUjXye1+h4r73klBk8S9IwPR7Q+RPLVOHcKuMxTrYl8Aks7kwqkJUXj2xkD8Y/7EmQ9zmIZ84rT4vvVLwCI7uq6ThJ5A2NKdssoG42YVeCNGDxJ4O+nw5zhiQCkpzO4yzncIKldXWhbZTtCRM5haWdSCX8/Hcb3jZd80dBYxnxPcbn5F4yrTpFJQFBzV3eTSP0S04ERb9ppxKwCb8PgSSJr6QxKHNckx15DJ5wXWsJawXmDAJwRWuOuD67azksnIs+SkiPfPAKI7eW2LpF2NbxoKFVpxRXzO07XB0+xPV3UKyIvVM0MIV/D4EkGYzrD6km98frDXbF6Um/8sGAoVk/qjcf6tkd4qHvPYRnitwfbgjPRWlcFnYW/t4wZFPOujcFvldeQ8d5+vL7pJ+knxBOR+0jJkTeWLWd+PLmB8aJheGigpPYL/ntUvEhnqAOKtwM/bRC/0C5ZwV4SqRyzCnwOD8l14UGEdQYBe4rLca7qKiJCg03nNBn/vfnoWXxWeMasFGzjc56kGuK3B0sCc0zPYckZoTXmXRuDjQbzq36tmgfigW5Wyp4TkWcZz2yzWgim/vfVi8uW85Bcy9T6c6m9bpBUxlwHcW56Tf8Bml0p/eMLLSKBe//lte9XIqdo9DB0byNn/GXw5OYJqmGA1bZlCJLjWmHfyQvILyptElhZ4wcDvg2egiiUWwycDAJQjjD0rlmM63aO8ooKC8YjPW9C+4hQaYfxEpHyrtcCCxNsH3odFiOWfPbCymVqDRI8Tc0/lw2HS/DEe/ttHhZvuqina5zW4v0BP5FTTOdxAlYDqLAYHobuQQye7FDrBGVp5crSalVvvyJ8EPS/dp/v4dq/Y5dBXs56tD4Ec4YnWj81noiUV7wdeGeY/XbjvhBLP3sZtY7Bnqb2n8uGwyWYtfYQyquvNfmavYt63h7wEzlNA1kF3kzO+Gt7WYLcyt9Ph5QOrc3u6/unCMy+LxF7istNq1Ntr1yU9HxtIa1dQyUVV5Hx3n5MG9QRTw3syFUoIk9g2XJSobSkaFy5ZsC0NYVNvtbT7wfE6MqbPsikQUUxLwz4iZyWmA50SrORVSAA0Illyzvfx4sMKsbgyQsYg6qUDq0x+75E/FBQC+Qvtvs4qWXMLXlt089YufME90YReQI3GJNKRYVZPkBX8sU6BvykZXIOQ+dFBtVitT0v4++nw60pafUljS0zliffY+js1Pe6cPkalu84gUfe2oU7X/qapc6J3MVu2XIdENZObEfkRtYOjZd8sY4BP2kZswp8AoMnb2OoE69IdB5u8csCdNDpgFf9/gaDC/97jel8LHVO5AZ2y5YLQOL94ljAU+nJjayd/7TH0BlnhHAb1WMZ8BNJvnjQPELZfpBTGDx5k6I8sdzlO8OAPZZPrNaFxUA38j94+R9/x7RBnVzehdc2/Yy+L3IVikhxienixuEwK8VbduWKY0FOEs99Ircynv90Q7M/zn8ywA/zronVxBqXoRKMFwDSXuQ+DtI2KYehA8DnT3BcVzEGT97CWObSWpWW3pPFyluZh4DEdPj76TB1UEcs/Wt3ROst56g7qrSSq1BEbpGYDmQeFn+3e0+23KayRBwbONGSG6UlReONR7ub3bfR0BNPXMtEbaPt1GcRjgMpr7OCGJGUw9ABjusqx+DJGxjqxPKWVk/Y0AFFn4tXNBpd1UtLisa3MwZi9aTeeKxve4SHuu4ANq5CEbmBn7/4u130mZUG9ePChplM4SO36n1z6yb7n742dDfNVAuuPYqHa/+OvldfxwPfRHCuIAL+yCpoGWWjEcd1NWPw5A1O7rRxLgBgVp3FAmO1vueH34rvZg/C6km98frDXTFtUCdEtgx2qmvGVagF646g4Nh5rkQRKcHJMYBICZb2P3XWnUKI7jouCC2wvO5e7DIkoq7+T41564o4RxABYgA1wvL2iz9wXFcrBk/ewIXVWYyB1P1d22HqoI7YmXWPS/ZGsSofkYJYoYlUyrj/KTxU3P/U3e9nAMABw5/QMC1JgFh4aE+xrbOgiDSk+ndp7Tiuqw6DJ2+g4Jkvrt4bxap8RArguU+kYmlJ0fjHsFsBAN3MgqemdvzyO+cGIoCV97wYgydvENvLzi+P8yVgG++NatU80P6DbOB+KCIXklKhqXmEOFYQeUBUi0D09itCX91hAECh0MFiu8XfHGOGAhHAyntejMGT2hXlAYu62DiR2nUlYBvujdr798FOp/OxKh+Ri0ip0HS5TBwrOMmSuxXlofe6/vgg6H/Rxq8SAPBK4P9hiN8ei81LK67iiff2M4AibWPlPa/F4EnN7JUnB8SrFiPfdXkJ2IbpfFFhzhWV4CoUkQvYO/cJ4CRL7lc/T+kazVNtcQFLAnMsBlDGS2ksIEGax8p7XonBk1rZLU8OMU1nSqGiZ2ekJUVjx0zni0pwFYrIBRLTgSkHbaTxcpIlN7IxT/nVX0ifE/gf+MHQ5OssIEFUj5X3vA6DJ7WyW5oYYprO6d2Kd8WVRSW4CkXkpNO7baTxApxkyW3szFN+OiBGdx49/X6w2uZc1VUlekbkXVh5z6soHjzl5uYiPj4eISEhSE5Oxvbt222237p1K5KTkxESEoKbb74ZS5cuNfv6ypUrodPpmtyuXvWxAViFpYkbF5VwFFehiJygwrGBNErie6wtLlr9WkSoc2nhRD6BFVW9iqLB05o1a5CZmYnZs2fjwIED6NevH4YOHYpTp05ZbF9cXIx7770X/fr1w4EDBzBr1ixMmTIFn3zyiVm7sLAwlJSUmN1CQpwvs60qKv1FalhUwtn9UFyFInKASscG0iCJ77FzuMHq157+6CDnACIplfeatQIEA1OyVUDR4GnhwoWYMGECJk6ciISEBOTk5CA2NhZLliyx2H7p0qW46aabkJOTg4SEBEycOBGPPfYY/vWvf5m10+l0iIqKMrv5HLu/SM6XJ3eWK/ZDGVehFqw7goJj57kSRWSPF4wNpBF23osCdDgjtMZ3hs5Wn+JsJSvvEUmqvHflAvBuOpCTxKJAHqZY8FRbW4t9+/YhNTXV7P7U1FTs3Gk5F7+goKBJ+yFDhmDv3r24du2a6b5Lly4hLi4ON954I4YNG4YDBw7Y7EtNTQ0qKyvNbl6h+3hYLhjhuvLkznJVVb7lO07gkbd28fwPInvsTrIC0H2cO3tEWmX2XmxMBx2As33moE1YM6tPwcp7RPWkVFQFWFVVBRQLnsrKylBXV4fISPNl/cjISJSWllp8TGlpqcX2169fR1mZuEG6c+fOWLlyJfLy8rB69WqEhISgb9+++Pnnn632JTs7G3q93nSLjY118tUprChPvLKw5QXLX1eoPLkzXFWVr6SC+6GI7LI3yW55gVcnyT2M70W/Rger189T3YaMw6sju9p8ClbeI6qXmA5kHgbGfC6m6VnEqqqepnjBCJ3O/MqoIAhN7rPXvuH9vXv3xl//+ld06dIF/fr1w4cffohOnTrh3//+t9XnzMrKQkVFhel2+vRpR1+O8uyd7TRgFpB5SFWBkxHPhiJyI+MkO2CW5a/z6iS5S6chQP1cjbQXgXFfmM1TZZdqJD0NK+8RQVzR9fMX0/SsYlVVT1IseIqIiIC/v3+TVaZz5841WV0yioqKstg+ICAArVu3tvgYPz8/3HHHHTZXnoKDgxEWFmZ2UyW7ZzvpgP3vuLNHDuHZUERutH+llS/w6iS5SelhQLgONG8N9MoA4vuZpZS3bSmtoBMr7xHVY1VVVVMseAoKCkJycjLy8/PN7s/Pz0efPpY3MqekpDRp/9VXX6FHjx4IDAy0+BhBEFBYWIjoaDs5ot7A7tlO3nOlgatQRG7gQ2MGebEz+8WPMd0BC5klPePDEa0PsVVHDAAr7xGZSK2WavXAdFKSoml706dPx7Jly7BixQocPXoU06ZNw6lTp5CRkQFATKcbO3asqX1GRgZOnjyJ6dOn4+jRo1ixYgWWL1+OZ555xtRm3rx52LhxI44fP47CwkJMmDABhYWFpuf0aj54pcGVq1CsyETUiA+OGeSFftsnfmzX3eKX/f10mDM8EYDNQsysvEdkJKV0OQB8/gRTsz1A0eBp1KhRyMnJwfz589G1a1ds27YN69evR1xcHACgpKTE7Myn+Ph4rF+/Hlu2bEHXrl2xYMECLFq0CA8++KCpzcWLF/E///M/SEhIQGpqKn777Tds27YNPXv2VPKluIePnt/ScBUqWu/4eVwCgFlrD6H2usF1nSPyZj46ZpCX+a1+5aldstUmaUnRWPLX7oi0kYnAyntE9aSULge4t9VDdIKxIoOGVFZWQq/Xo6KiQl37nwx1YoWsyhJYLVEeFiNuxPVwiXJH1RkE7CkuR35RKVbsOOHQc4SHBuGFEUlIS/KBVE0iZ3jpmKHaMdjDvPLnUlMFZMcCEIBnfgFatLHZfMcvZXh02W67T7t6Um+kdLC815lIM4rygC+fA6psrcaqc5z3NnLGX8Wr7ZFMXnC2kzP8/XRI6dAazw+/1eH9UOXVtSwkQQTwzCeF5ebmIj4+HiEhIUhOTsb27dtttq+pqcHs2bMRFxeH4OBgdOjQAStWrHBTbz3AUAfsfxeAAIS2AZqH230IK+8RyZCYDox4004j7m11NwZPauGFZzs5y9n9UCwkQQSe+aSQNWvWIDMzE7Nnz8aBAwfQr18/DB061CzVvLGRI0di8+bNWL58OX788UesXr0anTt3dmOv3cg4Z22sL5Vf/buk9xkr7xHJVP27tHbc2+o2TNtTQ2qE8WwnayXKB8wC7nrGq1ec7NlwuARz846gtFLaVcnGJvRtj0GJUegZHw5/P3s1nYh8kKEO2PYvKxdg6n8nVHIBRnVjsAW9evVC9+7dsWTJEtN9CQkJ+POf/4zs7Owm7Tds2ICHH34Yx48fR3i4/RUYS7zh5wLAxpxl/31WZxBw50tfo7TiqtVDOQAgKiwEc9MTmZ5NVLwdeGeY/XbjvhCPCSCHMG3Pm/jI2U7OcnYVavmOE3jkrV248yWuRJGG8cwnl6itrcW+ffuQmppqdn9qaip27rScGpOXl4cePXrg5ZdfRrt27dCpUyc888wzuHLlitXvU1NTg8rKSrOb6tmcs+y/z1h5j0gmKZX3mkcAsb3c1iWtY/DkaTynxaRhVb7wUMvnetlTWsEJlzSKY4nLlJWVoa6ursmB7pGRkU0Ocjc6fvw4vv32Wxw+fBhr165FTk4OPv74Yzz55JNWv092djb0er3pFhsb69LXoQgXvM9YeY9IBimV9y6XAYu6MD3bTRg8eRrPaWkiLSkau7IGITw0SPZjBbCkOWkUxxKX0zU68FUQhCb3GRkMBuh0OqxatQo9e/bEvffei4ULF2LlypVWV5+ysrJQUVFhup0+fdrlr8HlXPQ+S0uKxqsju9psIwAoqbiKPcXl0r4nka+yt7cVYNlyN2Lw5Gk8p8WioAA/vDAiye6J9NaUV19D7+zNXIEi7eBY4jIRERHw9/dvssp07ty5JqtRRtHR0WjXrh30er3pvoSEBAiCgF9//dXiY4KDgxEWFmZ2Uz0Xvs9YeY9IhsR0YMpBMUXPIqZnuwuDJ08z5bJaowPC2ontNMaY2uFIOXNALGnOFD7SDLt58dodS+QKCgpCcnIy8vPzze7Pz89Hnz6Wf359+/bFmTNncOnSJdN9P/30E/z8/HDjjTcq2l+3cuH7TGrlPantiHze6d1iip5VTM92BwZPamD1HBbfONvJGc4WkmAKH2kGz3xyqenTp2PZsmVYsWIFjh49imnTpuHUqVPIyMgAIKbcjR071tR+9OjRaN26Nf72t7+hqKgI27Ztw7PPPovHHnsMzZo189TLcD2z91lj8uasnvHhiNaH2MwwCA8NRHJcK9ndJPJJTM9WBQZPnmQ626lp2VsAPnm2kyMaFpKI1su/AskUPtIMnvnkMqNGjUJOTg7mz5+Prl27Ytu2bVi/fj3i4uIAACUlJWZnPrVo0QL5+fm4ePEievTogUcffRTDhw/HokWLPPUSlJOYDgxb2PR+mXOWlMp75dXX0P+Vbzh+EwFMz1YJnvPkqRxznu3kkDqDgD3F5cgvKsWKHSdkP37aoI54amBHngVFvk3lZz6pYgxWIa/6uRz5DPhoHBDeAbh7lvjHWlwfh+asDYdLMG9dEUoqLO9tMo7WS/7anec+kbYZ6sQLYJUlsPr3Y/MIYPpRIEB+0S0t4zlPaseznRzm76dDSofWeH74rQ6VNH9t08/o+yLPgiIN4JlPpKQz+8WP8XcBtz0kHs7p4MW+tKRobH32bqsVVlm2nKgey5arAoMnT+B5LC7haEnzUh6+SL6OYwwp7bf64Kldd5c83b6TF1BeXWv16yxbTlSPZcs9jsGTJ3DDn8s4WtKchSTIp3GMISUZDEDJQfHfMa4JnqSWI2fZciKwbLmHMXjyBG74cyljSXO5KXwsJEE+i2MMKen8L0BNJRDQDGjT2SVPKbUceVlVDVP3iACWLfcgBk+ewLOdXM7RFL7y6lpkvLcfC9YdQcGx85yUyTfwzCdSiqEOOLha/Her9oDONcV3pJQtB4AF/z2KO1/ivlUiZhh4DoMndzPUiVcBbr7HSgOe7eQoR1P4AGD5jhN45K1dnJTJN0g58ynxfnEsYkoHSWU8XuPb+jLlvx91Wel7KWXLjUoruG+ViBkGnsPgyZ2ME887w4DC/1huw7OdnGJM4YsKC3bo8ZyUyWfY21S8K1cci3juE0lhPF6jcSESF25MN43fds7zY/U9IkjIMIC4Jyq2l9u6pBUMntzF2sRj1HsyMO4LIPMQAycnpSVFY8fMezBtUCfZjxXAYhLkQxLTgczD4tjSe7LlNqzKRPbYPF7DtRvT05Ki8e2MgfjHfQk227H6Hmkey5Z7DIMnd5ByrlPR5w4fMEhN+fvpMHVQR4fOggJYTIJ8iJ+/OLYUfWalAasykR1uLn3v76dDREtp2QOsvkeaxrLlHsHgyR145orHOFpIAhCLSTCFj3wCxyByhgc2pkutvie1HZHPYtlyt2Pw5A6siOJRDQtJ8Dwo0iSOQeQMD2xMl1J9Lzw0EMlxrVz2PYm8FsuWuxWDJ3dgRRSPk7oR2RKm8JHX4xhEzvBA6Xsp1ffKq6+h/yvfcGwm4gUyt2Lw5A6xvWwspwI8c8U9jBuRV0/qjcf6tpf1WKbwkVdjVSZyhtnG9MaUO15DykUvVkglgvQLX5fOMnXPBRg8Ka0oT6x0YnU5lec6uZO/nw4pHVrj+eG3yi4mwRQ+8lqsykTOSkwHBs9ver/Cx2ukJUVj67N3W923yrLlRJB2gQwANs7i8RQuwOBJSfbKkwM818mDHCkmwRQ+8lqsykTOCtGLH6O6AA8ud9vxGvtOXkB5da3Vr7NsOWmelAtkRhznncbgSSl2y5NDTJOZUsjAyYMaFpOQiil85LVYlYmcUVIofuwwALjtISC+n1syJqSWI2fZctI0KRfIAHCcdx6DJ6XYLQ0MMU3m9G739IesMubVM4WPNIFVmchRZwrFj9Fd3fptWbacSCLjwehDXrDTkOO8Mxg8KYWVT7wKU/hIMzg2kSPqrgFnj4j/ju7i1m/NsuVEMvj5yysgQbIxeFIKSwN7HUdT+DLe248F646g4Nh5blgm9ePYRI74/QegrgYI1gPhN7v1W7NsOZFMHOcVxeBJKR44F4Oc50gKHwAs33ECj7y1C3e+9DUnb1I3jk3kCFPK3u2ATu5x485j2XIiGXg8haIYPCmp+3hYLhjB8uRq5kgKnxEnb1I9u1WZBKD7OHf2iNTOUAf8uF78d2iExzaZs2w5kUQ8nkJRDJ6UUJQn1tHfYmXDHsuTq54jKXyAOHmzmASpnr2qTFte4FkgJDLOZ8bg6chaj743WLacSCIeT6EYBk+uZu9spwGz3HIuBjnP0RQ+gMUkyAsYqzINmGX565xUydp85sH3BsuWE8nA4ykUweDJleye7aQD9r/jzh6Rk5xJ4eN5UOQV9q+08gVOqppmcz7z3HuDZcuJZOLxFC7H4MmV7J7txDeoN2qYwudIGh9T+Ei1OGaRNSp9b9grW64DEK0PQc/4cHd2i0i9eDyFyzF4ciW+QX2WlEpP1jCFj1SLYxZZo9L3hr2y5QKAh++IdWufiFSNZctdjsGTK/EN6tPSkqLx7YyBWD2pNx7r217WY5nCR6rEMYusUfF7w97FrNc2/cxjI4iMWLbc5Rg8uRLPT/F5/n46pHRojeeH34qlMotJMIWPVIdjFlmj8veG8WLWtEGdLH6dx0YQ1WPZcpdj8ORqPNtJMxwpJsEUPlIVnvlE1pjeG+qezz747pTF+3nmE1EDLFvuUgyeXIVnO2mSI+dBMYWPVIVnPpE1ielAz8eb3q+S+WxPcTlKKqyXJOeZT0QNsGy5yzB4cgWe7aRpjpwHxRQ+UhWe+UTW6OovDSWkAw8uB8Z9oZr5jGc+EcnEsuUuweDJWTzbicAUPvIRPPOJGis5KH7sfB9w20NAfD+Pp+oZ8cwnIplUWkXT2zB4cpZKz8Ig92MKH3k1jmXUmKEOKPle/Hd0V492xRJ7Zz4BQHhoIJLjWrmtT0SqpuIqmt6EwZOzGMVTA46m8M385BB2/FLGjc3kORzLqLHzvwDXqoHA5kBER0/3pgl7Zz4B4gp//1e+4QUqIoBly12EwZOzGMVTI46k8F28cg2PLtvNs0nIcziWUWPGlL2o21STqteYlAPMWbacqB7LlrsEgydnmaJ4a3hOihY5ksIHcJInD1L5uT7kAWcKxY8qTNlrKC0pGlufvdvqBSuWLSdqgGXLncbgyRW6j7fyBfWchUHu52gKHyvxkUfwzCdqzLjyFNPVo92QYt/JCyivrrX6dZYtJ2qAZcudwuDJGTzbiexwJIUPYCU+8hCe+USA+MfS8W3Ar3vFzyOTPNsfCVi2nEgmli13GIMnR/FsJ5KoYQofK/GR6vHMJ20zXhR8dzhQVx9ovD9K9f/fLFtOJBOLBDmMwZMjeLYTySRlU7MlTOEjj+GZT9pj7aJglfoDZilly29oFgiDIHDfExHAIkFOYPDkCJ6HQg5IS4rGtzMGYtWEXrihmfR9UEzhI7fjGAcAyM3NRXx8PEJCQpCcnIzt27dLetyOHTsQEBCArl27KttBV7J5UVD9AbOUsuWsakrUgJSy5c1aAYJBtb/3nsLgyRFc6iQH+fvp0LdjBF588Dam8JF6cYzDmjVrkJmZidmzZ+PAgQPo168fhg4dilOnTtl8XEVFBcaOHYt77rnHTT11ER8ImKWu8LOqKRGklS2/cgF4N517XRth8OQILnWSkxytxMcUPnILjnFYuHAhJkyYgIkTJyIhIQE5OTmIjY3FkiVLbD7u8ccfx+jRo5GSkuKmnrqIjwTMUlb4WbqcqJ6UsuUA97o2wuDJETzbiVzAkUp8TOEjt9D4mU+1tbXYt28fUlNTze5PTU3Fzp3WV17efvttHDt2DHPmzJH0fWpqalBZWWl28xgfCpj9/XTw89Ph4pVrVtuwdDlRPWORoDGfi2l6Fqk/ddedGDzJZagT0xYS7rfSgGc7kXSOHKbLFD5SnJQznxLvF8dCH5xIy8rKUFdXh8hI80AhMjISpaWlFh/z888/Y+bMmVi1ahUCAgIkfZ/s7Gzo9XrTLTY21um+O8zHAmaWLieSwc9fvF25YKOR+lN33YXBkxzGEq7vDAN2W0nd4NlOJBNT+EiV7KVz7MoVx0IfzoXX6cwDCUEQmtwHAHV1dRg9ejTmzZuHTp06SX7+rKwsVFRUmG6nT592us8OMwuYG/O+i4IsXU4kk4+k7rqD4sGT3GpFW7duRXJyMkJCQnDzzTdj6dKlTdp88sknSExMRHBwMBITE7F27Vqluv8He+c69Z4MjPuCZzuRQ5jCR6pkTOcY94U4xlnig7nwERER8Pf3b7LKdO7cuSarUQBQVVWFvXv34qmnnkJAQAACAgIwf/58HDx4EAEBAfj6668tfp/g4GCEhYWZ3TzKGDAHBJvf74UXBe2VLtcBiNaHoGd8uDu7RaRePpS6qzRFgye51YqKi4tx7733ol+/fjhw4ABmzZqFKVOm4JNPPjG1KSgowKhRozBmzBgcPHgQY8aMwciRI7F7927lXoiUc52KPhfTGbzkqhypD1P4SJX8/MWxregzKw18Lxc+KCgIycnJyM/PN7s/Pz8fffo0TVsLCwvDoUOHUFhYaLplZGTglltuQWFhIXr16uWurjsvMR0IqQ8o+s/02ouC9kqXCwAevsODaZJEaiOldHnzCCDWi8YzhegEQVCs1EyvXr3QvXt3s+pECQkJ+POf/4zs7Owm7WfMmIG8vDwcPXrUdF9GRgYOHjyIgoICAMCoUaNQWVmJL7/80tQmLS0NrVq1wurVqyX1q7KyEnq9HmfOnJF2pe/EDmDVQ/bbPfox0L6vpD4QWZN/pBRz1h3BhWrrm50b0zcLxGujuqBnfGv4+8kJv4gkcPEYWFlZiZiYGFRUVHh+tcWKNWvWYMyYMVi6dClSUlLwf//3f3jrrbdw5MgRxMXFISsrC7/99hveffddi4+fO3cuPvvsMxQWFkr+nsa5yaM/l+oy4JUOAHRA1q9AcAvP9MNFNhwuwbx1RSipsLy3KVofgjnDE5GWZKfaGJEWGLOsAFhdMAiLEVN8veyCij1yxl9pu1odYKxWNHPmTLP7bVUrKigoaFLdaMiQIVi+fDmuXbuGwMBAFBQUYNq0aU3a5OTkWO1LTU0NampqTJ8bKxrFxNiqmOeA7CGufT4iiU4DGPyCp3tBmudDY+CoUaNw/vx5zJ8/HyUlJUhKSsL69esRFxcHACgpKbF75pNXKjkofmzdwesDJ0BMiR6cGIXFX/+C1zb91OTrxjOflvy1OwMoImPq7oYZ1repGFO1vSyV15UUS9tzpFpRaWmpxfbXr19HWVmZzTbWnhNQWUUjIiLyCpMnT8aJEydQU1ODffv24a677jJ9beXKldiyZYvVx86dO1fWqpNqlH4vfoy63bP9cLEPvrMc6PLMJ6JGEtOBKQfFFD2LfC9VWy7FVp6MpFYrstW+8f1ynzMrKwvTp083fV5ZWYnY2FjpaXuGOmDxHUBVKSwvY+qAltHAU3u454lcypEUPgBoFRqILc/cjaAAFtQkF3DxGGhM2yMVMq48RftO8LSnuNxq2h5gfuZTSofW7usYkVqd3g1cLrPRoEHZ8vh+buuWWigWPMmtVgQAUVFRFtsHBASgdevWNttYe05ArGgUHBzc5P7Q0FCEhoZKej24/5X6PFAdzP94qA/a7n8ZaKnO3H3yXn/u2QH3do9H7+zNKK+ulfy4imvAPYt24YURSUxFIddw4RhYV6fNq5VeocT3Vp545hORTCxbbpNil6XlVisCgJSUlCbtv/rqK/To0QOBgYE221h7TpexduaJF5ZwJe/SsAofK/GRx3AM9G2GOuCnjUD5MfHzyCTP9seFeOYTkUwsW26Toml706dPx5gxY9CjRw9TtaJTp04hIyMDAJpUK8rIyMDixYsxffp0TJo0CQUFBVi+fLlZFb2pU6firrvuwksvvYT7778fn3/+OTZt2oRvv/1WyZciSkwHOt8nLlNeOiu+aVienNzAeJCurapRlhgP0x3YOZIpfOQ8joG+qSiv6Qbxtwb4TEUt45lPpRVXrR44Eh4aiOS4Vm7tF5FqGcuWV5bAatU9DZctV7RUOSAekvvyyy+bqhW99tprpk2348ePx4kTJ8w23W7duhXTpk3DkSNHEBMTgxkzZpiCLaOPP/4Yf//733H8+HF06NAB//znP/HAAw9I7pMqysESOaDOIGDXsfN48v39uHhF+j6o8NAgpvCRanAMtswjPxdTaeLGfwrUr3P7yKrihsMleOK9/QCsn9jIsuVEDWisbLmc8Vfx4EmNOHGTtzP+ISDnl1cHsBwvqQLHYMvc/nMx1AE5SdZLEkMn/nGUecgnVhftnflkTIvmOElUz9KqtBnfucgiZ/xlHg+RFzKm8YWHBkp+jDGFr/a6QbmOEZH3OLnTxh9FgFlFLR+QlhSNrc/ejfDQIItfZ9lyokZYttwiBk9EXiotKRq7sgZZ/UPAkvLqa+idvZlFJIhIkxW19p28YLNyacOy5UQEeWXLNYLBE5EXa1iJTypW4SMiAJqsqMWy5UQyafAiiz0Mnoi8HFP4iMghxopaVi+/6ICwdmI7H8Gy5UQyafAiiz0Mnoh8AFP4iEg2P3+xUpZF9QFV2os+USzCyFi23NZqPcuWEzVg9yILNFe2nMETkY9gCh8RyWY8/Ni/0YUXHz382N9PhznDEwFY/1OwvPoa+r/yDcdFIqDRRRYrvzWXy4BFXcTqfBrA4InIhziawjfzk0PY8UsZK0wRaVHnYYBf/ZgxeD4w7guxPLmPBU5GxnEySm89Na+04iovLBEZGS+yhNko4V9ZIp4LpYEAisETkY9xJIXv4pVreHTZbtz50tf8Y4FIa8qPA9eqgYAQoPeTQHw/n0rVs4Rly4lkYtlyEwZPRD7IkRQ+gFdbiTSp9KD4MfJWwD/As31xI5YtJ5KJZcsBMHgi8lmOpvCxEh+RxpR8L36Mut2z/XAzli0nkollywEweCLyaY6k8AGsxEekKaX1wVO0toInli0nkollywEweCLyeQ1T+FiJj4jMCEKDlacunu2Lm7FsOZFMLFsOgMETkSZIqS5lCVP4iHxcVam4h0HnD0Qmero3bsWy5UQysWw5AAZPRJqRlhSNb2cMxKoJvXBDM+n7oJjCR+SjDHXAwdXiv8PaNT3rSQNYtpxIJpYtZ/BEpCX+fjr07RiBFx+8jSl8RFpWlAfkJAGb54mfV5wSP/fRP3ZsYdlyIpk0XracwRORBjlaiY8pfEQ+oChPvCpcecb8fh+/WmwLy5YTyaThsuUMnog0ypFKfEzhI/Jyhjpgwwz8sZ7SkG9fLbaFZcuJZNJw2XIGT0Qa5shhukzhI/JiJ3c2XXEy47tXi21h2XIimTRctpzBE5HGOZrCN/OTQ9jxSxn3ABB5Ew1fLbbFXtlyHYBofQh6xoe7s1tE6iWlbHmzVoBg8LmVbAZPRORQCt/FK9fw6LLduPOlr7kKReQtNHy12BZ7ZcsFAPcmRWFPcTkvGBEB0sqWX7kAvJvuc8VoGDwREQDHUvgAcRN1xnv78fqmn/hHBZHa2b1arBPLlsf1cWevVMFe2fLlO07gkbd28YIRkZGUsuWAzxWjYfBERCaOpPAZvbbpZ/R9kX9UEKma2dXixuoDqrQXxXYaZDwPb/Wk3nisb3uLbXjuE1EDielA5mFgzOdimp5FvlWMhsETEZlxJIXPqLSSf1QQqV5iOvDQiqb3h8WIV5ET093fJxXx99OhZ3w4vjxcavHrPPeJqBE/f/F25YKNRr5TjIbBExE10TCFT24aH8+DIvICER3Fj4GhwAPLgHFfAJmHNB84Ge0pLkdJhfWy5Dz3iagRDRWjYfBERBbZy/+3hedBEalc6WHxY0w34Pa/APH9NJuqZwnPfSKSSUPFaBg8EZFVxvz/VRN64YZm8vZB8TwoIhUrPSR+jLrNs/1QKZ77RCSTlNLlzSOA2F5u65JSGDwRkU3+fjr07RiBFx+8jSl8RL6i9HvxI4Mni+yd+wQA4aGBSI6ztkGeSGOklC6/XAYs6uL1VfcYPBGRJKY0vrBgWY9jCh+RyggCV57ssHfuEyCObf1f+YZjG5GRlNLlPlC2nMETEUmWlhSNHTPvwbRBnWQ9jil8RCpS8Stw9SLgFwi06ezp3qiWlH2fLFtO1EhiOjDloJiiZ5H3ly1n8EREsvj76TB1UEcslXkeFFP4iFTCuOrUpjMQIP9IAi1JS4rG1mfvtnp0A8uWE1lwereYomeVd5ctZ/BERA5x5DwopvAReZihDjj6hfjvFm289sqvO+07eQHl1bVWv86y5USN+HjZcgZPROSwhudBSVVeXYuM9/ZjwbojKDh2nldridylKA/ISQIOrhI/P/a1+LkX7z1wB5YtJ5LJx8uWM3giIqcY9wXISeEDgOU7TuCRt3bhzpe+5koUkdKK8sRN2pVnzO/3gc3bSpNajjwiVF4xHSKf5eNlyxk8EZHTHEnhM+KGayKFGeqADTPwxw6dhrx/87bSpJQtB4CnPzrIcYwI8Pmy5QyeiMglHEnhA8Q/3VhMgtQoNzcX8fHxCAkJQXJyMrZv32617aefforBgwejTZs2CAsLQ0pKCjZu3OjG3tpwcmfTFScz3r15W2lSypYDwNlKXggiMvHhsuUMnojIZRxN4QNYTILUZc2aNcjMzMTs2bNx4MAB9OvXD0OHDsWpU6cstt+2bRsGDx6M9evXY9++fbj77rsxfPhwHDhwwM09t8DHN2+7g3Fsi7Rxzh0r7xE14qNlyxk8EZFLOZPCx/OgSC0WLlyICRMmYOLEiUhISEBOTg5iY2OxZMkSi+1zcnLw3HPP4Y477kDHjh3xwgsvoGPHjli3bp2be26Bj2/edpe0pGi8OrKrzTasvEfUiA+WLWfwREQu1zCFz5E0PqbwkSfV1tZi3759SE1NNbs/NTUVO3dKm+ANBgOqqqoQHh5utU1NTQ0qKyvNboqwu3lbB4S1E9uRTWWXaiS1Y+U9ono+uPLN4ImIFGFMc4nSS6tU1RBT+MiTysrKUFdXh8hI85WYyMhIlJaWSnqOV199FdXV1Rg5cqTVNtnZ2dDr9aZbbGysU/22ymzzdmP1AVXai2I7sklq5T2p7Yh8ng+ufDN4IiLFpCVF49sZA7F6Um881re9rMcaz4N6fdNP3D9AHqHTma/UCILQ5D5LVq9ejblz52LNmjVo27at1XZZWVmoqKgw3U6fPu10n61KTAeG/LPp/WEx4qbuxHTlvrcPkVJ5Lzw0EMlxrdzWJyJV88GVbwZPRKQofz8dUjq0xvPDb8VSB4pJvLbpZ/R9kWdBkftERETA39+/ySrTuXPnmqxGNbZmzRpMmDABH374IQYNGmSzbXBwMMLCwsxuimreWvzY9lbgweXAuC+AzEMMnGSQUnmvvPoa+r/yDccsIkBC2XIB6D7OnT1yGoMnInIbR4tJlLIEMLlRUFAQkpOTkZ+fb3Z/fn4++vSxfnV09erVGD9+PN5//33cd999SndTvtJD4sf2dwK3PQTE92OqngOkpCTz/DqiBuyVLd/yApCT5DUlyxk8EZFbOXMeFAtJkLtMnz4dy5Ytw4oVK3D06FFMmzYNp06dQkZGBgAx5W7s2LGm9qtXr8bYsWPx6quvonfv3igtLUVpaSkqKio89RKaMgZPUbd5th8+IC0pGlufvdvqhSCWLSdqJDEdyDwMDJhl+etedOYTgycicjtHz4NiIQlyl1GjRiEnJwfz589H165dsW3bNqxfvx5xcXEAgJKSErMzn958801cv34dTz75JKKjo023qVOneuolmBOEBsFTkmf74iP2nbyA8upaq19n2XIiC/avtPIF7znzKcDTHSAibUpLisbAzpHonb3Z5h8gjRkLSUzo2x6DEqPQMz4c/n5y17GI7Js8eTImT55s8WsrV640+3zLli3Kd8gZlWeAK+WAzh9ok+Dp3vgEqeXIWbacqN7JneJYZFWDM5/i+7mtW3Jx5YmIPMbRFD4AWL7jBB55axfufInFJIjsMq46tbkFCGQZbVeQWo48IjRY4Z4QeQkfOfOJwRMReZRp83WYY39glFRcZUlzInvOcr+Tq0kpWw4AT390kBd4iACfOfOJwRMReVxaUjR2zLwH0wZ1cvg5WNKcyAJDHVC8HfjxS/HzyFs92x8fIqVsOQCcZbVQIpHdM58ANI8AYnu5rUuOYPBERKrg76fD1EEdHToLyoglzYkaKMoTy/++Mwz4bZ94347XvaKalbcwrpxH2lg5Z+U9onp2z3wCcLkMWNRF1eMUgyciUhVHz4IyYklzIoh/eHw4tunm7MvlXlMO2FukJUXj1ZFdbbZh5T2ievbOfAJUX7acwRMRqU7DQhKOFJNgSXPSNEMdsGEG/ljzaMh7ygF7k7JLNZLasfIeEcQAaspBMUXPInWPUwyeiEiVTIUk9I5VBjOWNGchCdIcOeWAySWkVt4rq6rheEQEAKd3iyl6Vql3nGLwRESqlZYUjW9nDMTqSb3xWN/2Dj0HC0mQ5vhIOWBvIrXy3oL/HuXxCkSAV49TDJ6ISNX8/XRI6dAazw+/FUsdLGleWsly5qQhPlIO2JtIrbwHAKUVLGxD5M3jFIMnIvIazpY05yoUaYLdcsA6IKyd2I5cRmqqMavvEUFa2fJmrQDBoLp9TwyeiMirOFvS3LgKtWDdERQcO88/Xsj3mJUDbqz+D5W0F8V25FLGVON/3Jdgsx2r75HmSSlbfuUC8G66eOSCiirvMXgiIq/kbEnz5TtO4JG3dnH/AfkmYzngZq3M7w+LEe9PTPdMvzTA30+HiJbS0otLK64o3BsiFZNSthxQXelyRYOnCxcuYMyYMdDr9dDr9RgzZgwuXrxo8zGCIGDu3LmIiYlBs2bNMGDAABw5csSszYABA6DT6cxuDz/8sIKvhIjUqGFJc0dx/wH5rMR0oPtY8d/x/YFxXwCZhxg4uYHU6nsL/nuUYw9pW2I6kHkYGPN504s9JuoqXa5o8DR69GgUFhZiw4YN2LBhAwoLCzFmzBibj3n55ZexcOFCLF68GN999x2ioqIwePBgVFVVmbWbNGkSSkpKTLc333xTyZdCRCpl2mfgQCEJQBySebAu+ayzReLHxHQgvh9T9dxEavW9C9W1vHhD5Ocv3q5csNFIPaXLFQuejh49ig0bNmDZsmVISUlBSkoK3nrrLXzxxRf48ccfLT5GEATk5ORg9uzZeOCBB5CUlIR33nkHly9fxvvvv2/Wtnnz5oiKijLd9Hq9Ui+FiFTO2UISAA/WJR919rD4Mep2z/ZDYxpW37OFxSOI6nlR6XLFgqeCggLo9Xr06tXLdF/v3r2h1+uxc6flqLG4uBilpaVITU013RccHIz+/fs3ecyqVasQERGBW2+9Fc8880yTlamGampqUFlZaXYjIt/SsJCEo6tQPFiXfEp1GVBVAkAHtLX/hzy5lnFV3F5hGxaPIIJXlS5XLHgqLS1F27Ztm9zftm1blJaWWn0MAERGmv9gIiMjzR7z6KOPYvXq1diyZQv+8Y9/4JNPPsEDDzxgtS/Z2dmmfVd6vR6xsbGOvCQi8gKuWIViSXPyCaWHxI/h8UBwC8/2RaPSkqLxj2G3Smp7ruqqwr0hUjEppcubRwCxvax/3U1kB09z585tUqyh8W3v3r0AAJ2u6Q9AEASL9zfU+OuNHzNp0iQMGjQISUlJePjhh/Hxxx9j06ZN2L9/v8Xny8rKQkVFhel2+vRpuS+biLxIw1WoaDtnrljDg3XJ6xlT9iKTPNsPjYsKkzYGRYQ6tmJO5BOklC6/XAYs6uLxqnsBch/w1FNP2a1s1759e3z//fc4e7ZpXuLvv//eZGXJKCoqCoC4AhUd/UfZwnPnzll9DAB0794dgYGB+Pnnn9G9e/cmXw8ODkZwMAclIq1JS4rG4MQo7CkuR35RKVbsOCH7OV7b9DNW7jyBB7q1w6DEKPSMD4e/nzP1/YjcpJT7ndTAWDyitOIqbF2Gefqjg5ibnoi0JDtlm4l8lbF0+YYZQOUZy22MZcs9eOSC7JWniIgIdO7c2eYtJCQEKSkpqKiowJ49e0yP3b17NyoqKtCnj+VTzePj4xEVFYX8/HzTfbW1tdi6davVxwDAkSNHcO3aNbOAi4gIEFehUjq0xvPDb3X4YN0Ll6/xXCjyPsa0vSiuPHlSw+IRti67nK3ksQlESEwHphwUU/Qs8nzZcsX2PCUkJCAtLQ2TJk3Crl27sGvXLkyaNAnDhg3DLbfcYmrXuXNnrF27FoCYrpeZmYkXXngBa9euxeHDhzF+/Hg0b94co0ePBgAcO3YM8+fPx969e3HixAmsX78ef/nLX9CtWzf07dtXqZdDRD7A2YN1AXFjd8Z7+7Fg3REUHDvPlD5SH0Md8MvXwO9Hxc/bJHi2P2QqHhFpo5gNK+8R1Tu9W0zRs8qzZcsVPedp1apVuO2225CamorU1FTcfvvt+M9//mPW5scff0RFRYXp8+eeew6ZmZmYPHkyevTogd9++w1fffUVWrZsCQAICgrC5s2bMWTIENxyyy2YMmUKUlNTsWnTJvj78/wKIrLNFQfrAuBKFKlTUR6QkwS8NwIQ6s8tWznU43sESAygXh3Z1WYbY+W9XcfOu6VPRKqk8rLlOkEQNHd5o7KyEnq9HhUVFQgLC/N0d4jIAzYcLsHcvCMoraxxyfNNG9QRTw3syP1QEnAMtszpn0tRnrgXoMnOmvr3pAf3CJDo88LfMPWDQrvtbmgWiBcfvI37n0ibircD7wyz327cF+Lh3y4gZ/xVdOWJiEitXFHSvCGWNyePMtSJm6wtliTw/B4BErVtKa3y3sUr17j/ibTLbtlyHRDWTmznAQyeiEizXHGwbkMsb04ec3Kn9epUADy9R4BExsp7Utenuf+JNMlu2XIB6D7OnT0yw+CJiDRPiVWoHv+bz6IS5D4q3yNAooaV9+zh/ifSNGPZ8jArqatbXhD3d3pgPyeDJyIiuOZg3YZY3pzcqoX1sxAdakeKMVbeu6GZtGMTnnyf6XukUYnpQOZhYMAsy183nvnk5gCKwRMRUQNpSdH4dsZArJ7UG4/1be9UWXMjY3lzpvORYlS+R4DMpSVF441Hu0tqy/1PpHn7V1r5gmf2czJ4IiJqpOHBut/NHmQKpJz12qaf0Sd7M17f9BM+L/yNKX3kOmZ7BBqrD6jSXhTbkSr0vrk19z8R2aPC/ZwBbvtOREReyBhIpXRojZ7x4U6XNz9bVYPXNv1s+jw8NBAjurbDoMQo9IwPZ6lzcpxxj8Cnk4DrV/+4PyxGDJxYplxVjPufnnhvv922xv1PK3cUY3zfeI4TpB0q3M/JlSciIolcXVgCAMqruTeKXCgxXUzPA4C+08RzUDIPMXBSKbn7nxb89yjHCdIWFe7nZPBERCSDq8ubN8S9UeS02mqg/Lj475TJ4gGSTNVTNTn7nwCgtOIq90CRdtjdzwmgeQQQ28ttXWLwRETkACVWoYxY6pwcdu4oAEG8Ctuirad7QxLJ2f8k1N9mrT2E2usGhXtG5GF2z3wCcLkMWNTFbVX3GDwRETnI1eXNG2pY6vyOfzKQIolKvxc/RiZ5th8kS8Pzn6TuZiqvvobe2Zu5AkW+z96ZT4Bby5brBEHQ3ExcWVkJvV6PiooKhIWFebo7ROQD6gwC9hSXI7+oFGsP/IYLl68p8n2iwoLxSM+b0D4iFG1bhnhlkQmOwZa55OfyxXRg73Kg71Rg8HzXdpAUt+FwCeatK0JJxVX7jevpACz5a3ekJdn4w5LIF1yvBRYmiCtNFunEFL/MQ7LTleWMv6y2R0TkAg2r8s2+LxGLv/4Fr236yeXfp7SS1frIhrOHxY+Rt3m2H+SQtKRoDE6MwsodxVjw36OSHmNM4RvYORJBAUwoIh92ereNwAkwK1se30+xbjB4IiJyMWM63y1RLWRfRZbLWK1v+Y4TpkBqYOdIQAeUXarx2tUpcoDBAJw9Iv47isGTt/L302F833gs+7YYpRVXISU9yJjC98KIJK5Ake9SSdlyBk9ERAoxXkXeU1yOc1VXcaLsMlbvOYXSSmWCqYaBVEMNV6eS41ph38kLOFd1lYGVLzHUAYc/AWovAX6BQKt4T/eInCDnDCij8upaZLy3H9MGdcRTAzvy95p8j0rKlnPPE/PticiN3LU3yho/HdCw5oQnVqs4Blvm8M+lKA/YMAOoPPPHfWExYoUqnu/k1TYcLsGstYdQXi1vnGjVPBAPdGM6L/kYQx2QkyQWh7C2Jts8Aph+FAgIkvXUcsZfBk+cuInIQ+oMgmJ7o5xlLahyxcqVt4zBubm5eOWVV1BSUoJbb70VOTk56NfPeh791q1bMX36dBw5cgQxMTF47rnnkJGRIfn7OfRzKcoTK0w1+UOi/v9k5LsMoLxc7XUDemdvRnl1rUOPb1hkJiI02PT7LOXfjX/n+Xjff7za+xx+eiM6b3sSAKCzEkAJYTHQybx4xODJDm+ZuIlIGxypsOUpjVeuovUhmDM8UdY+C28Yg9esWYMxY8YgNzcXffv2xZtvvolly5ahqKgIN910U5P2xcXFSEpKwqRJk/D4449jx44dmDx5MlavXo0HH3xQ0veU/XMxXYU9Y6WB45WnSF02HC7BE+/tl7T/ydUa/87z8b7/eLX3eYjfHswJfBcxunKLXzcA0EEHnYyLRwye7PCGiZuItKVhOt9nhWccvsrsbsY1Jzmlkr1hDO7Vqxe6d++OJUuWmO5LSEjAn//8Z2RnZzdpP2PGDOTl5eHo0T8qpGVkZODgwYMoKCiQ9D1l/1yKtwPvDLPfbtwXilaeIvdwNIWPyBcF4Dp2Bz+JcFRBZyH5wSAANc2j0OzZIkkXj1iqnIjIyzQude4tgZQAMYCat64IgxOjfGJvRW1tLfbt24eZM2ea3Z+amoqdO3dafExBQQFSU1PN7hsyZAiWL1+Oa9euITAwUPL3r66uhr+/hJWicyeBWgnXP8+dBNp2l/z9SZ36xYdh85QUDPjXN7jAAIo0rqvfDwjxq8RlW40qSlBZtAn+8Xfafb7q6mrJ35vBExGRylgKpNxRrc9RAoCSiqvYU1yOlA6tPd0dp5WVlaGurg6RkeYVmyIjI1FaWmrxMaWlpRbbX79+HWVlZYiObroqV1NTg5qaGtPnlZWVAICYmBhnX4K57DGufT4iIg87DeATKQ2z01z+vRk8ERGpmDGQMnpq4J9Uuyp1rkpdQZ2zdI1yQQRBaHKfvfaW7jfKzs7GvHnznOwlERG5E4MnIiIvoub0vrYtQzz6/V0lIiIC/v7+TVaZzp0712R1ySgqKspi+4CAALRubXk1LisrC9OnTzd9XllZidjYWJw5c0b6XrCj/wU+nVT/ScMUvvqA7YG3gIT7pD0XeZU6g4ClW45h8Te/eLorRG7nBwM2BT+DSFyApWxxgwCcRThOPfwNev2prd3nq6yslLzqz+CJiMhLWUvvM5Z23Xz0bJOgytkqSJboAETpxbLlviAoKAjJycnIz8/HiBEjTPfn5+fj/vvvt/iYlJQUrFu3zuy+r776Cj169LC63yk4OBjBwcFN7g8NDUVoaKi0zvYYCTQPsXDOUzsg7UWWKfdxzw3vgtvj23pNtU4iV3pFNx5LAnMAwCyAMs5xywIn4Z+3tZe0F7eurk7y92W1PZVWeiIicgVjFT/juUzG8zNctVrlq9X2jKXKly5dipSUFPzf//0f3nrrLRw5cgRxcXHIysrCb7/9hnfffRfAH6XKH3/8cUyaNAkFBQXIyMhQtlR5Q4Y64ORO4NJZoEUkENeH5ck1xFurdRI5y1LZ8jNCa8y/NgZ/Hp2hyLzE4EmlEzcRkdIaBla2Vqsa0so5T4B4SO7LL7+MkpISJCUl4bXXXsNdd90FABg/fjxOnDiBLVu2mNpv3boV06ZNMx2SO2PGDOUPySVqpOHvtSuKzKj9zB8+3vWP97Y++8GAnn4/oC0u4hxuwOkWXfCP9NsUm5cYPHGCIiIyYymosnTye9uWYqqe3PLkHIMt48+FlGDt91nKvxv/zvPxvv94b+xz48crPS8xeOIERUTkVhyDLePPhYjIM+SMv35u6hMREREREZFXY/BEREREREQkAYMnIiIiIiIiCRg8ERERERERScDgiYiIiIiISAIGT0RERERERBIweCIiIiIiIpKAwRMREREREZEEDJ6IiIiIiIgkCPB0BzxBEAQA4mnCRETkXsax1zgWk4hzExGRZ8iZlzQZPFVVVQEAYmNjPdwTIiLtqqqqgl6v93Q3VINzExGRZ0mZl3SCBi/9GQwGnDlzBi1btoROp5P9+MrKSsTGxuL06dMICwtToIfqxtev7dcP8GfA1+/c6xcEAVVVVYiJiYGfH7PHjTg3OYevn6+fr1+7rx9w7mcgZ17S5MqTn58fbrzxRqefJywsTLNvUICvX+uvH+DPgK/f8dfPFaemODe5Bl8/Xz9fv3ZfP+D4z0DqvMRLfkRERERERBIweCIiIiIiIpKAwZMDgoODMWfOHAQHB3u6Kx7B16/t1w/wZ8DXr+3Xr1Za/3/h6+fr5+vX7usH3Pcz0GTBCCIiIiIiIrm48kRERERERCQBgyciIiIiIiIJGDwRERERERFJwOCJiIiIiIhIAgZPVuTm5iI+Ph4hISFITk7G9u3bbbbfunUrkpOTERISgptvvhlLly51U0+VIef1f/rppxg8eDDatGmDsLAwpKSkYOPGjW7srevJ/f832rFjBwICAtC1a1dlO6gwua+/pqYGs2fPRlxcHIKDg9GhQwesWLHCTb1VhtyfwapVq9ClSxc0b94c0dHR+Nvf/obz58+7qbeus23bNgwfPhwxMTHQ6XT47LPP7D7G18Y/NePcxLmJc5N25yatzkuAyuYmgZr44IMPhMDAQOGtt94SioqKhKlTpwqhoaHCyZMnLbY/fvy40Lx5c2Hq1KlCUVGR8NZbbwmBgYHCxx9/7Oaeu4bc1z916lThpZdeEvbs2SP89NNPQlZWlhAYGCjs37/fzT13Dbmv3+jixYvCzTffLKSmpgpdunRxT2cV4MjrT09PF3r16iXk5+cLxcXFwu7du4UdO3a4sdeuJfdnsH37dsHPz094/fXXhePHjwvbt28Xbr31VuHPf/6zm3vuvPXr1wuzZ88WPvnkEwGAsHbtWpvtfW38UzPOTZybODdpd27S8rwkCOqamxg8WdCzZ08hIyPD7L7OnTsLM2fOtNj+ueeeEzp37mx23+OPPy707t1bsT4qSe7rtyQxMVGYN2+eq7vmFo6+/lGjRgl///vfhTlz5nj1BCX39X/55ZeCXq8Xzp8/747uuYXcn8Err7wi3HzzzWb3LVq0SLjxxhsV66M7SJmgfG38UzPOTZybODdpd27ivPQHT89NTNtrpLa2Fvv27UNqaqrZ/ampqdi5c6fFxxQUFDRpP2TIEOzduxfXrl1TrK9KcOT1N2YwGFBVVYXw8HAluqgoR1//22+/jWPHjmHOnDlKd1FRjrz+vLw89OjRAy+//DLatWuHTp064ZlnnsGVK1fc0WWXc+Rn0KdPH/z6669Yv349BEHA2bNn8fHHH+O+++5zR5c9ypfGPzXj3MS5iXOTducmzkvyKTn+BTj1aB9UVlaGuro6REZGmt0fGRmJ0tJSi48pLS212P769esoKytDdHS0Yv11NUdef2OvvvoqqqurMXLkSCW6qChHXv/PP/+MmTNnYvv27QgI8O5fKUde//Hjx/Htt98iJCQEa9euRVlZGSZPnozy8nKvzC135GfQp08frFq1CqNGjcLVq1dx/fp1pKen49///rc7uuxRvjT+qRnnJs5NnJu0OzdxXpJPyfGPK09W6HQ6s88FQWhyn732lu73FnJfv9Hq1asxd+5crFmzBm3btlWqe4qT+vrr6uowevRozJs3D506dXJX9xQn5//fYDBAp9Nh1apV6NmzJ+69914sXLgQK1eu9MorfEZyfgZFRUWYMmUKnn/+eezbtw8bNmxAcXExMjIy3NFVj/O18U/NODdxbmqIc5O25ibOS/IoNf5596UIBURERMDf379JJH/u3LkmEaxRVFSUxfYBAQFo3bq1Yn1VgiOv32jNmjWYMGECPvroIwwaNEjJbipG7uuvqqrC3r17ceDAATz11FMAxAFbEAQEBATgq6++wsCBA93Sd1dw5P8/Ojoa7dq1g16vN92XkJAAQRDw66+/omPHjor22dUc+RlkZ2ejb9++ePbZZwEAt99+O0JDQ9GvXz/87//+r1dd4ZfLl8Y/NePcxLmJc5N25ybOS/IpOf5x5amRoKAgJCcnIz8/3+z+/Px89OnTx+JjUlJSmrT/6quv0KNHDwQGBirWVyU48voB8are+PHj8f7773t1Pq3c1x8WFoZDhw6hsLDQdMvIyMAtt9yCwsJC9OrVy11ddwlH/v/79u2LM2fO4NKlS6b7fvrpJ/j5+eHGG29UtL9KcORncPnyZfj5mQ+n/v7+AP640uWrfGn8UzPOTZybODdpd27ivCSfouOf0yUnfJCxHOTy5cuFoqIiITMzUwgNDRVOnDghCIIgzJw5UxgzZoypvbEc4rRp04SioiJh+fLlPlEOVurrf//994WAgADhjTfeEEpKSky3ixcveuolOEXu62/M2ysayX39VVVVwo033ig89NBDwpEjR4StW7cKHTt2FCZOnOipl+A0uT+Dt99+WwgICBByc3OFY8eOCd9++63Qo0cPoWfPnp56CQ6rqqoSDhw4IBw4cEAAICxcuFA4cOCAqRyur49/asa5iXMT5ybtzk1anpcEQV1zE4MnK9544w0hLi5OCAoKErp37y5s3brV9LVx48YJ/fv3N2u/ZcsWoVu3bkJQUJDQvn17YcmSJW7usWvJef39+/cXADS5jRs3zv0ddxG5//8NefsEJQjyX//Ro0eFQYMGCc2aNRNuvPFGYfr06cLly5fd3GvXkvszWLRokZCYmCg0a9ZMiI6OFh599FHh119/dXOvnffNN9/Y/H3WwvinZpybODdxbtLu3KTVeUkQ1DU36QRBA2t3RERERERETuKeJyIiIiIiIgkYPBEREREREUnA4ImIiIiIiEgCBk9EREREREQSMHgiIiIiIiKSgMETERERERGRBAyeiIiIiIiIJGDwREREREREJAGDJyIiIiIiIgkYPBEREREREUnA4ImIiIiIiEgCBk9EREREREQS/H9dJzWYgr/1twAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "_fig, _axes = pp.plot_fields_for_time_step(mode)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from irrevolutions.utils.eigenspace import l2_norm\n", + "\n", + "def plot_profile_comparison(parameters, mode, idx=[1, 1], reverse = False):\n", + "\n", + " _fig, _axes = pp.plot_fields_for_time_step(mode)\n", + " _axes[0].set_title('Eigenvectors (bifurcation problem)')\n", + " _axes[1].set_title('Eigenvectors (stability problem)')\n", + " _parameters = f'a = {parameters.get(\"a\"):.2f}, b = {parameters.get(\"b\"):.2f}, c = {parameters.get(\"c\"):.2f}'\n", + " _fig.suptitle(f\"Rayleigh eigenproblem with parameters {_parameters}\")\n", + "\n", + " coeff_v = l2_norm([\n", + " (mode['mesh'], mode['fields']['bifurcation_v']),\n", + " (mode['mesh'], mode['fields']['bifurcation_β'])\n", + " ])\n", + "\n", + " coeff_k = l2_norm([\n", + " (mode['mesh'], mode['fields']['stability_β'])\n", + " ])\n", + "\n", + " eigenspace_v, _normalisation_v = eig.solve_eigenspace_vector(parameters, idx=idx[0])\n", + " eigenspace_k, _normalisation_k = eig.solve_eigenspace_cone(parameters, idx=idx[1])\n", + "\n", + " v, β = eigenspace_v[\"v\"], eigenspace_v[\"β\"]\n", + "\n", + " x_values = np.linspace(0, 1, 100)\n", + " v_function = sp.lambdify('x', v)\n", + " β_function = sp.lambdify('x', β)\n", + "\n", + " v_values = [v_function(x) for x in x_values]\n", + " β_values = [β_function(x) for x in x_values]\n", + "\n", + " _axes[0].plot(x_values, np.array(β_values)*coeff_v, label=r'$\\beta(x)$', c='k')\n", + " _axes[0].plot(x_values, np.array(v_values)*coeff_v, label=r'$v(x)$', c='k', linestyle='--')\n", + "\n", + " _axes[0].legend()\n", + " \n", + " v, β = eigenspace_k[\"v\"], eigenspace_k[\"β\"]\n", + " D = eigenspace_k[\"D\"]\n", + " x_values = np.linspace(0, 1, 100)\n", + " v_function = sp.lambdify('x', v)\n", + " β_function = sp.lambdify('x', β)\n", + " v_values = [v_function(x) for x in x_values]\n", + " if reverse:\n", + " β_values = [β_function(1-x) for x in x_values]\n", + " else:\n", + " β_values = [β_function(x) for x in x_values]\n", + "\n", + " _axes[1].plot(x_values, np.array(β_values)*coeff_k, label=r'$\\beta(x)$', c='k')\n", + " _axes[1].set_xticks([0, float(sp.N(D))], [0, \"$D$\"])\n", + " _axes[1].legend()\n", + "\n", + " return _fig, _axes" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File 'time_data.json' not found. Handle this case accordingly.\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2*A**2/pi**2 + A**2/2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.184201574932019*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.184201574932019*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.736806299728077*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.184201574932019*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.368403149864039*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n" + ] + }, + { + "data": { + "text/plain": [ + "(
,\n", + " array([,\n", + " ],\n", + " dtype=object))" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAHtCAYAAADvMGREAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeJ0lEQVR4nOzdeVxU9frA8c8MA4iAgppMuaHjklpKaW6ItmigZnVT27ta3rTS7q3br6uVS2mldrt1K7O0MmwvpW5pCWWLAmaaCZSVyriQ2mAmIIOyDHN+f4xzZGBWmGF93q+XL5k5y3znzHLmOd/n+3w1iqIoCCGEEEIIIYTwK21DN0AIIYQQQgghmiMJtoQQQgghhBAiACTYEkIIIYQQQogAkGBLCCGEEEIIIQJAgi0hhBBCCCGECAAJtoQQQgghhBAiACTYEkIIIYQQQogAkGBLCCGEEEIIIQJA19ANEKKpMZlMpKam8uGHH6LX60lMTASguLiYkpISJk2ahF6v99vjGY1GkpOTyc/PZ9WqVX7br7PHMJvNPPvsswF5jKYuKyuLNWvWEBERweLFi52uUx+vVUOQ94do7Lz5fAohREOQYEsIH+n1eqZNm4bRaESv1zNp0iR1mclk4v777+fxxx/HYDD45fEMBgOTJk1ixYoVXm+TnJyMyWRi7ty5AXuMQLSjMYuLi6OkpIR169a5XCdQxzFQXL0+qampJCUlqbeb2vMKtOrHp6Uxm81kZGSQmZnpdWCTkpJCeHg4gHpRypflnnjz+Qy0rKwsUlNTiYuLQ6/Xk5WVRa9evYiPj3e7XaCPTWOQkpIC2M6RALNmzfJqm+Z+XETLIGmEQviRXq+nZ8+eLF++3K/7jYyM9Gn9uLg4EhISAvoYgWpHY2Y/sbsTiOMYKK5en6ysrBr3NaXnFWjOjk9LYTQaycjIoKSkBLPZ7NU29h/aSUlJJCUlYTAYePHFF71e7i1vPp+BVFJSQnZ2NitWrGDFihXo9XqvAi0I/LFpSMnJyUyaNIlJkyapQdb8+fPdbtMSjotoOSTYEsLPwsPDKSkpadA2xMXFeTzJt6R2COecvT6pqank5+c3UIsav5Z+fAwGA0lJST6lSq9bt05Ntwbb+y4tLc3r5U3JK6+8wieffMKqVau86v1s7sfGbDZjNBodAvOkpCSys7PVXi5nmvtxES2LpBEK4Udms5ns7Gxmz55d4/60tDQ1tcR+JS4zM5N169ZhMpmYM2cOcXFxmEwmFixYQExMDLNmzXL7oyYlJQW9Xo/JZFKvoroaN2Q2m1mzZg0Gg0FNgTQYDKSmpjqkkRmNRkwmEyaTieLiYqZNm+bxefu7Hc72Zx+TATB79mynbaw6bsMeRJSUlDhdJyYmhqSkJLWXwr7c/thgS3lxlpqSmZkJOI7Tq80xcvaciouLMRqNzJo1i9TUVCIjI0lPT2fKlCluU1MzMzPVfd1zzz2YTCY+/PBDwsPDmTNnDhEREcyfP5+SkhLmzJkDUOP1ycrKIisrC5PJpF45rv7cfHl/ePN6gOvPR9V9OHu9vNmutsfW1evl7vi4e42dtT81NRW9Xk9JSQkmk4nw8HCPP9DdPefGyGQyUVJSQkRERI1lWVlZ6vN3tTwuLs7nx6zN57Mh1PexSU1NdbhdX6mwubm55Ofnq88jJiYGwOVFyYZ4zwgRSBJsCVEHJpNJPbHbf4A6G6+1bt069WpwfHw8M2bM4JlnniE+Pp7w8HBWrFihniDsRTc8/UBYunQpCQkJ6o/Y+fPnq4HLtGnTWLZsmcP6y5cvV9c3m83885//ZNWqVQ4npuLiYoqLi9V9zpgxg4SEBLc/5vzdDlf7sy9fsWKFyzbax20sW7bMIVBNTk7mxRdfZNasWTXGdiQkJJCenq4+dlJSkvpYJpOJ+fPnO4xLMRqNDBw4UD3Rp6amqvv29Ri5e07JyckOAcny5cvdFqeIj4+nuLiYzMxMdb/2wMZ+HCZPnozBYFBvV3997Nvl5+c7ff/5+v7w5vUA15+PiIgIt6+Xp+1qe2w9vV7Ojo+7bZy13/69UfW95k16orvn3Bi56r2wZwB4Wu6r2nw+/SkjI4PIyEiKi4sxmUxuL0bU57FJSUlxuMiRmZlJZmZmwDMPIiIiePfddx3uy87OBs4GXdXV93tGiECTYEuIOqiak280Glm+fDnFxcU11rP/kLJfSYyJiSE7O5v4+Hji4uLUK+72H62eUnRMJhNbt2516JGKj48nNTXV5Y+KrVu3qifaiIgINTis+lglJSUOwVdMTAwmk8nlj2l/t8PT/iIjIzGZTG7bGB4e7hBQgC3IuPnmm9VKkeHh4RiNRnU/9l627Oxsh8fW6/WYzWaHq6UGg8Hhh21SUhJXX321yyqUtX1OVRkMBrcpN3YjR46sUcSi6vGuGnjVhq/vD/Du9XD3+bDvo/rrBe4/V0Ctjm1t3tOetnHWfvuP3ZEjRxIREYFer6dXr14uj2PVx3L3nF3xdjyLPU0w0OwBiatxVvblvvL18wn+OzbVv79TU1NZunSpzwWC/H1s7NkE77zzjnpfenq6x/dboN4z69at45577vH5AkGg3jNCBJoEW0L4icFgYPLkySxbtqzGlTz7ydZsNpOfn4/ZbHY4KSQmJpKeno7BYCArK4uBAwe6faysrCzCw8MdroTbgxZ37at+1a/6j4/qt8PDw92evPzdDm/252sbwRbU2X/w2revvp99+/Y5/TEWExPjMTVFr9c77Luq2j6n2gRFERER6g95e6+p/fH8MR1BbY69q3ZWfT08fT6cPTZ4/ly5arO7Y1Gb93RtXmN7MHbzzTdjMBgYOXKkV+lu3jxnZ+qrZ8dbntrszx/N7j6f4L9jU33/9osfZrPZp8DC38cmNzeX8PBwhzZ4EwAG4j2TnJzMyJEjaxXQ1+d7Rgh/kmBLCD+qOv6i6onXaDSydu1a4uLiGDlyZI2r6wkJCcybN49p06bVuBLvTElJiUNaE+Bxm8TERNauXcvs2bNJS0vjnnvu8fXpBbwdtdlfbVW/OlqX9BN3J/n6fE5g+4FnD9x79epFYmKimlpYm8f1V6DmjqfPBzivNOfNdr7y9fWyjy/xtI2z9i9evBij0UhWVpY6uN9TwBWI5xxIrt479mPmabk/1NeP8Oppefbgpup4parq69g0ltS6zMxM9Hq9x0CrMbxnhPAnCbaECICqV1HNZjPz5s1zGMtlP/nZf8gaDAYiIyPJzMz0qsS2wWBwOp+Mpyuos2fPVlOO/HFS8nc7ars/T8xmMyUlJW7T3eLi4pw+dn5+vsfy9e72Hajn5Ep8fDxr1qwhLi6OpKQkwsPDWbBggVfFF5xx1yNQW1VfD28+H672UZvtPPH19bKn//r6Gtvn6jIYDBgMBhITE5k/f77bYKsuz7mh0gjtabvO2mcPSD0trytPn31/HBuz2cyyZctYtWqVw3c/uB6bVF/Hxlk2gb197r6D/Pmesff62tczm82YzWan79nG8J4Rwp8k2BKilpyl78TExBAeHs6+ffvUNKFevXrVONnbT8JVf8gmJiayfPnyGimIzsTFxdGzZ88aV1IzMjJcnvSMRiNJSUk+DYj2dEXU3+2ozf6ctdFeatj+Q8JeJtjdj1GDwcDAgQMdUgaNRiOAQ1tMJpPDvlNTU93u21/PyVv24N2ewmZvl7f7tI+hAjyOx/J2n+5eD6PR6NXno7r8/PxabVfX97Sz42OfX8/X17j65Mieeqlq+5zB/ylhrnqL7EWDqgaNkydPdhhnlpmZ6VC229Py6uPU3PH18wn+OTYRERFcd911Do+TlpbGiBEj1LY01LHR6/WMGDGClJQU9bHtE1O7285f7xmj0YjRaCQ+Pl797FR9HoE4LkI0JhpFUZSGboQQTYnJZCI1NVX90WavHmg/oWZlZZGSkqL2KsTFxZGcnAycveqm1+tJTk52qF5mMplITk6ukUtvTxvaunUr1113nUN1q+TkZPR6vdobZi+5bl9/6tSp6gksMzOTZcuWER4eTmRkJOHh4SQmJpKUlOR0m5SUFNatW4der2fy5MlugzR/tcPX/Tlro73U9uTJk9VxQXA2Pcv++uTm5qrbVP2BZH9s+2tS9XgbjUa1nDTULC3tj9fK/px69uzJpEmTiIyMdNjn5MmTPfaIpaSkEBcXp/4oT0lJqfE8Xb0+9rYCaspPXd4fnl6Pqo/n7PMRHh7u8vVyt51er6/TsXX2erk6Pu5eY1fvN3sZbvu6JpPJ4XvEFW++SwLJ/sM4IyMDo9HIddddR69evdTHtk9BUHW6B3CcUmHfvn01qvS5W56amsqaNWt45ZVX3B4fT5/PQLOX5berPsVBQx4bsL13IiMj0ev1FBcX10shFLPZzJ133un0Iscnn3wCBOa4CNGYSLAlRCNhNpvJzc0NSBqE2Wxm+fLlzJ49m4iICHVwfXJyMvHx8fU230p9tMP+495dmXRRf+T1EP5QvadWnCXHRojGTdvQDRCiJbOnAIEt5ShQ+eZpaWkkJSWpVz7tVeumTZum9jTUh8bSDiFE0xKIsYPNhRwbIRo3CbaEaEBr1qypkU4UCPZy4NV5KmneXNshhGhapKy3a3JshGjcJI1QiAZkNBrZt28fQMBT+bKyshyugNorOdXHOI/6aod9fEx2dnaNcUii/snrIfzBXl7fXbGWlkqOjRCNnwRbQgghhBBCCBEAkkYohBBCCCGEEAEgwZYQQgghhBBCBIAEW0IIIYQQQggRABJsCSGEEEIIIUQASLAlhBBCCCGEEAEgwZYQQgghhBBCBIAEW0IIIYQQQggRABJsCSGEEEIIIUQASLAlhBBCCCGEEAEgwZYQQgghhBBCBIAEW0IIIYQQQggRABJsCSGEEEIIIUQASLAlhBBCCCGEEAEgwZYQjYDZbG7oJogmSt47QoiGJt9DLYu83r7RNXQDRMMxmUykpqaSlpZGZGQkiYmJDsuys7OJiYlh8eLFDdjK5i85OZlp06aRlZXFmjVriIiIqNUxz8rKIjMzE4C4uDji4+P93VQBXr1ORqOR5ORk8vPzWbVqVUDbk5aWRnx8PHq9PqCPI0RjI+ewxsF+DguE2p4X6/M7uD7Ieadpk56tFkyv1zNt2jT0ej0DBw5k0qRJ6r9Zs2bxzDPPOKyfnJzM0qVLG6i1/pWamtrQTQBs7UhKSgJsAdLkyZM9XjFy9TosWLCAqVOnEh8fT3h4eEDa6y1nx7e5vH+8eZ0MBgOTJk2ql/ZMmjSJlJSUenksIRoTOYc1vKrnMG/W9VVtz4uuvoNdvQcay/F0Rc47TZsEW4KIiAiX98fFxam34+LiSEhIqKdWBVZWVlZDNwGTyYTRaHS4MuRNkOTsdbDvx/6aVX3dGoKz49uc3j/evE6RkZH10BKb+Ph4OfGJFkvOYQ3D2TnMndq2ubbnRWffwa7eA43heHoi552mS9IIRQ1msxmz2Yxer8dgMGA2m2uctJqy1NRU8vPzG7oZpKam1uoqlKvXoaF7s+xcHd/m8v5pjOLi4lizZk29XdUUojGTc1j9tcPb75xAt9nb19bZeo3leDY1ct7xngRbooaqXzr2LyZXucBms5k1a9ZgMBjUK1wGg4HU1FTmzp0LQEpKCnq9HpPJhF6vJz4+Xs0/Bpg9ezYmkwmTyURxcTHTpk0jMzOTdevWYTKZmDNnDnFxcZhMJhYsWEBMTAyzZs1Cr9c73bdd9bSApKQksrKyyMrKwmQyqVdkqn5R2PcHtqt29mX29sbExKj7AdQ89dTUVPR6PSUlJZhMJsLDwz2mVmRnZ7vMc7ePvSouLqakpERth7PXwWg0kpqaqj4nvV6PXq+vsV5ycjJpaWlMnTpVfQ6enlP14we21zwtLQ29Xk9WVhZJSUkYDAb1ODk7vu5yyT0dc3D+HnGnan67/T1RUlLisK2n5++qXd68Tu54+3koLi7GaDQya9YsUlNTiYyMJD09nSlTpqjHu6qYmBiMRqPTZUK0JHIOa7hzmLP92M8Vrtrs7pxSlS/nRWecrefseOr1eq9eu+rkvCNcUkSLN2/ePOW+++5T1q1bp7z++uvKnXfeqeTm5tZYLzc3V7nzzjsd7luyZImSkZGhKIqiFBcXu11ufyz7vnft2qXceeedyq5du9TlVR/bvryqdevWebVv+3Oxy8jIUNfdtWuXct9999V4fkuWLHFoy++//67MmzfPYR/33XefsmvXLiU3N1fdf0ZGhrJx40aH7aredqb6vu127dqlTJw4USkuLlbv27hxo7J8+XL1trPXwdl9zo7fvHnzHNrm6jm5O36vv/668vvvv6vL7rzzTof2ujq+rt4/7o65p/eIOxkZGcrEiRMd2vr66687HEtXz9+bdtXmdarN56H66+Ds2Nofv+rnQ4iWQs5hZ/fXkOcwd/tx1WZF8e6c4q/zoqtzZfW2eXrtXJHzjnBGxmwJAHr27MmkSZOYNm0aI0aM8Hq7rVu3qlc0IiIi1Kt7YLsqs3XrVocrdfHx8erVusjISEwmk0O3fkxMjLp9XFycepXFzp4q527f9iuVkydPVpelp6er+3XGaDSSnZ3t0Ba9Xo/ZbFavPIWHh2M0GomLi8NgMDhc0cvMzFQHrur1enr16uX2uJWUlLjMczcYDA5jEJKSkkhLS3Pbfmec5W5XTzV09pw8HT+TyeSQ3x4TE0N2drZPbQPvjrmn94g74eHhGAwGh+M8efJkh2Pp7Pl70y7w/XWq7eehKoPB4HL/kZGRFBcXuz8oQjRTcg5rHOcwX/cD3p1T/HVe9Jaz186bsWly3hHOSBqhqCEpKYmSkhL1trsuYoPB4LAunP1CysrKIjw83OGLouqJrOq6duHh4Q4f3MTERFJTU5k1axZZWVmMHDnS475zc3MJDw93+EKyp4O4sm/fPqdfpDExMWRlZalfRM7WsX9x3XzzzRgMBkaOHOmxW9+eXuEtvV7v00BkX1Tfp6fjZ//bbDaTn5+P2Wyu1ZdtbY959feILyIiItQTnX2/1ffvbbuccfc61fbz4O1rrtfrSU9P92pdIZozOYedVZ/nsNrsB2p/TgnkeRFsr116ejoGg4GsrCwGDhxYq/3IeUdIsCVqcPYl4OpElZiYyNq1a5k9ezZpaWncc8896jL7la/q1aB8kZSUxP3338+sWbMcrr6427c9n9lbJpOpxsnWFVcB0uLFizEajWRlZZGWlgbg10Gj/rpy5Ox5Vn9Ono6F0Whk7dq1xMXFMXLkyBpXwaqz54h705aG4Ovzd8fd6+SPz4Onx67PSlRCNFZyDnMt0Ocwb/dT9bzg6znFLlA9Kva2JSQkMG/ePKZNm1aj96eu5LzTskgaoXDLm6tGs2fPJjs7m/j4eIcBta66nn2ZeVyv1xMZGUlmZqbDB9rdvp1dqXT3uPbufGf7y8/P95gGYe+Ot89x8cwzz5CRkeHxefmS/lBSUuKXAajeHHt3x89sNjNv3jymTJlCUlISERER6rqunk/VNIyq6nLMa8tsNns8lnVpl7t9++Pz4OmxZYJJIRzJOaz+zmG+7Md+XqjNOcXOX+dFV20zGAxOXztfyXlHSLAl3H7okpOT3X6QjEajWnmn+npxcXH07NmzxlU6d1/izk4wiYmJLF++3KEL392+9Xo9I0aMcJj/wWw2q49b9SRhMpkwGAwYDAYGDhzo0NVu/8Ktmuvsqs3Vq0Z5ujIXExPjstSsyWRyeE1SU1NJTEz0+Qut+tgms9ns1RVQd8cvPz+/xhe7va324+Xs+DpT22PuyxVAo9HocCzXrVvn8Vh62y5fXyd/fR5c8TU1VYjmQs5hjeMc5m4/rs4L3pxT7Nv447zojLtzlv2183QMq5LzjqhOoyiK0tCNEA3DZDKRmprKhx9+iF6vJzEx0WFZdnY2JpOJTz75RO3m37p1K1OnTlXTAjIzM1m2bBnh4eFERkYSHh5OYmKiw9VB+8nOfmUoPj7e6f5SUlJYt24der2eyZMnq18w9sHCs2bNqvEcnO276rLIyEj0ej3FxcU12gS2L1lnbbUfg6rlWlNSUsjNzVXbZl+v6kBT+3aJiYkuJ9q0mz9/PosXL3a4z2g0quVcwXmJ2+rHrep91113HQkJCerJomopW7ANst6/fz9Tp04lPDzc5XNyd/zsx67qGIDk5GQSEhLU41/9+Lp6/7g75r68R5yxl7WdPHmymi8POJRC9vT8nbXL19fpuuuuc9jW18+DfeB/ZGSkwz4nT57s8B5bunQps2fP9vi+E6K5kHNY4zqHedqPuzaD63OKP86L9iIU7s5DztpmMplITk72OGbOTs47whkJtkStmc1mli9frn7Q7INbk5OTa6RjiJpSUlIwGAzNZqLNxsZ+0nv22Wcbuin1YunSpV7/IBBCyDmsrlrCOcxsNpObm+v1c5TzjnBG0ghFraWlpak51mCruFO1jKlwb9KkSTVSLoSojZSUFPlhKISP5BxWN831HFY1TS8jI6NZB5N1Iecd70mwJWrNYDA4rZrkqUypOCshIcHnylNCVGUvkyyfOSF8I+ewumuO57A1a9bUSIkUjuS84xtJIxR1kpWV5VDtyV4y1ZfBpC1dZmZmjUkQRd3Y8+Kzs7Nr5OY3NykpKc36+QkRSHIOq7vmdg4zGo3s27cPwKeeGznvCFck2BJCCCGEEEKIAJA0QiGEEEIIIYQIAAm2hBBCCCGEECIAdA3dgKbiueeeo7KyEo1GQ+vWrRu6OUII0WKcOnUKRVEICgriH//4R0M3p1GRc5MQQjQMb89NEmx5qbKyEkVRUBTF7Wz1QgghAqOysrKhm9DoyLlJCCEalqdzkwRbXtJoNCiKgkajITw8vKGbI4QQLUZJSYn6/SscyblJCCEahrfnJgm2vNS6dWvMZjPh4eHMnDmzoZsjhBAtxsqVKzGbzZIm54Scm4QQomF4e26SAhlCCCGEEEIIEQASbAkhhBBCCCFEAEiwJYQQQgghhBABIMGWEEIIIYQQQgSABFtCCCGEEEIIEQASbAkhhBBCCCFEAEiwJYQQQgghhBABIMGWEEIIIYQQQgSABFtCCCFEC1ZmsTZ0E4QQotnSNXQDhBBCCFG/8grK+GJvIdsOFVNmUQjVaRjWLZLRhjb07BDW0M0TQohmQ4ItIYQQogXZdrCYldtMVFbp0CqzKGw2nmSz8SQ6rYb47hJ4CSGEP0iwJYQQQrQQeQVlNQKt6izWmoHX2N5RxEQGE6qT0QdCCOELCbbqgcViQVEUdDodGo2moZsjhBCihfpib6HbQKu6qoEXoKYbju0dRdfo0AC1UojaK7NY5aJAAzAajSQnJ5Ofn8+qVaua/OP4kwRb9eD1119nxowZaDQaQkNDCQ0NJTw8nA4dOnDOOefQsWNHunfvTo8ePTAYDPTv359zzjmnoZsthBCimdl2qLhO29vTDdP3n+Su4XqGxUb6qWVC1J6rMYhyUcC95ORkTCYTc+fOrfO+DAYDkyZNYsWKFX5oWcM/jj9JsFUPysvLAVAUhdLSUkpLSykqKuLo0aMut+nUqRMXXXQRl1xyCaNGjWLo0KGEhUnuvBBCiNops1gpsyh+2ZdVgRVbTXyXV8yEftEytks0GHdjEDMOnGTmMLko4EpcXBwlJSV+219kZP0c5/p6HH+RYKsexMTEEB8fT2lpGeXlZZSVlWE2m/njjz+oqKhwus2RI0c4cuQIGzZsACAkJIRhw4YxYcIErrrqKvr27SspiUIIIbwWqtMSqtP4LeAC2Hm4hJ2HSxzGdklPgqgvnsYgVlph5TYTnaJC6BIl78vq4uLiGroJLYIEWwGWV1BGUZcE+v49jjKLgvZMfGRVQKdViNSUceTo7xT8nsfp47/RuuQoxYf3sGd3DkVFRep+ysvL2bJlC1u2bGHOnDl0796dKVOmcMstt3DhhRdK4CWEEMKjYd0i1fFX/mQf2yXphaI+eTMGsdIKn+8pZPrQmIC2JSsrizVr1gAwe/ZsTCYTJpOJ4uJipk2b5nSsUXJyMmlpaUydOpWkpCSn+yguLsZoNDJr1ixSU1OJjIwkPT2dKVOmYDAYHNqQkpKCXq/HZDKh1+uJj49X9xkTE6M+BkBCQoLLsU+pqakOt5OSkgAwm82kpaWh1+vJysoiKSmpRhs8yczMZN26dZhMJubMmUNcXBwmk4kFCxYQExPDrFmziIiI8OlxvDm27o5RoEmwFUDOuratVS4oWqwaCmhF65jutI7p7rBtPw30CS0g6Pcc9uzaxjfffIPRaFSXHzhwgKeeeoqnnnqK/v37M3XqVKZNmyZjvYQQQrg0tncUGQdO+lQkwxdV0wv/cmF76eUSXluQmkfR6Uqftik4bfFqvc3Gk+QcPeXTvtuGBbEoqavX69t7iVasWEFxcbH6I37GjBkkJCQ4HWtkD8K82UdycjLTpk1T112+fDnPPvusenvp0qUkJCSo28yfPx+9Xq+mCq5btw6wBVnp6ekYDAamTZvGsmXLHJ5HSkqKGiCCLTjKzMwkPj6edevWkZSUpAYpM2bM4JlnniEiIsLr4xQfH094eDgrVqxQn69erycxMZFJkyYBtkDJl8fx5ti6O0a+Boy+knItAeJNeV13KhX4uTSaH6NHYx0zl4fezmTTdz/y7LPPcvnllxMUFKSuu3v3bv71r3/RuXNnbr75ZtLT01EU/6WJCCGEaB66Rocyc5ieoACf/XceLmFhWh7bDtatIIdoOYpOV1Jw2uLTP1/4um9fAz+wjSUymUwO6XkxMTGYTCZ1eXXh4eFe7aMqg8Gg7hPAZDKxdetWh16a+Ph4tYcqPDwco9FIXFycGmQ5YzabWbNmDZMnT1bvS09PVx/LZDKpPWP2dmVnZzvdlztxcXFqj51d1eNQm8fxdGw9HaNAkp6tAPG1vK47auldQtF0nECXv03guiknOLIjlWPff0ZuznbAlmr47rvv8u677zJ06FAefPBBrr32WofATAghRMs2LDaSTlEhfL6nkMwDJ7EEqJdLxssIX7QN8/23ii8BV3SYbz95a9MesPXSVBUeHk5xsW8XHZzto/p9VWVlZREeHu4QoNjTGF3t05nc3FzCw8MdepCqViq0/202m8nPz8dsNvv83OwSExNJTU1l1qxZZGVlMXLkyIA8jp03xyhQJNgKkLqW13VFARQFWrVph+GKmzFccTMD8g8S8vN6vvjoHf78808AvvvuOyZPnkyvXr2YN28eN998MzqdvNxCCCGgS1Qo04fGMH1oDPuPn+Zr48mABF6VVngh/XdmjzxXUgqFW76k7Nm99l2+V2MQRxvaBHzMVm35oxpgSUmJmjJoV734RfUetNq0xWg0snbtWuLi4hg5cmSNHjdfJCUlcf/99zNr1qwaPXn+epyqz8ebYxQokkYYAP4sr+uN8JhYgi+7l6ue3cwdC56nT78L1GX79u1j6tSpXHDBBbz77rtYrQG6hCmEEKJJ6tEhjOlDY1h9Yy8evbIzow1tCNX5r+iSqbiChWl5pAegMIdo2cb2jvKYEhukhSv7RNVLe2rDbDbXeR/V0wpru2+DweA04DKbzZjNZubNm8eUKVNISkoiIiJCXbc2vUN6vZ7IyEgyMzMdUgD9+ThVn7+/jlFtSLAVAPbyuvXNGhRCRZ8kLnk4hSvnrub8QWfzUvfs2cPNN9/M4MGD+eabb+q9bUIIIRo/e+D1yvU9efV6A0+M78qgzp6viHtSaYVXvsvnb+/n8tp3+eQVlPmhtaKl8zQGMUgLM4fpGzSNtWrwUnX8Fth+6JtMJo89Sp6Wx8XF0bNnTzIzMx3uz8jI8Kmter2eESNGkJKS4tDGjIwM8vPzKSkpcSgmYQ9Uqhei8FZiYiLLly9n4MCB6n21fRxPx9Zfx6g2JNgKkGHdGq7srUajIebCkVzyz9e5ct5bxJx/ibps165dXHbZZVx77bXs27evwdoohBCicQvRaekSFco/Rp3HPSP8U1SjvNI2BlmKZwh/GRYbyaKkrg49sqE6DaMNbViU1LXepiGwp76ZTCY1WElJSSE3N5e0tDQyMzOJiIhg6tSppKSkkJmZSXZ2NgMHDlSXu9tHZmYmWVlZapnzkpISkpOT1UBk8eLF7Nu3j9TUVLWCoL3Ue0pKirpPe0Di7LHANl6quLhYbWNGRoZaev26664jOTmZrKwssrKymDNnjjoGqur+kpOTvTpmiYmJjBw50mGMWG0fx9OxdXeMAk2jSNk6r6xcuRKz2UxERAQzZ870uH5eQRkL0/ICVl7XF4qiYNq9lR/eeYoTh35R7w8NDWXu3LnMnTuXVq1aNWALhRDCNV+/f1uS+jw2vxWW+bWoRpDWNk5HimcIfyq3WAnRSV+CCDxvv3/l3Rgg9VVe1xsajYZzL4hn3OMfMnzGEtq0tw00LCsr47HHHuOCCy7g888/b+BWCiGEaMzsRTXsY7vqml5oL54hKYXCnyTQEo2NvCMDyFnXtlZj+wcQHAT6yGCC6ml4l1YbRM/Rkxj/VCoXTLyToDPVCY1GI4mJiUyfPp3CwsL6aYwQQogmq0eHML+kF9qLZ0hKoRCiuZJa4AFWtbxu1a7t6t3cgSy9W11wq3AuuvFBYuOv4ed3FrM/5zsAVq9eTVpaGitXrmTChAmBbYQQQogmzz5n1wvpv2MqrqjVPmQ+LiFEcyY9W/WoanBVvZvbWendQPeER3fpzYh/vcGIvy2mdbhtAOmRI0e46qqruOuuuzh16lRgGyCEEKLJ6xIVyuyR59aph6vSCp/vKfRbm4QQorGQYKsRcjfniVYD/sw61Gg0GC67gaQn19NpYIJ6/8qVKxk0aBC7du3y46MJIYRoLLKzs/nqq6/47rvv+PHHHzEajZw8Wbu5sPwxTjl9/0kZvyWEaHYkjbCR69EhTA2+qqYeZuwv4rXtx/xW7TC8w3lc9uCr7Pv6fXa+tQRL2Wl+/fVXhg4dytNPP829996LRlP/c4cJIYQIjCeeeIK1a9fWuD86OprY2FgMBgODBg3ikksuYfDgwbRt29bt/uwphZ/vKWTrwZNUVPrWHqsCC9PymDlMX2/luoUQItAk2GpCqqYejuzRlm7tWvm1DK9Go6H35TcSc/4lZLz4f5w4uJuKigr+8Y9/kJGRwauvvkqbNm3q/kBCCCEanKtU8YKCAgoKCti1axfr1q0DbOeHIUOGMH78eMaPH8/FF1+MVluzG6vqOOXaXBSU8VuirhRLKRqdTGdT3+zzf+Xn57Nq1aom/zj+JGmETVj1Mrz+GufV9jwDSY+9T7/xd6j3rV27lsGDB5OTk1P3BxBCCNHgbrzxRh566CH+/ve/M336dG688UYuvfRSYmNjCQoKclhXURS+++47Fi5cyCWXXILBYGDBggXk5ua63P/IHm1ZlNQVfWSwT+2SkvDCV0pBLpZtS6h4fwyW96+w/b9tCUqB6/engOTkZJYuXeqXfRkMBiZNmuSXfTWGx/En6dlqJqqmG+4/fpr1Pxew83BJrfcXpAth0C1z6dhnMJkr51Bxqph9+/YxfPhwkpOTmTJlih9bL4QQor7deuutLpdZLBb27t3Ljh072L59O1u2bOGnn35Slx88eJDFixezePFiRo8ezQMPPMCECRNq9HbZi2csTMvzqYfLXhJeUgqFJ9aDm6j8djFYLWfvtJxGMW7AciCVoOHz0caOabgGNmJxcXGUlNT+t2J1kZH181mtr8fxF+nZaob8Nf8JQJfBY5jwxEe0i+0P2NJOrr/+eubNm4fVGuAa9UIIIRqETqejX79+TJ06lRdffJEff/yRvLw8Vq5cSWJiokNQtXnzZq6++mr69evHq6++SkWFYwl4e/EMrY/Dfu0phb8VSg+XcE4pyK0ZaFVltVD57WKUAmP9NqyJiIuLIz4+vqGb0exJz1YzZh+s/GHOn3Xq5Yrs2JXEhe/y3Wvz2Z/xMWAbWJ2Tk8M777xDRESEv5oshBCikerSpQszZsxgxowZHD16lLfffpvXXnuNPXv2ALBnzx7uvPNOli5dyuOPP87111+vBmX289H8jXlYFe8f014SfvrQmEA8JdHEVe5Z6zrQsrNaqNyzFt2wuQFtS1ZWFmvWrAFg9uzZmEwmTCYTxcXFTJs2zelYo+TkZNLS0pg6dSpJSUlO91FcXIzRaGTWrFmkpqYSGRlJeno6U6ZMwWAwOLQhJSUFvV6PyWRCr9cTHx+v7jMmJkZ9DICEhASXY59SU1MdbiclJQFgNptJS0tDr9eTlZVFUlJSjTZ4kpmZybp16zCZTMyZM4e4uDhMJhMLFiwgJiaGWbNmERER4dPjeHNs3R2jQJNgq5nrEhXKP0adx7aDxazcZqp19UJdSCtG3PUU0bH9+OHtZSiKlfXr1zNq1CjWr19Pp06d/NtwIYQQjdZ5553Hgw8+yAMPPMBnn33G008/zebNmwHbD5+bbrqJZcuW8d///pfRo0cDtvNRQo82bDb6Vl4+ff9JxvaOomu0FMxoziwb70A5fcK3jU7/4dVqinE9FUe3+bRrTVg7dONWe71+XFwcACtWrKC4uFj9ET9jxgwSEhLUsUYrVqxQt7EHYd7sIzk5mWnTpqnrLl++nGeffVa9vXTpUhISEtRt5s+fj16vV1MF7cVuEhISSE9Px2AwMG3aNJYtW+bwPFJSUtQAEWzBUWZmJvHx8axbt46kpCQ1SJkxYwbPPPOMTxfd4+PjCQ8PZ8WKFerz1ev1JCYmqmOxkpOTfXocb46tu2Pka8DoK0kjbCGGxUayKKkrow1tCA7yvL4zGo2GfuNu5/I5rxHc2pYvu2vXLoYOHUp2drYfWyuEEKIp0Gq1XHXVVXzzzTd8++23XH755eqyrKwsLr30UqZOncqxY8cAGNs7yuf0dntJ+G0Hi/3ZdNHIKKdP2IInX/75wsd9+xz4YRtLZDKZ1CACICYmBpPJpC6vLjw83Kt9VGUwGNR9AphMJrZu3erQSxMfH6/2UIWHh2M0GomLi1ODLGfMZjNr1qxh8uTJ6n3p6enqY5lMJrVnzN6u2vz+i4uLU3vs7Koeh9o8jqdj6+kYBZL0bLUgdS3Ja3fehfEkLXyfr56eQckfhzly5AgjR47kww8/ZOzYsf5vuBBCiEZv2LBhbNq0iU2bNjF37lx++OEHAN544w3Wr1/P008/ze23387MYXqfMy2kJHzzpwlrhw8Zpja+BFxh5/i0a01YOx8bY6PX6x1uh4eHU1zs24UCZ/uofl9VWVlZhIeHOwQo9jRGV/t0Jjc3l/DwcIcepLlz59b422w2k5+fj9ls9vm52SUmJpKamsqsWbPIyspi5MiRAXkcO2+OUaBIsNVC2efpqu14rqjOPRn32Fq+eeZujudmYTabmTBhAmvWrOGmm24KQIuFEEI0dhqNhrFjx3L55Zfzyiuv8NBDD1FYWEhBQQHTp0/nf//7H6+88gqLkrryQvrvmIorPO/0DBm/1bz5krJnZ9m2BMW4weN6GsPEgI/Zqi1/VAMsKSlRUwbtqv4NNXvQatMWo9HI2rVriYuLY+TIkTV63HyRlJTE/fffz6xZs2r05Pnrcao+H2+OUaBIGmELZh/PVduqhWFt2zP2kTfoMtjWm1VRUcHNN9/Mf//7X/82VAgh6lFpaSlffPEFW7ZsqdX269ev54svviA/P1/d36FDh1i/fr16X3MXFBTEXXfdxa+//upQYn79+vVceOGF/LA5ldkjz/X53LPZeJLXvsuXObgEAEF9poDWQ7+BVmdbr5Eym8113kf1tMLa7ttgMDgNuMxmM2azmXnz5jFlyhSSkpKIiIhQ161N75BerycyMpLMzEyHFEB/Pk7V5++vY1QbEmwJdTzXoM6er3pUpwtpxah/PE+vy29Q77v//vuZN28eiuJzQoAQQjSYLVu2sH79enJycjh06BBlZbX7QV9aWkpOTg5vvfUW//nPf3jxxRdZv349AwYMqNOV4KYoJiaGN998k48//piOHTsC8Mcff3Dttdfy38UPMX1Qe59Lwm82npQxXAIATXRPgobPdx1waXUEDZ+PJjqwBRDcqRq8VB2/BbYf+iaTyWOPkqflcXFx9OzZk8zMTIf7MzIyfGqrXq9nxIgRpKSkOLQxIyOD/Px8SkpKHIpJ2AOV6oUovJWYmMjy5csZOHCgel9tH8fTsfXXMaoNSSMUQN2qFmq1QQy9YxFhUeeQ8+FywFYa3mw28+yzz6LR+HgmFUKIBjBq1Cj1b3s589qIiYlhyJAhai9WVFQUvXv3rnP7mrKrr76a4cOHM2PGDP73v/8B8Oyzz7J9+3aeXfUGL2ZX+lwSXsZwCQBt7Bg0bbtTuWctyqFNYDkNujA03cYQ1GdKvQVa9tQ3k8lESkoKkyZNIiUlhdzcXMxmM5GRkcTHxzN16lS1/DjAwIED1TLner3e5T7gbG/Q2rVrKSkpITk5mcmTJxMREcHixYtJTk6muLhY7Smyl3pPSUlR9xkfH49er3faXrCNl0pOTlbbWFxcrJZOv+6660hOTlbT7+bMmUNycjIJCQkO+6teOdGVxMRETCaTwxgxg8FQq8eJiIhwe2zj4+NdHqNA0yjS/eCVlStXYjabiYiIYObMmQ3dnID6rbCs1mO5fv38TXasWazevuHWabyd/CpBQbUsgSiEaPEa4vv3zTffRK/X16roz5YtWxwCt0BqaucmRVF46aWXuO+++9TJjzt27Mjti1/laMT5Pu9vtKGNjOESDhRLGRqdBOAi8Lz9/pU0QlFDXcZynX/lbQyfsQSNxrbh+28lM37STVgsHiYdFEII0expNBruuece0tPT6dKlCwDHjh3j2Xsnc3DrJz7vL33/SRm/JRxIoCUaGwm2hEv2sVz6yGCftus5ehIJ9z6LJsiWpfr5x2uZfOMtEnAJIYQAYOjQoezatYsrrrgCgPLyctJf/D9yUp7zabyvzMElhGjsJNgSbnWJCq1VxahuQ8cx+r7laINsgdrHKR8w6YabJeASQrQIhYWF5OTkqP+2bNlCaWlpQzerUWnfvj0bN25kxowZ6n3ZH76I8e1HsFp8Kwm/cpuJ3wqlh0sI0fhIgQzhUdfo0FpNQtnl4ssZfd9yNj83G6ulgk8+XMu4v1Sy8aP30enkrSeEaJ6Kioo4duwYAwYMUO/Lz8/nrbfe4tZbb6VVq1Ye9/H999+zc+dOj+v5Y46ehhQcHMzLL79Mnz59+L//+z8UReHbjesoOVlE/7/9B12I52MFMgeXEKLxkp4t4RV7SuFoQxufyvR2vvgyLr3/RbQ6Ww/Xpg0fcuNt07BafYjahBCiCZk4cWKN6oMxMTHExMTwxRdfeLWP8vJydW4bd/+aQ40rjUbDP//5T1JSUggJCQEgJ/MLvlp2B+UlJ73ez7ZDkkoohGh8JNgSXusSFcr0oTEsSurqU1php7hLbQHXmZTClPfe5q/TZzaLHwlCCOGtbt26sXfvXq/WDQkJISIiwuO/5jS1xl/+8hdSU1PVksz5v37PF09Opcxc6NX2ZRYF4/HTAWyhEEL4TnK5hM9qk1bYKe5SEu59li3P/wPFWsnbya9i0Ybw7qvLm9WPBSGEcMWePpifn+9xcuPBgwczePBgj/u0lx5uLi677DK+/vprkpKSOH78OCcO7mbTkmmMeSiZ0Igoj9s/vukwM4fpGRYbGfjGCuEn9vLh/l5XNA7SsyVqxZ5WOKhzuNfbdL3kSuLv/jecCa7eX72CBx5eEKgmCiFEvfviiy/YsmWL02WhobaS1FIow71BgwaxZcsWNSA9cfBnWw9XcYHHbaVYhmhMMjMzycrKIjMzk5SUFKfrJCcn+xQ8paWlYTKZ/NVEUQ8k2BK1Vpv5uLqPuIrhf3tCvf3s0sdZvnx5gFoohBD1a8+ePRQVFTldZr/fU6+WgL59+/LNN9+g1+sBKDj0iy3gKnF+bKuyF8sQoiGlpqYSHx9PXFwc8fHxFBcXk5WVVWOdpKQkn/Y7adIkl4GbaJwk2BJ15ut8XD0vncygWx9Sb99777288847gWqeEELUmwEDBjBx4kSnyw4dOkTbtm29qkYo4Pzzz+frr78+G3Dl/crX/55BRekpj9vKZMeiIWVlZTFy5EiH+4xGo8Ntk8mE0WhU39++iI+Pl4CrCZFgS/iFr/Nx9Rt3Oxdcc7d6+69Tp7Jx48YAtU4IIfyrtLSUQ4cO1bhfr9eTn5/vdP29e/cyatSo+mhes3H++efzzTffcM455wDwx75dbH52FpUV5W63k8mORUMymUwOqYH2Hq24uDj1vtTUVCZNmlSr/cfFxZGRkVGXJop6JMGW8Bt74QxvA664KffR6/IbAai0WJg8ZQrff/99AFsohBDeKSsrczu2av369axbt46cnByH+3v37k1OTk6NgGvt2rUMGDCgRkl44VmfPn1IS0ujbdu2APz+UyYZL/4Ta6XF7XYyfks0lMjISLKysli6dCnz588nJSWFxYsXO6yTnZ3ttFcrMzOTzMxMXnzxRUwmE6mpqSQnJ9cYpxUTE1Ojt0w0TlKNUPjVsNhIOkWF8EL675iKK9yuq9FoGHL7QsrMheRtT+VUSQmXXzmOz77cwsiL+tZTi4UQwmb79u3k5+dTWFhIUVERRUVFrF27llatWtGnTx+HQKlbt24uqwqOHTuW7du3s2fPHjVoGzp0qARadXDRRRfx6aefcvkVYykvO03ejs/Z8cbjDJm20G1FW5nsuOkYPHhwoyr8oNfra3UBOCsri4EDBxIREUFJSQl6vZ61a9c6VBGs3vNll5qaysiRI4mIiCArK4vk5GTmzp3L/Pnza6QcxsXFkZWVhcFgqP2TFPVCgi3hd/aUwoVpeR5Lw2u1QYy8+99sKjrOsT3fU1xwnAnjx/Pehq8YN6h7/TRYCCGAIUOG+LSuu/V92ZfwTnx8PK++9QHTbrwOa2UFeze9Q3iH87hg4gy32207VCzBVhNgMpk4cuRIQzejzkwmk5ouGB8fD0BCQgLr1q1j2rRpAGoQVl1kZKRDQGYvnlG9V8y+bmMKToVrEmyJgLCnFL78rQmrh7mLg0JCufSBl0h77CaKjuRy0nSQqTddR+bmr+l1blS9tFcIIUTjd9vkq8h9ajmLHpgJwK73nia83bl0j3delATOTnZs6BBWX80UtVCbQhGB5O/2VA2MTCYT4eE1p86xB2cAubm5DBw40G370tPT/dpGERgSbImAsacUzt+Y5zHgCg1vyxX/epWNj17P6YJj/LEvi4nX30rq/9YS215OkEIIIWwe++cMTp/4nX8/8SgAW1fOpXW7GGL6uu5NlMmOG7/mPGZ737599OrVy+v17YGZu/m3iouLiYyU93NTIAUyREB1iQoloUcbr9YN73Ael//fKnShrQHYk/EpV0+/X6pJCSGEcLBs8QJGXXMrANbKCr7572yKj+W5XF+KZYj6YDKZnAZAW7dudei10uv1blMA7eO+qt6uzlUqomh8JNgSATe2d5TXFQrbxfYj4d5n0WhsG/z48UoeWPKCnCA9UCylfvnb2W0hhGhsNBoNr7/yMucNSACg3FzI10/fRfkps8ttZLJjEWgmk6lGEPXiiy9y3XXXOQRGMTExNSqWZmZmMn/+fMAWXNmDNrPZTElJidPHcpaKKBofSSMUAWcfv7Vym8ljwQyAzhddxuC/PsKONbYBod++tpAX4vry1N1/CXBLGzfFUopG10r9m+LDVO5Zi3LoS7CcBk3QmRUrff87KBRad4RTx6CyDHRhaLpdgbbn1Wg79K/x+EII0dB6nBPOmjffYfK40RQd3U/RkVwyXryfSx94Ga02yOk2UixDBFJJSQlxcXFkZmYSHh6uFrmoXjEwIiKiRoqgXq9Xt509ezZr1qwhMzMTcBzLZbdv3z5mz54duCcj/EaCLVEv7OO3Pt9TSPr+kx7HcJ1/5W0Umw7xa9obKJUWnv/XHVw97PwWVxLeenw31txPnAdU1VW9z9e/K8ug+Lezty2nUYwbqDRuoBItaDS29Z0EYUII0VDGDOhMykf/Y/zlCZSXFHEkazO73nuaQTfPcbp+mUVh1bcmks6Ppmt0aD23VrQEBoPBq3Ls9tLt9sqF1bebNWuWx324G9MlGg9JIxT1pktUKNOHxrAoqatXaYWDbpmrpoiUmQuZOPFqvvyx6ZeFdaZq6p71+G4s25ZQ8e6lVKbNQDFusAVaYAt4nAVaAWU9+5j2ICxtBhXvXoZl2xKsx3c7rC1piEKI+nTFkAsZ888X0Jzpzfr509c4uO0zl+tnHChmYVqejAcWDWrSpEmkpqbWatuUlBS1LLxo/KRnS9Q7b9MKtUE6Eu79LxsXTuHk0f0UHsll2l9vIX3TZ8S2b11/DQ4Al2mAihXw0O3XWFjLz/Z+aXQQca7bNEQhhAiU6yZcyR95D59NP1/1MFGdexHV2XkFOHvBjE5RIXSJkh4uUXdGo9HnCYYTEhLIzMx0miboitlspri4WO0RE42f9GyJBjEsNpJFSV3RRwa7XS+kdSSXPfAyIeFtATictZlZDzxUH030O6Ug19Zj9f4YLO9fgeWzqTV7rZpKoFWdYrGlIVaeKWTipAdMKcht2DYKIZqtsb2j6Jd4Kz1GXgOApewUm/87m/JTrnuvpGCG8CeTyeRzdUB7kOXL5MRpaWnq5MiiaZBgSzSYLlGhzB55rseUwjb6WEb943k1ReSzNc+zYvXb9dBC/7Ee3IQldbpjcNVSnOkBs2y8A+vBTQ3dGiFEM9Q1OpS7hp/LiL8tIrrr+QCc/P0AW1fOQVFcX8TadkhSCYV/+NI7VX07X4K0SZMm1epxRMORYEs0KHtKoVbjfr1z+w9n0C1z1dv/uOdO3tr4bYBbV3fW47up2PwQlZkLwWpp6OY0LKWSysyFWDY/XGOclxBC1NWw2EievKYPD/wnWc2G+O37TfySmuxymzKLQrnFizK5QghRSxJsiQY3LDaSxeO6egy4zk/8Kz0SrgXAUnaau6ddT87+o4FvoI+qF7jg8JaGblKjohze7LbAhhBC1FaXqFAemTyUy+59Wr1v17tPc9yY7XR9rQZMxRX11TwhRAskwZZoFLpEhZLQo43bdTQaDUPvWET7HhcAYD52mGsm38SB46fqo4luqeOxqlYQtMoJ3C17gQ0Z1yWE8LMp106k/1V3AmCtrGDL8/dRVlJUYz2rglQmFEIElARbotEY2zvK4/gtXUgrRt/3IqFt2gFwcNcW/jLzXw16onQYjyUBVu3Yx3WlTqfS6LpksxBCeGNs7ygG3XAf5/S6GICS40f4dtVDTsdv2SsT/lZYVt/NFEK0ABJsiUbD2/Fb4e3PZdTs/6LR2N6+2R++yLwX36nXE6ViKUUpyG1c47E0QWcnPfb176BQiOwKmgaeDcJqwbrtCSreu1xSDIUQtdY1OpS7R3bh0n88S0hEFGAbv7X3C+fFlaQyoRAiUGSeLdGoDIuNpFNUCPM35mF1UwVd338YF934f/zw7lMAbFnxIG8OHcjDk4cFrG1KQa7jvFgNQgsaja1MvC4MTbcxBPWZApGd0ehsc8UolrJa/w1gPf4L1tyPUQ5tarj5vyrLzs7hpQ1B0/1KgvpMQRPds/7aIIRo0obFRvKfW4by58FlfPX0TAB2vrOMmH5Dnc6/te1QMdOHxtR3M4UQzZwEW6LRsY/f2mw86Xa9fhOmczw3m7wdaVScKubpB24n+pyNTBhwLl2j/TtJpfXgJiq/XdwwPVjaEDTdE9H2vAZth75AzQCpqqr3+/o3gLZDX9vjDJvr8DhqEHYgtX7TJe0phvs3EjRiAdrYMfX32EKIJq1jRDCdLrqMPlfexp7P36Syooz05f9k/KJ1BIU4fveVWRSMx09j6BDWQK0VQjRHkkYoGiVvxm9pNBpGzFxCm3O7A1CQ9yvPPDbHr4Od6zVVsGpany4MjWEiQYmvEnzT1+iGzVUDLagZIAWsSVUeR9uhL7phcwm+6RuCEl9FY5gIujM/SuojDbFK6XgppCGE8EaoTkuoTsOgm/5FVOfeABT+tocf3n/a6fqPbzosxTKEEH7V4D1bhw4d4tChQ0RFRVFaWgrAkCFDarWv0tJS0tPTCQ0NZdSoUf5spqhn9vFbK7eZqHQzBUpwWASj/vECGxdMprK8lNyvPyCmz2BWci2dokLoElX7oKQ+erM0XUYTdOF0l2mA3iovL+fPP//kxIkTnDhxgqKiIk6fPk1paan6uQKYOHGiw+SJJ0+e5MCBA7Rr144OHToQFubdFV1XvV9g6wGr3P0mHN7s03PwlnJ4M5YjGdLLJYTwyrBukWw2Koyc/Qyfzb8Oa0U5v6au4bwBCXQa6PhbwV4so67nDyGEsGvQYGvv3r3s2bOHiRMnqvcdOnSItWvXMmXKFK/3s2XLFoqKioiJieHQoUN069YtEM0V9cw+fuuF9N/dzoMS3aU3Q29/lK0rbZMeb3t9Ie269+fzPW1qlX+vFORiyXktsPNjaYJcBgvOAi1FUcjLy+Pnn3+mR48e9OnTR1126NAhYmNjvXrY9PR0h2ArMzOT8ePHq7ejoqI477zz6Ny5M927d6dnz54YDAb69u1L79690Wprdjc6TUMc/WRgg9UzvVzWQ18RNOAOGcslhHBpbO8oMg6cJLpLbwbd9C92vPE4AN+uepiJyzYQeqaAhp29WIaM3xJC+EODpRGWlpby+eefM3bsWIf7u3XrRmlpKTk5OV7va9SoUUycOJEhQ4YQGipXopqTLlGhzB55rseUQsOo6+h56WQAKstOs+W5v/PVzybyCnyrUGgv4x6wQEsbgsYwEd241132ylRWVvLTTz/x+uuvc8899zB8+HDatm1LbGws48eP5/3333dYPyam9j8ICgoKHG4XFhby888/8/nnn7Ny5UoefPBBrrvuOvr3709ZmeOxPH78eI37qtLGjkGXtNqWbqgNrnUb3VEOb8ay8Q6sBzcFZP9CiKbPnikRpIU+V97GeQMSADhdeIztyYucbrPtkKQSCiH8o8F6tvbu3Uvbtm1p1apVjWV9+vQhOzubAQMGNEDLRGPjbUrhJVMX8Of+nyjI+5Wio0a+W7OYhWFLmDlMz7DYSLePEdDeLCcFLpxZtWoVH330EVu3buXkSdfFQYxGo8PtVq1aceWVVxIWFka7du1o164dbdu2JSwsjLCwMEJDQ9UeqV69HCtwxcbGcuedd3LixAmOHTvG0aNHOXLkiEPqIUDPnj1rpBg++OCDvPPOOwwZMoRRo0YxatQoRo4cSXh4uLqOJtqAbthcGDY3cAU2pJdLCOHBsNhIzonU8VjaYYbf+QTr51xF+amTHPx2A10GjyF22HiH9cssCuUWKyE6GdouhKibBgu29uzZ4zTQAlsq07FjxygtLXW5jmhZ7CmFn+8pdFmlUBfSilF/f45PH/kLlrJTGDenoO871OP4rUClu2m6jEbb7zanAdaJEydo166dw30ZGRmkpqY63VdsbCwXXHAB/fv3JyEhocbytLS0WrVxxIgRjBgxwuE+RVH4888/MRqNGI1G9u7dS0RERI1td+zYQXl5ORkZGWRkZPDkk08SEhLCyJEjufLKK5kwYQL9+/dHo7FNnFZ1nJcaeB38HCr9Mz+acngzlqOZaIfMIcgw3vMGQogWxdA+jFCdBtrpGTJtIRkrHgDgu9cfpWOfwbSO7qiuq9WAqbjC75VthRAtT4MFW/n5+Q7jTqpq27YtAEVFRRJsCVWXqFA1h95VwNXm3O4MveMxMl96ELCdRNsbBjgdvxWw3iwX47F++uknUlJS+Pjjj/n11185fvw4rVu3VpePGjWKN998k5iYGEaOHMmQIUO45JJLuPjii9XPRH3QaDR06NCBDh06MHToUKfrKIrCkCFDKCsrIzf3bGXA8vJyvvrqK7766ivmzp1Ljx49ePrpp/nLX/7isH3VwKty/0as3y31T7B7ZlJk646n0cSOlbm5hBAObMUyThI74iryvv+CvO2plJsL2fbafC574GX14pBVgYVpeV5lRgghhDsNFmyVlZV5HF9lL3ohRFX2wc6uUgp7jLwG08/bMG5OwVJ2ivQX7qPNOWsZ2ztKvUpZuf8zrN8t829vVpVJhjXRBgD27dvHu+++y/vvv8/PP//ssPqmTZu4+uqr1dvXXXcdo0aNolevXuoJv7HSaDSsXr0agKNHj5Kens5XX31FWloahw4dUtfbv38/kZGOP1QqKyvRarXqcwzqMQ5tdG/bhNH+SjE8MymyzM0lhKjq7PlDw9A7HuXYnu8pLTrOkV1fc2DrenrEn/1OlsqEQgh/aPDS787Yg7Dq40YC4fvvv2fnzp0e1yspKQl4W4R37GO4Xv7WhFVxvs4lf53P8X1ZFB01UpD3K9+/+29WhUxlVocMOvz5jd9S15yVbi8qKuL9VatYs2YNW7dudbrdxRdfXCOgso+3amrOO+88brjhBm644QYURSE3N5fPPvuMTz75hJycHEaPHu2w/vvvv8+iRYuYNm0at912G506daoxtstvpeNlPJcQooqqY4BbRbZj6B2PsfnZWQDseONxzu0/nLCoc9T1pTKhEKKuWvzIz/Lycsxms8d/iuLiV71oEMNiI1k8ritaFx1Awa1ak3Dvf9EGhwDwa9obXLTzXjocS/NPoKUJIij+MXSjnkQTbTg7R5aicPHFFzNz5swagVZ8fDzPP/88v/32Gzt37nSY8qC50Gg09OrVi3/84x98+eWX/PbbbwQHO1YiTE5OZs+ePTz00EN07dqViRMn8umnn1JZWQnYUgyDRz9JUPxjoPXP9SCpWiiEsBsWG8miJNv5o+vgsXQ7Uxyj3FzI9uTHapzvpTKhEKIuGmWwZS8nXR/jtUJCQoiIiPD4r7GndbVEXaJCSejRxuXy6K59GHPzTPX2Xav28ntBeZ0fV9NltFq63R4gqMs0Gm6++Wb19gUXXMBTTz1FXl4eGRkZ3HvvvXTu3LnObWgqqn+GKyoqHI6Z1Wplw4YNXHXVVfTo0YOlS5dy4sQJ4GzpeDo79ozV2pleLsvmh1EKcj2vL4RotjpGBKuZEUOmLiC0jS2rIG/H5xz6bqPDuvbKhEIIURuNMo2wPg0ePJjBgwd7XG/lypWYzeZ6aJHwhbvxW0OUbdwxZhc3/BjNhh8KOF5s4Y6V+/j0X/3QuuoSc6dK4Yv8/HxWLFzI6tWr2b59O+eee6662p133klhYSG33347F110kQTqVQQHB/Pll19y4MAB1qxZw2uvvcbhw4cByMvL46GHHmLRokVMnTqVOXPmEBtrINjPEyQrhzdjOZIhY7mEaMFCdVpCdRrKLAqt2rRjyNQFpL9wHwDbkx/j3P7DCY2MBqQyoRCibhqsZ6tt27YUFRU5XWYfq1WfFdhE02TPv68aO3VWfuMe5Xlm8DLBGiur7uzJedG2dMIvfyri2c+O+vw49t6sQ4qBe+65h27durFo0SIOHz7MihUrHNvUtSsvvPCC03FZwqZ79+48+uijHDhwgE8++YRx48apx+r06dO8/PLLDnONSS+XEMLfhnU7W7yn29BxdL3kSgDKigv4/u2l6jJ7ZcJtByWdUAjhuwYLtmJiYlwWwLAHYVKJUHij6vitIco25vMog/gBe5jTITKY5Lt7YY97FqzNY9dBL3spz4zNMsZM5bZ7F9KrVy9eeuklNdU1KChITXsTvtPpdEycOJHPPvuMvXv3cu+99xIeHs748eNrTGpepGkfmLFcqdNlLJcQLdDY3lEEnfkVpNFouGTqAoJb2wKw/ekf8ftPmeq69sqEvxX6p7iSEKLlaLBgq1u3bi57tgoLC+natWs9t0g0ZV2iQpnY6QTTeQUdlTWWX9qvLf+ccB4AFZUKU1fs41RZzfWq0nQZjbHnfP46L5l+/frx9ttvq+ONwsPDeeCBBzhw4AAvvvii/59QC9SzZ0+ef/55p72FVquV+Ph4xowZQ+ZvoeiSVqMxTIQgP6T1WC1UfrsYpcBY930JIZoMe2aEPeBqHd2Ri296UF2+7bUFWMpOq7ftlQmFEMIXDRZs9e7dm9LSUgoLC2ss27t3LwMHDnS4r7S01GH+HiGqUgpyGf/nM04DLbvHJnclrls4AL8ePc1D77l4P53pzfqscBj9hyfx9ttvY7XaBoW1b9+eRYsWkZeXx9NPP02XLl38/lxauqioKLp16+Zw37p16/j555/58ssvGTVqFONumkVOyJUE3/gV2uHz6t7TZbVgSZ8nKYVCtDBVKxMC9Lr0ejr2sY3jNh/7jZyPljusL5UJhRC+arBgq1WrVlx55ZWkp6c73L93717atm1L7969He5fv34969atIycnx+1+y8rK6mV+LtF4WA9uwpI6Hd2pw27XC9FpWXNPL1oF2972L31hYmNWwdkVgkLRGCaqlQYvu+wy2rdvD9iCrKVLl3Lw4EHmz5/fJOfDaspat25Nz55n58hKS0tj0KBB3HDDDRyw9vLPeK7iPCyp06k0flbH1gohmpKqlQk1Wi3D/rYYrc42ZcXPn67mxKFf1HWlMqEQwlcNWvq9d+/eDBgwgC1btpCTk8P27dspLCxkypQpNdbt1q0boaGhTsdxbd++nfXr1/Pmm29SVFTE3r17Wbt2LevXr2fv3r318VREA1AKcqnY/BCVmQu9rlLXt1Nrnrr5bK/JzFdyMRVb2dP173zf7Ql0w+aiiTYAEBkZyZIlS3jiiSc4cOAAc+bMISIiIiDPRbh31VVX8csvv/D666879Hp98MEH9OvXjwcWv4h5wIN1H89ltWDd9gQV712OZdsS6ekSogWwVya0a3uegQuvuRsAxVrJ9tcfRbGeDbDe3PkHeQUydksI4R2NIrP1esVe+j0iIoKZM2d63kAEVF1KgSuKwrVP/8LG7EIAzuvZl+LiEipO/kHuvn106tTJz60V/lRWVsbKlSt5/PHH+eOPP9T727VrxyuvvMJfLhuIJec1OLy57g+m1RE0fL6UiG9g8v3rmhwb/3jtu3w2G89WQK2sKGfDQxM5+fsBAIZNX0yvy29QlwdpYeYwPcNiI2vsSwjRMnj7/dsoJzUWwh2lILdOcy5pNBqW/603Ya1bA3A09xeK8/MoPX2aRx55xJ9NFQEQGhrK3//+d4xGI/PmzVMnTi4oKCA2NhZNtMF/VQuleIYQLULVyoQAQcEhDLn9UfX2D+89zemiP9XbUp1QCOEtCbZEk6EU5GLZtgTLxjtqHWgpQHrpAG5O605pqeNJskPPgXS97BZJD2kiIiMjWbx4MXv37uXWW2/lrrvu4uKLL1aXa2PHEJT4Wt3HcknxDCGaveqVCQHO7T+c7vFXA1BeUsQP7z7lsI1UJxRCeEOCLdEk2ItgKMYNoLgv2e6KBS1/3zWUq+eu57sN76NYHfejDW7FgaCuMnllE9OlSxfefPNNli93rBpmsVi4YtKdrPqpEwxbULderuI8LBvvkPm4hGjG7JUJRxvaqPcNumUuIa1tt/enf0T+L9sdtpHqhEIITyTYEo1abYpgOPNjURRxz2lY+Z9nKTl+BACtLph+E6YT1k4PwLFfvmPPF29JekgTpdU6fp298MILfPPNN8yePZv4m+azu/ODEFmH+fuUSiozF2LZ/LD0cgnRTHWJCuXWQeeot8PaduCiGx5Qb29PXoTVUqHeluqEQghPJNgSjZa9N4vDW+q0n0p0vKmbyW/79qj36fsPZ+KyTxl08xziZy5V7//hvac5+fsBSQ9pBg4ePKj+vWPHDi65/C88tqUdZZV1+9pTDm/GkjpdermEaKaqVyfsdfkNtO9xIQCFh/ey54u31WVaDZiKK2rsQwgh7CTYEo1SXYtgqLQ6TsbNpbBNX4be/iit2rRn5D3/YcxDybTRxwJw7gUj6DP2FgAqy0vZunIuVmulpIc0cc899xxbtmyhX79+gC2t8In/rOCSRYfYlnuqbjuXwhlCNGvDup2tMqjRahkybQFobAFYdsrznC60VUK1KkjquRDCLQm2RKOjFORiSZ9X+yIYisJrX+eT33oQuqTVdOw/jpnD9MQOGcO1z3xB9/iJaDQah20uuvFBImNsKWZ/7NvFL5+upsyiYDx+us7PRzSchIQEdu3axaOPPkpwsG2S0l+Nv3HpohweTtVRWlm3ObmkcIYQzVP16oQdDAPpOXoyABWnzQ7FMiT1XAjhjgRbolFRUweLf6vV9r/9WcaEZb9w92tG7nn9IET1AM4OfB5zwXlOtwtu1ZoRM5epVy6z1v2XwsP7eHzTYbli2cSFhISwcOFCfvjhB4YMGQKA1Wrl6be2MOLfJyi76MHaF88ozpOUQiGaIWfVCS+68QFCwtsCsD/jY47t+V5dJqnnQghXJNgSjUZdUwff3/Yng+btZtNPhQCsX7+eb7/9Vl3eJSqU6UNjHCpNVdWxzyD6jZ8OgNVSwdaVc6mosMgVy2biggsuIDMzkyVLlhASEgLA5ZdfTkS/a9Elra598QxJKRSiWbJfpNOeSYRoFdmOuCn3qcu3r1mMtUpVW0k9F0I4I8GWaBTqkjpYWGJh6kv7uG35HgqLSwHo1KkTGzduZMSIETXWr54eUlXc5H/Q5jxbb9if+3/k509fkyuWzYhOp2Pu3Lns3LmTKVOmsGTJEgA00QZ0CYtr38MlKYVCNEsdI4KxKmdv97riRqK79QWg4NAv5H6zVl0mlQmFEM5IsCUaXF1SB7/de5JLHsnm3cw/1PtuvPFGfvzxR5KSkpxu4yw9xC4oJJQRM5ai0dgWZqc8T+HhfaTvPymTHTcjF1xwAR988AGtW7dW79NE9+Rd03De2fpn7XYqKYVCNDvVKxNqtUFc8td56u2sD56lrKTozLoaQnTys0oI4Ui+FUSDqm3qYKVVYcnHh7n8id0cOm4Lgtq2bcvbb7/Nu+++S3R0tNvth8VGMm9sZ6fLzukVR9/xdwBn0wktFotUnGrmfvnlF+6e9wLTVuxh+pvFmEtrMXm21ULl1kWSUihEM1K1MiFAzPmX0G3YeADKigvI+fBFAKLDdHJRTghRgwRbosHUJXUwNbuIhWvzqKy05XeMHDmS7Oxsbr75Zq/3YWgf5nDFsqrq6YS/fPa6VJxq5tatW8epU7aS8G+m/cjQxw+TlVfq+46USiwbb8eybYmkFQrRDDhLPR90078ICmkFwJ4v3qLoSC6m4gq5KCeEqEGCLdEg6lR1MLIrVz/8MTfddBNarZaFCxfy9ddf061bN593Vf2KpV31dMKslOcoOrpfxm81Y/Pnz+fNN98kIiICgH0Hj5Dw2E+8klmOoigetq5GqUQxbpC0QiGaAWep5+EdzqP/VXcCoFRa2PHmkyiKIhflhBA1SLAl6l1tUgfVH7taHbqEx9G268lLL73E5s2befTRR9HpalfYwF2xjHN6xXF+0lQArBXlfLvqYZnsuJm79dZb2bVrF4MGDQKgrKycWS99z19fyqX4dC3TCqVSoRBNnr0yoT4yWL2v/1V/I7y9bTqR33/M4Gj2ZkDKwAshHEmwJeqNUpCLZdsSLBvv8CnQ+rO4gqv//QufZRcRNHw+mmgDYBujNXLkyDq1yX7FUus8m5C4KfdVmez4B/Z8/rZMdtzM9ezZk8zMTGbPnq3e9/7WP4h/9Ed+PXrK9x1KpUIhmoUuUaEUnD577tKFhnHRTf+n3v7+7aVYLRWAlIEXQpwlwZaoF/a0QcW4ARTvewh27jczbH4OaTmFTFv1GwetPfzetmGxkSwe19VpwKULDWP4nU+qt3d98B+Kj+XJZMfNXGhoKC+88AIffPABkZG2VNNfj5ziumdzsVT6mFIIUqlQiGagzGKlzOL4+Y8dNoFzel0EwMmj+9n71Xtn1pUy8EIIGwm2RMDVtuJg8uZ8Ll38o1ptMCS0Ffn5+YFoIl2iQkno4Xyy45i+Q+g9xlZ4o7LsNNteW4ClUpG8/BZgypQp7Ny5kwsuuICgoCBWrXwZXXCw5w2dkZRCIZq06mXgATQaDYNve1i9nZ3yAmUlRWg1YCquqO8mCiEaIQm2REDVpuJgucXK35P3M+MVI2UVtquIw4cP54cffmD48OGBaqrb8VsX3/h/am6+6aetGLd8KHn5LUSvXr3Ytm0bn3zyCZdNvIWg4fNl8mMhWihnRZU6GAbSPf5qAMrNhfz40YtYFaQyoRACkGBLBFBtKg7mF5WT+ORuXt5kUu+bNWsW33zzDZ06dQpEM1XuJjsODotg6B2Pqbd3vrWE04V/SF5+CxEeHs748bZ5dbSxY9AlrYYeV/HAWwfJySvxbWeSUihEk+XqotxFNzxwthT8529z0nRIKhMKIQAJtkSA1CZ1cNdBM8Pn55C51xbAhIQEs3r1apYvX05ISEigmurA3WTHneJGn716eeok29cslmIZLZQm2sBTX1l5IfUoox77kY92/OnbDiSlUIgmydVFufD259JvwnQArJUV7Hr/P4BUJhRCSLAlAqA2qYOnyyu5+t+/cPhEOQCd9B1IT8/g9ttvD1QzXXI32fHg2x4mNDIagLztqeTt+FyKZbRAFRUVfPLJJwCcKrNyw3N7eOKj33ybj0tSCoVokuxl4KsXVep/1d9o1bYDYDs/HNv7AyCVCYVo6STYEn5V28mKw0KCeOlvvdBoNAy/5CK+3/UjQ4YMCVArPXM12XGryHZc8tf56u3tyYs4bS6WVJEWJjg4mG+++YZbb71Vve+xlN+49cW9nCrzYT4uSSkUoknqGBGMtdq1leBW4Qyc/Hf19g/vLENRFKlMKEQLJ8GW8JvaVh0EQBPEtY98wvr16/k6/Vv0er3/G+gDd8UyYodPoFPcpQCcLjzGrveellSRFigsLIw33niDpUuXotHYLnGv3fYnY57Yjamw3PsdSUqhEE2Os8qEAD1HT6bteba5IP/Yt4u87WmE6jSE6OTnlhAtlXz6hV/4mjqYX1TOC6lHbTe0OoJGLEATbWDChAmEhoYGsKXecVcsQ6PRMPT2R9G1Cgdg75fvcmzP92w2nuS17/LJK5AerpZCo9EwZ84cPv74YyIiIgD4fr+Z+IU5vhXOkJRCIZocZxkQ2iAdF9/8L/X2rvefpo3OKucFIVowCbZEnfmaOrj78CkSHv2RB946yIubS9ElrUYbOybArfSdu2IZ4R3OI27K/ertb1+dR2VFOZuNJ6Xcbws0ceJEMjMz6dKlCwC//VnOpYt+JHPPSe93IimFQjQprjIgOsVdSky/YQAU5+ex5X9vynlBiBZMgi1RJ76mDn69u4hLF/3IwT9sV/n+m5rP6dBzA9nEOnFXLKPPlbfQ3jAAgJNH9/PTJy8DSLnfFmrAgAFs376dSy65BIDO7VvRr3Nr33YiKYVCNBmuMiA0Gg2Dbp6j3v7xfy9y2myW84IQLZQEW6JOKves9TrQejP9GFc99TNFp2wFBC6+oBdbt22ndWsff5DWM1fFMrTaIIb/7XE0QbYJbn/6eCVFR2xpYDKGq2XS6/V88803zJw5k0/fW0l0ZCvfd2K12D5XQohGz16ZUB8Z7HB/++79iR1+FQBlxQXs3vCKnBeEaKEk2BK1phTkouzf6Hk9ReGJj35j+spcKipt5ZsmXHkZm7/9gfPOOy/Qzawzd8UyorueT/8qc6tse20BitVWdUrK/bZMrVu35uWXX6bHyFttkx9HdgWgoMRCWYV3FckU43os25bIGC4hmoAuUaEUnK550THu+vvQBtmCsF82vs6pgmNyXhCiBZJgS9SK9eAmLBvvAMV9mWtLpcKs1ft5LOXseK677riZ/336uVpQoLFzVywD4MK/zCKio22szrE935O7JQVAJjwWaKIN6BIWc6pCw9X//pmrnvqZwhLveoIV4wYZwyVEE1BmsVJmqTnHXmTHrvQecxMAleWl5Hz4gpSBF6IFkmBL+Ewdp+Uh0DpVVsmU//7Kq1/nq/ctm3snK159C51OF+hm+pU9VWS0oU2NZbqQVgy9Y5F6+4d3nuJ00Z8AMuGxQBPdk5kfBvNdrpnNv5zkssU/cfhPL8dtyBguIRo9V2XgAS689h6Cz1Suzf1mHafz90sZeCFaGPnEC68pBblYti2x9Wh5MU6r8FSlWv46WKflrVXP8K8lq9Q5iZqaLlGhTB8a4zTgOu/CeLrHXw1AeUkRO99eAkixDGFz/yNL6dA+GrBV4xz12I/8cuSUdxtLWXghGj1XY3tbtWlH/4kzAFCslWx/9z8yRYgQLYwEW8Ir9vLuinGDxx4tu/OiQ1j/r3506xDKxnVruOXO+z1v1AS4GsM16JaHCAlvC8CBzE84+mMmIMUyBAwdOpSt335Hj1hbuunhE+Vctvgnvsv1stdTysIL0ai5G9t7ftJUwqLOASBvxxekfJ4upeCFaEEk2BIe+Vrevap+Xdrwa+ZHXHHNrQFoWcNwNYYrrG17h8kst7/+KJXltquXMiha9OrVi63bdnDxBb0AOGG2cOWTu0nNLvBuB5JSKESj5W5sb3Cr1gz4y2z19g/v/QdLpSJZD0K0EBJsCbeUglws6fO8CrR2GIuZ9tI+KuyDfzVB6JJW06r3uAC3sv65mvC456hJdOwzCIDi/EPq3FtSLEMAxMTE8HXm91w+ajgAp8utXPfMr7yT+Yd3O5CUQiEarapje7XVsuV7XjqZyBhbZdL8n7fx+09bJetBiBZCgi3hkj11kOLfPK775U+FXPnkbt7J/IOZrxqxWhU0PcajiTbUQ0sbhrMJjzVaLUPvWHR27q31qyg6uh+QYhnCpk2bNnz2+ddMmTIFsFXsvP3lfXzxY6F3O5CUQiEaLfvY3uAgx3ODVhfMwCn3qbd3vf8fFEWRrAchWgAJtoRTvqQOfrTjT655+hdKymw9WodPlFFaqSWoz5RAN7PBORsUHdW519m5tywVfLd6IYqiSLEMoQoNDeXdd99l5u22stDjBkZzad+ahVdckpRCIRotV6XgY4eOJ7pbXwBOHPiJvO1pUgpeiBZAgi3hVOWetV4FWm9sOcZNz++h/MyJZeKgdnzyrwFEXvpos+7VsnM1KPrCa+8h4hxbmmH+L99xIONjQIpliLOCgoJ46bW3efnJ+3nnH/0I9rUctNVi+5wKIRoVV6XgNVotF13/T/V21tpnCdZUSil4IZo5+YSLGpSCXJT9Gz2u9+Lnv/O3VblYz1zAuy2hIx/8959EXJ2MNnZMgFvZOLgaFK0LDWPItIXq7e/fWUpZSREgxTLEWRqNhpkPPUOba9ZAZFf1/qMF5VRaa14Zr07Z/5mM3xKiEXJVCv68gaPoeP4lAJz8/QBHv/1EysAL0cxJsCUcWA9uss2j5aG8+9KPD3P/GwfU27OuPI/XP8qg1chHWkSPVlWuimV0ihtN1yFJAJSdPEHW+8/Y/pZiGaIaTbQBXcJi0OrIO15GwqM5TF1RpdiMK0qljN8SohFylfWg0Wi46Pqz06Ckv/Mc8zbkynheIZoxCbaESh2n5SbQUhSFee8fYsHaPPW+h67tynMvJxPUvld9NLNRclYsA2DwrQ+jaxUOwN6v3uO4MRuQYhmiJk10T5RLHmbiv3/htz/L+WDbca5/bg+l5R4CLhm/JUSj464UfMc+g+kUNxqAkj+P8uum92Q8rxDNmARbAvC+xHtphZVvfi5Sbz85dSBPrP6KoO5jA93ERs9Z2kh4ez0DJ91ru6EofLd6IdZKixTLEE6F9Exk2dP/JTTY9tX86a4CJj37K6fKPEwkLiXhhWh07KXg9ZHBNZbFTTnbu/Xjxy9TeuqUjOcVopmSYEv4VOI9LCSI9f/qx0Wx4Tx/e0/mPpvS4tIGXXGVNnJ+4l+J7toHgBMHf2bPF+8AUixDODfxxjv5dG0yrUNtb6Yvfizk6n//QvFpDwGXlIQXotHpEhVKwemaFzHbxfaj21DbHJSlRcfZ8/mbMp5XiGZKgq0WzpcS73bR4ToyFl3ErAUvSaBVhau0EW2QjiG3P6bezl77LKcKjgFSLEM4d8U1t5H61n+IbBUEwJZfTzLhqZ8pOuXhcyophUI0Kq7KwAMMnPx3NBrbCWP3hlcpLiqSMvBCNEMSbLVwnkq8WyoVHkvJ44S54uydmiDCrmo5FQd94apYRsfeF9PzUtu8YxWlJex8ZxkgxTKEawmT72PThrVEh9smyN62r5hxS3+moMSLgEtKwgvRKLgqAw/Q9jwDPRKuBaC8pIi9aclSBl6IZkg+1S2YpxLvFRYrf12xlyc+OsyEZT9TeOZHnqbHeOnRcsNVsYyLbnyAkIgoAA5uXc/vu78FpFiGcG3IFX/hi5fupkOkLeD6fr+ZxCd3U1LqPqVQMa7Hsm2JjOESohFwVQYe4MK/zEITZPt87/4smWzj0fpqlhCinkiw1UJ5KvFebrFyy4t7WffdnwD8+Nspsg6VgFZHUJ8p9dnUJsnZybVVZDsuvuEB9fb25MeotJRLsQzh1sVX/Z3P5w2kYxvbIPvLL2irjudyRzFukDFcQjQCrsbzAkR27EKvM1kP5afN3PrPR+XimxDNjARbLZCnEu/lFis3v7CX/+04AUBosIZ195/PpRe0J2j4fOnV8oKrk2vPS6fQwTAQgJNH9/PLZ68DUixDuKaJ7snA65eyaf5A5l/XhSU3dkOjcZ6WVIOM4RKiwbkrAw9wwTV3ow0OAeCXtLf4b+pPcvFNiGZEgq0WRCnIxbJtia1Hy8U4rXKLlZte2MsnO22BVqtgLR/9sy9JIweiS1ot47S85OrkqtFqGXrHY+qg6Jz/raDkuC1tRIplCFe0sWO4YPp7zJ8aXyPQUhTng+9VUhZeiAbnrgx8eHs9va+4CYDKstNkf7xKLr4J0YxIsNVC2Mu7K8YNbnu0bnx+D+urBloPnM+YgR3QJTwuPVo+clUso11sP3qPvRmwnVi/f2sJYCuWsepbE3kFckVT1KSJNqBLWAxanXrf1r0nGfXYjxwrKne/sZSFF6LBuSoDD3DBxBkEhbQCYO+X7/DlD3vrs2lCiACSYKsF8Ka8uz3Q2vBDAQBhIVr+98D5XDGgg6QO1oGrYhlxk++jVZv2AOTtSONoTjoAGQeKWZiWJzn7wilNdE+Chs8HrY7vcou56qmf+S7XzJVLdvPHyQr3G0tKoRANyl0Z+LCoczj/ytsAsFaUs/PDl6UMvBDNhARbLYCn8u4AKz43VQu0+nL5he0lddAPnBXLCAlvw8U3/0u9vX3NYiorbL0TUjBDuKONHYMuaTXn9E8kqrWtl+vnw6dJ9DbgkrLwHpWWlvLFF1+wZcuWWu/j0KFDbNmyhZycHLZv38727dv92ELRFLkrAw/Q76rp6FqFA5D79VpMRw/XV9OEEAEkwVYz56m8u92sK/VMGtKeVsG2QOuy/m2lxLufuCqW0WPktXTsMwiAYtNBfv70NXWZFMwQ7miiDfSZ/G82rbyXTtG2gfU//XaKxCW7OV7sPuBS9n8m47dc2LJlC+vXrycnJ4dDhw5RVla7Cx579+4lJyeHUaNGMWDAAIYMGUJMTAxr10qg29K5KwPfKrId5yee6d2qrODhhYvrq1lCiACSYKsZ81TevapgnZY3Z/Vmy6MXcln/tlLi3Y9cFsvQaBgybSEabRAAP378EuY/jqjLpWCG8KT3FXfxxfyBnFcl4EpasttxEvLqlEoZv+XCqFGjmDhxIkOGDCE0NLRW+ygtLeXzzz9n7NixDvd369aN0tJScnJy/NFU0US5KwMP0G/8HQSf6d16581kPsr4qZ5aJoQIFAm2milP5d0tlQpHCxwH1euCNMR1C7cFWjJOy6/slahGdne8qhnd9Xz6XHkrAJXlpXz/1pPqsjKLgvH46Xptp2haNNE96fOXJ/li3tmAKyfvFOOrTELulIzfCpi9e/fStm1bWrVqVWNZnz59yM7OboBWicbCUxn40Igo+o6bBoBSaWHOgsckpVyIJk6CrWbK3TitSqvC31blEr8gh32mKj/mNUFoDBNlnFaAdIkKZcZwfY2c/YGT/k6rth0A+O37L9RiGQCPbzosxTKEW9rYMfS9/V3SHh+Dvq2trPQPB0qY8NTPFJ3yEHDJ+C2/27Nnj9NACyAqKopjx45RWlpaz60SjYm7MvAAfcfdTnBr24W53M0f8daXWfXYOiGEv0mw1Qy5G6dltSrc9aqRdzL/4EhBOeOX/kxZhRU0QejGvY5u2Fzp0Qqw6jn7Ia0jufimB9XbO954XIplCJ9oog30v+k5Uh8ZwDltbEUzvt9v5pufi9xuJ+O3/C8/P5+oqCiny9q2bQtAUZH710U0f+7KwIeEt6HfuNsBUKyVvP7CsvpsmhDCzyTYambcjdNSFIV/rNnPmi3HAFva4H9u605oaAhBIxZIkFVPnOXs9xh5Lef0vhiAk78f4JeNr6vLpFiG8IYmuicXTllK2sMD6NgmmFfu7Mk1g9u730jGb/ldWVmZx/FeEmwJd2XgAc5PmkpIuC04z03/hJ9/lXm3hGiqJNhqRtyN01IUhQffPsjKL/MB0GrgjXt6cfXgcyRtsJ45y9nXaDQMmboAjcZ2Z87/VlDy5+/qcimWIbyhjR1D3IwP+Pk/g/nrqI7ebSTjt+qNPQiTNELhqQx8SOtI+lbp3Xpq6ZMu1xVCNG66hm6A8A+lIBdL+jyn47QURWH+B3k8n2r78a7RwOq7ejF5aAcp795AhsVGck6kjsfSzs6j0i62H73H3MSeL96msuw0O99Zxqh7/wucLZZh6BDWQC0WTYUm2kDbCyaiGDc43L/55yKG944kROfkGpvVgiV9HrqExWiie9ZTS4U733//PTt37vS4XklJST20RgTCsG6RbDaedLn8/MS/8svG1ykvKeKtt95i3rx59Owpn08hmhrp2WoGrAc3YUmdDsW/OV2+5OPDPLX+bEnxlX8zcHP8OVLevYEZ2ofVLJYx5T5CI6MBOLTtM0y7t6nLpFiG8FZQnymgPXst7c30YyQu2c1fV+zDUukidak4T1IKA8w+b5erAhpVlZeXYzabPf5TFNepaKJx81QGPqR1BP3G3wFAZWUl/5i7sJ5aJoTwJwm2mjg1ddBF5cH/fnaUR9edDcKen9qdaaNjpLx7I1G9WEZoeFsuuvH/1Nvb31iM1WKbM0mKZQhvaaJ7EjR8PmiCOFZUzt+T92NV4MPtf3LnK7lYrS5+oEtKYaMREhJCRESEx38ajetUNNG4eSoDD9DnytsIiYgCYOOH77Fl5+76aZwQwm8kjbCJc1fiHeBElbl2lt3cjbvGnmurPJi0WgKtRmBs7ygyDpyk0nr2vp6jJrHvy/f4c/+PFB3ex54v3lbnXbEXy5g+NKZhGiyaDG3sGDRtu9Nx4+289/c+XPfMr1RUKryd8QdhwVpevKOH8x/qZ0rC64bNrf9GNwNt27Z1WQDDPlbLXpXQncGDBzN48GCP661cuRKz2exbI0WjMSw2kk5RIbyQ/jum4pqTkdt6t24n64NnURQrc+c/ytbPZMoGIZoS6dlqwtyVeLdbNKUri6Z0ZcGkLtw/vhOAjNNqRJwWy9BqGTJtoW1wHZCd8jynC/9Ql0uxDOEtTbQBTY9xJA6M5p17e6vvs1e/zudfbx90mYKmGNdj2bZEysLXQkxMjMsCGPYgLCZGLpaIs9yVgQc4v0rv1rbUD9m3b189tUwI4Q8SbDVR7kq8Vzf3ms7M+0sX2w0Zp9XoDIuNZN7Yzg73dTAMoOfoyQBUnDbzw3tPq8vsxTKE8IZ9/NY1g9uTfHdvewzPc6m/s+hD5+M8ARTjBhnDVQvdunVz2bNVWFhI165d67lForHzVAY+OCzi7LxbipXFix+vr6YJIfxAgq0myF2J989zCkj/1cUcLjJOq9FyVizjohseIKR1GwD2p3/EH/t2qcukWIbwljp+S6vjhuEdeHn62c//Ex8d5plPj7jeWMZwuVRaWsqhQ4dq3N+7d29KS0spLCyssWzv3r0MHDiwHlonmhJPZeDhzNitM/NuvfPO2xiN8pkUoqmQYKsJcjVOK/3XIiY/u4ernvqFz3MKHBdGdpX5tBq56sUyWrVpx8Ap/1Bvb1+zGKvVFmBLsQzhC23sGHRJqyGyK7dfGsN/bo1Vl8199xCvfmVyvfGZMVwtTVlZmdv5sNavX8+6devIyclxuL9Vq1ZceeWVpKenO9y/d+9e2rZtS+/evQPSXtG0Vf/+ry6kdcTZsbuVlTzxxBP10CohhD9IsNWEKAW5tnEU1ebPAdi538y1T/9KaYWV0+VW3s44O8YHrQ5dwuPSo9XIOSsD3PuKm4jq0geAEwd+wvjNOnWZvViGEN7QRBvQJSwGrY57k87j0cm21OKIVlp66t3P36bs/6xFjN/avn0769ev580336SoqIi9e/eydu1a1q9fz969ex3W7datG6GhoU7HX/Xu3ZsBAwawZcsWcnJy2L59O4WFhUyZIincwjlPZeDBNu+WPdvhjTfeYP/+/fXQMiFEXUk1wibCenCTyxLvuw+fYsJTP1Ncauv1SBoYxSszzkx8KKmDTYa9WMbKbSa1OqE2SMeQqfP5/PFbAdj1wTN0HZpE6Jl0km2HiqUyofCaPaWw8tvFPHRNZxQFxl4YxZCe7q+qo1RiSZ1O0PD5zbp3fMiQIT6t6279bt260a1bN380S7QAzr7/qwtpHcn5SVPJ+fAFKisreeTRxbz7xuv121AhhM+kZ6sJcDeX1v5jpYxfupsTZtuyhPPb8N7f+xCi06ol3pvzj6PmxlmxjJi+Q4gdPgGAsuICstc9py4rsyiUW1ycmYVwwp5SqO15NY/8pYvnQMtOxm8JEVDDYiNZlNQVfWSwy3X6Jk0lOCwCgLXvvMXBgwfrqXVCiNqSYKsJcDVG62hBOeOW7Ob3QtvcHIO6h/PRP8+ndWgQICXemypnxTIuvmkOQaG2VK+9X7xDQd4eALQanM7NIoQ7mmgDumFz0RiucrhfURSWfXKYHUYXxVda6PgtIeqLpzLwIeFtOD9pKgCVlRaWLl1aX00TQtSSBFuNnKu5tP4srmDc0t0c+MNWIKFvpzDW/6sfbVqfyQyVEu9NWvXB0uHt9Vx4zd2ArfTvjjcWoygKVgUWpuVJZUJRK/ay8ABWq8L/vXWQ+R/kMfHfv/DTbyVOt2kp47eEaAieysDDmd6tVuEArF69mt9+cz2FgxCi4Umw1Yi5mkur0qpw7X9+4ZcjtrmWYs8J5bM5/ehgTz2QcVpNnrPB0v3G30FkjG2OnvxftnPoO1sQLpUJRW2pZeE1QVRUKvx4JsA6YbYwYdnP7D/mpBrfmfFbMv+WEP7nTRn40Igo+iTeBkBFRQVPPfVUfTRNCFFLEmw1Uu7m0grSaph15bnogjTo2wazcW5/OrULBUBjmCjjtJoB+2DpqgFXUHAIg299RL298+2lVJSeAqQyoag9bewYdONeJzQkmJT7+zK4h208yO+FFYxbspujBeU1N5LxW0IEjKcy8AB9x01DF9oagFdeeYWjR48GullCiFqSYKuRcjVOy+7GEeeQcv/5fDa3H4aYVsCZQGvYXOnRaibsg6W1VS5ydrroUs4bOAqAUydM7F6/Sl227ZCkEora0UQb0PQYR2RYEOsf7EvfTrbxgQf+KGP8st2cMDsZFyjjt4QICG/KwLeKbEefsbcAtjnh/jlf5t0SorGSYKsRcjVOq7pxcdFc0MWWty1jtJqnjhHBWKuk72s0Gi657RG0QbaU0d2fvkrxsTzAVplw1bcm8goknVD4zj5+q32krbc89hxbb/nPh09z9b9/wVxas5ddxm8J4X/OMhuc6Tv+DoJCbBdb1735Gjv3HKqH1gkhfCXBViPjbJyWoijMfecgr32d73wjGaPVbDnL329zbnf6jpsGgLWinJ1vn61GlXGgWApmiFqpOn7rvOgQNs7tj76tLajfbjQz5b+/UlZRbZoBGb8lREDYMxtGG9o4ZDdUFda2Pb2vuAmAyooyHlm8rB5bKITwlgRbjYircVpLPznCM58d5e7XjDzz6RHHjWQurWbPWf7+hdfeTVjUOQD89v0mjuZkqMukYIaoLfv4LTRBGGJasWFOP6Ja26aS+PKnIh5460DNjWT8lhAB0SUqlOlDYwgOcl0wo9+E6WiDQwD4ct0ajh8/Xl/NE0J4SYKtRkIpyMWSPq/GOK2Vm0wsXJun3m4XoXNYLnNpNX/O8veDwyK46Mb/U29//+YTWC1nx9VIwQxRW/bxWwADuobz8f/1pXWolh4dQ7l/fCfnG1ktWNLnSUqhEH7mqRR86+iO9LrsegAsZad4+j/P1FfThBBekmCrEbAe3IQldToUO86V8f63x/n7mv3q7aU3dWPa6JizK8g4rRbBVf5+j/hr6NAzDoCio0b2fPG2w3IpmCFqq+r8W8N7t+HjB/ry9fwL1WI8ThXnSUqhEH7mTSn4/lfdqY7jXfHicgoKCuqjaUIIL0mw1cDU1MFqPVqf5xRw+8v7UM5c0Pq/qzrxzwlVrirLOK0WxZ6/P7L72ZRCjVbLJX+dBxrbiTg75XlOF51NISmzKBiPn673toqmr+r4LYDR/dpybnSIwzqK4uRqu6QUCuF3nkrBh7c/F8Po6wAoLi7mueeeq49mCSG8JMFWA3NW4n3bvmKuf24Plkrbj5k7Lu3IEzd0PbuCjNNqkbpEhTJjuN7hKmcHwwB6jp4EQMVpM1kfOKaQPL7psBTLELVSdfxWdWUVVm56YS9rNjsp2iMl4YXwK29KwV9w9Uy0Qbbe6Oeee46TJ0/WQ8uEEN6QYKsBOSvxvvvwKa55+hdOldmqfl17STtevMOARnP2B7aM02rZql/ljLv+AYLDbBPR5m5O4c/9P6rLpFiGqIuq47fsyiqsXPP0L3y4/U9mvmrk4+//rLGdYlyPZdsSGcMlhB94Uwo+4pzOdB95DQCFhYUsX768nlonhPBEgq0G4qzEe6VV4cbn91BQYuvpurx/W968pzdBVeu+yjitFq/6Vc6wtu0ZMOle2w1FYccbj6NYz5bolmIZoi6qjt8CCNFp6NepNQBWBW59cS+bfy6qsZ1i3CBjuITwE3sq+aDO4S7XueDqmWg0tpPD0/95hpKSkvpqnhDCDQm2GoCrEu9BWg1r7u5Fh0gdg7qHs/a+8wkNrvISyTgtgfOrnOePvZU25/UA4I99uziQ+YnDNlIsQ9SWOn7rTMCl0Wh4+tZYbhrRAYCyCoXrnvmVXQfNNTeWMVxC+E2XqFAiQmum9dq10cfSbfgEAApO/MnKlSvrq2lCCDck2GoAzsZp2V3cPYJvFlzI+n/1IzKsypdqZFcZpyVUw2IjmTe2s3pbqwvmktseUW//8N7TVJw+++NXimWIutDGjkGXtBoibWNHtVoNr87oybiBUQAUl1Yy8alf2Gdy8h6TMVxC+I2nC2cXXnO3+ve///1vTp+W730hGpoEW/VIKci1jWMwblDvq7BYa1T16n1uGB0ig8/eodWhS3hcerSEA0P7MIdiGecNSKDzxVcAcLrwGD9+/JLD+lIsQ9SFJtqALmGx2sMVrNPy7t/7MLyXbQzhsZMVTFj2M0cLymtsq+z/TMZvCVFHnubcAojq3JOulyQCYDKZWL16dX00TQjhRoMHW4cOHWLLli3k5OSwfft2tm/f3qD7CRT7XFpVA61Kq8ItL+7lvjcOYLW6+AKV1EHhRvViGYNvfQitzhao/7IxmZOmQ+oyKZYh6qp6SmHr0CD+93996d/ZNobr4B9lTFj2szruVKVUyvgtIerImzm3AC689mzv1rJlyygvr3kBRAhRfxo02Nq7dy85OTmMGjWKAQMGMGTIEGJiYli71reUE3/tJ1CczaWlKAqzVhv5344TvPSFibtfczKmQUq8Cw+qF8uIjOlK33G3A2C1VLDz7SUO60uxDFFX9pRCjWEiANHhOj6d04/Yc0IBW0XVee8fqrmhjN8Sos48zbkF0C62H4ZLLgfgt99+44033gh0s4QQbjRYsFVaWsrnn3/O2LFjHe7v1q0bpaWl5OTk1Ot+AsnZGK0Fa/NY/c0xAIKDNEwe1qHGdlLiXXjirFjGhdfeTVh0RwAO//AVR7K3OGwjxTJEXWmiDeiGzUVjuAqA86JD+GxOPzq2Ceayfm1ZcmM35xvK+C0h6sSbObcAek24S/17yZIlWCzOx4kLIQKvwYKtvXv30rZtW1q1alVjWZ8+fcjOzq7X/QSKs7m0nk89yrJPjgCg0UDy3b0Ye2GU44ZS4l14qXqxjOBW4Vx844Pq7e/ffIJKy9k0EimWIfylaln4nvowvpp/AZ882Jc2rXUut5HxW0LUnjdzbgGc0ysO/QUjANi/fz/vvfdePbROCOFMgwVbe/bscRogAURFRXHs2DFKS0vrbT+B4Gwurbcz/uD/3jqo3n7ur92ZUr1XS8ZpCR9VL5bRPf5qzul1EQAnfz/Ans/fclhfimUIf1DHcGlslVN7nxvmOF0FcLq80rEIkIzfEqJO7HNu6asW0nJiwLX3qH8/8cQTWKvMvyiEqD8NFmzl5+cTFRXldFnbtm0BKCqqOVFmoPbjb87m0tqYVcCdr5y9ojvvL525a+y5DttpDBNlnJaolaq5/BqNhkv+Os/WdQrkfLic00XH1eVSLEP4izZ2DLpxr6sBV1W/F5Qz8tEfeXrDEccFMn5LiDrpEhVKwWn3qYEdz7+Ejn0GAfDrr7/y4Ycf1kfThBDVNFiwVVZWRmhoqNt1vAmS/LUff6s+TmvbvmJufH4PlkrbFd67xuiZf10Xh200hom2cRDSoyVqoXouf/seF9Jz9CQAKk6byfrgGYf1pViG8BdNtAFNj3EO95lLK7ls8Y/8mHeKR97P4/Vv8h03kvFbQtSaN2XgNRoNF1bp3Xr88cdrTDUjhAg814n1DcgePNU1/c+b/Xz//ffs3LnT475KSkoA+P333+ncubOHtYHTx+HMl5qiKPxRbKHiTKAVFqzlk+//ZP3OE2fX1wChRtAu97xvIVwor1QoKa+EM+dTxWrF9uZSyP1mHYd3fqWWhgdI0cDCsEb5NSCaGqsFygrU9x7YJju2u+s1I4+uzUOrrVK6WrMTwjx/5/3tb38jMtJzFTYhWgp7GXhPAde5F47kHMMA/jDmkJ2dzaeffspVV11VT60UQkAjDbbqU3l5OWaz2ev1KysrOXLkiOcV3ThdYeV0obPc6Xwn9wnhP6XFJ2rcd6oB2iFaHkWB34sqnCzx/H1aWVnpcR0hWpph3SLZbDzpdh2NRsPIG2fz0RMzAFi8eDETJkxAo/E8X5cQwj8aZbBVVmYbR+Kq8IU/9xMSEkJERITHfZWUlKAoCkFBQXTq1Mnzg1fp2bKznrmtrf4l1ypareglhD8UnLac7d1SFEpP/olitf1gDWndBl1omG2hBtqE6rwqJSyEV6wWKC1QbyqKglWBIK2TH3caDYTVnPaiuqCgmuPBhGjpxvaOIuPASSo91L0IP38U0V37UJC3h+3bt/Pll18yZoyMCxeivrT4X/iDBw9m8ODBHtdbuXIlZrOZc889l8OHD3tc37JtCYpxg8f17OO0hPCn177Ld7jieSR7C1899TcAgkJbcfXTqQS3Crfd1sLMYXqGxUqalvAPf3//2b9/hRBn2cvAr9xmchtwabRaLrj6LtKX3w/Yxm5JsCVE/Wmw69lt27Z1WbjCPsbKXk2wPvbjb1Xnn3FJ5tISAVK9WEangaPodNFlAJwuOMZPn6xUl0llQuFv8v0nRP3wtgx816FJtDm3OwCbN28mPT29PponhKABg62YmBiXhSvswVNMTEy97cff1PlnXP3gkLm0RAA5m/hy8K0PoQ2ynZB//vQ1ivPz1GVSmVD4k3z/CVF/vCkDr9UGccHVM9XbTzzxRKCbJYQ4o8GCrW7durnskSosLKRr1671up9A0MaOQZe0Go1hIujOjJHRhclcWqJe2K942ofKtNHH0nf8NACslgq+f3uJw/rbDskkx8J/5PtPiPrhTRl4gO4jJhJ+jq2aclpaGjt27Ah004QQNGCw1bt3b0pLSyksLKyxbO/evQwcONDhvtLSUg4dOlTn/dQ3TbQB3bC5BN+wCd0NX9n+l7m0RD3pGBGMtco5+MJr7iYsqiMAh3d+ydEfM9VlZRYF4/HT9d1E0YzJ958QgWcvA++JVhdM3DUz1NvSuyVE/WiwYKtVq1ZceeWVNfKG9+7dS9u2bendu7fD/evXr2fdunXk5OTUaT8NSaNzP/myEP5W/SQcHBbBRTc+oN7+/o3HsVrOluN+fNNhth2UHi7hf/L9J0TgDOvmXYGjIeOuJ+bc8wD4+OOPa/ymEkL4X4MWfO7duzcDBgxgy5Yt5OTksH37dgoLC5kypeag6W7duhEaGup0/JUv+xGipal+Eu4Rfw0desYBUHTUyJ4v3laXSbEMIYRoeqoXRXLleKmWrmOmqbeXLFniemUhhF80+Ow63bp1Y9SoUQwYMIAhQ4YwZMgQp+sNGTKE2bNnuyx24e1+hGhpqp+ENVotl/x1nno7+8MXKD15drJjKZYhhBBNi7OiSK4YLr2eVm3aAfD++++zZ8+eALdOiJatwYMtIURgOTsJdzAMwDB6EgAVp4rZ9cEzDttIsQwhhGhavC0DH9yqNX3H3Q7YJh1funRpfTRPiBZLgi0hWoBhsZHMG9vZ4b6LbniA4LAIAHK/WcufB35Sl5VZFFZ9ayKvQNIJhRCiqfCmDDxA7zG3EBLeBoA333yTgwcPBrhlQrRcEmwJ0UIY2oc5FMsIa9uBAX+ZZbuhKOxY8ziKcrZ0YcaBYham5UnBDCGEaCK8LQMf0jqC8xP/CkBlZSVPPfVUoJsmRIslwZYQLUj1Yhl9Em+jzbndAfhj3w8c2LreYbkUzBBCiKbD2zLwAAMmTCUiwpbd8Nprr3H06NFANk2IFkuCLSFakOrFMoJ0IQy+7RH19g/vPkVFaYnDNlIwQwghmg5vy8Bf2r8Ls2bZshvKy8v597//HchmCdFiSbAlRAvirFhGp4Gj6Hzx5QCcLjjGTx+/XGM7KZghhBBNg7dl4L89WEzM6FtpFRYGwMqVK/njjz/U5Yql1Onf7pZVX08IAbqGboAQon4Ni42kU1QIG38pIOOALYgadMtDHM1Jx2qp4OfPVmMYPZk2+m7qNmUWBePx0xg6hDVUs4UQQnjBflFt5TYTlVbX65VXKuwqCKXn6En8lPoWp0+f5pknHmbxjT1QDn0JltOgCbKtrFRCUCi07ginjkFlmeOyqn/rwtB0uwJtz6vRduhvu9tSikbXKoDPWojGS4ItIVqgLlGhzBiuZ8dvZsosCm303eg77nZ2r1+F1VLBzreXcNkDjj1cj286zMxheobFepeiIoQQomHYL6p9vqeQrQdPUlHpuLy7YmQUmxnCdxwfd5LzN2kotyi8uPJ17u83iOjwMz8PlSobVpZB8W9nb1ddVvVvy2kU4wYqjRuoRAsajUMQFtRnCkR2luBLtBiSRihEC1Y1t//Ca+8mLLojAId/+Ioj2Vsc1pViGUII0XR0iQpl+tAYRsS2IUQpo7PyG1OV1byk/I15LGYUW2hFGZ3bhzJ1lO27v7i0khc//92PrbCeDcTOBGGWz6Zief8KKt4fg2XbEqzHd/vx8YRofCTYEqIFq5rbH9wqnItv+pe67Ps3n6DSUu6wvhTLEEKIpsF6fDeWbUu4PvcmXmImjzKfUWwhhJrzcP3fVZ3Uc8ELqb9TfLqyxjp+Z+8BS5tBxbuXSeAlmi0JtoRowaoXzOg+YiLn9L4YgJO/H+DXtDdrbCPFMoQQonFSCnKxbFtCxbuXUpk2A8W4gVbYshHcFYTv3rEVN404B4CCEgsrvzTVQ2ursJZL4CWaLQm2hGjhhsVGMm9sZwA0Gg2X/HW+LcceyPlwOacKjjmsby+WIYQQovGwHtyEJXU6inEDWCt83v5fV3eyf/Xz38+OcqqsHnq3nHESeCkFuQ3TFiH8QIItIQSG9mHqRJjtu/en12XXA2ApLWHX+0/XWP/xTYfZdlB6uIQQoqFZj++mYvNDVGYuBGvNFEFvnX9eayYNaQ/AsZMVrP7mmIct6sGZwMuy8Q6sBzc1dGuEqBUJtoQQgGOxjLjr7yekdRsA9qf/jz/27XJYV4plCCFEw6meLsjhLZ438sLcazqrf/9nwxHKKtzUjq9PSiWVmQuxbH4YpSBX5vMSTYoEW0IIwLFYRqvIdgyc8g912fY1i7FaHVNKpFiGEELUv7qmC7ozoGs4Ewe1A+BIQTlvbGkEvVtVKIc316hmKCmGorGTYEsIAdQsltH7ipuI6tIHgBMHfsL4zboa20ixDCGEqB9KQa5f0gU9ebhK79a/NxyhwtJIereqs5eSlxRD0chJsCWEUFUtlqEN0jFk6nx12a4PnqGspMhh/TKLQnljPRELIUQzUbn/Myyp0/2WLujOoB4RJA6IAuDgH2W8u/WEbUFQKER2tf0PoAmy/bP/7bbeYQBVSzEUorHRNXQDhBCNi71YRplFIabvELoNG8+hbZ9RVlxA9rrnGDJ1gbquVgOm4gq6Roc2YIuFEKL5UQpyqdyzFuXgF1AZ2PGxVjQoaAjCSimhjLv2KtJy3gJg2dcKU5//Al1o67Nts5Sh0YXW+Nt6/BesuR+jHNoEltNngzEl8JUNlcObsRzJIGjEArSxYwL+eEJ4S4ItIUQNw7pFstl4EoBBN8/l8K6vqSw7zd4v3qHXZdcT3fV8AKwKLEzLY+YwPcNiI93tUgghhJesBzdR+e3igKQLKtj6oEoJZTtD+YZLOaTpAUCwUk6FJoTQ/houvfQw33zzDfv27WPthx9z0003qfuwB1fV/9Z26Iu2Q18YNrdGQEbxYVvweCDV72PNzj45Wy+X9dBXBA24A010z8A8jhA+kDRCIUQNVYtlhLfXc+E1dwGgKFZ2vPE4iqKo60plQiGE8I+AjsvShrCvzRgWspi7WMUszUrWaO5QAy2ACk0IANFhOmbcN0e9/4knnsBq9S1lvHpApok2oBs2l+CbviEo8VU0homgDa7jk3JOObxZxnKJRkOCLSFEDdWLZfQbdweRMV0ByP9lOwe3feqwvlQmFEKIurFXGfT3uCxNl9EEJb5K8E1fEzHyYUxBXdSgyhVTcQVpp3pw4aChAOzevZuPPvrIb23Sdugb+MBLxnKJRkKCLSGEU8NiI1mU1BWtBoJCQhl86yPqsh/eXkZFaYnD+lKZUAghfBew3ixNEEHxj6Eb9aQttY+aF9LcsSoaYsbcqd5+/HHHrAZ/qR540Xm0X/cvvVyioUmwJYRwqWNEMNYz59bOF19Gp7hLAThVkM+P/3vJYd0yi4Lx+Ol6bqEQQjRdAenN0oagMUxEN+51p4Ui7BfS9JGee5L0FyYQ23cgAFlZWWzYsMF/7XRC26EvwaOfJCj+MdD6sayA9HKJBiTBlhDCpVCdllDd2XK+g297BK3OdoL+5bPXOfn7AYf1H990mG0HpYdLCCE8UQpy/VoEo2q6oG7YXDTRBpfrdokKpeC058fVaDT0uupu9fbixYsD0rtVnTZ2DLqk1bb0Ql2Y3/arHN6MJXU6lcbP/LZPITyRYEsI4dawbmerDLbRd6PfhL8BYK2skGIZQghRC0pBLpb0ef4JtJykC3pSZrFSZvEuaIoZeBkDBth6t3bs2MHnn39e66b6Qi2occMmdDd8hW78G/5JMbRasG57gor3LseybYn0dImAk2BLCOFW1cqEABdcPZPW7c8F4GhOOr/tdMyDl2IZQgjhmpo6WPxb3XYUFOo2XdCd6lkL7rQK1jJ//jz19qJFi+qld6sqezVDv6YYVpahGDfIeC4RcBJsCSHcqj6gOrhVawbf8pC6/Pu3lmApL3XYRoplCCGEI78VwtDq0A6bR/CNX3lMF3SnataCO9FhOgZfNoF+/foBsHXrVr7++utaPaY/2FMM/VZIQ8ZziQCTYEsI4dGw2Ejmje2s3u46JBF9/+EAlPxxmN2frHRYv8yisOpbE3kFkk4ohBD+KoSh6TIaXdJqggzj6tym6lkLrpiKK3jsi8PceNf/qfctWrSozo9fF37v5eLseC7p5RL+JsGWEMIrhvZhatqJRqNhyNT5aIJsJ7mfNrxCcX6ew/oZB4pZmJYnBTOEEC2aXwphVBmXVduerOp8KQNfaYXc9sMx9OoNwObNm9myxb/zgdWG33u5rBYqv12MUmD0z/6EQIItIYQPqqadtO3Uk75J0wCwVpTz/VtP1lhfCmYIIVoyfxTC0HQZXatxWd7wpQy8QhCX3nyvenvx4sV+b09t+L2Xy2rBkj5PUgqF30iwJYTwWvW0kwF/uYew6I4AHP7hKw7vqpnHLwUzhBAtUZ0LYQSgN8sZb8vAAyh9xmAw2NqyadMmtm7dGrB2+cqvvVzFeVI4Q/iNBFtCCK/VKJYRFsGgW+aqy3e88TiV5TV7saRghhCiJalz6mBk14D1ZlXnSxn4CiWIf805+53f0GO3qvNrL5cUzhB+IsGWEMIn9rSTkd1tKYWxwyYQ03coAOZjv/HT+lU1timzKBiPn67XdgohRH1TCnKxbFuCZeMdtQ+0tDp0CY8HtDerKl/KwIfqNNw+bSqxsbEApKWl8d133wWwdbXjMClyUGid9iWFM0RdSbAlhPBZl6hQZgzXE6rT2IplTFtwtljG+pUUH8ursc3jmw5LsQwhRLNlTxtUjBtAqazdTrQ6gobPr7dAy86XMvC/m608/PDD6n2NrXfLTp0U+cav0A6fV7eeLimcIepAgi0hRK3ZT9BRnXvRN2kqYCuWseONJ2qsK8UyhBDNlT8qDtrLutdH6mB1vpSBX5iWx/mjr6Nr164AfPbZZ+zYsSPALayboB7j6j6eSwpniFqSYEsIUWtVT9AD/jJLLZZxZNfX/PbDVzXWl2IZQojmps4VB+upEIY7vpaBX/3DCe6670H1vsbau1WVX8ZzFedJSqHwmQRbQohaq3qCDg6LYPAtD6nLdrzxOJaymuO0pFiGEKK5qHPFwXoshOGJL2XgK60QPfhqOne2TXa/YcMGdu7cGegm+oVatTCya+12YLVQuXWRpBQKr0mwJYSok2Gxkcwbazvhdhs2Hn3/YQCU/HGYnz5ZWWN9KZYhhGgO6pw6WM+FMLzhSxn4nb+X89BDZy+wNYXeLTtNtAFdwuLa93AplVg23o5l2xJJKxQeSbAlhKgzQ/uws8Uypi5AG2S7Mrp7wyuc/P1AjfWlWIYQoqmr3LO2ToFWQxTC8MSXMvBlFoXbpt5Op06dAPjkk0/YtWtXIJvnV5rongQNn1+ngEsxbpD5uIRHEmwJIfzCXiyjbaee9B1/OwBWSwXbkxehKI4nbymWIYRoypSCXJT9G33fUBOExjCxwQpheOJrGfjI8DCHyoSPPfZYoJoWEH6ZCFnm4xIeSLAlhPCLqsUyLrz2HsLbnwfA7z9lkrc9tcb6UixDCNEUWQ9uss2j5Wt5d00QunGvoxs2t9H1aFXlbRl4+3rTp09Xe7c+/vjjJtW7Bf6bCFnm4xKuSLAlhPALh2IZrVoz+K+PqMu+f/NJKk6ba2wjxTKEEE2JOk7L10BLqyNoxIJGHWTZeVsG/tuDxbz2XT75p2jSvVt2dS6cATIfl3BKgi0hhN9ULZbRZdAYOsVdCsCpgnyyU16osb4UyxBCNBW1LvEe2bXRpg06420Z+PJKhc3GkyxMy+OCK65v0r1bdnUunAEyH5eoQYItIYRfVS2WccnUeQQFhwLwa9obFOT9WmN9KZYhhGjsal3ivRFWHPSGvQz8aEMbgoPcr1tphdd3FXD3ff9S73v00UcD28AAqnPhDJD5uIQDCbaEEH5nz+WP7NiVC665GwDFWsl3qxeiWK0O60qxDCFEY1brEu+NtOKgt7pEhTJ9aAwjYtt4XLfSCu2HXutQmbCpzLvljD2lUGOYCBoP0aYrklIozpBgSwjhd1Vz/vtf9TfanNsdgD/27SJ387oa60uxDCFEY1WrEu+aoCaVOuiOt2Nrd/5e7jB2qyn3bsGZlMJhc9GNW137Xi5JKRRIsCWECICqOf9BwSEMuf1RddkP7z1N6ckTNbaRYhlCiMamtiXeNT3GN9kerapqM+9Wly5dANiwYQM7duwIZPPqRZ3TCiWlsMWTYEsIERBVi2Wc2384sSMmAlBuLuSHd5+qsb4UyxBCNCa1LvGu1RHUZ0pgGlXPfJl3S6uBgnItjzxythLtwoULA9W0elXn+bgkpbBFk2BLCBEw9mIZAINvmUtwa9tYLuOWD8n/ZXuN9aVYhhCiMahTifcmPE7LGW/n3bIqsDAtj36XTaZbt24AbNy4kW3btgWyefWmzvNxSUphiyXBlhAioOwn6rCoc7johgfU+7etXkBlRbnDulIsQwjRkJSCXCzblth6tJp5iXdveTvvFti+w1f/cIJ7/jlHva+59G7Z1Wk+LkkpbJEk2BJCBFTVE3Xvy2+kg2EgACeP7mf3hldrrC/FMoQQDcFe3l0xbqhVj1ZTLPHuDW/n3bL7//buPb6p+v4f+Ctt6IU2tBUxUYEWIi3qLHGyWimtN6CF2e07sepvcwNBQYWv36moMKgX8IJ3N5GJUyzTzQvtppZJC3ihbSpU0FJlW0sDFFESUHtJCmmby++PcI69pO05aZLm8no+HjykyfmcfBpDkvf5fD6vj90BJFySjwkTXMFI27ZtQ1VVlQ976H9D2o+LUwrDDostIvKp7h/UiogIXLpwNRQRrijdL99bjzZjU582Ow1teHW3CUeaOcJFRL7ncbw7EJJTB3sT9t2KkLZ8C3u+saKwsFD8+YEHHvBRz4bPkIIzHDZXyiWFBRZbRORz3cMyzkg+H5NzfwcAcHR1YvdrD8Lp7Jt2tdPQhgfLj3ANFw2LpqYmVFRUoK6uDjU1Naip6bvGcDClpaXYvn07TCYTAMBqtaKpqQmlpaXibRQYPIp3B0Iq4n0wZ8WPgENaMCE6bE7c8P9+g0mTJgEAPv74Y3z00Uc+7N3wGMqUQqehFLZdj3MNVxhgsUVEftE9LGPKdXdi5OizAQDGr6pxqLrUbRuu4aLh0NDQgLq6OuTk5CA9PR0ZGRlQq9XYvFnelWir1Yq6ujq88cYbeOaZZ/Diiy+itLQU6enpUKvVPuo9yeVpvDsQOhHvUshJJoxWKjAyJqrHeq3CwkK3F9aC3VCmFDoNW7iGKwyw2CIivxHCMkbExCFj3o/TSva88Rg6LC1u23ANF/mT1WrFtm3bMHPmzB63Jycni8WTVGq1Gtdddx2ys7ORnZ2N/Px8LF26VExqo+Hncbw7EFIR71JJTSZMilXiSHMHbrzxRlxwwQUAgOrqapSXl/uye8NmyFMKuYYrpLHYIiK/6R6WMe6SqzH+Z7MAAB1tP7jde0vADY/JXxoaGpCQkICYmJg+96WlpWHfvn2yzpecnIyMjAxkZGQgNTXVW90kL/A43h0Ii3Va7khNJjSau/Bg+RF89vVJPPTQQ+LtoTq6BQwxpZCx8CGNxRYR+U3vVKuf/W4VRsTEAQAaPymG6T+fuW3HDY/JX+rr690WWgCQmJiI48ePw2q1+rlX5AserdNSREKhzQ+bdVq9yUkmFKaBZ1x9DaZMcaXQ7tmzB++//76Pezl8hpRSyFj4kMVii4j8Ski1ulw7CiPP0EB3w93ifbteXdVn7y0BNzwmfzCZTEhMTHR7X0JCAgCgtbXVjz0iX/BonZYiEsrZr0GZuTzsRrS6E97DNaoRgx5rdwA7DrRh9erV4m2FhYVwOBy+7OKw4pRC6o3FFhH53bjEaCy8VI3LtaOQOuPXGK1NBwC0HTuEr977s9s2DMsgf+jo6EB0dPSAx8gptlpaWlBXVyf+qaio4MjYMPNonVaEEpHTHgjrIqu7cYnRaD4lbVRwV5MZ+fn5yMjIAAB8+eWXePvtt33ZvWEnTClUaPPlN+aUwpDjQdlNROQdM1MTUXWoDZfd8gj+tepaOO02fPX+y0jO/DkSx57X53ghLGPhpUxyI/8TijCpxVJrayuOHz+O9PR08TaTyYQ33ngDN910U7/TFQHXdKu9e/cO+hjt7e2S+kIuHq3TOh3vzkLrRx02Bzps0tZeddic6LI78eijj4rBMw8++CAKCgqgVIbu11BFkhbKzOWwwenaKFuO01MKIy8rDMvpqqGGI1tENGyE+f9npkzGhT9fCABw2Luw65VVcPYzzYRhGRQs8vPz+4RiqNVqqNVqbN++fcC2nZ2dsFgsg/4J1bABX/FknVY4xbtLJTcGPkoZgauvvhpXXHEFAODAgQPYtGmTD3sYOCLTCjilMMyx2CKiYSVseHzRr5ZApXZFYp848DkaPnrL7fEMy6Dh0tHhmsI60IiUFMnJyWhoaBjwmKioKMTHxw/6R6GQ9oWXXJxNH8prEIbx7lLJjYFXKBR49NFHxdtXr14t/psKZUNdw8UphcEvdMdviShoaEfHIm5kLDIXrsH2x34HAPjizacw7qdXYeQZmj7HP7LjKBZnapCZIu3DniiQCMWayWTqd3PjqVOnYurUqYOea8OGDbBYLF7tX6hyfLcfsMm4UBOm8e5SCdPA7YNkXQgx8IszNZg2bRrmzJmDDz74AEeOHMGGDRtw5513+qfDwygiZQYUCRNgq1wFmI/Ia8wphUGPI1tEFBAyk1XQXJgJ7eXXAQC6rO3Y/drDbqdJMSyDfCUhIaHfAAxhrZaQSjiQ7du3o6Kiwu19ctd+0dA5Du+Affsd0hucXqfFL7f98yQG/uuWDjzyyCPi7Y8++mjYXCwYUiw8pxQGNRZbRBQQhM0yL/nN/YhJOBMAcPTzD9G02308sxCWQeRNarW63yJIKML6G43qrr6+vt+iTc55aOjEUAwZa7W4TksauTHw2+pbcPHFF+P6668HABw/fhzPP/+8j3sZOIYcC1+/2fudIp9jsUVEAUG4SjpSlYCMeQ+It3+2aQ06zM1u2zAsg7wtOTm53yKppaUF48ePl3Se9PR05Oe7j31uampCQkLCkNd+kTSyQzG4TksWuTHwALBmzRpERkYCAJ566il8//33PutfoBFi4aGS9l7SnfPgB1y/FYRYbBFRwBDCMsZn5GLcVNf0HWvb99jzt7Vuj2dYBnlbamoqrFYrWlpa+tzX0NCAKVOm9LjNarWiqampz7EajQYmk6nP7VarFQ0NDcjJyfFan6l/sjcv5jot2eTGwHfaHEhNTcXNN98MAGhra8Pate7f40OVx1MKnXbYyhbCcXiHbzpGPsFii4gCinZ0LGJGRCBj/oMYMdIVgHGw8p/4tq7S7fGP7DiKXYc5wkXeERMTg1mzZqGysufrraGhAQkJCX2i3EtLS1FcXIy6uroet6empqKurq5PwbV582akp6f3OQ95nyebF0fOfInrtGTyJAYecO21JaxfXLduHb755huf9TEQeTyl0GGDvXo1128FERZbRBRwMpNVGJmkxiX/7z7xtl2vFKLrVN+F1AzLIG9LTU1Feno6KioqUFdXh5qaGrS0tKCgoO/UsuTkZERHR7tdfzVz5kw0NTWhoqIC27dvR2lpKS699FJxY1fyHY82L1bGIuLM833XqRAmNwYeAMaOHYulS5cCcI34Pvzwwz7rX6DyeEqh0w7b1pth2/U4pxUGARZbRBRwhLCM8668HpoLLwMAtH//LT5/62m3xzMsg7wtOTkZOTk5SE9PR0ZGBjIyMtwel5GRgaVLl/YbdpGRkYGcnBzMnDnT7SbH5BsebV6czBEtTwnv2YMRYuCF2QgrVqzAqFGjAAAbN25EfX29L7sZkIYypdBp2MJphUGAxRYRBRwhLEMZqUDmLY8gMjoWANCw4+8w/afGbZvKg23iFVMiCk/O5kbX1X7DFnkNGYoxJJ7GwI8ePRr33eeawWC327Fy5Uof9zQwiVMKFZHyGzMWPuCx2CKigCSEZajOGoeLr79HvP3Tv/wBto6+oRgOJ3pcMSWi8OI4vAO2soWeFVoMxRgyT2LgAeD3v/89NBrX5vUlJSXYtWuXL7sZsCJSZkA5+zWPCy5b5SpOKQxQLLaIKGBpR8ciWqnA5Fk3YUzqTwEAZtMR1G5+zu3xXL9FFJ482UsLADcv9jJPYuDj4uLw0EMPibfff//9bjezDweKJC0UE2d71th8hFMKAxSLLSIKaJnJKigiInDZrY8hYkQUAOA/ZZtwvH6v2+O5foso/HiyRgvg5sXe5kkMPAAsWLAAkyZNAgBUVFRg61YZcf0hJjKtwLNNjwFOKQxQLLaIKKAJC68TzpkI3XW/d93odKL65RVupxMC3OyYKNw4mz6U34jrtLxOTgw8ALy+9wSONHdgxIgReOyxx8Tbly9fDrtdRpJkCPE4El7gsLkuPlDAYLFFRAFNWHgdoQDOn3MzzjxPBwAwGw+jdvPzbtt02Jx4+VMjAzOIwoDju/2ATebm5lyn5TNSY+ABYKehTVxrO3fuXDH188svv8Rf//pXX3Ux4AmR8AptvkdruJwHP+D6rQDCYouIAl5migprZo+HMjIS0xY/3m06YVG/0wmrDpkZmEEU4hyHd8C+/Q5ZbRTafK7T8iGpMfACYa3t0dZOPPnkk+Ltq1atwsmTJ33Qw+CgSNJCmbkcytkbPYqF5/qtwMFii4iCwrjEaGRPHIWEc7Q9pxNuWI4uq/sPZAZmEIUuT0IxFNp8KDOXc0TLh+TEwAuEtbaXX3458vPzAQDffvstnnvOfRhSOPF4WiHXbwUMFltEFDSEK6bnz7kZZ2qnAADMpiZ88fYz/bZhYAZRaJIdisE1Wn4jxMBfrh0luY2w1vaJJ55AZGSk+Pfjx4/7pI/BRJhWCNV4eQ0ZCR8QWGwRUdAQrpiOUEZi2m1PIHJENACgftvrMO7vf28WbnhMFHpkhWJwjZbfjUuMxk2XjJF8vJBOeP755+OWW24BAJjNZjz88MO+6mJQUSRpocxeI3+Ei5Hww47FFhEFFeGK6c+zpuDiG5eJt1e/vAKdJy1u23DDY6LQIjcUI3LmS1yjNQzkpBNGKACjuQsA8NBDDyEuLg4AsGHDBtTX1/usj8FEnFIoNzSDUwqHFYstIgo64xKjsegyDabM+R3U57vSq9q/+wZ7//ZYv224fosoNMgOxVDGIuLM833XIRqQ1HTC7hfFNBoN7r33XgCA3W7Hfffd58suBpWIlBlQzn7No4KLUwqHB4stIgpal01IwGWLHocyxnUFtPGTYhz9/ON+j+f6LaLg5lEoRjJHtIaTnHTC7hfFli1bhnPOOQcA8P777+Ojjz7yYS+DiyJJC8XE2fIbckrhsGCxRURBa2ZqIhI14zD1N8vF2z59ZSWsbT/024brt4iCF0Mxgo/cdELholhcXFyPjY7vueeesN3o2J3ItALPNj7mlEK/Y7FFREFL+BBPvep6nKu7AgBgbf0Ou14thNPpdNuG67eIgpOzuRHOg1ulN2AoRsAQ1tpGSFu+JSYT/va3v8VPf/pTAEBtbW1Yb3Tcm8eR8ICr4Krf7P1OkVsstogoqGWmqPDInGRkLXoU0fGJAICv92zHwcp/9tuG67eIgovj8A7Yti4AnNJHNhiKEVjOih8Bh/trYH0IyYQRERF45pkft/ZYuXIlLBb3QUjhyONIeABOQylsux7nGi4/YLFFREFvXGI0Zv1Ui8xb1oi3fbZpDSwnjvbbhuu3iIKDuE5LRqHFUIzA42ky4RVXXIH/+Z//AQAcO3YMTzzxhK+6GJQ8joQH4DRs4RouPxi2YqupqQkVFRWoq6tDTU0NampqPD6X1WrF9u3bUVFR4cUeElEwmZmaiAmX5mJi9v8AALqs7dD/+T44HP1/QeP6LaLAJ3udFhiKEag8SSYEgCeffBIjRowAADz99NNoamryWR+D0ZCnFHINl08NS7HV0NCAuro65OTkID09HRkZGVCr1di8Wd780YqKCpSWlqKurg5NTU3o6OCXJqJwJazfunReIeLOPBcAcLx+D/aXvtxvG67fIgp8sjYvBhiKEcA8TSacNGkS7rzzTgCuC+yMgu9rKFMKGQvvW34vtqxWK7Zt24aZM2f2uD05ORlWqxV1dXWSz5WTk4P8/HxkZGQgOjra210loiCTmaLCE3MvRPYdT0GhcL297St5Ad8f/LLfNly/RRS45G5ezFCMwOZpMiEAFBYWYsyYMQCAd955h7OZ3BjKlELGwvuO34uthoYGJCQkICYmps99aWlp2Ldvn7+7REQhZFxiNK6bcxV+8svbAABOuw1V65ehy3qy3zZcv0UUeGRvXqyIhDJvI0MxApynyYQJCQk9ouD/7//+j1HwbnBKYeDxe7FVX1/vttACgMTERBw/fhxWq9XPvSKiUDIzNREXz12C0dp0AEDbsUPY8/qjA7YRPtCJaPh5tHnxxDkc0QoSniQTAsDNN98MnU4HwBUF/+qrr/qoh8FNmFKo0ObLb8xYeK/ze7FlMpmQmJjo9r6EhAQAQGtrqx97FDw6Tr/ZkH8ZDAYUFhZi0aJFIfE44WB8UjRunz4OOXc8DWX0SABA4yeb0bS7/z16OmxOGL6TMV2JiHyGmxeHNk+TCSMjI/HHP/5RvG/lypVobm72SR+DnSJJC2Xmcii018hu6zz4AddveZHfi62Ojo5B11ex2PrRkeYOvLrbhFvfacSt7xhw6zuNeHW3iQlqgygqKsLatWu9ci6tVou5c+d65VyB8DjhIjNFhT8uyMGl8x8Qb/v0lVWwnPim3zaP7DjKsAyiACArFIPrtIKSp8mEOTk5uOGGGwAA3333HR544IGBmoe9yLQC+VMKnXau3/KigNpnSyjCOI3QZddhMx4sP4KdhjZ02Fzj7R02J3Ya2pigNgidTofs7GyvnU+lkvahECyPEy7GJUZj/vx5SLns5wCArpNmVK2/Bw67+yvmdgfw0qcMyyAaLs7mRnRVPyIrFIObFwcnT5MJAVf8+8iRrlkL69ev53r/AXi8hovrt7zGg9VzoWXPnj3Yu3fvoMe1t7f7oTc/OtLcgQ27jLD3M3NQeOM5NzEK4xKZxNibMKebaFZaEj6+ZTVONO5D+4mjONHwOb7854uYct3/uT3e4QQKtx5B9sRRmJmaiPFJ/PdF5A+Owztkr9Pi5sXBS0gmHOi7TndCkNHCS9UYO3YsCgsLsWLFCjgcDixduhQVFRVQKCSmboSZiJQZUCRMgK1yFWA+Ir3h6Uh4ZfYaKJLO810HQ1xAFVvCPln9BWj4QmdnJywWi98eT6rtDS2Dvvl0f+PxpdraWmzatAkAsHTpUhiNRhiNRpjNZsyfPx8GgwFFRUUwmUx4+WXXnkZFRUUoLy/HvHnzkJeX5/YcZrMZBoMBS5YsQVlZGVQqFSorK1FQUACttud0kJKSEmg0GhiNRmg0GmRlZYnnVKvV4mMAQHZ2dp/+CMrKynr8nJeXBwCwWCwoLy+HRqNBbW0t8vLy+vRhMHq9HsXFxTAajbj//vuh0+lgNBrxwAMPQK1WY8mSJYiPj5f1OFKe24GeI3J9oP/vVZPQsvQZbH3413A67Kh7dz3U518KzYWZbts4nMBOQxuqDrVhcaYGmSkccSTyJU8CMQBuXhzsMlNUODcxCoVbj0gKzNjVZBa/89x1113YuHEjDhw4gKqqKvz973/Hb37zGx/3OHgJsfC2soXy/p2djoSPvKyQI8geklxsbd68GUeOyKiGu1myZIlfCyg5oqKiEB8fP+hx7e3tcDolRuf08kDZEbSekhdP2nxK2j+EnYY21H3bf6R1bwmxkVidJ2/DO2GUaP369TCbzeKX+EWLFiE7O1tca7R+/XqxjVCESTlHUVER5s+fLx67bt06PPfcc+LPa9euRXZ2ttimsLAQGo0GOp0O7e3tKC4uBuAqsiorK6HVajF//nw88cQTPX6PkpISsUAEXMWRXq9HVlYWiouLkZeXJxYpixYtwrPPPivptSHIyspCXFwc1q9fL/6+Go0Gubm54lqsoqIiWY8j5bkd6DmSWzCGqswUFf60JB/X7b8Tte88BzidqFq/DD9/7D3EJozutx1HkIn8Q3YgBsBQjBDhSTJhlDIC0dHR+NOf/oTZs2cDAJYtW4ZrrrlGDFujvoQphfbq1YBTxvfS01MKFQkTuDbSA5KLrYIC77yhJSQk9BuAIazV8uc/lKlTp2Lq1KmDHrdhwwaPR8BaT9klF0+e8OW5BSqVCkajscf0PLVaDaPRCK1W63atUVxcnKRzdKfVamE0GsWfjUYjqqursXz5cvG2rKwslJWVYcmSJYiLi4PBYBDP2V9xYbFYsGnTJvz9738Xb6usrMSkSZPExxFGmoR+7du3T/bokE6nE0fshL50fx48eZzBntvBniNy0Y6OxSW/ug3Gf++G8atqnGo5juqX7sNV9/4Fioj+Fw74awSZKJzJCsQAGIoRQoRkQmFt+kCEZEJhendeXh5++ctf4r333hNnknRPK6S+xCmFW2+WX3DVb4Yyc/ngx1IPfp9GqFar+w3AEIqw3l/Ag11CbKTsNnIKqKRY6f8bPemLQKPR9Pg5Li4OZrO8kA535+h9W3e1tbWIi4sTpwgCEKcx9ndOdxobGxEXF9djBKl7cSL83WKxwGQywWKxyP7dBLm5uWKhU1tbi+nTp/vkcQRSniNyuWxCAlpvfwpb/vBLWFu/w7d1ldj/r1fwk/yB4/YrD7Zx/RaRjzhtVlmBGIqJcxA5+UYWWiEkM1mFnYa2QY8Tkgm7T+9+/vnnsW3bNpw6dQrr1q3D/PnzcfHFF/u6y0FNkaSFYuJsOA1bZLVzHvwAzrTruH5LJr8XW8nJyaipqXF7X0tLC8aPlzfFLRjInbYHAK/uNkl647lcOypgr7h7I1Skvb1dnDIo6B1+0XsEzZO+GAwGbN68GTqdDtOnTx9SwZ+Xl4e77roLS5Ys6TOS563H6f77SHmOyGVmaiKqDo3B9Duewo61CwCnE7XvPIezUn+Ks9L6H+F29wFPRF5iPgooIqVdZVfGQnnZSt/3ifzK9d7cJjkoo/v07pSUFBQWFuIPf/gDHA4Hbr/9dlRXVyNigBkL5IqEtx0qkzd993QkPNdvyeP3V2JqaiqsVitaWlr63NfQ0IApU6b0uM1qtaKpqclPvQscUiJRIyOAWWmJfumPJ7wRPNJ7WqGn59ZqtW4LLovFAovFglWrVqGgoAB5eXmIj48Xj/VkdEij0UClUkGv1/eYAujNx+n++3vrOQoHQvrV2PQsXPTL2wEATocdFS/8Hqdavx+wbe/oYSIaOsfhHa4F+xKnMzEQIzQJ781youC31beIP99zzz2YPHkyAGD37t145ZVXfNDL0MJIeP/xe7EVExODWbNmobKyssftDQ0NSEhIQGpqao/bS0tLUVxcjLq6ugHP29HREVL7cw32xhMZASzO1Azrov3uxYuwfktgsVhgNBoHHVEa7H6dTofzzjsPer2+x+1VVVWy+qrRaDBt2jSUlJT06GNVVRVMJhPa29t7rPcSCpXeQRRS5ebmYt26dT0uHnj6OIM9t956jsJFZooKq/PG43/vXQnNBa40wlPNx137bzkG/sLX+wOeiDwnO4GQgRghTXhvjpCY3r6r6ccp+FFRUT2CpJYvX47jx497u4shJyJlBpR5GwGVzBlYpyPhnc2NvulYiBmWMdbU1FSkp6ejoqICdXV1qKmpQUtLi9sQjuTkZERHR7udblVTU4PS0lK8/vrraG1tRUNDAzZv3ozS0lI0NDT441fxKeGN53LtKEQrXe8+0UoFLteOwuq88X6bziRMfTMajWKxUlJSgsbGRpSXl0Ov1yM+Ph7z5s1DSUkJ9Ho99u3bhylTpoj3D3QOvV6P2tpaMea8vb0dRUVFYiGyZs0aHDhwAGVlZWKCoBD1XlJSIp5TKEjcPRbgevM1m81iH6uqqsTo9WuvvRZFRUWora1FbW0t7r//fnENVPfzFRUVSXrOcnNzMX369B5rxDx9nMGe24GeI3JvXGI0bp12DkpL3kJs4hgAgPGranz5z/WDtHSt3zrSzNEtoqGSlUDIQIyw4EkyoeDKK68Uo9+bm5tx9913+6KLIUeIhJc9wnU6Et5xeIdvOhZCFE5P88zDjJBGGB8fj8WLFw9LH4S4UyLynvVvfYClv86H0+kAFApcfd8rOCc9e8A2wsgy12/5RyC8/waqYH5uut6eIS0YQxEJ5ezXWGiFiVvfaZSUTAi41q13Dy8ymUyYPHmyuFSlvLwcs2bN8lVXQ4rj8A75kfAAEKGEMm9jWP77lPr+y2/uQYSFFpH33XHjHNy76iHXD04nKl+8B5YTRwdsw/VbREPj+G6/9ARCpx1QjfVthyhgZCZLv4i109CGB8uPYNdh15RCtVqNp59+Wrz/tttuw8mT0vciDWcRKTOgnP2aK6xGjtOR8NQ/fnsnorD3+EMrMWW66+pnp6UFO5//X9g7By6kuH6LyDOOwztg336H9AbKWCiU3HYhXEgJCOuu98WvBQsWICcnBwBw6NAhrF692hfdDElCJLxcTkMpbLse5xqufrDYIqKwFxERgddf/ytUmmQAwA+H96Nm08ODtuP6LSJ5ZIdigAmE4UZuMiHQ8+KXQqHAhg0bEBUVBQB4+umnsW/fPh/0NDRFphXIX78FwGnYwjVc/WCxRUQE4KIUNda/9hYio2IAAI2fFKPhw7cGbCPsvyVMYSGigckKxQCYQBimugeESdU9nXDy5MlYudK1H5vdbseCBQtgs8l43YUxjyPhAcbC94PFFhHRaTflZeK5dS+JP3+2aQ2O1+8dsA3XbxFJ52z6UPrBTCAMa+MSo3HTJWMkH99hc8Lw3Y/rAO+//35ccMEFAIDPP/+8x1ouGpjHkfAAY+HdYLFFRNTN/946DzNuXAQAcNi7sPOP/4uTPwy86bTdAbxQeYxTCokGICsUA0DkzJcQkcIphOEsWhkhbn0jxSM7joozDaKjo7Fx40ZERLi+6j700EOor6/3ST9DkceR8ABj4XthsRVEnLbQ2bQ5mBgMBhQWFmLRokUh8Tg0uA1/ehZnX+ja8Nja+h0+eX7poIEZRnMXpxQS9cOTUIyIM8/3XYcoaMhJJ+w90+DSSy/FXXfdBQDo6OjAggULYLfLjDYPY5xS6B0stgKcs7kRtl2Po+vtGbC9fbXrv0x8GVRRURHWrl3rlXNptVrMnTvXK+cKhMehwU0cE4eNf30TcWeeCwD43lCHXRsLMdi2hJxSSNQXQzFoKDxJJ+yeFLt69Wqcd955AIDq6mqsW7fOyz0MbcKUQoU2X35jxsIDYLEV0ByHd8BWthBOw5Yfp17YTjHxRQKdTofs7IE3ppVDpfLP5rX+ehwaXN5PU1D8j3+IgRkHK9/Fvz/YOGg7RsIT9cRQDBoKT9IJu4dljBw5Eq+88or484oVK9DQ0ODNLoY8RZIWyszlUGivkd3WefCDsB8gYLEVoAa9Esjh2QHpdDpkZWUNdzcoyOVlZ+DWB/8k/vz5m0/i6BcfD9pup6ENr+42cQ0XERiKQUOXmaLCqpnSN7buHZZx+eWXY+nSpQCAU6dOYf78+ZxO6AGPYuGd9rAfIPBgEib5g6QrgaeHZ5WZy33al9raWmzatAkAsHTpUhiNRhiNRpjNZsyfPx8GgwFFRUUwmUx4+eWXAbim8ZWXl2PevHnIy8tzew6z2QyDwYAlS5agrKwMKpUKlZWVKCgogFbb84O2pKQEGo0GRqMRGo0GWVlZ4jnVarX4GACQnZ3dpz+CsrKyHj/n5eUBACwWC8rLy6HRaFBbW4u8vLw+fRiMXq9HcXExjEYj7r//fuh0OhiNRjzwwANQq9VYsmQJ4uPjZT2OlOd2oOeIhm7F7b/Dp5/XYV/JOsDpRNW6u5H38DtIHDtpwHY7DW2oOtSGxZkaZKZwxJLCk0ehGFyrRW5oR8ciWqlAh23g6dyCR3Yc7fH+u3btWpSVlaGxsRGffvopnnnmGdx3332+7HLIEdZwyZ0WLAwQKBImhOWFFBZbfmDbugDOUz/Ia3TqhKTDnIZSdH27S/JpFbFnQDl78KlQ3el0OgDA+vXrYTabxS/xixYtQnZ2trjWaP369WIboQiTco6ioiLMnz9fPHbdunV47rnnxJ/Xrl2L7OxssU1hYSE0Gg10Oh3a29tRXFwMwFVkVVZWQqvVYv78+XjiiSd6/B4lJSVigQi4iiO9Xo+srCwUFxcjLy9PLFIWLVqEZ599FvHx8ZKfp6ysLMTFxWH9+vXi76vRaJCbmyuuxSoqKpL1OFKe24GeI7kFI/U1Pika6598BL85asDh3VvRZW3HR08vxuyHNyM2YfSAbYU1XOcmRmFcYrSfekwUGByHd7i+lEnFUAwaRGayCjsNbZKO7f3+GxcXh02bNiE7OxsOhwOFhYWYM2cOfvKTn/i416ElImUGFAkTYKtcBZiPSG/opwGCQMRphH7gPPWDq3iS80cOGeeVXfSdplKpYDQaxSICANRqNYxGo3h/b3FxcZLO0Z1WqxXPCQBGoxHV1dU9RmmysrLEEaq4uDgYDAbodDqxyHLHYrFg06ZNuO6668TbKisrxccyGo3iyJjQL092nNfpdOKInaD78+DJ4wz23A72HNHQTZuYgPJ//A1qretDuf3EUXzy7O2wdQ6eEMpYeApHDMUgXxhqWMa0adOwbNkyAEBnZyd++9vforOz08u9DH2exsKH6/otFlt+oIg9A4gdI++PHDLOq4g9w+PfQ6PR9Pg5Li4OZrO8mGt35+h9W3e1tbWIi4tDbW2t+EeYxtjfOd1pbGxEXFxcjxGk5cuXiyNOy5cvR15eHiwWCwwGAywWi+zfTZCbmysWOrW1tZg+fXqPx/TW4wikPEc0dKnnJOH9997DyDNcFwi+a6xF9Uv3w+lwDNqWsfAUbhiKQb4w1LAMAHj44Ydx4YUXAnB9fhYWFnqzi2FDjIVXREpvFKbrtziN0A/kTtsD4Ip3N2wZ9DiFNj9gh2Tb29u9cg5hyqCg+9+BviNonvTFYDBg8+bN0Ol0mD59ep8RNzny8vJw1113YcmSJX1G8rz1ON1/HynPEXlHxoUT8dLr/8CCubNgs7ajafdWxJ81Fj+98d5B23JKIYUThmKQr2SmqDBGpcTD5UclHS+EZWjPjAUAxMTE4I033kBGRga6urrw1FNPYfbs2bjiiit82OvQJE4p3Hoz4JQYOBKG67c4shWgJCW+BPiVQIvFMuRz9J5W6Om5tVqt24LLYrHAYrFg1apVKCgoQF5eHuLj48VjPRkd0mg0UKlU0Ov1PaYAevNxuv/+3nqOSJrfzpmGVzb9DYoI19vn/tK/oGHHm5LackohhQOnzSo/FCOFUwhJOiEsQ6pHdhztMbNAp9Ph0UcfBQA4nU789re/RXNzs9f7GQ4USVooJs6W18hhg61yVdhMKWSxFaAG3bU7AK4Edi9euq/fAlxf9I1G46AjSoPdr9PpcN5550Gv1/e4vaqqSlZfNRoNpk2bhpKSkh59rKqqgslkQnt7e48wCaFQ6R1EIVVubi7WrVuHKVOmiLd5+jiDPbfeeo5IunnX/xLrXnhB/Lmm6GF8vUfatAhOKaRQ5mxuhH3Pc4MfKGAoBnkoM1l6yqu7DefvueceXHXVVQCAo0eP4vbbbx9043pyz6NIePORsJlSyGIrgPXYtVvpGv6GMtY1dTBvo9+uBApT34xGo1islJSUoLGxEeXl5dDr9YiPj8e8efNQUlICvV6Pffv2YcqUKeL9A51Dr9ejtrZWjDlvb29HUVGRWIisWbMGBw4cQFlZmZggKES9l5SUiOcUChJ3jwW41kuZzWaxj1VVVWL0+rXXXouioiJxzdP9998vBll0P19RUZGk5yw3NxfTp0/vsUbM08cZ7Lkd6Dki37njjjtw2533AACcTgcq192FEwe+kNTW3Qc/UbBzHN4BW9lCSVPgBQzFIE8NNSwjIiICmzZtQlJSEgDg7bffxmuvveblXoYHj9ZvAWGzZ6zCyTJekg0bNsBisSA+Ph6LFy8elj44bR1QKLnWgyhQOBwOzLn2/6H8vXcAAFHxich78E0knCNtxFmjGoGl08/G+CT+ux5IILz/BqpAeW6czY2wlS2UHYqhzNsYNus2yPt2HTZjwy4j7IPnFAEAopUK/OX683rcVlxcjIIC15KM2NhY7NmzBxdccIG3uxoWnM0Geeu3Tgvk/IGBSH3/5chWEGGhRRRYIiIi8P47ryPr8isBAJ2WFux4/Ga0f/etpPacUkihwqP0QYZi0BBlpqiwauZYyccLYRndXXfddeIX5VOnTuH666/HyZMnvdrPcOHR+i249oy17Xo8ZNdwsdgiIhqCqKgofPD+u7gwXQcAOPmDETvW3gxrm7Q97TilkEKBnPRBf0+Fp9A21LAMAHjuuedw0UUXAQD279+P3//+997sYljxaP0WAKdhS8iu4WKxRUQ0RKNGjcJH28sxLsV1lb7t2CF8+MRCdJ6UlgjJlEIKZo7v9stLH5x6F0e0yKuGGpYRGxuLd955ByNHjgQA/OUvf8Hf/vY3r/czHAwa8DaQEF3DxWKLiMgLzjrrLFR8vAOac84FAPxweD8+fmYxbB3SvoRySiEFI8fhHbBvv0N6A2Usp8ST1w01LAMAJk+ejPXr14s/33rrrfjyyy+91MPwIgS8QTVefuMQjIVnsUVE5CUpKSn4cPs2JCadAQA4/t/P8Mmzd8DeKW3Eyu4AXvqUUwopODibG2H/dI2stVpMHyRfGJ8UjcWZGlkF105DG17dbeoxo2DevHlYsGABANf6rblz56K1tdXb3Q0LiiQtlNlrPBvhCrFYeBZbRERedMEFF2D7tnLEqUYBAI59pcfOP90Ju61TUnuHEyjceqTPlwCiQONRKEZage86RGFNblgG4Cq4es8oWLduHS6++GIAwIEDB3DzzTdz/y0PcUqhC4st8ilhryxvH0sUyKZOnYptZVsxMi4OAPDNFx+jat09cNi6JLV3ON1/CSAKJHJCMZg+SP4gNywD6LuGKzY2FiUlJeL+W//85z/xxBNPeL2v4aLHnrFyOWyuizpBjsUWeUTYiFiv1/fYOLi7oqKiHpv6Dqa8vFzcmJgo2E2bNg2l77+P6JgYAMCRz8pRue5uyQUXwKRCClxOm1VeKMbMl5g+SH4hJyxD0HsN14QJE/DGG2+IP//hD3/Ali3SN+umnhRJWigzl0OhvUZ2W+fBD4J+/RaLLZKtrKwMWVlZ0Ol0yMrKgtlsRm1tbZ9j8vLyZJ137ty5/RZuRMHoqquuwnvvvouoKFcggKcFF5MKKeCYjwKKSGnHKmMRceb5vu0P0WlywzIElQfberzPzpkzB6tXrwYAOJ1O/PrXv8Z//vMfb3UzLHkUC++0B/36LRZbJEttbS2mT5/e4zaDoed8WqPRCIPBAI1GI/v8WVlZLLgopOTm5uL9999DdPSPBVfFC7+XvIYLcCUVPlDGKYUUGByHd8BWthBw2iUdz1AM8idPwjIA1/Tt3lO3V61ahYIC1zpDs9mMX/ziF2hubvZmd8OKx2u4gnz9FostksVoNPaYGiiMaOl0OvG2srIyzJ0716Pz63Q6VFVVDaWLRAEnNzcX7733Y8H19Z7t+OTZO2DrtEo+h8MJrK824o8V33KUi4aN7ARChmLQMMhMUWF13nhcrh0lq13vqdsKhQKvvfaa+B2nsbERBQUF6OyUfrGMevI4Fj6I12+x2CJZVCoVamtrsXbtWhQWFqKkpARr1qzpccy+ffvcjmrp9Xro9Xq8+OKLMBqNKCsrQ1FRUZ91Wmq1us9oGVGwy83NRWlpKaJjYgEA3+6rwEdP3oKuU/KCYfYebWdwBg0bWQmEDMWgYTQuMRoLL1V7VHB1X78VFxeHd999F2PGjAEAfPjhh7jtttuYUDgEnsbCB+v6LQ+yGEmuqVOnBkzwg0ajwZ49ezxqW1tbiylTpiA+Ph7t7e3QaDTYvHkzLBaLONrVe+RLUFZWhunTpyM+Ph61tbUoKirC8uXLUVhY2GfKoU6nQ21tLbRafkBTaJk5cya2lZfh59dcA4vZDNN/arDj8Ztx1b0vI1qVJPk8wtXXcxOjMC6RG8SS/0hOIFREuhLIWGjRMJuZmoiqQ22wO6S3qTzYhpmpiRif5Hp/TU5OxrvvvourrroKHR0deO211zBx4kSsWrXKR70OfcKUQnv1aslTkoX1W5GXFQZV4A6LLT8wGo345ptvhrsbQ2Y0GsWh9KysLABAdnY2iouLMX/+fAAQi7DeVCpVj4JMCM/oPSomHBsoxSmRt+Xk5OCjDz9Ebm4umpub8Z1hH8pX/xpXL9+IuNFnSz6PEJyxdPrZ4hcCIl9yfLdfegKh0w6o5O15ROQLwhqulz41wiFxMEpYv7U4U4PMFFe64bRp0/D666/j+uuvBwAUFhYiJSUFN910k6+6HvIiUmZAkTABtq03Sy+4Tq/fUiRMCJqLOSy2/MCToAhf8UVfuhdGRqMRcaf3FupOKM4A15znKVOm9Hs+jUaDyspK73aSKID87Gc/w86dOzFr1iwYjUa0fmtA2UM34Or7X0Xi2EmSzyMEZ9x22Y9fCIh8wXF4h2utllTKWCiUvAhAgSEzRYVzE6NQuPWI5ILL3QyCgoICPPnkk7jvvvsAAAsWLMCYMWOQm5vrq66HPEWSFoqJs+E0yIjWd9hgq1wFZfYaKJLO813nvITFlh94Om0vGBw4cACTJsn4cni6MBto/y2z2QyVil8cKbRddNFFqK6uxqxZs9DY2IiTPxhRvvrXuOLu9VBP/pnk8wjBGbuPmPGri0ZzlIu8TnYoBphASIFnXGI0sieOwk5Dm+Q2wvqthZeqxduWLVuGgwcP4qWXXkJXVxeuvfZafPjhh8jMzPRFt8NCZFoBbIfKZL3HwHwkaKYUMiCDJDEajW4LoOrq6h6jVhqNZsApgMK6r+4/99bfVESiUDNhwgTo9XpMnToVANDZ3oodj8/HQf37ss8lBGdUyvgiQSSFrFAMgAmEFLA82YOr9/5bCoUCL7zwAq699loAwMmTJzFnzhzs37/fm10NK2IkvNS9+wRBEgnPYoskMRqNfYqoF198Eddee22PwkitVsNkMvU4Tq/Xo7CwEICruBKKNovFgvb2dreP5W4qIlEoOuuss/Dxxx+L01Acti7o1y9D3T/WyU67sjuAv+w24Za3G/HqbhMj4skrJIdiAEwgpIAmrN+KUEhv427/LaVSib/97W+46qqrAADNzc2YNWsWk5SHICJlBpSzX/Os4ArwSHgWWyRJe3s7dDod9Ho9amtrUVZWhry8PDHoQhAfH99niqBGoxHbLl26FICrANu3b1+PUTHBgQMH+mycTBTK4uPjUVpaikWLFom37Sv5E6rWL5O1F5eg0+7ETkMbN0KmIXParNJDMQBEznwp4Kf0UHjLTFFhzezxsgqu3vtvAUBMTAzeffddcWbCt99+iyuvvBIHDx70dpfDhrB+Sy6noRS2XY8HbCw8iy2STKvVIisrCzqdDnl5ef1GswvR7d3bzZ07F1lZWYiPj8eSJUuQlZXlttASDLSmiygUjRgxAi+99BKeeuopKBSubwGHq0tRvvrXaP/+mEfn5EbINGTmo9KvNCtjEXHm+b7tD5EXCOu35BASYLu/l6pUKmzduhUXXnghAODrr7/GlVdeicOHD3uzu2ElMq1A9v5bAOA0bIGtbCEch3f4oFdDw2KLvG7u3LkoKyvzqG1JSUmf0TKicKFQKLBs2TKUlJSIU2l/OPQVPlh1LY7Xex60s/doO0e5SDbH4R2wlS2UHMnMUAwKJp6s3zKau/pMKTzzzDPx4Ycf4vzzXRcajhw5giuvvBJNTU3e7G7YENdveVBwBeoaLhZbNCiDwSB7g+Hs7Gzo9XpZbSwWC8xms7iXF1G4+tWvfoVPP/0UEyZMAABY277Htkd/h39/sFH2Oi5B91Guxu+kTwuj8CQ7gZChGBRkPFm/BbhGuF76tOeUQrVajY8++giTJ08GABw+fBjTp09HfX29N7scNiJSZkCZtxFQjZff+HQsfCBNKWSxRYMyGo2y0wGFKYJyNicuLy8XN0cmCncXXXQRPvvsM1x99dUAAKfdhr1/W4udzy9FZ7vniYN7j7Zj9bajWPAWQzSof7ISCBmKQUHKk/VbgOviVeHWIz3eQzUaDT766COkpaUBAI4ePYrs7Gx88cUX3u52WFAkaaHMXuPZCNfpWPhAmVLIYosGNdDaqsHaySnS5s6d69HjEIWq0aNHo6ysDCtWrBBv+3rPdvxr1a/wnWHfkM5tczBEg/onOYFQEQll3kaGYlDQ8mT9FuAquHYa2npMKzz77LNRUVEhztA5ceIErrzySlRVVXmzy2EjVKYUstgiIgpgSqUSjz32GEpLS5GUlAQAsBz/GmUP3Ygv3/0zHA5p62n60ztEo8Pm8Ea3KUg5mxvRVf2I9ARCpx1QjfVtp4h8zJP1W4LeSYXCdh7Tpk0DALS2tmLGjBl4++23vdXdsCJMKVRo8+U3DpBYeBZbRERB4JprrsHnn3+OzMxMAIDTYUft5uew/dHfwXz86yGff+/RdqzaegS3vmPAre+4phhybVd4EQMxDm2V3kgZC4Uy2nedIvIDYf3WUAqu7kmFiYmJ2LZtG2bNmgUA6OjowI033oi1a9d6vO42nCmStFBmLodCe43sts6DHwz7+i0WW0REQSIlJQUVFRUoLCxERITr7fv4fz/DluX5qN/2BpwO74xKddhcUwy7r+1i4RXaZAdinMYEQgoVmSkqrM4bD41qhEfteycVxsXFYcuWLViwYIF4zIoVK3DLLbego4NrZT3hUSy80z7s67dYbJFPWCwWnxxLFO5GjBiB1atX45NPPkFycjIAwNZxEjWbVmP7Y79Dm9G7ccPC2i4WXqFNViCGgAmEFGLGJUZj6fSzvTalcMSIEXjllVfw2GOPicds3LgROTk5+Prroc9ICDcer+Ea5vVbLLbI64qKimRtSlxeXi4rtZCIXNsr1NXV4bbbbhNvM/2nBqXLf459JS/A3un9K6dSCi+u+QpOkgMxBEwgpBDl7SmFCoUCK1aswJtvvonY2FgAQE1NDS655BJ8/PHH3up22PA4Fn4Y12+x2CKvKisrk70p8dy5c1FSUuKjHhGFrlGjRuHPf/4zduzYIY5yObo6UfePF1C6/Bp8s6/CZ4/dvfC6+c0DuK/0MG55u7HfNV8swgKX02aVHogBQDFxDhMIKaQJUwov146SHQsPuKYU9k56vfHGG1FdXS3un3jixAnMmDEDDzzwALq6urzV9bDgaSz8cK3fYrFFXmM0GmEwGGTvyQW4YuJZcBF55uqrr8ZXX32Fe++9F0ql68PHbGrCR0/egg+fWIiWowd8+vh2p+vLRafdtfC7+5qveX8/gPlvHuhRhHFvrwBjPgooIqUdq4yF8rKVHNGikDcuMRoLL1Vjdd54j0a5eie9AoBOp8OePXuQm5vrOsbhwJo1a5CdnY3GxsDZhDcYiFMKpb53AcO2fovFFnlNWVmZx3tl6XQ67kNBNATx8fF48skn8cUXX2D69Oni7d/WVWLL8nx8+soqtH9/zO/9csL1pQP4sQjrvoichpeYQOiUtoUAAzEo3Ax1WuHeo+09RrnOOOMM/Otf/8IjjzyCyEhXobB7927odDq88MILsNuHtp1HOIlImQHl7NfkFVzDsH6LxRZJUltbC71ej7KyMvG2tWvX9vh53759bke19Ho99Ho9XnzxRRiNRpSVlaGoqKjPOi21Wg2DYfg3nyMKZj/5yU9QUVGBN998E+PHu+a0O50ONH78Dt67ZyZqNq3GyWbTsPax9yJyGh6yEwgZiEFhaqhJhb1HuWxOBVauXInq6mqcd955AID29nbceeedyMrKQl1dnTe7H9IUSVooJs6W18hhg61yld+mFLLY8pNnn30WY8eOHfTPL37xiz5tf/GLX0hq++yzz/ZoZzabB7xfKqPRCJVKBa1Wi3/84x/i7ZMmTRILJqPR6DYUo6ysDFOmTEFWVhYAV3hGXl4eDAZDn8JKp9OhtrbWoz4S0Y8UCgVuvPFG/Pe//8Xjjz8OlUoFALB3daJ+2xv4511XY9erhWg7dmjY+mh3ANvqW4bt8QfT1NSEiooK1NXVoaamBjU1NcN6Hl+QlUDIQAwKc0NNKgT67mf4pTMZ73+0C4sXLxaP2b17Ny655BLcdddd+P77773Q89DnUSS8+YjfphSy2PKTtrY2fPPNN4P+OXHiRJ+2J06ckNS2ra2tRzun0zng/VIZjUZotVro9XpMmTJFvD0rK0scyWpvb3c7qqVSqcQizGg0Ijs7GwCwZs0asQDrfqzZzKlFRN4SGxuL5cuX49ChQ1i+fDlGjhwJwBWiceCjt/HevXn45LklMO7fNSwbbe5qCsx/7w0NDairq0NOTg7S09ORkZEBtVqNzZvlJVl56zy+IjmBUBHJQAwiDH1KYXfCtOonqn7A/OVPoaKiAmmTJwMAbDYbnn/+eWi1Wjz11FOwWq1Df8AQ5tH6LcBvUwpZbPnJqFGjcO655w76Z8yYMX3ajhkzRlLbUaNG9WinUCgGvF8qnU4HAKiqqupTIAn3GY1GxMXF9Wnb/fjGxsYexVpvGo2GEfBEPjB69Gg8/vjjOHToEJYtWyaOdMHpxNd7tmP7Y7/DjpU/x3+3boS17Qe/9avD5kRngKUUWq1WbNu2DTNnzuxxe3JyMqxWq+TpPd46j6/ISiB02gHVWN92iChIDHVKYW/CFMNXj2pwyfJi/LTgTkRFuyLiW1tbcd9992HixIl4+umnxQvS3dNd5f59qO29eS5vto9ImQHHrFc9K7h8HAkvc8yNPHX33Xfj7rvv9qjt+++/71E7lUqFo0ePetS2N4vFAoPBIBZXAGAwGPoUX/0RiqiB9t8ym80/fgkkIq8766yz8NRTT2HlypV4+eWX8cc//hHffvstAMDY1Ahj01p8/uZTOD/jcpxx8Wyc89OrMSJW+p55ckUrFYhSBtY1v4aGBiQkJCAmJqbPfWlpadi3bx/S09P9dh6fERIIpQRjKGOhUEb7vk9EQUKYUvhg+RHYvXS9yOEEIkdE4cL/WYoJOdehtvhPMFSUAE4njh07hnvvvReFDz+CtKv/HyZccR0S1OPFdkI8/UB/HxEJjB45Aj+ctKHT7pTUxlfn8mX7+c4sZEPeticOQyn+feIkEtNvxDnJF8hqK0VgfcpRwDKZTANGug82KlVbW9tjVMvd2qz+piISkXclJibivvvuw6FDh/DWW2/hyiuvFO+z2+346tOPULH+Xvzjjkx8/qdFaNj2V7QZm7w+1TAzOfAurtTX17stkADX83b8+HFJU3q8dR5fYAIh0dB5c0phbyPP0GDaosdwzWPvYfzPZgEKVzVhtbRi33sv4d27ZqD80XlorHofnSfNcDh/TH3t7+9d9p5bdEhp46tz+bL9DsyEDfJGtxQAJrV9iKSq21D/WamstlJwZIsk6T1FUK/X9xjVUqvVMJlMfY4pKyvDmjVrUFtbK45aWSwWtLe393mM/qYiEpFvREVF4YYbbsANN9yA+vp6vPbaa3jzzTdx5MgRAEBnZyf27/4E2P0JgEeQNOZsJKVOxZjUqThjwoVIGpeGyCjPRjwiI4BZaYne+lW8xmQyIS0tze19CQkJAFxTe/orpLx9Hm9jAiGR92SmqHBuYhT+Ufc99h7t+71mqJLGT8blv1+H1m8asX/LKziofx9Ou+vfrnH/pzDu/xQRkSOgPj8DYy+5CurJGUgcOwmKiPAdSzmqGIdXnbdiIf4CJeTF6Cthx/iGp3BMfR7OHn++1/rEYosk0Wg0mDZtGsrKysRkwu7i4+P7TBHUaDTQ6XTQ6/VYunQpNm3aBL1eDwBupx8eOHAAS5cu9d0vQUT9SktLw9q1a/HYY4+huroab731FkpLS8XCCwCaTxxD84lSHNS7rvwpIiIx6pyJSDw7BWeNTUFk0ljEJJ6FmFFnIFp1BqJGqhChjELkiChEKEdAcfrqbGQEsDhTg3GJgTc1raOjA9HRA/ertbUVarXaL+fxNiYQEnnXuMRo/F/OOdh12IwNu4xem1bYXcK552Ha4rW4+IZ7YKj8Jxo/3gyzqQkA4LB34dhXehz7yvX9asRIFc7UTkHi2EkYpUmBSjMesYlnIWqkCiNGjkJkVDQUUIijZcL7ciipUWTiG+e5uB0v4mzIywJQwo7mfW/h7PEPe60/LLZIsvnz5w94vxDdLqzr0mq1PYqyJUuWDPoYA63pIiLfi4iIwPTp0zF9+nS88MIL+Oqrr7BlyxZ8/PHH0Ov1OHnypHis02FH69EDaD16AE2fDX7uSZdfi/ufWI9ZaYkBWWgNRiiehjr9T8p59uzZg7179w56LmGWwLFjxzB2rIQQi1PfAVKng8YkARHzpR1LRLA7gVNddnTZfJvu6nQ6ER2fBHuXFfauDjgdP1Z4XSfNOPZlFY59WeXTPgSDtRKPS4qLxMioH6ceOrEXipGvDtrulltukZQ1wGKLvGbu3LlYu3ZtjxANqUpKSpCXl+f9ThGRxxQKBS666CJcdNFFWLFiBbq6urB3717s3r0btbW1+OKLL/Dvf/8bXV1dks6Xc14SFl7q35GcYNXZ2QmLxSL5eLvdjm+++cbLvRjeza+JiPyhud2O5vZeUw6bB38/tdulTVNksUVelZ2d3Wc912AsFgvMZrNHRRoR+c+IESOQmZmJzMxM8TabzYavv/4aBw8exMGDB2E0GnHixAmcOHECZrMZHR0d4p/e04+DTUdHBwAMeZ2VlPNERUVJGulvb2+H0+lEZGQkzj333MEfXOrIlkIBxJ45+HFE5JbdCXR0OdBhdwB+3MbQ6XTC6XTAabfD4bDBabfD6XQAp2/3Z18ChxMRcEDRzy8/KjYSMSMiuh2tgGLk4O9/kZHSgjhYbJFXZWVlQa/Xw2g0Sk4WLC8vH3SKIhEFJqVSiQkTJmDChAm4+uqrh7s7IWPq1KmYOnXqoMdt2LABFosFZ599tqStPmy7HofTsGXQ4xTafCgzl0vqKxENrNPmgMnS5bMgDZJmnnMjciTEwh8YNQMX5A++Zkt4/x1M+MaVkM9kZWXJinCfO3euD3tDRCRdQkICWltb3d4nrLES0gT9cR5vi0wrACIGuc7KBEIir4pSRohBGndM801cPA3uQwmx8DZEImnKjV59XP7vJiIiOk2tVvcbXCEUT1ISBL11Hm9TJJ2HyMsK+y+4mEBI5FOZKSqszhuPy7WjEK10JQFGKFx7PZFvHVWMw6u4td+Cy4ZIHEm916ux7wCnERIREYmSk5NRU1Pj9r6WlhaMHz/er+fxhYiUGVAkTIC9fjOcTTsA2ylAGQtF8gxEphWw0CLysXGJ0Vh4qRoLL1Wj0+ZAlNI19nHwu1P42NCGXU1mdNiciDhdgTmcwIhIYPTIEfjhpA2d9p73Sfn7UNsHUl+G0r4GmTBFnIvZER/ioq5PEYMOWBGNr0dlI2nKjUjzcqEFsNgiIiISpaamoqKiAi0tLUhMTOxxX0NDA3JycnrcZrVaYTKZkJycPKTz+JsiSetak5W5HE5bBxTK4IviJwoFQqEFABPPjMXEM2P7FGHd/977Z7l/H2r7QOqL5+0nAbjK9bP1FFQxsbig7/8ar+E0QiIiotNiYmIwa9YsVFZW9ri9oaEBCQkJSE1N7XF7aWkpiouLUVdXN6TzDCcWWkSBp3tB0f3vA90n5e9DbR9IffFK+5hY+BpHtoiIiLpJTU1FdHQ0KioqkJiYKK69KijoGxqRnJwMk8nkdv2VnPMQEVFoYrFFRETUS3Jycp+pge5kZGQgIyNjyOchIqLQxGmEREREREREPsBii4iIiIiIyAdYbBEREREREfkAiy0iIiIiIiIfYLFFRERERETkAyy2iIiIiIiIfIDFFhERERERkQ9wny2JTp48CQBob2/Hhg0bhrk3RETho729HcCP78P0I342EREND6mfTSy2JHI6neJ/LRbLMPeGiCj8CO/D9CN+NhERDa/BPptYbEkUGRkJu90OhUKBkSNHym7f3t4Op9MJhUKBuLg4H/SQqH98/dFwGurr7+TJk3A6nYiMjPRB74IbP5uISA7+m/ceqZ9NCicvFfrFhg0bYLFYEB8fj8WLFw93dyjM8PVHw4mvv8DF/zdE4YX/5v2PARlEREREREQ+wGKLiIiIiIjIB1hsERERERER+QCLLSIiIiIiIh9gsUVEREREROQDLLaIiIiIiIh8gMUWERERERGRD7DYIiIiIiIi8gHlcHcgXFxyySXo7OxEVFTUcHeFwhBffzSc+PoLXPx/QxRe+G/e/xROp9M53J0gIiIiIiIKNZxGSERERERE5AMstoiIiIiIiHyAxRYREREREZEPMCBjCJqamtDU1ITExERYrVYAQEZGxrCdh8KLN143paWliImJQXp6OtRqNaxWK0wmE+rq6pCRkQG1Wu2LrlOQs1qtqKysRHR0NHJycjw6B9/3hheff6LQV1NTg/r6ehw/fhwAEB0d3eNz3Wq1oqOjA2q1GmlpaUhNTR2uroY0BmR4qKGhAfX19cjPzxdva2pqQk1NDQoKCvx+Hgov3nrdbN68GUeOHOlxW3R0NPLz85GcnOy1/lJoqKioQGtrK9RqNerq6pCcnIyZM2fKPg/f94YXn3+i8CJ81t90001uL6I2NDRg27ZtSE5O7vG+QN7BaYQesFqt2LZtW58vGcnJybBarairq/PreSi8ePN1o1arcd111yE7OxvZ2dnIz8/H0qVLWWiRWzk5OcjPz0dGRgaio6M9Ogff94YXn3+i8GMymQCg39kqqampKCgoQENDAyoqKvzZtbDAYssDDQ0NSEhIQExMTJ/70tLSsG/fPr+eh8KLt183ycnJyMjIQEZGBqcQkM/xfW948fknCi8tLS3o6OjA+PHjBzxOrVYjNTUVn332mTi1mLyDxZYH6uvr3X5QAUBiYiKOHz8u6YXqrfNQeOHrhoIZX7/Di88/UXgRlgpImbEijHz1Xl5AQ8NiywMmkwmJiYlu70tISAAAtLa2+u08FF74uqFgxtfv8OLzTxRempqaAEgrtoT3BqPR6MsuhR0WWx7o6OgYdL2ClA8rb52Hwou3XzctLS2oq6sT/1RUVPDKNvkM3/eGF59/ovAiFFtS0oWFz/6Ojg6f9incMPrdy4QPsaF+WfXWeSi8yH3dtLa24vjx40hPTxdvM5lMeOONN3DTTTf1O92IyBf4vje8+PwThRap67UEQpCGpwFI5B5HtojCWH5+fp9QDLVaDbVaje3btw9Tr4iIiGio5KzXAn6cPqjRaHzWp3DEYsvLhKHXoY4IeOs8FF689bpJTk5GQ0ODN7pEJBnf94YXn3+i0CJnvZbVahU3P5Y6EkbSsNgioj6EL1vClAIiIiIKLnLWawkXWFNTU3nBxctYbHkgISGh3wXEwlx3IdXJH+eh8OKt18327dv73byQazfIV/i+N7z4/BOFB7nrtYQ99rKzs33ZrbDEYssDarW63y+hwoeYlKsI3joPhRdvvW7q6+v7/dLF1x/5Ct/3hheff6LwIGe9Vl1dHY4fP46f/exn/W4NQZ5jseWB5OTkfr+ktrS0SL6K4K3zUHjx1usmPT0d+fn5bu9rampCQkICpxKQ1/F9b3jx+ScKD1LXa7W0tGD79u0YP348cnJy/NG1sMNiywOpqamwWq1oaWnpc19DQwOmTJnS4zar1Sq+6IdyHiLAe68/jUbjdk2W1WpFQ0MD33RpSPi+F5j4/BOFBynrtVpaWlBcXIzU1FQUFBT4q2thh8WWB2JiYjBr1ixUVlb2uL2hoQEJCQl9orRLS0tRXFyMurq6IZ2HCPDe6y81NRV1dXV9Cq7NmzcjPT2drz8aUEdHx4Br+vi+F5j4/BOFvqampgHXa1mtVlRUVOCNN95ARkZGv7NcyDsUTqfTOdydCFZNTU1oampCYmKi+KUjIyOjz3E1NTWoqalBQUGB2ysMUs9D1J23Xn81NTWwWq3il+e0tDR+4SK3ampqYDKZ0NLS0iMiOCYmps/rhu97gY3PP1HoqaiogMlkEtdrRUdH93n/Ff69T5kyhcmDfsJii4iIiIiIyAc4jZCIiIiIiMgHWGwRERERERH5AIstIiIiIiIiH2CxRURERERE5AMstoiIiIiIiHyAxRYREREREZEPsNgiIiIiIiLyARZbREREREREPsBii4iIiIiIyAdYbBEREREREfkAiy0iIiIiIiIfYLFFRERERETkAyy2iIiIiIiIfIDFFhERERERkQ/8f5dvycbmE7WTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "experiment = '../../test/output/rayleigh-benchmark/MPI-1/2f6fb02e066c6e61b2680447a53b61df'\n", + "modes_data = np.load(os.path.join(experiment, 'mode_shapes_data.npz'), allow_pickle=True)\n", + "mode = pp.read_mode_data_from_npz(modes_data, time_step=0, num_modes=1, num_points=10)\n", + "\n", + "params, data, signature = pp.load_data(experiment)\n", + "\n", + "a = params['model']['a']\n", + "b = params['model']['b']\n", + "c = params['model']['c']\n", + "\n", + "parameters = {\"a\": a, \"b\": b, \"c\": c}\n", + "\n", + "plot_profile_comparison(parameters, mode, idx=[1, 0], reverse=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parametric Rayleigh benchmark" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[36m0044f692a05422bb98c4bd3c6d04770c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m00ffda65398984695ae5576fe383f02c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m02bd5bbda8beff8f5cc0fbd88b599173\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m034189f38c18e6c04e59770762ddf137\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m043ebb377c5c5699e4d0c39a6efff1bd\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m046c79dade1d3ac0d860737fb091750e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m04c979b82e2ec3add9a38959f42f52b1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m06fd589cfddf7421b0f422bd92c4f077\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0709aa4181151c6be88b7bcafc3e014c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m08024b8d0f056a2e29555bbcff919b96\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m08c18d207e645c06bfbac1f997b0edad\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0aa3df8dcb703508b12d1c306410ba06\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0bd67cc936b53d779e505e7860e8d3a0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0bd72656f57f527e5863ef191c372831\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0ce6d727b36b2329f0bbb7bbcdbedc32\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0e5f3c92253e55d958c60f6c4b3c3c94\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m12e557a7aa59790b9b017adcc2d61778\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m133a813220736fd35ca5780e0704fc1f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m14dffef10402801b89457241dc466ce3\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m154863f5eba04c9bd04c821204662c46\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m154b1d59bc43f05c208cd7e9315d48c9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m182ec8780648c9a9ab4b05e10b28263a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m186ab8e8139e59cdbddc72429ba378be\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m197773ce0c3bd5db1389a4e328fc1127\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m19c6e4fb5e77a4485581566f5ac85e7c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1a9321268f43fe71c8ad7f9ab0ffe154\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1b32af79ec982846c16e8da2dece9111\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1bde21d6d9e399af2546e2f9010b9350\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1d99dc57effa20f609a0cf624bd5e04a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1da28d85e36e3d87bbd150884f1a6a4a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1dc98a04e21fe62758b71ea2affc59ef\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1e684c7c8d3b74ab8946e9d16a169644\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1ed7e041da9cefb263f8e5283ed9eabe\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m22c97e323c9093987f705e9112b3640a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m23a4e99376dd709c7a7926c1b512d89c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m245a0619f72f8fa174e14ad18ed79ef8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m25739f21e5031ff02151d7be8da54f32\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m26df8fc60531553c4539463d1c28dfec\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m287b7dad39b1a76397aff28461a3ae8c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m28a07bc7bb355d05782734af39a111e9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m29a13ad515a4e0b380c0765b509f4bd8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2ab9598ff854eb657a12d777d1374f74\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2afb851ba8413ce5291c1f7281b0b60a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2f170fb0e88ec9e9ada917e40dfe9b56\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2f31290d5784e79695d28a07513df7cc\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m303619e93fae27433a982bc1565704fd\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m30b166d2e6f48e17020d5e5457e6e26a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3595514d555f90e66127a53c00ad6142\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m35992c02ce19e70d4b7646206dc625fb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m35b902ddb2944770f8fcc585b48334e2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m36ba82b093b807f3d4156df5aef56265\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3768e99b08bf76083993540fa0e931b5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m379c9f5ef533b7996ca5a6f6e2aebefb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m37c112d0c344dfbd6591d46e6aa4bf2b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3834fb17dbfd82a9e6b6c78c159139b4\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m384d216e638296c3f2e43c1bc10e6aa2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m38ec6d9ed3750e2a349aab9393a444c1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m390c1586d26f4ecb8965bb7caafd1a01\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3957404c3a99817081032e3304cc2eb2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m39582b0fef781ef7dd59b969861740bb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3ced327f796a04949713bfbb43236c70\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3e66ff5126900e8b3aacf615357995c8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3f02e8edb6dc1f797b9be04d540e0b77\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3fa875212869f8bb87ecec023e3594ab\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m40e1eb6b7c27798bd70c26bb89188010\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m41a9fd1aaeefba3a8b4e181a3f57a26d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4332c6bbfc3a256c63470ab9c3d7e8a9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4363c09f4f41e45ec5a021d2b68e8276\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m43f6745ab4a8087d95d6dad67b61c455\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m446276eafc7b7cb1df263d2d43575334\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m45638e207aa96b4f92e27f59f0b544f5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m459c554af4f32b088b68a93b3a02f60a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m47724b1983ad0ec6fb3a085868e6406c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m49dd09f415ed6893adec2902800ecfbb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4a42005d5d1db515c58f10fb2a977b4f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4dd050367ed3d746a44a8627a27c0d86\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4fb5053042bc75c426a6bbcccc364670\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5240559833b5075c63c9ced7cf58d9dc\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m53326ce0c7e2e31e9e711749f6c9872f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m55aa665af4383cdfab486497a526b948\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m55decbb21da6eccb8c64662f82e90e07\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m55f85e04d355cf55f777c22037403b12\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5869943e0762f690d3334659af3af68d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5971508ca172ee7705ba9867da5f2799\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5bb43003ce8ab88ea3e2b5835b018f9b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5e00139ccb323f8a614dbc86e4adee17\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5e1b92e1c2392c4742c4b8caac239078\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5e62740f1e3d26cfadf3f31606f04c93\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5f009deebc7c75e793bc5c2a3881177d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5f728c69b35c2f0b870a23f20c1cf1bd\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m63664dec0d71acbc99c1bc0610834138\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m63ef09428da038d6a13c1db516b12cba\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6426c7b91e31a7164aa0ac3fe5ca7cc7\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m64765b11b3c0dfd58defa91fe80ef236\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m64beb86873a673b4b1d7d131a3b7cca1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m64cb9ae1176525d58b69364473f71172\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m67450e668b5e0f33bd764955db697890\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m68c28c98150c0491f40b510fe53d5150\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m699b629be39a2827f23a164b8bb30c1a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6ca3ebf88d38ddd014eac49e0ef69663\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6d28de9a1db1dc3ad984dc0fed840b85\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6e3e4283c6d55967a64bf8d1b588732a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6e7f390a6ef123e2c2a6788f98edf934\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6ea3722739a32d235c59aae7015d2132\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6ebe9390869deaeaae9fe15f64d1d60e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7021e9afc054e604d2e15dbc07a9db83\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m704218ec1ab1084c07564e6f679b9f0b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m70a947a5ab7ce7fea419f5942119a162\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m76162cca14bfb91a3e02d6e29627bc11\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7762cc6ecd7e5663aefbc1ac3d1d183a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m77b345b3ac23acd4b0c793607df72b86\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m787493f255c3e1fe0f7590724463af47\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7a5fe95e68652560e04a4f04a6cc2ed0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7bf0064c79e577a339a3bdaa8b664053\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7c63c15b4401024888916ca9b42b21c9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7d1d96b15a68e392abeffe502f84a042\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7d21decc9d7b00098894bc65c19ccd48\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7d44e0b425e269c22219e93ee416e825\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7ed36b8dcee86d9a4d55b31fdd6f7199\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7f1430bcb0a6e3812cc44d0015cc2e19\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7fd56cac090b0910c9796189bb13f529\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m802c675e74c573280a1fb772daaedf9c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m80bf33f54ca3cc39d55895987d22db6a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m81211387b53a1545755003f8b2a1fc18\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m812f71e51faf4596904b7256abf7468f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m818deb373f5d6257aa085493e2a12fb6\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m824d7bb2017e24e06fb6a4d7d87994f0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m840d841d4f4ab073d4675980ae0c65e2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8498148bb21e28e65acd6e832dd392e5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8683c8a249116de1e4a1f2efb7540756\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m86ff1f0a410c7220fea17218daac0b51\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m873a5a261a51d2c352cec13cbf8fdf0c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m879c22c6dd6ba9258ed2b3977c02dd3f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m89829464cf9d8abc402d2b289511db80\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m89d72ebf25cb6d5a889723f29e937e64\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8c2849493a108685ea6d16538cee0ff5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8c959694f7c0083563629bbd7f6d26b9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8d808fc699689924b60841e1e2164771\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m90167d1609a729e7134e4a923351f671\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9283ffcb15cf65f0be191c4877fa3f8c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m941d48ed62b7edc24a6b564a91b4d6c6\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m942438a56c8ffba16a34fefb4a9aca6a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9444e6515b8c6baac6410af233373084\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m95e026c0be6029963131d95f104d98f9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m961ec9441a2fa5a82bbed869080b8b3a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m96e85c7780b0f7c34955ed4e9e8f6075\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m99b28ae6fc8d44b1389a5fe6da60a557\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9a0ebd16dc2c6873f51f15b6614b73e8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9b092eb12c6b86663f750cc82741a54d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9b0cc6ef9c3464d738b9e6c4be7917cf\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9cfef1c0d73313a1414d49bc38ddeccf\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9f6e9f4b03f77f59fd59a719ce310950\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma07a340d8cd563655bef328ad2631adc\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma07cb68a370231f37c708389c12628ea\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma190267e13d71e0a2cefd795da6d16a2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma26e29a64522fde13f1a0939a6436b09\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma3c39f11e5abdfdb1f68559d8d04e975\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma3c633c5b54b9f0cb5e4ed723d52b162\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma6830e9ed97c7590c32e359c547bae37\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma68e8bf1ea79b67d5e12e0814b0e9b02\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma80319cc10e4c333d4b0bdd3b113526d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma94574b4ab665c6845a57507127c7f19\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36maa1c7bcfbf8bd723b77f5710a6a9f594\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36madc4418b5f4802de2918f2932e0ad1c6\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mae03a35d8fe5b10029fb688ae9f08611\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mae1a96698d6d1339b5ae36a9fc93a239\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36maea34470dff6023e11932e8f26ea8fae\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36maf46e6dbd26ef9975009e0f908a0703d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb091b8fc793c49134b42139b7933be99\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb16a7008d41ce565818e053e6ef9451f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb33a98e1400345111df1f4a5186d8830\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb48b6c1cae8f9873ac2b5fdd6bfca86a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb6b45a5ed94214a2ab70c5631f8bd38c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb746fbbe0449671bc3fef0ba56043a91\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb98b104f64f2bda9eb8854ff4d53ecd3\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mba40fab16ef2ffaa80483f7a471cf2bb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mba6bde1c11d365939c1e66712a8a818b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbb8fae8e118a003c63c47a3c93963786\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbc4a60b8d7abfbcdec8bb45d864e38a8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbc600344f6d97e175bdff42d5a0d9660\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbdd49d4f44c93368e0813b6e75c2cff9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbe93e3a1e3cd2893f62f838768340107\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbec3d3e00694ea0d182b04366cbf8cb0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbfb5281dbaf30b871676f44cc1395433\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc18632626e637957d7850f27ba8ed27e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc20e9b135c36e94f7498a133cc45e442\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc2e711ccd4e5b1706d05d5bd98ef5a8e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc3066ac9a8f4a735e144494a06586074\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc4e8f9a815f3c85c2b3bc35ded8d4c55\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc9874acaa4e7cea139377a1cc4aa96da\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mca10db54d8b535438ffcde1fd38529f8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mcb8f68bfb97cc6dac3d6e3db3377c222\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mcc67da412eb68626108ce80d9973105b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mce9436b3ab369c9ab0d19d5fd85d64fe\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mcfacf6ef677c8603351e06e2bd728418\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md0b0b2ded7b4d07b0615afe8c5c3bd29\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md13a4206c4dc9798f6918905bd964ef1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md323b3bd3f8ced38f7e5ed1370e95681\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md42c5f930bc58a9b85355978626be7d8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md5612d1467c7b6d3624c53bc688289df\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md8eafafce323951597ee1a2ccd103a09\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mda90dc28fb90db28270d1efd575cbf90\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mdd6df4f37eb57a3022cd311c11ed40b8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mde17f9e07113ce99eff6166bf2d5151e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me0d28a7fc82849a64a0fbc6f584ea8e9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me1690d753f1cfe4e6c8ed1999f242f70\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me2f0baf33acd97c5fa0650b3ac188b33\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me3e24962746bbc142697dac71768e280\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me5593a7c5757a917c4833284b849e8e4\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me5cebd7454caec5911970426e4ebfa02\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me8a1433809df201ba869c62c16c0870c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me91e3e141d58633d9f065fe841e1d704\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mebfe4b19968441962ec69b81048f5a40\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mec046ac8dc9f3843ba2d44fc1f32bf0d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36meda0bed753c4b3d8ead98daa3fbaaa4f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mef35e224f60f9f4f67a652b6b2bfabc3\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf0d2d1392eba4f49035c1ce0d431ec6a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf2ad2e96cf1f087e6a016e4dfe16cc9a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf44e21cb4fe6fab825843b049649c479\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf582d6b1956c5d8756fcecd3ed31854c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf5987d8fb47e09c39afd3e4aba484450\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf81b240be91d490535164f911aada9ed\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf8e44e6d6d9486ac535ec276bfb1b520\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfa49c46e19fa64edbd26b7a87ff6c06f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfab2c241b23cc097ef2a6c33ca7d1cb4\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfcab5744d2c104f2879ab24a05eb5965\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfe1bd5e0aae1254c90a08b9fe2d4fcac\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfe65f734e95ed43aa28396952f76bc12\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mff220f0b4c41c9194a0d56982ad9d9df\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mff554b36ebfb02ba497f4de21e7bfe39\u001b[m\u001b[m\n", + "profile_comparison-0044f692a05422bb98c4bd3c6d04770c.pdf\n", + "profile_comparison-00ffda65398984695ae5576fe383f02c.pdf\n", + "profile_comparison-02bd5bbda8beff8f5cc0fbd88b599173.pdf\n", + "profile_comparison-034189f38c18e6c04e59770762ddf137.pdf\n", + "profile_comparison-043ebb377c5c5699e4d0c39a6efff1bd.pdf\n", + "profile_comparison-046c79dade1d3ac0d860737fb091750e.pdf\n", + "profile_comparison-04c979b82e2ec3add9a38959f42f52b1.pdf\n", + "profile_comparison-06fd589cfddf7421b0f422bd92c4f077.pdf\n", + "profile_comparison-0709aa4181151c6be88b7bcafc3e014c.pdf\n", + "profile_comparison-08024b8d0f056a2e29555bbcff919b96.pdf\n", + "profile_comparison-08c18d207e645c06bfbac1f997b0edad.pdf\n", + "profile_comparison-0aa3df8dcb703508b12d1c306410ba06.pdf\n", + "profile_comparison-0bd67cc936b53d779e505e7860e8d3a0.pdf\n", + "profile_comparison-0bd72656f57f527e5863ef191c372831.pdf\n", + "profile_comparison-0ce6d727b36b2329f0bbb7bbcdbedc32.pdf\n", + "profile_comparison-0e5f3c92253e55d958c60f6c4b3c3c94.pdf\n", + "profile_comparison-12e557a7aa59790b9b017adcc2d61778.pdf\n", + "profile_comparison-133a813220736fd35ca5780e0704fc1f.pdf\n", + "profile_comparison-14dffef10402801b89457241dc466ce3.pdf\n", + "profile_comparison-154863f5eba04c9bd04c821204662c46.pdf\n", + "profile_comparison-154b1d59bc43f05c208cd7e9315d48c9.pdf\n", + "profile_comparison-182ec8780648c9a9ab4b05e10b28263a.pdf\n", + "profile_comparison-186ab8e8139e59cdbddc72429ba378be.pdf\n", + "profile_comparison-197773ce0c3bd5db1389a4e328fc1127.pdf\n", + "profile_comparison-19c6e4fb5e77a4485581566f5ac85e7c.pdf\n", + "profile_comparison-1a9321268f43fe71c8ad7f9ab0ffe154.pdf\n", + "profile_comparison-1b32af79ec982846c16e8da2dece9111.pdf\n", + "profile_comparison-1bde21d6d9e399af2546e2f9010b9350.pdf\n", + "profile_comparison-1d99dc57effa20f609a0cf624bd5e04a.pdf\n", + "profile_comparison-1da28d85e36e3d87bbd150884f1a6a4a.pdf\n", + "profile_comparison-1dc98a04e21fe62758b71ea2affc59ef.pdf\n", + "profile_comparison-1e684c7c8d3b74ab8946e9d16a169644.pdf\n", + "profile_comparison-1ed7e041da9cefb263f8e5283ed9eabe.pdf\n", + "profile_comparison-22c97e323c9093987f705e9112b3640a.pdf\n", + "profile_comparison-23a4e99376dd709c7a7926c1b512d89c.pdf\n", + "profile_comparison-245a0619f72f8fa174e14ad18ed79ef8.pdf\n", + "profile_comparison-25739f21e5031ff02151d7be8da54f32.pdf\n", + "profile_comparison-26df8fc60531553c4539463d1c28dfec.pdf\n", + "profile_comparison-287b7dad39b1a76397aff28461a3ae8c.pdf\n", + "profile_comparison-28a07bc7bb355d05782734af39a111e9.pdf\n", + "profile_comparison-29a13ad515a4e0b380c0765b509f4bd8.pdf\n", + "profile_comparison-2ab9598ff854eb657a12d777d1374f74.pdf\n", + "profile_comparison-2afb851ba8413ce5291c1f7281b0b60a.pdf\n", + "profile_comparison-2f170fb0e88ec9e9ada917e40dfe9b56.pdf\n", + "profile_comparison-2f31290d5784e79695d28a07513df7cc.pdf\n", + "profile_comparison-303619e93fae27433a982bc1565704fd.pdf\n", + "profile_comparison-30b166d2e6f48e17020d5e5457e6e26a.pdf\n", + "profile_comparison-3595514d555f90e66127a53c00ad6142.pdf\n", + "profile_comparison-35992c02ce19e70d4b7646206dc625fb.pdf\n", + "profile_comparison-35b902ddb2944770f8fcc585b48334e2.pdf\n", + "profile_comparison-36ba82b093b807f3d4156df5aef56265.pdf\n", + "profile_comparison-3768e99b08bf76083993540fa0e931b5.pdf\n", + "profile_comparison-379c9f5ef533b7996ca5a6f6e2aebefb.pdf\n", + "profile_comparison-37c112d0c344dfbd6591d46e6aa4bf2b.pdf\n", + "profile_comparison-3834fb17dbfd82a9e6b6c78c159139b4.pdf\n", + "profile_comparison-384d216e638296c3f2e43c1bc10e6aa2.pdf\n", + "profile_comparison-38ec6d9ed3750e2a349aab9393a444c1.pdf\n", + "profile_comparison-390c1586d26f4ecb8965bb7caafd1a01.pdf\n", + "profile_comparison-3957404c3a99817081032e3304cc2eb2.pdf\n", + "profile_comparison-39582b0fef781ef7dd59b969861740bb.pdf\n", + "profile_comparison-3ced327f796a04949713bfbb43236c70.pdf\n", + "profile_comparison-3e66ff5126900e8b3aacf615357995c8.pdf\n", + "profile_comparison-3f02e8edb6dc1f797b9be04d540e0b77.pdf\n", + "profile_comparison-3fa875212869f8bb87ecec023e3594ab.pdf\n", + "profile_comparison-40e1eb6b7c27798bd70c26bb89188010.pdf\n", + "profile_comparison-41a9fd1aaeefba3a8b4e181a3f57a26d.pdf\n", + "profile_comparison-4332c6bbfc3a256c63470ab9c3d7e8a9.pdf\n", + "profile_comparison-4363c09f4f41e45ec5a021d2b68e8276.pdf\n", + "profile_comparison-43f6745ab4a8087d95d6dad67b61c455.pdf\n", + "profile_comparison-446276eafc7b7cb1df263d2d43575334.pdf\n", + "profile_comparison-45638e207aa96b4f92e27f59f0b544f5.pdf\n", + "profile_comparison-459c554af4f32b088b68a93b3a02f60a.pdf\n", + "profile_comparison-47724b1983ad0ec6fb3a085868e6406c.pdf\n", + "profile_comparison-49dd09f415ed6893adec2902800ecfbb.pdf\n", + "profile_comparison-4a42005d5d1db515c58f10fb2a977b4f.pdf\n", + "profile_comparison-4dd050367ed3d746a44a8627a27c0d86.pdf\n", + "profile_comparison-4fb5053042bc75c426a6bbcccc364670.pdf\n", + "profile_comparison-5240559833b5075c63c9ced7cf58d9dc.pdf\n", + "profile_comparison-53326ce0c7e2e31e9e711749f6c9872f.pdf\n", + "profile_comparison-55aa665af4383cdfab486497a526b948.pdf\n", + "profile_comparison-55decbb21da6eccb8c64662f82e90e07.pdf\n", + "profile_comparison-55f85e04d355cf55f777c22037403b12.pdf\n", + "profile_comparison-5869943e0762f690d3334659af3af68d.pdf\n", + "profile_comparison-5971508ca172ee7705ba9867da5f2799.pdf\n", + "profile_comparison-5bb43003ce8ab88ea3e2b5835b018f9b.pdf\n", + "profile_comparison-5e00139ccb323f8a614dbc86e4adee17.pdf\n", + "profile_comparison-5e1b92e1c2392c4742c4b8caac239078.pdf\n", + "profile_comparison-5e62740f1e3d26cfadf3f31606f04c93.pdf\n", + "profile_comparison-5f009deebc7c75e793bc5c2a3881177d.pdf\n", + "profile_comparison-5f728c69b35c2f0b870a23f20c1cf1bd.pdf\n", + "profile_comparison-63664dec0d71acbc99c1bc0610834138.pdf\n", + "profile_comparison-63ef09428da038d6a13c1db516b12cba.pdf\n", + "profile_comparison-6426c7b91e31a7164aa0ac3fe5ca7cc7.pdf\n", + "profile_comparison-64765b11b3c0dfd58defa91fe80ef236.pdf\n", + "profile_comparison-64beb86873a673b4b1d7d131a3b7cca1.pdf\n", + "profile_comparison-64cb9ae1176525d58b69364473f71172.pdf\n", + "profile_comparison-67450e668b5e0f33bd764955db697890.pdf\n", + "profile_comparison-68c28c98150c0491f40b510fe53d5150.pdf\n", + "profile_comparison-699b629be39a2827f23a164b8bb30c1a.pdf\n", + "profile_comparison-6ca3ebf88d38ddd014eac49e0ef69663.pdf\n", + "profile_comparison-6d28de9a1db1dc3ad984dc0fed840b85.pdf\n", + "profile_comparison-6e3e4283c6d55967a64bf8d1b588732a.pdf\n", + "profile_comparison-6e7f390a6ef123e2c2a6788f98edf934.pdf\n", + "profile_comparison-6ea3722739a32d235c59aae7015d2132.pdf\n", + "profile_comparison-6ebe9390869deaeaae9fe15f64d1d60e.pdf\n", + "profile_comparison-7021e9afc054e604d2e15dbc07a9db83.pdf\n", + "profile_comparison-704218ec1ab1084c07564e6f679b9f0b.pdf\n", + "profile_comparison-70a947a5ab7ce7fea419f5942119a162.pdf\n", + "profile_comparison-76162cca14bfb91a3e02d6e29627bc11.pdf\n", + "profile_comparison-7762cc6ecd7e5663aefbc1ac3d1d183a.pdf\n", + "profile_comparison-77b345b3ac23acd4b0c793607df72b86.pdf\n", + "profile_comparison-787493f255c3e1fe0f7590724463af47.pdf\n", + "profile_comparison-7a5fe95e68652560e04a4f04a6cc2ed0.pdf\n", + "profile_comparison-7bf0064c79e577a339a3bdaa8b664053.pdf\n", + "profile_comparison-7c63c15b4401024888916ca9b42b21c9.pdf\n", + "profile_comparison-7d1d96b15a68e392abeffe502f84a042.pdf\n", + "profile_comparison-7d21decc9d7b00098894bc65c19ccd48.pdf\n", + "profile_comparison-7d44e0b425e269c22219e93ee416e825.pdf\n", + "profile_comparison-7ed36b8dcee86d9a4d55b31fdd6f7199.pdf\n", + "profile_comparison-7f1430bcb0a6e3812cc44d0015cc2e19.pdf\n", + "profile_comparison-7fd56cac090b0910c9796189bb13f529.pdf\n", + "profile_comparison-802c675e74c573280a1fb772daaedf9c.pdf\n", + "profile_comparison-80bf33f54ca3cc39d55895987d22db6a.pdf\n", + "profile_comparison-81211387b53a1545755003f8b2a1fc18.pdf\n", + "profile_comparison-812f71e51faf4596904b7256abf7468f.pdf\n", + "profile_comparison-818deb373f5d6257aa085493e2a12fb6.pdf\n", + "profile_comparison-824d7bb2017e24e06fb6a4d7d87994f0.pdf\n", + "profile_comparison-840d841d4f4ab073d4675980ae0c65e2.pdf\n", + "profile_comparison-8498148bb21e28e65acd6e832dd392e5.pdf\n", + "profile_comparison-8683c8a249116de1e4a1f2efb7540756.pdf\n", + "profile_comparison-86ff1f0a410c7220fea17218daac0b51.pdf\n", + "profile_comparison-873a5a261a51d2c352cec13cbf8fdf0c.pdf\n", + "profile_comparison-879c22c6dd6ba9258ed2b3977c02dd3f.pdf\n", + "profile_comparison-89829464cf9d8abc402d2b289511db80.pdf\n", + "profile_comparison-89d72ebf25cb6d5a889723f29e937e64.pdf\n", + "profile_comparison-8c2849493a108685ea6d16538cee0ff5.pdf\n", + "profile_comparison-8c959694f7c0083563629bbd7f6d26b9.pdf\n", + "profile_comparison-8d808fc699689924b60841e1e2164771.pdf\n", + "profile_comparison-90167d1609a729e7134e4a923351f671.pdf\n", + "profile_comparison-9283ffcb15cf65f0be191c4877fa3f8c.pdf\n", + "profile_comparison-941d48ed62b7edc24a6b564a91b4d6c6.pdf\n", + "profile_comparison-942438a56c8ffba16a34fefb4a9aca6a.pdf\n", + "profile_comparison-9444e6515b8c6baac6410af233373084.pdf\n", + "profile_comparison-95e026c0be6029963131d95f104d98f9.pdf\n", + "profile_comparison-961ec9441a2fa5a82bbed869080b8b3a.pdf\n", + "profile_comparison-96e85c7780b0f7c34955ed4e9e8f6075.pdf\n", + "profile_comparison-99b28ae6fc8d44b1389a5fe6da60a557.pdf\n", + "profile_comparison-9a0ebd16dc2c6873f51f15b6614b73e8.pdf\n", + "profile_comparison-9b092eb12c6b86663f750cc82741a54d.pdf\n", + "profile_comparison-9b0cc6ef9c3464d738b9e6c4be7917cf.pdf\n", + "profile_comparison-9cfef1c0d73313a1414d49bc38ddeccf.pdf\n", + "profile_comparison-9f6e9f4b03f77f59fd59a719ce310950.pdf\n", + "profile_comparison-a07a340d8cd563655bef328ad2631adc.pdf\n", + "profile_comparison-a07cb68a370231f37c708389c12628ea.pdf\n", + "profile_comparison-a190267e13d71e0a2cefd795da6d16a2.pdf\n", + "profile_comparison-a26e29a64522fde13f1a0939a6436b09.pdf\n", + "profile_comparison-a3c39f11e5abdfdb1f68559d8d04e975.pdf\n", + "profile_comparison-a3c633c5b54b9f0cb5e4ed723d52b162.pdf\n", + "profile_comparison-a6830e9ed97c7590c32e359c547bae37.pdf\n", + "profile_comparison-a68e8bf1ea79b67d5e12e0814b0e9b02.pdf\n", + "profile_comparison-a80319cc10e4c333d4b0bdd3b113526d.pdf\n", + "profile_comparison-a94574b4ab665c6845a57507127c7f19.pdf\n", + "profile_comparison-aa1c7bcfbf8bd723b77f5710a6a9f594.pdf\n", + "profile_comparison-adc4418b5f4802de2918f2932e0ad1c6.pdf\n", + "profile_comparison-ae03a35d8fe5b10029fb688ae9f08611.pdf\n", + "profile_comparison-ae1a96698d6d1339b5ae36a9fc93a239.pdf\n", + "profile_comparison-aea34470dff6023e11932e8f26ea8fae.pdf\n", + "profile_comparison-af46e6dbd26ef9975009e0f908a0703d.pdf\n", + "profile_comparison-b091b8fc793c49134b42139b7933be99.pdf\n", + "profile_comparison-b16a7008d41ce565818e053e6ef9451f.pdf\n", + "profile_comparison-b33a98e1400345111df1f4a5186d8830.pdf\n", + "profile_comparison-b48b6c1cae8f9873ac2b5fdd6bfca86a.pdf\n", + "profile_comparison-b6b45a5ed94214a2ab70c5631f8bd38c.pdf\n", + "profile_comparison-b746fbbe0449671bc3fef0ba56043a91.pdf\n", + "profile_comparison-b98b104f64f2bda9eb8854ff4d53ecd3.pdf\n", + "profile_comparison-ba40fab16ef2ffaa80483f7a471cf2bb.pdf\n", + "profile_comparison-ba6bde1c11d365939c1e66712a8a818b.pdf\n", + "profile_comparison-bb8fae8e118a003c63c47a3c93963786.pdf\n", + "profile_comparison-bc4a60b8d7abfbcdec8bb45d864e38a8.pdf\n", + "profile_comparison-bc600344f6d97e175bdff42d5a0d9660.pdf\n", + "profile_comparison-bdd49d4f44c93368e0813b6e75c2cff9.pdf\n", + "profile_comparison-be93e3a1e3cd2893f62f838768340107.pdf\n", + "profile_comparison-bec3d3e00694ea0d182b04366cbf8cb0.pdf\n", + "profile_comparison-bfb5281dbaf30b871676f44cc1395433.pdf\n", + "profile_comparison-c18632626e637957d7850f27ba8ed27e.pdf\n", + "profile_comparison-c20e9b135c36e94f7498a133cc45e442.pdf\n", + "profile_comparison-c2e711ccd4e5b1706d05d5bd98ef5a8e.pdf\n", + "profile_comparison-c3066ac9a8f4a735e144494a06586074.pdf\n", + "profile_comparison-c4e8f9a815f3c85c2b3bc35ded8d4c55.pdf\n", + "profile_comparison-c9874acaa4e7cea139377a1cc4aa96da.pdf\n", + "profile_comparison-ca10db54d8b535438ffcde1fd38529f8.pdf\n", + "profile_comparison-cb8f68bfb97cc6dac3d6e3db3377c222.pdf\n", + "profile_comparison-cc67da412eb68626108ce80d9973105b.pdf\n", + "profile_comparison-ce9436b3ab369c9ab0d19d5fd85d64fe.pdf\n", + "profile_comparison-cfacf6ef677c8603351e06e2bd728418.pdf\n", + "profile_comparison-d0b0b2ded7b4d07b0615afe8c5c3bd29.pdf\n", + "profile_comparison-d13a4206c4dc9798f6918905bd964ef1.pdf\n", + "profile_comparison-d323b3bd3f8ced38f7e5ed1370e95681.pdf\n", + "profile_comparison-d42c5f930bc58a9b85355978626be7d8.pdf\n", + "profile_comparison-d5612d1467c7b6d3624c53bc688289df.pdf\n", + "profile_comparison-d8eafafce323951597ee1a2ccd103a09.pdf\n", + "profile_comparison-da90dc28fb90db28270d1efd575cbf90.pdf\n", + "profile_comparison-dd6df4f37eb57a3022cd311c11ed40b8.pdf\n", + "profile_comparison-de17f9e07113ce99eff6166bf2d5151e.pdf\n", + "profile_comparison-e0d28a7fc82849a64a0fbc6f584ea8e9.pdf\n", + "profile_comparison-e1690d753f1cfe4e6c8ed1999f242f70.pdf\n", + "profile_comparison-e2f0baf33acd97c5fa0650b3ac188b33.pdf\n", + "profile_comparison-e3e24962746bbc142697dac71768e280.pdf\n", + "profile_comparison-e5593a7c5757a917c4833284b849e8e4.pdf\n", + "profile_comparison-e5cebd7454caec5911970426e4ebfa02.pdf\n", + "profile_comparison-e8a1433809df201ba869c62c16c0870c.pdf\n", + "profile_comparison-e91e3e141d58633d9f065fe841e1d704.pdf\n", + "profile_comparison-ebfe4b19968441962ec69b81048f5a40.pdf\n", + "profile_comparison-ec046ac8dc9f3843ba2d44fc1f32bf0d.pdf\n", + "profile_comparison-eda0bed753c4b3d8ead98daa3fbaaa4f.pdf\n", + "profile_comparison-ef35e224f60f9f4f67a652b6b2bfabc3.pdf\n", + "profile_comparison-f0d2d1392eba4f49035c1ce0d431ec6a.pdf\n", + "profile_comparison-f2ad2e96cf1f087e6a016e4dfe16cc9a.pdf\n", + "profile_comparison-f44e21cb4fe6fab825843b049649c479.pdf\n", + "profile_comparison-f582d6b1956c5d8756fcecd3ed31854c.pdf\n", + "profile_comparison-f5987d8fb47e09c39afd3e4aba484450.pdf\n", + "profile_comparison-f81b240be91d490535164f911aada9ed.pdf\n", + "profile_comparison-f8e44e6d6d9486ac535ec276bfb1b520.pdf\n", + "profile_comparison-fa49c46e19fa64edbd26b7a87ff6c06f.pdf\n", + "profile_comparison-fab2c241b23cc097ef2a6c33ca7d1cb4.pdf\n", + "profile_comparison-fcab5744d2c104f2879ab24a05eb5965.pdf\n", + "profile_comparison-fe1bd5e0aae1254c90a08b9fe2d4fcac.pdf\n", + "profile_comparison-fe65f734e95ed43aa28396952f76bc12.pdf\n", + "profile_comparison-ff220f0b4c41c9194a0d56982ad9d9df.pdf\n", + "profile_comparison-ff554b36ebfb02ba497f4de21e7bfe39.pdf\n" + ] + } + ], + "source": [ + "import os\n", + "cwd = os.getcwd()\n", + "path_components = cwd.split(os.path.sep)\n", + "path_components = path_components[0:-2]\n", + "dirroot = '/' + os.path.join(*path_components, 'test', 'output', 'rayleigh-benchmark-parametric', 'MPI-1')\n", + "\n", + "!ls $dirroot\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/be93e3a1e3cd2893f62f838768340107\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/55aa665af4383cdfab486497a526b948\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ae1a96698d6d1339b5ae36a9fc93a239\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/9cfef1c0d73313a1414d49bc38ddeccf\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/446276eafc7b7cb1df263d2d43575334\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ae03a35d8fe5b10029fb688ae9f08611\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/c2e711ccd4e5b1706d05d5bd98ef5a8e\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/d323b3bd3f8ced38f7e5ed1370e95681\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/0aa3df8dcb703508b12d1c306410ba06\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/818deb373f5d6257aa085493e2a12fb6\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/39582b0fef781ef7dd59b969861740bb\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7021e9afc054e604d2e15dbc07a9db83\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/c3066ac9a8f4a735e144494a06586074\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/0bd67cc936b53d779e505e7860e8d3a0\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5f009deebc7c75e793bc5c2a3881177d\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/f5987d8fb47e09c39afd3e4aba484450\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7d21decc9d7b00098894bc65c19ccd48\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/9f6e9f4b03f77f59fd59a719ce310950\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1da28d85e36e3d87bbd150884f1a6a4a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/47724b1983ad0ec6fb3a085868e6406c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/d42c5f930bc58a9b85355978626be7d8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/046c79dade1d3ac0d860737fb091750e\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/9444e6515b8c6baac6410af233373084\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3fa875212869f8bb87ecec023e3594ab\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/245a0619f72f8fa174e14ad18ed79ef8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/81211387b53a1545755003f8b2a1fc18\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/00ffda65398984695ae5576fe383f02c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ce9436b3ab369c9ab0d19d5fd85d64fe\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/bfb5281dbaf30b871676f44cc1395433\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/6e3e4283c6d55967a64bf8d1b588732a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/adc4418b5f4802de2918f2932e0ad1c6\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/961ec9441a2fa5a82bbed869080b8b3a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/c18632626e637957d7850f27ba8ed27e\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5bb43003ce8ab88ea3e2b5835b018f9b\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5e1b92e1c2392c4742c4b8caac239078\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/08c18d207e645c06bfbac1f997b0edad\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/04c979b82e2ec3add9a38959f42f52b1\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/c20e9b135c36e94f7498a133cc45e442\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e0d28a7fc82849a64a0fbc6f584ea8e9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/873a5a261a51d2c352cec13cbf8fdf0c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/bec3d3e00694ea0d182b04366cbf8cb0\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7f1430bcb0a6e3812cc44d0015cc2e19\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/bc4a60b8d7abfbcdec8bb45d864e38a8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/d5612d1467c7b6d3624c53bc688289df\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ec046ac8dc9f3843ba2d44fc1f32bf0d\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/fe1bd5e0aae1254c90a08b9fe2d4fcac\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3e66ff5126900e8b3aacf615357995c8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a6830e9ed97c7590c32e359c547bae37\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/55f85e04d355cf55f777c22037403b12\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/8498148bb21e28e65acd6e832dd392e5\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e1690d753f1cfe4e6c8ed1999f242f70\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ebfe4b19968441962ec69b81048f5a40\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/787493f255c3e1fe0f7590724463af47\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/49dd09f415ed6893adec2902800ecfbb\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/dd6df4f37eb57a3022cd311c11ed40b8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/14dffef10402801b89457241dc466ce3\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/02bd5bbda8beff8f5cc0fbd88b599173\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1a9321268f43fe71c8ad7f9ab0ffe154\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/95e026c0be6029963131d95f104d98f9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/bc600344f6d97e175bdff42d5a0d9660\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/99b28ae6fc8d44b1389a5fe6da60a557\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/68c28c98150c0491f40b510fe53d5150\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3595514d555f90e66127a53c00ad6142\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e5593a7c5757a917c4833284b849e8e4\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/154863f5eba04c9bd04c821204662c46\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7762cc6ecd7e5663aefbc1ac3d1d183a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/6d28de9a1db1dc3ad984dc0fed840b85\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/76162cca14bfb91a3e02d6e29627bc11\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/6ebe9390869deaeaae9fe15f64d1d60e\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ba40fab16ef2ffaa80483f7a471cf2bb\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a190267e13d71e0a2cefd795da6d16a2\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/390c1586d26f4ecb8965bb7caafd1a01\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/30b166d2e6f48e17020d5e5457e6e26a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/0709aa4181151c6be88b7bcafc3e014c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/9b0cc6ef9c3464d738b9e6c4be7917cf\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7ed36b8dcee86d9a4d55b31fdd6f7199\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ef35e224f60f9f4f67a652b6b2bfabc3\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5f728c69b35c2f0b870a23f20c1cf1bd\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/aa1c7bcfbf8bd723b77f5710a6a9f594\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3834fb17dbfd82a9e6b6c78c159139b4\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/379c9f5ef533b7996ca5a6f6e2aebefb\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/19c6e4fb5e77a4485581566f5ac85e7c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/96e85c7780b0f7c34955ed4e9e8f6075\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/29a13ad515a4e0b380c0765b509f4bd8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/70a947a5ab7ce7fea419f5942119a162\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/0e5f3c92253e55d958c60f6c4b3c3c94\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/fa49c46e19fa64edbd26b7a87ff6c06f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ff220f0b4c41c9194a0d56982ad9d9df\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/25739f21e5031ff02151d7be8da54f32\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/9b092eb12c6b86663f750cc82741a54d\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/197773ce0c3bd5db1389a4e328fc1127\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/384d216e638296c3f2e43c1bc10e6aa2\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/cc67da412eb68626108ce80d9973105b\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/2f31290d5784e79695d28a07513df7cc\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/90167d1609a729e7134e4a923351f671\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/36ba82b093b807f3d4156df5aef56265\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/6426c7b91e31a7164aa0ac3fe5ca7cc7\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/b33a98e1400345111df1f4a5186d8830\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/0bd72656f57f527e5863ef191c372831\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a3c39f11e5abdfdb1f68559d8d04e975\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/043ebb377c5c5699e4d0c39a6efff1bd\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/64765b11b3c0dfd58defa91fe80ef236\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/941d48ed62b7edc24a6b564a91b4d6c6\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/2f170fb0e88ec9e9ada917e40dfe9b56\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/4363c09f4f41e45ec5a021d2b68e8276\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e8a1433809df201ba869c62c16c0870c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/12e557a7aa59790b9b017adcc2d61778\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/2ab9598ff854eb657a12d777d1374f74\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a80319cc10e4c333d4b0bdd3b113526d\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/67450e668b5e0f33bd764955db697890\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/fab2c241b23cc097ef2a6c33ca7d1cb4\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/f44e21cb4fe6fab825843b049649c479\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/63664dec0d71acbc99c1bc0610834138\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/f582d6b1956c5d8756fcecd3ed31854c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/37c112d0c344dfbd6591d46e6aa4bf2b\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/d0b0b2ded7b4d07b0615afe8c5c3bd29\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/af46e6dbd26ef9975009e0f908a0703d\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/4dd050367ed3d746a44a8627a27c0d86\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a26e29a64522fde13f1a0939a6436b09\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/b16a7008d41ce565818e053e6ef9451f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5e62740f1e3d26cfadf3f31606f04c93\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/c9874acaa4e7cea139377a1cc4aa96da\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a07a340d8cd563655bef328ad2631adc\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/879c22c6dd6ba9258ed2b3977c02dd3f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/c4e8f9a815f3c85c2b3bc35ded8d4c55\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7fd56cac090b0910c9796189bb13f529\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/8c2849493a108685ea6d16538cee0ff5\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/704218ec1ab1084c07564e6f679b9f0b\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e2f0baf33acd97c5fa0650b3ac188b33\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7a5fe95e68652560e04a4f04a6cc2ed0\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/28a07bc7bb355d05782734af39a111e9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3ced327f796a04949713bfbb43236c70\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a68e8bf1ea79b67d5e12e0814b0e9b02\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/2afb851ba8413ce5291c1f7281b0b60a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ff554b36ebfb02ba497f4de21e7bfe39\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/89829464cf9d8abc402d2b289511db80\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3957404c3a99817081032e3304cc2eb2\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/bdd49d4f44c93368e0813b6e75c2cff9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a07cb68a370231f37c708389c12628ea\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/034189f38c18e6c04e59770762ddf137\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/41a9fd1aaeefba3a8b4e181a3f57a26d\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1b32af79ec982846c16e8da2dece9111\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5971508ca172ee7705ba9867da5f2799\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/89d72ebf25cb6d5a889723f29e937e64\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/812f71e51faf4596904b7256abf7468f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/64cb9ae1176525d58b69364473f71172\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/b6b45a5ed94214a2ab70c5631f8bd38c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/de17f9e07113ce99eff6166bf2d5151e\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1ed7e041da9cefb263f8e5283ed9eabe\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/da90dc28fb90db28270d1efd575cbf90\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/840d841d4f4ab073d4675980ae0c65e2\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/64beb86873a673b4b1d7d131a3b7cca1\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/4a42005d5d1db515c58f10fb2a977b4f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/77b345b3ac23acd4b0c793607df72b86\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/8c959694f7c0083563629bbd7f6d26b9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/40e1eb6b7c27798bd70c26bb89188010\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e5cebd7454caec5911970426e4ebfa02\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5e00139ccb323f8a614dbc86e4adee17\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/53326ce0c7e2e31e9e711749f6c9872f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/9283ffcb15cf65f0be191c4877fa3f8c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/06fd589cfddf7421b0f422bd92c4f077\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/aea34470dff6023e11932e8f26ea8fae\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/b746fbbe0449671bc3fef0ba56043a91\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/4fb5053042bc75c426a6bbcccc364670\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e3e24962746bbc142697dac71768e280\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/63ef09428da038d6a13c1db516b12cba\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7bf0064c79e577a339a3bdaa8b664053\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/186ab8e8139e59cdbddc72429ba378be\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/23a4e99376dd709c7a7926c1b512d89c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a94574b4ab665c6845a57507127c7f19\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ca10db54d8b535438ffcde1fd38529f8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/0ce6d727b36b2329f0bbb7bbcdbedc32\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/d8eafafce323951597ee1a2ccd103a09\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/f8e44e6d6d9486ac535ec276bfb1b520\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/6ea3722739a32d235c59aae7015d2132\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/f2ad2e96cf1f087e6a016e4dfe16cc9a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/22c97e323c9093987f705e9112b3640a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/287b7dad39b1a76397aff28461a3ae8c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/26df8fc60531553c4539463d1c28dfec\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7d1d96b15a68e392abeffe502f84a042\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/55decbb21da6eccb8c64662f82e90e07\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1e684c7c8d3b74ab8946e9d16a169644\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/eda0bed753c4b3d8ead98daa3fbaaa4f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/cfacf6ef677c8603351e06e2bd728418\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/8683c8a249116de1e4a1f2efb7540756\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/35992c02ce19e70d4b7646206dc625fb\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/0044f692a05422bb98c4bd3c6d04770c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/133a813220736fd35ca5780e0704fc1f\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/e91e3e141d58633d9f065fe841e1d704\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/d13a4206c4dc9798f6918905bd964ef1\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/38ec6d9ed3750e2a349aab9393a444c1\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/80bf33f54ca3cc39d55895987d22db6a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/43f6745ab4a8087d95d6dad67b61c455\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/6ca3ebf88d38ddd014eac49e0ef69663\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/ba6bde1c11d365939c1e66712a8a818b\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/08024b8d0f056a2e29555bbcff919b96\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/86ff1f0a410c7220fea17218daac0b51\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1dc98a04e21fe62758b71ea2affc59ef\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/182ec8780648c9a9ab4b05e10b28263a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/fcab5744d2c104f2879ab24a05eb5965\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/8d808fc699689924b60841e1e2164771\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/b98b104f64f2bda9eb8854ff4d53ecd3\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/45638e207aa96b4f92e27f59f0b544f5\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/699b629be39a2827f23a164b8bb30c1a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/154b1d59bc43f05c208cd7e9315d48c9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7d44e0b425e269c22219e93ee416e825\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1d99dc57effa20f609a0cf624bd5e04a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/459c554af4f32b088b68a93b3a02f60a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3768e99b08bf76083993540fa0e931b5\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/b091b8fc793c49134b42139b7933be99\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/f0d2d1392eba4f49035c1ce0d431ec6a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/3f02e8edb6dc1f797b9be04d540e0b77\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/bb8fae8e118a003c63c47a3c93963786\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5869943e0762f690d3334659af3af68d\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/802c675e74c573280a1fb772daaedf9c\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/303619e93fae27433a982bc1565704fd\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/a3c633c5b54b9f0cb5e4ed723d52b162\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/5240559833b5075c63c9ced7cf58d9dc\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/942438a56c8ffba16a34fefb4a9aca6a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/b48b6c1cae8f9873ac2b5fdd6bfca86a\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/cb8f68bfb97cc6dac3d6e3db3377c222\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/6e7f390a6ef123e2c2a6788f98edf934\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/fe65f734e95ed43aa28396952f76bc12\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/35b902ddb2944770f8fcc585b48334e2\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/9a0ebd16dc2c6873f51f15b6614b73e8\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/1bde21d6d9e399af2546e2f9010b9350\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/824d7bb2017e24e06fb6a4d7d87994f0\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/f81b240be91d490535164f911aada9ed\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/7c63c15b4401024888916ca9b42b21c9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n", + "/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/4332c6bbfc3a256c63470ab9c3d7e8a9\n", + "File 'time_data.json' not found. Handle this case accordingly.\n" + ] + } + ], + "source": [ + "for subdir, dirs, files in os.walk(dirroot):\n", + " if not os.path.isfile(subdir + \"/signature.md5\"):\n", + " continue\n", + " print(subdir)\n", + " modes_data = np.load(os.path.join(subdir, 'mode_shapes_data.npz'), allow_pickle=True)\n", + " mode = pp.read_mode_data_from_npz(modes_data, time_step=0, num_modes=1, num_points=-1)\n", + " params, data, signature = pp.load_data(subdir)\n", + "\n", + " # params, data, signature = pp.load_data(subdir)\n", + " # cone_data = data[\"solver_KS_data\"][[isinstance(d[\"iterations\"], int) for d in data[\"solver_KS_data\"]]]\n", + " # _offset = sum([not isinstance(d[\"iterations\"], int) for d in data[\"solver_KS_data\"]])\n", + "\n", + " # _ell = params['model']['ell']\n", + " # print(f\" scaling = {params['stability']['cone']['scaling']}\")\n", + " # pd.DataFrame(cone_data)\n", + " # for entry in cone_data:\n", + " # plt.plot(entry[\"lambda_0\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.6229402944338904\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "# Example usage\n", + "mesh_coordinates = np.linspace(0, 1, 100) # Adjust the number of points as needed\n", + "field_values = np.sin(np.pi * mesh_coordinates) # Replace with your field values\n", + "field_values = np.sin(np.sin(np.pi * mesh_coordinates)) # Replace with your field values\n", + "# field_values = np.ones(len(mesh_coordinates)) # Replace with your field values\n", + "result = l2_norm([(mesh_coordinates, field_values)])\n", + "print(result)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAHOCAYAAABuCBPcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxi0lEQVR4nO39f3Bb95nveX4OAZNUJBpgRw6Y2CIo0yFvMhPKO9GFaSuiZyairPQsZ6vjcNNblS37Ru6kO3Ft5tbUVDR7Lafb6TtOz1b1rVQnuVFn7Hamsne6h0pqd+mNZUndt0T6h8yRdiXc7r5LNGkLtJIQsrtJiqQNyADP/kEemBQB4gA4BzgHeL+qVKGAg4PjCDxfPN/v830ewzRNUwAAAAAAR7XU+wIAAAAAoBERbAEAAACACwi2AAAAAMAFBFsAAAAA4AKCLQAAAABwAcEWAAAAALiAYAsAAAAAXECwBQAAAAAuCNb7AgAAAOANP//5z/M/Ly8v69ixY3r11Vf16KOPVnzOK1eu6Kc//an27Nmj7373u7ZfNzs7qxdeeEGpVEp//ud/XvH7A/VEsAU4ZH5+XmfOnNEvfvELdXV16ZFHHpG0PljNz8/rk5/8pO3B6sqVK3r11VclSffff78OHTrk2nUDACBJP/zhD3Xs2DH19vbmH/ve97637bgzZ87o2LFjts97//33a3V1VadPn97xuBdeeEHz8/M6ceKEJKm3t1ePPvqofvSjH+14XKXXBdQCaYSAQ7q6uvT444/rwIEDeuihh/Too4/q0Ucf1eOPP64TJ07olVde0Q9/+MMtr3nhhRcKDmRPP/20HnvsMR06dEi7d++u1X9CQWfOnNn2WLHrBgD41yuvvLIl0JKkJ598cttxV65cKfvcdsay+++/X4cPH97yWEdHh63jKr0uwG2sbAE18sgjj+hHP/qRvvnNb+Yfs2b7NpudnVVXV5f27Nmj+++/v8ZXud2VK1e2zRQWum4AgL+trq5qfn5eXV1d+cf27NmjT37yk/m/nzlzRqlUypX3tzvmFTrOzesCqkGwBdRRsYGl3qtZlmKDlxeCQACAs3p7e/X000/rG9/4xpb7vJUCf+XKFV25ckXz8/P5vV3WcysrK3r55ZfV1dWVn6S7fZVMUj5Ffnl5Waurq/nX292fVei4QtfV1dWl06dPa35+Xt/+9rd1//33a35+Xk8//bQikYi++c1vbgkqAbcQbAE18otf/EJf/OIX838vNGDMzs7qzJkz+QGjq6tLXV1d24574YUX9PLLL+uxxx7TsWPH8puPI5FI/u+S9Pjjj0vangporVTtNDgWG1R3GhCta5bW97BtHqB/+tOfSlpPSZmfn9f8/LyWl5fz1wgAqK9vf/vbevrpp/X0009Lkg4cOKBHH300H3hZ/5tKpbbtQT59+rSOHTumrq4uHTp0SF/72tf0p3/6p9qzZ0/+mNnZWR04cCD/2JkzZ/TDH/5Q3/zmN9Xb26vHH39cf/Inf7LjNRY6rth17d69Wz/60Y/yz1v7qasp9gGUiz1bgAtmZ2f16quv6tVXX9XPf/5znTx5Ul/84he3BBbWgLFZb2+vjh07po6ODj366KM6dOhQfoPwZo8//rjuu+++/N/vv/9+felLX8qvQm3OZf/5z3+u+fl5HTt2LH9ua2bx9OnTOnTokA4dOqRvfvOb+pM/+ROtrKzkz2kNnNb+s2LXLa1vou7t7c2f79ChQzp58mT+XI899phWV1e1vLysQ4cO6dFHH9Vrr72m2dnZyv5PBgA4qqurS3/+53+uZ555Rl/84he1srKip59+Oj9m7GR+fn7LnqlIJKKrV69uOaa3t3dL8HXs2DG9/PLLmp+fd+y/YbP7779fy8vLW8YZVrNQa6xsAS6wgg7L/fffrxdeeEFdXV0VpeAV2iB8e6rh7t27NTs7mz9/b2+vVlZW9NOf/lT/7t/9u/xxk5OT+fx7a3C0VrqswbHc6oezs7O6evXqlspQXV1dWllZ0ZUrV3T//fero6ND8/PzW/77I5GI5ufnC6aaAADq4/7778/fq1944QX94Ac/KDkuWPf/lZUVpVIpraysaHl5ueR7dXV15fcqu+GRRx7R5OSkent7deXKFR04cMCV9wGKYWULqAFrNejpp592bQZP2j5jNzMzo927d2+ZSTxx4kR+lerEiRM6duyYVlZWNDs7a3twvN0//MM/FBwoI5HIlpnO24/ZvXt3Re8HAHDWyspKwRWsxx9/XKurq/msh9tZY9rs7Ky+973v6ZVXXlEkElEkErH1vm6NAdZ1HT58WC+//HL+sc3jIVALBFtAjVirN4VKqVeiUDXA21e7SlUMLHdwLBYoUpkQAPzvH/7hHwo+blXILcSaqHvqqac0OjqqY8eOac+ePflxodQE4+rqqivZDVbqYG9vbz59vlCWCOA2gi2gxpy62RebZdyst7e3YCC0srJS0eBYbH+VVeXpdqlUakvJYACAd7388svbelVduXJFDz30UP7vXV1d+fu9lQaeSqW2BU3WGLV53Jifn98ydp05c0aPPPKIIymEha7L8sgjj9hKhQTcQLAF1MgLL7yg3bt365FHHin7tdbeJsvKyorm5+dLrih1dXXpoYceylcTtF77yiuv2Bocdxq8Nuvt7dWBAwe2DNLWOXYa3FgRAwDveOyxxyStF1ay/szOzm4pimRV9HvhhRd05coVdXV1qbe3V1/84hfzj125ckXf/va3t4wJHR0d+va3v62rV6/q1Vdf1ZkzZ7S6uprvPTk7O6uxsbEtFXA3P/bCCy8UPa7YdVkOHTrEXi3UjWGaplnviwAawfz8vM6cOaNf/OIX+Zu+tJ6PbgUsjz/+eH4AsAaM1157TY899li+rLr12Be/+EUdPnw4H+Bs7h0irRe6ePPNN/XYY49p9+7d+vnPf66ZmRl96Utf0qFDh7YMNC+88II6OjrU1dWl5eXlfEEMa/DaXBb3hRde0OHDh/NBknVMV1eXjh07VvC6N7/P5tLv1gBd6DU///nPdfr0aXV1deWvGQAAp62srGhmZoYekagLgi0AAAA0lJWVlS39vKxJRqDWSCMEAABAQ/npT3+aL0hFYQzUEytbAAAAaCizs7P56oqsaqGeCLYAAAAAwAWkEQIAAACACwi2AAAAAMAFwXpfgF98//vfVy6Xk2EY+shHPlLvywGApvHee+/JNE0FAgF961vfqvfleApjEwDUh92xiWDLplwuJ9M0ZZrmlu7nAIDayOVy9b4Ez2FsAoD6KjU2EWzZZBiGTNOUYRjavXt3vS8HAJrG6upq/v6LrRibAKA+7I5NBFs2feQjH9HKyop2796tr3/96/W+HABoGqdOndLKygppcgUwNgFAfdgdmyiQAQAAAAAuINgCAAAAABcQbAEAAACACwi2AAAAAMAFBFsAAAAA4AKCLQAAAABwAcEWAAAAALiAYAsAAAAAXECwBTQJM5uu9yUAADyGsQFwV7DeFwDAWWY2LSPYLklae/fvtDbz/5KZ/Gsp+74U3CUj+nm13Pdfq2Xvf1LwNQCAxmZ3bABQPYItwOfMbFpavq7c9NiHA6cRkMw1SebWg7Pvy5x9UbnZF5UzgtKej0vv3ZByGQZbAGggmyfRtowTb70srX2w9eDNY0NLq4z9RxkLAIcQbAE+tG1W8nZmrvRJzKy0/PaHf2ewRYNLJpNKJpMKh8NKp9dTp2KxWNnnicfjWlxcVCqVUjqdVjQa1dDQ0LbjxsfH1d7eroGBAUUiEaXTaaVSKcXjccViMUUikar/m4DNzIWZ7RNvkr0xwbJ2i7EAcBDBFuAT+QCr0Kyk42/GYIvGkkgkND09rZGRkfxjyWRSY2NjGh0dtX2eiYkJDQwMaGBgQJKUTqc1Pj6uH/zgB3riiSfU3v5hOm46nVYikVA8Hs8/1tbWppGREQItOG7t2nnlXv+utJb98MFygqyCJ90+FgT6R6WOe0g9B2wi2AI8rKYBVtGLIPCCv6XTaZ09e1ZPPPHElsej0agmJiYUj8fzwdNOEomE+vv7FQ6H84+1t7drZGREP/zhDzU+Pr4lcItEIorFYkqlUpKkcDisvr4+Z/6jgA3mwoyy8eek6xPuvtHGWJCdfXH97xup54H+URmd97n73oCPEWwBHpNPA6lngFVMkVlOBlp4WSKRUCgU2rLqZOnv79fVq1dtBVvz8/MFgyUrVTAejyudTm95n2g0qmg0Wt1/AFBEwdWsWtlIPc+++ZICDz2tlp4jtb8GwAco/Q54yNq188qeOS5z9kXvBVq3s2Y5zxxXbvaX9b4aoKjp6emCgZa0vtp048aN/B6uncTjcY2NjRV8zkoLtFaxADeZCzP64MJ/r9yr36lPoLXlYnLKvfodZS/8X2UuzNT3WgAPItgCPMBTA2e51rJau/iv9cFf/pfKXnyWwRaek0qltqT+bRYKhSRJS0tLJc+z0z4rK1grFtQBTrEm5VxPGyyTef2CsmeOa+3a+XpfCuAppBECdZZ785dae+NP/Bdk3S6XIaUEnpTJZNTW1rbjMUtLSyWLVuxUSMMK1m4/x+Lioubm5rb8PRaLlQzKLl26pMuXL+94jCStrq6WPAaNw1yYqV/aoB1rWeVe/66M0H4Znb31vhrAEwi2gDrI78u6dm69x1Uj2UgpWUv+jQIDX2U/FzzNCsLspBHupFCRjaWlJd24cWPL46lUSj/72c/0la98ZceA69atW1pZWanqmtBYzIUZZSef8m6gZVnLKjv5lIKHv8v9HxBphEDNbdmX1WiB1ibm9QvKvvRVUkrQ8CYmJhQKhXT48OEtj4+MjGwrqBGJRBSJRHTu3Lkdz9na2qo9e/aU/GMYhuP/PfCefOrg5t6IXrY8x/0f2MDKFlAjNSvPK21tZBncJSN6REbkszJTl2Umz683uwy0SR+JSCu/Xm9w7AZWueBxmcz6hEele62sJsWlVqo2i0ajJYOtgwcP6uDBgyXPderUKVbAGpxrqYO3jw1vnXG2MBP3f0ASwRZQE66X521plbH/kU3NJtdTo8xsJv+zJGn/sDR4Ytvja+/+R63N/D+dH2w3mNcvKPurV9jLhYZj9dYqVoCjECsoS6VSNDdGUfl08zdfqq45sdEimWv54Or2cUJSfmxwYywwr19Q9tevKvDgSe7/aEoEW4CLXF3N2giwWu77P6hl76cKHrJlMN3h8Za9n1o/h0uDrSRmOVE3oVCoaLVBa6+WVZWwHGNjYxoeHi4YMJ07d05tbW0aGhra9pxT+8TQuByZoDMC+QmubRNvRRQcC6xsiGpQOANNjGALcIkrq1k2Aqyq38LlwItZTtRaJBIpGtgUqyJYyrlz5xSLxYo2LJ6eni76XKXviebgRNqgse9hBT5zPB/Y2Am0brd5LDCzGWn5+sbk4YXKLorCGWhSBFuAC5zOsTf2PayWT/+fXQuwiikYeF07W31hD2Y5UUPRaFRTU1MFn1tcXFR3d3dZ55uamlJfX9+2YGpxcVFLS0uKRqMaGBgouKolSclkUqFQiJ5c2KbqioObVrOcZATbpM5e3fHw/1DdROLynLJnjjPZhqZCNULAYY6W5zUCChz6IwWH/oeaB1q3a9n7KQUHT+iO3/0btTz4lNRS5VzNxiwnTZDhtr6+PqXTaS0uLm57LpFI6MCBA1seS6fTSiaTBc+VSCQUiUQKrlrduHEjn47Y1dWlVCq17Zh0Oq1EIlE0EEPzqrriYEe3gl/4C9eDmJaeIwoee17qKG+SIm8tq9xrz8hcmHX2wgCPItgCHORYed5Am4zekZoMnJUI3PuF9cH2noerO9HGLCflgeGm9vZ2HT16VJOTk1seTyQSCoVC28qzj4+P6/Tp04rH41seT6VSunr1qpaWlhSPx/N/pqamNDU1pTfeeCNfKKOvr0/xeHxbwDU2NqaBgYFt74nmVnU2REtQwcN/XLNMAaOzV8HD36180s3MKfvSv1D24rNMuKHhkUYIOMSR1MGWoFpiJxTo/YJzF+YSw4mUEik/y0lKIdzU19entrY2TUxMKBwO5/dwjY6Objs2Go0WrBQ4NjamTCajubm5gu9xe5GN4eFhTU1NaXp6WplMRul0Wg888ACBFrbJTY9VFWgFHjxZ8/un0XmfAg+erPz+b+Zkzr6o7FtnSCtEQyPYAhzgROrg7Rua/aKl54iM0P7qNk5vzHIa935Bgf5RNk/DFdFotGjRis1isZhisdi2x5988smy37PQeYDNzIWZ9fLu5TICMu797Y17Zn3GDUfu/+zhRYMjjRCoUtWpg5v2Zfl1oLFWuQKH/qiqtBJz9kXSCgE0jbVr55V96avl99EyAgp+4S8UHDxR93HDkfs/e3jRwAi2gCpUmzpo7HvYs/uyKpHfOF3NXq6NWU42TwNoZPnxo9xAqyWowENP1z3Iul3VhTPYw4sGRbAFVMBcmFH24rPrM5KVBFoNsJpVDLOcAFBaRfu0OroVPPa8Zyfoqi6cwWQbGhDBFlAmK23QnH2x/BlJqWbleeuNWU4AKKyifVo1rjhYKatwRlUB1/SYsxcF1BHBFlAGv5XnrTdmOQFgq4r2adWp4mClrMk2o3dEMgJlv95885dkNqBhEGwBNlVdcdBng6VTnJjlJKUQQCOoaJ+WEfB06mAxRmevgoMnFPzC8+Xf/80cmQ1oGARbgA1VVxz0eJ6926qd5SSlEEAjqGSflnHvb/t6kq7iCTcyG9AgCLaAEkgddEZVs5wSAy8A3zOTf13eC1qCCvRvb7ztNxXv4WX/FhoAwRZQQkUVoyxNmjq4k6rSChl4AfiUmU1L2fftv6DBxo9K9/Cyfwt+R7AF7KCiilGSZARk9I40dergTqqpVMjAC8CXlq/bT6P26T6tUvKTbeWkk7N/Cz5HsAUUUVHFKGl9kPzCXyg4eKJhZiTdUHGlQgZeAD6T3/drczzx+z6tnbT0HFHwC39RXsBFGjl8jGALKKCiilHSetrHQ0837CDpNDZOA2h0Ze/7bZB9WjsxOntl3PuF8l5EGjl8imALKKCifVpNXnGwUmycBtDIyhpPGmyf1k4C/aPs30JTINgCblPRPi0qDlaFjdMAGpXtCoQNuk+rGPZvoVkQbAGbVLRPq4lmIt3EwAug0ZRVgdDMSR33uHtBHsP+LTQDgi1gQ0X7tJpsJtJtFQ+8rz3DwAvAU8yFGeUu/Rv7LwjukhFsc++CPIr9W2h0BFuA1gfF7ORTZe/TauSKUfVS0cBr5pR96V8oe/FZ0goB1J1VfdCcfdH2a4xo807aVbR/K0lGA/yBYAtNL1+Sd/nt8l7YBBWj6qWSgVdmTubsi6QVAqirsqsPSk0/nlSURp59X9nX/jUTbPA8gi00tYoGRYl9Wi6raOC1kM8PoI7KrmbLeCKpsjRy861fMsEGzyPYQlOrqMQ7+7RqoqL9Wxby+QHUie3qg5KM3hHGk00q3r/FBBs8jGALTa2cQdHCPq3aqWjg3UA+P4BaW3v37+xXH5QUOPgvGU9uU1EaORNs8DCCLTQlc2FGH7z2x2UNipKaPq++HioaeCUp+77W3v175y8IAApYu3ZeuXPfsP+CJq0+WEo+jZy+i2gQBFtoOvmCGG+V37iYvPraq3TglaTcuT8glx+A6yrZ/9vM1QdLaek5ouCx56X9ZWQ20HcRHkWwhaZScUGMjm7y6uvIGniN3hGaXwLwnIqKYpAlsSOjs1d3PPSUFNxl/0Xc8+FBFeTmOCuZTCqZTCocDiudTkuSYrFY2eeJx+NaXFxUKpVSOp1WNBrV0NCQ05cLn6uoIEZLUMHDf8yKVp0Znb0KDp6Q2f+l9ZVJu/+OG7n8wcET7l4ggKZV1v5fsiTKYkQ/X1a/Mu758Jq6rmwlEgnF43ENDQ1pYGBAsVhMkUhEY2PlbXKcmJhQd3e3hoaGNDo6qtHRUaVSKf3gBz/IB3CAuTAj801SB/2ukrRCcvkBuMXMpssrijH8Y7IkykDDY/hd3YKtdDqts2fPanh4eMvj0WhU6XRa8Xjc1nkSiYT6+/sVDofzj7W3t2tkZESZTEbj4+NOXjZ8au3aeWVf+qpk5my/xrj3t0kd9KiWniMKDP9b+y8glx+AS4xgu/1Ut+Autez9lLsX1GAqbXhMgSR4Rd2CrUQioVAopPb29m3P9ff36+rVq7bOMz8/r0gksu3x9vZ2DQwMaG5ujtWtJpffp1VGoKXgLgUf/FesaHlYy95Pk8sPoO7MhRlp115bx1IUozKV9F2kQBK8om7B1vT0dMFAS5LC4bBu3LhhK0iKx+NF0w6tICyVSlV+ofC9SvZpMSD6gxH9fHkvoBcLAAflq9suv136YIpiVKXsvotMsMEj6hZspVKpLal/m4VCIUnS0tJSyfMUWtWyWMFasaAOzaHsxsUMiL5BLj+Aeimrui37fx1R9j2fCTZ4QN2qEWYyGbW17dzMb2lpacdgSpJGR4t/KbaCtZ3OcenSJV2+fHnH95Ck1dXVksfAe9be/bvyGhczIPqKlcufe+0Z+2miG7n8LXs/7e7FAWhotrMmOrqpaOuQ/D2/jBYuZvK8RGVC1FHdS78XYgVh1e61isfjGhgY2PGYW7duaWVlpar3gTetXTu/fkO2ywis93JiQPSVlp4jMkL7lX3pX9gOuHLn/kB68CTFTwBUzHbWxPvvMK44qKXniLTnE8q9/Hv2XsAEG+qsYZsaT0xMKBQK6fDhwzse19raqj179pT8YxhGja4cTqikebFx728zIPoUufwAaqmscu/Z92VmM+5eUJMpt0ASxTJQT55c2cpk1m9Kle61SqVSisfj+spXvlLyHAcPHtTBgwdLnvPUqVOsgPlI2UUx2Kfle4H+UWXfOkOzYwCuy5d7txNwBXfJCO68bQLlK6vZ8cYEmxHaz6Qqaq4hV7bGx8c1OjpatAAHGl9ZRTHYp9UQKmp2TLEMABWg3Hv9USwDflG3YCsUChWtNmjt1bKqEpZjbGxMw8PDJQtroHGVWxQjMPxj9u40iLKbHdP4EkCZKPfuDUywwS/qFmxFIpGiBTDsVBEs5Ny5c4rFYopGo1VfH/xp7dp55c59w/4LgrvUsvdT7l0Qao5cfgBuody7tzDBBj+oW7AVjUaLrmwtLi6qu7u7rPNNTU2pr69vW6C1uLioZDJZ8XXCPyoqikF6R0Mqq9kxxTIA2FRWufdjz5M1UQNMsMHr6hZs9fX1KZ1Oa3FxcdtziURCBw4c2PJYOp0uGjQlEglFIpGCK1o3btyoKB0R/kNRDFjI5QfgBsq9exMTbPCyugVb7e3tOnr0qCYnJ7c8nkgkFAqF1NfXt+Xx8fFxnT59WvF4fMvjqVRKV69e1dLSkuLxeP7P1NSUpqam9MYbb1Aoo0lQFAMWcvkBOI1y797FBBu8rK6l3/v6+tTW1qaJiQmFw+H8Hq7R0e2rDdFoVKlUats+rrGxMWUyGc3NzRV8D1a1mkNFRTHYq9XQKml8mX3tXyvwqS/L6LzP3YsD4DuUe/cua4KtnK0EZvK8ROsP1EDd+2xFo1FbBS1isZhisdi2x5988kk3Lgs+snbt/PoN1i6KYjSNlr2fVs7ulyNJ5lu/VDZ5VoEHT7LXAsAW+XLvNqoQsh+49phgg1c1ZJ8tNA+KYqCUsnL5JfL5AWxDuXd/KLdYhvnWL5U9c5yCGXAVwRZ8jaIYKKXsXH6JfH4AeZR79xcm2OA1BFvwNYpioJRKimVIFMwAsI5y7/7CBBu8hmALvmQuzOiD1/64/KIYDIJNqaXniILHnpf2f8H+i2h+CUCUe/cbJtjgNQRb8J187vxbL9l/EUUxmp7R2as7HnqK5pcAbKPcuz8xwQYvIdiCr1RSEEOiKAY+RPNLAHbly73bQbl3T2GCDV5BsAVfKbsghkRRDGxB80sA5bA7QcOknjcxwYZ6I9iCr5RVEEOiKAa2qSSfn1x+oPmYCzPKXnxW5rVzpQ9mUs+zmGBDvRFswTfKyp2XZNz721SGQkEtPUcUGP639l/AXgygqVh7g83ZF6Vcid99JvU8jQk21FuZtTGBOlq+LhkBycyVPja4S8EH/5X71wTfatn7aeWCu+wF8EZgvZlp533uXxhck0wmlUwmFQ6HlU6nJUmxWKzs88TjcS0uLiqVSimdTisajWpoaMjV90Tt2N4bHGiT0XNUgf5RAi2Pa+k5Iu35hHIv/569F2wUy2jZ+2l3LwxNgZUt+EK+AqGdQEvkzsMe27n8Zk7ZM8fZOO1jiURC8XhcQ0NDGhgYUCwWUyQS0dhYeelCExMT6u7u1tDQkEZHRzU6OqpUKqUf/OAH+WDK6fdEbdndG2z0HFVw8ASBlk+07P00xTJQFwRb8LyyKxCSOw+bysrlZ+O0b6XTaZ09e1bDw8NbHo9Go0qn04rH47bOk0gk1N/fr3A4nH+svb1dIyMjymQyGh8fd/w9UXt29waTauY/FMtAPRBswfPKqkBI7jzKUHYuPxunfSmRSCgUCqm9vX3bc/39/bp69aqt88zPzysSiWx7vL29XQMDA5qbm8uvbjn1nqgt+mo1NoploB4ItuB5tisQGgEKYqBs+eaXRsDW8cxm+8/09HTBoEeSwuGwbty4sS0FsJB4PF40BdAKwlKplKPvidqir1Zjo1gG6oFgC5629u7f2Z9lNHNSxz3uXhAaU8fdtvcDWhun4R+pVGpL6t9moVBIkrS0tFTyPIVWtSxW4GQFWE69J2qPvlqNrZJqtNzzUQ2qEcKz1q6dX9+rZRezjKhQfjbbZmCfO/cH0oMnWUX1iUwmo7a2ne8NS0tLOwZTkjQ6WnwvqBU4Weeo9j0vXbqky5cv7/h6SVpdXS15DMoT6B9V9q0zO6evszfY18qqRivu+agOK1vwpLKLYohZRlSHjdPNyQqIqk3pi8fjGhgYcOw9b926pZWVlZJ/TNOs6rqxlbkws7FHxyh+EHuDGwL3fNQKwRY8qayiGBKzjKgaG6dRqYmJCYVCIR0+fNixc7a2tmrPnj0l/xjGDkEByrKlkfHaB9sPaGmV0TvC3uAGwT0ftUIaITzJdlEMiVlGOMLaOF3OiqqZPC8NnnD5yuCmTGa9mlyxYhalpFIpxeNxfeUrX7F9DjvvefDgQR08eLDkuU6dOqWVlRV7F4ui7GVTrNHAuIFwz0etsLIFzymr9K6kwPCPmWWEIyrZOE3p5+Y2Pj6u0dHRosUw4A+2silY2Wg43PNRCwRb8J7l67bLcCu4Sy17P+Xu9aCptOz9tP3Sz0ZAWn7b3QtC1UKhUNHKf9a+KatCYDnGxsY0PDxcsMiFW+8Jd9DIuHlxz4fbCLbgKVbOvN0y3BTFgBtsb5w2c8qeOa61a3wB87JIJFK0GMXtVQTtOnfunGKxmKLRaM3eE+6gkTG458NNBFvwjLIrEFIUAy4pa+M0Vao8LxqNFl1lWlxcVHd3d1nnm5qaUl9f37ZAa3FxUclk0pX3hHtoZAzu+XATwRY8o6wKhBTFgIusjdNlDb7s5fCsvr4+pdNpLS4ubnsukUjowIEDWx5Lp9P5oKnQ8ZFIpOCK1o0bN/KpgeW+J+qLRsbNjXs+3ESwBc+wXYHQCFB6F65r6Tmi4LHnbe8fZC+Hd7W3t+vo0aOanJzc8ngikVAoFFJfX9+Wx8fHx3X69GnF4/Etj6dSKV29elVLS0uKx+P5P1NTU5qamtIbb7yRL5RR7nuivmytbJBN0dC458MtlH6HJ5SVM2/mpI573L0gQJI67ra9f9Day0GKkTf19fWpra1NExMTCofD+f1Uo6PbvzxHo1GlUqlte6rGxsaUyWQ0NzdX8D1uL3hRznuifmhkjDzu+XABwRa8wapAaOcmR848aiS/l8PmREDu0p9u9OG5z+UrQyWi0WjRghabxWIxxWKxbY8/+eSTrr0n6mPt2vmd9wq3tMrY/wj9tZoE93y4gTRC1B0VCOFltqtUSTJnX6RSFeATNDJGIdzz4TSCLdQVFQjhdWVVqZKoVAX4BI2MUQj3fDiNYAt1RQVCeF3ZVaokvqABPkAjYxTCPR9OI9hCXVGBEH5gVakyekdsv4YvaIB30cgYO+GeDycRbKFuqEAIPzE6exU4+N/YfwFf0ADPopExSuGeD6cQbKEuzIUZ5S79G/svYLCDB5T1Bc0ISMtvu3tBACpGI2OUwj0fTiDYQs1Z1QfN2Rdtv4bBDl5hu1KVmaNKFeBhNDKGHdzzUS2CLdRU2dUHJQY7eEpZlaqoUgV4Ur6RsWkWP4iiTBD3fFSPYAs1VVb1QYnBDp5TdqUqqlQBnrIlu6JQf8eWVhm9IxRlgiTu+agewRZqynb1QYnBDp5lVaqSEbB1PFWqAG+gkTEqwT0f1SDYQs2UVX1QUuDgv2Swg3d13F14VrwQqlQBnkAjY1SszHv+2rt/7+71wDcItlAzlNpFI+HzDPgPjYxRqbLu+ZJy5/6AYhmQRLCFGjIXZqRde20dS/VB+IHtKlW77lr//AOoGxoZo1q27/kSxTKQR7CFmrA2JNvqQUH1QfiE7SpVy3OUBAbqjNVoVKusyoQSKamQRLCFGiir3DvVB+EjZVWpYpYTqDsaGaMaZVcmFCmpINhCDdgu997RTfVB+E6+SlVHd+mDmeUE6opGxqhWS88RBYb/rf0XkJLa9Ai24Drb5d7ff4cVLfiS0dkrvf+OrWOZ5QTqx+i8T8an/k/FDyC7Aja07P20/ZRUI2BvCwUaFsEWXMWGZDQDPueA95kLM8pefFbm3/+7Dx80Nr4GBXfR2xFlsV0sw8yxZ7fJlbHLD6jA8vX1WR07vSnYkAyfym+8txNwWbOcnfe5f2EAJK0XaSq4d9hck4yAAg+cIMhCWQL9o8q+dcbeNomNPbtGaD+rpk2IlS24Jl+B0GYTQDYkw8+Y5QS8qWSRJjNH8RqUrexiGezZbVoEW3BFWRUIJTYkw/fKKglMZUKgZmwVaeKLMCqQL5BkBGwdz57d5kSwBVfYrkAosSEZDYFZTsCb7BZp4oswKtJxt+0MHvbsNieCLbjCdgVCI8CGZDQMZjkBb6F4DdxGs2yUQrAFx5U1uJk5qeMedy8IqCVmOQHP4IswasH2nt1dd8lcmHH3YuA5BFtwHIMbmhmff8Bb7H4RpkgTKmV7z+7yHAWSmhDBFhxnLsxIu/baOpbBDY2IWU7AOwL9o5JR4oswRZpQhbL27FIgqekQbMFR+XLvdrqlM7ihQTHLCXiH0Xmf1DNc/ACKNMEB+T27Hd2lD6ZAUlMh2IJjyir3zuCGBsYsJ1B/5sKMshef1Qd/dUR666UPn2hpXf/f4C4ZvSMUaYJjjM5e6f13bB1LgaTmYbNGMVCa7XLvHd0KHv5jAi00tJaeIzJC+5WdfEpantv54I1ZzuDgidpcHNDg1q6d32Hyb00tg08p0PuFml8XGlsl1S/Zt9v4WNmCY2yXe3//HQItNAVmOYHaK5llsZbV2tT3WE2G48oqkCQpd+lP2bfbBAi24Ah6mQDb8XsB1J6tLAv2zMAltgskSTJnX2TfbhMg2IIjKHcNbMfvBVB7drMsWE2GG2wXSLKwb7fhEWzBEZR7BwqzPcuZu6XsxWdJKQGqwGoy6q2sAkkWVlobGsEWqka5d6A427OcZo6UEqBKrCbDC6wy8EbviO3XsNLauAi2UBXKvQM7K3uWk5QSoCp2V5PJsoCbjM5eBQ7+N/ZfwEprwyLYQlXKKvdOLxM0qS2znEag9AtIKQEqZms1mSwL1EBZK61GwF6GEHyHYAtVodw7YI/R2bveRyvQaut4UkqAyuRXk4t9xSHLAjVke9+umSONvEHR1BgVo3kfUB5+ZwB3mQszyk2PbUwErm19MrhLRvSIAv2jBFqomUD/qLJvnbGXBbSRRm6E9vMZbSCsbKEi5sKMcpf+jf0XsBEZIKUEcJFVrMmcfXH7pIYRUOCBEwoOnuBLLGqqon27pJE3FIItlG3LgGYTG5GBdaSUAM4rWazJzFF4BnVj7du1tWdXpJE3GoItlKWs6oMWNiIDeWU1vKQyIWCLrWJNrBignjrulsycvWOpTNhQCLZQFtvVBy1sRAa2IKUEcJ7dYk2sGKBe6AHXvAi2UBbb1QclGb0jlHsHCiClBHBOJYVngHqwnUa+6y6ZCzPuXgxqhmALtpU1oEkKHPyXrGgBxZBSAjiCFQP4he008uU59uw2EIIt2MaABjiH3yfAOXZXDCjWhHoqK42cPbsNg2ALZWFAA5zD7xPgDFsrBhRrggfk08g7uksfzJ7dhkCwBdvMhRmZmZulD2RAA2yxnVKSuUn+PrCD/IpBsa81FGuChxidvdL779g6lj27/kewBVus3lq6PrHzgQxogG12U0rM6xfI3wdKaOk5In3kY1sfDO6iWBM8h6IuzcVm7WE0M7u9tYx9DyvwmeMEWkAZWnqOyAjtVzb+nHT9QvEDN/L3jdB+fseATcyFGeWmx2ReOyflNr6Utncq8PD/qJa9n67vxQEF5Pfs2gm4jIC0/LbUeZ/7FwZXsLKFkmz31mq9ky+BQAWMzl4ZbR2lDyR/H9jCyrowZ1/8MNCSpPSCcuf+gNVgeJbtMvBmjswGnyPYQkk0iwTcx+8ZUJ6SWRdUc4OH2d6zK/FZ9jmCLeyIvGLAffye1UYymdTExITi8bimpqY0NTVV8bnS6bTOnTuniYni+1jHx8d17tw5pVKp/GuSyaTGx8fzj6FytrIuWA2GR5VVBl7is+xj7NnCjsrKK6YXEFARfs/cl0gkND09rZGRkfxjyWRSY2NjGh21Xz11YmJCS0tLikQiSiaTikajRY9Np9NKJBKKx+P5x9ra2jQyMqJIJFLZfwjyyloNHjzh8tUA5cvv2X3pX9hqcs9n2Z8ItrAjc2FG2rV3fXNmCfQCAipnRD+/vu+klF13yVyYkcFmadvS6bTOnj2rJ554Ysvj0Wg0v9I1MDBg61xDQ0P5n6enp3c8NhKJKBaL5VexwuGw+vr6yrx6FFLJajCTFPCkjrttBVqS+Cz7FGmEKCpf7t1GoEVvLaA6tvP3l+fYLF2mRCKhUCik9vb2bc/19/fr6tWrrr13NBpVLBZTLBYj0HJQfjXYDlaD4WF8lhsfwRYKslvuXRK9tQAHlJW/z2bpskxPTxcMtKT11aYbN24onU7X+KpQLbvV3Mi6gNfZrky4kdkAfyHYQkG2y713dNMsEnBIS88RBY89L3V0lz6YzdK2pVIphcPhgs+FQiFJ0tLSUg2vCE6wtRpM1gV8gMyGxkawhYLsbjzW+++wogU4yOjsld5/x9axlIG3J5PJqK1t59Qbt4KtxcVFxePx/J+JiQlW0RySXw2WUfgAsi7gE2Q2NDYKZGAbNh4D9cPvX21ZQZgbAdDS0pJu3LixpfhGKpXSz372M33lK18pmtooSZcuXdLly5dLvsfq6qoj1+pXRvd/Ll1sk3Kb/v2Cu2REjyjQP0qgBd/IVyacfEpantv54I3MhiCVCX2BYAvbUIYaqB9+/xrH5jLzlkgkokgkonPnzhV83nLr1i2trKy4eXkNwXznb/OBltEzrMAD/z2/E/CtsjMbCLZ8gWAL21DuHagvysDXTiaz3iB6p1Ump0WjUZ07d27HY1pbW7Vnz56S51pdXZVpmk5dmm+YCzPKTY/JfOvMhw++9876uMXvA3yKzIbGRLCFLdaunS+vCiEbjwHHBfpHlX3rTOnfw43N0oEHT1KkxkeswC6VShVtbnzw4EEdPHiw5LlOnTrVdCtgxcYp88YVfh/ga2Q2NKa6F8hIJpP5ppJTU1Oampqq+FzpdFrnzp3TxMSEg1fYPCj3DngDm6WdFQqFihbAsPZqWVUJnbLTWOTmPrFGV3Kc4vcBPme7DHzulrIXn6UUvA/UNdhKJBKKx+MaGhrSwMCAYrGYIpGIxsbKK2c8MTGh8fFxxeNxJZPJfFoIykO5d8A7KAPvnEgkUjSwsYKwYitMlZqeni4a4Ln1ns3A1jjF7wN8zHYZeDMnc/ZFSsH7QN2CrXQ6rbNnz2p4eHjL49FoVOl0WvF43Pa5hoaGNDIyolgsVrK8L4qj3DvgLZSBd0Y0Gi0a+CwuLqq720ZAW6aBgYGiBTCSyaRCoVBN94k1CrvjFL8P8KuyMhskVnN9oG7BViKRKDrY9Pf36+rVq3W4quZVyaZMAO7i99IZfX19SqfTWlxc3PZcIpHQgQMHtjyWTqeVTCares+uri6lUqltj6fTaSUSCQ0NDVV1/mbE7wOahZXZYPSOSEag9AtYzfW0ugVb09PTRWf1wuGwbty4QT57DeU3ZdrBpkygJvi9dEZ7e7uOHj2qycnJLY9bk359fX1bHh8fH9fp06dLZlhkMpmi41RfX5/i8fi2gGtsbEwDAwPb3hOl8fuAZmJ09q730Qq02jqe1Vzvqls1wlQqpf7+/oLPWRuVl5aWSLOoEcq9A95kuwz8xmbp9UaulL6+XV9fn9ra2jQxMaFwOJwPkkZHt1dUjUajRSsFTk1NKZVKaXFxUUtLS1paWtLY2Jja29vV39+/JYgaHh7W1NSUpqen84HZAw88QKBVBbu/D4xTaASUgm8MdQu2MplMyf1VS0tLrm8gvnTpki5fvlzyuNXVVVevo54o9w54l+0y8NZm6bfOUPq6iGg0qmg0WvK4WCymWCxW9LlylHs8dmbr94FxCg2CUvCNoe6l3wupZVncW7duaWVlpeSfRm0aSbl3wNvYLA18yOi8Ty0PfLv4AYxTaDC2S8FvNLmH93gy2Kql1tZW7dmzp+QfwzDqfamuoNw74H1slgY+ZLSFN/1l4/chuEtG7wjjFBqO7VLwG03uKQPvPXVLI9yJ1SerFvu1Dh48qIMHD5Y87tSpU1pZWXH9emqNcu+AP1ibpT9InreVUmImz0uDJ2pwZUBtmAszyk2PyXzzpfxjRuR/p5YDX1fL3k/X8coA91jZDbaykDYyG4zQfr6zeUjTr2w1M8roAv7C7yya1dq188qeOb5eHMPM5R835y8pd+4PmM1HQ6PJvb/VLdgKhUJFm0xae7WsqoRwB2V0AX/hdxbNqOTeYvYpognQ5N6/6hZsRSKRogUwrCDM7UqEsL/xkjK6gDfwO4tmY2tvMbP5aHBkNvhX3YKtaDRadGVrcXFR3d02lkpRMXNhRtmLz8q8dq70wZTRBTzD9mbpzE0qU6Eh2N1bzGw+GhmZDf5Vt2Crr69P6XRai4uL255LJBI6cODAlsfS6bSSyWSNrq6xbcl9z5WY+aCMLuApdkvBm9cvUJkKvsdsPvAhysD7U92Crfb2dh09elSTk5NbHk8kEgqFQurr69vy+Pj4uE6fPq14PL7jeTOZTE36c/mV7b5agTbK6AIeld8sfc/DOx/IXhb4HLP5wIcoA+9PdS393tfXp7a2Nk1MTCgcDueDpNHR7Slr0WhUqVSq4D6uqakppVIpLS4uamlpSUtLSxobG1N7e7v6+/u3BW7NzG5fLaPnqIKUjQY8y+jsldHWoZLt1jf2svD7DL8yop9fz8QoeRwTg2hslIH3p7r32YpGo4pGoyWPi8ViisViRZ+DPWXlvvPlDPA0fp/RDAL9o8q+dWbnL5fsLUaTaOk5IiO0X9nJp6TluZ0PZrLNE+izVUOZ7FrJn91E7jvQOPh9RrMwOu9Tyz//74ofwN5iNBnKwPtL3Ve2Gt3cQkbnEou6mFxWJmuqxVh/fM3Ulp/bgoYGox0a7gsr0nGH2oLrcXAmu1bw50rkc9/tfEEj9x3wNH6f0UyMtjs3/SWw3tg4uEtG9IgC/aMEWmgqlUy2MQbUD8GWiy5eW9api/PKbVq4WjML/5zJmrowe1MXZm9KUsmg7OHeO3XfXpubhjch9x1oHPw+o1ms/eq1/M+BoWdldB3kyyOaFpNt/kKw5ZK5hcy2QKscdoKyYIuhQ/u3B17FVsDMhRmZmZul35zcd8AXbO1lkfI9t4zO+2pzYYADzIUZ5abH1vcm5r9UGlLbnXx5RNOzO9lmlYHn/l8/BFsuOZdYrDjQsiu79mHgFTCku/bcoX96L6tbOXPbCtjatfP2qteQ+w74ht3KVOb1C8r++lUFHjxJKwf4QvExy1Tu/JMSn2U0OduTbRtl4Ln/1w8FMlxyMblc0/fLmdL88ge6lVtfBrNWwJ45e10n/5e/0a1XSwdaxr6H6asF+Aw9t9BoSvaD5LMM2G5wL4nfmToj2HJBJrumTLZk95ua+c/Xzimg0r211HonK1qAD1k9t0raKAMMeJmtfpB8loEPJ9s6uksfzO9M3RBsuaAt2KK2oFHvy8iL6Q1bx1EeFPCvsnpuAR7GZxmwjzLw3kew5ZLBqI1Z5hpoNTNql83+Otn3NffuzZr1/QLgDHpuoVHwWQbKw++M91EgwyXDfWG98tZN14tklHLLaFPabLMVcKXVpqfOpiSlqi4xD6B2KAOMRsFnGSgPvzPex8qWS7o72/T1wS4F6vz/8D3m21pQp61jp/RA/ufNBTa++pczeu6NlGbetTlzAqDmjOjn7R24UQYY8Cq7n2X6xwHruP97G8GWiwZ7OvTMsW493Htnfg9Xi/Fhk+LNP7shZl7USf2hPq75ksdmFdB5DRd+bm174DW3wDI04CWB/lF7Vak2ygCvXSN3H95k67NMP0ggj/u/t5FG6LJ94TYdfyCi4w9EdCu7ptaNZsO3/5xa+UBnpxd1MbmsTNbMB2Fr5npAZppSOfUN7zHf1nH9REHlSh6bVUDP6ff0K2Nf6WM3Aq/JN2/q9x/s0mCPN/amAc3Obs8tSfkywEZoPxVI4Tn5z/Jrz0hmgTGMfpDAFtz/vY1gq4as4KrQz3aCsjfffV//fvamXn3rpkrVsPi8ztkKtH6jLv1bfdNWoLXZmin96LV5vTG3rP/q053s6wI8oKXniIzQfmUnn5KW53Y+eKMMcHDwRG0uDihDS88Rrb3zH2QmTn/4YHCXjOgRBfpH+ZII3Ib7v3cRbHlQsaDs3r27dO/eXTr+QCQfeFkrYXcEpI9+5A69s/KBcqb9cu+dWig70Nrs8vVVXb6+qmCLoUP7OzTcF1Z3J5svgXopuwwwgy286mYy/2Pgt/9ntRBgATvi/u9NBFs+tTnw2rz6JUlvpRbUft7enqp2ZXSHeUsfGK1VXY+VXvjKWzf11X8e0eHeO6s6H4DKVFIGmOpU8Boz94HMG/H1v+y6S0b43vpeEOAD3P+9iWCrAWwOtCRpf6RTH9gsA5pWW9WB1ma5Neknb6T000s39GAPpeOBWqMMMPzMXJhRbnpM5rVz0trGpGGgVVqclTrvq+/FAR7H/d+bqEbYoOyWAd1c7t1Jt3JUMATqhdLZ8KO1a+eVPXNc5uyLUm7TeLHyKyqoATbZLgOfu6XsxWcpBV8DBFsNyFyYkZm5WfK4nIKaCB51/XqsFMOnz8zp4rVl198PaHa2ywBnbjLQwhPMhZmdK6ltVFAzF2Zre2GAz9i+/5s5mbMvMpFRAwRbDcaaGdT1iZ0PbAmq9dBJ/dGX/wv9T//HXv3r317vBxZ08RNhVTD8/sSvaZAMuMgqA1xqwDWvX2CghSfkpsfslayeHqvNBQE+Zff+n8dEhuvYs9VASs4MbjD2PazAZ47nS+feXnq+nBLzlaCCIeC+fBng+HPS9QvFD6TnCjzATP61zeOooAaUYt3/c9NjMt/8ZeF+dZtRCt5VrGw1EFszg5LUeueOX6qsKofP/+4n9YdH79Fn79nt4FV+iPRCwF1GZ6+MNhuNx1kxQB1VUkENwM6Mzt714ClgrwiamSTDwS0EWw2krJlBm+7du0vfGvqEvvFQlwIufVo2pxdSRANwlhv3BcBJ+QpqdlBBDbCNiQxvINhqEG7/Qg32dOiZY+7u67p8fVXfeXlOk7Oli3sAKI2BFn5BBU3AeUxkeAPBVoOoxS+Uta/LSi98uPdO3REo+zQ7svp0PfFXlIsHqsVAC7+wVUGtJbh+HADbbJeC33UX1WldQrDVQGo5M2jt63ruy5/U1wY/5niKodWni/1cQHVYMUApGTcqIZUpX0HNKDKYtAQVePAkRVyAMtkuBb88R3Val1CNsEHY7a3lxszg5+4NKfpb7To7veh4BUNrP9cbc8v6nc98lKqFQJkC/aPKvnWmZPEc89pZZWUq0D8qo/O+Gl0d6mVuIaNziUVdTC4rkzXVFjQ0GO3Qw7136r6966uhmeya2tzsB3Kblp4jyv3d/ywtbipBHdwlI3pk43NJoAWUy5rIsFOtmuq07iDYagBr187b+yVycWbw9tLx43+/oMvXVx07/+Xrq/r//mpVv/9glwZ7bFRXAyCpjIE2l1lvcPnWGQUePKmWHla6GtXFa8s6dXFeuU0TY5nsejbBhdmbMiQZxvpkV6EgzC3mB6vS4lvrf7kzquAX/oLUVsAB+VYgk09Jy3M7H0wZeMcRbPlcpb213LRewXBXwQG9GqxyAZXZ0nPl2lkpt8NeSGY2G9rcQqbkfdmUZJrrP28Owjb3Rox03OHYqpe5MLP+2XzrrKRNF7b8tsQqK+AIo7NXev8dW8fSz85ZBFs+51RvLTcM9nTo7nCr4+mFrHIB5bN6rmRlypx9ceeDmdlsWOcSixVPgFm9ES9sVIx1YtWraGbGzaSyZ46zygo4pJLqtKwsO4MCGT7n9R46t1cwdKpBMr25gMp4/Z4Bd11MOldwyFr1eubsdX31L9cryM68a/PLnGxkZmysspoLs4WfB2Ab1Wnrh2DLx/zWQ8eNBsmXr69SsRCwyW/3DDgrk11TJmu6cm5r1Wtz4FVqIsxWZsbGKiuA6lGdtj4ItnzMr7MUmxskO9Gni1UuwB6/3jPgjLZgi9qChuvvYwVepSbCWGUFast2GfjMTXpuOYhgy+f8OkthpRc62afr8vVVfeflOU3O2iiBDzQpv94z4IzBaO32ue40EcYqK1B7+X52JQIu8/oFem45iGDLp8yFGWUvPivz2rnSB7vQW8tJn7s3pGeOdTuynyu3Jv3kjZSe+Ct7aSxAs2Fms7kN94Udb0JfSqF0b1ZZgfpo6Tmi4LHnpXse3vlA9kw6hmDLh9aunVf2zPH1imI7lXCWXO2t5aR94TZH93PdytlLYwGaDTObza27s01fH3Ru36xdhVa5WGUF6sPo7JXRZmOVmz2TjiDY8hm7fbUUaJPRO6Lgsed9VTbX2s9F1ULAPcxsNrfN+2YdapVl2+Z0b1urrB7PzAD8ij2TtUOw5TN2+2oZPUcVHDzh+RWtQpxe5ZI+HOBZ5QLWMbPZ3G5vy/Fw75354hkthuRmGQ0r3fv3zkoTd/1fZBZ7N59kZgB+w57J2qKpsc+UNRPh84akVlPkX8T/UZevr1Z9vtyadOrivO4Ot2pfmPx/oJnuJyju3r27dO/eXTr+QES3smtq3VjuevPd9/XvZ2/qYnLZlZLxt3KmfnpjQP26SxHd+PCJ4C4Z0SMK9I8SaAEuyO+ZtBNwsWeyagRbPtKM3b+tVa6L15Z16uK8cmvVnS+3Jv3Z5G/05Oc+ru5Of/9/A1SjGe8nKK11U17h7UFYauUDnZ1e1Ktv3VS2ynuxpcO8mQ+0Uq29WvsvfqDuvXc6c3IARRnRz6/v/S9l110yF2ZkdN7n/kU1KNIIfaSZqzc5uZdrfvkDCmeg6TXz/QTlaw22FEw9rHbPV7/+f/mf/z+3+vWd8ynuzUAN2K5MuzxHsaQqsbLlM3ZnIhqxepOTq1xW4Yw35pb1O5/5KKtcaErNdj9JJpNKJpMKh8NKp9OSpFgsVtG50um0Jicn1dbWpqGhoZq8p5dsXvV68933Nf73C2Wle99jvq3P65we0qsfPqY5fTz3tk5dFOnegMusyrS2iq5tFEsyQvtJ7a0AK1s+Yi7MyMzYaNjb4NWbNlfSuiNQ3bkK9X8BmkUz9dxKJBKKx+MaGhrSwMCAYrGYIpGIxsbKK/4xMTGh8fFxxeNxJZNJZTLFN4479Z5ed+/eXWUVNYqZF3VSf6ghTSioXP7xz+hvdVJ/qM/mLurPJn9DBVnAZfnKtB3dpQ+mWFLFCLZ8wuqtpesTOx/YJNWbrHSW5778SX1t8GNVVS2kPDyaVbP03Eqn0zp79qyGh4e3PB6NRpVOpxWPx22fa2hoSCMjI4rFYmprK77y4uR7+oWddO97zLd1XD/ZEmRtFlROx/UTBW6+yUQYUANGZ6/0/ju2jqUMfGUItnzAbm8tY9/Dvuur5YTP3RtyZD8X5eHRjJqh51YikVAoFFJ7e/u25/r7+3X16tWGeE8vKNW64/M6VzTQsgSV0xGdYyIMqAHKwLuPYMsH7PbWUuudDb+iVYxTvblya9KPX5/X24vcTNA8Gr3n1vT0dMGgR5LC4bBu3LiR30/l5/f0kmLp3jG9Yev1m49jIgxwD8WS3Eew5QN0+bbPGuC7Ou6o+BxrpnTypTk990aK2VQ0jUa+z6RSKYXD4YLPhUIhSdLS0pLv39Nrbk/33mVk1C5799R2ZXSHeSv/d6tPIhNhgPOM6OdtHtdcmVNOoRqhx9ELp3z7wm168nMf13denqu4YuGaKV2YvanJN2/q9x/s0mCPjVl/wKca/T6TyWR23F8lrQc+kUjEM+956dIlXb58ueT7rK5W3/C9Fj53b0jR32rXB79s0x1m6YAprTZ9YLRueYw+iYA7Av2jyr51pmQWlXntrLIyNxqO03fLLla2PI7l3cp0d7bp64PVpRRKFM9Ac2jm+4wVENUypc/Oe966dUsrKysl/5imWavLrtq+cJta7x0ufaCkKT1Q8PH55Q9IKQQcZrdYknIZmbMv+rpgUj0QbPkAy7uVcbIRMnsG0Oi4z3hLa2ur9uzZU/KPYRj1vtSy2Gk3kFVA51U8KGNvLeA8q1iS0TsiBUpMqPm4YFI9kEbocfTWqo6TjZCtPQM020QjsptGYvXcapQUEqtPVrFiFvV6z4MHD+rgwYMlz3Xq1CmtrKw4dm1uyzdSffU7BZ/PKqDn9Hv6lbFvx/NYe2sP33unhvvCpBUCDjA6exUcPKGszNIN7zcKJgUHT9Tm4nyMlS0Po7eWc5xa5bL2DJBSiEbTLD23UH/GJwbzP5taX5lLq00TGtIz+kNNGYPFXrqFtbeWrAPAWY1cMKkeCLY8it5aznOqPPz88gc020RDatSeW6FQqGjlP2vflFUh0M/v6RfmO/8h/3Og74uaP/aSnt/3M/3U+GrJFa1CqFQIOIe+W84j2PIoemu5Z3P/l5YKtztQOAONqhF7bkUikaLFKKyAyMlKhPV6T78w3/mwobPxsQPa99E7q54II+sAcEYzF0xyC8GWR7GE6y6r/8szx7qrWuWicAYaUaPdf6LRaNFVpsXFRXV3dzfEe3qduTCj7MVntfZ3//f8Y2tvT8hcmJFUfZ9EKhUCzrBbMEm77sr//qI4gi0PYgm3dpwoEU8KCxpJI95/+vr6lE6ntbi4uO25RCKhAwcObHksnU4rmUzW9D0bnbUHeX3T/YeViszk+S17AK0+idWscHE/Bqpjp2qoJGl5jj28NhBseRBLuLXlRPEMUljQKBrx/tPe3q6jR49qcnJyy+OJREKhUEh9fX1bHh8fH9fp06cVj8d3PG8mkymaKljuezayknuQb9sDWO0kWG5NOju9WNmLAdjvuyX5bg9vPVD63aOM6OdLl90UPW+c4kSJeCuF5av/PKLDvXc6f5FAjTTi/aevr09tbW2amJhQOBzOB0mjo9tbZkSjUaVSqYJ7qqamppRKpbS4uKilpSUtLS1pbGxM7e3t6u/v3xJElfOejczWHuTbykgP9nTo7nCrzk4vavLNm1ors3fz5Js3KQkPVKGl54iM0H5lJ5+Slud2Ppgy8Dsi2PIgemvVjzXA/9nkbzS//EHZr8+tST95I6WfXrqhB3s6GOzhS43acysajSoajZY8LhaLKRaLFX3OjfdsZGXtAdz0Zc3aWzvcF9Z3Xp4raxJszZS+8/Kcvj7YpcEeGwVfAGxjdPZK779j69jbf3/xIdIIPYbeWvVX7Z4BSbqVM+n/At+i5xac4sQewErTCtm/BVSnEffw1gPBlofQW8s7nCicITHYw78atecWasupPYCVVipkPy1QuUbcw1sPBFseQm8tb3GicIbEYA//asSeW6g9u2WkS+0BrDTrgJLwQOWc+v1tZgRbHtJovW0agVU4o5pmmxKDPfyL+xKqZauMtM09yFbWQbkN6ckyACpjuwz8xh5ebEew5RHkxXpbtc02JQZ7+A/3JTjB6LxPLYNPFT+gzD3Igz0d+u4XuisKuCgJD5SHPbzVI9jyCPJivc+JwhmkFMJPuC/BKS0f3dRXzNi4iQZ3yegdqWgP8r5wmw7fW36Ljck3b3L/BcrEHt7qEGx5CHmx3udE4Yz55Q/09BlSCuEP3JfgBPPG1fzPLQe+ruCX/0Z3fPm8goMnKt6DPNwXLvtebJWE5/4LlIc9vJUj2PIIemv5h5VS+HDvnbojUNk51kzpR6/N6/sTv2aWFZ5mN1/fvHZW2YvPkrOPgtY2BVvGxw44sgpaTUn4H79OSjdQLvbwVoZgywPoreU/VrPN5778SX1t8GMVr3Rdvr7KLCs8zW6+vnIZmbMvkrOPgszUlfUfAq0yfuufOXbeSvfTrpnSyZfm9NwbKSa8ABvYw1s5gq06o7eW/33u3lBVxTMonAGvs/L1jd4RKVBiRYKcfWwwF2aUvfisPvjLz0vvza8/eEeHdDPp6PtUup92zRTN5wGb2MNbOYKtOqO3VmOotngGhTPgdUZn7/r+mp7h0geTs9/0rIwNc/ZFKZf+8In0P7qy+llpSXiJCS/ALrt7eLXrLlLKNyHYqjPyXxtHtcUz6MUFP+CehVJKZmy4tPpZaUl4ibLwgB22e24tz5FSvgnBVh2R/9p4qu3HxcZteBn3LNhhK2PDpdXPSkvCS5SFB0qxvYdXIqV8E4KtOiL/tTFVm1LIxm14Ffcs2FHv1c9KSsJLlIUH7Mj33OroLn0wKeWSCLbqjh42janalEJr4zb9uOA13LOwEy+sflZz/2X/FlCa0dkrvf+OrWNJKSfYqhurSpN57Vzpg+mt5UtWSuFn79ld8TnoxwWvsZ2zn7nJBukm5JXVz839EMvdw8X+LWBnXphU8ROCrTrYWqWpxAeQ3lq+ti/cpm8NfULfeKjyVS6JflzwDrs5++b1C2yQblJeWf20+iE+c6y77Psv+7eA4rwyqeIXBFs1ZrevlgJtMnpH6K3VIKotnCGR3gLvyOfs3/PwzgeyQbop2Vr9rGHGRiVl4dm/BezMK5MqfkCwVWN2+2oZPUfXe9qwotUwqi2cIdGPC95hdPbKaOsofSAbpJtOfvXTCBQ+oA4ZG5WUhWeCCyiOlHL7CLZqrN5VmlBf1RbOkOjHBe/gfoZiWnqOyLjvv976YHBXXTM2KikLz/4toDBSyu2zEZLCKZVsKGz2PNdGNNjTobvDrTo7vajJN29qzSz/HNaM693hVu0L8xlB7XE/Q0nLb+d/DPzvf6aW0P46Xsy64b6wXnnrpnJr9l8z+eZNDfeF1d3J5xfYrKXniIzQfmXjz0nXLxQ/cCOl3Ajtb8qMLVa2aogNhbBUs3HbQkoh6on7GXZirmVlvvO363/ZdZeMO3vqej0W9m8BziKlvDSCrRpjQyE2qzatkJRC1BP3M9zOamuS/V+PSrn0+oOBO6RF7xRJYf8W4CxSyndGsFVD5sKMzMzN0gfSV6upVNuPiy8BqBc2SGOzom1NVn7tuT0b7N8CnEHPrdIItmrEGoR0fWLnA+mr1ZSq7cdFSiHqgQ3SsJRsa+LBNgDDfWH6bwFVIqW8NIKtGrDbW8vY9zB9tZpcNf24SClEPdBzC5LNtiYe27PB/i3AGaSU74xgqwbs9tZS652saKGqfly5NenHr5NSiNpigzT8umeD/VtA9eymlJvXzip78dmmSysn2KoBvw5CqJ9qCmesmdLJl+b03Bsp0l1QM9znmpff92ywfwuojt2UcuUyMmdfbLq0coItl/l9EEL9VJNSuGZKF2Zv6ukzpLvAfdznmlsj7NmoZP/WxST3VsBipZQbvSNSoMTveJOllRNsuawRBiHUTzUphdJ60PWj1+b1/Ylfs8oF13Cfg9/3bFSyfyuTNfXnr89zbwU2GJ29Cg6ekNEzXPrgJkorr3uwlUwmNTExoXg8rqmpKU1NTdX1PG7w+yCE+qq2F5ckXb6+yqZuuIr7XHOztWfD421NKtm/9cpby9xbgduQVr5VXYOtRCKheDyuoaEhDQwMKBaLKRKJaGysvEjXqfO4gd5acEI1KYUWNnXDTfTcam75PRtGoPABPmlrUun+Le6twDrSyrerW7CVTqd19uxZDQ9vXWqMRqNKp9OKx+M1PY8b6K0FJ1WbUijRjwvuoecWWnqObF/hDO6S0Tviq7YmlezfomAGsI608u3qFmwlEgmFQiG1t7dve66/v19Xr16t6XmcRm8tuMGJlEL6ccEt9NyClt/O/xj4nf+H7vjy+fU9HD6aTKz0PkvDY2AdaeVb1S3Ymp6eLhggSVI4HNaNGzeUTqdrdh6n0VsLbrFSCh/uvbOsvQWbkfYCt9Bzq3mZ2fdl/lNi/S+hHrV85K76XlAVrPvs5/bb+CxvoOExsI608q3qFmylUimFw+GCz4VCIUnS0tJSzc7jNDYHwk37wm06/kBEzxzrrniVi5RCuIX7X3My3/17ycxJklruOlDnq6nevnCbvvZgl9qC9me1mMgCSCu/nY2w0x2ZTEZtbTvnaS4tLSkSibh6nkuXLuny5cs7X6yk1dVVSdJvfvMb3XPPPSWONqX33i15zrz/ttT5gOJu5Uyt3spJZmWv/6Eh7W4NqDVQ4TIZsIXz978nnnhCHR32VxhQW+bCjHLTYzLfOvPhYzeTMhdmZHTeV8crc8ZgtEMXZm0Uutpg7d86/sDO31+ARtbSc0RGaL+y8eek6xeKH7iRVm6E9jdsplfdgq2dWMFTtel/ds5z69Ytrays2D5nLpfTr371q6qua5sFh88HlOm9el8AmpeN+18ul6vBhaASa9fOF9yfbN64ouyZ4wo8eNL3e5KH+8J65a2byq3Zf83kmzc13BdWd2fjb/4HirHSykvOBW+klQcHT9TismrOk8FWLbW2tmrPnj0lj1tdXZVpmgoEArr77rtLn/jWspS1ESwG26VWZmzhjKpWuQypLdCitmBLVQU4AKfvf4FAkXLiqKuShaAaZMbaKpjx49fntWbz3mrt3/r6YJcGexjj0bzKSisn2KqdTGY917lY4Qsnz3Pw4EEdPHiw5LlOnTqllZUVffzjH9f169dLHm8uzKyXfd+pSEZLUMFjz/t6EIL3vL2Y0Z9N/kbzyx9U9PpAi/iCgKo4ff+z7r/wFluFoBpkxnqwp0N3h1t18qU52wGXtX/r7nCr9oVZ4ULzqaTnViOWgmf+2iUlNwfSWwsuqbYfFxu8US3uf82h2QqhVNrwmP5baFb03FpXt2ArFAoVrRJo7bGyqgnW4jxusHrOGL0jH37YfNjgEf5TbT8uKhWiWtz/GlslM9aNoJKGxxeTlIJH86LnVh3TCCORSNHCFVbwVKoSoZPncYvR2buePjF4omGXR+FNVtpLpSmF88sf6Okzc/r9B0kpRGW4/zWu/Iy1nYCrgWasK9m/lcmamn33ffXutTnDDzSQQP+osm+dKZ1yvNFzqxEqmN6ubitb0Wi06IrU4uKiuru7a3qeWmiUwQb+UW1K4Zop/ei1eX1/4tescqEq3P8aT7POWA/2dOi7X+guq6n8H5+/TrNjNCV6btUx2Orr61M6ndbi4uK25xKJhA4c2NoQMZ1OK5lMVn0eoNlUm1IoSZevr+o7L8/xZQFAXqB/tOQXKLUE149rMOXu32IvLJqZlVauex7e+cCNCqbmwmxtLqxG6hZstbe36+jRo5qcnNzyeCKRUCgUUl9f35bHx8fHdfr0acXj8arOAzSjwZ4OPXOsWw/33lnWbOxmfFkAsFl+xlpFbioNXgil3P1bFMtAM7N6bpW0UcG0kdS1GmFfX58GBgY0MTGheDyuqakpLS4uanR0+yxYNBpVW1tbwf1X5ZwHaFb7wm06/kBEzxzrpnAGAEe09ByRQj1bH2ySQiiVZA1MvnmT+yeaVrNVMLXUvc9WNBpVNBoteVwsFlMsFqv6PECzs74gnLo4r9xa+a+fX/6AZp0AJG1UJbw5t/6XUM96Bcom2p832NOhuzqC+qOXS/fflGh2jObVzD236LMFNCErrbCr446KXk9KIQBJMv/xP0pmTpJk7P1Mw3w5KkfvR3epLWg/P5v7J5pRM/fcItgCmpQTzY9JKQSam/nOh/uoW+76TB2vpL4Go+WtUrF/C83IbgVT7bpL5sKMuxdTQwRbQBOrtlKhlVJIlUKguZgLM8pefFZr8f8p/9jar19vqC9I5aDZMVCarQqmkrQ811Bl4Ou+ZwtAfVnNj38R/0ddvr5a9utza9KPX5/X3eFW7Qs3zrI/Gk8ymVQymVQ4HFY6nZakHfcCV3ue8fFxtbe3a2BgQJFIROl0WqlUSvF4XLFYrGDBJz9Yu3Zeude/u61JqTn375W9PqnAgycbujBGIZU2O/7z1+d17J91qruTeycan1XBtND9Y5uNMvBGaL/vK5oSbAHQvnCbvjX0CV28tlxR4Yw1Uzr50pwO33unhvvCfHGA5yQSCU1PT2tkZCT/WDKZ1NjYWFmVa8s5TzqdViKR2NKypK2tTSMjI74NtMyFmZ2/KDXQF6RyWRNXJ1+asx1wvfLWsl5PLlMwA02jpeeIjNB+ZSefkpbndj54owx8cPBEbS7OJaQRAsirpnDGmildmL1JWiE8J51O6+zZsxoeHt7yeDQaVTqd3ta/0anzRCIRfelLX9Lhw4d1+PBhjYyM6Mknn/R15dzc9Ji9GekG65NjV7nNjiUKZqD5GJ290vvv2Dq2EcrAE2wB2MKJwhl8cYCXWE3u29vbtz3X39+vq1evunaeaDSab13S19dX/sV7TLP2ySlHJfu3KJiBZlJJGXg/I9gCsE21hTOoVAgvmZ6eLhggSVI4HNaNGzfye69qcR6/arYvSJWq9P5Jw2M0i2YrA0+wBaCgantxzS9/oKfPkFKI+kulUgqHwwWfC4VCkqSlpaWancevmu0LUjWs++fn9tvfh2U1POaeiWZgtwy8EfV/sR0KZAAoykop/M7Lc2UXzZDWvzz86LV5vTG3rN/5zEcpnIG6yGQyamvb+bO3tLRUsmhFJedZXFzU3Nzclr/HYrGiK2SWS5cu6fLlyzseI0mrq+VXEK2GEf28zNkXbRzn/y9I1doXbtPXHuzS//b2ijJZexUzrDRsqrui0QX6R5V960zpPaCZmzIXZmR03lebC3MBK1sAdlRtSqEkXb6+yowtPMkKnqpN/yt0nqWlJd24cUMDAwP5P/39/frZz35W8v1u3bqllZWVkn9M02bZO4fY6pPTElw/DpJoeAwUYpWBL3U/Ma9f8H3PLYItACVZKTEP996pFqOyc1A4A81mZGRkW1GMSCSiSCSic+fO7fja1tZW7dmzp+Qfw6jwF7JC+S9IKvK+LUEFHjzZdGXfd1JJwQz2b6EZtPQcUfDY89I9D+984EZLCXNhtjYX5jDSCAHYsi/cpuMPRDTcF644rdAqnPHk5z5OSiE8IZNZ/0JbKq3PyfNEo9GSwdbBgwd18ODBkuc6deqUVlZW7F2kQ4x9Q5IRkMys1oMuc32PVvSIAv2jBFq3qaThsbV/i/5baHRGZ6+Mtg6V/NXwcc8tVrYAlKXatML55Q9IKURTswKyVCpV5yupjLmQ2Ai0JGP/Iwp++W90x5fPKzh4gkCriMGeDn33C91lZQaQDYBm0egtJQi2AJSt2kqFfIlALYVCoaJVAq29U1Y1QafOc+7cOU1MTBQ81ql9YvVivvMf8j8bd32mqasOlqPShsfs30Ija4aWEgRbACriRPNjenGhFiKRSNHAxgqeSlUiLPc809PTRQOzct7TizYHWy17P1PHK/GfSvZvXUySBYDG1QwtJQi2AFTMqZTCydmbzl4YsEk0Gi0a+CwuLqq7u9vx8wwMDGhkZKTgsclkUqFQqOp9YrVmLswoe/FZmW9fyD+Wm/4rmQszdbwqf7HumeWkE2aypmbftTnzD/hQo/fcItgCUBUrpfCz9+yu6PW5Neknb6T0xF/N6Lk3Uqx0wXF9fX1Kp9NaXFzc9lwikdCBAwe2PJZOp5VMJqs6T1dXV8E9Wel0WolEQkNDQ+X/h9TR2rXzyp45vq3Hljn7//Z9WeZaq2T/1h+fv84+VzQsWy0lJJnXzq5P+PhsgodgC0DV9oXb9K2hT+gbD1W+ynUrZ+rC7E2KZ8Bx7e3tOnr0qCYnJ7c8nkgkFAqFtpVnHx8f1+nTpxWPxys+T19fn+Lx+LaAa2xsTAMDA9ve08vMhRnlXv9u8eajPi/LXA/l7t9inysamd2eW8plZM6+6LsJHkq/A3DMYE+H7g636s8mf6P55Q8qOof1peLucKv2hf2Xmw1v6uvrU1tbmyYmJhQOh/N7r0ZHtzffjUajSqVSBfdUlXOe4eFhTU1NaXp6WplMRul0Wg888ICvAi1Jyk2PFQ+0LD4uy1wvw31hvfLWTdttNKxiGccf8OdeP2AnLT1HZIT2Kzc9JvPaWSm3w8TCxgSPEdrviwqoBFsAHGUVzqi0F5dEPy64IxqNKhqNljwuFospFotVfR7rXH5XVllmgi3brP1bpy7O275XTr55U8N9Ye6LaEhGZ6+CgyeUlbktZXkbH03wkEYIwHHVFs6Q1otnPH2GlEKgnpqhLHM9DfZ06Knhe2wfbzU75r6IRtZofbcItgC4otpeXNL6F4sfvTav70/8msIZQB00Q1nmeuv96C61Be1Xy2D/FhpZI07wEGwBcE21vbgsl6+vMpsL1Emjl2X2gsFoR1nH0+wYjaoRJ3gItgC4yomUQonZXKBebJVlbgmuH4eKVNLs+MLsTdploCE12gQPwRYA11kphQ/33qk7ApWfxyqcwZcLoHaMzvvUMvivih/QElTgwZO+qArmVZU0O5ZEuww0JLt9t5S56YueWwRbAGpiX7hNxx+I6Lkvf1JfG/xYxStdFM4Aaq8lvP/DvxgbMybBXTJ6RxQ89rxaevwxw+xllTQ7llj1R+Ox23fLvH7BFz23CLYA1Nzn7g1VVTyDwhlAba2987f5n1v+s28q+OW/0R1fPq/g4AlWtBxUbrNjC3u40Ghaeo4oeOx56Z6Hdz7QB03VCbYA1IUTxTMonAHUhvnOf8j/bOz9jC82pftVJfu3pPUeXEw+oZEYnb0y2mwUj9noueVVBFsA6saJ4hm5NenHr5NCA7jJfOfq+g+BNhm/1Vffi2lwld4X6cGFRtQIPbds7D4DAPcM9nTo7nCrfhH/R12+vlrROdZM6eRLczp8750a7guru5NZd6Ba5sKMctNjMq+dl3Lp9Qfv2C0tXZM676vrtTU66754dnpRF2Zv2n6dtX/r7nCr9oW5D8LfKum55cVVd1a2ANTdvnCbvjX0CX3jocpXudbM9cpcFM8Aqrd27byyZ47LnH3xw0BLktL/5IsN6Y3AKir0cG95e7jYv4VG0Sg9twi2AHiGVSK+0sIZEsUzgGqZCzPKvf5daS1b+AAfbEhvJJXs4WL/FhpFI/TcItgC4ClOFM6QKJ4BVCo3PVY80LJ4fEN6I6mkBxf7t9AoGqHnFsEWAM9xonCGRP8ZoBKNsCG90VTSg4v7HxpBI/TcItgC4ElWSuFn79ld1Xlya9KfTf6GlBrAhko2pKM2KunBxf4tNAK/99wi2ALgWU4UzpCk+eUPKJwB2NAoG9IbFfu30Kz83HOLYAuA51mrXA/33llWGs1mFM4A7GmEDemNiv1baGZ+TXEm2ALgC1YZ5GeOdVe1ynX5+iqrXMAObG1IbwmuH4eaY/8WmpGfU5wJtgD4ihPFM1jlAorLb0g3igRcLUEFHjwpo7O3theGPPZvodn4OcWZYAuA7zhVPMMqDz85e9OhKwMaQ0vPEbUc+L2tDwZ3yegdUfDY82rpIYWw3ti/hWbj1xRngi0AvuRU8YzcmvSTN1J64q9m9NwbKb6IAJb338n/2DL0Pd3x5fMKDp5gRcsj2L+FZuPXnlsEWwB8zVrl6uq4o6rz3MqZujB7ky8iwAbznb/N/9wSub9+F4Ki2L+FZuLXnlsEWwB8b1+4TU9+7uNVN0GW+CICSOub0c1/Sqz/JdQjo9VGyWXUBfu30Ez82HOLYAtAQ3CicIaFRshoVubCjLIXn1X29Bckra0/uJbzVEoOtqtk/9aF2ZukTsOX/NZzi2ALQMNwqnCGRCNkNJ+1a+eVPXNc5uyLUu7Wh08sv+2plBxsV8n+LUmkTsO3/NRzi2ALQENxqnCGRIl4NA9zYUa5178rrWULH+ChlBwUVsn+LYnUafiP33puEWwBaEhOrnLRCBmNLjc9VjzQsngkJQfFVbJ/S2IPF/zFbz23CLYANCxWuQB7/JSSg51Vsn9LogcX/MVPPbcItgA0PGuV6+HeO3VHoLpzscqFRuO3lBzsrNJiQfTggp/4qecWwRaAprAv3KbjD0T03Jc/qa8NfqyqlS5WudBI/JaSg9I2TzCVg/1b8As/9dwi2ALQdD53b8iRRsiXr6/qOy/PaXL2pkNXBtSHn1JyYI81wVRJwEXrC/iBX3puEWwBaEpONULOrUk/eSOlJ/5qRs+9kdLMuzbTsQAPsZWS0xJcPw6+UskervnlD0gphC/4oecWwRaApuVkI+RbOVMXZm/qmbPX9dW/nKFZKHwln5JjFNnU2BJU4MGTMjp7a3thqFqlPbhIKYRfeL3AD8EWgKbmZIl4S3ZtPfCikAb8pKXniIxP/s7WB4O7ZPSOKHjsebX0kELoV9X04CKlEF7mhwI/BFsAmp6TJeI3o5AGfGfl1/kfA7/9U93x5fMKDp5gRasBVNqDi5RCeJkfCvwQbAHABjdWuSTKxcMfTNOU+Y9/t/6XtpCMMAFWo6m0BxcphfAyrxf4IdgCgE1qscpFEQ140vLbUmZJkmR89D+RYZSZcwbPq2afKimF8Cq7PbfMa2eVvfhszftuEWwBQAFurnJRRANeZL77t/mfjbv+0zpeCdxk3dsqaX1BSiG8yG7PLeUyMmdfrHnfLYItACjCrVUu6cMiGvTpQr2ZCzPKXnxWuYvf+/Cxd+I1n/1F7VTT+iK3Jv34dVIK4S1Wzy2jd0QKlNiXVeO+WwRbAFCCNRP8cO+duqNIZexK3d6ni5Uu1NLatfPKnjkuc/ZFyczlHzd/fbHms7+orWpSCtdM6eRLc9yz4ClGZ+96QZ+e4dIH17DvFsEWANiwL9ym4w9E9NyXP6mvDX7M8ZUuq08XhTRQK+bCjHKvf1dayxY+oMazv6i9alIK10zlV+e5Z8FLvNZ3i2ALAMr0uXtD+ZWuoMN3UQppoFZy02PFAy1LDWd/UR/VpBRKVCqEt3ix7xbBFgBUwFrpev53P6k/PHqP64U0CLzgNK/N/qJ+qkkplKhUCO/wYt8tgi0AqNK9e3e5XkiDwAtO8uLsL+qrmpRCab1SIWnQ8AKv9d0i2AIAh7hVLt5SKPBiJhmV8OLsL+qv2pTCzWnQ3JtQL7b6brUE14+rAYItAHCQm+XiN6N0PKrltdlfeEO1KYXSeho0q1yoF3t9t1qUm/5fa9LigmALAFywuVy800U0Nru9dDwphrDLa7O/8I7N968Wo7JzsMqFetrSd6ulQGrs2q2aNTgm2AIAl9xeRMONPl0Wq3Q8e7tgV372V0W+TbcEFXjwpIzO3ppeF7zBun89c6ybVS74ktHZq0D/lySZxQ+qQYsLgi0AqIF79+5ytU/XZhTVgF0tPUekPR/f+mBwl4zeEQWPPb/+PJqaE2mFrHKhXrzQ4qJE/gAAwGmfuzek6G+16xfxf9Tl66uuvpcVeF2Yvalgi6FD+zv0cO+dum/vh8URMtk1tbmZ6wjPMjM3pZVfS5KM3/pnCgz/iGIY2Gawp0N3h1v1Z5O/0fzyBxWf5/L1VV359aq++s8jOtx7p4NXCBRWVouLwROuXAPBFgDUgVVI4+K1ZZ26OK/cmvvvuTnwChjSXXvu0D+9l9WtnKm2oKHB6PZADI3N/Me/z/9s3PWfEmihKKtS4XdenqvqfmXtM/3ppRt6sId7DtxTSYsLN+6BBFsAUEfWjPHZ6UW9+tZNZWsQdElSztSWGepMducVsEZY/Uomk0omkwqHw0qn05KkWCzm6nmcek+3mO/+bf5nY+9n6ngl8AMrpdCJCSJrn+lOq+5ANfItLuwEXC62uCDYAoA6szaiH38gojfffV//fvZmTQOv221eATMkGcb6notiq1+bAzE7P9dDIpHQ9PS0RkZG8o8lk0mNjY1pdNR+tb1yzuPUe7rBXJhRbnpM5pu/zD+29vaEjFCPjM776nhl8DprgsjJNOhS6c633z/Kvefw+upe78drtn42op+XOfuiSnGzxQXBFgB4yL17d+WLaXgh8DIlmRuFnDavft2ehmiVh14zVfRnK1gb7guru7N26WrpdFpnz57VE088seXxaDSqiYkJxeNxDQwMOHoep97TDWvXziv3+ne3bRo35/5a2esXFHjwJIUxsCM306CLTfbcEZA++pHy7jmbf+b15b/ej9d8++s/3XZI39BLCiqnYkxJyfkb+kjy7/WJ6KeLHlcpf+eEAEADs4KuWpSOL5eVhngrtx6JrZnrf3b62QrWvvNybctAJxIJhUIhtbe3b3uuv79fV69edfw8Tr2n08yFmYKBVl4NyiCjcVj9uD57z25Xzm/qw/vHB7ny7zmbf+b15b/ej9d8++uvvvdxPaffU1bFB09DUnT1DXW+8vua/t/Gix5XKYItAPCBWpaOd1tuTTp1cV5vL9amBPT09HTBoEeSwuGwbty4kd9P5dR5nHpPp3mhDDIai7XK9Y2HqisPD7hlyhjUM/pDXdZ/tlPHLQWVU3fi/6bfzP1HR9+fXwsA8JnP3RvSM8e69XDvnfJrzYrcmnR2erEm75VKpRQOhws+FwqFJElLS0uOnsep93RaWWWQgTK4vcoFVONXxj6tak+xFu55QeW0cPUvHX1v9mwBgA95rahGJS4ml3X8gYjr75PJZNTWtvMesaWlJUUiO19LOeep9j0vXbqky5cv7/h6SVpdXS9Q8Jvf/Eb33HNPiaNN6b13S54z778tdT6gsFs5U6u3ctpxGQGosb/WogwbH0pTl2V85LmSxz3xxBPq6OgoeRzBFgD4nNeKatiVyZq6lV1Tax2X56yAqNqUvnLOY+fYW7duaWVlxfb753I5/epXv7J9vC0LDp8PAOrovXIOtnH/y+WKF93YjGALABqInwKvtqBR10DLy1pbW7Vnz56Sx62urso0TQUCAd19992lT3xrWcraCCyD7VJr6RlbwA5WuuAFYdsrW4aMj+wteVwgYK9iFcEWADSoQoHXxeSyMlkzX1L3nZUPlKvTF6DBaP2/zGcy60U6ihWzcOM8do49ePCgDh48WPJcp06d0srKij7+8Y/r+vXrJY83F2aUPXN85yIZLUEFjz0vo7O35PkAu95ezNS8eTuw2WPm8xrSRMnj/uHOI/r0yB+VPM66/5ZCsAUATWBz4HV76l49VsACLdLR/nBt3gx5Rud9Cjx4snj595agAg+eJNCC4xphnyn87a81rIf06o49t7IKqPPA7zr6vgRbANBkbk/d22kFrMVYb2rs5OJXoEX6+mCX9oVr09g4FAoVrfxn7ZuyKgQ6dR6n3tMNLT1HZIT2Kzc9tl51MPu+FNwlI3pEgf5RAi24zk/pzmgc1419es78PR3XTwoGXFkFNNf336m/+1OOvi/BFgAgr9gKWLE0xH96L6tbufWgTFpvJlns57agocFoh472h2sWaElSJBIpWozCCohKVSIs9zxOvadbjM5eBQdPSIMnZGYzMoK1+/cANis12SOt3z8quefw+upe78drLvX6S8agfrV2t47onGJ6Q+3KKK02vX3nYXUe+F3HAy2JYAsAUMTmFbCd0hA3/93Oz7UWjUY1NTVV8LnFxUV1d3c7fh6n3rMWCLTgFcXuM9Xec3h99fdsv13zzq/vVWvwv1z/Of2+Otp36dNyD2WgAABluT1o2vx3Oz/XWl9fn9LptBYXF7c9l0gkdODAgS2PpdNpJZPJqs5T7nsC2Gqn+0e59xxeX/0922/XbPv17bvkNoItAEBDa29v19GjRzU5Obnl8UQioVAopL6+vi2Pj4+P6/Tp04rH4xWfp9z3BAA0JtIIAQANr6+vT21tbZqYmFA4HM7vpxodHd12bDQaVSqVKrinqpzzlHMsAKAx1S3YSiaTSiaTWwagWCxW0bnS6bQmJyfV1tamoaEhJy8TANAgotGootFoyeNisdiO45Hd85R7LACg8dQl2EokEpqentbIyEj+sWQyqbGxsbJm/CYmJrS0tKRIJKJkMsmABgAAAMAzar5nK51O6+zZsxoeHt7yeDQaVTqd3pYjv5OhoSGNjIwoFouprY1qSgAAAAC8o+bBlrU5uL29fdtz/f39unr1aq0vCQAAAAAcV/Nga3p6umCgJUnhcFg3btwo2ggSAAAAAPyi5sFWKpVSOBwu+FwoFJIkLS0t1fCKAAAAAMB5NS+QkclkSu6vsope1MKlS5d0+fLlksetrq7W4GoAAAAANApP9dmygrBaphHeunVLKysrto9fXV3VqVOnXLwiAMBm1mTXe++9V+cr8R7r/xPGJgCoLbtjk6eCrXpobW3Vnj17Sh5nBWSmaZYVnAEAnGGaZr0vwXOs/08YmwCgPkqNTZ4KtjKZjCQVLaDhhoMHD+rgwYMlj/v+97+vXC4nwzD0kY98pOz3WV1dlWmaMgxDu3fvruRSgYrx+UO9VfMZfO+992SapgKBgEtX51+BQKDisYn7AuqNzyDqqdrPn92xyXawNTY2prm5ubIvRJK++c1v1jSAcsO3vvWtql5/6tQpraysaPfu3fr617/u0FUB9vD5Q73xGXRHNWMT/yaoNz6DqKdaff5sB1ujo6OOvGEoFCpabdDaq2VVJQQAAAAAv6p56fdIJFK0AIYVhNWqEiEAAAAAuKXmwVY0Gi26srW4uKju7u4aXxEAAAAAOK/mwVZfX5/S6bQWFxe3PZdIJHTgwIEtj6XTaSWTyRpdHQAAAAA4o+bBVnt7u44eParJycktjycSCYVCIfX19W15fHx8XKdPn1Y8Ht/xvJlMpqb9uQAAAABgJ3Up/d7X16e2tjZNTEwoHA7ng6RCRTii0ahSqVTBfVxTU1NKpVJaXFzU0tKSlpaWNDY2pvb2dvX3928L3AAAAACgVurWZysajSoajZY8LhaLKRaLFX0OAAAAALyo5mmEAAAAANAM6ray1Ww++9nP6tatW2ptba33paAJ8flDvfEZ9B7+TVBvfAZRT7X6/BmmaZquvgMAAAAANCHSCAEAAADABQRbAAAAAOACgi0AAAAAcAHBFgAAAAC4gGqEVUgmk0omk1saM1fS+8up86C5OPG5GR8fV3t7uwYGBhSJRJROp5VKpRSPxxWLxQo2EwckKZ1Oa3JyUm1tbRoaGqroHNz73MHYhHpibEK9eHVcohphhRKJhKanpzUyMpJ/LJlMampqSqOjozU/D5qLU5+bsbExzc3NbXmsra1NIyMjtpqOo/lMTExoaWlJkUhE8Xhc0WhUw8PDZZ+He587GJtQT4xNqAevj0ukEVYgnU7r7Nmz2/4ho9Go0um04vF4Tc+D5uLk5yYSiehLX/qSDh8+rMOHD2tkZERPPvkkgxmKGhoa0sjIiGKxmNra2io6B/c+dzA2oZ4Ym1AvXh+XCLYqkEgkFAqF1N7evu25/v5+Xb16tabnQXNx+nMTjUYVi8UUi8XU19fn1GUCRXHvcwdjE+qJsQl+5uZ9j2CrAtPT0wX/MSQpHA7rxo0b+TzPWpwHzYXPDfyOz7A7GJtQT3xu4Gdufn4JtiqQSqUUDocLPhcKhSRJS0tLNTsPmgufG/gdn2F3MDahnvjcwM/c/PxSjbACmUymZE6otVGvFudBc3H6c7O4uLhlI/Li4qJisVjRGR6gWtz73MHYhHpibIKfuXnfI9hymPUPVe1SuVPnQXMp93OztLSkGzduaGBgIP9YKpXSz372M33lK19hUEPNce9zB2MT6omxCX5W7X2PNEKgiY2MjGzbeByJRBSJRHTu3Lk6XRUAoJkxNqGREGw5LJPJSFLVsy5OnQfNxanPTTQaVSKRcOKSgLJw73MHYxPqibEJflbt55dgC8A21g0llUrV+UoAAFjH2AQ/ItiqQCgUKlqRxMrntCqX1OI8aC5OfW7OnTuniYmJgs+xLwNu4t7nDsYm1BNjE/zMzfsewVYFIpFI0V906x/KTrUSp86D5uLU52Z6errojYXPH9zEvc8djE2oJ8Ym+Jmb9z2CrQpEo9GiN4LFxUV1d3fX9DxoLk59bgYGBjQyMlLwuWQyWbSTOlAt7n3uYGxCPTE2wc/cvO8RbFWgr69P6XRai4uL255LJBI6cODAlsfS6bSSyWTV5wEk5z5/XV1dBfPe0+m0EomEhoaGHLtmNCfufbXF2IR6YmyCH9TjvkewVYH29nYdPXpUk5OTWx5PJBIKhULbypWOj4/r9OnTisfjVZ0HkJz7/PX19Skej28b1MbGxjQwMMDnDyVlMpkd905w76stxibUE2MTvMCL45JhmqZZ8aubXDKZVDKZVDgczv/DxmKxbcdNTU1pampKo6OjBfM97Z4H2Mypz9/U1JTS6XT+BtXf389ghqKmpqaUSqW0uLioGzduSJK6u7vV3t6+7bPDva8+GJtQT4xNqDWvj0sEWwAAAADgAtIIAQAAAMAFBFsAAAAA4AKCLQAAAABwAcEWAAAAALiAYAsAAAAAXECwBQAAAAAuINgCAAAAABcQbAEAAACACwi2AAAAAMAFBFsAAAAA4AKCLQAAAABwAcEWAAAAALiAYAsAAAAAXPD/B6rfXjkFxc6XAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mode = pp.read_mode_data_from_npz(modes_data, time_step=0, num_modes=1, num_points=10)\n", + "_fig, _axes = pp.plot_fields_for_time_step(mode)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## From the book of the numbers..." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(A**2/2 + 32*A**2/pi**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.125*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.125*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.5*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.125*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.25*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n" + ] + } + ], + "source": [ + "eigenspace_v, _normalisation_v = eig.solve_eigenspace_vector(parameters)\n", + "eigenspace_k, _normalisation_k = eig.solve_eigenspace_cone(parameters)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "({'v': -8*sqrt(2)*sin(pi*x)/sqrt(pi**2 + 64),\n", + " 'β': -sqrt(2)*pi*cos(pi*x)/sqrt(pi**2 + 64),\n", + " 'D': 0},\n", + " {A: -sqrt(2)*pi/sqrt(pi**2 + 64)})" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigenspace_v, _normalisation_v" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "({'v': 0,\n", + " 'β': Piecewise((1.11498170631978*cos(4.0*pi**0.333333333333333*x) + 1.11498170631978, (x >= 0) & (x <= 0.25*pi**0.666666666666667)), (0, True)),\n", + " 'D': 0.25*pi**0.666666666666667},\n", + " {C: 1.11498170631978})" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eigenspace_k, _normalisation_k" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def solve_eigenspace_vector(parameters, idx = 0):\n", + " \"\"\"\n", + " Solve for the eigenspace in a vector space.\n", + "\n", + " Parameters:\n", + " parameters (dict): A dictionary containing the values for 'a', 'b', and 'c'.\n", + " idx (int): Index to choose the appropriate solution in case of multiple solutions.\n", + "\n", + " Returns:\n", + " dict: A dictionary containing 'v', 'β', and 'D'.\n", + " \"\"\"\n", + " x = sp.symbols('x', real=True)\n", + " v = sp.Function('v', real=True)(x)\n", + " β = sp.Function('β', real=True)(x)\n", + " C, A = sp.symbols('C A')\n", + " \n", + " a = parameters[\"a\"]\n", + " b = parameters[\"b\"]\n", + " c = parameters[\"c\"] \n", + " \n", + " if b * c**2 < sp.pi**2 * a:\n", + " print('case 1')\n", + " _subs = {A: 0}\n", + " A = 0\n", + " elif b * c**2 > sp.pi**2 * a:\n", + " print('case 2')\n", + " _subs = {C: 0}\n", + " C = 0\n", + " \n", + " \n", + " β = C + A*sp.cos(sp.pi * x)\n", + " v = c * A / sp.pi * sp.sin(sp.pi * x)\n", + "\n", + " depends_on_A = np.any([sp.symbols('A') in expression.free_symbols for expression in [v, β]])\n", + " depends_on_C = np.any([sp.symbols('C') in expression.free_symbols for expression in [v, β]])\n", + " \n", + " _norm = sp.sqrt(np.sum([sp.integrate(eigenfunction**2, (x, 0, 1)) for eigenfunction in (v, β)]))\n", + "\n", + " print([expression.free_symbols for expression in [v, β]])\n", + " print(_norm, depends_on_A, depends_on_C)\n", + " \n", + " if depends_on_A:\n", + " print('depends_on_A')\n", + " _normalise = [{sp.symbols('A'): ay} for ay in sp.solve(_norm - 1, A)]\n", + " elif depends_on_C:\n", + " print('depends_on_C')\n", + " _normalise = [{sp.symbols('C'): cy} for cy in sp.solve(_norm - 1, C)]\n", + " \n", + " return {\"v\": v.subs(_normalise[idx]), \"β\": β.subs(_normalise[idx]), \"D\": 0}, _normalise[idx]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_50626/1247390959.py:17: UserWarning: The following kwargs were not used by contour: 'label'\n", + " plt.contour(a, bc_squared, result, levels=[1], colors='white', linestyles='dashed', label=r'$\\mathsf{R}^*= 1$')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAI5CAYAAACo8FIrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhL0lEQVR4nO3de3hU953n+U+hKyoJCRuo4iqDBPgWJANWbAR096aN6N4hmwCeSdKJSWd92THMduyZDnlmYvuJndmOvRvn2WnbvbgnbdSddKbDJT1NPx1JeKY7IGGDDajkGwgJLLChStwkVCVKQtLZP0QVVehSJdXlVJ16v54nT6Sqc+p8qwpLnzr6nt/XZhiGIQAAACADTDG7AAAAACBZCL8AAADIGIRfAAAAZAzCLwAAADIG4RcAAAAZg/ALAACAjEH4BQAAQMYg/AIAACBjZJtdAIDM1tTUpJ6eHrW3t6u6ulqVlZVp9fgAgPTCmV8AMfF6vZPet729XZK0fv16bdmyRS+//HK8yorL48fy3AAAqYnwC0Rpz549+vKXv6yvf/3r+vrXv64vf/nLevLJJ7Vz586MDUk7d+5UYWGhpOGg+dxzz+mZZ56Jev+enh41NzdLkgoLC1VUVBQMrPEQ6+PX19fL7XbHrR4AgPkIv8AE2O12/fKXv9Qvf/lL/cM//INefPFFud1uPfvss2EBuKmpKa4hLlF27typH//4x5Pat66uTuvXrw9+X1ZWprKyMlVUVET9GJWVldq6dWvw+56eHpWVlU2qnkQ8/qZNm7Rnz56ot4/l9Uymuro6s0sAANMQfoEYOJ1Off/731dPT48aGxvl9Xr14x//WG63W6dOnUr5IFRZWak1a9ZMeD+326329nY5nc6w210u16R7al9//XVt27ZtUvsm8vGrq6ujDsCTfT2TLXA2HAAyEeEXiKPCwkJt27ZNjY2Nam5u1ve//32zSxpXZWWlqqurJ7xfXV2dNm3aNOL29vb2SYXfpqamSdeS6MevrKxUY2Nj1Nsm6jnES11dnTwej9llAIBpWO0BiIHb7dbOnTtVVFSk9evXy+v1qra2Vps3b5bdbtfrr78e9mf3RGhublZtba0kadu2bXK73cHVDbZu3aq6ujoVFRXp4MGDevTRR4N/9m9vb9fOnTvl8Xj05ptvjvlYgcf79re/HTymy+UK+z6wb1lZmZqamiRJp06dGrHNnj175HQ6Zbfb5fP5VF1drebmZtntdlVWVqq9vV12u33EGeWxnvcbb7yhnp6e4G0+n092u11FRUVhz2msx/d6vdq9e7cWL14saTgYbt++PdjHHOBwONTe3j5uy0Qsr2eopqYm7d69W263W9u3b1dlZaXcbreef/55ORwObd26NVh/4PV0u91yOp1hwfv21ob169erublZzc3NcrvdwbPZoR9iAo8nDf/bDtwXeB4OhyP4OJLGfA6B4zudTvl8Prnd7uDrXltbq8LCwmCtPp9vxOvh9XpVX18vp9Op5uZmrV+/fsRrP9rzu/15jPa6AIAMAFHZvXu3sWHDhhH/e+utt4yenp6wbRsbG40LFy4krbbjx48bTzzxhHH8+PHgbU888YTx1ltvhdX03e9+N2y/trY244knnojqsdra2gzDMIwLFy4YP/jBD0bU8NZbb4U9/ltvvWX85je/MQzDMHp6eozvfve7wdfk+PHjwe+/9rWvBf+3YcOGqJ5vT09P8LkdP348+LiB4wWM9/iBmgLvXVtb25jH/81vfmPs3r07Yl2TeT1HE9gn1O3H/7M/+zOjsbEx+P0PfvCD4GPu3r17xHsf2Dbw2t/uz/7sz8JqvP19Dvz7OX78uNHW1hb2+LdrbGwMey8uXLgQ/L6xsdHYsGFD2H8fb731lvHaa6+FfR96/xNPPBH239h4z2+81wUADMMwOPMLTEDggjdp+EzfM888o82bN484UxjtmabXX389qu3KysrCzmzdrqioSG63O6zlwOFwjHiMaFYuGOux3G63ysrK5PP5Rj0z63K5tGXLluD3oWftamtrtXr16uB+5eXl2r59u5xOZ/D1nAiPxxM8UxhotXC73SoqKgrbbrzHD9QUeO/Guxgu8JpMRqTXczSVlZXBs/eBbex2e/B+t9utQ4cOhbXVVFdXq66uTlu2bFFtba3+9m//NnjfwYMHg2e3R9Pe3i6XyxX2eE6nU16vV83NzaqsrJTdbg9ra4l04WBTU1Pw9XU6ncHj2+12lZWVhf0b2rx5s77xjW9o06ZNwTO2gX87gdfL5XKpuro6+NeV0Z7feK9Lov8CAyB9EH6BSQqsbFBbWzvpX6zx/IV8eyCNtn0g2scKtBcE/oR9u9v7fQMXxAX+hB1oBZCGe6Nv/8AwEaHBK1DXaBfgjef2mtrb28dcqcLpdOrgwYOTrHb813MsNTU1wdDW3Nys1atXB+8LtHKEXrgWaKloa2uT3W4Pe30j9Z6fOnVq1NfO4XAEw+9oz2MsgcD5jW98Q2VlZVq9evWoPeIBhYWFwXAduIhUGm5/8Hg88nq9wddrvOdXV1c35usCAAGEXyAG3/72t/XMM88Ez1hlqrFWftiyZUswrCTi9Wlvbw+e7Q30d0a7nxQe5pqbm8cMaD09PSPOKifa+vXr9cwzz2jr1q0jzhwHzr6H3hb4OtBzHS232y2fzxfVtqN96BnLSy+9pPb2djU3N6u+vl6Sxg3Aodrb27Vr1y5VVlZq9erVYX/FGK/W8V4XAAgg/AIxCJz93blz56RWdohX20MyjXUWNDSgBC7qClzQNloo9Xq9MZ39lcLXGu7p6Rm3lSDUaC0OLpdL27dvDzvTGTBWq0ciOZ1OFRUVqampaUTwLisr0+7du0fs4/V6g60po9032usdOGM/2uN5PJ5JLd0WeF8Caz/X1NToueeeGzP8er1e+Xw+lZWVyev16gc/+IF+9KMfBd+jwPMJbb0Z7THGe11i/bcGwDpY6gyI0be//W0dOnRoUkMttm7dGtX/JhN8oz2bN9HHcjgcI5bKur2/eOfOndq+fbskBftxQ7ndbrlcrojHdbvd4w5kaGxsDAuxp06diviY0nDPcehzCvy5vLCwcNQ/kY/V6jFZ0b43NTU1eu2110a0Y1RWVqq8vHzEWd7GxkY5nU6tWrUqbG1ir9cbXK4t0FMr3QqTgQ9xoe0CgX/Pk1kpwefzjXjfQv+NtLe3hw2F2b17t2pqauR0OuXxeIJBOLT+wH7jPb/xXhcACODMLxCj0LO/L730UtKPH/gTcWD5qsBUsra2Nkm3ziDu2rVLPp9PO3fu1ObNm+XxeEbsN95jeb1eFRUVqbq6esRZtMDSVYHAs379+rCzp9u3b9eePXvCLpiLJlQFltgKvTAt9L7QPtjKysqo/+RfWFiojRs3BpfECiyDVldXN+qFYadOnYo4IGO01y7a13MsNTU1crvdo561fOmll7Rz586wlozAh6Tvf//72rlzZ/D59fT0BO9zOp2qqanRzp075XQ6R+wTGox/+tOfShp+rffs2RN8HtXV1eOeCQ98UAi8H263O+z1Kysrk8vlCvb5FhUVBS9gLCsr08aNG7Vz587gv6Ht27dr586dwbPQ4z2/8V4XAJAkm2EYhtlFjMfv9+vgwYPKy8vT2rVrx9yuo6NDHR0dKikpkd/vlyRVVVUlq0wgowSCbDL6KQNhzMye6h//+McpP7AkXQQ+0ASCNYDUkSmZK2XbHg4cOKB9+/appaVFHR0d6uvrG3Pb1tZWtbS0aO3atVq2bJmqqqrkcDi0a9euJFYMZI5NmzaN244QTxO5kC0R9uzZw5lDAJaWaZkrZcPv2rVrtWHDBlVVVSkvL2/M7fx+vxoaGvTII4+E3V5aWiq/36+WlpZElwpkpDVr1kx4ZYHJiGfv8kQFlthixQAAVpZpmStlw2+0WltbVVxcrPz8/BH3LV26NKqLagBMXKBXNZFrqHq9XlPP+tbX1487whcTE+gdbm9vD7tgDUB6sErmSvsL3k6ePDnqmyBJJSUl6uzslN/vH3MbAJM3mZUAJiLWYRixinZdWkSnsrKSs+hAGrNK5kr7M78ej0clJSWj3ldcXCxJ6u7uTmJFAAAA1mOVzJX24bevr2/c/hQpPd4IAACAVGaVzJX2bQ/jCbxBgWU4xvP+++/r6NGjEbcLLLY+ZcoUFRQUxFYgAABIit7eXhmGoaysLP3Jn/xJUo/985//PKEX7/b392tgYCCqXLJixQqtXLky7jVMJHOZzdLhdyL6+/vDJg5FMjQ0NKHtAQCA+QYHB5N+TJ/Pl5TMEM0x+vv7E15HqrN0+A2sUxdN43Vubm5UF9YE/mEZQ4b6vAPRFZKdFd12NxlZtgltL0lDE9zHmFhJw6ZMbB6KLWvi81Nypkz8h1LelCjfh5vybdFvP6VrSLbrw89j8M4pUu7E3xsAgPmuX7dLmiKbzcSf47YhTc2P7xng6367ZAw/r2jGsOfm5sb1+AETyVxms3T4nYiVK1dG9WeAHTt2yOv1qs87oIOvnx532+W/e6+2/d9/JOVkaddfH9I//TpyW4Uk+RZE/sd7O++cibVv905i9ag+540JbT/d2TPhY1TMPD/hfdaUtE5o+98vaItuwyFD85dfVNblIQ0V2nS2ZZaUQ/gFgHT0T//wlK5fLzK1ZXFqvk9/+OUdcX3MwPOy2+166qmn4vrYVpX24be4uHjM5upA30ngCsRky5uaqzkLZ0qSCotS/5MQwuV+PKCsy0OSJP+qXIIvACCjpXLmmoi0X+3B4XCM2VwdeIMcDkcyS4JF5B+8Nd7x+prE/JkIAIB0YZXMlfbht7S0dMxPIV1dXVqwYEGSK4JVTD1w66KA678z/tIuAABYnVUyV9qH3yVLlsjv96urq2vEfa2traqoqEh+UUh7tuuG8t8bDr8D86Zo4K7JXCEIAIB1WCVzpUX47evrG/M0e35+vtatW6eDBw+G3R6YP71kyZJklAiLyTvcL9vNrofra/MkM68OBgAgSTIhc6XsBW9HjhyRx+NRV1eXuru71d3drV27dik/P19Lly4Ne4GXLFmivLw8HThwQCUlJcE37dFHHzWrfKS5qQdC+n3X0vIAALCuTMtcKRt+q6qqJrR9aWmpSktLE1QNMs3Ug8MtD4bt5koPAABYVKZlrrRoewCSKcszqNwTw4Mw+ityNDSd/0wAALAKfqsDt8lvDFnlgSXOAACwlJRte7CCMx9/ptf+9BcyZpToxAefmV0OokS/LwAA1kX4TSB3xyX941u/lbFwrtmlIFqGEez3HbLb1Lc8x+SCAGDyjh+brt7ebJ07W6AHll/V0ruvmV2SpNStC5mBtgcgRM6JAWVdvDnS+OFcKZclzgCkp3NnCyRJ1asv6stf+Ux/9ZdlJlc0LFXrQuYg/AIhpv42pN93Lf2+AFLDubMFev2/LNErf3Zv1Pv09mbr5IlpkqSCgkEV2AeCwdNMqVoXMgdtDwmUb8/T9FnTpHnTda37urw9oy8ajdQx9SD9vgBSz/wFvZo3v3dC+yy9+1pYO0GvL1vzF0zsMRIhVetC5uDMbwI9sPYevfXef9Zbv/4/9YdfXWF2OYjAdt1Q3uGbI43nTNHAIkYaA0gdJ09M0933TK439r/9bam+9kefxregOEjVumBthF/gprz3+jWFkcYAUtRn5+yTujDs+LHpWnr3NT2w/GoCqpq8VK0L1kfbA3BTYJUHifV9AaSWkyemad58n44fmy5JOtth1//21fAlNN9ucOrOGX0qKBhUb2+WHlh+VSdPTFNBwaCW3n1N584WaGrBoGbM6BvtEHGr87/9bal6fbfixfXr2Zo6dUAF9gG98OIHwe3Gqqu3N0v762drQalPknSocab++PF2FRQMJqxuZBbCL3BTYH1fwyb5V9PvC1jJ7D+8FFzJxWyDM6fowj/NmNA+Jz4ZvkAscJb0bIddTY0zVb36onp7s/Ta/7tU33miXTNm9OnkiWnaXz9b8xf0hq2kcP16tv7LG+/F74ncprc3Syc+maYXXvxAJ09M050z+jRjRl+wzoBLl/LGrCvwXLb9yUkVFAzq3NkCnTxRTPBFXBF+AUlTLg4q9+ObI42/kK2hO+gIAqwk6+KQst2pEX4n4+SJaWFnemfM7NPJT6apevVF/cPfz9PyFVeCZ07nL/AFg/DLPzke9TH+29+WRrXd/AW9YWE24PKlvGCN584WaOnd13TpUp4KCgbCthuvrsBzCYTd3t5szZvvi/o5ANEg/AKSpoaNNOasL2A1gzNT5wPtZGq5vd/33NkC3TmjT729WTrUOEvPv9gSvK+gYHBSZ0q/9o2OCe8TKnTFBt/NtodzZwsm1GZx+3MJhGggngi/gMJHGvt/h35fwGom2maQSoaDbvhSmSdPTNOXv/KZzp21a+rUgYT28U7UubMFstuHz/ZevpQXdW2BtX5Dtz95Ypp+f507/kUioxF+AcNQ/oGbI42n2uRfTvgFkFpCA+GlS3nq9WUHL2i7c5Rw2dubNeGzv7G2PQSE9vj6fNm6dCkvqnV8R2txOHmiWH/8eLtOnpjGGWDEDeEXGS/n5ICyO0NGGuexxBmA1HF7uP2HX8/Td55olzQ8MOLypfBWrUuX8nTubMGElxCLte0h4PjRO8Ie62yHPapa5i/w6fr1W+urNzXOHF4lomBQly7laWlcqgMIv4CmHmCkMYDUVVAwqMrlV9XUOFOSVL3mYthZ0O880a63G5yav6BXvb1ZmjGjz7S1c0+emKYHVlwJfn/3PdeCy7NFUlAwqN9f5w4u2bb07mt6YMUVNTXO1IIFXPSG+CH8JtCx336sP175n2TMc6jn2nWzy8FNb/eW6/cL2oLf54eMNPZzsRuAFDRem8Ht44LNdHstE63t9ucZr7PRQCjCbwL19fbrwqcXZdg4m5iqbH5D+e/eHGnsnKIbixlpDACAlaXO2i+ACfKO9mvKzYuor69hpDEAAFZH+EVGC+339dPvCwCA5dH2kEDO0hl68Ev3y5hRok9azqntJGsVppr8kPV9GW4BAID1EX4TaOG987T1lW9Ikn72528TflPMlMtDyvtweCH2vvuzNXQnfwgBAMDq+G2PjDU1dJWHtZz1BQAgExB+kbHyD4as77uGfl8AADIB4ReZyTA09Wa/71C+1LeS8AsAQCYg/CIj5ZwaVLb75kjjh3Jl5LPEGQAAmYDwi4zEVDcAADIT4RcZKXR93+us7wsAQMYg/CLjTOkfUs47NyRJA7Om6MZSVvwDACBTEH6RcRzHrynn+s1+37W5jDQGACCDcMorgfy9fTp/ulPKyZa3x292ObhpblNX8OvrrO8LAEBGIfwm0PHffqLvVP1AxsK5ZpeCEGHhdzX9vgAAZBLaHpBR8q7e0IyPvJKky3fb1WBfqrd7y02uCgAAJAvhFxllzjtdshnDX39eXRK8/e3eckIwAAAZgPCLjDIvpOUhNPwGEIIBALA2en4T6O4VC/W1Z/9QKsjX/n90qfF/fmJ2SZnNMIL9vgN5U+ReMW3MTQMB+PcL2pJRGQAgA/iN7LifYPEbRLmJ4hVLoOmzivVQTYUk6aPmcyZXg+Iz11V4YXiym3vlNA3mZ0Xch7PAAGANhEQE0PaAjBG6ysPnq0pMqwMAAJiH8IuMMa/pavDrz1dPN7ESAABgFsIvMsKU/iE5D1+TJPXOyNGVpQUmVwQAAMxA+EVGmOXqUW7voKSbLQ+MNAYAICMRfpER5kZY4gwAAGQGwi8ywtzQft9V9PsCAJCpCL+wvLyuG5r5wfBI4ytLCnR9Vq7JFQEAALMQfmF5s9/tHnWkMQAAyDys+JxA7rOXtO9n/yxjWqHaTl4wu5yMFbrE2WfVtDwAAJDJCL8JdOajz/T69l/KWDjX7FIyV+hI41yb3CvHHmkMAACsj7YHWNq0Dr+KPh8eaexZMU2DUyOPNAYAANZF+IWlha3yQMsDAAAZj/ALS5vX2BX8movdAAAA4TeBHvqDCu07/4b+8dAPtPmbq8wuJ+PYbgxp9uFuSdL1O3J0+W67yRUBAACzccFbAtlkU07u8Es8ZQrjdJNtlqtHub6Qkca8BwAAZDzO/MKy5h7qCn5NywMAAJAIv7CwwBJnEuEXAAAMI/zCknK7BzSzpUeSdGVxgXodeSZXBAAAUgHhF5Y053CXpgwNf/35qhJTawEAAKmD8AtLmssSZwAAYBSEX1hSYLjFYI5N7geLTa4GAACkCsIvLKfo7HVN++zmSOPl0zRQwEhjAAAwjPALywmd6vbZ6hLT6gAAAKmHIRcJdPLYGb3wR6/JcNypc2cuml1Oxgi0PEjS56umm1gJAABINYTfBLri6dbh+hYZC+eaXUrGsA0YmvPu8Ehjf0m2Lt/LSGMAAHALbQ+wlJktPcr13hxpXF3CSGMAABCG8AtLCRtpzPq+AADgNrQ9JFDxnYUqvWeu5JyhC59fVae72+ySLG9eY0i/bzX9vgAAIBxnfhPo3qpyvfL3/16v/H9b9Lvr7je7HMvL6bk10vhq2VT5ZjPSGAAAhCP8wjLmHO7WlOF2X1oeAADAqAi/sIy5oS0Pq2l5AAAAIxF+YRlzm7okDY80vsBIYwAAMArCLyyh6JxfxWf9kqTOB4o0YGekMQAAGInwC0sIner2Gas8AACAMRB+YQms7wsAAKJB+EXaa7pUrjnvdEm6OdL4vkJzCwIAACmL8Iu0t/CTS8q7NrzG2fmHS2RkMdIYAACMznIT3lpbW9XR0RF225o1a5Sfn29SRUi0+46cD379eXWJeYUAAJDmMiFHWSr8HjhwQKWlpXrkkUeCt3V1dWnXrl169NFHk/7GvVvn0r+a/W9l3DVHQ0NGUo+dSe4//Hnwa/p9AQCYnFTLUYlimbYHj8cjSSotLQ27vaSkROvWrdP+/fuTXpNhGBq4MaiBgSHCb4Lke/tV/mGnJKnrrqnyzrXGf5gAACRTKuaoRLFM+O3o6JDT6Rz1PofDEXxTYS33HHMra3D4g8Xnq0vMLQYAgDSVSTnKMuFXklwu16i3d3V1qbiYiV9WFNry0FB5n4mVAACQ3jIlR1km/C5ZskRnz57Vvn375Pf7w+577733VFVVlfSaSpfO1h8/91V9Z9uXtGx5aeQdMGGB8DuQZdOJ5bN1sGuJDnYtMbkqAADSSyrmqESxzAVvJSUlWrNmjQ4ePKiOjg5t2LBBpaWlamlpUWlp6YgelmSYs8ihf/MnfyBJ8l7zq+VYR4Q9MBEzzvfIee6aJKn9C7Pkt+cE7wsNwGtKWpNeGwAA6SQVc1SiWCb8SlJVVZVKSkq0b98+7d69W8XFxdq8ebNKSkoi7vv+++/r6NGjEbfz+XxxqBTxELrE2YdfnDvmdoEgTAgGAFiVz+fTjh07Im63YsUKrVy5ctT7YslR6cRS4VeS8vLy9OCDD8rj8ejs2bPavXu3NmzYIIfDMe5+/f398nq9SaoS8XD/kVv9vh9WzYm4Pe0QAJC57h7KVq7JNfQNZcf9d1HgeRmGEVWO6e/vH/f+yeaodGKp8HvgwAE5nU6tXbtWktTS0qL9+/fr5z//uTZv3jzuKfvc3FwVFkYei+vz+WQYLFtmNtvgkO59b/jMr68oV2fumWFyRQAAmMdms8lut0fcLjd37I8AseSodGKZ8NvS0iJpuGE7YNmyZVqwYIF2796tffv26fHHHx9zgeaVK1eO+WeAUDt27OAMcQpYeOKyCq8Nf3r9eOUcGVmWuXYTAIAJs9vteuqppya9f6w5Kp1YJjEcOXIk+EklVElJib75zW9Kks6ePZvsspAg94W2PHwxcssDAAAYWyblKEuEX7/fr7y8vDHvz8/PV1VVlbq6upJXFBLq/sPRXewGAADGl2k5yhLhNz8/X319fRG3s9rVipkq33dD5S3Dk2bc86bp0pwikysCACB9ZVqOskT4laTi4mJ1dIy9jm5HR4cWLFiQxIqQKEuPX1D2zZHGtDwAABC7TMpRlgm/GzZs0IEDB0a8cX6/X/v371dVVVXSm7SvXfHK1XhSrvfPqNPdndRjW1loy8NHtDwAABCzVMxRiWKZ1R7y8/P1rW99SwcOHFBra/gwgzVr1pjyhn10uE3bv/ITGQsJaPEUWN93MMumT1bMNrkaAADSXyrmqESxTPgNGO1KRVjHHW6v5nw6fBa9/b6Zul5o9pLlAABYRybkKMu0PSAz3H+ElgcAADB5hF+klfsO31rf9wPCLwAAmCDLtT2kkmWrl+rJFx+V8nL03//uiBr2NZtdUlqzDRm6LzDSuJCRxgAAYOIIvwlkL5qq8mXDy4KUTI88bxvjKz15WUXdw+sQfrJytoay+cMFAACYGNID0sb9h0NHGtPyAAAAJo7wi7QRGn4/qmK4BQAAmDjCL9JC7vUbWtzSKUnqnFukznnTTK4IAACkI8Iv0sLdx9zKHhiSRMsDAACYPMIv0kLo+r4f0vIAAAAmifCLtBDo9x2aYtMnKxlpDAAAJofwi5Q33ePT3DNdkqTT985Qb1GeuQUBAIC0RfhFygsMtpDo9wUAALFhyEUCnW09r796ca+MO6ap5dinZpeTtljfFwAAxAvhN4E+b+/Ur/5LnYyFBLbJCh1pfL0gR6fvm2lyRQAAIJ3R9oCUNv/UFU276pckfbxytgYZaQwAAGJAkkBKY6obAACIJ9oeEignN1sF06bKmF4g//Ub6vPfMLuktHP/Efp9AQBA/HDmN4FWful+/d2Jn+hXDX+q/+1fV5ldTtrJ9Q9oSbNHknRxdqE88xlpDAAAYkP4Rcpa0uxWzo3hkcYfVc2RbDaTKwIAAOmO8IuUFdrv+wEtDwAAIA4Iv0hZ9x8eXuJsyCZ9spKL3QAAQOwIv0hJxZd6Nb/9qiTpzL0z5CtmpDEAAIgd4RcpxXVx+Axv2CoPVbQ8AACA+CD8IiUFWh4k6SP6fQEAQJwQfpFybEOG7j0SGGmcrbb7GWkMAADig/CLlDOv7YpKrlyXJJ1YPluDOVkmVwQAAKyC8IuUc/+RWy0PTHUDAADxxHjjBGppOqmtv/eSjDmzdPlSj9nlpI3Q9X0JvwAAIJ4Ivwnku3Zd7R+ck+EdMruUtJHXdyM40viywy73AkYaAwCA+KHtASnlgY/PKbd/UNLNs76MNAYAAHFE+EVKefj46eDXH36RqW4AACC+aHtIoJlz79CyVUtkzJyuttYL6mi/aHZJKe+h42ckDY80/uhBwi8AAIgvwm8ClS9boD/9i+9Ikn72528TfiO486pXS88M9/t+evcM+YrzTa4IAABYDW0PSBlfbD4T/Pqf718SHHUMAAAQL5z5RcoI7fd954FFkhQWgCtmnh+xDwAAwEQQfpEaDCN45rc3P0eue+aN2IQgDAAAYkX4RUoo67ioWVe8kqSj95fqRs74/zRpiQAATETZUJZyTa7hxlBW3H9/pcLzSjf0/CIlhLY8vPvAQhMrAQAAVkb4RUoYrd8XAAAg3gi/MF1u/4CWf3RWkuS5s0in588wuSIAAGBVhF+YrvLjc5raNyDp5llfRhoDAIAE4YK3BBq4MaCui9ekrCz5/TfMLidl0e8LAACShfCbQO+9/aG+ds9/kLFwrtmlpLSHQoZbHK4k/AIAgMSh7QGmmt7l0z3tbknSx2VOXS22m1wRAACwMsIvTPVF162zvu+yygMAAEgwwi9MFb7EGS0PAAAgsej5TaDFlaX66lNfklFYoN/u/0iHD7aaXVJqMQw9fGz4zO/1vGw13zvf5IIAAIDVEX4TaMbs6fpfHn1IkvRpWyfh9zaLzl3SrCs9kqIbaQwAABAr2h5gmvAlzuj3BQAAiUf4hWkePhbS78sSZwAAIAkIvzBFzo0BrfhweKRx5x2Fai+daXJFAAAgExB+kTBX3UVj3lfxyWea2jc89e5dRhoDAICbPB6PGhoaVFtbG7zN5/PJ5XLF5fEJvzBFWL8vLQ8AAEBSbW2tnnzySe3cuVMNDQ3B2+12uwoLC/XrX/865mNweT1M8dDxkOEWhF8AADJefX293G63duzYIafTqUOHDoXdX1ZWJqfTqYaGBq1bt27SxyH8IulKunt1T/sFSdLJhQ5dmV5ockUAAMBsbrdb27dvH3ebwBngWND2gKSrcp3RFGP463dY4gwAAEhyOp1RbefxeGI6Dmd+E+ji+Sv6H796V0bhVHWc7jS7nJQRNtJ4OS0PAABAskV58fuFCxdiOg7hN4HaXGf1fz/9VzIWzjW7lNRhGMHw68/N1vF7F5hcEAAASAVer1eHDh3SqlWrxtzmjTfeUHl5eUzHIfwiqe767LKcl4ZHGh+7b4H6c/knCAAApI0bN+rZZ5/V7t27tWbNGl24cEF2u10+n0+nTp1SQ0ODKioqYrrYTSL8IsnCWh7o9wUAACFeffVV7dmzRzt37pQkNTQ0yDAM2e12bdmyRTU1NTEfg/CLpApb4uwB+n0BAEC4TZs2adOmTXK73fJ4PHI4HFFfDBcNwm8CPfj79+vfv/bHUtYU/e3PDui//90Rs0syVfaNQT34waeSpEsldp26a5a5BQEAgJTldDrjGnoDWOosgbJzslUyo0gl0+3Ky8sxuxzTVZz4TAX+4ZHG7zDSGAAATMIrr7wS0/6c+UXSPNQcMtKYlgcAABDC5XJF3Mbj8US13XgIv0iah4/d6vc9zEhjAAAQ4uWXX5bP5xvzfpvNJsMwYj4O4RdJUXytV/e2nZcktd41S5fuKDK5IgAAkEoKCwv16quvjtrn6/P51NzcLK/XG/OKD/T8IimqWj5lpDEAABjT+vXrx7zAzW63q7q6WqtXr1ZDQ0NMxyH8IikePka/LwAAGNvGjRsjbmO322NufSD8IvEMQw/dHG7Rl5OlY/cx0hgAAExOb29vTPsTfpFwC85f0ZyL1yRJx+9boD6WfQMAAJPQ29ur1tbWmB6DC96QcKEtD/T7AgCA0Tz77LPj3u/z+eTxePTDH/4wpuMQfhPolKtDr/zbn8mYOV3tJ91ml2Oah5oZaQwAAMbn9XpVVlamxYsXj3q/3W7X6tWrZbfbYzoO4TeBLp2/qv+567CMhXPNLsU02QODqmr5VJJ0ucSu1rsc5hYEAABSUmFhobZv357w49Dzi4T6wonPZb/eL0k6XHGXjCmMNAYAACO99NJLSTmOJc/8dnV16eDBg5Kk/Px85eXlae3atSZXlZlCRxq/s5x+XwAAUp1ZOSradgaXy6WKiopJH8dy4be1tVWHDx/Whg0bVFJSIkny+/06cOBA0gOwfdpUzV44U8acWbp88ZquXh57ZJ9VPXikI/j1u5WEXwAAUlkq5aix1NfXE34DPB6PGhoa9Pjjjys/Pz94+/79++XxeJL+pi2rXqoX/uZpSdLP/vxt/eqvm5J6fLNN8/Wq4sxnkqS2BTN18U5GGgMAkKqSlaMireownsCKD7GwVPg9cOCAqqqqwt4wSSotLZXDwYVWyVZ9ol1ZN6ewsMQZAACpLVk5KtKqDuMxDEN79+6N6fiWCb8ej0dnz57Vhg0bRty3bNkyEyrCmo9uLUJNvy8AAKkrmTnK6XTGtKpDW1tbTMe3TPhtaWlRcXHxiE8rMIlhaO3HpyRJfdmMNAYAIJUlM0dNJvi6XC55PB6Vl5dr27ZtMR3fMuG3o6NDxcXFkqQjR45IGr5Csaura9RT+Eis0s7Lmn/pqiTp/fK7dKHrjuB90509ZpUFAABGkcwcNZkhFYEL3Nrb29XU1KR169ZN+viWCb/d3d1yOBw6cuSIqqqqgrd3dXXp5z//ub75zW+O+8a9//77Onr0aMTj+HyZt2LDZATO+krSwXvDe3quum9d+EYQBgAgdj6fTzt27Ii43YoVK7Ry5coRt8eao5LF6XTqr//6rwm/AR6PR2vWrAm7raSkRKWlpdq/f/+ofSwB/f398nq9iS4xY6wODb/3LRlzu9AgDABAohiD5g9ZMgZtcf+9F3hehmFElWP6+/vHvC+WHBUvLpdLtbW1o67oEDgBuWXLlpiOYanwKym4Jl0oh8Oh/fv3y+/3j/mpJTc3V4WFhREf3+fzybi5ggFGlz0wqFUnhpvRLxfa9dH82SZXBACAtdlstqjaCXJzc8e9f7I5Kh7a29v18ssvq6amRk6nU+3t7SorK1NRUZF6enrU3t6uyspKrVq1KqbjWCr8BnpVxrrd4/GotLR01G1Wrlw56p8Bbrdjxw7OEEdQeeacpl3vkyQ13lsuYwpTtAEASCS73a6nnnoqpseIJUfFQ319vf7yL/8yGOLb29tVWFgYtsya2+2OecKbZVJJNFcodnd3J6mazLZ6nH5fAACQelIhR5WVlYWdvbbb7XK5XGHbOJ1OhlwEOBwOdXV1Rdwmmd7/Hx/q3yx9VsaC2fJfH7vHxmrWfnxrfV/CLwAAqS8VcpTNFt6X7XQ6tXfv3pgubhuNZc78Ll26VJ2dnaPeF/ikMtbp/ES50T+g7stedXf1qq9vIKnHNsu03uvBkcanZs+S+44ScwsCAAARpUKOCrSVejye4Blfu92uhoaGsO2am5tjOo5lzvwuWbJEeXl5am1t1ZIl4asLnDx5UsuWLUuJJTqs7uET7coeGpIkHbiPs74AAKSDVMhRNTU1qq2tVVNTk3w+n37xi19o06ZNevLJJ1VfX69ly5bJ5XKpvLw8puNY5syvJG3YsEEHDhyQ3+8P3tbS0qLu7u4RS3cgMdZ8dKvft5GWBwAA0kayctQrr7wy6u12u11btmzR9u3b9ZOf/ESSVFhYqFdffVVDQ0Pau3evioqK9PTTT8d0fMuc+ZWk0tJSPfLII9q/f7/y8/Pl9/tVXFysxx9/3JR65pU7VP2vlkvTp8l19FN98sFnptSRTGtuXuzWn5Wld5csMrkaAAAQrWTlKJfLpc7OTs2aNWvU+8vKysK+dzqd+ulPfxq341sq/ErDb1wil+GYiPmLZ+uPf/BVSdLP/vxty4ff+Rcv666LlyVJR8tL1ZufZ3JFAABgIpKRo7xer5577jmtWrVK69evT/qCBJYLvzDPGpY4AwAAEZSVlenVV1+VNLy2b3t7u8rLy+O+qsNYCL+Im7Uh/b4HxhlpDAAAMlcg+ErDF7lJwwMtamtrJUlr1qzRokWJa50k/CIusgYHteqT4ZHGV+0F+mjBHJMrAgAA6aKsrCzY63vo0CHV1dUl7Gww4RdxsezTz1R8ffjq0MZ7yjXESGMAADAJq1at0qpVq+R2uxNyNpjwi7gI6/dlfV8AABAjp9OpLVu2SLp1Nnj27NmqqalRQUHBpB+X8Iu44GI3AACQCC6XS42NjWpqapIkHTx4MKxveKIIv4hZ4XW/lreflSS1OWfq/J3TTa4IAACks97eXtXX16uurk4ej0eGYQSXRquoqIjpsQm/iFnoSGOmugEAgMlyuVzau3evXC6XDMOQw+HQY489ppqaGtnt9rgcg/CbQL6e6zrl6pByc3T1itfschImtOXhAOEXAACMw+VyhZ299Xg8qqurU0NDg3w+nwzDUE1NjWpqakZMe4sHwm8CtTSe1L/70n+WsXCu2aUkVCD83siaonfvjv8/UgAAYB21tbV69dVXdejQIdXX1wfP8paVlQVDbyIRfhGTeZeuaJHnkiTp2KJS+RhpDAAAxtHe3q6vfOUrMgxDkhJ6lnc0hF/EZDVLnAEAgAlatGiRNm/erFWrViX92IRfxCR0pDFLnAEAgEjKyspiWqosVoTfBLrvoXJt+Y9fkfJz9U97j+qf6z80u6S4mjI0pOqbI427C6aq5a55JlcEAABS3erVq009PuE3gaZNL9SyVUskSe81tZlcTfx94dPPVdJ7XRIjjQEAQHQ2btxo6vFJK5i0tR+3Br+m5QEAAKQDwi8mLfRiN4ZbAACAdED4xaTY/X1a0d4hSToz606dm3mHyRUBAABERvjFpHzx5GnlDA6PND543xKTqwEAAIhOQi9427t3r9xutyorK01Zxw2Js/ajW/2+jDQGAADpIubw63K5tHfvXlVWVqqiokKLFi0K3he4mq+9vV2//vWv9dWvfjXWwyFFBEYaD0yZoneXLoqwNQAAQGqIOfw6HA6dOnVKzc3NstlsstvtKi8vV3V1tSoqKuRwOFRWVqbGxsZ41IsUMOfyVZW7L0qSji9aoJ6CqSZXBAAAMoXL5VJFRcWk9485/Pp8PtXU1KiyslIXLlxQc3OzWlpawsJwYWFh0uY1I/HWhKzycICRxgAAIInq6+vNDb/19fV6+umnJUkVFRVav369JMntdqu5uVkNDQ0qLy8PbpNJPm/36L/99J+kkiJ98uFnZpcTNyxxBgAAEqGhoUFNTU3q6ekZc5vTp0/HdIyYw6/dbh/1dqfTqfXr12v9+vWqra1Vb2+vCgoKYj1cWjnbekE7//Pfy1g41+xS4mbK0JDWfHxzpPHUfLkYaQwAAOJg7969qqurU2VlZdg1ZKEMw5DH44npODGHX7fbHTHYbtmyRbW1tdqyZUush4PJ7jt7XtN9vZKkd+4u02BWlskVAQAAK3C73XrzzTcjbhdr+I15nd/NmzfrmWee0ZkzZ8bdrqioKNZDIQWE9/uyvi8AAIiPaK8Pi/VkasxnfsvKyvTYY4/pu9/9riorK7V+/XpVVFSMOBPsdrtjPVTamTLFpqycLBm5WRocHNLQoGF2STHJc+eEr+/LxW4AACDJnE5nTPvHZchFdXW1fvjDH+qNN97Qyy+/LEnBJc58Pp/a2toysuXhizUVeuFvhi/0+9mfv61f/XWTyRXFZmp/n1a0DY807ph5h87NvNPkigAAgFWUl5dHtYzZK6+8ou9973uTPk7cJrxVVlbqzTff1J49e9TY2KjTp0/L7XarrKxMW7duZcKbBVSdaVfu4KAk6cC9tDwAAID4KSsr0+nTp/XGG29o9uzZo1705vP51N7eHtNx4j7eeNOmTdq0aVO8HxYpoLrtZPBrljgDAADx1N7erueee04+n2/c7Ww2W0zHiXv4hXVVtw/3+w7abDp0D0NLAABA/NTW1mrbtm2qqKgYcyldSXr++edjOg7hF1FxdHdpcefw0iLNi+brGiONAQBAHJWVlUXVJltZWRnTccYNvx6PR3V1dfL5fCovL9e6devC7q+vr5fNZpPD4YhpzBxS36r2W6s8HKTlAQAAxNns2bOj2m7jxo0xHWfMdX7dbreefPJJ1dfXq7m5Wa+//rqeeuopdXZ2BrepqalRYWGhXnjhhZiKQOpbHdLv+67zXhMrAQAAVmQYhnp7eyNud+jQoZiOM+aZ37/4i7/Q9u3bw04/19XV6ZlnntGPfvQjLVy4UNLwkmawNtvQkKrbhs/8evPy1DJvgfLc4ZPd+pw3zCgNAABYRE1NjRoaGlReXj7meGNJamxsjGkVsTHDr8PhGPHA69ev1+rVq/X666/r0UcfHbcwWMfd7vO6o3f4yst3Fy3WwCgjjfPcOWHfE4YBALjNkG3E78uY5Q1JsS1+kDICnQS1tbXy+XxyOBwjLnzz+XwxjzceM/yO1XdRWFio7du3q7a2Vj09PSosLIypAKS+0JaHprLo1veN+3/cAADEwkIh0apOnTqliooKrVu3TkVFRaNuc+3aNe3fvz+m44wZfgN9Fz09PXK73SMuaNuyZYsOHTqk5ubmmAqwso8Ot+lPv/z/yJg9Q+7Pr5pdzqQFWh4kqbF8qYmVAAAAq3I6ndq+fXvE7RJ25nfjxo2qra2Vy+WSx+PRL37xixHbrFq1SgUFBaqvr4+pCKu6dsWrDw61ylg4/mLNqSy/v18rO05Lks6V3KGOO2eYXBEAALCiaEcWb9u2LabjjLvU2ZYtWyRp3EkblZWV+su//MuYikDqevDTWyONm8qXSDFOVQEAABiN0+mMarvxBmBEY8ylzqI9yBtvvBHzmDmkruqQ9X2baHkAAAAme+WVV2LaP+YJb/X19aqsrIxpyQmrusNRrCXL75Jm3amOMxd1/twVs0uasOqbF7sN2mx6d1G5ydUAAACrcrlcEbfxeDxRbTcexhsn0NLlC/XC3zwtSfrZn7+tX/11k8kVTcysa91a6nFLkj6cO1/dBbH9mQEAAGAsL7/88rittjabTYZhxHycuIRf2h6sKXSkMas8AACARCosLNSrr746au+vz+dTc3OzvF6vampqYjpOXMJvXV2djh8/rtmzZ4dNfDt16pROnz4tl8slh8OhHTt2xONwSJLq0PV9Cb8AACCB1q9fP+ZFb3a7XdXV1fL5fGpoaNC6desmfZy4hN+amhqtWrVKLpdL7e3tcrvdcrvd8nq98nq9WrZsmdavXx+PQyFJwkYa5+apeX6pyRUBAAAr27hxY8Rt7HZ7zK0Pce35raioGDEMA+lpqeeCZvi8kqTDi8pHHWkMAACQbL29vTHtH9VSZ5E0NzfHPG0DqSW85SG6kcYAAACJ1Nvbq9bW1sgbjiMuZ37tdruampp06tQp2Ww2VVZWavXq1SooKIjHw8MEoSONm8ro9wUAAIn17LPPjnu/z+eTx+PRD3/4w5iOE5fwu3jx4uA6v263W/X19Xr88cdVVFSkiooKrV69WsuWLYvHoZAEeTf69eDNkcafF0/XmRkzTa4IAABYndfrVVlZmRYvXjzq/Xa7XatXr455wlvM4besrExtbW3B8Ot0OrVlyxZt2bJFTU1N2rNnj+rr61VWVqZXX3011sMhCVZ+ekZ5AwOSpEOMNAYAAElQWFio7du3J/w4MYff733ve3r++ee1efPmEW0O1dXVqq6uVnt7u9ra2mI9VNoxDEP9/huSzaahoSGzy4ladfutfl/W9wUAAMnw0ksvJeU4MYdfp9OpF198UT/+8Y+1devWsHV+A8rKylRWVhbrodLOu3UufXneVhkL55pdyoSsvnmx25DNpnfKRv/TAwAAQDxF287gcrliWl0sLqs9BAJwPEbOwVwzeq7pbvcFSdJHc+api5HGAAAghdTX18e0f1zX+R1rKgfSByONAQCAWRoaGtTU1KSenp4xtzl9+nRMx4hr+EX6W90WGn5Z3xcAACTH3r17VVdXp8rKSi1atGjUbQzDiHm2BOE3gRbeN09/uGWtNM2uQ/9yQscOx/ZJJeEMQ6tu9vv6cnPVPP8uc+sBAAAZw+12680334y4HeE3hTkXzNCG7/yuJKnzQnfKh98lngua5R3+M8ORheW6kc0/DwAAkBzRLo6wZcuWmI4TlwveYA2rw6a60fIAAABST6zXmBF+EbQqZH3fJi52AwAASVReXi6XyxVxu1deeSWm4/B3bUiScm/cUNWZdknShWklap85y+SKAABAJikrK9Pp06f1xhtvaPbs2aNe9Obz+dTe3h7TcQi/kCSt7Dij/JsjjZsYaQwAAJKsvb1dzz33nHw+37jb2WLMKIRfSKLlAQAAmKu2tlbbtm1TRUXFuNPenn/++ZiOQ/iFpFsXuw3ZbDrESGMAAJBkZWVlWrVqVcTtKisrYzoOF7xlqAL3ra/v8Pbo3gufS5I+nj1XV+2FJlUFAAAy1ezZs6PabuPGjTEdh/CLsJHGTUx1AwAAJjAMQ729vRG3O3ToUEzHIfwm0NXObr3zm2a989sTOn/uitnljCl8fV/6fQEAQPLV1NSosbFRp0+PPxSssbExpuPQ85tAJ46e0Q+/9YaMhXPNLmVshqHqmyONr+fk6GjpQpMLAgAAmeiFF16QNHzhm8/nk8PhGHHhm8/nY7wxYlPe6ZGj55ok6cjCMkYaAwAAU5w6dUoVFRVat26dioqKRt3m2rVr2r9/f0zHIelkuNVtIUuc0fIAAABM4nQ6tX379ojbxXrml57fDFcdsr5vI+v7AgAAk3zve9+Lartt27bFdBzCbwIt/9179Vfv/We99et/pz/86gqzyxkhZ2AgONLYUzRNbbMcJlcEAAAyldPpjGo7zvymsLypuZqzcKbmzLtDhUX5ZpczwvKzZzT1xg1JN6e6MdIYAACkuNra2pj2t3zP75EjR+RwOFRaWmp2KSkntN+3kfV9AQDAbRKVo9544w0VFhbqscceC9727LPPRtyP1R4i8Pv9OnjwoDZs2GB2KSmpOmR930NlhF8AAHBLInNUc3OzbDZbWPj1er2qrKwct/3BMAzt3bs3pmNbOvy2tLSYXULKmn7dGzbS+Erh6EuKAACAzJTIHPXmm2+OuM3pdOrpp5+OuG9bW1tMx7Zsz29HRwetDuOoOndKUwxDEi0PAAAgnBk56sUXX4xqO1Z7GIPH45HDweoFY3n43K1+30Os7wsAAEKkco66ferbRFky/La0tKiqqsrsMlKXYeihc8P9vv7sbL3PSGMAAHBTqueoV155Jab9Ldfz29XVpfz81FtWLJUsvNopp7dLknR0Tpn6c3LMLQgAAKSEVMhRp0+fVk9Pz6j3+Xw+tbe3x/T4lgu/ra2tk/q08v777+vo0aMRt/P5fJMpK6WEtjy8O3+pCty37uuNbn1pAACQQnw+n3bs2BFxuxUrVmjlypVj3j/ZHBUPbrdbzz77bMSsZYtxLoGlwm9ra6uWLJncxVv9/f3yer1xrefMx5/ptT/9hYwZJTrxwWdxfexYPHT21hJn78wPf71Cg3AAgRgAgNjZBkf/PRvTY86TlD28BFg0Oaa/v3/M+2LJUfFQW1urbdu2qaKiYty+3ueffz6m41gm/Pr9fvn9fpWUlExq/9zcXBUWFkbczufzybi5SkIk7o5L+se3fitj4dxJ1ZQI2YMDWnl+eImQiwVFartzdsR94v0fKgAAyRYIiVZls9miuhAsNzd31NtjzVHxsHjxYq1atSridpWVlTEdxzL/DGJtzl65cuW4fwYI2LFjR9zPECdThftTFdwY/tT37nxGGgMAYAV2u11PPfXUpPdPhYvcojkJKUkbN26M6TiWWO0hlZfjSDUPh7Y8LGB9XwAAMl2q5CjDMNTb2xtxu0OHDsV0HEuc+e3u7tbJkydHTCLx+/2SpMOHD+vkyZPKz8/XI488krS68u15mj5rmjRvuq51X5e3x5+0Y48l9GK3w/MIvwAAZLpUyVE1NTVqaGhQeXm5Fi1aNOZ2jY2NUbVHjMUS4XfJkiWjNmj7/X69/vrr+uIXv2hKA/cDa+/RC38zPKbvZ3/+tn71101JryFU8XWf7ukcvvDu5J2zddk+zdR6AACA+VIlR73wwguShi988/l8cjgcI/qYfT6fPB5PTMexRPhFdL742SlN0fDFeu8uYKobAABIHadOnVJFRYXWrVunoqKiUbe5du2a9u/fH9NxLB1+u7u7Jd06bZ/pHrptfV8AAICxJDtHOZ1Obd++PeJ2nPkdhcfj0ZEjR9TV1SVJOnDggDo6OlRaWqply5aZW5xZQkYa92Vl69gcRhoDAICRzMpR3/ve96Labtu2bTEdx5Lh1+FwaMOGDWaXkVJKuy5qTs9VSdLxOYvUlz36On8AACCzmZWjnM7opmp5PJ5xL4iLxBJLnSGy0JaH26e6AQAApIva2tqY9rfkmV+MFL6+L/2+AADAPG+88YYKCwv12GOPBW979tlnI+7Hag+ISvbgoB78fHik8eWphToVxUhjAACARGlubpbNZgsLv16vV5WVleO2PxiGob1798Z0bMJvBviCp0P2G32SpHfnL5Fho9sFAACY58033xxxm9Pp1NNPPx1x37a2tpiOTQrKAA+fDen3peUBAACkoBdffDGq7VjtIYUd++3H+uOV/0nGPId6rl03rY6HGGkMAAAs4vapbxPFmd8E6uvt14VPL+rC51fl7TFn0EaRv1f3dZ6TJJ26w6mLhcWm1AEAACDFvlrDr3/965j2J/xaXNVnp5Rl3BxpzFQ3AABgstOnT8e0/6lTp2Lan7YHi3s4dH3fBbQ8AAAAczU3N+upp56aVPsCS52lOGfpDD34pftlzCjRJy3n1HbSndwCDCO4vm//lCwdm1OW3OMDAADcpqCgQA6HY1L7Gjf/mh0Lwm8CLbx3nra+8g1J0s/+/O2kh9/53Zc0t+eKpOGRxv4cRhoDAABz/df/+l/V2NgoSaqoqIh6rHHAyy+/HNPxCb8W9vC5kKlujDQGAAApwG63q6amRpLU3t6uhoYGFRYWqrKyUgUFBRH3X7x4cUzHJ/xaWOj6vlzsBgAAUk1ZWZnKyobbMl0ul9xut5xOpyoqKsbcZ+PGjTEdk/BrUdmDg1p5c6TxlXy7Ts6cY3JFAAAAY6uoqFBFRYV8Pp8OHTokr9er8vJyLVq0KK7HIfxa1P2dZ1XUP7y28GFGGgMAgDRht9u1atUqSZLb7VZ9fb1sNpsqKiomfaFcKMKvRT1EywMAAEhzTqczeEHcK6+8Ip/Pp5qammA4ngzCr0WFXezG+r4AACANuVwuNTU1qaGhQYZhBPuDY0H4taCivuu639MhSWqf7lBnYYm5BQEAAETJ4/Gorq5ODQ0N8nq9cjgceuyxx7Rq1aoJL4s2GsKvBa0MHWnMWV8AAJDient71djYqLq6Op0+fVoFBQVavXq1ampq4nK2NxThN4H8vX06f7pTysmWt8eftOOGr+9Lvy8AAEhNhw4dUmNjow4dOiTDMFRRUaHvfe97MfX0RkL4TaDjv/1E36n6gYyFc5N63IfODV/sdmNKlt6fy0hjAACQOk6fPq26ujo1NTXJ6/WqrKxMjz32mGpqamS32yPuX1tbqy1btkz6+IRfi5nXfUkLui9Lkppn3yV/Tp7JFQEAANzyzDPPqLCwUOvWrVNNTc2E+nh9Pp8aGhoIv7jlIVoeAABAilu3bp2Kior0zjvvBG8zbl6vZLPZRt3n2rVrqq+vV29vb0zHJvxaDOv7AgCAVFZRUTHpM7dbtmzRk08+GdPxCb8JdPeKhfras38oFeRr/z+61Pg/P0no8bKGBvXFz05Jkq7m23ViZnJ7jQEAACKprKyMaf/169fHtD/hN4GmzyrWQzUVkqSPms8l/Hj3dp4LjjQ+Mm+xhqYw0hgAAKSWjRs3mro/6chCHg5peWCqGwAAwEiEXwsJXd+Xfl8AAICRCL8WYe/36wvu4ZHGZ0pmyV003eSKAAAAUg/h1yIe/KxN2caQJFoeAAAAxkL4tYjAVDeJlgcAAICxEH4tovpMYKTxFEYaAwAAjIHwawFO3xXN916SJLmcd6k3N9/kigAAAFIT4dcCHuw8FfyalgcAAICxMeQigdxnL2nfz/5ZxrRCtZ28kLDjVHWGLHHGxW4AAABjIvwm0JmPPtPr238pY2HixgxPMYa04uaZ32s5U/XxzPkJOxYAAEC6I/ymuaVXP9O0G9clSUdnLVaB25A0OGI775ysJFcGAACQegi/aS605eG9WYvH3K7w/MhADABAppgyW1K2zdwaBo24/z5OheeVbrjgLc2tDLnY7cgs+n0BAADGQ/hNoIf+oEL7zr+hfzz0A23+5qq4P/7UG3594fKnkqRzhTPktt8R92MAAABYCW0PCWSTTTm5wy/xlCnx/5PE8kungyONOesLAAAQGWd+09jKKPt9AQAAMIzwm8aqPMPhd8A2RcdmlptcDQAAQOoj/KYpR+9VlXovSpI+vmOBenMYaQwAABAJ4TdNscoDAADAxBF+01Sg5UGS3nMQfgEAAKJB+E1DU4whrbw4fOa3JydfJ0rmmVwRAABAeiD8pqHFXZ+ruL9XknR0ZrkGpzC6GAAAIBqE3zQU1vJAvy8AAEDUGHKRQCePndELf/SaDMedOnfmYtwe98GQi93o9wUAAIge4TeBrni6dbi+RcbCuXF7zKkDfcGRxp/Z79R5+51xe2wAAACro+0hzVRePK0cY1ASU90AAAAmivCbZh7spN8XAABgsmh7SKDiOwtVes9cyTlDFz6/qk53d8yPGQi/g7Ix0hgAAGCCOPObQPdWleuVv//3euX/26LfXXd/zI83s7dLC3s6JQ2PNPbmTo35MQEAADIJ4TeNhK3yQMsDAADAhBF+00hVaL+vg4vdAAAAJorwmyZsxpBW3Dzz683O18fTF5hcEQAAQPoh/KaJxV3nNb3fJ0k6NrOMkcYAAACTQPhNE1UscQYAABAzwm+aWBlysdsRRhoDAABMCuE3DeQN9GvZ5TOSpPMF0/U5I40BAAAmhfCbBiovnVbuUGCk8RLJZjO5IgAAgPRE+E0DoSONaXkAAACYPMYbJ9C7dS79q9n/VsZdczQ0ZEz6caoYaQwAABAXhN8EMgxDAzcGZQwMTfox7rzerUXXPJKkE9Pnqye3IF7lAQAAZBzaHlJc+EhjproBAADEgvCb4qro9wUAAIgb2h4SqHTpbP0v//ohqaRI7x9qU8uxjgntbzOGguv79mbn6aM7ShNRJgAAQMYg/CbQnEUO/Zs/+QNJkveaf8Lht6z7gu7o80qSjs1gpDEAAECsaHtIYQ8y1Q0AACCuCL8pLLTfl4vdAAAAYkf4TVG5gze07NLwSGP31BKdK5xpckUAAADpj/CboiounVbe0ICkmy0PjDQGAACIGeE3RYW2PLw/i35fAACAeLDUag8tLS3q6uqSx+OR3+9XaWmp1q5da3ZZE2Y/69ODnuHwOySb3mekMQAASDCr5KhILBN+Dxw4oGXLlmnZsmWSJL/fr3379um1117T448/rvz8fJMrjN4d/T0qv+aWJJ0smatreXaTKwIAAFZmpRwViSXaHlpbW7V06VKVlJQEb8vPz9eGDRvU19enffv2mVfcJDzQczr49XsscQYAABLIajkqEkuEX7fbLYfDMeL2/Px8LVu2TGfPnpXf7096XdeueOVqPCnX+2fU6e6Oer/l19qDXx+h3xcAACRQquaoRLFE20NLS4s8Ho8effTREfcF3kyPx6PS0uSOB/7ocJu2f+UnMhbOjX4nw9Dy7uHw25uVqw/vZKQxAABInFTNUYliiTO/o31aCQh8UkmXXpWF1z26Y8AnSTo+s0wDUyzx+QQAAKQoK+WoaFgiWY32SSWgu3u43WC8NzaVLL92q9+3Jccan7AAAEDqslKOioYlwu94Wlpaglcujuf999/X0aNHI27n8/niUdaYQvt9j04rk/3s8PF8C1jxAQAAjM7n82nHjh0Rt1uxYoVWrlwZ9eNGm6PSiaXD74EDB1RcXKw1a9ZE3La/v19erzeux19WvURPvvSvpbwc/fe/O6KGfc3jbp8zdENf6OmQJF3MKdK5/BnB+wIhGAAATJytskCSudNSbYOG7Gd74/uYN5+XYRhR5Zj+/v6oH3siOSqdWDb8ejwetbS06Jvf/GZUfSq5ubkqLCyMuJ3P55NhGFHVUDBtqsqXLZAkldwR+czt/d6zyjOGRxofm1bGSGMAABAVm80muz1y1sjNzY3q8Saao9KJZcPvvn379Oijj4atWTeelStXRvVngB07dsT9DHFAYJUHSTpaXJaQYwAAAOux2+166qmn4vZ4E81R6cQSqz3cbteuXXrkkUfSrjk7cLHbkKTjRYvMLQYAAGSkdM1R0bJc+N2/f7+qqqrSbi26khtelV8fHmncXjBb13K4wA0AACRXuuaoibBU+D1y5IiWLFky4g3r6upSR0eHSVUNs0Xo330gZImzo9NoeQAAAMmVyjkqniwTfltbW+VwOEb9pNLZ2ani4mITqope6BJnx6bR8gAAAJIn3XPURFjigjePxyOXy6WlS5eqpaUleHtgKsnJkyf1rW99y6zyIjMMrbgZfv1TsvVx4QKTCwIAAJki7XPUBFki/O7atUt9fX06e/bsqPenwqeV8ZoeSv0XdeeN4RUkWgrv0g1GGgMAgCRJhxwVT5ZIWdu2bTO7hNFFtxxw2BJnx+j3BQAASZSyOSpBLBF+U9XZ1gv6qxf3yrhjmj48Pnaj+IrQfl/W9wUAAEgYwm8CnT/dqV/9lzoZC+eOuU3O0IC+4P1UknQpp0gd+TOTVB0AAEDmscxqD+nqXu9Z5Q8FRhovYqQxAABAAhF+TRbW8kC/LwAAQELR9pBAObnZKpg2VbrDLv/1fvmv3xixzfKQ4Ras7wsAAJBYnPlNoAd+5x793Ymf6O/q/4O++vWHRtxffMOnxb0XJEltU53qzilMdokAAAAZhfBrosqekLO+rPIAAACQcITfJLGNciHbim5GGgMAACQT4TeBDOPWlIsR2dcwtPzmxW59tmx9yEhjAACAhCP8Jk14+p3vv6SZN3okSR8UlerGlBwzigIAAMgohN8EMsYZb8wSZwAAAMlH+E2g8doeloeE36OEXwAAgKQg/CZJ6AVvOUMDquj5VJJ0OadQn06dZVJVAAAAmYXwm0hjnPm9x3tO+UPDAy+OM9IYAAAgaQi/CRTW8xsScEOnutHyAAAAkDyMN06gE++f1tbfe0nGnFm6etkbvD203/c46/sCAAAkDeE3gXq9frV/cE6Gdyh4W9FArxb3npcknZ7q0NWcIrPKAwAAyDi0PSTZA9dOB190Wh4AAACSi/CbZMuvMdIYAADALLQ9JFDxjCKt/L37JMcd6jjdqVMfnw9e7NZvy9KHRaUmVwgAAJBZCL8JNK/MoT/9i+9Iknb9zSFdP/6BHP3dkoZHGvcz0hgAACCpaHtIoNAJb1Om2G5reaDfFwAAINkIvwk0NHhrlYcpU2xa3k34BQAAMBPhN4GGhm6F3yybgiONr2bbdYaRxgAAAElH+E2gocFbbQ93DvWqYKhf0vAqD4aNlx4AACDZSGAJNBjS9jBr8NaEN1oeAAAAzEH4TaDBG4PBr2cavcGvWd8XAADAHITfBOrvuxH8elr28FngM1Nn6UruNLNKAgAAyGiE3wTq998Kv1OmTpVEywMAAICZGHKRQP7efnm7e5Xt71X+tWuSaHkAAAAwE+E3gXp7rmvzoj/RTu8uOfu71W/L0geFjDQGAAAwC20PCTZn6JqcN0caf1S4QH1ZuSZXBAAAkLkIvwm2/Mbnwa/p9wUAADAX4TfBlvd/Fvx6cPNm/V7N/SZWAwAAkNno+U2gLGNIFQPnpdxcDbz9P/Xkmmr5r/frq994SP7efvX29t/6/+v9ut7bryONrTr58fngYxRNy9fqL90b1fH+ue4D+a/fWmFiYfks3f2FeRH3817z6+D/+DjstgdXlWuGI/KSbJ+2deqTDz4Lu+0Pvro8qnrfP9Smi55rwe9nOqZp5aryqPb9za+PhX1/zxfm6a7yyCOjL3mu6b1DbWG3rfnSvSqclh9x3xMffKYzbZ3B7/On5uj31n8hqnob/8fH6rnmD34/v/RO3b88cv+3//oN/XPdB2G3La9aJMfckoj7ftZxWR8c6wi7bd2GSmVlR/7Me/zIabk/7wp+X3KHXQ//ztKI+0nS/n3NGhi4NeCl/O7ZWnzP7Ij7dV3x6Z3fngy77eHfWaqSO+wR9z31yQW1nbgQ/D47e4oe2VAZVb3v/Pakuq74gt8755bogarIF6YODgypYV9z2G1fWF6qeaV3RtzX83mXjh05HXbb763/gvKn5kTc98NjHTrXcTn4PT8jRsfPiJKI+2bazwipO6r6YH2E3wRaOtApu3FD6pcufXZJTkn5U3O19N65Y+5z9bI3LPzeMaNI3/2PG6I63ntNp8J+sT1QtUhPPVMTcb+O050jfrF95Wtf1MqHI/+S2fOLd0b8You23v/4734e9ottwcKZUe97+y+2NV+6V5v+6OGI+73/TtuIX2zfevJ3VLoo8i/FHT+tD/vFVliUH3W9H7vOhf1iu69yQVT7XvRcG/GL7Q++ulxrf/++iPv+5u+PjfjF9n88u172wryI+/7o+7vCfrHNnjs96uf624YPNTDQH/z+oTVL9K0nfzfifh+3nBvxi+1fP1ate5fNj7jv37z5L2HhNzcvO+p6P23rDAu/i++eE9W+Pm/fiPD7pT9Ypj/4SuRgd+Dtj0aE3/992+9rZhRh8qc/+oew8MvPiNHxM4KfEaH+5s1/0VnPe1HVB+sj/CZQaL/v3/9gp9Ysuk+ld8/R1MJ8ZWWN/sna3+GR7cyt/Wy5Q6NuNxrbWbdsF7pufX8lyk+5/QNhx5Qk2/W+6I55zTti32jZ3JfCn+tdxdHve3u917xjbHnbftf7RtbbPxDdvle6w+v1l0S1nyTZPvPIduZWOLNdWhjdjoODI5+rzz/Gxrcd0+sb+VyN6P492TqvhD/XOyP/Mgxu++kF2by3arR19US3X1//yOfa1z/G1rft29UTXm9h5LN0wW3PXwzft9MZ3Y7G0Mh6vb4xNr7tmD7/yPdmcHD0jW/f91IXPyOi2ZefEZGPmWE/IzQwKNO7PQdGvl+xP+Yimf680gzhN4GW37h1tuPglQL9/f/6SvD73PwcTS3M11R73q3/t+fp00/Ohz3GZXe3fvLvdkZ1vJ7u3rDvj/7zx1Ht67ttP0na+xf79S+/jvwpuePE+RG3RVvv7c/100/OR73v7f5l73s683HkHyhX3F0jbqv9v/5e9uKCiPu2Hv807Pue7t6o673sDg8ZH7zTGtW+fddH/mDf99a/6MjbH4yydbjzpztH3Pb69/5WWdlZEfdtbf40/LE+vRj1cw2dbChJ7/ymWZ5zl8fY+pbuyyN/Af7yp/+k4juLIu57+sNzI2qItt7zn14M+761+dOo9h0cGBlW9//yHX10uD3ivqO9Hn/5/C7lTY28GszHR8LPSvIzIjr8jBgp035GzFkbua0ImcFmGIZhdhHpZMeOHfJ6vfJfu6GDr58eczv7UJ9+dfVvlCVDHVkleqrk0SRWCQAAQq3Zukj503JUWFiop556KqnHjjY7TIaZzytdcZ48QSpunFeWhj9XHMuJfEEJAAAAEo/wmyBh6/vmjH2BGwAAAJKH8JsggX7fG5qilpzIS7gAAAAg8Qi/CTB78JrmDA035n+c7VCfjSZ7AACAVED4TYAHQlZ5OJZLvy8AAECqIPwmwIqQft+j9PsCAACkDMJvnE0xhlRxY3htym5bntqzZphcEQAAAAIIv3G2dOCiCo3hRceP58yVYbOZXBEAAAACCL9x9kBIy8NxWh4AAABSCuE3zlaEXuzGcAsAAICUQviNo4Khft09MDwr/WxWiS5mFZpcEQAAAEIRfuNo2cCtkca0PAAAAKQewm8crehniTMAAIBURviNo/CRxnNMrgYAAAC3I/zGiWPwmuYOXZMkfZI9S35GGgMAAKQcwm+cLA9Z4oxVHgAAAFIT4TdOwsMv/b4AAACpiPAbB1OMIVXeDL89tjy1ZTPSGAAAIBURfuNg8cAlFQVHGs/RkI2XFQAAIBWR0uJgOVPdAAAA0gLhNw5C+30ZbgEAAJC6CL8xmmr0654BjyTpsynT5MkqMrkiAAAAjIXwG6NlNy4o++ZIY1oeAAAAUhvhN0Zh/b65hF8AAIBURviN0fL+4X7fQdnUkj3b5GoAAAAwHsJvDGYN9mj+ULek4ZHGvVNyTa4IAAAA4yH8xoCRxgAAAOmF8BuDBxhpDAAAkFYIvzF4IDjSOFet2TNNrgYAAACREH4nKVtDmmb0SZJcjDQGAABICyS2ScoxBoNf0+8LAACQHgi/k5SrW+H3KP2+AAAAaYHwO0nZN8/8np8yTZ6saSZXAwAAgGgQfifJdvP/OesLAACQPgi/MWKkMQAAQPrINruAeOvo6FBHR4dKSkrk9/slSVVVVQk51qBscmXPSchjAwAAJFsyc5RZLHXmt7W1VS0tLVq7dq2WLVumqqoqORwO7dq1KyHHO8FIYwAAYBHJzlFmsUz49fv9amho0COPPBJ2e2lpqfx+v1paWuJ+zOP0+wIAAAswI0eZxTLht7W1VcXFxcrPzx9x39KlS+VyueJ+zKOs7wsAACzAjBxlFsuE35MnT476hklSSUmJOjs7g70r8WDIppOMNAYAABaQ7BxlJsuEX4/Ho5KSklHvKy4uliR1d3fH7Xg3bFmMNAYAAJaQ7BxlJsukt76+PuXl5Y27TTzftH5lxe2xAAAAzJTsHGUmyy11NprAmzne6fr3339fR48ejfhYXq9XkmQU5WvN1kXxKRAAACRUXuFw5Ont7TW1hnhnh8Dz8vl82rFjR8TtV6xYoZUrV07sGFHkqHSSEeE3Gv39/cFgGw3bFJvyp+UksCIAABBvQ0NDph07kdnBMIyockx/f39Cjp9OMiL89vX1SdKYjdySlJubq8LCwoiPFfoPK5rtkd58Pp8Mw5DNZpPdbje7HCQY73dm4f3OLBM5wRVvif731d/fr4GBARUUFETcNjd34vMJoslR6SQjwm80Vq5cGdWfAXbs2CGv16vCwkI99dRTSagMZgq833a7nfc7A/B+Zxbe78wS+vs72b75zW8m/ZgYm2UueCsuLh6zETvQoxK4WhEAAAC3ZFKOskz4dTgcYzZiB95Mh8ORzJIAAADSQiblKMuE39LS0jE/sXR1dWnBggVJrggAACA9ZFKOskz4XbJkifx+v7q6ukbc19raqoqKiuQXBQAAkAYyKUdZJvzm5+dr3bp1OnjwYNjtgVnVS5YsMakyAACA1JZJOcpSqz0sWbJEeXl5OnDggEpKSoK9K48++qjJlQEAAKS2TMlRlgq/0nDPSmlpqdllAAAApJ1MyFGWaXsAAAAAIrHcmd9EW7Fihfr7+yc1IQXph/c7s/B+Zxbe78zC+40Am2EYhtlFAAAAAMlA2wMAAAAyBuEXAAAAGYPwCwAAgIxB+AUAAEDGYLWHKHV0dKijoyNs0eeqqiqTq0Ii+P1+HTx4UHl5eVq7dq3Z5SDBWlpa1NXVJY/HI7/fr9LSUt53C/P7/WppaQn+HO/r65Pf71dVVZUcDofJ1SEZjhw5IofDYfm1bDE2wm8UWltbdfLkSW3YsCF4W0dHh3bt2mW5qSeZ7MCBA+ru7pbD4VBHRwc/GDPAgQMHtGzZMi1btkzScDDat2+fXnvtNT3++OPKz883uULEk9/v15EjR1RVVRX23ra2turnP/+5Nm/ezH/3Fhc4uRH6+xyZh7aHCPx+vxoaGvTII4+E3V5aWho8gwBrWLt2rTZs2KCqqirl5eWZXQ4SrLW1VUuXLlVJSUnwtvz8fG3YsEF9fX3at2+fecUhIVpbW8PO+gaEjnSFtfE7GxLhN6LW1lYVFxePegZo6dKlcrlcJlQFIFZut3vUP3Pn5+dr2bJlOnv27IiQhPRWXFwsabjVAZmHv+ghgPAbwcmTJ8f802dJSYk6Ozv5BQmkoZaWFu3atWvU+wKh2OPxJLMkJFhpaam2bds26oeevr4+OZ1OE6pCsng8Hvq6IYnwG5HH4wn7s2iowFmE7u7uJFYEIB7G+yUY+EBLz29mOHLkiCTpwQcfNLkSJEpLSwsXqSOIC94i6Ovri9j/GbhICkD6GO9i1cAHWv67tr7AtRsbNmwY80QH0ltXVxcfZBGG8BuDQCim7QGwlpaWluAKELCeQODt7u6W3+/X5s2bCb4W1trayllfhCH8AkCIAwcOqLi4WGvWrDG7FCRIfn5+MAx1dHRo//79qqio0JIlS0yuDPHW2trK+4oR6PmNQeCKYf6cAliDx+NRS0uLNm/ezH/XGaK0tFQbNmzQvn37WAbLYvx+v/x+P2f1MQLhFwBu2rdvnx599FF+WWaY/Px8LVmyRPv376eNzUJoX8JYCL8RFBcXj7maQ+CHZGDVBwDpa9euXXrkkUe4yC1DBd73s2fPmlwJ4oFlzTAeen4jcDgcY54J4IpwwBr279+vqqoqFsC3uNdeey3Y5nC7QJtLV1dXkqtCInR3d+vkyZMjWlkCv88PHz4cXMf/9gmusD7CbwSlpaXBNSBv19XVpQULFiS5IgDxdOTIES1ZsmRE8O3q6lJ3dzeB2CL8fv+4k90CoZeWF2tYsmTJqBe6+f1+vf766/riF7/IhXAZjLaHCJYsWSK/3z/q2YDW1lZVVFQkvygAcdHa2iqHwzFqwO3s7KSlyUICY6tHO+srDa/6kJeXRyACMgDhN4L8/HytW7dOBw8eDLu9tbVVxcXF/KC0qL6+Pi58sTiPxyOXy6Xu7m61tLQE/3fkyBEdOXJEhw8f5iygxTz44IOjXtTW0tKizs7OcQefwBoC7Yr8fM9sNsMwDLOLSAcdHR3q6OhQSUlJ8D8aFs22liNHjsjj8airq0udnZ2SpAULFig/P19Lly7lg47FvPbaa+P+Gby4uFiPP/54EitCshw4cEDSrQ+5+fn5WrNmDcvbWZjH49GRI0eCP9/z8vJUWlqq0tJSVoTIQIRfAAAAZAzaHgAAAJAxCL8AAADIGIRfAAAAZAzCLwAAADIG4RcAAAAZgwlvABCFPXv2SJLcbrfcbre2bt0qp9NpclUAgIki/AJABDt37tTmzZtVWFgoSWpqatKTTz6pN998kwAMAGmGtgcAiMDlcsnr9Qa/r66ult1uV11dnYlVAQAmg/ALAOPwer3BVodQRUVF8vl8JlUFAJgs2h4AWNLOnTt16NAh9fT0qLy8XC+99NKkHqewsFC//OUvR9zudru1cePGWMsEACQZZ34BWNK3v/1tbd++XT6fT2VlZXF97Lq6OjmdTq1fvz6ujwsASDzO/AKwrECrQmVlZdwe0+v1qra2Vj/96U/j9pgAgOThzC8Ay2pubpYU3/D72muv6Uc/+hGrPABAmiL8ArAsl8ulioqKuD3ezp079eijj8a9jQIAkDyEXwCWFFihIV5nfZuamlRZWRkWfFnqDADSDz2/ACwp0PJQVlamnTt3SlLw4rexLlTbs2ePTp06FWxpqKysVGVlpZqbm3Xq1CmtWbNG7e3tkjRi6TMAQHog/AKwpED4bWpq0tatW4O3f/3rX1dRUZGqq6uDt3m9Xj333HNavXq1vv/97wdv37lzp6ZNm6aXX35ZPp9Pe/fuDTvGiy++mNgnAQCIO8IvAEtyuVxyOp1hwVeSKioqtHv37mD49Xq9euKJJ1RRUaFNmzYFt6urq9PevXtVWVk56jq/AID0RM8vAMtxu93y+XxjDqEItC5I0ssvvyxJYWd8A4/hdDrjulIEAMB8hF8AljPeEmenT58Oft3U1CSXy6WampoR233729/Wm2++magSAQAmIfwCsJzm5mbZ7fZR1+J1u93BFRsCqzUwqQ0AMgfhF4DlnD59etT1fZuamiRJq1evliS1tbWNGZIBANZE+AVgSaMF2rq6OjmdzuCFbT6fT+Xl5ckuDQBgIsIvAMtxOBwjbmtubpbL5dLTTz8dvC3SpLY9e/awni8AWAzhF4DlbNq0SS6XK/i91+vVG2+8oe3bt4ddBLdt2za5XC55vd6w/b1er3bu3KmysjJaIgDAYmyGYRhmFwEA8VZXV6f29nbZ7Xa53W49+uijo57pbW9v165du+R0OuV0OuXz+WS327kIDgAsivALAACAjEHbAwAAADIG4RcAAAAZg/ALAACAjEH4BQAAQMYg/AIAACBjEH4BAACQMQi/AAAAyBiEXwAAAGQMwi8AAAAyBuEXAAAAGYPwCwAAgIxB+AUAAEDGIPwCAAAgYxB+AQAAkDH+f3uOZX7cy76tAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Define the parameter ranges\n", + "bc_squared_values = np.linspace(0, 10, 100)\n", + "a_values = np.linspace(0, 10, 100)\n", + "\n", + "# Create a meshgrid for the parameters\n", + "bc_squared, a = np.meshgrid(bc_squared_values, a_values)\n", + "# a, bc_squared = np.meshgrid(a_values, bc_squared_values)\n", + "\n", + "# Compute the function value for each combination of parameters\n", + "result = np.minimum(bc_squared, np.pi**2 * a)\n", + "\n", + "# Create a contour plot\n", + "plt.figure(figsize=(8, 6))\n", + "contour = plt.contourf(a, bc_squared, result, cmap='viridis', levels=10)\n", + "plt.colorbar(contour, label='Minimum Value')\n", + "plt.plot(a_values, np.pi**2 * a_values, color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "plt.contour(a, bc_squared, result, levels=[1], colors='white', linestyles='dashed', label=r'$\\mathsf{R}^*= 1$')\n", + "\n", + "plt.ylim([0, 10])\n", + "plt.xlim([0, 4])\n", + "\n", + "plt.xlabel(r'$bc^2$')\n", + "plt.ylabel(r'$\\pi^2 a$')\n", + "\n", + "plt.title(r'$\\mathsf{R}^*= \\min(bc^2, \\pi^2 a)$ in vector space')\n", + "\n", + "plt.legend()\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Define the parameter ranges\n", + "bc_squared_values = np.linspace(0, 10, 100)\n", + "a_values = np.linspace(0, 10, 100)\n", + "\n", + "# Create a meshgrid for the parameters\n", + "bc_squared, a = np.meshgrid(bc_squared_values, a_values)\n", + "# a, bc_squared = np.meshgrid(a_values, bc_squared_values)\n", + "\n", + "# Compute the function value for each combination of parameters\n", + "result = np.minimum(bc_squared, np.pi**2 * a)\n", + "\n", + "# Create a contour plot\n", + "plt.figure(figsize=(8, 6))\n", + "contour = plt.contourf(a, bc_squared, result, cmap='viridis', levels=10)\n", + "plt.colorbar(contour, label='Minimum Value')\n", + "plt.plot(a_values, np.pi**2 * a_values, color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "plt.contour(a, bc_squared, result, levels=[1], colors='white', linestyles='dashed', label=r'$\\mathsf{R}^*= 1$')\n", + "\n", + "plt.ylim([0, 10])\n", + "plt.xlim([0, 4])\n", + "\n", + "plt.xlabel(r'$bc^2$')\n", + "plt.ylabel(r'$\\pi^2 a$')\n", + "\n", + "plt.title(r'$\\mathsf{R}^*= \\min(bc^2, \\pi^2 a)$ in vector space')\n", + "\n", + "plt.legend()\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Phase space computations\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[36m0d8834219758fd140ab651797b8d5b4a\u001b[m\u001b[m \u001b[1m\u001b[36m6372095e0b1eaed14e123e64b9316bb0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0ff2e717134c5abbc534bd2533ff9da5\u001b[m\u001b[m \u001b[1m\u001b[36m63c5c8c2f6acfa8286bc24001581c84b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m13d6505ebc2b934521a5a502de43fce0\u001b[m\u001b[m \u001b[1m\u001b[36m65a8c8fecbf3a3245fe56b0f15146662\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m17c366f102af831827f7f3f31bfa20c6\u001b[m\u001b[m \u001b[1m\u001b[36m93666c80ed3523e3c2f7140d2788f85c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2f6fb02e066c6e61b2680447a53b61df\u001b[m\u001b[m \u001b[1m\u001b[36ma5890aa9faa3fdf524c243354051e794\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m322244626d33878ea33bbd8dc1e0b353\u001b[m\u001b[m \u001b[1m\u001b[36mbef047fb68f6bc3b5feb6b2f634b15fc\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m397ca1ad1d81ed49d979170b8b651df1\u001b[m\u001b[m \u001b[1m\u001b[36mca594bc3492a497c7daf8ad2979efea3\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5000476aa59dc0b1b99ce2037442e8be\u001b[m\u001b[m \u001b[1m\u001b[36md7bd94f5b99ccb93acbdaaa53c030e83\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5126c73c83a40d79ea28e777f96bbe9b\u001b[m\u001b[m \u001b[1m\u001b[36me09ed3e3cf1b53277982e2db255b40ca\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m56de9d66f3d1c4cfbe7a47384bf0129b\u001b[m\u001b[m \u001b[1m\u001b[36mff9c4acbaf25a77cb9e99342154bed50\u001b[m\u001b[m\n" + ] + } + ], + "source": [ + "import os\n", + "cwd = os.getcwd()\n", + "path_components = cwd.split(os.path.sep)\n", + "path_components = path_components[0:-2]\n", + "dirroot = '/' + os.path.join(*path_components, 'test', 'output', 'rayleigh-benchmark', 'MPI-1')\n", + "\n", + "!ls $dirroot\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "successful_points = []\n", + "unsuccessful_points = []\n", + "\n", + "for subdir, _, _ in os.walk(dirroot):\n", + " parameters = load_parameters(subdir)\n", + " if parameters is not None:\n", + " a = parameters.get('model', {}).get('a')\n", + " b = parameters.get('model', {}).get('b')\n", + " c = parameters.get('model', {}).get('c')\n", + " # Check if the computation is successful based on the existence of mode_shapes_data.npz\n", + " success_file = os.path.join(subdir, 'mode_shapes_data.npz')\n", + " if os.path.exists(success_file):\n", + " successful_points.append((a, b*c**2))\n", + " else:\n", + " unsuccessful_points.append((a, b*c**2))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark/MPI-1'" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dirroot == '/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark/MPI-1'" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_91885/1220707274.py:7: RuntimeWarning: divide by zero encountered in divide\n", + " return (np.pi**2 * a / (b * c**2))**(1/3)\n", + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_91885/1220707274.py:7: RuntimeWarning: invalid value encountered in divide\n", + " return (np.pi**2 * a / (b * c**2))**(1/3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHbCAYAAADvSh/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5fklEQVR4nOzde3yT1f3A8U+SNuklpeWaAoUChYI3KLcCFvCKMDfmBfCu6HSyiU6dU5zTqXPOud/mHTfYRZhOnYA6UVesOi0Cys22Xluo0FJo0wK9JW2SNnl+fzwkbegtbZImab/v14sXycnT5zlN2+Sbc77nezSKoigIIYQQQoge0Ya6A0IIIYQQkUyCKSGEEEIIP0gwJYQQQgjhBwmmhBBCCCH8IMGUEEIIIYQfJJgSQgghhPCDBFNCCCGEEH6QYEoIIYQQwg9Roe6AEP1NRUUF2dnZvP766yQnJ7Nw4UJPe319PfPmzSMrKwuA4uJi1q1bh8Vi4cknnwxlt4GO+15fXw9AcnIyixYtCmUXhRCi12mkAroQofHAAw+QnJzMypUrvdpvvvlmFi5cyJIlSwDIy8vj+eefZ+3ataHoZrs66vvq1aupr6/n3nvv9bStW7eOiooKrzYhhOhLZJpPiDCzcOFC1q9f77mfkJAQwt50z8qVK7FarWRnZ3vaMjIymDdvXgh7JYQQwSXBlBBhJj4+HgCLxRLinvRMVlaWVzCYkZHhmbYUQoi+SHKmhAgzxcXFpKWlYTQa27RXVFR4cquuv/56z2MWi4UtW7aQnJxMXl4eixYtIi0tzfN4dnY2ycnJWK1WKioqiI+P9+Q2bdq0ieTkZCoqKkhOTvY78Jk7dy7PP/88xcXFgDrNZzabvaYpu+qvxWJh/fr1pKWlUVxcTHJyMmlpaWRnZ7No0SLWr1+PyWRi0aJF5OXlAXD99dd3et68vDxPkHfrrbd6nsfi4mJWrlxJdnY2CQkJbN26lWXLlnn1RwghOiMjU0KECYvFwqZNm9i/fz+PPPKI12P19fXU19eTlZXFkiVL2L59uydYAdi4cSNZWVlkZWWxcuVKHn/8cc/I1rZt24CWEaLWwdLvf/97TwC1ZMkSsrOzvc7bE+4gcN++faSlpXkFfb70F+C5554jIyODRYsWsXz5crZs2UJGRgb33nsvGRkZLF26FLPZDOA1hdjZeTMyMli+fDlWq9XzXC5atIj8/HzWrVvHokWLyMrKYt68eTz33HN+PQdCiP5FgikhQmj//v1kZ2eTnZ3NJ598QkZGBk8++WSbUSmr1UpGRobnvslkoqKiwnO/oqLCM0Ljfjw/P99zf9u2bZ6gIjk5mQkTJlBRUcH27du9gqusrCyvfKdg6aq/27dv94wMGY1Gz4icW3x8PMXFxWRkZHgFbF2dNyEhgYqKijbPZWtpaWle1xJCiK7INJ8QITR+/HifSgkkJyd73Y+Pj/eUIwA8K+UsFgtmsxmLxeJ53B0gXXXVVaSlpTF37lzPKFR8fLxX8HFy0NITrYO2jnTWX1ADGqvV6vU1J5+vvfN3dd72vi4+Pr7TvgohRFckmBKiDyguLmbDhg1kZGQwd+7cNqMtjzzyCMXFxeTl5bFlyxZPe3JystcoTevbPbV//35ADRR72t+FCxeyYcMGbr31VrZs2cItt9zS5hzuRP3unFcIIYJBpvmEiHAWi4X777+fZcuWsWjRIoxGo2dUx11kE9TRniVLlvDEE0/wySefdDid5e8qwuzsbJYvX95mqtLX/rrdeuut5Ofne3KbuuLreYUQItAkmBIiArWeAjObzVit1jar4UAdqTm57hOoeUIZGRmMHz/ek6Du9sknn/S4X5s2bcJqtXoKjranq/66/zcajWRlZfk8BefLedtz8nSiEEJ0l1RAF6KXVVRUsG3bNjZu3EhCQgILFy5k4cKF7Y7kuKettm/fzvLly1myZAmbNm1i48aNJCcns3TpUrKysli3bh3QMk2XnJzMunXrmDdvnidnyF38s6Kiwut669atIzk52fN4Z6UROttOxmq1kpyc7BVItdd/9zU76m9WVhbbtm3j8ccfJz4+noSEBOLj41m4cKGnFIJ71aP7+3cHXJ2dNzk5ucPncvz48SxZsoSEhATPMZdeeilLly7tcIRNCCHcJJgSQoQVi8XCc889x6233orRaPQkk69bt87nKT8hhOhNkoAuhAgrW7Zs8eQ8gVoawWg0cv311/dK2QYhhP9sNhtbt27FYDAwf/78Hp2jpKSEkpISkpKSsNlsAGRmZvbqsb6SYEoIEVbS0tLYtm1bm5WFeXl5AVltKIQIntzcXGprazGZTJSUlJCamtqj8xQVFVFYWMjixYs9bSUlJWzYsIFly5b1yrHdIQnoQoiw4q7UvmnTJrZt28a2bds8W97IHn9ChLf58+ezePFiMjMzMRgMPTqHzWbjvffeY8GCBV7tqamp2Gw2CgoKgn5sd8nIlBAi7GRkZMgolBD9VFFREYmJicTExLR5bOLEieTn5zN58uSgHttdMjIlhBBCiLBRWFjYbsADkJSURGVlpSfXKVjHdpcEU0IIIYQIG2azmaSkpHYfS0xMBKC2tjaox3aXBFNCCCGECBt2u73LfCt30BOsY7tLcqa66emnn8bpdKLRaIiLiwt1d4QQQoSphoYGFEVBp9Nx++23B+UaL730UkCr+DscDpqbm316f5s+fTozZswI2LV94Q6GfJmOC9ax7Qn7YMrXWhUFBQXU1NRgNpux2Wykpqb2uLZFZ5xOJ4qioCiK33uYCSGE6PucTmfQzm21WoPyXuTLOR0OR8CvG6nCNpjqTq2K3NxcJk+e7MnCt9lsbN68meeee46bbrqpw4SzntBoNCiKgkajaXfXeiGEEALUQMf9fhF8LnQxjX6dwWmLBbQ+v7/p9Xq/rtcTdrsdwKf39WAd256wDaZajyoVFhZ2eFxRURETJ070SiqLiYlh8eLFrF69ms2bN/tViOtkcXFxWCwW4uPjWbFiRcDOK4QQom9Zs2YNFoulV1JCdDGNjF70hl/nKM2+BKctXt7feiDiE9ArKiowmUxt2mNiYpg8eTKlpaU9ngMVQgghRO9KTEzsMBHc/X7uXn0XrGO7K+KDqYKCAjZs2NDuY+4gy2w292aXhBBCCNFDJpOpw0EQdzDkfn8P1rHdFfHBVGffuPtJC2TOlBBCCCGCJzU1tcMRpJqaGkaPHh30Y7sr4oOpZcuWdZgT5W+kKYQQQojgsNlslJSUtGlPT0/HZrNRU1PT5rGioiKmTJkS9GO7K2wT0AOhoKDA5312du/ezZ49e7o8LpD1PIQQQoi+ym63d5qzvHnzZkpLS1mwYIHXe3VMTAwXXHABW7duZfHixZ5299566enpQT+2u/psMJWbm0tiYiLz5s3z6XiHwyF1o4QQQgg/7Ny5E7PZTE1NDbW1tdTW1rJhwwZiYmKYOHGiV8CSmpqK2Wxud/YoPT0dg8FAbm4uSUlJnqCsvZmoYB3bHX0ymDKbzRQUFHDNNdf4nC+l1+sxGo1dHueuGyKEEEIIb5mZmd06trPjU1NTO60x2RvH+qpPBlPu2lIdbWjYnhkzZvhUFt9dN0QIIYQQAvpgMLVhwwYWLFggSedCiIjicLrYVWphT5kFi92F0aBleoqRmaON6HURv1ZIiD6tTwVTOTk5ZGZmBnz4TgghgmlvmYW1O8w0NLnQAAqgAXYfsvLi7ipWzDExNaXrNAQhRGj0mY87O3fuJD09vU0gVVNT0+7SSyGECAd7yyw8nVtOQ5MLUAOp1v83NLl4KrecvWWSXiBEuOoTwVRRUREmk6ndEanKysoel4cXQohgcjhdrN1hpqslLQqw9lMzDqerN7olhOimiJjm66xWhdlsJj8/n4kTJ1JQUOBpdx9fWFjItdde2yv97MsqKirIzs7m9ddfJzk5mYULFwJQX1+P1WplyZIlJCcnB70fq1ev5pNPPmHVqlVkZGQE/XqtdfQcVFRUUF9fz7x588jKyurVPonItqvU4hmR6kqDQ82pyho7IMi9EkJ0V9gGU77WqtiwYQN2u53S0tJ2z9MXRqXCITE1OTmZ66+/nuLiYpKTk1myZInnsYqKCu68805++9vfkpaWFtR+rFy5kv379wf1Gh3p7DkAuPnmm6moqGjT3pF169ZRUVHBvffe261+ZGdns2jRom59jQhPe8osnhyprmhOHC/BlBDhJ2yDKV9rVdx6661B7kloRUJianJyMuPHj+e5557jySefDGlfQmnhwoWsX7/e52AqIyOjRxX18/LyJJjqIyx2l0+BFKh/+xa7TPMJEY76RM5UXxVJianx8fH9fqud+Ph4AJ/rkGVkZHR7WjA7Oxuz2dztvonwZDRo0fh4rObE8UKI8BO2I1P9XXcTU5+5JC5ktWgsFgv5+fltRgktFgtbtmwhOTnZM5ringbMy8tj/fr1gDq6WFFR4ck9uv76673Os2nTJuLj40lISOiwD5s2bfLkbLWeamvvOvX19RQXF7Ny5Uqys7NJSEhg69atLFu2zK9pyuLiYtLS0rwq6XfUr+LiYtatW4fZbGbt2rU+PSd5eXnk5eVRUVHBpk2bADzny87OJjk5GavVSkVFBfHx8TJ6FQGmpxjZfci3DyHKieOFEOFHgqkwFc6JqRUVFWzbts1zu6Kiot18qY0bN7Jo0SKSk5PJysri5ptv5oknnsBoNHqSx59//nnq6+s9IzQ333wz8+bN85xr3bp1JCcnewIDi8XC448/7nWd3//+9yxatMhzzoqKCh544AEeeeSRTq+zbt06r8Ctp9OU7qBx//79PPLIIz71Ky0tjeuvv97re+nqOXE/bjabvaYS3T+L1tfJy8vr9vchet/M0UZe3F3l0996nF7LzNESTAkRjmTMOEy5E1N94U5M7S3u4CgrK4uMjAz2799PfX19m+NOflM3mUzk5+d77ickJFBRUeG1Ks9kMlFRUQGoQcrrr7/uNcJiNBq9grbi4mLy8/O9zpGcnIzFYvFcu6PrtJaWlua5ri/2799PdnY22dnZfPLJJ2RkZPDkk096RqV86Vd7unpOOrJt2zbP9GJycjITJkzw+XsRoaPXaVkxx9Tl37oGWDHbJJXQhQhTMjIVpiIlMTUtLY2lS5fy+OOP88orr3g95l6lZrFYMJvNWCyWNkHXyeUU4uPjPcfk5+d78pA6sm/fvnZLMphMJvLy8jxBSXvX8aeUw/jx4zudRvO1X+3p7DlpT1ZWFtnZ2Vx11VWkpaUxd+5cn5PgRehNTTFy+/zhrP3UTIPDe6GJgjoitWJ26BeaCCE6JsFUmHInpvq6ZDqUiamtc3VaBwLFxcVs2LCBjIwM5s6d26P9EjvLkwLCNum9t/rlfs4feeQRiouLycvLY8uWLQASUEWQaSlGnrkkLuQlUIQQPSN/oWFqeoqxWyNT4ZCYWlxc7LltsVi4//77WbZsGYsWLcJoNHoCDF+n03yZesvIyGj3GLPZHNKprt7qV3FxMdnZ2YD6fC1ZsoQnnniCTz75JGDXEL1Dr9OSNXYAP5s3gvvOT+Fn80aQNXaABFJCRAD5Kw1TM0cbiYv27cfTm4mp7U3VmUwm4uPj2bdvH9CyfN9qtXrlN7lzeloHXSdrPaLjrjLuDhbc5yguLvYcl5aWxpQpU7zykNzn76zsQLBHjnrar/ac/Jy4g7SKigrS0tKwWq1ezxG0zQkTQggRPBJMhalwS0ytqKhg3bp1jB8/noSEBDZt2uQJjoxGI6tWraK4uJht27aRnJxMWloal156KevWrfMs6V+1apUnuHBPAbZe5r9p0yb279/Pli1bPCvUVq5cidVqZdu2beTl5bF//37S0tLYuHGj51z33nsveXl5noTwrVu3elbldXYd9zndZQqsVivr1q3rsE6U+xz79+8nPz/f6zloT3f75ctz4g4w3c9rcnKyJ69s27ZtbNu2jS1btvT5YrZCCBFONIqi+DqbJIA1a9ZgsVgwGo2sWLEi6NfbW2aRxFQhhIhAvfF+4b6GLsbK6EVv+HWu0uxLcNrie+39rS+RBPQwJ4mpQgghRHiTYCoCuBNTZYNTIYQQIvzIsIYQQgghhB8kmBJCCCGE8INM84mg27Ztm2dzYfcWNOEgXPslhBAiskgwJYLKXVtp0aJFWCwWfvzjH7fZdiYUwrVfQgghIo9M8wmfFRcX88ADD3DnnXf6/DX19fWeelBGo5GEhIROi3b2lnDtlxBCiMgjI1PCZ2lpaV4VzX2RkZHhNX1WX1/f7XMEQ7j2SwghROSRkSnRLfn5+T3OLVq9enVYVuYO134JIYSIDDIyJbqluLi4R8HUtm3byMjI6Pa+dMEWrv0Sorc4nC4pCiyEnySY6k0zZsCJTWpDLjkZdu/u1pfk5eWRlpbm2Tdv3759XH/99V7HbNq0ybNfnNVqJSsri7y8POLj48nIyKC4uJj4+HiSk5MD9Z2028/nn3/ea0Nmq9VKfHw8CQkJrF271nNcR/2yWCxs3LiRCRMmAOrmzatWrcJolK17RN+xt8zC2h1mGpq8t6vafcjKi7urWDFHtqsSwhcSTPWmigo4fDjUvegxd8K2exRn3759ZGdne1bEPfDAA6xatYrk5GTy8vLYuHEjaWlpPP74455zWK1W3nrrraD10WKxkJeXx9q1az0bAScnJ3v66VZRUdFhv9zfyyOPPILRaKS4uJj8/HwJpESfsrfMwtO55bg3Zz35/4YmF0/llnP7/OFMk4BKiE5JMNWbgjga02096Et+fj7Lly9vdQo1aFq0aBHr169n7ty5npGd8ePHewKr7pQcWL16tU/HpaWleQVHbmaz2TNa5p6SrKioICEhweu4zvrl/l7cwZMkp4u+xuF0sXaHma52uVeAtZ+aeeaSOJnyE6ITEkz1pm5Oq4Wbk/OliouLSU5OxmKxsGXLFs/0GajlBnoykrNy5Uq/+tg66HFP87n76auTv5fi4mKmTJniV7+ECCe7Si00NLl8OrbBoeZUyd6gQnRMPmoIn7QXkOTn5zNhwgT2798f9Dyo7iouLvaMRlV0I0/NXWuq9feSl5cn1dFFn7KnzILGx2M1J44XQnRMRqaEz0wmk+d2RUUF9fX1ngTz9gIpi8XS7dEpf6f53FrnSNXX11NRUeHTVF17U3r5+fmsWrVKgirRZ1jsri6n+NyUE8cLITomwZTwSetACmDdunWsWrUKUAtgtk7mBjXYcu951x3+TvO5ffLJJ17n2rdvn099GT9+PFar1XM/Ozub+Ph4jEZjt0a4hAhnRoPWs3qvK5oTxwshOibBlPCJ0WgkKyuL7OxsQN3TrvUozapVq9i0aRNpaWlYrVaSk5NDVrspLy+PuXPneu5nZGR4yjl0xWg0cumll3pKPLjLJmRnZ3vKJAgR6aanGNl9yNr1gagB13RZzSdEpySYEj7rbFrt5O1ZQunkvnS3byd/n4EaLRMiXMwcbeTF3VU+JaHH6bXMHC3BlBCdkbFbIYToZ/Q6LSvmmLpMQtcAK2abpCyCEF2QvxAhhOiHpqYYuX3+cOL06tuAO7By/x+n13LH/OFSAV0IH8g0nxBC9FPTUow8c0mc7M0nhJ8kmBJCiH5Mr9OSNXaAFOUUwg/ysUMIIYQQwg8STAkhhBBC+EGCKSGEEEIIP0gwJYQQQgjhBwmmhBBCCCH8IMGUEEIIIYQfJJgSQgghhPCDBFNCCCGEEH6QYEoIIYQQwg9hXwHdZrOxdetWDAYD8+fP7/C4kpISSkpKSEpKwmazAZCZmdlb3RRCCCFEPxW2wVRubi61tbWYTCZKSkpITU3t8NiioiIKCwtZvHixp62kpIQNGzawbNmy3uiuEEIIIfqpsJ3mmz9/PosXLyYzMxODwdDhcTabjffee48FCxZ4taempmKz2SgoKAh2V4UQQgjRj4VtMOWroqIiEhMTiYmJafPYxIkTyc/PD0GvhBBCCNFfRHwwVVhY2G4gBZCUlERlZaUnh0oIIYQQItAiPpgym80kJSW1+1hiYiIAtbW1vdgjIYQQQvQnER9M2e32TnOqQIIpIYQQQgRP2K7mCwR3kOXLNN/u3bvZs2dPl8dZrVa/+9UXNDY1EhsdG+puiCBQFIW/7v0rS05ZwuC4waHujhCR6ehR9V8HaSiib+nTwVR3OBwOLBaLz8eXH69k0pLzGbNvdqfHKbjIm/06zUMHE+NMYVBT58dHAru2kuL4p0gcOoWBQ2aj1w8MdZdEgLhcTVSUvUVdzRc8v+cX/Oqccei0mlB3S4iIMmivlcyfHYSbVkkw1U/06WDKbrcDdJig3pper8doNHZ5nNVqRVEUnFEOzCOKugymHIYGKkcWApDQdGqfCKaO6bfi0tioPvoZUVEDGDwsK9RdEgHQ5KilrORV7I3lAOSX11NQUc/UEQNC3DMhIoSiMP7vVSSvPsLfToW6eJDx+/6hTwdT3TFjxgxmzJjR5XFr1qzxjGBplK7P6zC0TAtGKQk97l+4aMZKdfQuADTaaJIGTwtxj0QgNFhLOFzyGs5m9fc1JkrLrXNGSyAlhI+01U3U/uE7fqNp5K07oEkH9+skmOovIj6YSkxM7DDB3J0r5V7VF3hdT3/YY/pWMFWt/xRF4wAgaeBUdDp5qYh0Ncf2UHHkHVBcAJiMeu49eyyjk+RnK0RXymptbPvMzMcHqzGfFureiFCJ+GDKZDJ1mGDuDrJMJlNwLq74Eky15GFFuSI7mHLRzDH9Vs/9gUNmhbA3wl+K4sR8JJuaY7s8bWckG7lr3hgSDBH/0iBE0DQ4nGwrqeGD/cfYd6xBbYxredwUlcS1M2/CVGzC3mAPTSdFr4r4V8zU1FR27tzZ7mM1NTWMHj06aNf2JS3X0YdGpuqi8mnW1gFgHDARvUFWekUqZ3MDh0teo8F60NP2g0lDuW7aCEk4F6IdLkXhK7OF/xUfZ0dpDQ6nd55HtBMWVw3k+qv/yKI51xKti2bNmjXYkWCqP4j4YCo9PZ3c3FxqamraFO8sKipi/vz5Qby6DyNTfSRnSkHhmCHXc3/QkDkh7I3wh91WSdnBl2ly1AAQpdWwYlYK56ZJcCzEyaqsDj4qPs6H3x2n0uJo8/jkCvjR53DVmTcz9OlnQa8PQS9FqEVEMGW32zucyouJieGCCy5g69atLF682NPu3rMvPT29t7rZLkfraT4lcpN5G3UlNOoOAWCIHU5sfGqIeyR6or6ukPLSTbhcJ/LeYqK456yxTBwaH+KeCRE+mpwudpbV8sH+4xSU13PyWqMkG1xdoAZRU60JaF5YB5deGoquijARtsHUzp07MZvN1NTUUFtbS21tLRs2bCAmJoaJEyd6BUnp6ekYDAZyc3NJSkryBF7Lli0Lah81PuVMtRqZiuCcKa9cqcGZaDQyFRRJFEXheNU2qire97SNGxTLqrPGMiRePkkLAXCwupEPi4+Re6CaervT6zENGhY0DOeGd49w8bcQ0wxMnQobNkBaWmg6LMJG2AZTmZmZ3To+NTWV1NTwGy1xJ6BrlGi0dL7tTbhq0tRSG5UPgE4Xx4Ck00PcI9EdLlcTFYffpq4639N2ZmoSt84ZjSEq4neUEgJQPzCYSx3UHW9mzKmx6A2+/W5bHU4+OVjNB/uPUXy8sc3jY5LG8KORi1n+eDajd+9reWDFCnjqKSnKKYAwDqYiQ9ejM+46U1FKAhqfUtbDz3H9DtCoy+aTBk1Dq40OcY+Er5qbLBwueZXGhjJP2+WTk1l2hklGF0WfoCgKX31m4Wh5EwMGRdFQ72Tj82bufDKVWKOuw6/5tsrK+/uPsb2kbTK5QWfgklMu4aapN3HOjnK01/8E3FuJxcfD2rVw1VXB/tZEBJFgyh9dFO10aZw0GdRPOlGuyMyXctFMdfSOE/c0JA2eGdL+CN/ZGisoO/gKzU1qiRC9TsPPzkxlTmpSaDsmRADZrC4+z63n4puHkZCkvqV99MZxVv/yEHc+lYpO1/ZDw5dmCw+9X9ymfWryVG6ceiNXnXEVAzWxcOed8Je/tBxw2mmwcSNMmhS070dEJgmm/NDV53rvsghdb1UTjuqi82jW1gOQkHgK0fpgFUAVgWSpK+RIq0TzQXHR/PKssYwbHNfFVwoRvuyNLvblWxmZFkNcgg5DjJbd/6ujweIkISkKW4OTmDgdV9w+nAeu3Me3u62cNqvta++pw4wMiY/mqLWJpJgkrj7jam6ceiNTh09VDyguhmXL4PPPW77o+uth9WqIk78h0ZYEU37pPJyyG1pW8kVH4Eo+BUWKdIYhRVE6naJTp/Y2oCjNAIwfHMe9Z41lYJxMz4rIVF/TzO4P6zAO0KHVwf82HqfqiIMVj4zClKLnL7+qZsVvRhETp0NRFMZPjmPc6XHkvlXNhIy4NvlTyybkYb/gJQCWnLKE2OhW1f5ffx1uuAHq1Jp6xMaqQdQNN/TWtysikART/uhimi/SV/J5lUOISSY2LngFUIVvXHYHDV8cIH56eocBVVS0kdvmjOCZ7aWSaC4imtOpoNNpKNxrpdHi5JxLBwFw6kwj1079gjnfS2Li1Hj0Bg07smuYsyiJJoeC3qBhwRWD+fczFRw5YGfMpFguTfvc69zXTL7G+2IOB9xzDzz9dEtbero6rXfGGcH+VkWEk1dYP3SVUO5dYyrygqmTR6UkYTm0FEWhOns3rkZHhz+LRye/yaOT3+SscYN48Lw07pybKoGUiBiKolB1xEHe1jpsDU50Og0ul8K2t2sYc4o6emS3uYg16shckMibayqpPd7MjPMS+c9fKwE8OVLzFg+k/ngzg6rubRNItVFaCvPnewdSV1wBu3dLICV8Iq+yQWSP4IKdzZp66qIKACmHEA6aq+upfvtTat7bjUavDigrTpfXMY9OftPr/uThCWglABYRouhzK//bdJwj39lx2BSeubuUb/da0Wo11B5v5rMt6kIK96/0pT8xUVZsY39+A1nfT2J/QQPHKhzoojT8YNRnLJuYx4LzfsD27ds7v/A776j1oj77TL2v18Pzz8PLL0NC5H0IDiclJSXk5uZSUFDAzp07O9z6rSNms5nNmzdTU1MT0GMBNm/eTE5ODmazGQCbzUZJSQmbN2/2tHWHTPP5o4uinZE8zXc8+jMUjVq0LnHQVCmHEELNdVaOPLmJhq8OMnjpfBJmnaK211iISopHo9O1CaSEiCSKorDn4zrmLR5ISppat6n4qwZW31vKk+9M4qyLB/KP3x7mhvtHojdoPXlRw0bp+Ty3jiW3mJg0PZ78V87hueee8xRuXrFiBevXr2//os3N8MAD8Pvft7SNHasW4Zw+Pdjfcp9XVFREYWGh184kJSUlbNiwweeC2rW1tRQVFVFUVNTpcTfeeGO3jnUX9y4qKqKgoMDzmMFgYPHixZhMJp/615oEU37oapovUkemFFxU63d47icNnhHC3ghdrIGErNMZMO8MkhaoL/L1n35Dw5cHcNY3kqY5iH31WAyxMtAsIlPR5w0cKrKRkhaDw+5Cb9By8U3DeOuvleS+dZxxp8bhbFLYmVNL5oJET17U7IVJ5KzTsHzdLk75w04uueQSbrvtNiZOnAhAcXExt99+e9sLHjmiTuNtbUll4OKL4YUX4KQ9XkX32Ww23nvvPW666Sav9tTUVM9I1eTJk7s8T0VFBZMnTyYxsf1V5O6gOSkpyXNOX44FMJlMZGZmekahkpKS/Np+ToIpf3SRgB6pOVP1UV/TpK0GID5hAnr9wBD3qP+qydlD3JRxxGek4Th8lOZaK7biI+iS4hl63QLuSX2T393UzIPX7Od3Gyag1cq0nog8qZNi2JlTS31NMwlJUTQ3KcQadcz5XhKfZtcy7rQ4Zl2QyH/+VknmgkS0Wg2Xpn3ORQ85iX40GovFwjnnnMM999zDpk2bGDduHMOGDWP8+PFMmzbN+2Lvv68W3KyqUu9HRcEf/gB33NEyhyj84t4bN6ad6vATJ04kPz/fp2AKYMGCBR0+lpuby/z583t0LAR25xT5KOuXrkojqNN8OiUWbQTFrXatGfevxkAp0hkSistFxZ83U7luCxo06E0DiUqMx7K7EJe9idiJo3hsxjsMHBrN//1nItWVTbzyRHmouy2EF7vNxTe71Q+VLlf7nz4VRSEmTseYSbFs/keV17Hfv34oxV82UH7AzrlLB1P0eSOzYt7mskl52O12dDodS5cu9eRF3Xfffdxwww1Mnz6ds88+m+9973stb+hOJzz8MFxwQUsglZICublqcU4JpAKmsLCw3UAK1BGgyspKz0hRZ5KTkzt87OTRre4cGwwSTAWRu/q5zhVZBTuHOs4j7ZQ7GDp8AfEJ40PdnX7HaWmk7LFXsHy+j2HXL0RxqrlrMWkjiDs1lYcv/orfTfkPAE0ONQn9+vtGYqlTj1OULoZMhegFTXYX/33xKM/fd4j66ma0Wk27v5sajdo+a2EiOa8eA/DUhUo7PY6YOC26sst54Kp9XHDBBdx///1YrVYMBgMHDhzglFNO4ZJLLvGcb/jw4UyYMAGtttXbW2UlLFoEDz0E7j5873tqUc45c4L2HPRXZrPZM512Mvc0XG1tbZfn6WjazZ1k3voa3Tk2GCSY8oOmkwR0l8ZJc7QdAJ0S31tdCojmuXVERw9g8NAsNBr5FektLkcT1rz9lN7/Ak2VNaQ9fzsD5k+mubZlIcP/LdzKIFM01no1cIrWqz8ffYyGwcnqIgEpYSFCrdHqZM9HdQwYqGPoCD1bN6tpAy5X+8drNBpmXZCIrUH9OoALR+7g0rTPue3mB9myZQsAzz77LCkpKaxevZqcnBwKCwtZsmRJ553JzYWMDHV6D0Crhd/9Dt5+G4YMCcS3K05it9sxGAydHuNLMNWRXbt2+TzS1NmxNTU1FBQUeP7l5ub6NGLWnsiZe4owTfqW3cejFNl+QHSt7qN8Kta8TXzGeEY9oBYUbDpai+PwUeImjeY3p76Be2p54+oKaqqauf1PqZQWNVJZ5uD71w0NYe+FaBGt13LKDCNxCVrqjjezM6eWC68b2u4+eW7DUw2ceWESW9eP5NEbc3E41K2QLr/8cj766CMaGxsZP348jzzyCJ9//jlpaWkMGNDJwh6XC/7v/+BXv1Kn+ACSk+GVV+DsswP43fY9VquVNWvWdHnc9OnTmTGjewuU3EFWT4OW7kzZdXZsbW0tlZWVXo+bzWZeeuklrrnmmg6nKTsiwZRfOn5haB1MhePIlMvZjFbX9sffPLcuBL0RjvJjJF0wA6fFRsw4de5faXaijTOgOJpPlD5QCxhqtRrOv2wwL/+pnC921PPdV41ceN0QzyiVEKEWFa0hcbD6+pI+NZ4d2bV8tdPCaZlGz++wm6IoLBmfB8DZz5sZO3YsH374Ieeeey4A27dvZ8WKFcTGxuJyudBqtUydOrXzDhw7BsuXqzWk3M49V60d1YNl75GgrimWXxVc7Nc5rmyKJR71Z2KxWLo83h3w9qbCwkKfg6nOjm1dssHNZDJhMpnIyclp9/HOSDDlB00nqSnewVR4jUzZj5up2/8FNd/sJXZYCvGjJxA3YgzRCUmh7lq/ZNldSMVf32XkL5Yx+NK5OI4cw9XUjDY6iqgB8Uyz7WTbO/FkfX8gWq0Gp1Nh5LgY7ngylahoDafNMsoqPhF23HtIjhxnYOypseT+p5rTMr3zR1tXJnc6nZhMJlavXs2OHTsoLi4mLS0Nk8nE7NmzAbzzoDry2Wdw2WVqVXNQE8vvvx8efBB0uoB9f32ZRqMhPr7rQQC9Xt/tc9vtavpLd0d+QB1p8rUGVHeObS01NZWcnJxuf50EU37p+A3MYWg9zRc+I1Ou5ibq9n9JwthTiRkygmOfb6XiozeJMiYSM3QEAwafTvwZ40LdzX6jessuzGvfwTg9nejBamKmfsRgQF3R97uMt9hpTuCbPRbGnRbH8DEGz1SJeyRKUqREOHLn7g0YFMUZc4y8saaS2mPN3JD5hddm3TabjfLycsaOHQvADTfcQGNjIyUlJUyYMAGdrwGQosAzz8Ddd0NTk9o2ZAi89BIsXBjw768vi4+PZ8WKFaHuRhv5+fltyhsE4tjW3EGe2WzuVjAmwZQ/OklAb9I3eG6H0zSfo7qKARMmYxg4lJihI0gYdyquJge1RXkc3fcxtQ/tJfHcqQy95nyiEsOn332Ns76Boxu3Uv3Op4y890oSZk6kcd9hogYleN5ofpfxFgBJQ6P4YpuFgUOi+f71Q9FFSfQkIodGo2HsqbFMHH0WtdsXQia4XC5PkLRr1y7uu+8+trYqoBkbG8ukSZN8v0htLfzoR/D66y1tWVnw6qtq+QPRqxITEztMMHfnSnVUXLMjNTU1VFZW+vR1XR2bk5ODwWBoN9jqaU6XJFn4obO3NEeY5kzVH/jGszTY1eRAcTrRRusZeFomY/+4grFPr0RpdlL/6dch7mnfVbf1Cw78Yg217+9h9CPXkzBzIvayKuyl6kat7s2K3dIz4sn6QRIvP1HO17u6zmMQorcdrrV1WJLj0rTPuWHObs455xzeffddAHQ6ndfxv/jFL3C6k8S76/PPYdo070Dq7rvhf/+TQCpETCZTh8GIO8jq7hRc6YlpW19KHHR1bGFhYYfBXk/7JyNTfulkZMoQnqv5DIOTqdtfwNDM89FGq/PdistJ0+waNC4dhpShmH58Icde+xhnox1dbOfLW0X3xU+fgOHjAhLPmULcKakoLhfRQxOxl1Z6Es3d3KNUl6wwUVnmIH6A5HyI8NDsUth1qJb/Fh3lK7OFh85P44xkdaeH1rlQoE4bzZs3j7///e/88pe/5JRTTmHBggUMHz6cefPm9awDigJr18Ltt8OJPBySkmD9evjhD/34zoS/UlNTO9zUuKamhtGjR3f7nN3ZfLirYydPntzhFGBJSUmH1ds7I8GUPzpJQHeE6TRfrCmF43mfcHT3xwyaMofBU+cRFZeAVt+ykbEuLobYU0ZLIBUEitOFLi6G4T+7GMfhY7jsTWgN0SgKTNj/PkV5Q0jPaPl90WjUhHOdTsOKR0aFsOdCqKobmsjZf4ycfcc43tjkac8uOsqDWfvb/5rqat566y2am5uZPn06F110EdHRfmyebrHAihXq6jy3mTPhtddgzJien1cERHp6Orm5udTU1LQZHSoqKmoTyNhsNsxmc6dbu9TU1HRZu8rXY5OTk9vNiXJvftzdlXwgwVSP6Zr1DK4c2+HjTYbwDKaijYmMWbKC6q93cXTnh1R99gFxI1JJ0swgIXMSTqsNe2klhtHDQt3VPkmjU3e8jxoQjy4+1nP/scx3+bQ6kc8/rmN4qoGEgS1/mp3V5hGiNyiKwjdVVv5beJTPSmtwnvRBcsKgCVx92s86/Pr6+nruuOMOHnvsMf878+WXsGwZfPttS9ttt6k1pXx8sxXBFRMTwwUXXMDWrVu9AhP3nn0nVyvfvHkzpaWlLFiwoNO6UL7q6tj09HRycnKYPHmyV0C1YcMGJk+e3KMNjyWY6qHophhGlnZc68K7aGfogylH3XFQFPSJ6kqxgafOJCF1Eo2VZVQf+5TKF7ZQ8Ze3STp/GlGDEog7pfvDsMI37lVMGp2asujeGsYQq+Wb3VZSxsdw5oVJUslchJyt2UnugWqyC49SUuOdA6PVaPnhxB9yy4xbOG/ceWg72S2hJ9M67Vq/Hn76U2g88fqakAB//7saXImwkp6ejsFgIDc3l6SkJE8O1bJ2flapqaldrp7rLA+rJ8cuWLCAnTt3UlhYiN1ux2azMWvWrB4FUiDBVNC4E9C1SgwaQp/nUrf/S/QDBqJPHIzicqLR6tDq9SSMPYXYa0cC0FRVg8vehCFFKmkHmuJ0eYKn1lonmk+dP4CP3jjOa89UkHZ6HMmp8ilbhEZ5vZ3swqN8WHyMhibvPWCGxQ/jx9N+zIrpKxiV2EtTz42N6ujT3//e0jZlCmzYABMm9E4fRLelpqZ2OnXnlpmZSWZmZqfHdGfqzddju7pmd0gwFSTukalwGJVSFAXF2Uzd/i8YMP4MQA2uags/x1JeSOwnoxh00ZnEndL1L73wja34CLbvynFUHCfxrCntTpu2DqTcVaHvfHIMt57/DQXb6yWYEr3KpSh8fqSe/xZW8fmR+jaPz06Zza0zb2XpqUsxRPXi72ZRkTryVFDQ0nbTTWpNqdjY3uuHEJ2QYCoIFFyeYCoc8qXsR8s5nvcJSaepUXijuQzb0XIGT5vPgFMmU5O9i0MP/pNBl85l6BXnhLi3ka+x8BBOSyNxU8bhsjk4cOfzJN9yEQPOPBXtiaT+1oEUoFY2b1bQRWl48t2JsjWM6DVWh5P/fXec/xZWUVHvvT2IQWfgyjOuZOXMlcwY0b092ALi3/9WAyf31iZxcfDnP8N11/V+X4TohARTQdCkt3lWt+tcoS+LcHTPRzTV1zI4IwsAZ6OVwRlZ6GLiaD59IPGnj6WxqIzaj/M925iInrEVH6Hhm1IGX6w+14MWz8HVaKfyhWxwuXj8pgMYE6O8KkC76aI0KIoigZToFWW1Nt4trOLj76qxNXtP5aUmpnLLzFu4ceqNDI4b3Puds9vhrrtg9eqWtlNOUaf1Tjut9/sjRBfkXbMHtm/fTqwhAZcrGa227VPoaLWSL0oxtnm8NykuJwNPn01s8micdhtOu43mRiuaqGia59ahOJ2gQGx6Cpa9+1AcTSDBVI8pioLS1AyAy+5Aa9Az5LKzUZqd8O4WPh1l4qyLBhJtUAOmsv02ovQakkcb2g2whAgkp0th75E6/lt4lPzytlN55409j9syb+MH6T9Apw1RrueBA+reert3t7RdfTX85S9gDO3rqRAdkXfNHsjJyaGhoQGn08mwAemckfJDonQtOQRNYVT9XKPVEZ8yDsNgE/aj5TQ31KMzxKpBFKA5saWDs8FG9OAB6OIlB8EvThc1OXtJOk9dFelyNKHVR7P29/U8e088G56tYPKZRoalGHA6Fb7aaeHd9VX8cbNM7YngsTqc/K/4GO8WHsVs8Z7Ki4+O57op17Fy5kpOGxbiUZ///Aeuvx5qatT7BoOaG/XjH8smlCKsSTDVAw8++CA2q4utG2s5ZjnA/sqtTEw+zzOq4L0vX+im+RTFhbOxgag4I1Gx8USNGq+22RrRGWJoOFJO9bufMfD7s2g6WktM2oiQ9bWviJ04iviMNA7+8m+kPXcbWn00D058HdBy2x9S+cUPC1n/2BHuXj0WnU5D2ulx/OblCRJIiaA4XGvj3cKjfPTd8TZTeeMGjuO2zNu4IeMGEmN83yfN4XSxq9TCnjILFrsLo0HL9BQjM0cb0bezYtUnTU3wy1/Cn/7U0jZ+vDqtl5HRs3MK0YskmPLTYONYnC7vT3oOQ3jUmLJVHqHZWkfCuFNRnE40Oh0ajZao2Hia59ahs8TRdKyO429/RtL506RQZ4AMu24Bhx4up+S+f/CvLcMALQ67C71By2MbJvDYzQcoP2hn+BgD4yeHPqdO9C2KopBXXs8737a/Km/BuAX8bNbP+N7473V7Km9vmYW1O8w0NLnQoG4CoQF2H7Ly4u4qVswxMTWlm1Nxhw7B5ZfDjh0tbUuWqGUQurkZrhChIsFUEITLNF9T3XGshw8QPyoNbbQ6DVlX/BX2YxXEDE0mduIoUlZdEbL+9VU6YyzDb7sE65/+xu9+bOG+v45DfyJHSqPVMGFqHMNS9CHupehrbM1OPv6umncLqyirtXs9Fhcdx3WTr+O2Wbdx6tBTe3T+vWUWns4t9+yidfL/DU0unsot5/b5w5nma0CVnQ3XXAPHjqn3o6PV0albb5VpPRFRJJjqAZdLHS63NdVz3HKQxqZahia0VE0Nh335FJeThopSGo4cQBttwNVkx7wtG41Oh9VajPlX7xJtGojpxu9hnDZBkp8D7I8/2M7+1DH83y0H+ONtB1nxmxQSBkZhPmRn9IQYQpXbK/qeKquD7MKjvL//GBaH0+ux1MRUbsu8jR9N/REDYwf2+BoOp4u1O8ydbUcKqIHV2k/NPHNJXOdTfs3N8NBD8LvfqRsWA6SmqnvrBbCQohC9RYKpHli1ahUAWqIYPWQm44fN8wpEmrxW84UmmKov/oqju/5H8llqJVj78UqMqekkjD1FXcXX7OToax9Tk7MH47QJEkgFkLuG1Pgz4vjj5ok8eXsJb6+rQm/QMnV+Alnf7/mbmhBuhVVWNn9TxWeHanCdFOXMT53P7bNu54cTf0hUOyuOu2tXqaVNJfSONDjUnKqssQPaP6C8HK66Cj76qKXtBz9Qt4oZNMjvvgoRChJM9cDNN99MnCGRr//X/q7nDq99+UKzlLe5wYIxNZ3E9AwAmuqqiRs5DgClqRlNdBRDrzqXypfex1Z8RJLP/eRsbkAXFdemGGdCUhSr1oxFcSlYapwMGSHTe6LnnC6FTw/VsPmbKvYdbfB6TK/Tc+XpV3L7rNuZOnxqQK+7p8ziyZHqiubE8e0GU//7H1x5JZjN6n2dTh2d+sUvQCuLMETkkmCqB6qqqoiLsZ+oM9V2vqb1yFSoVvMlnTqd2OGjaawopbGyjOZGKygKzXPr0BCF4nKh0WrRJw9CP3JISPrYV1jqCjlSuol7548E2ibMGmLUN4mYOJnbEz1jdTSTs0+tUn60ocnrsWHxw7hlxi38ZMZPMBk73ijWHxa7y6dACtSAy2I/aRTL5YLHHoNf/1q9DTBihFrhfO7cQHZViJCQYKoH3nvvPRoaGnC5XJgST+GMlMXotC2jVOGwybE22kDssBQMg5Npqj1OtDEJrd6A09VA87E6oocm4Wy0g8uFNkZGS3qqruZLjpS+Drj4v9yD/G7hBMYNlhV6IjDK6+28820V/ytuW9pgsmkyd86+kytPvzLoe+UZDdpujUwZDa1GmY4eVZPMt2xpabvgAnjpJRgqm6qLvkGCqR546KGHPHWmjtZ/xz7zx151ptwV0MNhk2OtLgrDILXkQfPcOpqr6jj08IsYUk0knj+NuNPHhLaDEazm+OdUlP3Hcz9zVCKjB0rRU+EfRVH4tsrKW99UsetQrVcAo0HD99O/zx2z7uDcsef2Wq7j9BQjuw9ZfTpWOXE8ANu3q2UPysrU+1qtmnh+333qFJ8QfYQEU34akjAOp6tl2N2lcdGstwGgc4U+mDpZ9NAkUh+/CXtpFbHjR6CRrWN6pPrYLsyH3/HcP3/8IG7OHIVOK4n8omeaXQqflqr5UPuPeedDxUXHcUPGDdw+63YmDJ7Q632bOdrIi7urfEpCj9NrmTkqXi1xcO+96so9AJMJXn4Zzj03yL0VovfJO2mANUeHR42pjiguF7r4WOJOGY3i8m11jvB2vGo7leXvee5/f9IQbpg+UlZEih5pcDh5f/8x3vm2bT7UiIQR3JZ5GzdPv5lBsaFb6abXaVkxx8RTrepMtUcD3DJJj37pEnVrGLezzoJXXoHhw4PdVSFCQoKpHmipM1XHMctBbE11DEOtM+Vd/Tw0K/kUlws0Gq839+a5dQBoWq2Y0cjqmW47av6Yo+b/ee5fctowrs4YLoGU6LZjVgdvf1tFzv5jNJ404pORnMGds+/kitOvQK8Lj5zGqSlGbp8/nLWfmmlweFdAV1BHpO6IPcykxcvh4MGWL7zvPnj4YYiStxvRd8lvdw946kxpokkdkklaqzpTDkPoC3Z2FiS57E1Uv/sZusR4ks4N7PLpvkxRFI6a/8exylxP2xWTk1l6hkkCKdEt3x1vYPPXVWwrqcZ50jDP9yd8n7vm3MXZY84Oy9+raSlGnrkkru3efCPjmfXOi0T94i5wnNhea9AgNcn8e98LbaeF6AV9LpgqKiqipKTEq23evHnExMQE7BorVqwgzpDIVx+2ffpab3Ic1YtlERRFwVFdydE9H9PcYCF+5Fhih6cSbUwiythS70Wj1aA4XWgN7dfIEm0pikJVxfscr9rmabtu2gguOlX2MhS+ce+X95+vK/miwuL1mEFn4Lop13Hn7Ds5ZegpIeqh7/Q6LVljB7TUkaqrgx//WK1e7jZnjlr2YNSo0HRSiF7Wp4Kp3NxcUlNTWbBggaetpqaGDRs2sGzZsoAFVOPHj8dmdQG1bR7zHpnqvWk+R3UVltJ9JJ06k9rCzzm652NQFGKGjiB2/igGHJtM9OABaKKjGLhwBtq4wAWXfZmiKFSWb6H66KeethtnjuTCibKkW3StyeliW0kN//m6ktIam9djg2MH89MZP+XWzFuDVh8q6PLzYdky2Levpe3nP4ff/17dZ0+IfqLPBFPmExV1U1NTvdqTkpK44IILyMnJYfHixcG5du23mBInAd6bHPdmaQTbsQoGnpaJNlpP/MixjDj3UhqOHKT6y884tiGX6uxdJP/4+xhnpKNLkDpIvlAUF+Yj/6Xm2C5P24pZKVwwQYqcis41OJzk7D/G299WcfykpPIJgybw8zk/57op1xEXHaF/i4oC//iHuiGx7USQmJgIL7wAl1wS2r4JEQJ9JpgqKSkhOTm53cdMJpMn2AoE5cTGnO7NgWsbyxk2YCIajSYkOVOuJgeO6iq0Eybjam4GFLRR0cSNGEPciDEM/dX51GzZxfG3thOdPBBDioyqdEVRXJgPv0PN8T2AmmT709mjOG/84NB2TIS14w1NvPNtFe/tO9qmjMCclDncfebd/HDiD9FF8k7XViusXKnupec2bRps2ADjxoWuX0KEUJ8JpgDy8/NJT09v015TU0NiYtttPnrq6aefxuVSsFQ70aCltvEIE0xnAyePTPXONJ9Gq0NRXFhK92Ec3VKDxtXchDOrHm10NIN+eCaGccOp//QbDEslmOrMyYGUVgO3zhnNWeNkE1bRvsO1Nv7zdSUfH6im+aRdhy+aeBG/OPMXzB3dB7ZN+eYbdVrvq69a2n7yE3jySQhgXqoQkabPBFPp6els3bqVzZs3s2DBAq/8qF27dpGZmRmwa51//vk4bC6+3m7F6Wri4NHPPI+FYmRKo9MRO3QkZf/9FzHDRjJ0xjnEjxqPNioaV3QUSrMTTZQO/YjBaKIi+BNxL1AUFxWH36b2+F5ADaRuz0pl7piBIe6ZCEffVll58yszu8vqvOov6XV6rpt8HXedeReThkwKWf8C6uWX4eab1ZEpAKMR/vpXuOKK0PZLiDDQZ4KppKQk5s2bx9atWykpKWHx4sWkpqZSUFBAampqm1wqf5x++unYrC6OfaUmoDuarS2lEdyr+RQNOqX3thZJGHcqaVfdQcXWtzn4+hp0hjgSF01h4KmziBqUQHOtFfuBCuJOH9trfYo0iuKiomwztdWfAxJIifYpisLew3W88VUl31R5b7GSaEjkpzN+ys9m/YzhCX2kQKXNBnfcAWvWtLSdcYY6rTdxYsi6JUQ46TPBFEBmZiZJSUls3ryZjRs3kpiYyNKlS0lKSgrqdd3J5wBNJ0amdEo8Gnq3KGZ0QhIp37sKe+Z51O3/gto9n3PsjU+ITU8hfrqaeC4lEdrXXiB1R1YqWRJIiROcLoVtJdW88VXblXkjEkZwx6w7WDFjBQMMAzo4QwQqLoalSyEvr6XthhvguecgLkKT54UIgj4VTAEYDAZmzpyJ2WymtLSUjRs3snjxYkymzpce7969mz179nR5fqu17Wafsfokz23HiZypUG1yrNFoiRkyHMPgZAZmZaI4mmksKsOQMpSoQQkh6VO4c+dItQ6k7pw7hjNTk0LbMREW7M0uPiw+xlvfVFFpcXg9NmnIJO458x6unnx12FQqD5jXX1cDpzp19wRiY2H1arVNCOGlTwVTubm5JCcnM3/+fAAKCgrIycnhpZdeYunSpZ1O9TkcDiwWS4eP+8KpbcYZrb7Y6nqxYGe7fZlXjwYtmhg98ZNlhU1HFEXBfORdr2RzCaQEgNXRzH8Lj/LOt0epszd7PTY7ZTb3Zt3L4omL0Wr62LZMDgfccw88/XRL28SJ6rTeGWeErl9ChLE+E0wVFBQAeK3mmzx5MqNHj2bjxo1s3ryZm266qcPCnXq9HqOx69V3VqvVUxrhZE2G1tXPQ7Mvn/CdJ5A6thtQA6mfnZkqgVQ/V9PYxNvfVpFddLTNnnmLxi9iVdYqzko9Kyy3e/FbSQlcdhns3NnSdsUVsHYtJMjIthAd6TPB1M6dO7npppvatCclJXHNNdfwt7/9jdLS0nZLJwDMmDGDGTNmdHmdNWvWeI1glRzdRcnRz5g/6daW5HNCty+f8I1a2TzbU5DTHUjNGys5Uv1VpcXOf76u4sPiYzhabZqn1Wi57LTLWJW1iozkjNB1MNjeeQeuvRaqq9X7er06OrViBfTFwFGIAOoTwZTNZsNgMHT4eExMDJmZmdTU1AT82sMGTESrVZ/GcNjkuEF3EO1MPVHIyFhH3HvtVZ8oaaFBrSMlgVT/VFZr442vzOQeqKZ1iSi9Ts/1U67nnqx7SBuUFroOBltzMzzwgLoFjNu4ceq03rRpoeuXEBGkTwRTMTEx2O32Lo8Lxqq+WP0ARg2aCoSmYGdrCgqHYl+i6etq4hPGkzLmSjR9LZ8jAI6a/+e1afEtc0ZJQc5+6MDxBjZ+aeaz0lqvGlHx0fGsmL6Cu868ixEJI0LWv15x5Ig6jbd1a0vbJZeoW8UEeRW0EH1JnwimABITEykpKekwybykpITJkycH5Frbt28nIX4gimLyyptweOVM9f7IVKOuhCbtcQAUxSmBVDuOmnM5Vpnrub9iVgrnpskWMf3Jt1VWXv/SzJ7DdV7tA2MGcvus27lt1m0Miu0HwfX778NVV0FVlXo/Kgr+7//g9ttlWk+IbuozwdTixYvZsGED8+fP9wqobDYbW7duJTMzs8Pk8+7Kzs7GZrPhcrkYOTCD01O+D5w0zefq/WCqJrqltMOAJFl1c7JjVds4av7Qc//GGSNl0+J+QlEUvqiwsPGLCr6q9C5vkmxM5q45d7Fi+goSDP0gydrphEcegd/8Rt2wGGDUKHjtNZg9O7R9EyJC9ZlgKiYmhmuvvZbc3FyKioq8Hps3b17AAimA3/zmN9isLrZurMVcW0hh+YdMHH5uSFfzKbiojcoHQKOJIiHxlF69frirPraLqvIcz/3l00Zw4STZo7CvUxSFz4/Us/GLCgqPNng9NjpxNPeceQ83TruRmKh+sq9cZSVcfbU6KuX2ve/Biy/CYBmhFaKn+kww5eauMdVbTIkT4UTGRShX81l13+HUqqsM4xMmoNP1kzcHH9RW52M+/I7n/pVTkvnhqcNC2CMRbC5FYVdZLZu+MFN8vNHrsfTB6fxy7i+5+oyridZFxo4ADqeLXaUW9pRZsNhdGA1apqcYmTnaiF7n43R+bq6aH1Vert7XauG3v4VVq9TbQoge63PBVCiFMmeqLjrPc3tA0qm9eu1wVlfzFeWH3vTcv+S0YSw9Izl0HRJB5XQpfHqoho1fmNts+XLa0NN4YP4DLD11KTpt5Gz4vbfMwtodZhqaXGhQP7ppgN2HrLy4u4oVc0xMTelkJNzlUnOhfvUrdYoPIDkZXn0VzjqrF74DIfo+CaZ6wOVyoSgKDY5qjlsO0uRUX7Tdq/k0ih4tHZdqCDR1ik8tWqrRRGFMaL+WVn9jqSviSOkm3COH35s4hKsz+sjms8KL06WwvaSGjV9WUFbrvbJ3avJU7p9/PxdPujjiqpXvLbPwdG65Z7Xhyf83NLl4Krec2+cPZ1p7AdWxY3DddfDuuy1t550H//oXdLHFlhDCdxJM9cCqVasA0GkNjBt6JmOHzgFagimdEtur/bHqir2m+LS63gvkwlWD5SCHS14D1ArW56YN4kczRvbNqtX9mNOl8MnBajZ9aeZwnXcQNWvkLB6Y/wAXTrgwIn/uDqeLtTvMtL/fQgsFWPupmWcuifOe8vvsM7WaeWmpel+jgV//Wq0ppYuckTkhIoEEUz3wk5/8hPiYJL543/tTbnOUe1++3s1XqovO99yWKT6wNRyh7ODLKIq6n1pWahI/mTUKbQS+oYr2OV0KWw9Ws+GLCirqvTcfnjt6Lr+e/2vOH3d+RAZRbrtKLTSctJ1NRxocak5V1tgB6gq9p5+Gu+9WC3ICDBmijkZdcEEQeyxE/yXBVA+kpaVhs7qAWk+bgsuzybG2F4MpBadM8bVit1Vy6MCLuFzqz2LqiARuO3M0Om3kvqmKFp0FUfNT5/PgWQ9yzphzIjqIcttTZvHkSHVFc+L4rEEK/OhH8PrrLQ/OnavmR40cGaSeCiEkmAqQ5uiWF3YdvRdMtV7FZxzQv6f4HI5qDh14EadTnW49ZVg8d88fS7Svq51E2HK6FHIPVLPxy7ZB1Lljz+XX83/NWWP6VjK1xe7yKZACNeCK/6oArl8J333X8sDdd8Ojj0J0ZKxaFCJSSTAVIM3RLfkavTkyVRv9ued2QuJpvXbdcNPcVM+h7/5Jc1M9AOMGxfLLs8dhiJJAKpJ1NhJ13tjzePCsB5mXOi9EvQsuo0Hr28iUonDOh//m2pceBceJ16GBA2H9eli8OMi9FEKABFMB0xzVsgy7t3KmFJzURX0BgEYTjXFA/5ziczptHDrwL5oc6m73KYkG7j83jXi9JNlGKqdLYVtJNa8VmCmv904sP2fMOTx09kPMT+3dmnK9bXqKkd2HrJ0eY7BZueHvv+bM7ZtbGmfOVKuZjxkT3A4KITwkmOohZ5QDS0IVxnq1irb3yFTvrOaz6vbj1KovtsYB6Wi1+l65bjhxuZooO/gKdlsFAEPiovn1uWkkxsivdiRyuhR2lNaw4Yu2JQ7OHXsuD571YJ8Potxmjjby4u6qDpPQRx4q4rZnfsaII62m9X72M7WmlL7/vRYIEUryjtNDTdE2jg072G4wpVN6J2+ptlWhzoSk/jfFpyhOjpRupNFaAkCCQccD56UxOF7eSCKNS1H47FAtr+ZXUFbrXWzz7DFn8/DZD/ebIMpNr9OyYo6Jp1rVmXKbm/s6y194CINDfa6cxgR0L/wDli7t/Y4KISSY8odGaVkx1NR6ZIrgj0ypU3xfqv3QRmNMmBD0a4YTRVGoKNuMpa4QgJgoLfefk0ZKomyjE0kURWHP4Tpeza/gQLX3ti9Zo7J45JxHOGfsOSHqXehNTTFy+/zhrP3UTIPDhcHeyDXrH+Gsjzd6jmk49Qzi3twEE/rXa4AQ4USCqQBxRrUemQr+G7pVd6Blii9hAlpt/1qtc9T8IbXVeQBEaTWsOmss44fEhbZTwmeKolBQYeGV/HL2nbQB8ZyUOTx89sMRXycqUKalGHnmkji+/OhzRt98LUO++8bzmPPGG4l79lmI7d1CwUIIbxJM+aWDkaleCKbqTySeAxgHTAr69cJJ9dHPOFa5FVB/AndkpTJ5eEJoOyV89nWlhVfyyvm60ju5evrw6TxyziMsGr9IgqiT6DduYNpNN4FFLYNCXBz85S/orr02tB0TQgASTPml9TSfd85UcIMpBYW66C9P3NNiHNB/hvfrar7CfOS/nvs/mjmSOalJoeuQ8Nn+Yw28nFdOfnm9V/vpw07nkXMe4aKJF0kQdTK7HX7+c3j++Za2U06BjRvhVNntQIhwIcFUgPRmnSmb9jBNWrUMQLxxLDpd/xjit1oOUH6opbLzpaebuHDi0BD2SPiitKaRV/Mr+OxQrVf7xMETefjsh1l22rKI24C4V3z3nbq33p49LW3XXgt//jPEx4euX0KINiSY8kfrkanWOVNBroBeF91qii+xf0zx2W1mDh98FUVxAurGxVdNSQ5xr0RnKurt/Luggq0Hqr1Wo41JGsNDZz3E1ZOvJkorL0HtevNNuP56qD0RgMbEwLPPwo03qhsWCyHCiryS+aH1S5r3NF9wR4rqWuVLJfSDfKmmpjoOHfgXLpf6HE8bMYCfzBolU0JhqrqhiY1fmsnZdxRnqyjKFG/igfkP8OPpP0avk/IV7WpqgnvvhSeeaGkbP16d1psyJXT9EkJ0SoIpf3SQMxXMaT67thK7Ti1QGRuXQlR03068djptlB34F81NdQCkDYrl5/NSZePiMGR1NPPmV5W88+1R7M6WQpODYgdxb9a9rMxcSVy0rLjs0KFDcPnlsGNHS9vSpfD3v8OAAaHrlxCiSxJM+UFD62BKLZ6nUXRoCV6ZgjqvVXynBO064UBxNXO45N/YbWYAhhn13HfOOGKjZZuYcGJvdvHfwire+KoSi8PpaY+Pjufnc37OXXPuIjEmMYQ9jAD//a+aD3XsmHo/OlodnVq5Uqb1hIgAEkwFiHtkKtjJ563zpRIS+24wpSgK5WVv0WA5AKjVze8/ZxxJsf2rnlY4c7oUPig+xoYCM8cbmzztep2eFdNXcP/8+xkWPyyEPYwAzc3w0EPw6KMtbampsGGDuseeECIiSDDlD68EdHVH+2AmnzdpamjUlQJgiDGhNwwK2rVC7Vjlx9TVFACg12n45dnjGCnVzcOCcmLrl5fzyjlc12p6W6PluinX8dBZD5GalBrCHkaI8nK46ir46KOWtsWLYf16GDgwZN0SQnSfBFMBoKB4pvmCuclxXT8p1Flbnc9R80eAmuR/e1YqE4fKUvBw8GVFPS/lta1afvGki/ntOb/ltGH9b4/IHvnf/+DKK8GsTmGj08Hvfw933SXTekJEIAmm/ODOmXLqmlC06rKlYBbs9J7i65sF+6yWA5SX/cdz/9ppI5g9Oil0HRKAWivqxb3l7D1S59U+d/Rc/nD+H5gzak6IehZhXC743e/gwQfV2wAjR8K//w1ZWaHtmxCixySY8seJab7eWMnnpBGr7jsAovUDMcT0vVwUu62KwyX/BkV9k7lgwmB+eIoU5QylY1YHrxZU8NF3x3G1KnNw+rDTeey8x/j+hO9LiQpfVVWpSeZbtrS0XXABvPQSDJXfcyEimQRTAdAbW8lYogpBowYZxoT0PvcG1txspezgy7ic6nTp1BEJ3DQzpc99n5HC6nDyxldm3vm2CkerYlGjBozikXMe4ZrJ16DTyqpKn23bppY9OHxYva/VwsMPw333qbeFEBFNgik/aNoZmQpWwc76qK89t40D0oNyjVBxnSiB0ORQt8gZMzCGu+aNkVpSIdDkdJGz7xgbvqigzt5S5iDRkMh98+7jtszbiI3uH9sXBYSiwJ/+pBbidJ54Pk0mePllOPfc0PZNCBEwEkwFgDv5HEAbhNV8Ci7qo75Rz6/VExvfd1ZKKYqC+fDbNFrVVYpJMVH88mypJdXb3Cv0Xvq8nPL6lg8Hep2eW2feyq/m/4pBsX139WhQVFfD8uWweXNL21lnwSuvwPDhoeuXECLgJJjyy4mRqajgjkw16kpxaq0AxBnHoe1D+5kdr/qE2uo8oKUEwpB42WqkNxUdtbJ+zxG+rbJ6tV95+pU8eu6jjB04NkQ9i2C7dqmbFB882NJ2333q1F5U3/n7FUKo5K/aD5oTqSRNQU5A76tTfHW1X1NV8YHn/m1npjJ+iGw30lvMFjv/+rycbSU1Xu1npZ7FHy/4IzNGzAhNxyKZosDq1fDzn6v77AEMGqQmmX/ve6HtmxAiaCSY8kt7OVPBCKa+8tw2JvSNYMrWWEF56Rue+1dlDOfM1KTQdagfsTqcvP6Vmbe/qaK51RK9SUMm8Yfz/8AP0n/QLxL/HU4Xu0ot7CmzYLG7MBq0TE8xMnO0Eb2uB0nhdXVw001q9XK32bPhtddg1KjAdVwIEXYkmPKHJwG9Vc5UgKf5HJpqbLpyAGJiRxIVbQzo+UOhudlC2cFXUBT1k/tZYwdy6Wl9r9RDuHG6FHL2HePfBeVeyeVD44bym3N+w03TbiKqD00hd2ZvmYW1O8w0NLnQAArqR6Pdh6y8uLuKFXNMTE3pxt9afj4sWwb79rW0/fznaiHOaNkCSYi+rn+8cgaJ+7O718hUgBPQ+9oUn8vVzOGD/6a5qRaACYPj+MnsUf1iJCSUPj9Sx7o9RyirbQn89To9d86+k/vm3ccAw4AQ9q537S2z8HRuOe4xuZP/b2hy8VRuObfPH860rgIqRYF//ANuvRVsJ57bxER44QW45JIg9F4IEY4kmPJL8Esj1Ee3muKL8GBKXbn3Do0NhwAYFBfNqrPG9mxKRfikrNbG+j1H2lQuv/L0K/ndeb9jTNKY0HQsRBxOF2t3mFG6OE4B1n5q5plL4jr+/bRa4ZZb4J//bGmbNk2d5hs3LlBdFkJEAAmm/NCSgN56mi9wI1NO7Fh1+wGIih6AISY5YOcOheqjn1Jb/TmgrtxbddZYBsbJFEgw1Nubea2gguyio16Vy2enzOaphU8xK2VW6DoXQrtKLTQ0uXw6tsGh5lRljW1n1O6bb2DpUvi6ZeSYW25Ra0rFyIbcQvQ3nQZTZrOZ7OxsrFYr48eP54ILLvB6fMuWLWg0GkwmE1OmTAlqR8NTcBPQrVGFKJpmIPKrnlst31FZ/p7n/so5oxk/WFbuBZrTpbBl31H+nV+BxdGSF5UyIIXHz3+cK0+/MqJ/j/y1p8ziyZHqiubE8W2CqX/9C26+GRpObPZsNMJf/wpXXBHg3gohIkWHwVRFRQUrVqwgPj4eo9HIli1b2LRpE4888gjDhqnJwgsXLmT79u08+OCDvPnmm73V57DjDqY0ig4NgRtpqesj+VIORzVHSjbgfgtbcrqJuWMGhrZTfVBBeT3/2H2YQ63youKi47g3617uOvMu4qIleLXYXT4FUqD+tlrsrUaxbDa4/XZYu7al7fTTYeNGmDgxkN0UQkSYDoOpP//5z6xatYozzzzT05adnc2dd97Jb3/7W8aOVQv5mUym4PcyXJ20nYxWiUFDYD71KyhYTlQ912iiiTNGZuFEl8vB4YP/xulsBGDaiAFcPjmypyvDTUW9nfV7j7DzUK1X+zWTr+H35/2ekQNGhqhn4cdo0HZrZMpoOJEvtX+/ulovL6/lgB/9CJ59FuIkSBWiv+swmDKZTF6BFMCiRYuYO3cuq1evZtmyZYzr50mW7rDJnTMVyORzu7acZm09AHHGMWi1kZdbpCgK5Yf+g91WAUBygp475o6WPfcCpLHJyetfmnnrpHpRmSMzeXrR08xOmR3C3oWn6SlGdh+ydn0gasA1PcWojjz96EdQr/49EhsLzz8P118ftH4KISJLh8HU8A72jjIajaxatYr169dTX1+P0Rj5dY96ToOC0jIyFcCyCJaoIs/t+IS0gJ23Nx2v2k59rboaMSZKy71njSNeL2se/KUoCttKali/9wjHG5o87cnGZH5/3u+5dsq1aDWyQrI9M0cbeXF3lU9J6AmaZmY/eb86+uQ2caIaXJ1+ehB7KUTfUFJSQklJCUlJSdhOlA7JzMzs1jk2b95MTEwMkydPxmQyYbPZMJvNFBQUkJmZ6TU71p1jA9U/tw7f2RRFoaGhgfr6eioqKtokmC9fvpzt27eT13rYu79RwBnl8CzrC+TIVH3Ut57b8cbIC6aslu+oqnjfc//2rFRGJckqJ38dON7A33cf5pvKltEVvU7Pz2f/nPvm3UeCISGEvQt/ep2WFXNMPNWqzlR7hlQd5pF1d6PL293SeOWVsGYNJMhzLERXioqKKCwsZPHixZ62kpISNmzYwLJly3w+j81mo6ioiIKCAk+bwWBg8eLFbYKj7hwbqP65dRhMXXrppaxfv578/HzMZjP/+te/2hxz5plnEhcXx5YtW7p94b5AgyYoK/lcOGjQfQeoJRH0hiEBOW9vaXLUcqRkI+7MlKVnmMgclRjaTkU4i72ZV/IreG+fd6mDCydcyNOLnmb8oPGh61yEmZpi5Pb5w1n7qZkGh3cFdAWY9cVHrPjzKqJqq9Uv0Ovh6adhxQroxyshhfCVzWbjvffe46abbvJqT01NJTc3l4KCAiZPnuzTuUwmE5mZmZjNZgCSkpJIT29/QZavxwayf26dzrksX74cAKu14xyDjIwMHn30UfLz89stj2A2m/tukrqioTmq9SbHgRmZsuq+85REiE8YH1FL2V2uZg6XvobTqS4bzxiewGVnSMJ5T7kUhY++O86Le8upszd72icMmsCTC5/k++nfD2HvIte0FCPPXBLntTffAJ2Ti199kpS1T7ccOG6cWoRz2rTQdVaICFNUVERiYiIx7dRcmzhxIvn5+d0KVlJTU0lNTQ3YsYHuH/hYtDM+Pr7Dx/Lz88nLy+P1119n+PDh/OUvf/F6fNu2baSlpfXZOlRNQRiZskQVem5H2hRf5ZFsbA2HARgWr+eOuamScN5Dxcca+OuuMvYdbfC0xUfH88D8B7hj9h0Yogwh7F3k0+u0ZI0doNaROnwYrrgGPvmk5YBLLlG3iklKClkfhYhEhYWF7QYqoI4WVVZWYrPZOjwm2ILRP7+zgfPy8li+fDkmk8kztNaae7qwN4Opmpoatm7dCkBMTAwGg4H58+cH/DoaRUOzvqWmT6BypiyefCkN8cbIWTFZc/xzao6rOSbRWg13zx9DgkESzrvLYm/m5fxy3is65pXXc9lpl/GnC/5EyoCUkPWtT8rJgauvhqoq9X5UFPzf/6k1pSJoVDjSOJwur5FBo0HL9BQjM0cbZYupCGc2m5nYQe21xEQ15aO2tjZkwVQw+hewd7pFixZ1+NjSpUt577332lRQD4aioiI+++wzFi9eTNKJT5Q2m43c3NwgBFQnTfPhfzDl0FRj16lBaWzcSHRRgd3rL1hsjWbMh9/x3F8xaxTjpMJ5tyiKwkffVfPPvUe8pvROGXIKz37vWc4bd14Ie9cHOZ3wyCPwm9+oGxYDjBoFr70Gs6WsRDDtLbOwdoeZhibvnLXdh6y8uLuKFXNMTO1qk2kRtux2OwZD5yPntbW1PqcA1dTUUFpa6nU/MzOz3WDHl2MD3T8IQDDV3mjUyeLj47FYLP5eyqe+uJPKWj9xOTk5mM3moIxONUe3HpnyP8r2muJLiIykYqfTzpHS11AUNQC4YMJgzkkbFOJeRZbSmkbWflbGN1Ut+Ynx0fE8dPZD3D7rdqJ1kVdnLKyZzepo1AcftLRdeKG6afHgwaHrVz+wt8zC061WU578f0OTi6dyy7l9/nCmSUAVElarlTVr1nR53PTp05kxY0a3zu0OYtylCLpSW1tLZWWlVw6T2WzmpZde4pprrvF6r+/OsYHqn5vfwdT48eN54403uOSSSzo9rjfqUeXm5rYbraampgYlCV6jaE7KmfJ/FCnS8qUURaGi7C0c9mMAjB0Yyw0zpOK2rxqbnLxWUMHb31Z5rdJbeupSnlz4pEzpBUNurrqPXnm5el+rhUcfhXvuUW+LoHE4XazdYe6yAr0CrP3UzDOXxMmUn68cWqI+aWdT7u4wuUCnvq77MgDicDj8u54PWpcucDOZTJhMJnJycrwe786xgeZ3MHXppZfy85//nP3793P33Xd3eFy5+4UrSMxmM6Wlpe0+Wd3Nyvedd86U1s+RKQWnJ5jS6mKIiQv/oKTm2E5PYc64aC2/mD9GXvx89NmhGv6+6zDHWhXeHD9oPKsvXM0FaT2bEpc8lE64XPCHP8CvfqXeBhg+HF55Bc46K7R96yd2lVp8KpgK0OBQf5fbbDQtgk6j0XS68MxNr9d3+9x2uzoA4W++VGpqKjk5OQE/tqf9C0jO1G9+8xt+/OMfc/XVV7Nw4UIWLlzoNRLU0NBARUVFIC7VoYKCgg6XOgaLRmnZSgb8H5lq1JXi0qjnizemoQnzKtaNDWWYy1tqjK2cM5rkBFlh1pVKi4O/7ypj9+E6T5tBZ+C+efdxT9Y9xET17HdY8lA6cewYXHcdvPtuS9t558G//gV9tXRLGNpTZunW3oh7yiSYCoX4+HhWrFgR6m50yv1e70v5pe4c21MBCaaMRiN//etfefzxx9m0aROvv/468fHxjB+v5vzk5+fzxBNPBOJSHSopKfFk4e/cuRNQn8DOEtX8d3LRTv+CKa+q52G+hYzT2cjhkg2gqJ8yfzBpKLNHJ4W2U2Gu2aXw9jdVvFZQgd3Z8ul8YdpCVl+4mrRBPf+ZSx5KJz79FC67DA4dUu9rNPDrX8MDD4BOF9q+9TMWu8unQArU312L3bdRLBFeEhMTqa2tbfcxdy6S+/26Mzk5OR2uxj85t6k7xwaqf60FbDWf0WjkkUceYdu2bWRnZ1NcXExeXh5paWn86U9/CvqmyO7M+507d3rtrVNTU+NT8tnu3bvZs2dPl9c5uYBp6wR0f6f5IiX53J0n1dyk/jJOHBrPtdNGhLhX4W3/0Qb+/FkpB6tbfl+Sjck8ufBJLj/tcr8Ks0oeSgcURa1cfvfd0HxideSQIepoVC+sLBZtGQ3abo1MGQ394Pe0D3Lvi9cedxDjywhRYWFhhwU4Tz5Pd44NVP9aC3gRoKysLLKysgJ9Wp+YzWbmzZvn1ZaUlOSZL+0s+czhcHR/xaFy0siUHxsdO7HRqFU/OesNQ4mODt+h7Zrju6mv/QYAo17HnXNTiZLCnO1qcDh5Jb+c/xYe9byBaNCwcuZKfnvub0mM8X+bHclDaUdNDfzoR/DGGy1tc+fCq6/CyPDPReyrpqcY2X2o4x01WlNOHC8iT2pqqmeG6GQ1NTWMHj3ap/NMnjy5w1X47tko9yBJd44NVP9aC0jYv337dn7+859z8cUXc/HFF3PXXXfxRusXsV6U1E61YpPJRFFRUadLHfV6PUajsct/rUcQNLSs5tMqBjT0fMqgIeo7z4bJccYxPT5PsNkaK6g8ku25f8ucUQyN734SYn/w2aEabt/8Le+2CqSmmKbw6U2f8uyFzwYkkIKWPBRfuPNQ+rS9e2H6dO9A6p574MMPJZAKsZmjjcRF+/a2E6fXMnO0BFORKD09HZvNRk1NTZvHioqK2hTxttlslJSUtDk2OTm53fJL7g2NWwdP3Tm2u/3zhd8jU1u2bPFUODeZTBQXF7N//372799PdnY2K1euDOJqOm8dzXG6281mc4fDgDNmzPCpXsaaNWtaRrCUlmk+f/fls+r2e27HGcf6da5gcTntHCndgKI4Abhw4hBmjUoKbafCUHVjE3/fVcaO0pY5+bjoOB466yHumH1HwGtGSR7KCYoCa9aolcvdS7YHDoT16yGIS6KF7/Q6LSvmmHiqVX5fezTAitmm/jEd3QfFxMRwwQUXsHXrVq8ZIfeeeCdvPrx582ZKS0tZsGCBV7yQnp5OTk4OkydP9pp227BhA5MnT/Y6T3eO7W7/fOF3MFVcXMzLL7/cpt2dO/XrX/+aVatWMWfOHH8v1SlfVvJ1lHDmD/c0n78FOy1RrYKpeN82dOxtFUfe9dSTGjcoluskT8qLS1F4f/8xXtx7xGva7cIJF7L6wtWMSRoTlOtKHgpQXw8rVqhlDtxmzlSrmY8ZE7Juibamphi5ff5w1n5qpsHhvfJUQR2RWjG7H6887SPS09MxGAzk5uaSlJTkmRlatmxZm2NTU1M7XGm3YMECdu7cSWFhIXa7HZvNxqxZs9oNeLpzbHf65wu/g6mOalG4c6fy8vJ4/vnnSU5OZuzY4I24mEymdofsTj4mkBRcOKPUGkH+rORz0ohNq24ObIgZRlRU1/U9eltdzRfUVecDEBOl5c65Y4iWT40eR+rs/PnTUr6ubMkHGRI3hGcWPcMVp1/hV4J5V/p9HsoXX8CyZVDYsoCDn/1M3V+vB3Vw+oJwrzc2LcXIM5fEhXUfhf9SU1M7nA1qLTMz02vhWHuP+6o7x/raP1/4HEw9+OCDpKWlkZGR0a1pu4yMDJ544gmef/557rnnnh510hcTJ05k8+bN7T7mHpHq7lLHrrgDKfAvmLJGFbfkS8WH3xRfk6OGirK3PfdvzkxhxACpJwXgdCm8/W0Vr+aX43C2jA0tn7KcP17wR4bEDQl6H2aONvLi7iqfktD7XB7KunVwyy3Q2KjeT0iAf/wDli4NabdCKVLqjel1WrLGDuj7iyFEv+BzMLVv3z7y8vJ4/fXXAZgyZQoZGRlkZGTw/PPPc8stt3T4tUajMWiFstzcQ3ZFRUVthvQKCwuZPHlywGtNOaNaSun7kzPlnS81xp8uBZyiODlS+joulzqdOXdMEvPHDgxxr8LDwepGnt9RSvHxRk/b2KSxrF28lvPHnd9r/eiXeSgNDXDrrfDCCy1tGRmwYQOMD9+yIsEm9caECA2fgyl3HamKigry8vLIz88nLy/PM31RUFDApZde6klEP9nJ9ZmCYfHixeTk5DB69GhP4FRQUEBtbW1Q9uTxGpnyoyyC1Stfaow/XQq4Y5VbaWxQd+AeGh/NzZkpQZ2yigRNThebvjTz+pdm3INRGjTcPut2fnvub4nX9/40bb/KQyksVKf1vviipe3mm+GppyDW//0xI5XUGxMidHwOprKyskhLSyMtLc1TR6p1YJWfn8/q1as9e/q0Dqry8/NZtGhRcL6DVlJTU1mwYAE5OTnExMRgs9lITEzkpptuCsr1mluNTOmUuJ6dQ2PBpjsCgCF2OLqo8HkzaLCWctT8MQBaDdyRlUq8PuClySJK8bEGnttRSmlNS5mNU4eeyt8W/405o4K7yKIr/SIP5dVX4cc/BveK2vh4dQXf1VeHtl9hQOqNCRE6Pr8zLl++vE1bcnIyixYt8gRKrYMrd3mE5ORkli9f3qO6DT0RyISyrjh1rYOpno1MWXXFntvxYZQv5XTaKT/0Bu4JgmVnJDNpWB8Y1eihJqeL1woqePPrSlwnPvrrNDp+OfeX3D//fgxR4ZFD1mfzUOx2uPNO+POfW9pOPRU2boRTTgldv8KI7HsnROgEdJjh5OCqr3NGt0zz9XQrGa8pvjDKl6os30KToxqASUPjWXJ6/90Mdv/RBp7dUUpZbcto1BTTFF646AWmDp8awp71E999p+6t13q7p+uug+efV0emBCD1xoQIpf49Z+OnQEzztSSfa4gNk/pS9XWF1B7fC6hlEG47czS6frhdTJPTxWtfmHnzK7NnNCpaG80D8x/g3rn3Brz4pmjHm2/C9deDu0ZcTAw895y6VUw/z907mdQbEyJ0JJjygzOq1b58PVjN16Spw65Ty9/Hxo1Epwv9VFFzs5WKsrc896+fPpLkhND3q7d9d7yBZ7d750ZNTZ7KuovXMdnUOxX9+7WmJrj3XnjiiZa2CRPU1Xq9lDIQafp9vTEhQkiCKT/omvVEuwbh1DT2KJiy6vZ5bofDFjKKolBR9hbOZvUFefrIAZw/flCIe9W7ml0Kr39pZuMXFZ6VejIa1csOHYLLL4cdO1rali2Dv/0NBkiOT0f6db0xIUJMgik/jDowjYTkK3r89Zao8Aqmaqs/x1KnVpEeYNDx09mj+lUZhLJaG89sK/GqGzXZNJl/XvxPpiTLaEiv+O9/4dpr4Zi6bRHR0fDkk2phzn70u9gT/bLemBBhQv6aQqghSl3Jp9HoiI0bFdK+NDlqqTyyxXP/p7NHMzC2f4zCuBSFt7+p5O53Cz2BlE6j4/5597Prx7skkOoNzc3wq1/BhRe2BFKpqbBtG6xcKYGUj9z1xuL06ku7+1lz/x+n13LH/OF9o96YEGFERqb80vMX+GZNPQ6t+qYREzsCrTZ0gYt7es9d5fyccYPIHBXYrXfCVaXFwXM7SvnKbPG0nTLkFNZfvJ6ZI2eGsGf9SHk5XHUVfPRRS9vixbB+PQyUavvd1S/qjQkRZiSY8oNG6Xkw1aA74LkdGz86EN3psdrje7Fa1FGyQbHR3DBjREj70xsUReHjA9X8bVcZja1yTG6fdTuPnfcYsdHhUzy1T/vwQzWQMqsLMdDp4PHH4ec/l9EoP/TZemNChCkJpkKkQXfQczuUU3xNjhoqy1um934ye1Sfr3Jeb29m7c4ytpfUeNpGJ45m3UXrOGfsOaHrWH/icsGjj8JDD6m3AUaOhH//G07ssCCEEJGib79rBllzkwNb1REUlwvDoGFoo/U+f621dTAVH5pgSlEUysvewuVS62WdM24Q00f27U+y+eX1PLe9lOONLQVXr5tyHc8seobEmP4xtRlyVVVwzTXw3nstbQsXwosvwtChoeuXEEL0kARTPXRg/wE+/3Iztj31oAGdIZbk+YsZePqsLr/WRRM23SEAovWDiIoKTRXn2uN7aLB8B8CguL49vdfkdPHS5+W8/W2Vp21gzED+8oO/cNlpl4WwZ/3MJ5/AFVfA4cPqfa0WHn4Y7rtPvS2EEBFIgqkeOHDgAPu/2c+p47+HY6EaPDVWHqb6y8+IqTxM7LCRnX59o64MReMEIC5E+VJNTXVUlud47t/Sh6f3ymptPPVJCQeqW0oeLBi3gBcueoGRAzr/WYkAURT405/UQpxO9XcfkwlefhnOPTe0fRNCCD/1zXfPINPpdKSfmk7J50kcc7lAA7HDRqJMmuZTXSav5PMQ5EspioL58Due1Xvnpg1i6oi+N72nKApbio6xfu9hHCcqcOp1ev5w/h+4bdZtaDUyEtIrqqth+XLYvLml7eyz4ZVXIDk5ZN0SQohAkWCqB3Q6HbooHRoFNK2mJhSXC3x4g/Zeydf7wVR97dee4pxJMVFcN63vTe/V25tZvaOUXWV1nrZThpzCK0tekbpRvWnXLnWT4oMHW9ruvx8efBCi5OVHCNE3yKtZD1itVuob63E61eXzTZZatHqDupS7i5EpBcWzkk+ri0FvGBLs7npxNjdgPvKu5/6NM1NIMPStX4OvzBae3lbCsYaWJPNbZ97KHxb8QUoe9BZFgdWr1RIHTSd+DoMHw0svwaJFoe2bEEIEWN96F+0lDocDY4KRKo0Wp62BwzmvYT9WwciFVxIz2NT512qrcGrVve9i40ah6eWppsry9zx7781MGcCc0X1nBZvTpfBaQQWbvjR7ttMYHDuY9Rev5/vp3w9p3/qVujr48Y/htdda2s48E159FUaFttK/EEIEgwRTPXD66adT46qhZGc9upg4Ui+6EVDQaHVdfm3rKb7eTj631u+ntjpPvXa0lh9npvSZvfeOWR088UkJ31ZZPW1njzmbly55SZLMe1N+vrop8b6WfSe56y547DF1nz0hhOiDJJjqge+++444Uxzu7WSc9kZcTQ6i4hPQ6jp/Sq0hSj53uZqoOPyO5/5100YyOM73uljhbE9ZLc/uKKXerq4S02l0PHLOI9yTdQ86HwJcEQCKAn//O9x2G9hsaltiorolzEUXhbZvQggRZBJM9cCf//xnRo0ZRXLsWcBoomLjaaw7znevPsuo719D/MhxHX6tZ2RKoyUmrvdGTI5VbqXJUQ3AqcPiOX/8oF67drA0OV38K6+czd+01I4anTiaV5e8ypxRc4J+fYfTJfufAVit8NOfqkU33aZPhw0bYOzY0PVLCCF6iQRTPfDwww/zVvZbFH/1CUmVw4gdNpJY06gu86WaNRYcOvWNP7YXNze2245yrOoTAHQauDlzVMRP71VZHfxp60H2HW3wtP1w4g954aIXGBQb/EBxb5mFtTvMNDS50AAK6jjl7kNWXtxdxYo5JqamGIPej5D7+mt1Wu/rr1vaVq5Ua0oZDKHrlxBC9KJ+9PE5cGJjY1l08SJShk6j9ps92I+rm7S6nM2d5k1515fqnXwpRVEwH3kHFHX/s4tOHcaopJheuXaw7Dlcx93vFnoCKb1OzzOLnuHNy9/stUDq6dxyGk5skOxOdnf/39Dk4qnccvaWWYLel5B66SWYObMlkDIa1STz556TQEoI0a/IyFQPaDQaXE4XgwekYj19PNbDB9DqY9FodZ2uzvPKl+ql5PO6mgIaLOp1h8XrWXpG5BZJbHYpvJJfzptfVXraxiaNZcOyDUwfMb1X+uBwuli7o2W1YEcUYO2nZp65JK7vTfk1NsIdd8DatS1tZ5wBGzdCenrIuiWEEKEiwVQPVFdXo03UorggZrAJjU5Hw5ED2I+Vo4nqeOquQfed53ZvFOt0NjdQeWSL5/5NM0diiIrMN/bqxiae2HqQrytbVuv9cOIPWXfROgbGDuy1fuwqtXhGpLrS4FBzqrLG9qHq8vv2qdN6+fktbTfeCM88A3FxoeuXEEKEUGS+s4ZYSUkJ4F7LB4akIQwYfzr6xMFeFdFbU3Bi0x0BQK8f3CubG1dVfIDTqU6FzRmdyPSUyKwp9XWlhbvfLfQEUlHaKJ644AnevPzNXg2kAPaUWfA120xz4vg+Y+NGNbHcHUjFxsK6dfC3v0kgJYTo12RkqgcyMjKocdV4TelptDrGLPkJmg62yLBpK1A0zQAYYocHvY+2hiPUHN8DQGy0lhtmRF6tJUVReOubKl76/AiuE/NqIxJGsHHZxl5Zrdcei93V5RSfm3Li+HDg18pDhwPuvlsdfXKbOFENrk4/PbgdF0KICCDBVA+4XOobZHNzE/XffY3T1oAxdSJR8Qkdfo1NV+a5HRMX3GBKTTpv2TLmsjOSI66mVGOTk+d2lPJpaa2n7ewxZ/PqklcxGTtfNRlMRoPWs3qvK5oTx4eaXysPS0rUvfV27mxpu+oqWLNGTTgXQggh03w98fWJ1UvfHtpCyZt/5/B7/6Zo3WPUH/imw69p1B3y3I6JDe7GwnU1BTQ2qMHbyAEGvjexd/f/89eROhu/zN7nFUjdN/c+cq7NCWkgBTA9xditkanpIS6P4NfKw7ffhqlTWwIpgwH+8hd1FZ8EUkII4SEjUz2wdetWkkuTGZwwjoSLfoguJo76/V9S8/Uu4kaORadvW3qgsfXIVBCn+ZxOG5XlOZ77P5oxkugIWk2281Atz24v8bz5DzAM4F+X/osfpP8gxD1TzRxt5MXdVT4locfptcwcHbqgo8crD5ub4Ve/gj/8oeWgtDS1COfUqcHsshBCRKTIeZcNI0uWLCFaH81gYyoxg5OJijUyaMqZGFMntVsMU8GJTasmn0frB6HTBa/O0zHzxzib1VGGmSkDyBgRGSvJXIpa9uDxjw94ApVTh57Krh/vCptACkCv07JijqnLJHQNsGK2KaRlEXqy8pDDh+Gcc7wDqUsvhT17JJASQogOSDDVA8OGDWOoaSgoJ95STwRQiuKCdt5mWyefx8YFb4rPbqvi+NHPANDrNBGTdN7Y5OT/cg+y8Quzp+2y0y7js5s+I31w+NUtmppi5Pb5w4nTq38+7p+4+/84vZY75g8PeQX07q48rHzjXTVg+kStlk9UFDz1lJponhiZK0GFEKI3yDRfD42bMI6azzU4HXaa6qqJGdJxMczW+VKGIOVLKYpC5ZFsQB2JuPjUYZiM4V+F+kidjcc/PkBZrR0ArUbL4+c/zl1z7grrLW+mpRh55pK4sN6bz9eVhxqXk4tff46L33xe3bAYYPRo+Pe/YfbsoPZRCCH6AgmmekgXpUOjKNTv/4IjH2wkfnQ6w8+6CG1021VzrVfyxQYpmLJa9mO1FAMwND6ai08LbaK2Lz4/UscTWw96pqKSYpJ4ZckrLBq/KMQ9841epyVr7ICwLcrpy8rDAbVH+enquzjtqx0tjRdeCP/8JwweHOwuCiFEnyDBVA9ptVrAReKkqcSYRqFPHIy2gxpT3iNTgU8+VxQnlUfe89y/duqIsK50rigK7xQeZf2ew576UacNPY03r3iT8YPGh7Zzfcj0FCO7D1k7fHziNztZ+dydJNWom28rOh2aRx9Va0p1UHxWCCFEWxJM+Umj1REzuONRIBfNnuRzvWEIOl3gp95qj3+Ow66+IU4YEseZqUkBv0agNDld/HVnGR8UH/e0XTzpYv558T9JMHRcp0t0X0crDzUuF9/fvJalG55Ce2ID7JqBw4jf9G+izzm79zsqhBARTj5++kHjQ3qvXVuOonECwakv5XTaqDL/z3P/+mkjwjbXqNbWzMPvF3sFUvfNvY9Nl22SQCoI2lt5aKyv5ud/vJnLXnvCE0h9ddocDn34qQRSQgjRQxJM+Uk5kbBb8+1evl37G1zOZq/HvYp1BmEl3/HKT3A2q1M5c0YnMWlYeBZTLKu18cvsIr6pUvsaExXDvy79F4+e9yhajfwaBkvrlYfj933OI7+6mCn5uQC4NBreXnYbjnf+yxkZY0PcUyGEiFwyzecn9yiQMTWdYXMuaLPRcTArnzsc1Rw/qiYOR2k1XDM1+Hv+9UR+eT1/zG2pHzUiYQRvXv4mM0fODHHP+odpI+N5ruQ/aH+7Cm2zGuw3JA3mu6f/xgVX/zAsVh4KIUQkk2CqBxRFQXEpnlEpQC3ceUbbZeSNutITtzTExHZcPqEnqso/QFHUKcQLJw4hOSH8SiG8V3SUv+4q8ySaTzFN4e2r3iZlQEpoO9Zf1NTADTcQ9eabLW1z5xL36qucPjIy6pAJIUS4k2CqB3bs2EGtvZZDRxUaC1Mwjp3U7hYyLhzYtGohSkPMMLTawG02bGssp772SwAGGKJYekZgAzV/uRSFF/ce4a1vqjxti9MX8/KSlzHqw3Mqss/ZsweWLYMDB1raVq2C3/5WLcgphBAiIOQVtQc++OADDLEGjlscOLNzUZxOBqRPIWXhFV51pmy6w6BRp7YCPcVXVfGh5/aSM0zE63UBPb8/7M0unt1ewo5WGxXfNecuHj//cXTa8Olnn6Uo6obEd9wBDofaNnCgWjvqB+GzNY8QQvQVEkz1wAMPPECNq5Y3KwZ62uoPFmLenk3y/MWePKoGr+TzwE2pNFhLsNbvA2BIXDQXTAif4op1tmZ+//EBCk8kmms1Wp6/8HlWzFgR4p71E/X1cPPN8OqrLW2ZmfDaa5CaGrp+CSFEHybBVA+4XC44KWcqYcxElCa7V1mCRm2p53agKp8rikJV+fue+5dNTg6bBOLyejuPfvgd5fXq1jDx0fG8tuw1LpxwYYh7FhgOpyust4/hiy9g6VIoKmppu+MOePxx0AduilmISBb2f8ciIvX5YGrnzp2YTCZSA/ipXKvVokHTpp7Tydt2NJ7YRkaj0WGIGRaQa1vri2hsUEe8Rg4wcPa4QQE5r7/2H23g0f8VU2dXE+KTjcm8c9U7TBs+LcQ9C4y9ZRbW7jDT0OTybNGiAXYfsvLi7ipWzDGFdmPjF16AlSuhsVG9P2AA/OMfsGRJ6PokRJgJ+79jEbH6dBhus9nYunUrdrs9oOetr6+nwdqA096Iq8mOvbqS4198iqO6JdnaRTMOrXpfbxiKRut/3KooLqoqPvDcvzJjODpt6At0fn6kjl/n7PcEUqcNPY1Pb/y0TwVST+eWe0o7uINm9/8NTS6eyi1nb5ml9zvX0AA33AA/+lFLIJWRoSafSyAlhEdY/x2LiNenR6YKCgqCct7f/OY3KCigaEADOkMsQ2aey9DM8zzHOLSVoFH/TA0xQwNy3bqaL7DbKgGYMDiO2aMSA3Jef/yv+Dh//rQU54lXpLNSz+LNK94kKSYppP0KFIfTxdod5k43Cwb1BXntp2aeuSSu96YKvv1WXa335ZctbStWwFNPQUzb1aVC9Fdh/Xcs+oQ+G0yVlJSQmprK1q1bA37uu+66izpnHR9UGYk2JhEV13ZY2F0SAQjIFJ+iODlq/shz/+qpw0O6bYyiKLzxVSX/yiv3tC09dSkvXvIiMVF95418V6mlzd52HWlwqLkYWWMHBLlXwCuvqInmlhOfouPjYc0auPrq4F9biAgTtn/Hos/os6G32WzGZOp4A2J/JCcnYxpuInZYSruBFIBdV+G5rTf4PzJVW11Ak6MagMnJRs5IDt1edoqi8M+9R7wCqVtn3sqrS17tU4EUwJ4yiw87MKo0J44PKpsNbrkFrrqqJZA67TTYtUsCKSE6EHZ/x6LP6ZMjUwUFBWRmZgb3Il2MF9u1LcGUvyNTiuLkWGWu5/7lk0NXoNPpUvjLZ4f4sNVmxY+d9xirslb5NFIWaStpLHZXl1MDbsqJ44Pmu+/Uab29e1varrsOnn9eHZkSQrQrrP6ORZ/U54KpmpoaYsIgX8R2IpjSaKKI1if5da66mi88o1JnJBtDtpmxvdnFk58cZFdZHaDWkFrzgzXcNO0mn74+ElfSGA1aT1+7ojlxfFC88YaaaF57ohBqTAw8+yzceCOEcLpXiEgQNn/Hos/qc8FUUVFRj0aldu/ezZ49e7o8zmq1dnmMiyYc2qMA6GOGotH0/A9TzZVqGZVaFqJtYxqbnDz20QG+MqvD39HaaF5e8jJLT13q09e7V9KcvILm5JU0t88fzrQwCqimpxjZfajrnzmo38v0QPfd4YB774Unn2xpmzABNmyAKVMCey0h+qiQ/x2LPq9Phd9FRUWkp6f36GsdDgcWi6XLf60LdTZpamnWWFDwHhK2t17J52e+lDoqpU6pnW4ycpqp9//IrY5mHvmg2BNIGfVG/nv1f30OpLq7ksbhDJ8h9pmjjcRF+/ZnEqfXMnN0AH8+paVw1lnegdSyZbB7twRSQnRDSP+ORb/QZ4Ipm82GzWYjKSmpR1+v1+sxGo1d/nPnBSkaKEx4mG8Tfo1dW+V1rkDlS508KnVZCHKlam3NPJhTTOHRBgAGxgzkg+s+4Lxx53XxlS16spImXOh1WlbMMXWZvKoBVsw2BS7v6913YepU+PRT9X50NDz3HPz732pBTiGEz0L2dyz6jT4zzedv0vmMGTOYMWNGl8etWbMGi8X7zV6jeP/h2XQtq9z8CabUFXyhG5U61uDg4feLOVynFj0dEjeE9699nynJ3RsVca+k8TVfYU9ZeC1Lnppi5Pb5w1n7qZkGh3e+l4L6SXbF7ADlezU3w69/DY891tI2Zoy6t97Mmf6fX4h+qlf/jkW/0yeCqWCWQfCFBp3XfXsAakwpiotjlS01si6f0rujUsesDn6ds58KiwOAkQkjef+695k0ZFK3z9UXVtJMSzHyzCVxwV2JeOQIXHkl5LaMRvLDH8K6dTBwYIdfJoTwTa/8HYt+qU8EU7W1tRQWFrapeG6z2QD47LPPKCwsJCYmhgULFgT8+icHU+6RKa1WT1R0z6qUW+oKvUalTu3FFXxVVgcP5uzHfCKQGjdwHB9c9wFjksb06Hx9ZSWNXqcla+yA4IyaffCBWjuqUq1wj04Hv/893HWXrNYTIoCC+ncs+q0+EUylp6e3m3hus9lYvXo1s2bN6nFiui9aB1NO7DRp1SBIHzOsR1XKFUXhWNUnnvs/PDUwmyT7otJi58GcYiqtaiCVNjCNj67/iJQBKT0+p6yk6YTTCY8+Cg89BO7FDSNHqrlRWVkh7ZoQQgjfhOcQQIRpnTMViOTzxoZSbA2HARidFMO0Eb1T7byi3s4DOfs9gVT64HQ+vv5jvwIpkJU0HaqqggsvhAcfbAmkFi6Ezz+XQEoIISJInw6mak8UOHRP9wVPq2BK538wdayyZVTqolN7NrrVXWaLnQdz9nPU2gTApCGT+Gj5R4wcMNLvc8tKmnZ88om6Wu+999T7Wi389rfqKr6hgdkYWwghRO/oE9N8JzObzezcuZOamhoAcnNzPRsfT548OeDXaz3NZ2s9MtWDGlN2mxlr/T4AhsRFM3dM8BOPq6wOHsop5miDGkidOvRUPrzuQ0zGwCX1y0qaE1wu+NOf4Je/VKf4AEwmdePic84Jbd+EEEL0SJ8MpkwmE4sXL+6163kFU15lEbofjByr3Oa5vfjUYURpgzsqdazBwUOtpvYmDZkU8EDKrd+vpDl+HK6/HjZvbmk7+2w1kEoO3X6LQggh/NMng6lepWjQtJ7m06rBlE4XR1R090ZZmhw11NV8CYBRr+P88YMC1892HGtw8GBOsaf8wYRBE4IWSLn125U0O3fCZZdBSUlL269+BQ8/rK7cE0IIEbEkmPJT60CqWWOhWVsP9Cxf6ljVdjixNc33Jg4hJip4b7J1tmYefr+Y8nq1IOe4geP4cPmHDE8YHrRr9kuKolYuv+suaFKnURk8GF56CRYtCm3fhBBCBIQEU37yzpfq+RSf02mjtvpz9Wt1Wr4/KXhJyA0OJ7/9sKWy+biB4/houX/lD0Q7amvhpptg48aWtjPPhFdfhVGjQtcvIYQQAdXHk1R6Q+uVfD3fRqa2Oh/FpY5cnJ02kARDcOJce7OL3330HcXHGwG1svkH133AqER5cw+ovDyYMcM7kLrrLvjoIwmkhBCij5GRqR5T6wJplI5GpnwPphTFRc3RnZ77CycMCUD/2mpyunj84wN8U6kW0BwcO5j3rn2vx5XNRTsUBf72N7jtNrCrI38kJalbwlx0USh7JoQQIkgkmPJTxyv5fA+mGizf4XAcA+A0k5HUgbGB6+AJTpfC09tKyC9Xc7oGGAaw5ZotnDr01IBfq9+yWOCnP1XzodymT4cNG2Ds2ND1SwjRIw6nq/+uPhbdIsGUn1oHUw7NUQCiohPR6gw+n+N4q1Gp700M/KiUoii8sOcwO0rVIqZx0XG8e9W7TB8xPeDX6re+/hqWLoVvvmlpu+UWeOIJMPj+uyCECA97yyys3WGmocm7Lt7uQ1Ze3F3Fijn9oC6e8JkEU35yr+ZzYsOpbQAgWp/k89c77Mex1hcBMDgumsyUnm2M3JnXv6rkv4VqoKfT6Nh02SayRst2JQHz4ovwk59Ag/rzx2hUp/ouvzy0/RIekTbCEGn97Wv2lll4Orfcszn7yf83NLl4Krec2+cPZ5oEVAIJpvzmzplyb24M3Qumqo+1jEotSh+CLsBFOt/ff4yX81qmH/9x0T9YND5wS/L79Yt+YyPcfjv89a8tbWecoSadB3FjbdE9kTbCEGn97WscThdrd5g9gVNHFGDtp2aeuSSu77/WiS7Jb4Df1GDKoa32tERHJ/n0lU6nndrjajkEvU7D+eMHB7RnOw/VsuazQ577fzj/D1w35bqAnX9vmYWfvX6ANTvM7Dlk5dvKRvYcsrJmh5mfvX6Az8ssAbtW2Nm3D+bM8Q6kbrwRPvtMAqkw4h5haGhS67d1NMKwN0x+VyOtv33RrlKL5/nvSoND/TAphIxM+cmdM9WkPeZp83Vkqq46D5dLXfE1d8xABsQE7sex/2gDT35yENeJV+E7Z9/JL878RcDO36+HwTduhB/9COrVZH5iY+HPf4bly0PbL+El0kYYIq2/fdWeMotnRLArmhPH97sdHXxUUlJCSUkJSUlJ2Gw2ADIzM7t1DpvNRkFBgefr7XY7NpuNzMxMTKa29RwLCgqoqanBbDZjs9lITU1l/vz5bY7bvHkzMTExTJ48GZPJhM1mw2w2U1BQ0OG5OyPBlJ80ivpi5tC0jEzp9V1vTqwoCtXHdnnuB7JIZ6XFwWMffYfDqb4cXH3G1fzxgj+i0QRmCrHfvujb7XD33fDssy1tkyapq/VOPz10/RLt6skIQyjfFCOtv32Vxe7yKZAC9TXOYvftZ9bfFBUVUVhY6LVPbklJCRs2bGDZsmU+ncNms7Fz504yMzOJiYnxOvdLL73E0qVLSU1N9bTn5uYyefJkJk+e7Pn6zZs389xzz3HTTTd5ncNms1FUVERBQYGnzWAwsHjx4m4HUiDTfH5rGZnqXs6UrfEwDruaFH7KsHjGBKgcgtXRzO/+9x01tmYA5qfO5+8//DtaTeB+1P1yGPzgQZg3zzuQuuoq2LVLAqkw5R5h8IV7hCGUIq2/fZXRoO3Wz8FokLfRk9lsNt577z0WLFjg1Z6amuoZafKFO9hxj0q5paenYzAYyM3N9Tp24sSJJCUledpiYmJYvHgxdrudza03mAdMJhNLly5l3rx5zJs3j8WLF3Prrbd6BWfdIb8FftJ4cqaOe1qiohO6/Dp3rhTAuWmB2dC4yeniDx8f5FCt+os3ftB4Xr/sdQxRgV2a3+9e9DdvhqlT1cAJ1FIHf/mLWk/K2MemMPuQSBthiLT+9lXTU4zd+jlM72tpDAFQVFREYmKi10iQ28SJE8nPz/fpPImJ6up2u7sAcicqKiraHVFyT+WVlpa2CcpSU1PJzMwkMzOTdD9zXWWaz08twZSaMxWtT0Sj6XyDYpfLQV3NlwDERGmZMzrJ734oisKaz8r40qwGLkPihvDfq//L4LjAJrVDP3rRb2qCX/0K/u//WtrS0tRpvalTQ9cv4RP3CIOvuS+hHmHojf7269W3Ppo52siLu6t8Gn2P02uZOVqCqZMVFha2G0gBJCUlUVlZic1m6/AYt9TUVG699dZ2H7Pb7SQnJ3vuFxQUYDab251CdAdZZrO5xyNPXZG/Hj9pFB1OGnBp1Ig32od8qfrabzyJ52emJhEb3Xnw5Yt3C4/yv+/U0bGYqBg2X7mZ8YPG+33e9vSLYfCyMjjnHO9AaskS2LNHAqkIEWkjDMHub79efdsNep2WFXNMXb7GaYAVs00ShLbDbDZ7Tbe15h5tqq2t7fH5d+5USwrNnDnT09ZZnpN7RKqr4M0f8lvgN22rKT7fyiK0nuI7LwBTfPnl9azbc9hz/4WLXmB2ymy/z9uRSHuT6rb33lMDpm3b1PvR0fD00+qIVGLgi6qK4Jg52khctG8vceEwwhDM/krJhe6ZmmLk9vnDidOrPw93YOX+P06v5Y75w6XeVwfsdjuGLnZ+6Gkw5c65Wrx4sVfAtmzZsg4T293XOjngqqmpoaCgwPMvNze3zVSgr2Saz08adJ4pPuh6ZMphP06D9SAAIwYYmDg03q/rH6mz86etLSUQfjn3l1xx+hV+nbMrfXYY3OmEhx+G3/5W3bAYYPRoeO01mDUrtH0T3eYeYXiqVQmP9oTLCEOw+ttvV9/6aVqKkWcuieuX06JWq5U1a9Z0edz06dOZMWNGt87tDrK6E7S4A6ja2lpsNhtLly7tcOSrPQUFBZ4Vfm61tbVUVlZ6tZvNZl566SWuueaabo9iSTDlJw26bq3kq632HpXyp1yB1dHM7z/6DqvDCcDi9MX89tzf9vh8voq0NymfVFSoq/P+97+Wtu9/H/75Txjk3+ih5KmEjnuEYe2nZhoc3hXFFdRgf8Xs8KkoHoz+SsmFntPrtGSNHRARz4fO5mJkTnXXB3Z2jqWJEK9FURQslq5HKR0Oh1/X81VMTIynPlVJSQk5OTlMmTLFp6Tx3NxcEhMTmTdvnld765INbiaTCZPJRE5OTruPd0aCKT9pFJ3XNF9nNaYUxUnt8TwAdBo4a1zP36SdLoUntpZwuE7NvTpt6Gm8dOlLAS2B0JlIe5Pq1EcfwZVXqgEVgE4Hjz6q1pTS+vd8ytYgoRdpIwyB7q8UoRTdpdFoiI/vetZEr9d3+9zulXk9zV9KTU3FZDKxevVqFixY0GbEqTV3Ec7ujDSlpqaSk5PT7X5JMOWn7kzzWev309ysVs2ekZLIwNjoHl9305dm8srVcw2JG8LmKzczwNC7L4CR9ibVhssFv/89PPCAehtgxAh49VW1ppSf+nWV+DATSSMMENj+9pvVtyJg4uPjWbFiRai70aGYmBjS09PJyckhPT29w0Bp8+bNLFu2rFtTgu5zmc3mbhXvlGDKTxp0ODTqyJRGE40uquNovub4Xs/t8/zYhy+/vJ7XCtRRFK1Gy2tLX2PswLE9Pp8/Iu1NyuPoUbj2WsjObmk7/3z4179g2DC/Ty95KiJcRFqJCBH5EhMTO0wwd+dKJfq5mMdkMlFUVERpaWm7030bNmxgwYIF7QZEOTk5GAyGdreZ6UlOF0gw5T9F49mXL1qf1GEOlNPZiKV+HwCDYqPJGN51Yc/2VFocPPnJQc8L42/O/g3njD2nR+fqTWGVN7R9O1x+uVr+AECjgQcfhPvvV6f4AiBS8lTC6ucSRvrS8zI9xcjuQ1afjo3I1bci7Lj3umtPRyvr2vPcc8+Rmprabv6SewSppqamzWM5OTlkZmZ2WFOqsLCww8e607/WJJjyk0IzikZNAO8sX8pSWwiK+uZ6ZmoSOm33E88dThd/zD1AvV293g/Sf8Av5/2yB73uXWGTN6Qo8NRTcM890Kxut8PQofDyy+qoVABFQp5K2Pxcwkxfe1767OpbEbZSU1M9taBOVlNTw+jRo7s8h81m67TyuTuIOnkKb+fOnaSnp7cJlmpqaqitrSU1NZXJkye3OyoFaoJ7R9XbOxNZH7HCkEvTspoh2tBxMFVX+5Xn9pzUpB5d64Xdhyk+3ghA2sA0XrzkxV5LOO+psKlvU1MDl14KP/95SyA1fz7k5QU8kILwz1MJm59LmOmLz4sUoRS9LT09HZvN1u6oUVFREVOmTPFqs9lslJSUeLW5t4HpaFVdSUkJBoPBa4qvqKgIk8nU7qhTZWWlZ2oxOTkZs9nc5hj35scdBVqdkb8aP7k0LZFzR8nnzuZGrJZiAAbHRZM+JK7b19lRUsN7+9TpxNioWDZdtomkmKTud7gXdTdvyOEMUkCxZw9MmwZvvtnSdu+98MEHasJ5EIRzlfiw+bmEmb78vEgRStGbYmJiuOCCC9i6datXu3vPvpNznDZv3szGjRvbbIA8c+ZMcnJy2kwZFhQUUFlZ6VWk02w2k5+fT21trVchzp07d7Jz504+++wzzyhWenq6Z/uZ1jZs2MDkyZN7tE+fTPP5yalp+SF3NM1XX/etZ4pvzugktN2sLVVpcfDnzw557j934XNMSZ7SyVeEh5DnDSmKuiHxHXeAux7KwIHw4otqDakgCuc8lZD/XMJUX39eIn71rYgo6enpGAwGcnNzSUpK8gRE7VUpT01NbXf1XFJSEgsWLCA3NxdQyyq49/RbuXKl11Tchg0bsNvtlJaWttufkxPeFyxYwM6dOyksLPScd9asWT3e8FiCKT+5WgVT0fr260bVn9jUGCBrTFK3zu90KTy9rcRTmPPy0y7nhowbut/RLgQj4TakeUP19XDzzWqZA7dZs+Df/4YgbXTZWjjnqURCPlco9IfnJWJX34qIlJqa6tPGwpmZmZ6inO3xZdqtow2Ru7puoEgw5SenpsFzu73q583NVqyW7wAYGh/NhMHdm+J7taCCb6vUEY4xSWP4yw/+4lfV9PYEK+E2ZHlDX3wBS5dCUVFL2x13wOOPQw+KzPVEOFeJD/d8rlCR56X39KXVkkKABFN+cwdTUVEJaLVti3Baar/B/Vn3zNSB3QqE8svreeNLdU43ShvFK0teCXieVDALS4akvs0LL8DKldCoJuozYIDaduml/p+7m8K1SrzUHWqfPC+9o6+tlhQCJAHdb+4E9I5W8tW1muKb241VfFZHM8/tKPW8sD967qPMTpnd0262K9gJt9NTjN36pO9X3lBDA9xwA/zoRy2B1NSpsHdvSAIpNzVPZSwr5piYPiqeScNimT4qnhVzTDxzydiQvGn06s8lgsjzEnx9cbWkECDBVMDo28mXamqqo8F6EIDkBD1jB8X6fL5/7D7M8YYmABaMW8AvzvxFQPrZWk8Sbrtj5mgjcdG+/Yr5lTf07bdqPtS6dS1tK1aoxTnT0np2zgBy56n8bN4I7js/hZ/NG0HW2AEhm87otZ9LhJHnJbj68mpJISSYCpD2yiLU137tuT13jO9TfLsO1fLRd+ru3wMMA/j7D/8elHpS7oRbX7gTbrujV+rbvPIKzJgBX54YAYyPh5deUlfx9XAjzb5O6g61T56XwHM4XWw7UMczW4/wwH9Lg/rhrbe1/t5+934Zz2w9wrYDdRIE9lOSMxUg7Y1MtV7FN29MxwU9W6uzNfOXVmUQnl70NKMSR/nfwXb0RsJt0PKGbDa48041aHI77TTYuBEmTep2P/ubcM3nCjV5XgKnvdwoX4X7aknJ+xInk2AqQE7OmXI2N9DYcBiAUYkxpCR2PUqiKAprdh6ixqZW6P5B+g9YPmV54Dt7Qm8l3Aa8vk1xMSxbBp9/3tK2fDmsXq2OTAmfSN2h9snz4r+OFrb4KpxXS3Zn0Y7oPySYCpCTR6bUcgjqn9fUEb5tavzxgWo+LVU3WRwcO5i1P1gb8DIIrfVmYcmA1bd54w010dy9I3lMDDz/vNomuk3qDrVPnpee8zU3qjPhulqyu3lfGb3QJxEewu+3NQJptQZ0Ud71o6z1+z23M0Z0/YJcb29m3Z7DnvtrfrCG4QnB/WQTUQm3Doc6rXfppS2BVHo6fPaZBFJChJHuLGzpSLiuluzuop2mZn9CShFJJJgKAK3OewpPURRPMKXXaThlWNdTT//ce4R6e0uV8yWnLgl8R08SMQm3paVw1lnw1FMtbZdfDrt2weTJoemTEKJd3VnY0pGQf3jrQHcX7Ugyev8hwVQAnFys024z09ysrkQ5IzmhyyDkK7OFD4uPA+rqvScXPhmcjrYj7DdAffddtV7Up5+q9/V6NTfqlVfUgpxCiLDSnYUtHTl/QmJY5qZ1d9GOjEv1H5IzFQAajffTaK3f57md0UW+VJPTxdqdLav3HjvvsaBP750sLBNum5vh17+Gxx5raRs7FjZsgOnTe78/QgifdGdhS0fe31f7/+3de3Rb1Z0v8K+fUvyIVBoiE4JFmsQOw9QJODETjFNoScjM1B0gNh2YtJQSSLuAtJ2bMqvQlpbeMtAH0JC0JH2FQsuAE6atF3fyuu2tjIGYJLXVcnut4GZkTLBMAMmxE0mxrfvHsR62JescnX0ekr6ftVjEx7LP1vHROb+z92//Nj7xt+eZLqBSOmlHu4xXMhsGUwJM75kaSciXuixNvtR/vj6EgYBURb3hwgZsrt8svoEymCrh9uRJ4OabgcmVwgEA118vLQtjtxvVKiKSQcnEllSidaZMcT1KoHTSTmlRIcLntG0TmYO5wv4sVZAQTI2PB3F2tB8AcEGlBRdUWlL+3EAgiL2Ta+8VFRRh18d3oaiwSNvGmt3vficN60UDqeJi4PvfB154gYEUURZQMrEllUyKBOtB6aSdkmL2TeWLnAqm3G43XC4X2tra8PTTT8OV2LOhocSeqdHTfZBTEiESieAnrw1gbEJ67dYrt2J51XJN22lq4+PAgw8C114LDA1J2xYuBP7wB+Bf/xXQsEQEEYkjd2LLbMxaZ0rppB1etfJHzgRTLpcL1dXVWLNmDVpbW9Ha2gqfz4ft27cjGAxquu/EnKnEfKnLL0zdRX30rWH8aVB68lpkX4QHPvKAdg00u6Eh4O//HnjgASAymY2wfr1UlPPKK41tGxEplmpii1xmrTMFZMGkHTKEOc9WhTweD2pra2FPGAayWq1obm5GKBRCe3u7pvuP9kxFIhMYmQymLEWFuNSR/MM0NhHBL46djH39nbXfwZwS+Ysg55SODmlY7+BB6evCQuChh4AXXwTmzTO2bUSUMWliyyJsXu1A/UXluKCyJP0PTTJrnamo6e9t2fw5qL+oHJtXO7DthkUMpPJQTiSgDw4OoqamZsZ2q9WKuro6uN1uBINBWDVa+DaaMxU8+zbGx6TkxA9XpZ4Fd/D4Kbw1LCWdN17UiA2XaF9TynQmJoDvfQ+47z5piA8AqqqkkgdXX21o04hIjMSJLeHxCWx54YSsopdmrTOVyFSTdshwOdEz5Xa70dbWlvR7DocDAODz+TTbf2GBFEyNDHti2+pTDPGNhMbwnHsw9vWj1z2q6ZIxpvTee9LsvH/7t3ggdc010rAeAyminJQ1RYKJMpATPVPRgCmZaL6UVr1SQLxnKjFfKlUw1fYnX6zS+S0fvgUNFzZo1i5T6uoCbroJ8HqlrwsKgK9+VcqXKsrzmYwmFB6fMFf9Mcpq0XyjXa/6cCY8EavZFP1/WWkhNv+dg8NklHVyIphqbW1N+b3A5DpuswVcahUWlmBi4hyCZ6Uep4U2Kz5YXjrjdSeHg/iv3ncAAHOK5+Dhjz2sWZtMJxIBnngC2LoVODdZeGXePOCZZ4DrrjO2bZTUsYER7HrFhzPnpt70jrw5iqePvIPNq3nTI+VMWSSYSKWcCKZm43a7USdj/bYjR47g6NGjaV83OjqzYFtBYTFCZwcBSLkASz9YNuM1APDU0ZMYn5ys9uUrv4yLbBel3V9OCASA228H9u6Nb7vySuC556TyB2Q6xwZG8APX27FKz9P/f+bcBB53vY0vrLkAlzOgIoXMlm/EHlhSK6eDKZfLBZvNhqamprSvDYfDGBnJrEhcYWEpzp59K/b1knkzg6m/vnsGR94aBgAsnLsQ9zbem9G+sk53N9DaCrwRrwqPrVulGXsl8mf3kH7C4xPY9Yov7ZIZEQC7XvVh2w1lvOFQ1mIPLImQs1dAn88Ht9uNlpYWWflSpaWlqKioSPtfsmTxwoISBM/Eg6lkPVN7/hxPgL/vqvtQXlqe4TvLEpEI8OMfA3/3d/FAym4Hfv1r4LvfZSBlYq/1j8iacQXEl/0gykbRHtjo+Z6qB/aYCauxk7nkbM9Ue3s7Wltbp9Sems3KlSuxcuXKtK/buXPnjB6sgsJinJ0MpkoKC+D8wNSaUd73z+Lwm1Lu1gUVF+C2y26T1aasNTICfP7zUj5U1MqVwPPPS4sVk6kdHRhRtJjr0QHzraFGlA57YEmknAym2trasHbtWk2TzhNFIhGcC78HAPjQeXNQXDi196rtT/FSCPc23gtrsXYzC6fTPRfg9delYb2//CW+7Z57pN4oS+p1Csk8RkITsgIpwLzLfhClk0kPLB8aKJWcC6YOHjyIhoYGOJ1O3fZ5Lvx+7N9L500dvuv3n8Ur/VKvVFVFFTbXb9atXbrnAjz9NPC5zwFnzkhfV1YCP/2pFFxR1qiwFCrqmTLrsh+iMDk5N7EHlkTKqWCqq6sLNTU1MwIpv9+PQCCgWYAVnuyVAoCl05LPEwt03nvlvbotG6PrbKyzZ4EtW4Cf/CS+ra4OaGsDklSmJ3OrX1iBI2/OnLWajNmX/VCLycm5iz2wJFLOPFZ5PB44HI6kAdPQ0BBsNptm+w4Hh2L/rkkIpk68dwavJvZKrdSnV0ppLkB4XMVFwuORkswTA6lNm4BXX2UglaVWVVegrETepSEblv3IlNLk5PD4BDpPDGNbx0k8dGgA2zpOovPEsLrPF2km2gMrRz70wJI6OdEz5fP50NPTg9raWrjd7tj2aPXz3t5efOpTn9Js/6HJYMpuLcb5CcU62/4Un8H3lau+grKS5PWnRNMtF+D556XA6fRp6euyMuBHPwI+/Wnlv4tMI7rsx+MJPZvJ5PKyH0ofSD7bEMHPDg+xByuLsAeWRMqJYKqtrQ2hUAj9/f1Jv69lrxQATExIixYvnVcWK51wajSM1wbiM/jurL9T0zYk0jwXIBSSakVt3x7fdskl0rDepZcqbC2ZUb4v+6H0gWT7S/HhfBY4zQ6rqivw9JF3cmbhZTJWTgRTd999t9FNAADUnh9PPj94/F1MTF5N76y/U9cZfJrmApw4Ia2td+RIfNu//Avw5JNABS82uSSfl/1Q8kAiB6fXmw97YEmknAimzCIaTJ0bn8ChN94FABQVFOGOy+/QtR2azcb67W+BW28F/H7pa4sF2LYNuOMOacFiyjlmW/ZDL0oeSOTi9Hrx1M60zPceWBKHwZRq0seuqABYfJ6UE9U1EIA/OAYAuH7Z9bhw7oW6tkh4LsC5c8B99wHf+1582+LF0rDeZZdl3lAik1LyQCIXp9eLJWqmZT73wJI4DKZUky63i84rg6VY+tD9V++p2Hc/v/LzurdIaC7AwADwyU8CL78c37Zhg1Q/SuNctOlY74f0ouSBRC5OrxdHdOmXfO2BJXEYTAmybHKI77/fP4u/DEkX4UvmXYKPLvqo7m0Rlguwbx+wcSPwrjRkiZISqXfqnnsyGtZTEwyx3g/pSckDiVycXi8Gl4EhM+IZJkjN+dIQ376EXqm7Vt2VdGFkPURzAcpKpT9xtBXR/5eVFuKLay5IHoCMjwNf+xrwD/8QD6Sqq4GODqk4Zwbv6djACLa8cAI7X/Hh6Juj+H9DZ3H0zVHsfMWHLS+cwB9nWUiUi5GS3qIPJCI/vZxeLwYX4iYzYs+UIJecX4HToTH84YRUDb2ytBKfXm5svaWMcgEGB4FbbgF+//v4to9/HHjqKYRtdrx2Ylhxz5KaLnk+hZJR5CQnf7Zhfqy+VDqcXi8Gl4EhM2IwJYDdWozzykrw69d9CI9LH/HbVtyGSkulwS1TmAvw+98DN98M+CaLjRYVAQ89BGzdimMnz2DX/z6heJhNbTDExUjJSHIeSEoKCzi9XkdcBobMiMGUABWWYkQiERycLIcAAHc3mKP2lSwTE8C//zvw9a9L/waABQuA554DrrpKVc+S2mBIab2f57pP4Q99w0xOJ2HSPZBwer2+uBA3mRGDKQHKS4vwZiCIwdNhAMDVF1+NpR9canCrZDp1Skoy378/vu3aa4Ff/hKYP191z5LaLnml9X78Z8fhP3uWyemkK06v1w+XgSEzYjAlQHlJEV4bGI59fX3t9cY1RomXX5bKHgwMSF8XFADf+AZw//3SEB/U9yyp7ZLPtN4Pl/IgvXF6vT64DAyZER+XBCgrLUTXm4HY1/+07J8MbI0MkQjw/e8DH/lIPJCaPx84eFAa6psMpIB4z5Ic0Z6lRGpXZq9fWKG6cGK01yw8ztyJbBIen0DniWFs6ziJhw4NYFvHSXSeGObfMc/JnWnJPDXSE88yAYoLCvDGu2cAAMsdy3Gx/WJjGzSb998HbrhBWqh4TKrSjjVrgD/+EfjYx2a8XG3PkpJgKFmX/KrqCpSVqD9NOUU6u6gppUG5T1XpFyINcJhPgPcnl44BgBuW3WBgS9I4ckRapPjEifi2r3wFePBBoDj5qaA22VNtl7zcAqRy2iZ6ijQrsmtDdHVryk3MUyMzYTAlgG8kFPv3DZeYMJiKRIAf/Qj40peAsJQkj/POA37xC+Af/3HWH1Wb7CmiGnuq2VJKiJ4izYrs2mBdsdwn8iGEeWpkFgymBPBNzuJb/IHF+PD8DxvcmmlOnwbuuEMqcxB1xRXA889LVc3TEJHsKWLqeLKn0MHTYfjPjqdtFyB2ijR7TrTDumLmJCoAyuQhhD3AlA0YTAkQvYluuGSDYcvHJOV2A62tgMcT3/bFLwKPPAKUlsr6FaLW+RPRJT/9KbTzxDB2vuKT9T5ETZFmz4m2WN3afET1wmbyEMIeYMoWvMoLtOFvNhjdhLif/UzqgYoGUnPnAnv3Ao89JjuQihKV7BkNhrY0LcB91y7ElqYFaFw0N+NgQ0lyuqgp0lwXTFusbm0uotbFVPoQEh6f4JqclFUYTAlSbavGqgWrjG4GMDoKfOYzwO23A8GgtO2yy4Bjx4Abb8z410o9S4uwebUD9ReVY9n8Oai/qBybVzuw7YZFhjwdGjFFWm2pCJrd2IT84IjVrbWVSQCUitKHkFf++7SwfRPpgcN8grT+TavxQ3x/+Ys0rPf66/FtmzcDjz8OWK2qf/30YbZoLsOTLw8alsug91Ie7DnRzrGBEbxxKpT+hZNY3VpbIvPXlA7f/u64n7lzlFUYTAly06U3GduAX/0KuPNOqWcKAMrLgV27gFtu0WR3Zspl0HOKNNcF00a0F0QJVrfWlsj8NaUPIe+MjjF3jrIKgykB5pfPN26ILxiUSh48+WR826WXAnv2AMuWabJLvWazKZnFo9cUaa4Lpg0lvSBRC+aW4rX+Ec7q0ojIXlilDyHR3yli30R6YDAlQLWt2pghvr4+aVjvj3+Mb7v1VmDHDqlnSgN6zWYzU89XopIi+X9n9pzIp6QXJKrvVBBvnApyVtck0SUERPbCKn0IOb+8BKOhEHuAKWvwDBTgTMim/5phL7wAXH55PJCyWqUZfLt3axZIAfrMZjPrLJ5jAyPY8dKgrNdyXTBllPSCRBl9PpiJFsvvqF0KKpHSmbcfXWoTtm8iPfBKL0D43Af0WzMsHJaG9TZsAIaHpW01NcDhw8Btt2m7b2g/m03kDCKR5LYr6u6rqvK+p0QJJQtiJ5PPs7q0evgQWXpE6czb1RdX6l72hEgNBlMCWIvmAdDhCbm/X1qU+PHH49v++Z+lNffq6rTZ5zRaz2Yzax0npTk94XE1Kwnmj/D4BDpPDOPd0XOq1l4E8rOul5YPH6JLjyipV2dE2ROloufuto6TeOjQALZ1nNR/hIJMgzlTAswpnhf7t2aVr198Efj0p4H33pO+Li2VgqrPfQ7QMV9L69lsZq2AbdZ2ZbPEvDgR8vG4a738jujSI0pm3upd9kQJs+Z0knEYTAkwp+j8KV8LrXsyNgZ87WvAww/Hty1aBLS1AfX16n+/QlrPZjNrHSeztitbTZ8RKkI+Hnc9gnzRpUeUzLzVs+yJXEpmM1P+YDAlwJziqcGUsCfkkyeBm28GXK74tuuvB37+c8BuV/e7MyRi4ePZmLWOk9nalc2LvyrNP5MrH2d16RXk61V6xGz7nk7psOoKHdpE5pBfVx6NzCmaP+XrCIC3/GF1Y+eHDgErVsQDqeJi4NFHpVl8BgVSgPZLuIicQSSSmdqlxcwtPWVSU0qOfJzVpSRxPx+DTdGUDqueG2PuZL7gJ0uA6T1TAPD26XOZ3djGx4FvfhNYtw545x1p28KFUlD1pS/pmh+ViqiFj5MxYvFiOczSLrOWjVBC6YxQuaW98nFWl5mC/Hyg9NxlMnr+YDClUnFBGYoL5yT9nuIb29AQsH498I1vAJHJS+T69VItqdWrxTRYEK0WPjbrLB4ztMusZSOUUjo0dcHcUtOdD2ZhliA/Xyg9d9kvlT/y68qjAWvCTL5kZN/YOjqkYb1Dh6SvCwuBb39bmsU3b/Z9GCWay7ClaQHuu3YhtjQtQOOiuapvaFr2fGVzu8xaNkIppUNTVXNLTHk+GC2aN7fAVpL2tfkabIqm9Nw1fhyB9MIEdJXKihxpXzPr7L6JCeC73wXuv18a4gOAqirg2WeBq68W29gsYsZZPEa3K1fKM2QyI9Ss54NRpk/NT8YMJQRyjdJzt7SoEOFz2raJzIHBlEoVJQvTviblje3dd6W19F58Mb7tmmuAX/1KCqjynJlm8SQyql25Up4h0xmhZj0f9JZqav50i+dZ8bGlNk2CzcTZpMPBcZwblwa1SooKMddalLNBrtJzt6S4AGEd2kXGYzClUnnJgrSvSXpjO3wYuOkmqao5ICWWf/WrwAMPAEVF4htKWc9s5RkyFc0/ezxNnalsGJrSu0SFkrISJ4fDmrQjWcHK6fQoXmlEeRCl527Xi7O8iHIKgymVyorTD/NNubFFIsATTwBbtwLnJvt/580DnnkGuO467RpKWU/rgql6MnN1a7mMqIKtdcXzdOT2igFTi1deLvg4GFmBXMm526VJC8iMGEypVF4sr2eqfmEFEAgAt98O7N0b/2ZjI/Af/yGVPyCahdYFU/WWzXlQSqpgiwwkjMyby6TYqhbLaxl17BNl87lL2mAwpZKcYMpSXICGd48Daz8J9PXFv/HlL0sz9krSz8YhyqXhsahszINSWqJCZCBhZN5cpsVWRfaQGXnsp8vGc5e0Y/6rrcmVl6RJFI9EsPrAsyi6qjEeSNntwG9+A3znO4YFUlzxPDsZXZ6BjC1RYWTFcyUFK6e346igIrK5Uh6Ecg97plQoKylDeUklwuPJn5MswVF85mcPoLHzt/GNq1YBzz8PXHyxPo1MQkS+QTavDZftOMRgLCOH2ozMm1PSKza9HcPBcXSeGFZ9vuZKeRDKPQymVLBZzk8ZSF04cBz3/OAeLDj519i2k7duxoKdPwAsFr2aOIOcfIPHXG9jfkVx7Anw/PJifHSpHasvrkRpUaGhyZ+5KJPAlEMMxjFyqM3IvDkls0mn6zsVhOedoOrrRa6UB6Hcw2BKhbKiqqQXl8aO/8Rnfv4NWEJnAQBnreX46Z0PYaKlBVsMDKSUJJAOjYzF/j0SCuOnh4fw9JF3sH6ZHe2vv29o8mcuYWCafYwsUWFk3pySXrHpos+caq8XuVIehHJPzgVTXq8XXq8XdrsdwWAQANDQ0KDJvs6zLp7yoS4JB/Gppx7E1f9nT7w91cuw/Qvb4Ku6GMsEPSVlOsSWaQJpfL8R/Pb199O+TsvkTznvPRuGIMPjE2jrPoX9vYHYtmwMTJMd6+ULygEAPSdHTXv805ntHDK6RIVRZSWU9IopoeR6YfSxJ2VE3o+DwSA6OjpgsViwZs0aIfsU2b6cCqY8Hg96e3vR3Nwc2+b1etHW1obW1lbh+3PaLkVBRPrQVr19Andv24Lq/t7Y93/30U/il5+6H+dKrcKektT0ZCjJN1BLqxo36d57BDCsp0duEJf4PtLRY1ZSplIVb4ze7NQcfyMD4nTn2WevmI+ykkLZQ20rLiwTki+UyIi8Obm9YpmQe71YVV2B3a8NITSWvgXZUB4kl4m6H7tcLgQCATgcDni9XjidTiH7FB0v5EwwFQwGceDAAWzatGnKdqfTCZfLBbfbjbq6OqH7vGbR5Xj1r0DDq/8Lt//4fswJSjeRkGUOfn7bN/Fy0/Wx14p4SlJbXyXTBNJMiE7+lJvrlSjVa66rteHdM2NCb0Byg9zp70MOLQJTteQUb0x1/L+YpqfNyKFPOefZ9pcGcUFlSdpgqgDAtUtt+B+/8WryXkqL4sFCNKCKzppLdz5nGqxGe8We6HgbKdJFMyL3evHnt8/ICqQAscOc2dDbbSYi78eJvVC9vb0pX6dkn1rECzkTTHk8HthsNlit1hnfq62tRU9Pj/Bg6salH8Yl3/wKrtn3dGzbWwsW44kvPIGTC5fMeH1pUeZriIuor6ImgVQpkcmfmRQLnM3+3oDQG5vcIPeuq6rw41eVvw+zzUpS+/f44cuD+OGGDyW9CRlZkFHJ+3r79NTVa5MNtV271KZpfmGmQafaYPXyhRVYPM8KzztBxW1ORc71Ivr3kaO0uACXXlAmoGXMa8yEEfdjJfvUon05E1L39vYmPTAAYLfbMTQ0FBsTFaEAQNX666cEUp2Nn8AD39qbNJACgO0vDeJYhvVWRNRXqV9YoWvPlKjkT7W5XsmkurEp/fsoCXKffHlQ9lP19J8106wk1bl3YxG0dZ+auV3hA4Pommhq3tfieRYsmz8H9ReVY/NqB77/CScOeQKavZdo0Bltr9zzOdOfm26utSijmlOpyLleKPn7hMciQmpMiTpe+Ubv+7HSfWrRvpwJpnw+H+x2e9Lv2Ww2AEAgEEj6/UzMDRcAR44AACYsFvx00//Ezs9/F2Fr6qchNTcBJQXzUhXJW1VdgbISff7kIpM/My0WqFQmfx8lF/ixDO/9ZpuVJOLvccgTmHGcjS7IqOZ9nRw+h63XLMCWpgVoXDQX3W+d0ey9ZBp0igxWRT+YybleiLgGKmF0cJ/N9L4fK92nFu0zzxVapVAoBEuasgMi/3iVwcmP2JIlcO89hD9ccxNQkP6jnulNQER9lWgCqR6BicjkTz1zvZT+ffQI9Mw2K0nE32M8ghnHWe+b5XRq3tf080bL95Jp0CkyWBX9YCbneqF3jSmjg/tspvf9WOk+tWhfzuRMzSZ60Gbrtjty5AiOHj2a9neNjEgfmNG5c7Hz298GPvABjPS5cYmCbMxX2wvwZ0uR7NcDgCU0rmgfpacKsLMv+T5WjUcwEh5HRMMIpdJShJ//REyYofS9q6Xk7xMOjWOZxm0rKAD+dKAYf9Z0L/KJ+ntMP85Kj2X4VAF2/l9ln6PZqH1fie9Hy/cyorCd0XZl+nOp/O14BKdD47J/32zkXC9EXgPlEHG8RkelSUlnzpzJuB1yWeYUoKnFpvp3AFK7d+7cmfb19fX1WLlypbJ9yLgfi6Zkn5m2Ly+CKTnC4XAsUJIjUliIEYsFmPyQlCrZ2QQwci79y6YTuQ+tVwQMnQVCAn+foveuloK/TwH0aduoyR56hbznacdZ8bHM8HM0G1XvK6E9Wr+XTH+36DaJOvflXi/0Pj9E7W9iQvshwILCAljLxTzARiIRWffDcDgsZH+5IC+CqVBI+pimSjgDgNLSUlRUpB9KSTzB5Lye4kZHRxGJRFBQUIDy8nKjm5NVeOzU4fHLHI9d5pQ8oGdK9N8kHA5jbGwMZWXpZ0OWlioPp+Xcj0VTss9M25cXwZQcK1eulNVduXPnToyMjKCiogKbN2/WoWW5I3rsysvLeewU4rFTh8cvczx2mUu8X2hl48aNmv1uki9nEtBtNlvKhLHo2Gc0S5+IiIi0YcT9WMk+tWhfzgRTDocjZcJY9KA5HA49m0RERJR3jLgfK9mnFu3LmWDK6XSmjDT9fj+qq6t1bhEREVH+MeJ+rGSfWrQvZ4KpmpoaBINB+P3+Gd/zeDxYvny5/o0iIiLKM0rvx8FgEF6vV7d9ahEv5EwwZbVasW7dOnR0dEzZHl2Dp6amxqCWERER5Q+l9+P29nbs2bMHbrd71t8bCoVSDs8p2acW8UJOzearqamBxWKBy+WC3W6PHfTW1laDW0ZERJQ/lNyPnU4nfD5f0jylrq4u+Hw++P1+BAIBBAIBtLW1wWq1ora2dkrgo2SfouOFnAqmAOmP4nQ6jW4GERFRXpN7P25oaEBDQ0PK72mxT6WvTSdnhvmIiIiIjJBzPVNaq6+vRzgczqjya77jscscj506PH6Z47HLHI9d/iiIRLRc7paIiIgot3GYj4iIiEgFBlNEREREKjCYIiIiIlKBwRQRERGRCpzNJ5PX64XX651S3Etp/Yt85Ha74ff74fP5EAwG4XQ6sWbNGqObldW6urrgcDhYT00mv98fq3RstVphsVh4Dsrg8XhmLPHR1NQEq9VqUIvMJxgMoqOjI+05xftH7uNsPhk8Hg96e3vR3Nwc2+b1etHV1cXq6rNwuVyoq6uD3W4HIF142tvb4fP5sGnTJl6UMxAMBrFjxw40NzdziSQZPB4PDh8+jObm5innYVdXFwOqWbhcrhkFDf1+P9rb29Ha2pr3n12Xy4VAIACHwwG32w2n04m1a9cmfS3vH/mBw3xpBINBHDhwYMYHxel0IhgMpl1LKF95PB7U1tbGbmCA1CvQ3NyMUCiE9vZ24xqXxXi+yefz+XDgwAG0trZOOQ8PHjwIj8djXMNMzufzAcCMnk+73Y5169bh4MGDRjTLVNasWYPm5mY0NDTAYrGkfB3vH/mDwVQa0YUPkz2J1dbWoqenx4BWmd/g4GDSdZasVivq6urQ39+fcsFKSs7r9XJoTwGXy4WGhoYZn12n04m6ujqDWmV+Xq8XVVVVSb/ncDhiwRalx/tH/mAwlUZvb2/KLm273Y6hoSEGBUm43W60tbUl/V40yOJFWZlUC4HSTD6fD/39/UmDprq6OuarpJHqJu/3+2Gz2XRuTfbi/SN/MJhKw+fzTRkiSBS9qAQCAR1blB1mu+lHLx75nnehhNvtZgCggNvtTtkjQLOrqalBf38/2tvbZ9zoX3vtNZ6HCvD+kT84my+NUCg065g4gFgiIsXNllgZvXjwmMnj9/sZFCjk9XpjN6uuri4AUvDu9/uTDv1RnN1uR1NTEzo6OuD1etHc3Ayn0xlLtOZQs3y8f+QPBlMqRD8k7KZVxu12M2dFAY/Hw94AhaI3qK6urinHzu/345lnnsHGjRsZUM2ioaEBdrsd7e3t2LNnD2w2G1paWlL2spByvH/kFg7zka5cLhdsNhuampqMbkpW8Hg8LIGQIZ/PN+PY2e12OJ1OzkiTwWKxYNWqVaiurkYgEMCePXuY50iUAoMpFUKhEADm/sjl8/ngdrvR0tLCYyZDMBhEMBhkb4AKyY6dw+GAx+Nhj8AsXC4XQqEQ1qxZg9bWVqxduxaBQADPPPPMjEKelBneP3ILgynSTbTgH4MDeTgcqk6qWWfR7exlSS5a+yixV6+urg633347bDZb0sR0onzHYCoNm82WcrZF9ILCqcLptbW1Ye3atUy0lIllENSRM5OPs6iSS1Ud3m63Y+PGjQCA/v5+vZuVlXj/yB9MQE/D4XCkfArjrDR5Dh48iIaGBs4CUiAQCKC3t3dGheTouXj48OFYDZtUy1jkM4fDAb/fn/Y1NFUwGJx19pnVakVDQ0PaY0sS3j/yB4OpNJxOZ2xq9XR+vx/V1dU6tyi7dHV1oaamZkYg5ff7EQgEGGClUFNTkzTxPLo23xVXXMHE9FnU1tamXLIoehNjj8BMVqs1lsszGw7Vy8P7R/7gMF8aNTU1CAaDSZ/EPB4Pli9frn+jsoTH44HD4UgaMA0NDfFmRpqpqamBxWJJugZfb28v6urqmPibgs1mmzXJ3Ov1MgiQifeP/MFgKg2r1Yp169aho6NjyvbomkvsHUjO5/Ohp6cHgUAAbrc79l9XVxe6urpw+PBhPt1mINqrwgTg9Jqbm+FyuaYcK7fbjUAgwNIcs4get+kBVTAYjA3ZMxCNC4VCKT+PvH/kj4JIJBIxuhHZwOv1wuv1wm63xz44LKSY2vbt22cdLrDZbNi0aZOOLcpuPp8PXV1d8Pv9GBoagsViiVWj5oy/1LxeL9xuN6xWK4LBIGw2W9LkapopWh4hUVNTEwMpSOkLPp8v9nkEgOrqalitVtTW1s4Iknj/yH0MpoiIiIhU4DAfERERkQoMpoiIiIhUYDBFREREpAKDKSIiIiIVGEwRERERqcAK6ESkyt69ewEAg4ODGBwcxF133YWqqiqDW0VEpB8GU0SUsd27d6OlpQUVFRUAgM7OTtx5553YtWsXAyoiyhsc5iOijPX09GBkZCT2dWNjI8rLy7Fv3z4DW0VEpC8GU0SUkZGRkdjQXqLKykqMjo4a1CoiIv1xmI+IMlJRUYFnn312xvbBwUHceOONBrSIiMgY7JkiImH27duHqqoqrF+/3uimEBHphj1TRCTEyMgInnrqKTz22GNGN4WISFdc6JiIhHj44YfR2tqKxYsXG90UIiJdMZgiItV2796NpqYmBlJElJeYM0VEqnR2dmLFihVTAimWRiCifMKcKSICIM3Ce+SRR9DX15f2tddddx3uuusudHd34/jx42hqaor93PRSCdP19fWhra0NVVVVGB0dxfr161FeXo7BwUGsWLFCxFshItIVh/mICIODg/j617+OK6+8EkuXLsXx48cxOjoaC2727ds3ZYbe8uXLAQB33HFH0ppSDz74YNLAqLOzE0899RQeffTRWNX03bt3Y//+/ViyZAm+9a1viX9zREQaY88UEWHHjh1TApzBwUGsX78+tiRMd3c3GhsbZ/xcsjpTqXR3d+ORRx7BY489FtsPAKxYsQIvvPACe6WIKGsxZ4ooz0UXJ04McI4fPz4lkBKxzt4Pf/hDLF++fEaSenRYkMEUEWUr9kwR5bnpgdL0nKe+vj7VwdTevXsxODiIW2+9dcb3uru7UV5ezpmARJS12DNFRFPs27dvSi9RuoRyOV566SUA8VyrRD09PViyZInqfRARGYXBFBFNsX//flx11VWxr0UEU9HercShxOjvHh0dTZqPRUSULRhMEVFMZ2cnKisrpwQ9IyMjOH78uOrf/aEPfWjGtu7ubgDxfKm9e/eq3g8Rkd4YTBFRzJ49e2YMxY2OjsqqPTWbxYsXJy2hsH//fpSXl8dyskT0ghER6Y3BFBEBkIbi+vr6Zgy5ORwO9PT0qPrdLS0teOONN6Zs2717N5YsWYLKysrY/jmjj4iyEWfzEREAqRzC4sWLZwQ069evh8/nU/W7Gxsbcfr0aezYsQNVVVU4ffo0WlpaUFFRgYcffhi7d+9GZWUlNmzYoGo/RERGYAV0IiIiIhU4zEdERESkAoMpIiIiIhUYTBERERGpwGCKiIiISAUGU0REREQqMJgiIiIiUoHBFBEREZEKDKaIiIiIVGAwRURERKQCgykiIiIiFRhMEREREanAYIqIiIhIBQZTRERERCowmCIiIiJS4f8DqOsVx2oaFNUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_points = 100\n", + "points = [eig.book_of_the_numbers(scale_c=2, scale_b=3) for _ in range(num_points)]\n", + "x_values = [np.pi**2 * point[\"a\"] for point in points]\n", + "y_values = [point[\"b\"] * point[\"c\"]**2 for point in points]\n", + "\n", + "def compute_D(a, b, c):\n", + " return (np.pi**2 * a / (b * c**2))**(1/3)\n", + "\n", + "# Create a scatter plot\n", + "plt.scatter(x_values, y_values, label='Random Points')\n", + "plt.plot(np.linspace(0, 10), np.linspace(0, 10), color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "\n", + "\n", + "# Plot contour lines of the function D\n", + "a_values = np.linspace(0, 10, 100)\n", + "bc2_values = np.linspace(0, 10, 100)\n", + "A, BC2 = np.meshgrid(a_values, bc2_values)\n", + "D_values = compute_D(A, 1, BC2) # Assuming b = 1 for simplicity\n", + "contour_lines = plt.contour(A, BC2, D_values, levels=np.linspace(.1, 1, 5), colors='green')\n", + "contourf = plt.contourf(A, BC2, D_values, levels=np.linspace(.1, 1, 5))\n", + "cbar = plt.colorbar(contourf)\n", + "\n", + "plt.xlabel(r'$\\pi^2 a$')\n", + "plt.ylabel(r'$b c^2$')\n", + "# plt.ylim([-3, 50])\n", + "plt.title('Phase Diagram')\n", + "plt.legend()\n", + "\n", + "\n", + "# Add contour labels\n", + "contour_labels = plt.clabel(contour_lines, inline=True, fontsize=12, colors='black')\n", + "\n", + "# Add annotations for iso-D values\n", + "# for i, txt in enumerate(contour_labels):\n", + " # plt.annotate(f'D={np.around(D_values[0, i], decimals=2)}', (txt.get_position()[0], txt.get_position()[1]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.1450293971110255" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "compute_D(1, 1, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Phase computation parametric" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[36m0044f692a05422bb98c4bd3c6d04770c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m00ffda65398984695ae5576fe383f02c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m02bd5bbda8beff8f5cc0fbd88b599173\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m034189f38c18e6c04e59770762ddf137\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m043ebb377c5c5699e4d0c39a6efff1bd\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m046c79dade1d3ac0d860737fb091750e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m04c979b82e2ec3add9a38959f42f52b1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m06fd589cfddf7421b0f422bd92c4f077\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0709aa4181151c6be88b7bcafc3e014c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m08024b8d0f056a2e29555bbcff919b96\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m08c18d207e645c06bfbac1f997b0edad\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0aa3df8dcb703508b12d1c306410ba06\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0bd67cc936b53d779e505e7860e8d3a0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0bd72656f57f527e5863ef191c372831\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0ce6d727b36b2329f0bbb7bbcdbedc32\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m0e5f3c92253e55d958c60f6c4b3c3c94\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m12e557a7aa59790b9b017adcc2d61778\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m133a813220736fd35ca5780e0704fc1f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m14dffef10402801b89457241dc466ce3\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m154863f5eba04c9bd04c821204662c46\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m154b1d59bc43f05c208cd7e9315d48c9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m182ec8780648c9a9ab4b05e10b28263a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m186ab8e8139e59cdbddc72429ba378be\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m197773ce0c3bd5db1389a4e328fc1127\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m19c6e4fb5e77a4485581566f5ac85e7c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1a9321268f43fe71c8ad7f9ab0ffe154\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1b32af79ec982846c16e8da2dece9111\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1bde21d6d9e399af2546e2f9010b9350\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1d99dc57effa20f609a0cf624bd5e04a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1da28d85e36e3d87bbd150884f1a6a4a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1dc98a04e21fe62758b71ea2affc59ef\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1e684c7c8d3b74ab8946e9d16a169644\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m1ed7e041da9cefb263f8e5283ed9eabe\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m22c97e323c9093987f705e9112b3640a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m23a4e99376dd709c7a7926c1b512d89c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m245a0619f72f8fa174e14ad18ed79ef8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m25739f21e5031ff02151d7be8da54f32\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m26df8fc60531553c4539463d1c28dfec\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m287b7dad39b1a76397aff28461a3ae8c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m28a07bc7bb355d05782734af39a111e9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m29a13ad515a4e0b380c0765b509f4bd8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2ab9598ff854eb657a12d777d1374f74\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2afb851ba8413ce5291c1f7281b0b60a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2f170fb0e88ec9e9ada917e40dfe9b56\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m2f31290d5784e79695d28a07513df7cc\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m303619e93fae27433a982bc1565704fd\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m30b166d2e6f48e17020d5e5457e6e26a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3595514d555f90e66127a53c00ad6142\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m35992c02ce19e70d4b7646206dc625fb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m35b902ddb2944770f8fcc585b48334e2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m36ba82b093b807f3d4156df5aef56265\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3768e99b08bf76083993540fa0e931b5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m379c9f5ef533b7996ca5a6f6e2aebefb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m37c112d0c344dfbd6591d46e6aa4bf2b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3834fb17dbfd82a9e6b6c78c159139b4\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m384d216e638296c3f2e43c1bc10e6aa2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m38ec6d9ed3750e2a349aab9393a444c1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m390c1586d26f4ecb8965bb7caafd1a01\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3957404c3a99817081032e3304cc2eb2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m39582b0fef781ef7dd59b969861740bb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3ced327f796a04949713bfbb43236c70\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3e66ff5126900e8b3aacf615357995c8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3f02e8edb6dc1f797b9be04d540e0b77\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m3fa875212869f8bb87ecec023e3594ab\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m40e1eb6b7c27798bd70c26bb89188010\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m41a9fd1aaeefba3a8b4e181a3f57a26d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4332c6bbfc3a256c63470ab9c3d7e8a9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4363c09f4f41e45ec5a021d2b68e8276\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m43f6745ab4a8087d95d6dad67b61c455\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m446276eafc7b7cb1df263d2d43575334\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m45638e207aa96b4f92e27f59f0b544f5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m459c554af4f32b088b68a93b3a02f60a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m47724b1983ad0ec6fb3a085868e6406c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m49dd09f415ed6893adec2902800ecfbb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4a42005d5d1db515c58f10fb2a977b4f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4dd050367ed3d746a44a8627a27c0d86\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m4fb5053042bc75c426a6bbcccc364670\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5240559833b5075c63c9ced7cf58d9dc\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m53326ce0c7e2e31e9e711749f6c9872f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m55aa665af4383cdfab486497a526b948\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m55decbb21da6eccb8c64662f82e90e07\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m55f85e04d355cf55f777c22037403b12\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5869943e0762f690d3334659af3af68d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5971508ca172ee7705ba9867da5f2799\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5bb43003ce8ab88ea3e2b5835b018f9b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5e00139ccb323f8a614dbc86e4adee17\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5e1b92e1c2392c4742c4b8caac239078\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5e62740f1e3d26cfadf3f31606f04c93\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5f009deebc7c75e793bc5c2a3881177d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m5f728c69b35c2f0b870a23f20c1cf1bd\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m63664dec0d71acbc99c1bc0610834138\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m63ef09428da038d6a13c1db516b12cba\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6426c7b91e31a7164aa0ac3fe5ca7cc7\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m64765b11b3c0dfd58defa91fe80ef236\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m64beb86873a673b4b1d7d131a3b7cca1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m64cb9ae1176525d58b69364473f71172\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m67450e668b5e0f33bd764955db697890\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m68c28c98150c0491f40b510fe53d5150\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m699b629be39a2827f23a164b8bb30c1a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6ca3ebf88d38ddd014eac49e0ef69663\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6d28de9a1db1dc3ad984dc0fed840b85\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6e3e4283c6d55967a64bf8d1b588732a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6e7f390a6ef123e2c2a6788f98edf934\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6ea3722739a32d235c59aae7015d2132\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m6ebe9390869deaeaae9fe15f64d1d60e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7021e9afc054e604d2e15dbc07a9db83\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m704218ec1ab1084c07564e6f679b9f0b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m70a947a5ab7ce7fea419f5942119a162\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m76162cca14bfb91a3e02d6e29627bc11\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7762cc6ecd7e5663aefbc1ac3d1d183a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m77b345b3ac23acd4b0c793607df72b86\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m787493f255c3e1fe0f7590724463af47\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7a5fe95e68652560e04a4f04a6cc2ed0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7bf0064c79e577a339a3bdaa8b664053\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7c63c15b4401024888916ca9b42b21c9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7d1d96b15a68e392abeffe502f84a042\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7d21decc9d7b00098894bc65c19ccd48\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7d44e0b425e269c22219e93ee416e825\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7ed36b8dcee86d9a4d55b31fdd6f7199\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7f1430bcb0a6e3812cc44d0015cc2e19\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m7fd56cac090b0910c9796189bb13f529\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m802c675e74c573280a1fb772daaedf9c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m80bf33f54ca3cc39d55895987d22db6a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m81211387b53a1545755003f8b2a1fc18\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m812f71e51faf4596904b7256abf7468f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m818deb373f5d6257aa085493e2a12fb6\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m824d7bb2017e24e06fb6a4d7d87994f0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m840d841d4f4ab073d4675980ae0c65e2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8498148bb21e28e65acd6e832dd392e5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8683c8a249116de1e4a1f2efb7540756\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m86ff1f0a410c7220fea17218daac0b51\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m873a5a261a51d2c352cec13cbf8fdf0c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m879c22c6dd6ba9258ed2b3977c02dd3f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m89829464cf9d8abc402d2b289511db80\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m89d72ebf25cb6d5a889723f29e937e64\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8c2849493a108685ea6d16538cee0ff5\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8c959694f7c0083563629bbd7f6d26b9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m8d808fc699689924b60841e1e2164771\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m90167d1609a729e7134e4a923351f671\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9283ffcb15cf65f0be191c4877fa3f8c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m941d48ed62b7edc24a6b564a91b4d6c6\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m942438a56c8ffba16a34fefb4a9aca6a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9444e6515b8c6baac6410af233373084\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m95e026c0be6029963131d95f104d98f9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m961ec9441a2fa5a82bbed869080b8b3a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m96e85c7780b0f7c34955ed4e9e8f6075\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m99b28ae6fc8d44b1389a5fe6da60a557\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9a0ebd16dc2c6873f51f15b6614b73e8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9b092eb12c6b86663f750cc82741a54d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9b0cc6ef9c3464d738b9e6c4be7917cf\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9cfef1c0d73313a1414d49bc38ddeccf\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36m9f6e9f4b03f77f59fd59a719ce310950\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma07a340d8cd563655bef328ad2631adc\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma07cb68a370231f37c708389c12628ea\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma190267e13d71e0a2cefd795da6d16a2\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma26e29a64522fde13f1a0939a6436b09\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma3c39f11e5abdfdb1f68559d8d04e975\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma3c633c5b54b9f0cb5e4ed723d52b162\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma6830e9ed97c7590c32e359c547bae37\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma68e8bf1ea79b67d5e12e0814b0e9b02\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma80319cc10e4c333d4b0bdd3b113526d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36ma94574b4ab665c6845a57507127c7f19\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36maa1c7bcfbf8bd723b77f5710a6a9f594\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36madc4418b5f4802de2918f2932e0ad1c6\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mae03a35d8fe5b10029fb688ae9f08611\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mae1a96698d6d1339b5ae36a9fc93a239\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36maea34470dff6023e11932e8f26ea8fae\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36maf46e6dbd26ef9975009e0f908a0703d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb091b8fc793c49134b42139b7933be99\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb16a7008d41ce565818e053e6ef9451f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb33a98e1400345111df1f4a5186d8830\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb48b6c1cae8f9873ac2b5fdd6bfca86a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb6b45a5ed94214a2ab70c5631f8bd38c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb746fbbe0449671bc3fef0ba56043a91\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mb98b104f64f2bda9eb8854ff4d53ecd3\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mba40fab16ef2ffaa80483f7a471cf2bb\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mba6bde1c11d365939c1e66712a8a818b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbb8fae8e118a003c63c47a3c93963786\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbc4a60b8d7abfbcdec8bb45d864e38a8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbc600344f6d97e175bdff42d5a0d9660\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbdd49d4f44c93368e0813b6e75c2cff9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbe93e3a1e3cd2893f62f838768340107\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbec3d3e00694ea0d182b04366cbf8cb0\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mbfb5281dbaf30b871676f44cc1395433\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc18632626e637957d7850f27ba8ed27e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc20e9b135c36e94f7498a133cc45e442\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc2e711ccd4e5b1706d05d5bd98ef5a8e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc3066ac9a8f4a735e144494a06586074\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc4e8f9a815f3c85c2b3bc35ded8d4c55\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mc9874acaa4e7cea139377a1cc4aa96da\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mca10db54d8b535438ffcde1fd38529f8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mcb8f68bfb97cc6dac3d6e3db3377c222\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mcc67da412eb68626108ce80d9973105b\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mce9436b3ab369c9ab0d19d5fd85d64fe\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mcfacf6ef677c8603351e06e2bd728418\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md0b0b2ded7b4d07b0615afe8c5c3bd29\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md13a4206c4dc9798f6918905bd964ef1\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md323b3bd3f8ced38f7e5ed1370e95681\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md42c5f930bc58a9b85355978626be7d8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md5612d1467c7b6d3624c53bc688289df\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36md8eafafce323951597ee1a2ccd103a09\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mda90dc28fb90db28270d1efd575cbf90\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mdd6df4f37eb57a3022cd311c11ed40b8\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mde17f9e07113ce99eff6166bf2d5151e\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me0d28a7fc82849a64a0fbc6f584ea8e9\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me1690d753f1cfe4e6c8ed1999f242f70\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me2f0baf33acd97c5fa0650b3ac188b33\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me3e24962746bbc142697dac71768e280\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me5593a7c5757a917c4833284b849e8e4\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me5cebd7454caec5911970426e4ebfa02\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me8a1433809df201ba869c62c16c0870c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36me91e3e141d58633d9f065fe841e1d704\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mebfe4b19968441962ec69b81048f5a40\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mec046ac8dc9f3843ba2d44fc1f32bf0d\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36meda0bed753c4b3d8ead98daa3fbaaa4f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mef35e224f60f9f4f67a652b6b2bfabc3\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf0d2d1392eba4f49035c1ce0d431ec6a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf2ad2e96cf1f087e6a016e4dfe16cc9a\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf44e21cb4fe6fab825843b049649c479\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf582d6b1956c5d8756fcecd3ed31854c\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf5987d8fb47e09c39afd3e4aba484450\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf81b240be91d490535164f911aada9ed\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mf8e44e6d6d9486ac535ec276bfb1b520\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfa49c46e19fa64edbd26b7a87ff6c06f\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfab2c241b23cc097ef2a6c33ca7d1cb4\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfcab5744d2c104f2879ab24a05eb5965\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfe1bd5e0aae1254c90a08b9fe2d4fcac\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mfe65f734e95ed43aa28396952f76bc12\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mff220f0b4c41c9194a0d56982ad9d9df\u001b[m\u001b[m\n", + "\u001b[1m\u001b[36mff554b36ebfb02ba497f4de21e7bfe39\u001b[m\u001b[m\n", + "profile_comparison-0044f692a05422bb98c4bd3c6d04770c.pdf\n", + "profile_comparison-00ffda65398984695ae5576fe383f02c.pdf\n", + "profile_comparison-02bd5bbda8beff8f5cc0fbd88b599173.pdf\n", + "profile_comparison-034189f38c18e6c04e59770762ddf137.pdf\n", + "profile_comparison-043ebb377c5c5699e4d0c39a6efff1bd.pdf\n", + "profile_comparison-046c79dade1d3ac0d860737fb091750e.pdf\n", + "profile_comparison-04c979b82e2ec3add9a38959f42f52b1.pdf\n", + "profile_comparison-06fd589cfddf7421b0f422bd92c4f077.pdf\n", + "profile_comparison-0709aa4181151c6be88b7bcafc3e014c.pdf\n", + "profile_comparison-08024b8d0f056a2e29555bbcff919b96.pdf\n", + "profile_comparison-08c18d207e645c06bfbac1f997b0edad.pdf\n", + "profile_comparison-0aa3df8dcb703508b12d1c306410ba06.pdf\n", + "profile_comparison-0bd67cc936b53d779e505e7860e8d3a0.pdf\n", + "profile_comparison-0bd72656f57f527e5863ef191c372831.pdf\n", + "profile_comparison-0ce6d727b36b2329f0bbb7bbcdbedc32.pdf\n", + "profile_comparison-0e5f3c92253e55d958c60f6c4b3c3c94.pdf\n", + "profile_comparison-12e557a7aa59790b9b017adcc2d61778.pdf\n", + "profile_comparison-133a813220736fd35ca5780e0704fc1f.pdf\n", + "profile_comparison-14dffef10402801b89457241dc466ce3.pdf\n", + "profile_comparison-154863f5eba04c9bd04c821204662c46.pdf\n", + "profile_comparison-154b1d59bc43f05c208cd7e9315d48c9.pdf\n", + "profile_comparison-182ec8780648c9a9ab4b05e10b28263a.pdf\n", + "profile_comparison-186ab8e8139e59cdbddc72429ba378be.pdf\n", + "profile_comparison-197773ce0c3bd5db1389a4e328fc1127.pdf\n", + "profile_comparison-19c6e4fb5e77a4485581566f5ac85e7c.pdf\n", + "profile_comparison-1a9321268f43fe71c8ad7f9ab0ffe154.pdf\n", + "profile_comparison-1b32af79ec982846c16e8da2dece9111.pdf\n", + "profile_comparison-1bde21d6d9e399af2546e2f9010b9350.pdf\n", + "profile_comparison-1d99dc57effa20f609a0cf624bd5e04a.pdf\n", + "profile_comparison-1da28d85e36e3d87bbd150884f1a6a4a.pdf\n", + "profile_comparison-1dc98a04e21fe62758b71ea2affc59ef.pdf\n", + "profile_comparison-1e684c7c8d3b74ab8946e9d16a169644.pdf\n", + "profile_comparison-1ed7e041da9cefb263f8e5283ed9eabe.pdf\n", + "profile_comparison-22c97e323c9093987f705e9112b3640a.pdf\n", + "profile_comparison-23a4e99376dd709c7a7926c1b512d89c.pdf\n", + "profile_comparison-245a0619f72f8fa174e14ad18ed79ef8.pdf\n", + "profile_comparison-25739f21e5031ff02151d7be8da54f32.pdf\n", + "profile_comparison-26df8fc60531553c4539463d1c28dfec.pdf\n", + "profile_comparison-287b7dad39b1a76397aff28461a3ae8c.pdf\n", + "profile_comparison-28a07bc7bb355d05782734af39a111e9.pdf\n", + "profile_comparison-29a13ad515a4e0b380c0765b509f4bd8.pdf\n", + "profile_comparison-2ab9598ff854eb657a12d777d1374f74.pdf\n", + "profile_comparison-2afb851ba8413ce5291c1f7281b0b60a.pdf\n", + "profile_comparison-2f170fb0e88ec9e9ada917e40dfe9b56.pdf\n", + "profile_comparison-2f31290d5784e79695d28a07513df7cc.pdf\n", + "profile_comparison-303619e93fae27433a982bc1565704fd.pdf\n", + "profile_comparison-30b166d2e6f48e17020d5e5457e6e26a.pdf\n", + "profile_comparison-3595514d555f90e66127a53c00ad6142.pdf\n", + "profile_comparison-35992c02ce19e70d4b7646206dc625fb.pdf\n", + "profile_comparison-35b902ddb2944770f8fcc585b48334e2.pdf\n", + "profile_comparison-36ba82b093b807f3d4156df5aef56265.pdf\n", + "profile_comparison-3768e99b08bf76083993540fa0e931b5.pdf\n", + "profile_comparison-379c9f5ef533b7996ca5a6f6e2aebefb.pdf\n", + "profile_comparison-37c112d0c344dfbd6591d46e6aa4bf2b.pdf\n", + "profile_comparison-3834fb17dbfd82a9e6b6c78c159139b4.pdf\n", + "profile_comparison-384d216e638296c3f2e43c1bc10e6aa2.pdf\n", + "profile_comparison-38ec6d9ed3750e2a349aab9393a444c1.pdf\n", + "profile_comparison-390c1586d26f4ecb8965bb7caafd1a01.pdf\n", + "profile_comparison-3957404c3a99817081032e3304cc2eb2.pdf\n", + "profile_comparison-39582b0fef781ef7dd59b969861740bb.pdf\n", + "profile_comparison-3ced327f796a04949713bfbb43236c70.pdf\n", + "profile_comparison-3e66ff5126900e8b3aacf615357995c8.pdf\n", + "profile_comparison-3f02e8edb6dc1f797b9be04d540e0b77.pdf\n", + "profile_comparison-3fa875212869f8bb87ecec023e3594ab.pdf\n", + "profile_comparison-40e1eb6b7c27798bd70c26bb89188010.pdf\n", + "profile_comparison-41a9fd1aaeefba3a8b4e181a3f57a26d.pdf\n", + "profile_comparison-4332c6bbfc3a256c63470ab9c3d7e8a9.pdf\n", + "profile_comparison-4363c09f4f41e45ec5a021d2b68e8276.pdf\n", + "profile_comparison-43f6745ab4a8087d95d6dad67b61c455.pdf\n", + "profile_comparison-446276eafc7b7cb1df263d2d43575334.pdf\n", + "profile_comparison-45638e207aa96b4f92e27f59f0b544f5.pdf\n", + "profile_comparison-459c554af4f32b088b68a93b3a02f60a.pdf\n", + "profile_comparison-47724b1983ad0ec6fb3a085868e6406c.pdf\n", + "profile_comparison-49dd09f415ed6893adec2902800ecfbb.pdf\n", + "profile_comparison-4a42005d5d1db515c58f10fb2a977b4f.pdf\n", + "profile_comparison-4dd050367ed3d746a44a8627a27c0d86.pdf\n", + "profile_comparison-4fb5053042bc75c426a6bbcccc364670.pdf\n", + "profile_comparison-5240559833b5075c63c9ced7cf58d9dc.pdf\n", + "profile_comparison-53326ce0c7e2e31e9e711749f6c9872f.pdf\n", + "profile_comparison-55aa665af4383cdfab486497a526b948.pdf\n", + "profile_comparison-55decbb21da6eccb8c64662f82e90e07.pdf\n", + "profile_comparison-55f85e04d355cf55f777c22037403b12.pdf\n", + "profile_comparison-5869943e0762f690d3334659af3af68d.pdf\n", + "profile_comparison-5971508ca172ee7705ba9867da5f2799.pdf\n", + "profile_comparison-5bb43003ce8ab88ea3e2b5835b018f9b.pdf\n", + "profile_comparison-5e00139ccb323f8a614dbc86e4adee17.pdf\n", + "profile_comparison-5e1b92e1c2392c4742c4b8caac239078.pdf\n", + "profile_comparison-5e62740f1e3d26cfadf3f31606f04c93.pdf\n", + "profile_comparison-5f009deebc7c75e793bc5c2a3881177d.pdf\n", + "profile_comparison-5f728c69b35c2f0b870a23f20c1cf1bd.pdf\n", + "profile_comparison-63664dec0d71acbc99c1bc0610834138.pdf\n", + "profile_comparison-63ef09428da038d6a13c1db516b12cba.pdf\n", + "profile_comparison-6426c7b91e31a7164aa0ac3fe5ca7cc7.pdf\n", + "profile_comparison-64765b11b3c0dfd58defa91fe80ef236.pdf\n", + "profile_comparison-64beb86873a673b4b1d7d131a3b7cca1.pdf\n", + "profile_comparison-64cb9ae1176525d58b69364473f71172.pdf\n", + "profile_comparison-67450e668b5e0f33bd764955db697890.pdf\n", + "profile_comparison-68c28c98150c0491f40b510fe53d5150.pdf\n", + "profile_comparison-699b629be39a2827f23a164b8bb30c1a.pdf\n", + "profile_comparison-6ca3ebf88d38ddd014eac49e0ef69663.pdf\n", + "profile_comparison-6d28de9a1db1dc3ad984dc0fed840b85.pdf\n", + "profile_comparison-6e3e4283c6d55967a64bf8d1b588732a.pdf\n", + "profile_comparison-6e7f390a6ef123e2c2a6788f98edf934.pdf\n", + "profile_comparison-6ea3722739a32d235c59aae7015d2132.pdf\n", + "profile_comparison-6ebe9390869deaeaae9fe15f64d1d60e.pdf\n", + "profile_comparison-7021e9afc054e604d2e15dbc07a9db83.pdf\n", + "profile_comparison-704218ec1ab1084c07564e6f679b9f0b.pdf\n", + "profile_comparison-70a947a5ab7ce7fea419f5942119a162.pdf\n", + "profile_comparison-76162cca14bfb91a3e02d6e29627bc11.pdf\n", + "profile_comparison-7762cc6ecd7e5663aefbc1ac3d1d183a.pdf\n", + "profile_comparison-77b345b3ac23acd4b0c793607df72b86.pdf\n", + "profile_comparison-787493f255c3e1fe0f7590724463af47.pdf\n", + "profile_comparison-7a5fe95e68652560e04a4f04a6cc2ed0.pdf\n", + "profile_comparison-7bf0064c79e577a339a3bdaa8b664053.pdf\n", + "profile_comparison-7c63c15b4401024888916ca9b42b21c9.pdf\n", + "profile_comparison-7d1d96b15a68e392abeffe502f84a042.pdf\n", + "profile_comparison-7d21decc9d7b00098894bc65c19ccd48.pdf\n", + "profile_comparison-7d44e0b425e269c22219e93ee416e825.pdf\n", + "profile_comparison-7ed36b8dcee86d9a4d55b31fdd6f7199.pdf\n", + "profile_comparison-7f1430bcb0a6e3812cc44d0015cc2e19.pdf\n", + "profile_comparison-7fd56cac090b0910c9796189bb13f529.pdf\n", + "profile_comparison-802c675e74c573280a1fb772daaedf9c.pdf\n", + "profile_comparison-80bf33f54ca3cc39d55895987d22db6a.pdf\n", + "profile_comparison-81211387b53a1545755003f8b2a1fc18.pdf\n", + "profile_comparison-812f71e51faf4596904b7256abf7468f.pdf\n", + "profile_comparison-818deb373f5d6257aa085493e2a12fb6.pdf\n", + "profile_comparison-824d7bb2017e24e06fb6a4d7d87994f0.pdf\n", + "profile_comparison-840d841d4f4ab073d4675980ae0c65e2.pdf\n", + "profile_comparison-8498148bb21e28e65acd6e832dd392e5.pdf\n", + "profile_comparison-8683c8a249116de1e4a1f2efb7540756.pdf\n", + "profile_comparison-86ff1f0a410c7220fea17218daac0b51.pdf\n", + "profile_comparison-873a5a261a51d2c352cec13cbf8fdf0c.pdf\n", + "profile_comparison-879c22c6dd6ba9258ed2b3977c02dd3f.pdf\n", + "profile_comparison-89829464cf9d8abc402d2b289511db80.pdf\n", + "profile_comparison-89d72ebf25cb6d5a889723f29e937e64.pdf\n", + "profile_comparison-8c2849493a108685ea6d16538cee0ff5.pdf\n", + "profile_comparison-8c959694f7c0083563629bbd7f6d26b9.pdf\n", + "profile_comparison-8d808fc699689924b60841e1e2164771.pdf\n", + "profile_comparison-90167d1609a729e7134e4a923351f671.pdf\n", + "profile_comparison-9283ffcb15cf65f0be191c4877fa3f8c.pdf\n", + "profile_comparison-941d48ed62b7edc24a6b564a91b4d6c6.pdf\n", + "profile_comparison-942438a56c8ffba16a34fefb4a9aca6a.pdf\n", + "profile_comparison-9444e6515b8c6baac6410af233373084.pdf\n", + "profile_comparison-95e026c0be6029963131d95f104d98f9.pdf\n", + "profile_comparison-961ec9441a2fa5a82bbed869080b8b3a.pdf\n", + "profile_comparison-96e85c7780b0f7c34955ed4e9e8f6075.pdf\n", + "profile_comparison-99b28ae6fc8d44b1389a5fe6da60a557.pdf\n", + "profile_comparison-9a0ebd16dc2c6873f51f15b6614b73e8.pdf\n", + "profile_comparison-9b092eb12c6b86663f750cc82741a54d.pdf\n", + "profile_comparison-9b0cc6ef9c3464d738b9e6c4be7917cf.pdf\n", + "profile_comparison-9cfef1c0d73313a1414d49bc38ddeccf.pdf\n", + "profile_comparison-9f6e9f4b03f77f59fd59a719ce310950.pdf\n", + "profile_comparison-a07a340d8cd563655bef328ad2631adc.pdf\n", + "profile_comparison-a07cb68a370231f37c708389c12628ea.pdf\n", + "profile_comparison-a190267e13d71e0a2cefd795da6d16a2.pdf\n", + "profile_comparison-a26e29a64522fde13f1a0939a6436b09.pdf\n", + "profile_comparison-a3c39f11e5abdfdb1f68559d8d04e975.pdf\n", + "profile_comparison-a3c633c5b54b9f0cb5e4ed723d52b162.pdf\n", + "profile_comparison-a6830e9ed97c7590c32e359c547bae37.pdf\n", + "profile_comparison-a68e8bf1ea79b67d5e12e0814b0e9b02.pdf\n", + "profile_comparison-a80319cc10e4c333d4b0bdd3b113526d.pdf\n", + "profile_comparison-a94574b4ab665c6845a57507127c7f19.pdf\n", + "profile_comparison-aa1c7bcfbf8bd723b77f5710a6a9f594.pdf\n", + "profile_comparison-adc4418b5f4802de2918f2932e0ad1c6.pdf\n", + "profile_comparison-ae03a35d8fe5b10029fb688ae9f08611.pdf\n", + "profile_comparison-ae1a96698d6d1339b5ae36a9fc93a239.pdf\n", + "profile_comparison-aea34470dff6023e11932e8f26ea8fae.pdf\n", + "profile_comparison-af46e6dbd26ef9975009e0f908a0703d.pdf\n", + "profile_comparison-b091b8fc793c49134b42139b7933be99.pdf\n", + "profile_comparison-b16a7008d41ce565818e053e6ef9451f.pdf\n", + "profile_comparison-b33a98e1400345111df1f4a5186d8830.pdf\n", + "profile_comparison-b48b6c1cae8f9873ac2b5fdd6bfca86a.pdf\n", + "profile_comparison-b6b45a5ed94214a2ab70c5631f8bd38c.pdf\n", + "profile_comparison-b746fbbe0449671bc3fef0ba56043a91.pdf\n", + "profile_comparison-b98b104f64f2bda9eb8854ff4d53ecd3.pdf\n", + "profile_comparison-ba40fab16ef2ffaa80483f7a471cf2bb.pdf\n", + "profile_comparison-ba6bde1c11d365939c1e66712a8a818b.pdf\n", + "profile_comparison-bb8fae8e118a003c63c47a3c93963786.pdf\n", + "profile_comparison-bc4a60b8d7abfbcdec8bb45d864e38a8.pdf\n", + "profile_comparison-bc600344f6d97e175bdff42d5a0d9660.pdf\n", + "profile_comparison-bdd49d4f44c93368e0813b6e75c2cff9.pdf\n", + "profile_comparison-be93e3a1e3cd2893f62f838768340107.pdf\n", + "profile_comparison-bec3d3e00694ea0d182b04366cbf8cb0.pdf\n", + "profile_comparison-bfb5281dbaf30b871676f44cc1395433.pdf\n", + "profile_comparison-c18632626e637957d7850f27ba8ed27e.pdf\n", + "profile_comparison-c20e9b135c36e94f7498a133cc45e442.pdf\n", + "profile_comparison-c2e711ccd4e5b1706d05d5bd98ef5a8e.pdf\n", + "profile_comparison-c3066ac9a8f4a735e144494a06586074.pdf\n", + "profile_comparison-c4e8f9a815f3c85c2b3bc35ded8d4c55.pdf\n", + "profile_comparison-c9874acaa4e7cea139377a1cc4aa96da.pdf\n", + "profile_comparison-ca10db54d8b535438ffcde1fd38529f8.pdf\n", + "profile_comparison-cb8f68bfb97cc6dac3d6e3db3377c222.pdf\n", + "profile_comparison-cc67da412eb68626108ce80d9973105b.pdf\n", + "profile_comparison-ce9436b3ab369c9ab0d19d5fd85d64fe.pdf\n", + "profile_comparison-cfacf6ef677c8603351e06e2bd728418.pdf\n", + "profile_comparison-d0b0b2ded7b4d07b0615afe8c5c3bd29.pdf\n", + "profile_comparison-d13a4206c4dc9798f6918905bd964ef1.pdf\n", + "profile_comparison-d323b3bd3f8ced38f7e5ed1370e95681.pdf\n", + "profile_comparison-d42c5f930bc58a9b85355978626be7d8.pdf\n", + "profile_comparison-d5612d1467c7b6d3624c53bc688289df.pdf\n", + "profile_comparison-d8eafafce323951597ee1a2ccd103a09.pdf\n", + "profile_comparison-da90dc28fb90db28270d1efd575cbf90.pdf\n", + "profile_comparison-dd6df4f37eb57a3022cd311c11ed40b8.pdf\n", + "profile_comparison-de17f9e07113ce99eff6166bf2d5151e.pdf\n", + "profile_comparison-e0d28a7fc82849a64a0fbc6f584ea8e9.pdf\n", + "profile_comparison-e1690d753f1cfe4e6c8ed1999f242f70.pdf\n", + "profile_comparison-e2f0baf33acd97c5fa0650b3ac188b33.pdf\n", + "profile_comparison-e3e24962746bbc142697dac71768e280.pdf\n", + "profile_comparison-e5593a7c5757a917c4833284b849e8e4.pdf\n", + "profile_comparison-e5cebd7454caec5911970426e4ebfa02.pdf\n", + "profile_comparison-e8a1433809df201ba869c62c16c0870c.pdf\n", + "profile_comparison-e91e3e141d58633d9f065fe841e1d704.pdf\n", + "profile_comparison-ebfe4b19968441962ec69b81048f5a40.pdf\n", + "profile_comparison-ec046ac8dc9f3843ba2d44fc1f32bf0d.pdf\n", + "profile_comparison-eda0bed753c4b3d8ead98daa3fbaaa4f.pdf\n", + "profile_comparison-ef35e224f60f9f4f67a652b6b2bfabc3.pdf\n", + "profile_comparison-f0d2d1392eba4f49035c1ce0d431ec6a.pdf\n", + "profile_comparison-f2ad2e96cf1f087e6a016e4dfe16cc9a.pdf\n", + "profile_comparison-f44e21cb4fe6fab825843b049649c479.pdf\n", + "profile_comparison-f582d6b1956c5d8756fcecd3ed31854c.pdf\n", + "profile_comparison-f5987d8fb47e09c39afd3e4aba484450.pdf\n", + "profile_comparison-f81b240be91d490535164f911aada9ed.pdf\n", + "profile_comparison-f8e44e6d6d9486ac535ec276bfb1b520.pdf\n", + "profile_comparison-fa49c46e19fa64edbd26b7a87ff6c06f.pdf\n", + "profile_comparison-fab2c241b23cc097ef2a6c33ca7d1cb4.pdf\n", + "profile_comparison-fcab5744d2c104f2879ab24a05eb5965.pdf\n", + "profile_comparison-fe1bd5e0aae1254c90a08b9fe2d4fcac.pdf\n", + "profile_comparison-fe65f734e95ed43aa28396952f76bc12.pdf\n", + "profile_comparison-ff220f0b4c41c9194a0d56982ad9d9df.pdf\n", + "profile_comparison-ff554b36ebfb02ba497f4de21e7bfe39.pdf\n" + ] + } + ], + "source": [ + "import os\n", + "cwd = os.getcwd()\n", + "path_components = cwd.split(os.path.sep)\n", + "path_components = path_components[0:-2]\n", + "dirroot = '/' + os.path.join(*path_components, 'test', 'output', 'rayleigh-benchmark-parametric', 'MPI-1')\n", + "\n", + "!ls $dirroot\n" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [], + "source": [ + "successful_points = []\n", + "unsuccessful_points = []\n", + "data_for_plotting = []\n", + "\n", + "\n", + "for subdir, _, _ in os.walk(dirroot):\n", + " parameters = load_parameters(subdir)\n", + " signature = load_signature(subdir)\n", + " if parameters is not None:\n", + " a = parameters.get('model', {}).get('a')\n", + " b = parameters.get('model', {}).get('b')\n", + " c = parameters.get('model', {}).get('c')\n", + " # # Check if the computation is successful based on the existence of mode_shapes_data.npz\n", + " success_file = os.path.join(subdir, 'mode_shapes_data.npz')\n", + " if os.path.exists(success_file):\n", + " successful_points.append((a, b*c**2))\n", + " data = np.load(os.path.join(subdir, 'mode_shapes_data.npz'), allow_pickle=True)\n", + " D_support = data['global_values'].item()['D_support']\n", + " D_theory = data['global_values'].item()['D_theory']\n", + " R_vector = data['global_values'].item()['R_vector']\n", + " R_cone = data['global_values'].item()['R_cone']\n", + " \n", + " # Append data for plotting\n", + " data_for_plotting.append({'pisq_a': np.pi**2*a, 'bc_squared': b*c**2, 'D_support': D_support, 'D_theory': D_theory, \n", + " 'R_vector': R_vector, 'R_cone': R_cone, 'signature': signature})\n", + " \n", + " else:\n", + " unsuccessful_points.append((a, b*c**2))\n", + " data = []" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "D_theory_values = [point['D_theory'] for point in data_for_plotting]\n", + "D_support_values = [point['D_support'] for point in data_for_plotting]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_26783/4181458989.py:3: RuntimeWarning: divide by zero encountered in divide\n", + " return (x / y)**(1/3)\n", + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_26783/4181458989.py:3: RuntimeWarning: invalid value encountered in divide\n", + " return (x / y)**(1/3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAHVCAYAAACe6K1dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8OUlEQVR4nOzdeXxcVfn48c+5syYzSSZpm6Rr2qYbWxugFOgCikKrWGVpXcHCFxB/CAoqoH5xRUVQQRGoLEILKGBbUNGvLbi2pUDZkrI2TSnplq3NOpPMdu/5/THN1myTmTtrz9tXXtI7d+59Zu4sz5zlOUJKKVEURVEURVEyipbqABRFURRFUZTRU0mcoiiKoihKBlJJnKIoiqIoSgZSSZyiKIqiKEoGUkmcoiiKoihKBlJJnKIoiqIoSgZSSZyiKIqiKEoGUkmcoiiKoihKBlJJnKIoiqIoSgZSSZyiKEoa2rhxY89/b9iwIYWRKGZT11Yxi0riFEVR0lB9fX2qQ1BIzHXIhmubDY8hG1hTHcBo1dfXs3HjRp5++mlKS0tZunRpz/aOjg6WLFnCokWLANi9ezdr1qzB6/Vy1113pTJsYOjYOzo6ACgtLWXZsmWpDDHtVFZW8sILLwBQUVHRc21Hkqxrv2bNGgDy8vJwuVzk5eWxaNEi1qxZw2WXXZaw8yqZob6+ng0bNrBp0yYWLlzIzJkzgch7vr6+npUrV1JeXj7sMSorK0fcJ9nuvfdetm7dys0330xFRUWqw0moDRs28JWvfGXA9ky7tmbE29dQz4uSZDJD3XLLLfKee+4ZsP2qq66S69ev7/n3G2+8Ia+66qpkhjaioWK/55575G233dZv2yOPPDJg27Fk+fLlsqOjQ77xxhvyjTfeGHK/v//97wO2JfLa19TUyOuvv35ATHV1dfK2225Lu9dcthjsOo9Wst9TNTU1cvny5QO2d3R0yKuuukrW1NQMuK2urk5u3bpVSin7fZ6lk8Fe/4Mx45qZJZZYBvus7pZp13a08W7dunXQxyDl8M+LkjxZ1526dOlS1q5d2/PvvLy8FEYzOl/5ylfw+Xz9xktUVFSwZMmSFEaVOrt376a0tBS3201FRcWwv/grKysHbEvktb/99ttZtWrVgJhUa2piDXadRyvZ76mhWlvcbjcXXXRRT2uu1+tlzZo1rFmzhttvv51du3axZs0atm7dypo1azJ27JQZ18wsZseSadd2NPH+7Gc/o76+nl27dvGzn/0sKfEpo5dx3akjcblcQORF6Ha7UxzN6C1atIi1a9f2JALZ3lUxku7rOZyNGzfS0NCQhGgiuj/ohro2FRUVlJSUJC2eY4VZ1znZ76nKykrmzZs36G2lpaVUVVUBkS/S7i74vt3xGzZs4OKLL05GqKZL9ntzOImIJdOu7Wjivfbaa/nud79LSUkJ3/rWt5IWozI6WZfE7d69m/Ly8gEJ3O7du6mvr+8ZO9d3vJLX62XTpk2UlpZSWVnJsmXL+v1a2bhxI6Wlpfh8Purr63G5XD1J1oYNGygtLaW+vp7S0tKox2wNZfHixdx3333s3r0biLzhGxoaeOCBB6KO1+v1snbtWsrLy3tas8rLy9m4cSPLli1j7dq1lJSUsGzZsp5fppdddtmwx62srOxp4bz22mt7nsfdu3fzla98hY0bN5KXl8eWLVtGNbai+/mDyJiN7g+03bt3s3Hjxp5xHEM9t5WVlVRWVvbsBwz4UBzu2veNIdpruG3btiE/CLsdHcNQj3Ow59WsOI822Ot45syZA15ja9asYdOmTaxatarnNbJ27VrcbnfPOX0+X78Yo9lnNM/H0a/PioqKEa9zrI+3vr6eG264gRUrVlBaWkpHRwf33XcfP/rRj3oSvnie+5qamhFbZ71eLwCbNm0CoKqqig0bNvS8FqJ9zEMdezTv6+Fef93jPqMx3HszmpiG+owa6rOtO9EY7FpF8zkRi1Rf29EaTbxr165lxYoVuFwu7r33XjX+LV2luj83VkePK+vo6JDr16+X119/vezo6OjZXlNTIz/72c/2G7txdN//I488Iuvq6vrd3n2MrVu39htHUVdX1/Pv2267rWdsQ3dMQ40fGC72oy1fvrznHDU1NQPGVw0X79FxdY916Gvr1q0941lqamrkI488EtVxu8eYHf1cdt+/77Gjcdttt/U7Vl1dnbzlllt6/j3YYx/MG2+8Meg5o7n2sVzD5cuXj2osy0iPc6jnNd44+xrudTzY2MFbbrml3/5bt26Vy5cv7/f6eOSRR/q9jqPZp/uxDPd8DPX6HOo6j/bxHv26qqmp6RfP0WPm4nnu6+rqesZ1Dubvf//7gDFKfcd/9n1vxSrW9/XRn5F9n8+Ojg65fPnyEcfEDXXNRoppqNfASJ9tw12r0bx++hrqszodru1oxBLv1q1b+12nvtSYuPSQ0WPiampq2LhxIxs3bmTr1q1UVFRw1113DWiF8/l8/bpQSkpK+k2Prq+v7zdWoqSkpKdZGeCFF17o+XVSWlrKzJkzqa+vZ9u2bf1+kS9atKjfeLZEGSnebdu29fyqdbvdPb+uu7lcLnbv3k1FRQXl5eU9v7hHOm5eXh719fUDnsu+ysvLo5p6vnv3bqqqqvodq7S0FK/Xa+q4leGufTKuYTSPc6jn1ew4B3sdd5//aEd3Y7tcLsrLy3tazwBWrFjBpk2beuKMZp9ono+hXp+jNdTjPVpHRwczZszoiW/Tpk1ce+21QPzPfWVlZc+4zqFuP7rVuvuxmyXW93X3NfN6vTz99NP9WnDcbndcsypHimmo18Bwn23J/kxOh2s7GrHEu2jRon7vZyX9ZHR36owZM6IaRH70i9DlcvWU9QB6muG9Xi8NDQ14vd6e27s/BD7/+c9TXl7O4sWLufjii9m4cSMul6vfB9HRyVIs+n7pDGW4eCGSSPl8vn73Ofp4gx1/pOMOdj+XyxXTm3zXrl2D3q+kpITKykrTPuiGu/aVlZUxXcPurprhdHflRPs4ExFnX0O9juPhdrt7vmyHeg0cvU+sz8dojebx9n2tdU9Y6f6ii/e5H24MEkS61latWtVvW/d193q9pkzOifV93b1PVVVVVGNTEx0TDP/ZZsb7ZDSSdW1feOEFtmzZMuJ+Iw1jiSVeJf1ldBJnlt27d7Nu3ToqKipYvHjxgNalW2+9ld27d1NZWdkzrgEiHx59vwDMSDxqamoAeloGYol36dKlrFu3jmuvvZZNmzZxzTXXDDjGYB/KIx3XTEd/EJupO4GKJoZYruHChQvZtm3bsPt0j/Mx43HGGufRBnsdD5XYJOr6RHvcaJKGka7zaB4vRMZSdY/D6j5+vM/9cF+M3WP2jv4h2v3lXlNTE/cYWzDnfW3WTO/uaxZNTIO9Bob7bBvttYr2c2Ioybq2ixYtMuV1EEu8SvrL6O5UM3i9Xm655RZWrlzJsmXLcLvdPV803cV5IfIL8OKLL+bOO+9k69atQ3YbdrekxWrjxo39WgJGG2+3a6+9lqqqKhYtWhTVGzPa45qloqJi0OM2NDQM2e0Vre5JISOJ9Rr2Hcw/mL6/ss14nGa81oZ6HQ8lmmN7vV58Pt+wv/6P3sfM6z7cdR7t462vr2ft2rX9Bm93dy/F+tx3P/bBEonuAfo333zzgNu6E82Kioq4WyTNeF9HO0QiGrt37447pqE+20Z7raL9nBhMOlzb0Yg1XiX9HZNJXN/WgIaGhgFfRN1v+t27dw+o2waRrp+KigpmzJjRs5pAt+G+KEayYcMGfD7fsK0FI8Xb/f/dswSj/aCI5riDibXFpry8nHnz5vVLhLrPM9pfnX27N+vr64dNKvrGG881vPnmm1m7du2ARK571l33Y4j1cY4mzr4/NoY73mCv4+7/7/vl5/V6e1qh+ur+Au62fv16li5d2u81NtI+8Vz30V7noR7vYLq7Ubvj3L17N3l5eXG9Rrq7IY9+D9bX13PPPfdw1113xfVFHs11N+N93b26TN9zeb3ens/H4Qx2zWKNqfv2oT7bRrpWo3n9jCTR19ZsmRavEj0hpZSpDmI06uvreeGFF1i/fj15eXksXbqUpUuXDtpy1d1kv23bNlatWsXFF1/Mhg0bWL9+PaWlpaxYsaJniSTobXovLS1lzZo1LFmypGcMQ3fLSn19fb/zrVmzhtLS0p7bh/siGm7Zre6ugL4J3GDxd59zqHgXLVrECy+8wO23395TDsDlcrF06dKe6fobNmygpqam5/F3v3mHO25paemQz+WMGTO4+OKLycvL69nnoosuYsWKFSPW6ut+/rqfn+5Wrr6P/aKLLmLJkiXDfuh2x97dJRDttR/tNRzqvN3PMzBoy2c0jzPWODdu3MjatWt58MEHh3y+u7+Ah3odd5c56I5xy5YtvP/++6xataqnREPfkgPdX7Z9X6/R7DPS8zHc67Pv8z1S189Qj7ehoWHA871x40buu+8+rrnmmp5B/uvXr++3pNRoXiPdifymTZvo6OhgxYoVPbd1f56YsSRbNNe9O3YY/fv66Ndfd+mO7td5d2mSwYpeD3b+vtdsuJhcLteQr4HhPtv6nm+oaxXt66evvuU1knVtzZLIeFXZkfSQcUmcMjyv18s999zDtddei9vt7hk4vGbNmqi7VpXM093CkKhf090J2nDr0Eazj2KuRF/3dJKqzzaVrAwuHZ4Xv9/Pli1bcDgcnHXWWTEdo7a2ltraWjweD36/H4AFCxaYGWZCHZPdqdls06ZNPeNMoLcUwGWXXRbXGBAlvQ03Q1TJXsfSdVefbUq3zZs38+yzz7Jjxw5qa2sJBAIxHae6upodO3Zw1llnMXfuXBYsWEBJSQnr1q0zOeLEUUlclikvLx8wJgQwtWyHkn6OLs+gHBuOpeuuPtuUbmeddRbLly9nwYIFOByOmI7h9/t57rnnOPfcc/ttLysrw+/3s2PHDjNCTThVYiTLHL1MEPROpTdjmrqSfurr6+Oe0Tuc7nFqu3fvHnKtx2j2UcyV6OueblL12WZ2jbxskenPS3V1NQUFBTidzgG3zZ49m6qqKubOnZuCyEZHjYlTFEVRFCUjPfbYY5SWlg5oURtJd5fpypUrB9xWXV3Ns88+y1e+8pVBk7x0orpTFUVRFEU5pjQ0NODxeAa9raCgAIC2trYkRhQb1Z2qKIqiKMqwHn/8cdNWcgkGg4TDYXJzc0fc99RTT2X+/PmmnLevQCAw4ni6tra2hK5cZAaVxCmKoiiKMiyfzxf3ikRHi+Z4wWDQ1HNGozu56y45ks5UEqcoiqIoSlSEMHA5O2O+v8+fi5QaQoioJkfY7faYz3UsUEmcoiiKoihRcTk7ueKix2K+/++evhRvlxuXy8XVV19tYmTm6a47l+6TGkAlcYqiKIqiREkCujTiur9iHpXEKYqiKIoSNSMLUrGCgoIhZ592j4XrnqWazlSJEUVRFEVRjiklJSVDTlzoTu7SfWYqqCROURRFUZRRMOL4X7ooKysbsiWutbWVKVOmJDmi2KgkTlEURVGUKEl0GftfskfF+f1+amtrB2yfNWsWfr+f1tbWAbdVV1czb968JEQXP5XEKYqiKIqSkQKBwLD13J599lnWr18/YEF7p9PJeeedx5YtW/pt715TddasWQmJ12xqYoOiKIqiKFGRxDexwYx2uO3bt9PQ0EBrayttbW20tbWxbt06nE4ns2fP7peAlZWV0dDQMOj4tlmzZuFwONi8eTMej6cnGRxsPdV0pZI4RVEURVGipqd4duqCBQtGte9w+5eVlVFWVmZGWCmhkjhFURKm1nuYJn87bpuT2fmlCCFSHZKiKHHKhhIj2UIlcYqimO7f9e/yu5ot7GjZ37NtiquIz087g89NPV0lc4qiKCZQSZyiKKZ6/P0XuePtvw/YvtfXzM/e+j/eaT3IrRUXqkROUTJQZMWG1I6JU3qp2amKopimur2Bn7+9cdh9/rK/kr/sr0xOQIqimM6I408xl0riFEUxzVMfvIyM4rf2k3teTkI0iqIo2U11pyqKYpr/NuyMar+32w5yyN/BWGdegiNSFMVsqZ6dqvRSSZyiKKbp0kNR7+sfxb6KoqQPXeVwaUN1pyqKYpqJOZ6o9nNqNooc7sQGoyiK6SLFfmP/U/mfuVQSpyiKaS6ccmpU+y2deCK5VnuCo1EURcluqjs1Bp//yO2DbjekQcOSQoSW+blx/cwDjC3MT3UYShq7pOSPTCrq/xpxGhpF9nk0B51D3s+u6Ux3PsL/fXBfokNUlKz38anPJ/2cOqo8ULrI/GwjBT6orxx0+1Z9Oy173ktuMAmgBwMc+M2GVIehpDEjrPPra3cSCvYvGuCwGFwx9R3G2LsGvZ9TC/PFsvcocQ5+u6Io6c+Qsf8p5lItcTHY21jF1NKKAdulYSA0S/IDMpmvqQ77xLGpDkNJY1NfWs0JF4zDZh/4O3CMI8ANM6t4s20Mr7eOoz1kx2kJc2JBM/MLG8mx6CmIWFEUJfuoJM5E0tCzIomrs72HY3JJqsNQ0lSo3ceOzS38dO38IfexapKTCw9xcuGhJEamKEqiSeLrTlWNceZS3akmirTEZf5TGtjXSMnsKakOQ0lT7mdX88lrJqFpalyMohyLdETMf4q5VEuciaSho1kyvyUuWHeYnAmqO1UZyFdbj94RZuGZ41MdiqIoyjFPJXFmypLuVKnraDb10lD6k1LC+t9x1Q9PSHUoiqKkkCFVi1q6UN/UJpKGjsjwlriwvwstZ+jyEMqxa37tQ+yZ7aJ4onp9KMqxTHWLpg+VxJkoG2an+poO4phcnOowlDRjhMJsWlvHjx/uLeZrSFDD4hTl2CIR6HEMp5cqATSVSuJMJHUdzZLZT2md5T2VxCkDTNm2mhNXFKPbHfy7sYRXmotpCTmwCMnsvBYWjqmn3N2e6jAVRVGOKZk/lTKNZEN3amBfI6VzylIdhpJGQm0+3nqhlQUfn82vd81lU8MUmkNOJIKw1Hi7fQwP7jmBjfVqRrOiHAsMKWL+U8yV2c1GaSYb6sQFG1twlhSlOgwljbievY8PXzOFtXuPpz3sGHK//zRNZKy9i/lFTUmMTlGUZFNj4tKHaokzkTSMzC8xYhgIi3pZKBG+PXX4fQauOSfQEhp5QsPmQxOSEJWiKIoCKokzVaa3xAW97VjyXakOQ0kTUkrkhoe56qbZvNEaXd3AxkAuB7pyExyZoiipIgFdajH/qRUbzKW6U00k9cweE+drVDNTlV6nfvAQtce7GDfBia/GFvX9fOHo91UUJfMYqv0nbagkzkRS6hm97FadtpPimWpSgxJRt6eLS6+ZCUCuJRz1/UazrxK7Tt3CvkAOAcOCQ9OZ7Ogi16KnOizlGKDGxKUPlcSZTIjMfXEH9jWQe86pI++oZL0rp2+A6RNxOiIty3MLDrHL6xnxfmPtXUzM8SU4umNbWApe6yhkXyCnX82tHb4CJjm6mO9uwaapTitFORZkbrORYrpwSwf2MfmpDkNJE2MdveMjKzyHybMGR7zPorF1ZPDvmLRnSNjSNpa9gdxBiqYK9gdy2dw2Fl3lcEqiSBHXmDhUmRFTqSROAY6si0lmtyQq5rhy+oYB22yawWVT38VlCQ15v9OL6jlzTEMiQzvm1fpzORQauswLQHPYwR6/mqCkJIYEDETMf+r3hblUEmeqzE2Agt52rJ68VIehpIm+rXDdJuZ08tWZOzhr7AFy+yRz5a42Lpmykwsn7klmiMek3X53dPt1RbefoiiZTY2JU4AjM1MnjUt1GEqKXTl9w6AJXLcCW5CPj9/LstK9BAwLVmGo8VdJIiW0RDnzt123oUuwZO7vSiWNxbN2qmIulcSZKnO/zOq1nYybMTnVYSgpNFg36lA0ATlqJqSiHJN0qZK4dKGuhAJAYH8TuWUlqQ5DSbHhWuGU1BICPNahxyT2lW8JqVY4JSEiY+K0mP8yt6kjPakkTgFgzMfPxD6mINVhKAkSbO0Y9vbRtMIpqVPu9Ea3X050+ymKktlUEqcA4Jg0Ts1MzVKd+xppeeW9EfdTrXDpr8zZyVhrYNh9iqwBpjlVrT4lcXQpYv5TzJX2Y+L8fj9btmzB4XBw1llnDblfbW0ttbW1eDwe/H4/AAsWLEhWmBGqnVhJQ8HWDlqrahh3dgXCZh2QrKtWuMxhEbDEc4hXOwrZf1SxX5BMsncxP69FdaUqCSTinNigXpxmStskbvPmzbS1tVFSUkJtbS1lZUMvB1VdXc3OnTtZvnx5z7ba2lrWrVvHypUrkxFuhHptKmmo5dWddO6tR7P3zmzsOtBEyxvVuKZNoNUdpHySJ3UBKqNiFZIz8pvp1C3sDeQQNCzYNYPJjk5carKJohxT0jaJ69vqtnPnziH38/v9PPfcc1x55ZX9tpeVlbF582Z27NjB3LlzExZnNmg4roExebmpDkMxmZSSjvdqqfvrC4z/xEIAQm0+Wt6opunfr6P7A7y/+hl+OcPFJV8vZ9Gy4hRHrIxGrkVnTq4a+6Ykn6Fmp6aNjL8S1dXVFBQU4HQ6B9w2e/ZsqqqqkheM6k5V0kjzy+9Q9c17sbpzGHdWBQAd1XspOGk6s77xWe5eV8IPN8ylZHIOt12zg39sOJjagBVFSXuSSJ24WP/U16S5Mj6J27lz56AJHIDH46GxsbFnjFzCqe5UJY0UnjqbSSs+RP6J0+mqOwSAo6QQW4EbW74LKSWnnlzMD35XwaXfKOe/f64n4FfdcYqiKJki45O4hoYGPB7PoLcVFERKZrS1tZl6zinF8wZs6157VFHSgR4IodmsTLv8fGZetwLNZmPvE/9g//r/IMNhrpy+ASEE+pGV0j9y0XhCIUlL08iL3CuKkh5y9nWl5Lxqdmr6SNsxcdEKBAI4HMMvCN09QWI4r776Kq+99lpU51xw5sk07umftElpIETG58RKFpCGQd3fXsBf18z0L30Si9POmNOPJ2/2ZFrf2IXmsAO9JUWklIwd7+SE+R71Y0RRMkTp/zVw0rfehfbkn9vI/PafrJHxSdxwupO7aLpTg8EgXm90g4QtVsHRA+AMqSM0y6hjVBSzBQ610fD8q1jzcjFCYTSbFWkY2D15FH/4FK6cvoE9b3nZ097FKUuKsFg1WpoC2J0a46eoCS6Kks40v85xP66m7PcHUnJ+iYhr2S2pxh2ZKquTuNGw2+243e6o9tXDA7tnDWkgLJmXxKmZqdlFGgYNz7+Cv/4wx13xCRr//ToTzl+I0Ho/dMNBg6q/t/HXx/Zz999OJ+jXefe1Ns65cHwKI1cUZSSuGh8nX/sm+TvVrGQlIquTuEAgUtl8qIkPfc2fP5/58+dHddzP//H2AdukkZ4tcVJKtRLDMcRfd5i6/3uRyZ/+CEXz51D395dofXM3npPKkYbBVTOeYawjjytvyePE0ws58L4PZ46FBR8Zy7gJI79PFEVJASmZtO4gx/9gJ9YuI7IpJwdx990pCcdQrWlpI6uTuGRK1+5UIQS+xoMEve0EOzvQAwHsrjzs7nwc+R6MYHQLaivpzwiFOfjXbchQmCmf+ygAYxaeSFtlDQBXzXgGAF2XWCyCM84dl7JYFUWJjsUb5sRb3mPin+t7N55wAuKpp+CEE1ISUzzdqYq5Mj6JKygoGHL2afdYuO5ZqolkSCPtkjhpGDTXvE3DW6/QXPM2RjiEEBqa3QGGAZqGdVIBxscXUvKRUyP3US13Gavhn69y8C9bKf/yp4BIUmcvcON9/yCd+xvxfS1M2bgCNXlBUTJE/lvtnHzdm7g+6DML9aqr4Fe/glw1DEbJgiSupKRkyIkL3cndSDNTzWAY4bQbExcOdOFtPMCUhedy/EX/E9nm78LfeghfUz3tB/ZwuLmamt+so/bRv3P8dy/DPWNSiqNWYqH7g3hrDuCaNp4JyxcDoNkib+9pl3+cCf++m7decFB2QUFPaREhQNNUwq4oaUdKytbsY85tu7CEIj+6ZH4+4oEH4DOfSW1oENfaqeonpLkyPokrKytj+/btg97W2trKlClTkhJHpCUuvZqYQ51ePGUzcZdOxgiH0Kw2rM4c3KWTcZdOhk9PIZ+zGZOXy6Ftb9Lwr9ewedw4xnpSHboyShannbJLl9Kw8WUOPLOZceecgr3A3dOyOmF6Lo/9aA9Vz7Vx3U+PI88TWUfVMKRK5BQljdhagsy96R1K/nGod+P8+ZHu0+nTUxdYH4aq95Y20ivriMGsWbPw+/20trYOuK26upp58wYW5k2EdBwT563fj9WRA4Bm7V38XBoGhq4jwzqFOQ6krjN24Um4yychw6pif6ayF7iZ/JmPMO7sCmzuyHUXQnDl9A1UfLiQO/44n4MfdPL5+Zt56MfVBAO6SuAUJY0UvtLK4vNf7p/Aff3r8MILaZPAgYhr2S21tJG5MiKJCwQCQ3aZOp1OzjvvPLZs2dJve/eaqrNmzTI9Hm9XM80dB2juOEAwHIlLGjqkWRKXU1TMgVf+g7d+H3qodwKD0DQ0iwVhtaBZLT3dwI6xBdg8eakKV4lT91g3e1F+zzW9cvoGAAotOZRMyuFbvzmJZZ+byLOP7WPjH1JTZ0pRlKPokvLfvM/pn32VnLpIVQU5Zgz89a/wy1+C3Z7iAJV0lbbdqdu3b6ehoYHW1lba2tpoa2tj3bp1OJ1OZs+e3S85mzVrFg6Hg82bN+PxeHoSvpUrVyYktmdf/Hm/f9utTsZ5pmFMSq/ZfnnjJ7MvEKB26yacBUV4ps3GmV+I1ZmLxeHE8AfR7TaEJtBsVjreq6XgxHT5taeM1lATUrpXZgCYVO7ii98oZ8n5xRx/qidJkSmKMhRHY4B5N7zF2G0tvRvPPhvx+9/DxImpC2wYhpqdmjbSNolbsGDBqPYvKyujrKwsQdH09+GKK/r92+dvpqHlfQ6+tY2us84lpyh9krnjL7qc2i0bOfj6FvZuew7NYsWW68aR70GOd9JWUojQNFreqGb6lcsRFvXmzBbdrXBHy/PYmHtGUZKjURTlaGP/e5h533gLx+FIT4nUNMT3vge33AJpNlGuW2RiQ3xdoqpD1Txpm8Sls9KiGQO2uZxFBKdPYO8LzzF7+RdSENXQypYso2zJMgIdbbTu2UlncyMhXwdt+kF8e+oonD+HE753OTkT0yf5VEZH6gbCog0oEdO3Fa6bmsygKKklQgazfrmb8vtre7bJCRMQf/gDnH12CiNTMo1K4kxiSB2L3YnjyIDyVAt0tKEH/eSOKcHQdYQQOPIKKJkbaeGsm7aPAqddLbmV4Xy19bjKSiMJnNE7Q/p/pq5nqN+7KoFTlNTJ2d9FxXVvUljZZ+X6889HrFkDY8emLK6oyfi6UzVVY8RUKokzieyZnZoeszsD7S00736HyWd+FIstMihWD4XY//I/aXzrVUKOEO6JY+GjpzHmjNRU/VZi59tTR9N/38C3t4Hml9+haP4cPCfPIv/4MtwzJ6NpgrEOV0+r2+GGAK9vOczcMwopmZQePzQU5VhT+vcGTrr5XWwd4cgGmw1uvx2uvx4yqMh6PN2pasCOudTzaZJgqIu299/C6kyPli13yUQadmzHW7+vZ9vu59fjbz3MmFknkTNjEsGWDt796aPs/u2fMELhFEarjIbUdVqraig5bwEnfO9yKu76Koaus/fJ56m57xnyn76L5vci17O71e3gnk7u+d93adjfNdyhFUVJAM2vc8It73LKNW/2JnDTp8O2bXDDDRmVwCnpRbXExWDD5h9it0WStWCo80iZEUnxiacx4dQlqQ3uCM1qo/NwPYH2VgA6Du6l+ITTcJdMxOrMoeG4Bsbk5dJRvY+dv3yCvBfepPhDJ6c2aCUqh19+B3f5BHImjMUI6+TNmsxJP/4SHdV7sf39cf7xh1be3trGJTeUs3BpMQAnnVHIg/9cyLiJapF7RTFDS1OAF59rwpljIX+MjflnD94V6qrxcfJ1b5L/nrd342c+A/ffD0lYEjIR1OzU9KGSuBhMKZkLgM2ag8OWS6F7ArvH+sgrTJ8aa83vv4umWZDSACAc9JM/oQyL3QFECv5KKcmbNZmT776Bmt+sV0lchuja30TRhWcBoFktSF0HTSNv1hSuXDabD17s4sFbq7nrxreRhmTRxyLLzhWrblRFMcXOyjZqq71MKs/lg/e83PnNt7n0G+V88rLJ5LiOfK1KyaT1dRz//fewdkU+h8nJgbvvhiuuyNjWN4lAjyOJkwg1O9VEKomLwWmzLxywrcZ4PW1WbNCDQd7+4wMYuo4eCBDq9OJwF9B+4AMKp80GIgV/e2YxGgbO8WNSGLEyGmFfF29990Fmf+NzOMZ5egr7Xj4lMplh/ofGMv9DY/nTw3t59Je7mTzTzZQZA2epKooyent3eXlreysXfylS0mruGUWMm+Dk9uveovVQkFU3zcClS0685T0m/rm+944nnABPPRX5/wxnqDQsbagkziTS0NHSpK6PsFg47sLLCXa0olmtHHqvio66vUhpUDhtNvWz6zC8fgynHc1mJdjcTs6EDJgVpQAw5XMfZdev17H3ieeZeMFZ5Ewah9A0LNbIZIZwyMBq07jgf6YgpeS911tVEqcoJvnvsw3Y7JGWKD1sIDTBmecVc9nNM1j/2w8o8IW5Z3sL+bV9Vhn60pfgrrsgNz3GTCvZQyVxJpGGjrCkx9OpWSyMnT2337bxLCIciHyoBA8eou2ZzYTnllM0fw7t7+3FM7c8FaEqMbA4HYz70Mnsuns9La/tZOIFZ3Ht5/cjZWQWstWmoesSi0Ww4MNjeWNrc4ojVpTM112DcUJZDu++3kZHa4g8jw1dj9TMuODyyQSea2TjujqeAq4CyM+HBx6IjIHLIvF0pyrmUlfCJFIP93RrpQNpGD3j3rpZHZFB7cJuw5qXi29PHZ17G/DMm4FjnCdFkSqxGHP6CZz+6C0Uzp/Dnkf+xi+uepdXNrRy4H0fAb+OxRLp7mg86OfsT5WmOFpFyVy+9jC6Lun+KLVYNaq2NbOzsi3yb4tAOxTklKt3sPblVqYDPwDePuEEeOONrEvgAAwpYv5TzJUeTUdZQBpG2nSnAj1FXwdjLy5k5nUrkhiNkgjCYmHGVy7i6v/x8d/Hm/jtD3ZSMsnJOReORwiYObeAQ3V+Tl6sxjsqymhJKXnxuSZ27WjH2x4m0Knz9V+ewIc+Vcqmpw7wh1+/T9ksN7MO+Km4/k2sByML1z8BnGiz8ccLLuCH09Va1EpiqZa4GHi7mmnuOEBzx4Ej5UWOtMSlycSGkUgpkbrer5VOSSwpJSHdIKgb6IZ5z/tVM55h+klubvzViTyydTFnnlfM4YYAjQf8dHrDnHPheNPOpSjHioBf54m791BU7OCSr5fzmWum8tYrrXzj4lf4YKeXr91+PAf2dPKXL1Ux+7OvknMwgA0IFxUx9a9/5aFHH+XWn/4Ur9c74rkyTWTtVC3mP/WtYy7VEheDZ1/8eb9/261OLIVFjJsxK0URjY4QAmGxIA2D1rfex5rrxF0+MdVhZSUpJb6Qji8YRu+TNDutGm67Dbsl/t9R3eujjilx8D/fnokeNrBY1e8zRYnVzso2jjulgDknF2AYkrHjnfz6Lwv46ide5rc/2MmqSyfxyxIH/+/tDk4HvgK4zjoLy+OPo0+YwGctFp577jnq6+uZMWPgWtuZLp26RWtra6mtrcXj8eD3RxpVFixYMOrjVFdXU1tb22/bkiVLcDrTu7amSuJi8OGKK/r92+dv5q2WV3lnw0OcdvUt5BSlfiF5aUTqEvXtVpVS0jCnHo6ULAq2dFDz63XkzSlj9jc/l4ows5qUkhZ/EH/YGHCbP2zgDwcoyrHjtMbWgnvl9A2DblcJnKLE59/P1CMEnLxkDJomCIcM8jw2vrN6Lr+4spJ/Xv8WPwlJfgl8A/B84hN8/vHHcRcU0P1uzsvLw2rNxq9YgRFXJ555CWB1dTU7d+5k+fLlPdtqa2tZt24dK1eujPo4mzdvpqysjHPPPbdnW2tra89x0jmRU5/2MSgtmtHvr3zCAlzjp3LK5Tey94XnUh0ecKQOnKahBwPooVBkmxAITWNsgRsAx5gC5t31Vab9z/mpDDVreYPhQRO4vlq6ghhxdGt3t8IpimKeExd4AKjb2wlEZnzLgM4n/tbAHY1BtoQk9wBXjx/PtRddxK2VlTz+xBOEjnzWvvDCC5xxxhmUlZWl6BFkP7/fz3PPPdcv8QIoKyvD7/ezY8eOqI7T0NDQc7++PB4P5513Hs8//7w5ASdINv5MSAmph7E6c9OiFc7XVMfB17YQ7uoEJJrVjsXuwOZyE2yz45o3A2dxIQC2PFW3KBGklHSG9JH3AzpDYdx226iOP1QrnKIo8ZswLZfV399J+Yn5fOzzObgO+pl73ZuMqWynHHgBuA/4wj338OuLLqLkpz/lv//9L3/+8585++yzWb58OYsWLUrxo0gMCehxdKeaNSauurqagoKCQVvJZs+eTVVVFXPnzh3knv3V1tZSWjr4DP6SkpKeJC9dqSTOJNIwjpQYSe2wzdbaGhrffgUhNMKBLkKdXvSAn3DAT9DXjvHPEK0zJ1F8zqkUf/gUlcQlSMiQ/cbADacrZOC2j/4cqhVOUcwnpeS4Uzx87POTePzO3ZzcEmLVQ7XY2sOEAavVyj0/+xkvPfEEdz78MOdcdBHf/va3EUL0jM0qyNA1UaOVDmPidu7cOWQ3p8fjobGxEb/fH1VXaFVVFbNmDRzT3tramvbXUiVxJtGDfvZu/Tuu4tROEGg/sIdJp3+E3DHF/bbroRD+lib2izeRtfUc/PMWAo0tTP3iMrRRtgIpIxvNzF85ysT/yukbVAKnKAn2haunsGvDQe67czcfAmYA1mnTCD3+OLaFC9mwYgVnnHEGu3btYubMmcDALjklcRoaGpg9e/agt3UnXm1tbSMmcbNmzWLLli08++yznHvuuf32f+WVV2KaJJFMKomLwYbNP8Rui7RgBUOdR8qMSAo//EkmnLokZXFFatVZyR1TjBEOgYgMeRSahsVmw1U8Ac9xFsYcaX3b98d/cfAvW5m04sMpizlbWbTof6laRrEQ9hXTIuujKooSm+6VF4YihMC128fia99kWnOIjwE3AXedfz5lv/89toICgsEgxcXFrFy5ksLCwqTFni4ME1Zs8Pl83H///SPud+qppzJ//vwB2wOBAA6HY9j7trW1UVJSMuw+Ho+HJUuWsGXLFmpra1m+fDllZWXs2LGDsrKytE/MVRIXgyklkX52mzUHhy2XQvcEXvduZ/LC81Ialx4MEPR1AKBZB7au1c+ug7DECIXRbFYmXrCExv+8kewwjwlWTcNu0Qjqw09sAMi1Rfc2lFKy+hu7+M6v5sUbnqIck/SwwVP3fsDJS4o47hTPoPtM3HCQE777HtYug5OBdXY7HzUMikpK+FZTEzMKCrDb7QSDQWw2G4Yx8ns82+gm/JCUUkZVRy8YDI762N3JXXfJkZEsWLAAj8fDs88+y/r16ykoKGDFihV4PJ5RnzvZVBIXg+OmnE0w3AWAO2cMdqsT2fZiyldssDpzMEIB3tnwO6YsXobTM6ZnqS2ItMiNKegdAxfq6FT14RLIbbfS3DX8B5BVEzijLAly4rsP0HKCG6tNTSpXlFgc2NPJ5r824G0PUTwxhzElDgzDQAiB1adzwvfeY9Iz9T37y+OOY8kf/8iTu3bxne98hzvuuIMvfOELHH/88bzwwgt84xvfoLi4eJgzKkMRQuByjTwsxG6PYcBwDBwOB6eddhoNDQ3s3buX9evXs3z58hFb8lJNJXExGKzYr8xx4m89nPLZqRPmn82+bc+x6+9P4sjzkD9xGs7CMTgLiggWevF3+kFKpG7grTlAzqTUz6bNVk6rBY/TRqs/NOjtVk0wJscxbNdON90f4L/rGrjt0YHdCop5moJ29gVyCUoNp6ZT5uik0Db49VMyy4H3fWx66iCTynN5fUszeWM0lq4ai80hKHjLx8Ib9pD3QZ+WmyuuQNx9NzInhwtPPJEpU6bwyiuv8PjjjzNnzhy+8pWvpHX9sESRMr6JDd3DhV0uF1dffbVJUfUXCESWQIv2+mzevJnS0lLOOussAHbs2MHzzz/P448/zooVK9K6S1UlcTEYrNhvZd1/efWBnzL/S99JaSKXO6aYsiUfp+Gt7TTvepsPav5K2N8FQiBy7NgLXLimjSfQ0Ezxh09l7JKRp2Arscu1WbFbNHxBnYCuI2VkvFyuzUKO1RJVAgdQ/M/VnLZqPDa7aoVLBJ9uYVv7GFrD/X/17+rKo9jm54z8Zhzasddtli2klBzY08mijxUz+5Q87v3e22z9WxN5YwRX+nTm/Ww/WiiSXehuB5YH12B8+tNomtbTcXjqqady6qmnpu5BpBEzxsSli+56cn1np86dO5cpU6awfv16nn32Wa688sq0TdhVEheD0qKBy6i853+PeZ+7mt3PbWD28i+kIKpeTk8RZYuXUbZ4GaGuTgLtLYQ6vTTl78Xm7UKzWxl37cXYjxT9VRLLqmkUODUgtlnA/sYWat/1ceU3Bp+JpcQnYGj8p3UcncbgH4eNISdb2sbyYU8jFjWnJCMJITjtnLEA+PQOPnfjRO7+fzVU3b6fQy3hnlUWmk/M5cVfTWfWfAszj6x28+qrr3LcccdF1fV3bBAYcY2JM+dNVFBQQFtb26C3dY+Fi6Y8yPbt27nyyisHbPd4PFxyySU89NBD7N27d9ASJOkge9LpVBNgdThT3p16NFtOLu6SiRROm03B4rlMXvlhJn5qiUrgMojtmfu56ubZUbfaKaOzq8s9ZALXrSVsZ69f1VTMZEIIwjJEOKwz6d1OHtzlJ9AS5mFgB7Dz8hL++dQcvGVOqlv/gJSSnTt3smzZMh577LFRlQ1SEq+kpGTIiQvdyd1I49n8fv+wM1ydTicLFiygtbU15jgTTSVxpkvPN3rDcQ09pUWUzHF26xpyXBbKZqmkOxGkhD3+6FpYdvvVNch0oXCAEx+o4+zP7+SUphA/ACo1uPWcAv59ZQmGXcPQJd7Qfg4H3mL27Nn87//+L1/4whfUj6g+dCli/jNLWVnZkC1xra2tTJkyZcRjOJ3OnvFzw0nnWaoqiTOJ1HV2P/80VqdKlBRzSMPgz/ft4wrVjZowAanhN6KbVd4WVkWxM5m9KcCSy99l7l0HsR4Z3rjgNDdnXj2eF2sDbH7mMIEuHc0iMHRJUG8F4IYbbiAvLy91gacZSWRMXKx/ZjVzzJo1C7/fP2grWXV1NfPm9S/F5Pf7qa2tHbBvQUHBoNu71dbWRpUQpooaExeDoYr9Fs8+IaXFfpXscvw7D9C+0ENBUXKm2B+LRvOVItK0lV0Z2dj/HmbeN97GcThS8kcKePMrpbz3lYksswr2t4R5eWMLJVMcHLcgj83PHOa0rwpQw+DSltPp5LzzzmPLli0sX768Z3v3mqpHj2F79tln2bt3L+eee26/NVWXL1/OunXrOOuss/rNQvX7/WzZsoUFCxak7aQGUElcTAYr9vta6zamLFqa4siUbKH7A2zZ0KhKiiSYXZPkW0K06yO3so2zj9ztoqQXETKYdeduyn/b29LSVWzjpV9Oo/GMfAxdogFfvGUyv/hyDfd/+wMmz87hW79ZRPn47FzA3gzpsHYqRFrjHA4HmzdvxuPx9IyRW7ly5YB9y8rKaGhoGDBOzul0cumll7J582aqq6v73bZkyZK0TuBAJXExOW32hQM3tm5LfiBK1hr3j9UsUCVFkmJGjpfXvSMvnTTD6UtCNIpZcvZ3UfHVtyh8o3fclPzYMrbcKmkpOAyAdmS6sd2hcdyCPJrrg3zroVksnnaFGgM3jPhmp5or2qWxFixYMOw6qN014jKN+oZQlDTjb2xh304fH102KdWhHBOmOX0U24ZfnmeKw8d4R3RL+CipV7KxkcXnv9ybwFmt8ItfIP76N04/6T5yLP2rCGx+5hAFY63c8bcTmDvpM8z0fDoFUWcOQ4qY/xRzqZY4s6Txa1PNTM0s1g338z+qpEjSaAIWFxyiyuvhA38uep/ftjZhMDPHy/G57SmMUImWFtA57se7KHt8f+/GadPgySfhSCtMgX06501+nJq29exufwa/foj5Hy1keskiZhSsZKIrM1tklGOTSuKOAYf+tJn8Ty7BVqBG6aa7s1ofYXuBlSkzVTmLZLIIOCWvlZNcbRwMOglJDYdmMMHepQr8ZgjXbh8nX/cm+e/2WVT905+GBx6Ao4q+Oq1FnDjmS5w45kuEDT+asKEJC0G9g5ZANRZhJ882BSFUZ9VgsmnFhkynkjizpPHEtc6de7Hm5aQ6DGUE0jD4y337+c7d80beWUkImyYpc3alOgxllCZuOMgJ39uJtVOPbHA64e674corYYQWbavmpC34Pu82P8I+378wZGQGq8s6gfKCi5nl+RwWocrLdJPE1y0q07nbKgOpJM4EUsq07k5FSoSmfjmlu+PffgDfWYXkF6qSIooSDYs3zAnfe49Jz9T3bjz+eHjqKTjxxKiO0dRVxeaDXyMs+09c8YUPsuPwb2jofIklE36FRaj3pZJ+1De7CQypI7ToCoYmW9DbjiVfdc2lO70rwNZnGvn0ZdNTHYqiZIS8dzpYvHx7/wTuiivglVeiTuDChp8X6m8ckMD11dD1Cm8dvj/ecLOKcWT91Fj+FHOpJM4EUhppm8T5mupwTE6v9VyVgcb+4z6WXjYBq029JRVlWFJStnYfCy/YjuuDzsimvDz4wx/goYcgN/pJXHu9zxHQW0bc7/32P6Mbqk5gNzU7NX2obwwTGEY4bZO4em0n42ZOTnUYyjD8Dc3s39XJR86bmOpQFCWt2VpDnPLlHZzwg51YQkcGIp96KuL11+Fznxv18Q54/xPVfkGjjcau10d9/Kwk40zi0nj8eCZSSZwJdKkjLOk5vDCwrwHXtPGpDkMZhmX9/Vx18xxVUkRRhuF5rZVF579M6XNNvRtvuAG2bYMZM2I6Zlh2jmJfNeFFST/pmXmkuQ/qK5laWtHzb8PQEZb0bIkLHW7DPqZg5B2VlFh8+BFeLbIxZYYq/6IogzIk5b/9gJl37kY7MvlUFhUh1q6FT3wirkPnWEtG3umIXGtxXOfKJqpbNH2olrgY7G2s6vdvw0jPiQ1SRtqtVQtPepKGwV9W7+eKr89OdSiKkpbsTQEWfPENZv+8N4FjyRJEVVXcCRzAtLzlI+8E5NunMcYZ3WSJbCeJrztV9aaaSyVxJpBSR0vDlrhAeyvWItUKl66Oe/N+Kj5USJ5H1aBSlKON3XyYJR97ibEvNAMghYDvfQ/+9S+YZM6SdCW58xnrHLku4/GF/2PK+RTFbCqJM4EudYSWfj3TvsYDOCerLoB0pHcFeOHPTaqkiKIcRYQMZt9Rw4JVb+A4HAJAjh+P+Oc/4Yc/jKyDaqLF439BkeP4oaJh3pivUpa3zNRzZjpVYiR9pF/mkYHSdUxcvdhJyRyVJKSjMc/fxxn/o0qKKEpfzv1dnPy1tyh8va1347JlkfFvxYn5QeqwePjIpN9xwPcfdrc9Q0doL5qwU5p7BjMLVpBvn5aQ82YyNSYufWRdElddXU1tbW2/bUuWLMHpdCbsnOla7Dewr5Hc8xemOgzlKP6GZg7u7uLLNx+X6lAUJW2UbGrkpJvewd4eBkBarYjbboOvfx0SvOKMJqxMdn+Uye6PJvQ8imK2rEriNm/eTFlZGeeee27PttbWVtatW8fKlSsTlsgZRjgtS4zo7T7sBWq1hnRjWX8/V9ysJjMoCoAW0Jnzk11MfWx/78apUxFPPgmnn566wJQhqZa49JE1fTkNDQ0AlJWV9dvu8Xg477zzeP755xN27nScnSoNI+5fr3oI2pqgbjfs3wkHd0FLPYRU4fKYLT70MPlj7UwuVyVFFMW128fCC1/pn8CtXAlvvKESuDQliX1mamR2qkoAzZR+zUcxqq2tpbS0dNDbSkpKepK8RDBk+o2J62puwl5cGPP9A51waD9Io/cNZ+jgawVfq6RoPOSqia+jIg2DZ+8/wC33VqQ6FEVJuYkbDnLC93Zi7YzUDpFOJ+JXv4IvfQlUWaS0plri0kfWJHEAVVVVzJo1a8D21tZWCgoSl3Gk48SGA/Z3cEyJvpBlX3p4YALXn6C5TmKxgyMn9hiPNbOr7id4ThF5BaqkiHLssvjCnPDd9/ovXH/ccYinnoKTTkpdYIqSgbKmO3XWrFns3buXZ599Fr/f3++2V155hQULFiTs3IbU0dKsxEhgfyPFs6fEdF9f63AJXDeBtzmmwx+Twp1+Xny2iZVfVDPdlGNX3jsdLFq+vX8Cd8UV8MorKoHLIFKKmP8Uc6VX5hEHj8fDkiVL2LJlC7W1tSxfvpyysjJ27NhBWVnZgLFyR3v11Vd57bXXojqXPbf/v/ePh7yC9BrjFDjQRG6MLXG+tpH3AejqABOG3h0Txjy3moVXTMBiVU+WcgySkrLH9jPnJ7uwBI3IJrcb8cADMS1cr6SWqveWPrImiQNYsGABHo+HZ599lvXr11NQUMCKFSvweDwj3jcYDOL1eqM6z9HDNaQRTrvuVKMrgDU3ttm4hj7yPhECQ5cqiRuBv/4wnXu6+H/fViVFlGOPtS3E3JvfoXRTn4XrTzkl0n0a48L1iqJEZFUSB+BwODjttNNoaGhg7969rF+/nuXLl1NSMnyrlN1ux+2OrhyHPGrxN0MPo6VRiRFD1+NqHtM00I1o9lQJXDS09Q9wpSopohyDPK+1UvHVt8g92GeIy/XXw89+Bg5HyuJS4qMmNqSP9Mk8TLB582ZKS0s566yzANixYwfPP/88jz/+OCtWrBi2S3X+/PnMnz8/qvPcesuv+/1b6npaJXH+1kNxzUzNyQNvy8j7OVyQZpVV0s6ipod5Y5ydSaqkiHIsMSTlv/2AmXf2Llwvi4oQa9bA8ugWnVfSlxrblj6yph1lx44dAP1mp86dO5crrriCgoKCQSc8mEUaeloV+z3geBfHpHEx399dCAg54n55seeJxwSpR0qK/M/XB86YVpRsZW8KsOCLbzD7570JHEuWIKqqVAKXBaQkvjpxI3+1KKOQNUnc9u3be1rg+vJ4PFxyySUA7N27NyHnlrqOZvKizPEI7GukeFZsM1MBrHYoGg8w9Lstf5zEqRaDGNasqt9y6keLcOerkiLKsWHslsMs+dhLjH0hMnVdCgHf/S78618waVKKo1OU7JM+mUcc/H4/jmHGVzidThYsWEBra2tCzi+NMFoaTWwI7G8k9+IPxXWM3PxIMudtlnR2AFIAEqcr0lKnErjhhTv9vPS3w/zs0VNTHYqiJJwIGcy6632m//aDnkZ8WVqK+P3v4ZxzUhucYjrVnZo+siKJczqdBAIjrwUVzSzVaITaffj2HMA5fhwWpx2pp9eyW0anH6s7/iq8dicUTYBCAwxdIjQ1Bi5aRZvuY5EqKaIcA5z7uzj5a29R+Hqf2kTLliHWroXi4tQFpiSMmtiQPrLmG6agoIDa2tohb6+trWXKlNi7GPsygiE6P6ij+aUdeGv2IfUwmjU9uszinZk6GKGBxaYSuGh11R2i4QM/H/7IxFSHoigJVbKpkcXnv9yTwEmrFX7+c/jb31QCpyhJkDVJ3PLly9m8efOARM7v9/P888+zYMECnM7Y6qYNSULXvgYsB1rTpk6cv6UJe2lRqsM4plk2PMhVqqSIksW0gM7x33uPU7+8A3t7OLJx6lTE1q3wzW+qCuBZTsrY/xRzZUV3KkS6VC+99FI2b95MdXV1v9uWLFlifgLXh3bYi9YVhjRYEP6A/R0ck9Qv4FRZ1PgwlcWqpIiSHcJGiJAMosvINFOLsFL4QZj5171D/rt9iqOvWAEPPggmDVlR0pmIc8UG1RVrpqxJ4roNNkM10Qypo73VBKWpT54C+xqZcOaJqQ7jmCR1g7/cf4Dv/7Yi1aEoSlyklPiNTsIy1G/7pKcPcsr392LrOrJ0ltOJ+NWv4EtfGriUjaIoCZd1SVwqSAy05sTUoButwP7Y10xV4jPj9d8il6qSIkrmCxhd/RI4q0/nlB/uZdozh3u2+WeNx7l+k1q4/hikZqemDzVwwQQGBiJdJjb4Y18zVYld2NfF9o2HufgL01IdiqLExZAGIRns+bfn3U7Ovejdfgnc+yvGsmlDOeET1NqnxxpJnMV+U/0AsoxqiTOBRCKmpn4ygREOI9Ko6PCxpHDTahZfqUqKKJmvJ4GTkhm/b6Litn1YgpGv3lCuxqu3lrH3k2MAP/u8/2Ja/vmpC1ZJCTVBIX2ob3wzaAJOGp/qKOg83IB9wphUh3HM6ao7hH+fnw/97/GpDkVR4ialga0tzIJvf8Ck51t7tjefkMuLv56Ot6y3pb8zXJ+CCBVF6aaSuHgJQXisC2ypLzFy0PYujslqPFyyaesf5Mqb56Q6DEUxRdHrHZx2/U5cB3u7VHdeVsyOb07CcPRvabZq8RcVVzKPGhOXPlQSFwerOxdX+USMtrdTHQoAgX0NTD5HLfOUTGc2PMyOUjsTp+WmOhRFiY8hmX5/LbN+WdOzcH3AY2H7z6Zx8COeQe4gmOhKfjUAJfVUEpc+VBIXA6s7F8+cOdjyjywg2jb8/skSOHCI3MmpL3NyrJC6zl8fOMAPfntyqkNRlLjYmwLM+/rbjNva3LOtab6bF++cTtd4+6D3GZ+7CLdNLWofLSl1OgObCYcPILRcXI4PYbGkfiy1ktlUEhcDi9Pem8ClERkKodnTY5bssaD8td8y82NjcOWrt5GSucZsPcy8G97GeSjSfSqFIPita3nx8p10ieZB7+O2TWFB8S3JDDOjtXrX0tJxN2G9rmebwEle7gWM9fwQi5aXwuhGSca5dqqaFGEq9e2TJfRgAM0x+C9mxXxhbxevPtfMbY/OT3UoihITETaYedf7lK/+AHHki1WWliJ+/3sc55zDR8MNvNP8CLUdfycsOwGwa/lMzf8ExxdejsPiSV3wGeRw2x00d/xqwHaJn/bOJwmE3mHSuA1oWuas8qJmp6YPlcRlCV/jQbXcVhJ5Nt7HWV+aiMWixoYomcd5wE/F196k6LU+Y0GWLkU8+mjPwvW51hLmF3+LeWOvoyO4DyEEebYyrJqqQxmtQPCdQRO4fvuEdtDccQ9jC25OTlAmUGPi0ocqamWK1L+gD1rexaFWakiKroOHOFwX5KyzJ6Q6FEUZtZLnGll8/ks9CZy0WuH22+H//q8ngevLprkocs6h0DFbJXCj1OZ7NKr92n1/QB61xJmiREO1xGWJwN4Gpl14dqrDOCZoGx7kqptmpzoMRRkVLaAz56e7mPro/t6NU6cinngCzjgjdYFlsc7AC1HtpxtNBEO7cNjTv9akJL6WONUTay6VxJki9S/LYGMLOePVTKdEO7PhYd6a4GDCVFVSRMkcrvd9VFz3JgXveHs3rlgBDz4IHk/K4sp6Uo9+V8IJDMRcqf/GU7qp7tRsISXCkvqCw9msu6TIZV+dlepQFBOFDDgcgqYQNIci/84mE56uY9Hy7T0JnHQ4YPVq+OMfVQKXYHZbdJ8VAic2a1mCo1GykWqJi5OUBqkeExf2d6E5HSmN4Vgw/ZXfMut8VVIkW+gSGkLQoUPf93BTWJJngVJbZEW9TGXxhTnh+zuZtKG3rAVz5iCeegrmzk1dYMeQAtcl+PzPjbifO3c5Fq0gCRGZQ01sSB+qJS5OhqGnvAXM11SHY9K4lMaQ7cLeLl77RzMXfHZaqkNRTGBI2B+ADl0w8EeYoEMX7A9mbimFvHc6WPTJ7f0TuMsvh1dfVQlcEuU6zyHHsWTYfTThoSjva0mKyCQyjj/FVCqJi5MhdTQttUlcnfU9lcQlWMHf72O5KimSNdp08I/QmtBlCNqjH9KUHqRkymP7WHjhK7jfj9R2k243PP44PPwwuIauRWbIMAd8m6lpe5q9Hc8R1L1D7qtERwiNCWMexuVcNujtVstkJo57ErttepIjU7KF6heKg5QSfyiIvVNgeb0F6bRgTMqB/OSumhDY38S0Ty5O6jmPJV0Hmgg2BFmiSopkjdYox5C3hqEgQz4lrW0h5n7rHUo3NvVuPOUUxJNPwsyZw973vZbH2Nn6OH69d4UGq8hhav75zBvzNVVaJA6a5mLC2IcJhN6l3fckYf0gQrhw5yzF5TwPITJtLLOIsztV/RA2U4Z8PKUfXTfo6Arh8/uxBTS0g34ALO/7MIod6Cd7wJachs5gQzPO8WOScq5jkdjwEFd9W5UUyRaGhGCUX0J+GelSFWn+veN5vZWK694i98jnEABf/SrccQc4hh8v+1rTz6lp++OA7WHZRU3betoC73P2xN9gEWpFmHg4bMcxzvPDVIdhikwdZpCNVBIXAymhrTOIlEe6U4/6JaU1BuCVFvQzipIzMlrX0ayZ9msuM5xR9zvemexg/BRVUkRJQ4Zk+v21zPplDdqRrl9ZVIR45BH45CdHvHtT1xuDJnD99vG/zq7WPzKn8BIzIs5YUm8i3PVnpNEAwo3V+XE02/AtnNlKTWxIHyqJi4FuGD2/RKQRHpDEAWjNQYx6P3JCTkJjUTNTE8cI6/ztwQP88IFTUh2KYiJNgF3IqFrjnCJ9W+HsTQHmfeNtxm3ps0j94sWIP/wBJk+O6hi72tZFtd/u9qeZ7fkCIl2fjASSMkCw/QeEO9cBvasqhLx3otmX4PDciWZRSx4qqaEmNsTAMHrbkiMTGwbPhbXazoTH4ms6iGOy+gBJhGkvr+bM5ePIzVO/dbKNJ8pLGu1+yTZm62EWf/zlngROCgG33AL//nfUCRxAU9drUe3nDe2jK9wQU6yZTEqDQMu1hDv/QN8ErpsR3IL/8GeRRmvSY0sZCUgRx1+qH0B2UUlcnAypDzkwVXQkvgJ3nWWnWvg+AUIdnbzx7xYu+OzUVIeiJECBBZxi+G+THE2Sn2ajFETYYNbPa1jwxTdwHgoCIEtLEf/4B9x6K1hHl3Uao1hRwMigFQXMogf+jR4Yvs6b1HcT8j2UpIjSg5Sx/ynmUklcnIwhulOBpEzCCexvpGTOlMSf6BiT/3+r+eSXJ6JlcrVXZUiagEkOcGuDFa+S5Fkkk+zp1ZXqPODn9M++xoz7PqAn/1y6FFFVBeecE9MxC+zRlbawaXnkWI+9H4vhzsei3O9JpDz2klwl9dK0syDN9flkH647VY5J/GyuYEMzOePHJvw8x5LO/Y0Em4IsXqJKimQzi4CJjsgyW+26RCfygZhniUwsl1IemZma+kyu5LlGTrrpHextkURBWq2In/4UvvEN0GL/LT694EKa/G+MuN/UvPOPydmpemhHVPtJowmpH0RYj5Ef1KpFLW2oJC4GlqOTuCFa4oypQxfWNI2UCItqUDWTWP8QV/3vnFSHoSSJTYMxR95CUkpCMogvHMQg0tUo0LBpduzCkfSETgvozLmthqlr9/VunDoV8cQTcMYZcR9/svuj1LSu43DgzSH3cVrGHvMzU6OT+mQ/WdTs1PShvv1joGkC65HK/dIID7pigz41F1mU2F+uoS4fllxVhNNMpx/8HSVlzqwrKeLVLTQEHRwK2dHVr+hBSSnpMnwEjK6eBA5AYhA0/HTqHRjSSFo8rvd9nHnRK/0TuIsvhjfeMCWBA7AIG2dN+BUlOacPenuerYwPT1xNrrXElPNlGottXlT7Ca0YYRmf4GjSiFp2K22olrgYCAH5uXZ8/vCRlrjep1HaNYzpLowZ7oTH4WusU5MaTGSEdf7voewqKdIUtPNOZz6Nod5k3y50pjt9HO9qR60i1itgdKEPM67JwMCv+8i15iU8lglP13Hid9/D2hlJJqXDgbjrLvjyl00fqGe35POhiffQ7H+XDzr+Rle4CZvmZrL7HEpzF6ZFd3KqWHMvRQ/8K4r9PocQ6utUST71qouREAJ3jo3WMiv5woE+JR/ptCCLHckp8AvUae8ydvYxMgYjCaa9vJrjPpk9JUX2B5y81D4GeVQ3T1BaeK8rn6aQg7M8h7COMEvzWCClQUgGR9xPR0eXYSwJ+sK2+MKc8P2d/ReunzMH8dRTCV+4vsh5HEXO4xJ6jkxjcXwYi3MZun/jkPsI6wxsriuSGFXqqe7U9KG6U+Mk0RHFLoypLmSpM2kJHEBgXyOuqaVJO182C3V0UvmfFj71mampDsUUQUOwvb1oQALX1+Gwg3d8+UmMKn2F5cAaYEMJGdHvOxp573Sw6JPb+ydwl10Gr76a8AROGZwQAofnN1hzLwWOLqousDg+RE7RUwitIBXhpY7qTk0b2dHkkEKGHkaMsjaTWUKHWnEUF6bk3Nkm76/3cc7/m5Q1JUX2+F3oUfxG2+PP5QRX2zHfrSpH8e0iMXlcnJRMeXw/x/14F5Zg5NjS7UasXg2XqAkFqSaEHUfBj7G7byDs/wtSbwTNjdX5MTRrdCVaFCVRVBIXJ2noaJbkP43ySNXEY3m8ilk69zYQag6xaFH2DEyuC0Y34SUoLRwOOSi2BxIcUXoTo+iUGM2+I7G2hZj7rXco3djUu/HkkyPdpzOPzXU505WwjMHmujzVYaQJ9b2TLlQSFyeph9FS0BIX7GjD6kn8AOtjgdjwO676bnaNBdJHMWZlNPtmK6uwRb2vTTNn1rnn9VYqvvoWuQf8vRu/+lW44w5wqPWQlTSWRt2itbW11NbW4vF48Psj76UFCxbEdKzW1la2bNkCgNPpxOFwcNZZZ5kWayKoJC5Ohh5OSUucr1GtmWqGBQceYue0HEon56Q6FFO5LTrNURaQd1lUpXkhBDbhICSHb5G0CCuWoVZoiZYhmf5ALbN+UYN2pJKJLCxErFkDn/xkfMdWlGRIkySuurqanTt3snz58p5ttbW1rFu3jpUrV476WC+//DLLly/H4/EA4Pf72bx5c1oncmpiQ5ykHkakIImr5z2K1czUuBhhnb//7iCrrsu+bqtpTl9U+42xBsi3qiQOwKE5h22R07CQo8VXP9DeFOC0y95gzu29CRyLF0eWzlIJnKJEze/389xzz3Huuef2215WVobf72fHjuhW2wBoaGjgueeeY+XKlT0JHMDzzz9PdXW1WSEnhEri4lQy/yPkjk3+DFH/vgZyp2XPGK5UmPrSahZ9ahy57uxrkC62Bxhn8w+7j0Bygqs9SRGlPyEETi0Xp5bbr4SIhoZDyyHX4kaI2D8yx7zQzOLzX2bclmYApBDwv/8L//43TJ4cd/yKkhQSkCKOP3PCqK6upqCgAKdz4Pjf2bNnU1VVFfWxNm/ezIIFCwYcq6ysjLlpPjM8+769ksxid6JZ4uxeiYHe7sNekPiCwtkq1Oaj6r8t3Pbo/FSHkjAL8w+zrX0sTaGB46s0JKflNVNyjE9oOFqkW9WOjci4Nyll3JOHRNhg5q/ep7zPwvWytBTx+OPwkY/EG7KiJJ1Mg+7UnTt3DprAAXg8HhobG/H7/UPu062hoYG9e/f265Ltlu4JHKgkLiNJwzC9avuxxv3X1XzkK9lTUmQwdk1ydkETjSEHe/wuvLoVC5JSu59pOT6cWvKWkMpU8SZwzgN+Kq5/k6JX23o3Ll2KWLsWSo7NpawUxQwNDQ3Mnj170NsKCiJ1+9ra2kZM4nbs2DFki14mUElcBvK3NWMbp+rDxcq3tx69I8zCM7O/O1oIKLEHVItbChQ/18jcm97B3hYZcyitVsRPfgLf/CZoaiSLksFMaInz+Xzcf//9I+536qmnMn/+wB6TQCCAY4RZ3G1tbZSM8GOptra2J+nbvn07EJmZ2traOmgXa7pRSVwG8jXV4Zg0LtVhZCyx4WGu+l52lRRR0ocWMJj9s11MW9O7cL0sK0M8+aRpC9crSkqZUJZISonX6x1xv2Bw5OXwjtad3HWXHBlOd6K3ffv2fqVJWltbefzxx7nkkkvSOpFTSVwGahDVlMxUlcJjcdr+h9g1PYfiSdlVUkRJD7l7Ojn5ujcpeLujd+PFFyMeegj6zHpTlGOdEAKXyzXifna7OXUZh9PQ0MCSJUv6bfN4PJSVlfH8888POl4uXagkLgMF9jeSe/6ZqQ4j4xhhnY0PH+RHD52S6lCULDThmTpOvOU9rJ2R2iHS4UDcdRd8+ctqDKuSVYQJ3akul4urr746/gMNIhCIDB8ZTQuaZ5AfWSUlJTz//PNRTZDo7OwkNzd3wH8nmhqYkYH0dh92tVrDqJW9uJpFFxST41K/XZTBSSkJGUGCRoCwEepZ3m44lk6duTe+TcXX3+5J4Jg9G/Hyy/D//p9K4JTsE8vC991/aah7TNxQ2xsaGkY8xj333DPofyeaSuIyTDRfKspAoTYfb25p4ZMry1IdipKGpJT49U68eht+o5OA0UWX4cOntxM0hh5Xk/duB4uWv8yk9XW9Gy+7DF57DebNS3zgipIK8dSJM0lBQQFtbW2D3tY9Fm6o5Ozo44zUytb3PFVVVXR2dg7Yp+93czK/p7OySSJV659JXSIPB6FTBwEizwqFNlMXqQ+0NWMb6zHteMcK17P3ce5XJmd1SRElNlJKunQvOvrA25AEDD+GlDgtOX3vxJTfH+C4W6uxBCOlWqTLhfjtb+GSS5IVuqIcs0pKSoacuNCddI00M7V7n9bW1hH36WvNmjV4vV7cbjcVFRVUVFT0+5438zt/JMMmcQ0NDWzcuBGfz8eMGTM477zz+t2+adMmhBCUlJQwL01+daZq/TOj3o/c74c+pbdkQxDsAm1aLqIg+gW2hxOZmarWTB0N3wd16D6dM85I/soaijkMqWMgEQg0NFM/JIMyMGgC11dIBrBJGxZhxdoe4qSb32X8xsbeHU4+OTL7dNYs0+JKhLDhpc3/Cob047ROJs9xYqpDUjJRGnQIlZWV9ZQEOVpraytTpkS3LOXs2bN59tlnB72tOxns26I3b968nnzH5/NRVVXFmjVrqKqqYu3atVRUVIziUcRvyO7U+vp6vvSlL7Fp0yYqKyu59957ufrqq2ls7P3gWrp0KW63m+9///tJCXYkqVr/zKjzI/f2T+B6BCVGtQ/ZHjLlXPViJ+NmqSV6oiWlhA0Pc9WNc1IdihKDsBHCF+7Ap3fQpXvp1Dvo1DsIGgFTuiy6x8BFI2gE8LzRxuKPv9w/gbvuOnjxxbRO4MKGl12Hf8BL+5bwVuPVvNP0NV6vu4jXDl7Aoc5/pTo8JdOkwZi4WbNm4ff7B21Fq66uHtCw5Pf7qa2tHfQ4Dodj0Bxh586dzJ07d8juVpfLxcKFC7nmmmuYO3cuS5cupb6+npqaGu644w7Wrl3L+++/H9sDjNKQLXGrV6/m5ptvZuHChT3bNm7cyA033MCPf/xjpk2bBkTXXJksw61/log4D7XVcqiqgYA3h6Kxs7FYhyg8KMHY68dyYvytcYF9TeR+XM1MjdZp+37H7lm5FE9M3zo/yuCCRoCA0TVgu4FBwOhCFzo5lvhmgEkM5KC/vo4+qWTmg/s48a79PQvXy8JCxMMPwwUXxBVDooUNL1X1l+ANvjPgNm/wHd5u/H/MHvNTSvMuTkF0ihIbp9PJeeedx5YtW/qVAOleU3XWUT+qnn32Wfbu3cu55547YDmt5cuX8/zzzzNlypSe/GHHjh20tbUNKC+ybds2ysvLB+QUQghKS0spLS2lsrKSm266ifr6eqqqqli3bh1CCCoqKgb0aMZryCSupKSkXwIHsGzZMhYvXsy9997LypUrmT49fWqVJXP9s7Ae4p+vP0Bj656ebh0pJdNmL2Pi1MVolkGe1k4d6Q0j4lxsXe9QM1OjZYTCbHzkILf+TpUUyTS61AdN4PoKyyAhw4pNS2wdKcfhEKffuIfxW9p7Ny5ciHjiCYiyyyaVPmi9e9AErpek+vD3KMo5C7tVFRFXRhBvi5rJrXEOh4PNmzfj8Xh6xsitXLlywL5lZWU0NDQM2qBTVlbGueeey/PPP4/T6cTv91NQUMCVV145YN+SkhI2btxIfX09eXl5PWPi+urOC7qTuqVLlwKR7lezDZlRjB8/+JJEbrebm2++mbVr19LR0YHbnR6LsCdz/bP2ziZOKPsQZxy3krrxeVjaAnS07WPPe/+HxeZkwpTBq7JLnz7qJE5KSQgDQ8r0WHU4g0zZtpoTLlYlRTJRyIhumbCgEYgriRMjTNAv3tbOGd98n5ymI0tnCYH49rfhhz8Ea/q/rnSjiwbv0yPuJwlR511HmeeaJESlZDaRFmPiupWVlVFWNnLVgQULFvRbkSHW45SXl1NeXg5EkrKamhrWrVtHZWUl9913HxUVFUMma9EUNx6tIT+FpJR0dnbS0dFBfX39gP7lVatWsW3bNiorK00PKhbxrn/26quv8tprr0V1rsLCQsonLEDTLFisGnaHjTHFxzGm+Dh2Vv0RY+L8wVvjRjkWu9MI4TVC6EfeMcGWw1it4+jcDzkTVfmp4QTbvLz1Qis/XTtwzT0l/YVldGNIDXQMaaCJ2KolCSGwCTsh2X9cnAhLTrj7IMf/tq6nsKleXIjl93+Ej340pnOlQkdgB2GjfeQdgeauLSqJU6JiRrHfbOByuXomOtTX17Nq1Sqqqqqoq6vjjjvuwO12s2jRImbOnJmw4r9DJnEXXXQRa9eupaqqioaGBn7/+98P2GfhwoXk5uayadOmhAQ3GvGufxYMBqNaxw3AarGiaRYAdKcAr0RKiRACZ27RkNnVaFrh2vUgvqO+yAJN9TjGjMe3VyPcKcmbKVUiN4TcP69m6XWqpEimkqP6qR/fN4pdcxLWQz3nzKkLcuYN7zPutd7Pg8NnTaTwqZehdGJc50o2g+gnVEk5+jUqFUWJ6F5GbOHChWzZsoWbbrqp3+xVr9fLzJkzufDCC00977BZxapVq4Dh+3ErKir4yU9+QlVV1aBlRobqg06EeNY/s9vtUXcNd/k7CYa6sNtyCOUJcppBGCMkC24LItcS1fGDUh+QwAEEm+rImRwZhxg4JLB7JE5VbWQA3546cv0Gpy9QJUUylYaGEc2EA0buEh3xXEIjx+KmS/cx/p/NLLh5D462yOwFwwIf3Hwmk37wdzTbyIVD002OdQqRLoCRE90c27SEx6NkCdUSN6zuMXHdSV33/IKkjonra7h+3KqqKiorK3n66acZP348v/3tb/vd/sILL1BeXp60OnKxrn82f/585s+Pruvta9d9gzZfA+M8U/G3HcLbVkNJbgXtLbW48ycgju7a0UAri37BdZ8x+K/nQFM9nlN6J5t01Qucxea9mwxD4vNBMBj52Lc7wOVKbuHCeEkpkRse5qofn5DqUJQ42DTHiBMbAKzCbsrr0xYUnPizg0xbs79nW2ByIYFH72X6hz4X9/FTJcc2BY/zTFr920bcd3zeZ5IQkaJkp76NQEM1CCV1TFy0KisrWbVqFSUlJYOuL9bdLZuMJC6a9c+iGbg4krEFUxjnmQqAd/8uDrzwJ/xzD+PJmUZh4az+Xyq5FrRpOYhRDK4PyMELj+r+Liw5vf3qYa/ACEs0E8ZXd7RLWluPmjvhhdYWKCySuFyZkcidtvd3vD/HxdjxqqRIJrMJO0ECI5b/sGtDlPUZhdw9nZx83ZsUvN3Ru/Gii3A89BCOwsK4j59qUz1fpar+FeQwXatFOWfhcZ6WxKgUJbtcc801g/53opk2vWrZsmVD3rZixQqee+450+uj9DXa9c/MMvakhcz8UORxSSmhNYzsiiRhIt8aU0mRwdrWpK4jtIHdRjK6HqdhdXRIWloGv80w4PAhEEKSm5veiZwRCrNp7UFu/d2pqQ5FiZMQglyLi07dN2Qil6O5sIjohigMZcKf6jjxlvew+iLvWelwIO66C7785ayZOVTgPIUTiu/l3aZvoMuOAbcX5XyY48fdlYLIlEylJjakj7iTuMFa347mcrminjQQq1jWP4tVMNSFYei9kxtCIVrefwdrjouCSdPRCuMr6mtFED4qlQs2N2Ev6l/DSVjib4UzDEnrEAlcXy3NkJMj07prdfILqznx4mKcUY49VNKbJiy4LHmEZYiQDCKlAQhsmg2bsA8ctjAKlk6dE77/Xv+F62fPRjz1VFYuXD8m90OcOXkzDd4/c7jrvxjST451CqV5K8l3mFtHUzkGxLWQffZmgJ2dnVRWVrJr1y58Ph8ul4uZM2dSUVGR/Nmp0ZoxYwbPPPPMiDMuEl1PbrTrn8Wjqe0DXt/1V+aVLwNsWGw2imacyN6tG3nj4V9w9nfvRbPEnkjkajbaj1oKKNBYh6O4f+0+ZzHE8T0GQKcvuvJzug5+P+REP7QvqYKtHbz9Yhu3rVWtcNmkuwSIDfMK+ua928HJ172Je3dn78bLLoPf/AbSpO5lIlg0FxPyP8+E/M+nOhRFyTpr167lmWeeAehZErBvo8eiRYtYtWoVxcXmzkaMMwWIjHnbsmULP//5z4fdr66ubtjb4xXP+mejVZQ3iUPte3nxnacIByKDrzWLhcJp5qzPmSOsWI4qKhdorMMxrjeJE1ZJzoT4f9EER7GkazCNKxDk/Gk1F143Ka1bCpUUk5Ipj+9n4QWv9CRw0uWCxx6DRx7J6gROUUyVBmunppPbb7+dp59+mjPPPJMvfvGL3HzzzVxzzTWcd955TJ8+HSklW7du5Utf+hKPPvqoqec2ZUzcj370I6666iq+8IUvsHTpUpYuXdqv67Kzs5P6+nozTjWs0ax/Fo8cRx5nzV3Fa9V/Yf+/1uG5+DJsObmmLMgNoAlBkcVJi+7v6VYNHG5gzNhIBq/ZJQXHSSzxj+kelXRNj7y7D+AOS04/TZUUUQZnbQ9x0s3v9l+4vqIi0n2axgvXJ5qUYXT/JsJd65F6PYhcrM6lWHM/g9Ayr6SKkiRZmozFYtu2bVRVVXHnnXf2rORwNJ/Px5YtW9i0aRMbNmxg9+7d/PCHPzTl/KYkcW63mwcffJDbb7+dDRs28PTTT+NyuZgxYwZAzwNMtNGsfxYvKSWnzvokLzreYf/L/2TKomUIEwvLWoXGWEsOAanTJcNIGcJZbMMx1sAxJv5u1G5OB3gHjnUelCPJSWM0IiVF1nDlbaqkiDI4zxttVFz3JrkH/L0br7sO7rgDkrBMX7oy9Dr8zauQ4Z39tgdDrxL0/gqH5z6szg+lJjglramJDb22bt3KtddeO2QCB5F5AcuWLWPZsmVs3LiR1atX8/Of/5wbb7wx7vObNjvV7XZz66238sILL7Bx40Z2795NZWUl5eXl/PKXv2T69OlmnWpY0a5/Fq/ubjvPjHkYzR9QX7kNZ+FYEObVVRNC4BRWrIEwliIrBceZ/87JyQWLJTLmbTg2Gzic6dcWd+oHD1F7oouxpcful7EyBEMy/YFaZv1yN1o48t6RhYWIhx+GCy4Y9C6BcD0HO57kcOe/MGQXDutExrtXMNZ1Hpowb1xeqknpx998KTK8a4gdfARavoQYuwGL7aTkBqcoGWT37t3cdNNNUe+/bNkyKioq+N73vmdK1Q7TV3BetGgRixYtMvuwaeXobtMxM0+k83AD+7b9IyHNzJ2H6rFPHGv+gYkkikVFkqam4faBojEJOX1cjFCY5x6t48ePqMkMSn/2Q0HmfeNtxm0+3Ltx4ULEE0/AlCmD3qfB+yw7D32rXz21rnAtrf5tuNpmcVLJQzis2dFlH+7629AJXI8AIe9qLIX3JSUmJYOolrgesRTwLS0t5Uc/+hHf+MY3WLx4cVwzV01J4rZt28b69et5//33ASgvL2fx4sWmrxGWLgZb1zF3TAnTP3ohTe++bvr56mw7cUxK3PpaObmCccWSlmYIh/vfZrNDURE4HOnXCjdp62pOWlGMM0eVFFF6jXmhmXk3vIWzKTITRwqB+Pa34Qc/iDQpD6Kl6yXeO3QTMHiTtC9UzZsNV3LKhGfQRHwlhNJBuOupqPbT/c8hjRaElvlFjxWTmJHApd/XScxirbxRWlrKeeedx9atW+NqjYt7ZNWmTZu45557KCkp4cwzz6S4uJiamhrWrFnD1VdfzY4dO+I9RdrRhhiQZsvJZfFNvxy0KG88AgcaKZk52dRjHi0nRzBhoqC4BDyFkb+SUhg/XqRlAhds7eCdl9r4xMWJ7zpXMoMIG8z6RQ0LLn29N4ErKUFs2gQ/+cmQCRzA3rbVDJXAdfOFqjnU+byZIaeMDO+Ncs9QZMKDoiiDimf41IoVK9i4cWNc54+7JW737t384Q9/GLC9e2zc9773PW6++WbOPPPMeE91zAoePEzOpHEj72gCp1NkxFhv5zOrWapKiihHOA/6qfjaWxS92tq78dxzEY89BiMU+faHD9Dqfymq89R3bKDY9fFh9zEMH7rRgqa5sWieqI6bdGIUBR9FBnwgKEkV18QG9ZHdw4y1VONO4oYKontsXGVlJffddx+lpaVMmzYt3tOlNW/DAYLeNorKjzf1uDIcRrOZPnwxY53rf5R/SFRJEQWA4uebmHvT29hbI2MBpMWC+PGP4aabIIpW8UC4jmj7iAL6wSFv8wd30NKxGl/X35EEAUGOYxEe91W4c86N6vjJYnGeQ9j3/oj7CUs5mjW7P7eVGMSzYkOWTW2tqalhz549Mec38S6EEHW/3/e//30effTRUXePVlRUcOedd7Ju3bpRB5dpPvjvX3nziftMqxcHoIeCiGG6gY41UkqevnsfV35zdqpDUVJMCxgc96OdzP9SVW8CN2UKYvNm+Na3okrgACwi+kHFliFasDo6n2Vf43K8XX8+ksABSLoCW6k7vIrDbb+I+hzJYMu9BBh5LKnNdWnig1Eyjyr228Pr9XLDDTdwwQUX8P3vf59nnnmmZ35ANOLtTYq6eWfXrl1UVlby9NNPAzBv3jwqKiqoqKjgvvvu45prrhnyvm6327R1S9OJYUjsLWGE7kfm25jzqVWEOr2mdvF1HmrAkaCZqZnolD0Pse8kF2NKEle0LiwFHWEbAkmeNYRFNf+nndwPOjn5ujcpeKtPkcMLL0T87ndQOLpB+C77HJzWSfjD+0fcd0zuRwdsC4VraWi+Dhh6+ZPmjjtx2OfizomvnIBZNOs07AU/Jtj2HYb6ZrU4l2HN/WJyA1OUDDR37lxqamqorKyksrKyJwfozpPmzZs3ZJm1eBt9ok7iuuvA1dfXU1lZSVVVVb9gd+zYwUUXXcS8efMGTdh8Pl9cgaYTwzBo9/kJhiWe9wTQhRRgKXFineMx9Vx1tncTOjO1m2FI/EGJIcFqAYdNpN14MyMU5vnHEldSpFO38Eb7GHZ2FhAwIq0UuVqY49ytzMtrxqEZCTmvMjoT/lzPif/7LlZfZCKCdDgQd94J/+//RerhjJIQGhPyPs/7LXcMu58mHIzP+/SA7a3eNX1a34bW6n0obZI4AFvu5xFaKSHvvRihV3u2C8skrLmXYnNdhRBq5rcyUJb1iMalvLycH/3oRwDU19dTVVXFG2+8wY4dO6JK6pLWErdo0SLKy8spLy/vqQPXN6Grqqri3nvvRQiBy+Xql8xVVVWxbNmyuAJNJ63eBt6o+RMAVouTMfnTGVswA63ejzgcILxwDOSZ0wXq39/IlI/MN+VYgzEMSavXwOfvXzjFaoH8XA13jrkzbeMxcct9zP10SUJKirSHbfy5cQpevf916zSsvNY+lj1dbj41bi9Oi0rkUsXSqXP8D3cy+Y99xqXNmhVZOquiIq5jT8q/nLbA6xzu/MegtwtszBn7C+yWga3i3q6/RnWOrsBWdL0Zi6UorljNZHWeg9V5DkZ4D1KvA+FGs52IMGtJGCU7qSSux+LFi3v+u7S0lNLSUpYuXQpEl9TV1NTEdX4hTRzA1Tep2717NxB5UBdffDHz5s0z6zQpZ7U4cNoLCIU7CeldAEhpMGfyx5hcvAAKbITPMmc26av/92tO+valWBzmj4szDEljq04wPPQ+HpdGviv1H+jBlg667v81P11zakJaCDc0lNEYHH7G3vScdpaOHXpgu5I4ee95qbjuTfJq+rTor1oF99xj2sL1UuocaH+UAx2/x99TgkOjKOcsphR8mQLnKYPeb/eB2RgyurXrppa+iM2qyuIkkwzvAf8mpOxAaOPA+QnEIMm4Mrz7778fr9eLV8Ljodi/Ey6xGbhFpHfv6quvNjHC9Hd0Uufz+RBC8Kc//SnmY5o65bG0tLRnfbBsVpQ3lZNnfr7fNn+wnX1Nr7CnfivTxRJESxBZGP8yPTIUSkgCB9DeaQybwAG0+gxyHAKbNbVdq84/reZjX52ckASuPuAcMYED2NOVR0fYSp51hCdNMY+UTH7iAMf/qBpLINIKKl0uxOrVcKm5g+6FsDCp4HIm5l9GZ2gXuuzCYSnFYR1+PK/FUowRjiaJs6Jp6dMKl+2k0YxsuxkCm+luOpIAHT9H5lyMyL8FkUVLqSWT6k6NzdEtdZWVlfzgBz+I65ipb2LJEk57PjMnfqSnELBoDMR9TD0YRNgTk8BJKfF2RfdO9HaltgvxI51rATjt1MRMjtnTlRfVfhLBB1Huq8TP2h7i5Gvf5KT/fa8ngWPePMRrr5mewPUlhMBln0W+Y96ICRxAfu6KqI7rzlmGRVOvn2SQRgey+VII/JeBfX8h6HoS2fpVpFTDI2KiZqeaoqKigrlz58Z1DJXEmSzHcWRmnB7/q7XzUD2OCYlp9g+FwYgyRH8wde88KSXP/GYfV96YuJIiQSP6t0FQqrdMMhS80cbi819m/P819m689lp46SWYnV7lZfJdX0AbcVkqKx73sdV1lFKda2GktWED/4r8KUoKlZeXx3V/9Y1ksnZfZMyUdMXfU33Q9i6OyYmZmTqatCyVP54qah5kxsl5FI1LXEkRlyX67lGXZegyEqnUZUBdEPb4I3/1QfBnYiODIZl2/wec+elXyd3vB0B6PPD00/Cb35COy4lYLWOZOOaxYRI5GyVFvyLHkZhZ1Up/UurIzujWhpWdTyQ4miylWuJMs2rVqrjur5YBiEEg5KWptRqAsBEgHPbjD7ZR3/I286avRFoEcmL8XzaBfY2ULTs97uMMxjqKCZ62FBVKM4Ih/vmHen6yJrFffrNdbbzaPhY5wnowNqFTnhPdAPZkkRLqQ9Cu9489qEObDh6LpNgWU+WNpLMfCjL3m29T/N/DvRsXLkT84Q9Qlt6TAZyOUygr+Q/tvt/T3rmesF6PJvLJy/0EBa5V2G3x/dpWRsFoBKMhun1DbyY2lmwk4xwTJ1FLb5lIJXExaO88SGVN7y84q9VJSeEJnDrri+Q6CtHLXWCNv5EzePAQORMTs2aqRRPkOgSdgZHfje6c1LzjJm5dzbzPluBwJrZWVZ41zMzcdqo7C4bd7yR3CzYtvX5KNoUHJnB9teoCi5CMTfNFP4pebKbi+rdwNh5ZuF4IxLe+BT/84bAL16cTq2UcRfnXU5R/fapDUaKWXu9nRRktlcTFYEz+NOZMOR+r5sBqcWCxRGY4SUCf7sKYZc7gZRnWE7pmar5LoyuoM1yRGYdN4LQnP4kLNrfz3vZ2fprgVrhuZxfV4zcs7PUPXq5ijquVBQWHkhJLtMISWqPoCW4JQ5EVtDT89SvCBjPu3sOMe/b0/LqXJSWRhevPTa/1RpUMoRWDVhJda5wtvkHlipJqKomLgdPuZOLYCfiDOu0OEDYL0mPDKMsFE8bCAYT9XWg5iRsHBmC3Coo9Fg616eiDjJ9y2gVj87WUrNzg/PNvE1ZSZDBWIfn42P3s9bt421vIoVDkuS+1d3Giu4UJzq6kxDEaHTojdgEDGAjadYknzd7tzjo/FV97i6JXWns3nnsu4tFHobQ0ZXEpmU0IC+R+Bum9e+R9cz+XhIiykGrATBtp9rGeOSyahsupsfcEG4VjzCk22pev8WDCJjX05bAJJoyx0BmQdAUkUoLFAm6nht2Wmqabj/jW8m8SV1JkKEJAWY6PspzMWCIuNIqJC+E0+9At/kcTc298u3fheosF8eMfw003Rb1wvaIMKXcV+P8+/AxVxzmRP2XUVJ249KGSuDRVZ3kP55TkJDFCCFxOgSsNJv5JKXnmnn3c+POTUh1K2htNI2W69KRqAYPZd+xi2sP7erbJKVMQTzwBCxemMDIlmwgtD4oeQ7beBMEt9G86skHOhYj876nlxZSMp5K4NOXf20D5p4+9X4nzdj1I46n5FCawpEi2cFugOcrqKO40WMc894NOTv7qmxS82WeG74UXIh56CIrUSgaKuYRWhCh6CBl+v8+yW8Vq2S0zqJa4tKGSuDQVamrBWTJSAdHsYgRD/OuJen66VtXTikaOBk4h8cvh29lyNYkjxQ0O4/9Sz4nfeRebTwdA2u2IO++Ea67JjPonSsYS1ung/n9p0xqdFVQSlzZUEpeGpJQgJSIDxgYFwjq+kE7YMBCA3WLBZbdgjSH2CZtXc/LnSrE70qDZKEOMt8PegEQf4ivKKiSlKazQYenUOf6HO5n8x4O9G2fNQjz1FFRUpCwuRVFiI4hvTJxKps2lkrg0FOxoxVqYn+owhmVISUtXkMBR01pDRhhfKEy+w4p7FOu+BpvbqX6tnVXXzjQ71Kxm16DMAYfDkvY+s1U1JPkWGGMDa4o+Nd07vZx87Zvk1fSZKPLFL8K994Lb/MlAiqIoxxqVxKUhb8OBpE1qiFWrPzQggeurPRBGE4LcKOvcOf70Wz6exJIi2cSmQakdxkkIHin65xAprAsnJZOfOMDxP6ruWbheulyI++6LJHFKVpPB15D+50H6EJZSyLkAYZmY6rAUM6nu1LShkrg4dTYdoHCMuQtyN4hqimdNNfWYZgrpBv6wPuJ+HYEwOVbLiInZOb61/FeD+aekd+Ka7iwCUrS4Rg9re5iTvv1O/4Xr582LdJ+m2cL1irlkeC+y9XoIv9W7DcD7G6Tzk4iCWxFCTVjKBqrESPpI/0FXaa7+5Y2mHzNw8BC5adwS1xmKbkqkLiXBYVrr4EhJkd/s46ob55gRmpJCBZVtLP7Ey/0TuGuvhZdeUglclpN6A7L5kn4JXC8D/H9Ctn41Mt5XURTTqJa4uJnf9BFu7cBWaM7SXYmgj+KDOGxIhvvtPXfnAxxakI9nrD3+wJTUMCTTfreX2XfUoB2pKiw9HsTDD8OFF6Y4OCUZpO8BMOqH3ynw70jNNsdZyQkqyaQMgv/vyOBLIEMIaznkrEBYErP+dUqpXDxtqCQuDon4Vdl9zHQeGyZGkbgO9zD0QIh/P9XAbWvnmxCVkgr2w0Hm3vg2xf8+3LvxzDMjxXvLylIXmJI0UnZB15+i27fzCUSUSZw0vCAcCJHC6dVRkoH/INu+BUZz7zYA7z1I1+UI9zfS+jN9VCTxJXEqATSVSuLiIKVhesXvoLcda0F6z9xzWjW6ohgTF9l36HIhE/57H6d8vhRbqouYjUKnrtGhRx5TnkUn1zKKta+yTNFLzVRc/zbOhkDvxm99C370I7Cl/xevYpLwfpAdI+8HEHp32Jul3oDsfAy6NoBxGBBI+yJE7iUIZ3oWP5eBl5AtXwFCg9waAt8DSCQi78Zkh5Ywakxc+lBJXBwk0vTe1M6mOuwT07uauNNqQRMhjBHeyDlWC9oQvz6Dze3seqODy746KwERms+ra+z259ASttL3onssIcpz/ORZoktqzeI3oF0HXYIFyLNGiv8mgwgbzPjNHmb8Zk/Ph7ksLkY89hicd15yglDSx6jWfxv6RSpD7yJb/udI8tazFYJbkcGtyNxL0fK/G3ucCSI77mDwBK4P38PI3Esjs3UVxUSZ0wSSjqQ0vSWu3lLNuJmTTT2m2YQQFOXYh81frZqgwDl0a4z96dVcceOsjOhi6NAtvOHNoyVs4+isvVW3Uel10x5OToFiXcK+ANQGBC1hQbsuaNEFewOC2kDiF7p31vlZ8IXXmXl3bwLHRz+KqKpSCdyxylIGWpQ/PG0nD7pZygCy5UtHJXBH6XwM2flkDAEmjgy9PcRkjqPpyM6nEh5P0sg4/hRTqSQuDpGWOHOTkMD+xiFnpkoDjDCkwwQvu8XC2FwHTmv/l5AAXDYL+U5BwPDTpXcRNIL9xg9+2LsGi1VQfkJ6FzTu9l5n7pArIgDoCN7ryk14HMaRBK7TGDwWvyHYG4gkeolQ/M8mFp//MmO2twIgLRb4yU9g0yYoVS0MxyohbJCzIrp9cz8/+A1dfwOjYcT7S98j6TXDNbQz+n3D1YmLI9lUEpc2VHdqHKQ0P4kLHW7DUdx/zdRAG/iaBMF2AIHQJM4icBVLrE5TTz8qNotGUY4D3ZCRZbeEQBLCL/34+37QShD4ydFysAkrz9y9j2/dNS91gY9Ca9iCzxi5la3TsNAStlJojXJF+hi06xAYYZ3UkBS0hiVjTBySJoIGc27fxbSH9/Vsk5MnRyYvLFpk3omUjCVcVyED/xo+Ucn5NMI++LrI0v/X6E6k74Hw22A7MYYoE0CMpgVeLSeomE+1xMVBYn53KvSfmdpxQNCyWyPYLujuypOGoOuQ4PB7gkCU44kTyaIJHFYLiDBd0h9poTyKRNJpdDLm9Sc4/kxPxpQUiXShRrtvYn8TtUaZH7bq5rXW5tZ2snDFK/0SOD71KURlpUrglB5Cy0MUPQaO8xiQrAg3uL6CyL916AMYLdGfbDT7JprtFKL9GhX20xIbSxIJGfufYi7VEhcPaZjaEhf0tmPJc/X8u6sFfA1DH18agtbdUDjHIHxkkqTdDtYULJYppaTL8A+7jxEI8e91h1jz1IwkRRW/0XzmJLqXJxDl8cNSYCDj/t0//i/1nPidd7H5IpM2pN2O+MUvIgV8M2Aso5JcQitEFN6D1A+C/58gfWApBcd5CG2E4QZaUfQnGs2+CSask5GOsyDwnxF2dEFOFtVMVMlY2lBJXByklKYOzPc1HsQxubcwZOcwCVxPDIag8QOBkdP7rsrJkXgKwWZL3hdtSIYGbYHr69CfXsJz/unUBOEEZxr9mh5Grhb9rNNElxsRJOezU+vSOeEHO5n8x4O9G2fOjCyddfLgA9MVpZuwTADXpaO7T84nkMEtI+9omY6wnRBjZIkh8m5Bht4cZlKGQOR/H6Gld+koJTOp7tQ4mD2xoV7b2TMzNRyAUGd0x9YC/ffr6oKGegiFkvdzSZfDJzuhwx10Vh8g/4zZHOxyDbtvOhlnC2EVIydnFiTFtmBCY4m2hIhDSCwxvizdO70s+tT2/gncJZfAa6+pBE5JHOf5oE0YcTfhuiIJwYyOsE5BFD0JtkG6Sy1TEZ67ETkXJD2uRFLdqelDtcTFQZpcYiSwvxHXh0+JHHsUZccGe2MYBhw+BKXjTQouTg2P/5uSL3woI0qK9GURMNXhp8Y/fHfQVKc/5sQpWh4rdEaRJ3pieVdLyeQnDnD8j6qxBCJJq8zNRdx3H3zxiwN+rEgZxtu1CZ9/I4bhxWqZQL7rMzjtc2M4uXKsE8IOhQ8iWy4Ho3HwnXKvQOSuTG5gI5BSgv8ZpO/xPqVGbGA7AXI+i8i5MOM+86KikrG0oZK4OEjMHRMXam7HPrYAAG0UV2aoCYvBIAQCEocj8R8iFmEFOXiG0bnzAMJmIWd6pAzFlFxvwuMx0yRHkJAU7A04kUeVGhFIpjr8THYEhri3edwauDWJd4gSIwC5mqRglIPhrO1hTvzOu0z4W58SD3PnRrpP58wZsL8/+CZ1h68grO/vt73N9wi5znMoLVqNRUvftX+V9CRsM2HMn6HrD8jOdUfWYrWC42xE7hcQjsWpDrEfKSWy7Sbw//moW0IQqoTwLrBOhiya0NBDJXFpQyVxcTCzxMjRa6Za7GBzS0LekY9vOIZ+R/n94BhuBXqT2IQVgRgwLk4akoY//JfJN3wKgDF2P7PcrYkPyERtYQjKAONsIboMO8EjJUdsmk6BJcB4e3I+0YSACXZoCkvawmD0SSgFknwLFNtG95IsqGqj4qtv4drb1bvxmmvgF7+AnJwB+wfDezhw6LMYQ8wQ7PT/i7pDq5g4bh1iVOUXFAWEZQy4r0O4r0PKEGBN35aszkcHSeD6kD5kyzUw7t9qPJySMCqJi4eJExsC7a1YC/sXv3WXSFpGSOKkkMMmccmqiymEIFfLwWd09tve+t83yTtlOlaPC4swuGDC+xk1sbFTh/oQgMAiJG5LoF8FBQPYH4SpDtCS8LiEiCRqY63QocvIslsC3BZG151rSKb9bi+z76hBO7LMgywoQPzud3DxxUPeraX9N0MmcN26gi/h8z+HO+djowhIUfpL54XvpTSQnY9GsWMbdD0z6oke6S6DPsKznprYEIdId6o5T6Gv8QDOycX9tjkKIG+iwVBt11JIwvnGsFfRlsQ03abZcGm5aEcCMvxBWv5ZRdHHT2OsvYvLyt5jZl5b8gIyweEwjPSRFZKC9uQunYomoMAKRbbI/48mgbMfDjL/ykqO++mungSOM86I1H4bJoHTjQ46uv4U1TnavI9HH1ASSCmRgS0YHT/HaP8psvMppOFLdVhKpgq/Dfq+kfcDpH9TgoNJsnhWa1CrNphOtcTFwcwSI/ViJyVzpg/Y7iqJdKt2NkGgNVKaTrNByCrRnXLYBE7TIDfJE0Ftmg2rsBKWYcKb/sSSz09h6cydzHS3ZVQLHETWIe2MsmpIux7jhIIkK3qpmYrr38bZ0GcM3803w623gm34lo9weB9SDl8LsFswjZYYksHXkW03g17buw2g43ZwfyUtZzwqac4YRZV12Z64OJRjXgZ87cRn+/btlJSUUFZWZvqxzSwxEtjbiOv8wSvg211gd/X/+dLWKmkboVErv4CUjCcRQmAc7iT8/n6u/d9ihMis1rdukUaq6J6/RC88HzddMvPu95nxm96F62VxMeKxx6JeuH403VuC9OgKk6E3IzMeZdcgN3qRHbeDDCHcX05+cErmshSPvE83bRT7ZghVKiR9ZHV3qt/vZ8uWLQQCiZk5aGaJEb3Dh60g+mazAo8gf5j14wsKID8/dU1f9qd/y5U3zkrfQclRGM2VTec3krPOz+mff42Zd/cmcHzkI4iqqqgTOACbdTpWS3Q1a3Kc6bEkl2y/bfAEru8+3t8g9UNJikjJBsI6A6zRrd+abTXiANWVmkbS+bsnbjt27EjsCUyanWroOlhGP5PPUyiYMAHy88HpjPzlF8CEiZEkL1U+1L4Gm1Nj2nGZXWbCroE9yp+c7jSdiFn8zyYWn/8yY7a3AiAtFvjJT2DTJigtHdWxhLBQEOUAbY9r1WhDNZ0M7YLQq1HsGYKudQmPR8kuwn31yDtZpoJzacJjSTqVxKWNrE3iamtrE9KF2pfEnDFxXc2N2EtjWw/QahN4CgXFJZE/j0ekZO3UbtIw+NM9+7jqm7NTFoOZCqMYcCCQcY+Hk1ISNkJ06T584XZ84Q4Chh9DxraUlwgaHPfjauZfWYW9JRQ5x+TJiP/8B77znZh+NAB48q7GaT912H2K8q7HYY+ulSKheoqvjkyG3k5gIEo2Es6liLybGXLIhWUyovChtJ5lq2S+rB0T19DQwIIFCxJ6DinNmZ16wPo2zinRtYpIKenshE5fZFUGzQIuV6SkVzp0XR735v10nlVIwRh7qkMxhccKfkPSpg/+3Aok4+0QT94spUGX7kOn/xTXoKETxI9Ty8WmRf985tZ2cvJ1b1LwZp/B15/6FOLhh6EovsXDNZHDxLFPcajtR7R3rkP26aq0WiZQmHcdHnfqW+FGL/XvHSXzCNcVYD8T2fl7CPwn0nVvmYTI+TTkXJC19eHUmLj0kZVJ3I4dOxKewEHky1eYUBwssLeByecM37oBEApKGptAD/ff3tUJViuMK5ZJXfT+aHpXgBf+3MRtj85PWQyJUGqHnLCkJQyBnuUxJHmWSEtdtGuaDkZKOWgC15ff6EQgsGoj/6If/2w9J377XWy+yPGk3Y74+c/huutMm4SjabkUF/6MMQXfodP/Hwzpw2oZT65jSXoV+LXNi3pXYY9+X0XpS9iORxT8JNVhJJdK4tJG1iVxra2tOJ3OUd/v1Vdf5bXXXotqX/uRZTQjs1Pjb4kLHDxE7uThZzDpuqSxEfQhvuvDYWhsgNLxEkuiF/EcQvG/VnP6qglYbdnXS19gjfyFDIlBpOXNjKdZl+FhE7huQcM/bBKndekc/8OdTHmqz8L1M2cinnwSTjkl/kAHYdHyycv9ZEKObQZhnY60nwnBF0fY0wE5Q9fHUxRFSVdZl8RVV1fH1AoXDAbxeqNb07O7QcOsZbdkKIxmH76VpaN96ASum66D1xuZmZpsgaZWPnjHx5XfyI6xcEMxOz8NDbHe7NF0dAypow3S0uXe6eXk694kb1ef4rWXXAL33Qd5mT25JF4i7zvI5s+BHPq9LfJuRGiFSYxKUTKb6k5NH1mVxFVXVzNr1qyY7mu323G7oxu/0L2UlRkTG4xwGDHCIHMpJVHml/hSlMTZnr6fVTfNTotxeZlkNBMXDGn0T+KkZPKTBzn+hzuxBCLHkbm5iPvugy9+0bTu00wmbLOh6HFk27ch/G7/G7UihPt6RO5nUxOcomSqNEriamtrqa2txePx4PdHipGbMZwqkTVmzZQ1SZzf78fv9+PxeGK6//z585k/P7qxXLfe8muge2JDfF+U0cxMlTIyiSEa4bC5K0lE40Pta3ghV2PqnOwcxJtIo7pKfa6ptT3Mif/7LhP+2tB7+9y5iKeegjlzTIsvGwjb8Yixf0YG34Dgi0gZQljLwXkeQmTHBBxFORZVV1ezc+dOli9f3rOttraWdevWsXLlypiP211jtu9x01XWJHHJmszQl5RG3MV+Dzrewz5x3LD7jDYfS2YC111S5Nu/UgPDY2HVbOjGyGPiBAILkVa4gqo2Kr76Fq69fYrYXnMN/OIXkWnKyqCE/WSwn5zW81Cl9IP/78hwDWBF2E9HOBamOixF6SGIrzvVrPef3+/nueee48orr+y3vaysjM2bN7Njxw7mzp0b07ETXmPWRFkxAr2hoYGSkpKkn1dKGVmgNA6BA00Uz5o87D5CCByO6I7nTPJ3+Jwd9zM3i0qKJJstypYgm7AjJEx7sJYzV7zak8DJggJYvx7uvVclcBlO+h5HNi6JrPPqexB8q5Etl2E0LUMGq1IdnqJExFPo18SCv9XV1RQUFAw6kXH27NlUVcX2nklGjVkzZUVLXFtbGzt37hyQPXf3j7/88svs3LkTp9PJueeea+KZ4++2DOxvGnFmKkTGp0ezelgyx7GHO/1s+0v2lRTpqz1s4WDQTkvYhgRcFp3x9iBjrSFMqC6DEBpOLRe/0TnkPhYsuFo1Km6spPjfh3tvOOMMxBNPwNSp8QeipJT0PYzs+NngN+rvI1tWQdHjCFsaFFFWlDQYE9f9nT4Yj8dDY2Mjfr9/1NUqklFj1kxZkcTNmjVr0AkNfr+fe++9l9NPPz3mCQ/DMWN2qtHlx+oauQUl1yVwdUl8vqH3cedBTk7yOouK/7WaMy/PzpIiALv9TvYF+n8ABMMaLWEbBZYwJ7m8cRX57WbT7AihETT86LK3CKBAYBN2Sl/p4uTrK3E29Mnib74Zbr0VbKoafKaTRguy484RdupEtt+GGPP75AR1DJBGMxjeyASXLC3Km80aGhqYPXvwaggFR2b3tbW1jSqJS8WwrHhlRRKXKpHZqbEnMIaujyoJLBoDNvvAciMWK+TnQV4SF7z3N7awb2cnV30zOYPoDQkHAjns8bvw6lYsQjLe7qc8x4vLMvKYstHaH7APSOD6atOtvNPpYq5rmKx6FKzCitXixpA6hjQQQqDpGrN+s4fy3+xBOzKxRY4bh3jsMViahesxHqu6NgBRlJoJvYIMVSNs5v8gPZZI//NI31oIbT+yxYZ0notwXYGwnZTS2DKFGSVGfD4f999//4j7nXrqqYNOOgwEAjhGGGfU1tYW9VCrWGvMplpWJ3FtbW1Ab7eq2eKdnepvOYS9JPplkIQQ5OdDXp4kEDiy7JYGDkfyl9yyPXM/lyeppIjf0NjSNpbWcP/xY+1dNqq73JzibmF6ztDdkaNlyEgSZxU6hhQYQwwdbQ7b6NAt5JmYRGrCgiYsOOr9VFz/FmNebu298SMfiSRw48ebdj4l9WTozeh3Dr0FKomLmdHx88h4w35C4P8/pP958PwS4VyWktgyiglJXKR01si1s4LB6Gpp9tWd3I3muz/WGrOplpVJXENDA9u3b6e1tRWAzZs39wxWjHW2ymAipTxib4k74HgHRxTj4Y4mhCCVPxg+1LaGbS4LZbMS3wUhJYMmcD23I3jNW0iOZjDeEX+y3qFDY1BQaOttYQsYFny6g4Ac2HVZH7STl9M1YHs8xv3rEHNvfBtH85GF6zUN8aMfwbe+FfPC9YpyrJP+TYMkcH2FkK3fhLEnIKzDTzZT4ieEwOVyjbif3Z74SXPx1JhNtaxM4kpKSpJS30USX0tcYF8j4087zsSIEk8aBs/cs4/v3J2ckiJ1QeeQCVwvwbudeXEncYdCcDg88Ho6NB2H1kl72InP6N98HzDMa4kUQYPZd9Qw/Xd7e7bJSZMikxcWLzbtPEp6EbaTkP6/R7ez6u6LmfQ+EMVeQWTXk4i8GxMeTyYTMv6mOJfLxdVXX21CNAMFjswCjKZ7NN4as6mWnSPSkyTelrjAgSZcZaUmRpR4s6vuZ97ZhRQUJaekyB7/yL/UAA6HHbSHY/9N4tMHT+D6yrf6sYlwv21mLVObW9vJmStf7ZfA8clPIiorVQKX7XIuBqKoIWQ7DWGbmfBwspHUD0E4ym5r/8bEBpMNUlxexEzx1JNLByqJi4OUBvHUmTA6/VjdmVPbK9zp58W/HuLTl01P2jk7jei7Dw8EoiymN4jW8Mj7ALi0/uMzxtlGP17jaOP/Ws+i81/Gs6MdAGm3w69/DX/6E4wZE/fxlfQmtEJE3tdH2CkXkf+d5ASUhWRoFDXDjJbEBZIlhIz9zywFBQU9496P1j0WrmCENShTVWPWTFnZnZosUkrcebkx3dfQ9Ywb3zT2H6tZ9D/JLSliHcW7vilsI5bOaSnBG+WyZk4tBHr3f+uMsUaZ/Q1C69I5/kfVTHnyQO/GGTMiS2edckrMx1Uyj3BdDsKB7PgVyNb+N1pnIPJvQ9hOSEVo2WE0SRyqcHkmKCkpGXLiQndyN1KClroas+ZRSVwcDkzUyIuxO7XrcMOIa6amE39DMwdqOvnyzckdwzfR3sWh0MgtbBoGuoS2sIUC6+hmi0byt+haVCNDICU2ITkx1xfzkEh3tZeTr3uTvOo+JUq+8AVYvTq5FZuVtCFyPx/pWvVvRIZ3ATaE/QyE4/RUh5YFovyVBmAtT1wY2SINukXLysrYvn37oLe1trYyZcqUEY+RqhqzZlJJXDziKDFywP4uzimZ04xre+YBLr9x8MKKiTTV6WOHrwA5QpLltIQQAgKGRk9TWZQ0QENiRJHI6VIw3h5kiiNAjjaKL4ZuUjLpqYMc/8OdWP2R+8vcXMQ998Bll/V7PelGC+2+J2n3PUVYP4gQbtw5SylwX45DlZnISkI4IOdTab2+ayYSlonR5x2OsxIZSlYws1s0VrNmzWLz5s20trYOmJRQXV3NWWf1v45+v5+GhoaMWlIrGmpMXBykNBAxrp0a2NtAyZzMeDGd3bqGHHdySoocza5JJjq8DPfTzy7C5GqRchyWGD5dhID8KHu2x1gNZud0xZTAWdvDVHz1LeZ++92eBI6TTkK8+ipcfnm/BC4Qepfa+nM41HYrwXA1hvSiG/W0+dayt+EjtHlV5X4lOtLwIgNbkP5/IsN7Uh1OajjPBxHN+GMbIvczCQ9HiZ/T6eS8885jy5Yt/bZ3r6l6dAvas88+y/r166Na3D7RNWbNpFri4hHHsluBA03kTE7/ljhpGPzp3uSVFBnMVGcXXt1Cp24nKC10d31qGORYQuRokVY4qzDwxDhGrdAK7frwrXEakqIYV7kqqGqj4qtv9SxcD8CXvwx33jlg4Xrd6OBA0xfQjYYhjqbT2HozNutkcp2q1UAZnDRaI8t5+f8CsrcYtrQtQOR9DWE/LYXRJZfQ8pG5l4JvhDIjuZciNM+AzdJog+BrQBAs0xC25PdKpI14Z5ma2Io3a9YsHA4HmzdvxuPx9CRdK1euHLBvWVnZiBMZklVj1kwqiYtDPCVGZDCExZH+617OrrqfwIcGLyni1y284/XQEbZj13Rmu9oosgcGOUp8im1Bci1hbJqBIQW6FAjAIox+OfR4WzDmkh92DSba4UBw8ETOgmSiA2yjPb6UTPvdXmbfXoMWjnx6yYICxEMPwYoVg96lo3M9ulE/woENWjpWqyROGZQ0WpHNn4dwzcAbQ9uRzZeB5zcI5zlJjy1VhPvrSKMVuv44+A45Fw+oDxdZ1/bn0PVXoLdVRtrmIdzXIxyLTIlNSgOCL4C+D4QT7IsRltEXgk+WdOhO7VZWVhZVF+mCBQtGXJEhWTVmzaSSuHgYsXWnhgN+NGfs5TCSJezr4sW/HuJnj57ab7sh4T+HJ/Bq6zhCsrcf8l+HJlKe284nSmpxxzFr82gWASfm+tjhc4MAbZBPEI8lxDRnfE3fuRaY5oS2sKRDj4yssxDpai2wjr4mnK05yLwb36H4X4d6N55+eqR477RpQ96v3bc+quN3BjYT1huwWtK/RVdJLtlx++AJXI8Qsu1GsG9GaNHVYsx0QmiIgh8jcz+N7PwDhI50q1lPROR+AWHv39sgjRbk4c+B/v7Ag4WqkC1XgecuhDO+dYxl53qk914w+sxS717PNf97CC1zJsApyaeSuDhIacTUEudrqsMxaVwCIjJX0XOrWXzlBCzW/o/xbw1l7OgYrH6ZYHdnAY/tn8Vlk3eSY+KaogVWnVPcHewNOGkM2XomOjiEwQR7gMmOQDwl+3pYBYyxRf7iUfRSCxXXv4WzoU/L5E03wY9/DLbhDz50N+rRJGG9USVxSj+R1qa/RrFjR6SrNfdzCY8pnQjbXETByF1jsuPngydwPcLItm+BfRFCi228sPQ9hOy4Y5BbjqznGnoXxjyJ0Ar/f3vnHSdXWf3/93Onz2yZ3U2yaWQpMUHE0AMCoYh0g6jEAqgoIBZQsfcG+oMvKqJ0BALSQzUgJTaCqAk1CwLZgLChZDdtZ8v0mXt+f9xts9PulK153q/XviB3nnvvs7Mz937uec75nLKOP2pMoEjcjo4ubKgAESnL7HeTegnPBO/UEOvYRucbMY54/5yM7e2RmjwCbojtSS//7qq+sAg4TN7tj3BwXQ/71/RwQE0PB9X20OKtjoCrCmlh/mX/Y/FpzwwKOJk+HR5+GC6+uKiAAzCMwgaVw3GUMFazg5BYA9hLa5D46tGdyyTFvhAOQ/Te8s6RehPp/VXhQenXkb7flXX80WQimP1qLLSIq4Qyc+JiGzuYtcfO1Z9PFXHeex1nfSc7effZ7mm29l/X00Sqin1Fh+NSQo3DJOAwK2ldW3U8HTEOPO0ZFvz2fwwWr77//ah16+C442wfp8Z3or3zuRbhchb3QtLsYEiyhLGldRyRdAdm72WY2z6Bue0UzNC3kcSzJU5wEpB4muE5cIWQxD/LOoVE78CWf130AcQMFx83loiU/6OpKlrEVUKZFiPJLSE8MyZYeHwYh3XdSE2Dk512y86VedtmL9NI2kWXDZPeqcL0v2/l0BPX0LQmBIAYhrV0+thjMGtWSceqD5yGsmGHEKw5q5ypaqY6zhKsi0oYK5HbkS3vh/AVkHzWyimL3Y9s/wRm15cQmfh2DLYpRdyWKIQHSeQ2qs0+fh+kXirvHJopjxZxFSBmeTlxQNn+cqONmCYPXPkWnzs/t5msfo7KRCVMdv9FGwd87nk8260IiMydi3r8cfjBD8pqreZ0NDOr8RoU3rxjgjVnUhfIXd2q2bFRrveC015nFeWz54kmsYeRnp8AeQqW4n9Bur9jc4aTAGf+wqOKxg5HSsgZluoVilUDvZw6cZiYSmKSYOXElfYWJsJ9OGonbjXYwnXXsPeRDdQ15O4fOMsTybl9JF4jRdBVfbuRiYRvY4T3LXuaXf+wcWjjSSehnn8eDj20omMHfB9gpxkPUus/BcVQRNPrXszMxmuYHrygouNrpjaq5qsUvbx7T7Dtdya9NvKyYg8jyTZbx5voKNe7wfVee2N9HyvvJM532RzoAOeu5Z1jtJAKfjRVRYu4ShATVWJSVmRrB5459vLKxppUJMa/H9zKxz6T/4Kxb/3WvK8NZ1HdNlzG1P3Gznqwg0NPXEOwtQcAcbvhssvg/vuhqXDhh1087j2Y2fg7dp39X3aeuYZdZ73ATjPup9Y/uXyMNGOP8r4fVX8RkCelwXMsqv5iW8eSxNOQfs3e2OgKmzOc+Kia87FMhgrgPcESfOUc3/8JewM9R6J0BbomD9pipALKMfvtcK3H3TQxRVzDw1ey5OxsS5Hh7OLvZfeaLl7py5/TV++M874GuzYZkwsjmmaPn7cx745hnk7z56PuvBP23Xd0zmn4MQz/qBxbM3VRvpOtPqCRu5HEv6yCB+cuKP/HrSVXu6Q3Fh9TztgJjvIcCvW/Rnq+BxLNHuA9HlWfyx7E5vHd+yCeYyH+aIFBAVTNV8o+x2ihymgbrRkdtIirBNNElehtEX97C7vsv/soTah8opu2EX0zxuFH7lFwnFJw8sw3eGxLiue7mzBHBHPnevs4eebrVTX7nSjUtPWxz3kvUNs2rFLs1FPh6quhtnb8JqbR5EEZjVDzeRSfH9wmyVYkfBMg4HqPjfZb+XMzs09YwthJgPKdAJ5DIXovEv8nkLTabvk/hnIVvlbaOn7w10i3D2IPkLXWaMxEBX+Lck28+4VeFp04aBFXASImlBiJS3Z24ZvVRDoNkRBE+0BMcLrAHwRvoLx2rLFUmkgyRTxlPSI5DYOA24HP6bC15Ou891o++217+TEOJRw/402WNG7ixd5GegbbboWY5c3xxDrZEWHune+wx8/WDzauF78fdfnlcMYZZffP1WjGEkmsQ3p+BqkXM7c734Wq/X7+FlKe92EtyxbPcVXuwyuf6ARDGXUQOAMVOKP6x1ZuVPD/kNSXraXo9FugvCjPEeD5AEpNvFt0pQUKurihuky8T8hkogyLETFNYhEH298BkaGbfzJuCTq3V2iaCw6bfxkRoTueJJLMrHRKmiahmEnYSNHk92AUEBqHdd3I2kYXc3NYihSixpnioIbNtseLwOakh5jpwK1MZrhjZfc6tUPChJ40JMVK/qx1WK21SsHZm2LP77/M7AeHLQ+/972oO+6APSp/EtdoxgJJrEO6Pp17WTC1wWoh1XAVypMtwpTRgPhOLG5qq4Jg0+NQk4lytqBqvzne09BMQrSIqwAxS8uJSyfiKKebbW8DOZqsAyRiiq1vCTNa7AV4+hKpLAE3nKQpdEUTNPlzJzgPWIr84Pd75Xy9WrRFamiL1hA1hz5ybpVmN1+YPfw9Ve24YAp0JKE3DcPf51Aa3EqY47Ya3hejvrWHvc97gcDGYTe+L3wBfvMb8BX3cdNMfST9NsQft8SRY66VhK5yV3aPJ9Lzw9wCbpAU0v1DmP73nNEfVftdJPkCpDbk2d+DCl6KUjuON+SOi1RhOVWvXlQLLeIqQEqMxEW2duCcNpNiH+BkTBHrE3xF0qxEhL5E8dyzeNokmTZxObLnunDdNSTe35jXUqQaPNcb5NVYdm/BhDh4OVJHd8rFwXXbqrIqKQLvJCCcp1tEQhQb40KLB1z5/nQi7HzDRna/6FWMlHW1kvp61HXXwbJllU9yB0ISTyGROyD1MmCAa1+U/9SJmedTApLeivT8COJ/J8N135gGgS+gAp8et7mNRBJPQ2p98YFmJ8T/CjkauisjCI23I32/hej9lgGt9Qq4D0XVfhXlKt6PVDM10EuiEwct4ipBzJLyod421veLuOKEuykq4mIp0/YDUSSZot6RKdQGLEUuunk/m0cpnc6EJ6eAG847CR9vxPzs4rPnQVeIsJlfwA2QRrE9JTTn0K2u7Qn2+tZLzPjbMCuVAw9E3X477FKmqacNTInTF1lJOPYophnG6ZxDnf8T+Dyj97cZTUSSSPe3IPbnzBdSbUj0DsT/OYy6747P5CpEzO3I9lMh/Ub2i+ZWpPdCxOzCqP3qmM8tJ4mnbQ+VxDOoHCIOrNwwVfdjpOYbkHwBSFnVro45OcdrNJrRR4u4ChCRkiJx8Tc343v3gbbGpmx0cjFL6ENn5hga/PMVRS1FKuXVaGEBNzguVlMVEddtsyi2Jw3ThYxl3IY1Xez9tRfxdQxL4P72t632WTYa15dLNP4Um7adTdocll8Yh57wrficuzIz8CkcvuNRk6hPqvT8PFvADSdyA2I0oGrOGbtJVQnp+11uATec8JWIbylqQpi0luIHUbyLgDIC4Dmo/OloJj86Ejdh0Ga/lVBi261E5zZcM6bbGmvnsKUsP44cG317C9s2JTj8yNF9it5ss39qKOUmUSSCNoApJgkzTtyMkTQTVueMfmI2Ly4miuTA2LQw/3f/48BTnxkUcDJ9Ojz8MFx88agKuHhyPe9sPS1TwA0jmvofm7ovwNzyAcyus5G0/UKS8ULSHRC9u/i48PWTrt+mmGGIPmBnJBK5fdTnYwun/aVrVcJYzY6Lbrs1cdAirgJKzYkjncLhtVce6bVRKOp1Omynh/qcmed13PcHzvqWPUuRSjDFvtI0i/w2IibRdJhwuoe4GSVhxoiZEfrSPcTNmBUZLXF+ns44B57+LAsu/R/GQMDiyCOt1lnHHVfi0Upne89lmIP5RbmJYRKRFMQfR7Z/EklvG/V5VUT0PuxEdJAQxP4y2rOpLqlXQMLFx0FJy5ijiudwMGYXH6dqwffB0Z+PZvIjUv6PpqpoEVcJIrZ94tKJOIbXTU3Q1oFtjTOUwucqLgqdhsIzTMQt2X4j9dPdzNll9LsA1DqStsa5VRp3ARtwESGS7iMluY4nJMwYcTOKz+Yn2oEw5/GtHHrCf2j6T5d1FMOACy6AVatgto2bXoWk09sJRwssOQ6jZ+D3Tr+JhK8YxVlVjqTfLj5ogFLGTgiqtzQpkkBijyLhm5HIvYi5vbKp5UEpB6ruuxQrqFK1X0cpXXWt0UwmdE5cBUgJHRvCWzbhnjON2iaIR4R4JN9+QsMscNhcwav3uEiZQiKd++biUIpG31AGv6QtS5EfXbG3vRNUyK6+MM/1Fa983cUbKWgzkjBjmEVuoElJUO9w05Mu/OYZCZOjfreB99ww1CJI5s5F3XYbLFlSdK7VIpl+E8FG8iOQlGG/e/R+pOYbVm7SRESV8HAw2USDczfABdh4OCmwNCl91yDhG0C6hjb2uBDvB1F1P0IZ9nJJ7aK8x0H9r6xcReke8WIAVfN1lP+0qp5TM3XRy6ITBy3iKsBaTrW3PPqO42W885pRCqbNhZ5tQjgEZnpIubh9Qt00e0upAyilaPK5CSetjg2p/goGQ4Hf5STgcuIYpo4WrLua1AcaqQ2OXp7XcHb2RngtWlNQWHmNNO/y9eZ9XURIij2xo4gTdDgJpXMrwvo3I5z4rRdo7m9cD8BJJ6FuuKFqjevtokr6+g37faQPUq+Ce3S9/cpFed6PRJbbGGmA58jRnk5VUUYj4j0GYg8VH+s/Ned2s+cCiPwxxytJiN2HpF+Fhj+iqtwvV/mWgvdoiD6IJJ8DBOV6D3g/VHXRqJniaBE3YdAirhJKKGyIv9nJLh86DLBWYOunQ900SEQFESvy5irTqk0pRY3bSY3bSXqYiBvZbisVjvKfh7aNqqXISJxKOKx+C0/2TKMrlf0L1jiSHFK3DZ8jf5TNxERsXjXSkmaGyzrv9lRmnt2Chzv4wE9ewtNnLXOJy4W65BL4ylfGpXWW27UQhzGTtNlRdKxfjXxYGPsO1CIJSPwLzG4wmsB9UG5jWM9BiHMBpNoKH9BzOMq5k71zm32WeDWCqHHuz6lqzrP6aI6MaA3HeyLKvXfWZkk8l0fADSP5AkSWQ82XKppnLpTygv8UFKdU/dgajWbs0SKuAiyLEXs3/0THdnyzMiM9SoGnymlpjgLzqXnoauae9l5u71hIwjSodyVYVLeN+f6eUdUwPofJBxo2sznhoT3mJ2Y6cBkmO3kizHbHqnxuQSlockGDE/rSgkTT7P+LNt5157D8q/nzrdZZ+42fD5tSTuprTmN7z6+Ljq0zhkcyPeAcPc+6kYikLcuMyK0wPG/LmAGBM8B/ZtYDgwr+Ftl+eub44Th2RtX9ovi5449bzdoTT2I9/rsR7/GowOdQrndnj093QvQuJPGU5ePoWojyfxLlnG//Fy6Ccu4KjTchoa/lsBpxgO+jqLqf5P59IrfaOodE7oTAOags8a6Zikh6E5hdYDSgHLPGezpF0cupEwct4iqhhOVUTBOVo2PCWBF++y3Wv1HD/FMPhv7uO5viAV7pa2CWJ8zHZr9GjdOmyVqZzHDHmeEu3kR7JEYJ9TfGsJueoWD2633sc94L1K4fVlF46qlw1VVQV1fyXKpNQ+2XiMQeJ1agkrHRcOMeHvH1Hm856I8BIibS/XWIPZz9orkZ6f0/SL2Bqr8w4yXlnA+NK5DwlRB9COi3ElG14PsIquaLKKOx8Ln7fo/0/X7E1gTEHkBiD0PwUpT36KHx4ZuQ3ouBYZ/j5Fok8kfE9zFU3c+qJoqUaw+Y9igknkDifwOJW6a3vo+gHAWKYhJP2TuBuQnSb4Jz56rMVzMxkdgqJHw9JJ8d2ubaDxU4C+U9ahxnVgAht/Go7f11y61qokVcBYjNjg2Jvh4cdeOXcyIk2fjHPzPvzCNyvr4pHuCOd+bz2Z1eGdWG9OWilMKl3Lby4twDvRtFmHvXO+zx0/U4Y9bSo/h8qMsvh89+dlyWT3NhKB9zpt3B1p5f0hu+K8NuxIWiwXBTOzwKpxpQNeeO3QRjK3MLuOFE70I8R6G8mfltyrkTqv7/IbXfg9Tr1nvumG8r10tif8sh4IaTQEJfh+mPoBxzrOrO3gKRvehdiPKi6n5Y9Nx2UUqB5zCU57AS9rJhvVLWWM1kQ/quQvouzX4h+QwSegZqvjEpzbA1Y4u2GKkEyc47y0Vf59t4580YgwnlxvvqalzT6/DOCuYd0xn3s74v/+vjjdvwoopYJDiUE4dy4uxNsffXXmTRd18eFHDsuSfqmWfgc5+bMAJuAMPwMyN4IbvMepaZjdcxw/t+Zjtq2MnhzxRwznehGm8Z084Ntpf/orflfU0ZdSj3XijXItvJ+vYKI+JI5HZE0lYXhWJEbrOMiMcT5wJ741QNFIroaSY1El+TW8ANH9P3aystYCIiFfxoqoqOxFWCTS3QwctM371ldOeSBzOd4qkb/8vCH55cdOzzPdPYozY06nMqB0MZ+B01RNMRzBwRCqdy4TX8BF/oZe+vvECgPTr04jnnwKWXgm9i21kYRg21/hPBf2J/btf9luea8qI8R6E89lq2VQsxI5B83t7g+L+qeN7tkPiPvcGxh8G9P5jv2Bicgui9o1IwYBfl/wSS+Gfxgb6TtWfbFEYiN9scdwvKfcAoz6Z0dE7cxEGLuDEg1t5J4IT3jcu5Zz11E+8cshBnbfGKvi6bLbLGC0M5CDhrSUmKlJkEBIXCZbgxMNj5xjfZ/f9twEhZVxipq0P94Q+wbNn4TrwMlKMZas4puQNFdSklRzJtFfoUiXJKegtE70XS7VhPQU7Lp8zwgecoK9fMzG83k4XZA6l228Ml9cb4vqeeo8B9UGGRasxABT4/dnPSjCkiJsT/bm9w7C+2vldjju68MGHQIq4i7H2x0r1h3PVjnxOXCkdZ92gHM396oq3xrgIdEyYSTuXE6Rj66Lq2J1j0rRdo/tvWoUGLF1vVp7uMXRXnlEPVgjEdzC3Fxzp2LnijEUlbRQeRW8lllCsAfb9HXPtC7Y8BB7ZywoxpoErw5ill7CiglAOCVyHd34b4quwBzvmo4O9RjpljPznN2CAx7D8gJft/xvdzq5m4aBFXEcWfRsxUCuUYH5uA+j9fyaGfn8mLniTdqeJRtl38PUXHTDQa1nSx99deHGxcD8A3vwm/+AW49YWvEpRSiG8ZhK8sPtb/8YKvS8/PIHpH8ZMmn4XQOeB+H9hZdlQ+cB+Cld5b/CFEecauI0feORgBVMMVSOpVJHofpDtA1aC8x4D74IkXddFUFWX4ERW0egcXHdyAGucHj1zo5dSJgxZxFVH8Yhvdvhn3rLHtBAAQ3thBcnOCI94/B0/XFv62dW6RPYQoQjRtFDTenTCkhflXvM78y4Ya18u0aaibb4bjjx/fuU0hlP9TltAwN+Uf5NgFfPmXrCW5wZ6AG8DsBN6D9f0qcrdIvQjpTeBZAvHHC481ZoLnA/bnMcoo53xU7bfGexqa8cB3smXoXAz/R0d7JuWhRdyEQVenjjLv+Ntwz5o25uc17r2Bc75r9W5cHNzMrv4C7vIIM3y9xDF4smfahE938HTGOfD0Z1lw6ZCA48gjUevWaQFXZZSjCdV4kyXUcuF8N6pxecG2TRK9vfQTJ/4Nyp6Pn0RuRdX9HIwCJqnKhwr+RpvnaiYEyv9pK12h4KA6lP/0sZmQZtKiRVxFFFc7iXe2Mn23sbUKOGTzDUyf62HGXKu6zaFg2azXmOnrwaEy84y8jiSzA90EPZYZa1fKzeYJXOAw/R9bOfSE/9D0H6txuBgG/PznsGoVzNaWDKOBcu6MmvYwKngNeE8C9xLwnoxquBHVdH9xh/nkK2WcNVq4rVXG8Z9GOWahmu605peRP6TAvQTVeCvKvX8Z89Boqo9yzkU1XAuqPs+AIKrhusLG0eOIEin7R1Nd9HJqRdgw+n1nK74PHjwGc7GQtMnKa9/mx1ftnbF9e8pDnSdGrTtGLO3CFIXTSONxZCePt8f8NJfRWWE0UQmThb96jV2vG6pElDlzULffDkvGP89pqqOUAd4jswx97THKz4pifYaVYyYq+CvE/D4k1gGm5a03hr56Go1dlHs/mP6YVa0dXTnUdsu31GrdNkZdWUpGqKx1s9ZxVUWLuIoo/mlM9YRx5alMTaUE0wSHAxxVapXwrueuxjymkZo6V8b2mGndSJUCnzO7OnA4UXNiLTn53oyyz3kvEFw3rPBi6VLUjTdC09jnG2pKxL0fJNeWuJPPqiS1E41zLcz4pzIaoSyxOXGQ5AbLQDn5grXBtQjlP7WqPWA1448yGiBwJipw5nhPpSR0RG3ioEXcKCL9H/SR1WaRiNDbA/FhwS6vV6itA5+vfDGXCkdZ8/A2Lro5u6m727D/6OSeQFYjMx/q5L3ffQlXnxVtEZcLdckl8JWvTLjOC5rcKP/HkfC1lNRGyncSKD9EbrRx/FPLn9wEQ0Ss9mEjzWCTrUjkFsR/Bqr2e7qCVaPRAFNMxLW2thIKhejs7CQWi9HS0sJhh5XS17BEijyMJMO9OOsCGdtCIaEnR3AhFrN+GhqF2tryLtD1f76SJWfPxuHMXr6a7orjVmkSUjzKNtcbLTpmtDFiafa4oI15t709tHG33VB33gn7ZYtUzcRFOWZDzflI36/s7WDMRNV8GTCsRvdmgVZZ7gMnVMVppUjf77IF3HAiy8GohZrzKj+XGYb0G4AC564oVdwQXKMB9JLoBGLKFDasXr2aefPmcdhhh7Fs2TKWLVtGZ2cnl19+ObFYbHROWkRrhbd24J4zffDf0WhuATecru2QSJT+DQlv7CC0OcHhR87J+bpDwW6+cNHj+I0Uc9zjK+JqNvRxyMlrMwXcJz8Jzz6rBdwkRdV8vr+CdHrhga79UI23WfltjhmoxlvA+e7cYz1Ho4JXodTUeBYVs9dW5FHCNyBmX/nnSXdgdv8U2XIosu3DyLaTkc1LMHt+abU802iKIVL+j6aqTImrX1tbGwsXLiQYDA5u83q9LF26lCuuuIKVK1eybBxaL3U41jOtZcifrdeml25vDzSV6kpy9/Wc89P3FByyh7+H7pSLdxK5ezJ6VJpD6rdhjNdKjQhzV7zDHj9ZP9i4Xnw+1OWXw2c/q5dPJznK/wnwfdRqOZTeaLUfkgQQRSk/eI602m4N38c5DzXtASSxFok9AmYfOGagfB9GOXcbn19ktIg9BBIpPk7C1tgiBss5d01tRLaf1u/FN/yFbogsR+J/h8bbUI4iYluj0UwIpoSI6+joYMGCBVnbvV4vixYtorW1lVgshtdb5eWCIg8Vibe34D94TwBMU7AbEIxEoZR0/YM2Xc9Lu/iYMafw72coOLhuG6/HArwaDdCdtqwYXMpkZ2+YBb4+/DmqVccCZ2+KPX/4MrP/NOzmsuee1vLpHnvk31EzqVDKBd5jrP8vZT/3YpR78ehMaoIg6Y0ljH2zrB6w0n1+toAbTrod6f4eqvEPZRxdsyOgqKxjg34Ury5TQsS1trbS2dmZM9rW3NwMQGdnJy0tLdU9cZFPY2JLCO+MRqC0KLKUUFcgaZOH/vAOP716H1vjlYJdfWF29YWJmwamgMcwxy/6BtS90MM+571AoH3YMu4558Cll4Ivd9RQo5l62H/ILCd/TRLPD1W7FiLxBJJ6A+XcueRzaHYQ9LLohGFK5MQNCLVcDOTDVT0KZwfTRDmst9gw7K8GltJqdf6zV7P42CYCdaXrcY9h4nOMo4ATYecbNnLwR54aFHBSVwd33QVXX60FnGaHQnkOtz/Yc0TJx5f4X+yOhPhfSz6+RqMZe6ZEJK5Qvlt3t1VJUEjoATz99NM888wzts7n9hcfk4yEcQSGRIhSCn9ACNvIRw7k72CUQSoSY+0juS1FJjqurgSLvvkSzX/bOrTxgANQd9wBu+46que2ksIFZRRpezPKSOzvSORWSKwB0uDczcob834YZdj4kA0/VmojSA8Y01COmaMzYc2ootx7Ia73Fo+WufZCufYs/QR28u3KGavZ4ZhALlQ7PFNCxBWitbWVRYsWFR2XSCTo67NX8TUYUSsQUQ5v2YRn7oyMbXV1EAkXjkQbBtTaFHH1D13Bks/PyWkpMpFpWNPF3l97EV/HMKO8b34TfvELcLvz71gBIgmIrkAit0Oqzdrm2Anl+wT4P1mw92f152IiPT+A6D2ZL6TWIz0/g8gd0HAjylG8ukWi9yPhmyD136Ft7oNQgbNQnlG019GMCqr+V8j2U8HclnuAMQ1Vf0l5x3bMtu8MUagPrUajl1MnDFNaxK1evZr6+nqW2GjL5Ha7qamxdyMf/PwWWIbcZLzMtIWZ7X5cLsW06cLWLbm/A4YB02eAw1l8fTO8sYPk5gSHHzExe+vlJC3Mv+J15l821Lhepk1D3XQTnHDCqJ1WzAjSdTYknxoxnzeRvksgdj8SvAklm8HsAce00XXGD1+TLeCGk1qPhM5FNd1R8DBmzy8t37CRJP6DJNZA3Y9R/tMqm6tmTFHOXaDxLqTvMog9AiT6X3GD93hUzVdRzrmFDpEf70nQeylQuGMLKgDe48o7h2bqI1TmE6f1X1WZsiKus7OT1tZWTj/9dFv5cPvvvz/772+vQfYFP7xssBtDPuJvbiZwaHYE0OdTzJ4t9PVBJAJpExwGBALWMqqd9lsiAiuu55yfFbYUGU8UJjWqB5+KAIJ0ONj1a2/R9O/Q0KAjjkDdeuuoN66X3guyBdxwUhtg6/sRhsqHxbknquZslPf46s5FEkh4efGByWeRxDNWf8Vcx4k9mlvADY1Aei6wfNdcu5czVc04oZw7DfWATa4HFLgWWO3EKjmuYwbiWwbR2woP9J8x6pFpif8bia/qt4xpRvk+YglYjUZTElNWxA14ww33jqsmglAoFJfcGsIzPfe5HU5FfRDqc79clIPeuYH18/1FLUXGixrVzQxjEw5l2ZX4/x6j+fxunNv6vd8MA/WTn8APflBaFUcZSHorRP9kY+QI/5fUi0joq1CzEVVzTvUmFF8N0mVrqET/lF/Ehf9o4wgmErkFVX9hCRPUTBSU0Qie91X3mHU/QKQLYg/nHuD7OKrmK1U953Ak9ToS+gqk1mduD1+LeI5F1V9Ucj6oZqyRCnunFr53akpjSoq4FStWcPTRRxctZqgEMdOoPAJE+p2plVH9XDVJp/nzDe/ws2vsWYqUiylpkmYCE0t4OZULp3IV7dkYUD3MNN6y8gYTQtMlvTRePdQpIjnTIHbD+dQe/+PRnP4Q8VUUXT4qgPT9GjzvQ7mK51XaIl+uU86xW3NuFrPHfkP5+F+AiSviJPE8Er0PzM2gAijvcZbprxpdcT8VkdRGiD2ImNtRRj14T0Q5M4uElHKhgpchidOQyG2QfAkr0rc3yn8qyr3X6M0v3YFs/5T1t85+FeKPIKEeaLgBpSZXnu8Oh86JmzBMORG3atUqFi9eXH1PuBGYYqKM3DeaeE8Xrqb6UTnv/GeuQR3fhL92dP50IkLMjJKSRMb2lCRRKLyGH6fhyrc304xOlALnxhSzvhzC+/yQgOr7gIfOXweRpgfwmz/BMRbVoWao4kNI+FZUsEoizgjaH5tYg8QezlrSldTbeXbIgTkxqwzF7LIinYn/ZG6P/QkcO0HwKpQr28Bbk42YfUj39yD+GAMJRwLQ93vEcwSq/v9QIz53dsyTRaKQ7gTltvrfVjrP8LV5BNwwEv+yOnp4j6r4fBrNjsCUetxZu3YtCxYsyBJwoVCI9vb2qp5LxMz7tBjufBvPvOrbPKQiMdY+uo0Pnzp6uSMxM5Il4AYQhKgZJi2prFf8qo9pRgdulaDmoSjzjts6KOBMF2z5cS2bbmjAbDQQCdMbKZDYX02MUnpf5CH+98qPMYB7CSib4lV6kNBXLRuS4RQqihiJY+JVGYokkK6zsgTcIOk3ka7PIOl3xnZik5DB9zL+KDkzxuP/QLafgZQg5iW1EbP7x8jmg5GtxyBbjsDcciwSvgmR8qLaIjGI3m9vbKRIzp5m/DEr+NFUlSkj4tra2mhubs4Zgdu8eTP19dWNjJmSzrtc2mG+wox3Vz8SWP/QFXzw7Nm2ih/KIS0pUjYu0nFzKH+sVnWxs2MDcxztNMa3Mf173cz6QghHr3VDSe/sZOv9MwidXZPhdhxPvlT9XyAX3mMoxQk/J2KzX5oNlOEvueel9Fw4KGhEEhCzk+PXfz7fR0s615gQe6S4F5q5DQnr1k9Fid4PyWcLj0m9BNG7bB1Okv9Ftp0C0TusHq0DpF9Hen+BdH3B+gyWSvotEHsWTiPz5TQTDyVS9o+mukwJEdfZ2cm6devo7u6mtbV18Gft2rWsXbuWNWvWVL3AQQosp8baOwjsUt0ISGRjJ12dCQ4/ck5VjzucpGnv4pyWFKakCaqtzHS8g0slcW1IstNJWwneMvTE33eSl8gjzQT28TLH4cEz7OOmGJucJ2UEwX9KZQcp19IhD6rm/BId99NIpN9uJP0mSMjmfgb48xthjxeDv0sxovdbERxNXiRye9XGWVG9Lxb+fCWesOxPSqaU77vOh5zw9Od9l/WjqSpTIiduxYoVxONxNm7M3UC62lE4GMiJy62BzXgCp796laMignnXHzjnZ6PbCN6UtP3BEmea0Qki1N0ZZfqPezCi1hfU9MKWC+rp+biPgAH1gGDS5HCwPS3EELyeA0bnl8iBqv0ukn677GVR5atQBI48nnJB8Cqk77eWZ5wdEk8CX6ekqi7VgDIaypjhKJN6zd446YP0ZnDOKz52iiCSsiJgyodShY2vRUwrymaH9OuIGUYZgfxjYo+B2VH8WJEVSM15pfVvdewERjOYncXHuu1ZPY02knodif6pv+imDuU9blQKP8Tshvjj1t/dmAGeJUX/9hrNAFNCxJ177rljfk6RNOSIxKXiMQxPdb+AB7x5Pf/b3U/z3FHuJaqUbSPGgBHGCJvM+H43dfcNRUviC5x0XBkksdAqfoiISa0YGP1LqQ2Gk83UUev7YNWnnw+l3BC8EmKP9FfkPQcIOHaxIlvE8+9szIYqizhrTg5wH4rYFXEDy9yOncCYlrdyNQP32AnlklAu+4afavJeoiSxDoncktlWzfcJ8B5tCfnhY5OvIJGbIPoQlt2NE/F8ABX4TF6bGUvQK0p4MwvPN/aovcNIyMpn7I8miyRA4lZ1cZ48YaWc4P8Y0vf74rMcZ4Nqq1Dku/2V7UPvrUSuR1z7oIKXVaW1nZgRpPei/lzBYRFnYxoEzkQFzqz4HKOGjqhNGCbvFXKcyReJ6+t4C29L9YoaJJ3m0eXv8PM/7Fu1Y+bDoZxZRQtO0jiVSUoMUsOWOWb9dxvzzt2K+42h6F33aX62/KQO8Q3dLARIInj6byBKwQzv0WP+pKmUA3wnonwnWvMSQSmFJJ7Jv4TkmItquB5l1I3OpJwtWBkNNrJ9+41QlXIhvlMgfHXRXZT/k5XNrwLE7ILoPUjiKZA0uHZH+T6Ocu4E7oPs5fU5dp607Z/Mnoshcn3mxsQWJPEfiOwLDdcOfq4k9igS+jqZVjgpy3Ij/ijU/ggVOD3rHEopxLUIks8Xn5BzQXH/Nbs5awBmHxJ/Aon80fI+xARVj/g+jPJ/yvo7j8T/OYj9LaNFXPaYU1Hu0b/W5UMkiXSdk98cPPkcsv10aFpRUZRbJI50fS53PqO5Fem9GElvwqj7YdnnGDWEygoUtP6rKlrElUm+6tQOxytMW5DjAlYmuz59Ne86cRq+wOj/qVzKTaL/ibDOiDHD0UetER+sR+g13WxOBpi1PMKCi9/C6L/npGsVmy+up2+pvUihI/XyaEy/JAb87pR7P5j+N4g9gEQfBukGYzrKdzJ4jxtVsakcMxHPERD/W/GxvqFiCBU4C4mtgnSBZUnvSagSjWIl9YYVqYytspZ2+p308X20JCErkTuQnl+QEeFMrEbCf0D8nwbfJ2yJOOX/ZFFfwomIhG/KFnDDST6LhM5HNV5vveehb5Dfy1CQ3p+DayEqR2RV+T+JdD9fdE62BL0xo/iYgVnFH4fYAyM2dkNkORK9BxquyxJjyghA481Iz88h9mcyfmcVRAU+C4Ev2J7DqBB7tHB3F4D0RiR8M6r2q+WfJ3xT8YKUyM2I94RxFbWaiY8WcWVi5jH7TXRux7vfwqqcIxWO8vRj27noj2OTI2IoA4/ho05tYSdXd9br9d0xFny9g5q/DN2cY3u52HRFkFRL/o+Sc8Qyjkhv9SZdBZRRA/7TxmUZR9Wci8T/RVbHiOG4D0V5Dh7ax6iDxluQnu9D/B9kPNoqn/W71HyjpHlI9H6k+/vAsEhsKoT0/j8IX28ZsNrwbZPoSqQnn5GzabUKUy7wfxYiN+Y/kPsgmIR9X0VSSPi64gMTTyDJF5HoAwz1Ry1w3O2fg5pzrEjV8PZb3qVWR5LEk/l3du1rKyVA+T6MxO4rPnejKVvAZUy2F+n6AkxfZZkODz+HUYsKXoKkv2M9vEjYypXzHoVSnuLnHmXsFooQvQup+bK1TFzqOcREovaKeyRy64QUcbrKdOKgRVyZmGLmEXFdeGdWwZsMqP/zlSwZRUuRXNQZaeY6sgWcd02Cmed14do0FEfvOifA1m/Xgjv//LwoHCOiKcqovofeZEW59oSGayzj21xLup4jUfW/yd7P0YRquMZy6Y+vQsw+K0/HewKqRBNlSTxlmcWSp7DF3Ix0nQnTHi7YU1PERPouLX7C8HLU9MfBMccSPMOT3VUAfKegar85OZO7E08WN7TtR6L39je5t0Mc6fsdRO6GxptQTsvCSCknNFxlRbeiD5AZ0XNan4e6n9kSSMpzEOLapz9ntBA2xJaEIHovBD6b+1yOaeD/WPHjjDV2VwnMLVZeajm5cem3LcsVOyTWlH78sUCLuAmDFnFlIpLOuZwqqRQOT76OBvaJvLmZxChbiuQiaGwnQ3Olhcbf99F4aR+qX7+lGhXdl3+A+DHzIPrnvMdSQG2O4g+nfwJ6l40jyvM+mLEaog8i8b9bvnSOuSj/KSjXewvv65wHzjOt9HZJQfwJxOywxJBnia28HcuPrUhlstnZf1P+dP4xiSds3pySEL0XVfN58J8KiX9bnQGMWivqWKiCcqKTtlF9OXysmf3AVBDzHaTr85ag7r/+KOVF1f8Sqfm6ZQydfAUMH3g/jOFdUtLhVfBKS7Dnq3r1nQbRW3O/NgKJPWgtkU4qSnHdKs+hSyRawugSHAM0OyRaxJVJruVUMatjRy0iyF3Xcc5PR9dSJBcB1TP4/47ONDO/GsL/5NByT+R9bjouC5Ke9TK7NtzLFuWjN3IvI7NVDaDBcOAamdNkNOH0fmgUf4PJiVJe8J+CKtPTTsI352hr5EF8S1G1388bQRNzu2VvYOcc0ftRhURc6nX7803/z6qtVE7wlCY0JjQqf6Qy51ijwXbkbpD069Yyuvf9g5sk9TrScyEk/sngdzH2IKZrEar2Oznz6XJOydEETXdB7CEkcqf1N1UucB+CCpwGIohNEVeNlndjjnvf/hSFIjjmgTG9vHMk19kf69itvHOMNjoSN2HQIq5MTDGzLEbivSFcjZVXMu7X/gfeWBgo21JEBMrLBxcMZX05/X+P0Xx+N85tljAVA7afX8P282rAobCeEIWZjb+nsfZr9ETuIJnaiCSewi1b8KKyk9JVA97Gm4tXyU0QLM+uOCj/hE6wN3svgZx5WHGI3o0kX4HGW3K/7+mt2C41Kyo2SrmcVB6tnpB4loDygxRvc6W8xyKOJiijM4XEHkT1izhJvYZs+2Tu5fhkK7L9DGi4BuU51NaxlXKD78Mo34ezz5t60/4kq9HyboxRvk8iNkRcRUU3dkTiAK69yzvHaKNF3IRBi7gykRwWI5GtnbhnT6vouGYqzaqbN3HBDfm8oXKzPenk7YSHrpQTE/AZJrPcCWa5E7iUfR+pVMKg+ZIQjVcPtdxJNRt0/D5I9H1DuTCGqsPojzq4Xbsxrf4HQ+NjfyXZ91vM5AuAgGrA5T8VZ+AzGI7mkn4vu0jiaST2CJg94JiO8n6o7Abq2dYJQcT3UVTgU1VpBF5NJPnfPAJuGKkXrWrJmvOyXyuQ45aFKrLM6TkYeu35lg0v1JhKKKMW8Z0Mxfp/OuaB5wiUc4FVEWxD9GVgdg3+r3T/pHCXBZJI93dg+j+y/OlKRTl3spk3B8q7NGubSApij1qJ/cmXAAPc+6B8n7Tej/F+WPIcAd4TIfZQ/jGuvSoruinFyqXMa9ioo3ugThi0iCsTq3dqZiSu0/UqDXPm0NcFYoLTDd5hLUNNEcKJFPG0iYjgMAz8LgcehzF48drt6atxLZ2O12e/9cyGqI+3E5nJxlHTwf9iPt6Ju9mrJozPKP6t870ZZaevbqfmuaGcjfBRHjp+E8RszBSstYFT8l5wnd6jcHqPsgyRSaDU6JkUS/odJHReVi9OCV+HeI5A1f+qJHsMs/dXEL52xElCELkeid4NDX8YFdf2cpGIzfykyJ0Q+GJWNZ1yzEace1pCrxje4wq+rJy7Iu73QeJfhY9jzADP0cXPN0lRtd9Bkush+UzuAUYjKniFldPmnAvBy5HQuaUJuf4KVUlugOTa4uPNLZZ1jO8E++fIgwp8zvrOFZxfE4yI5IkZRkJfyE7Wj//Din55T4D6X5VV8VktlFJQ/yvEMdsS4sP7x+LqLxT5SWndKkZi2H+QVY6xzYnWTD6mRO/U8WCkiEspk+j/uuhLTyfUqejeotj2tmLTq9C7HSLJFB19MXoTKRJpk6QpxFJptkcTbIsmMEVIRWI8vWo7H/r4zrbn8XbcnSXghhMTBy+EA0Wj3zP/3MmhJ64ZFHCmC7b8uJZ3bmzIEnBKBQjWFHcTV8oxugLO3G4Zb+Zrph7/B9J1tu2G3RL9U7aAyxjQjYTOQcwSnqRHm4SNGzhYS6HpN3K+pAJn2DiAB+X/RNFRqu7nRXKFPKj6S8b1Rj3aKOVDNS5H1XwTHMP67qoA+E5FNd2Dcg3ZECnPoaimP4HnZOy2VVPe/o4nif/YnpeUMLbwuY9F1Xy9wIAGVMO1WXmY0vP9wtWWsT8jvb+uyhwrQSkHRu23UNOfQNVfhKr5hlXhO/1xjOAlBSu0bR3f9xF7Ax27WPYwE47yGt8P/Gi33+oyda+ko4yYQxYjaSV0+KMkt3ThbMzMAzHTiu7NQARGWCYNkkibbI8maPnzFSVZiojAmwUE3AAR08G2lJNprlTWa0YszbsvbKPl1reH5rzLHN653EV0UXY7KkPVMqvpBtz9HQTGEwnfVLwaMvmcZSzqO9nG8W4oflJzO0Tvg8Cn7E1ytCmp32323x9A+U5Ckusg8sc8O7pQwV+hHMW7JyjnPGi8w2onFP8bGdV1rv1Rtd9CufexP+dJilIeqPk8BM7q/4wmwTE750ONJF+23q/Ef7B1g3POB8/h/f/I/TfNTSljC6NqvgDu/a22YrG/AnErwuo7xcoXG5E2IamN9uxUorcjNV8q2SZnNFBGDdgVXKUc13MQ4tq3qNmvCpwz/svL+ZhAOXHt7e20t7cTDAaJxSy/zcWLF5d8nNbWVkKhEJ2dncRiMVpaWjjssMOqPd2qo0Vcmbw5G2rrrByhkCdByiFWK6ccrbgA6HMi/hTKlfvD3/dmJxvfVJxXgqVIT9pBzLS37NqRcGeJuMCrYfY57wXqXhkWWfrEJzCuuYaZgSQ94dvojdxH2tyGw2ig1n8ydYHTcDrKrMqqIiIpiK6wNzZyu9WBodCY1P9sNxOX2EOoiSLiXPMh/nbxccqXGRUahpghlGOOleuUegNkIN/KBd4PoAJnFbU6yTiVcydUwxVIusMS0QNtt5zzbR9jqmAtmc7L+7okX0S2f2rEsl0BHHNRwauH7I2c9qsXVQljbR3PvT+qv1m9SKpwdDX2ALYEqkSsrgllVmlPFlTDlcj2s/KmMaiar6H81ReQU422tjbWr1/P0qVD+Zft7e2sWLGCZcuW2T7O6tWrWbRoEYsWLQIgFouxcuVKLr/8cs466yy83gqWz0cZvZxaJtJvMWIi9LmSmLEYhrtQVEwh4fwXue23rWLe6aXlCSXE/p8vOXysCHNXvMMhJ60ZFHDi88F118Ftt0FdHU5HE41159Ey82/sOnsdLTP/QWPd1yaEgAPA3GavCTxAar2N43UVH1PO2FFG+YovcQLg/WDOZSAJ34BsXmJFgpLPDRNwXqj9FkbwspIEXMbcHDNR3uNRvg/ukALODtL9HXsCzjHXWtZrus+Kdg7gPjSvOM/EnZWjVk2KLY9Leov9g5kljJ2kKKMR1XSHZeTtPtCKYjrmgu/jqKYHUDVfGu8p5kcAU8r/qVIQLxaL8dhjj3H00Zn3zZaWFmKxGK2trbaO09bWxsKFCwkGg4PbvF4vS5cuJR6Ps3LlyupMeJTQkbgyEdPKiUs4TERBsnMzrhlFeg8mcouu8FMv4Z7XTLSxGbARVenHpeyXCDn7K1QdfSn2/NErzLm/Y+jF97wHdeed8J732D7e+GO/8MPWs8rwVkZFx5bf+LrqeI60WlQVyndSQVTgnKzNEr7ZEm85iUHvLxFVpyMCo4TE10Bqg62xqv7i3L1TlQE130C6v07Bu2Pg7Mx2XWNNKcujavyXUscCy8rlgyjfB8d7KqUzAZZT29raqK+vzxklW7hwIevWrRuMrBWio6ODBQuyq4C9Xi+LFi2itbWVWCw2YaNxOhJXJpJOYTiGNHCiswP3rGItWLLzGySVIvTwfwiefBjbkx4e395MV9Jeu6F6Rxq3TSE3w5Wg7r89HLp0baaAO/tsWLt2kgm4/rY9Dpt5ee7ivWeVcxdw7mnv3L6T7J13DFDKQAWvAs9RuQc45qEab86M3mC5xkvfZUWPL32/RiRfc3ZNJUji3/bHxvNX/Crfiai6X1r+dFk4IfAFVM1Xyphh9VDe422OdII3M7IiqVeR+D+Q+BrbRUqaUUak/J8qsX79+rzCKhgMsnnz5sEcuUK0trayYkXu1JzmZiu3s7OzhE4sY4yOxJXJQGGDyzRAILGpg9qDDiy8kytbcPX85WnqDt8Hw+0i4O3lpXADbZF6jml6mxZf4WUWpWCuJ87/YoUrQD2kOeDW13j3/9uAI2l9iaSuDnXttfDxj2f+XpKylguVO6t59URD+T+J9P7Sxjh7nk4qcCbSfX7hQcY0mGAdJ5QRQDVchSTbkOg90N92S3mOBs/hOdvDEX0IpLf4wc0tEP8LjLgJS+rNoRxC157aCqEsShHHhYsSlP+j4D0GovchyWdA0ijX7uBbllVkMB4o1562kvnxHjc4X4k/jvRdAcnnhx2oAfEvQ9WcZ6sfrGbq0tnZycKFC3O+Vl9v3bu6u7uLRtAGhFouBkTgRI3CgRZxZSPpFMpw4BBFIOWkc+tWXNMKG/2qQOaF2IzECD/1MrN+8BkUQtBn2XukxOCxbXP4+MzXqXMWvtDv5I4TTjvozBO9q++JccbP1zDnL8PyTA44AHXHHbDrrsN+nw4kfKNVedlvHCrOPVH+08F3cm4hMN74T4XYY5B8Ov8Y70ngtldhpHwnIqnXIHx5ngENqIbrJmxvT+VagHJ9z9ZYSbXZPq4kNwxGUiTZhvT+X397p4GHEgPxHIaq/faEy32T5AYrz89onHBzU47dbKcHKRvV4MqohcCnURRojTaOqOBvLUug9MbcA1zvRdX9DACJ3GtZkox0lZUuCF+LJJ6Dxhu0kBsvqhBRC4fDXHPNNUXH7bfffuy/f/ZqSjwex+Mp/Pfv7u4uKNKAggUQ3d1Wb+NixxhPtIgrEzFNDKf19gXj7sFCh7x4Uyh35gWp697HCX7oMJShmBXswekY+mKkxOC/fUHeFyyc5KsU7O6L0OhM8k7CQ3fampNLmez7QgfHf+sZ/JuGWYV84xvwy1+Ce0j0SXI90nWGVSwwnNSLSM93IfE41P8GpUrJQxt9lHJD4/VIzy8g+gAw7PdUteA/HVXz1ZLK9I3aryDuAy3rhPjfgGS/dcJHUf5TK4pqSHozkAZjWsXO+RVjw3F/gIGkdUm+1F9JOTKCZ1qefInnoPHWwU4ZIulx+8xI5F4kcmNGUYs490AFzkT5sjsJjAu+46H3lyA9hcepessId5KjHDOhaYVlDRRdMVTA4JhrdWwInI5SPuuBsudHFGwLkHwK6bsaVfvVMZm7ZgRm5SJOROjrK+65mUiUvoQ+IO7sLKcWorW11VZe3XiiRVyZiJnC6Bdt0tOHq8mH0yWkkpmCQRDwCOIzIWmgnCZKQWLTNpJbQ+y0/05MqwkR8GR/UF+N1BUVcWAJuWZ3kmZ3krSAmYLdr3mdd/32NYx+my5pakLddBOceGLm/CSJdH0hW8ANJ/YwOBdAzZeLzmWsUcqHqr8Qqf0GxP4G0m2ZzXqOKrlHq4gJmCjPgSjPgf3bkhUJLpEERO6wWiul/9c/6YE2Xp9FOYoUw4wCEn+ytCbc/Qn10v2twkuw0o2Evog4duo3dU0jjl1Q/o+D72MVm6Taxey5CCI5PP9SLyHd30DCy1HBS1DOXbPHjCFK+aDmy0jv/ys8rua8yjoETCCU0YCq/RpSc25/dbkCY3pGpF8id2JrqTl6l+UpN94PRJqyUEoRCBRf1XC77eWIV5vVq1dTX1/PkiVLxuX8dtEirkwknUL1Fzb0db6Nb9dmmneFeFiI9lltt+KmSdJh9hdSKsyUA6eYtMzazguXP8TeXzqYhqb8dhWRdOlRDP+WOHt9/b9Me3L70MbDD0fdeivMyZG3FFsFZvGKWIncCoHPT9gLpjIawP/RkvcTEYg/av1+iacAs194fMwq969AeIjEka6zsytHB9p4xR6Exj+inDuXfY6y5hW5xf5g50KU+wD7lZTpN62fwX+/blXARu6ExpusaMwoIvHHcwu44aReQLaeCPUXj3uRigp8FiSG9F1OtnBxoWq+ggpMzOXRSlDKCfk+C4nV9g5ibrH6r06gNng7DFJ589RAIMA552RXzVeDeNxalSk3l62zs5PW1lZOP/30CZ0PB1rElY2ZTg9Wp3bIy8x4984oZfVK9fbf90UU4ZhBX9Qk0Z8OZ+CgZ80r1O9cT0NL8VL6zQkPM9zZnRNyMe3xbez19RfxbLduBmIYqB//GH74Q8iz1Cuxh20dG3Or1eLJc4i98ZMAkTTS/Q2ro8Nw0q8jvRdDZAU0Li9beFi5YwWsP8xOJPQlaHpozJzZRaylT9vUXWjtl3iyshOnX0e6voSadm9lxymChPN1nciaENL9XXDsNO4dJFTNF8F3CkRXIP0t5JTrvVb00lE4z3ZKUlIFanWqVSW5AYneBsl+bzHne630iYnagH5cqbTKdPztSYqxcuVKli1bluEdN1HRIq5Mhkfioq9vouakQ7PGKKWo8SlqfAYiYn10k8Lr9z7LXhcVN970OFKsj9YUFXEqabLg16+x2zXtQ/ObPRt1221w+OEF9sRafrRLsdydCYRIGlL/BTNqtTty7pQ9pu/32QJuOOn/IaFzUU13l35+sw+i9xQfmHoVEk+CJ/vzMzokyWiFVYTBHp/VsBlJvYjE/4PyHFT5sXIgkoTEE6VMCAnfgHL/flTmUwrKMR1qvlS0c6okX7KixrG/WN0NHLOsXpz+j42vD1w1cexkz6AbZdPoOD8iYlW4R27KfCH5AhK9DfF/ClX7w4nb/mo8GDD7rWT/KlBfXz9YeDCSgVy4gSrVUlixYgVHH330hC5mGI4WcWUiZnqwsMGMRHHWFLb5UEqhgHlrr6HllOn0eIotlQpeZ5KOhJe4aeAxcoevfW9F2fu8F2h4fpjAOuEE1PLlMN1GdwWjhCf9UsaOEyJJCP8BidxuWW0MbHcfBN4PQ+ply+bATEHaxvJgshVJPJXTaLUg8cetm6ydOcf+jBojEaeUBzGaCudADmA0DeZiKefOVbn2SuxPoybikDgl3yHif0XMvtzdLEQg8QSSeAYwUc53g/focUspkPAfkd5fkJHwn34D6fuN1fe24XrLVmSSo3zLkPhfig90L7HVz7cg4cuzBdxwIn+0DK91AcWEo7m5OW/hQrlVpatWrWLx4sW0tLRUPL+xYgL6RkwOBsx+U/EYhtdemXsqEuP5f3TxyY81U++Kkv+GI9S5YjiUAIq4mfvPNPPhTg49Yc2ggBOXgfmLE5B7f2lPwAHKZ9PzzDEXXPvZGztODBRpSN+lGQIOsJY1e74DkeXWkkn6Jez6dEm0jLYrdjzYBjBLGFsNfDb7UvqG5Rh6PwiqCtYq5vbiY8pFBUAFS9wplXNOEv83svVopOssCF8F4WuQ7q8hWw5Hog9UZbqlIPHVSO+F5K3YNLcgXWdZEeDJjudwcO1bZJALVWGhlZh9SLhI/iRA5EZkrL+jE50JYPbb0tKSNxIXCoWYNy9/z+JcrF27lgULFmQJuFAoRHt7e569xh8t4srE7F9O7X37Dby7zra1T+OjV3L852ZjGIoGd5ygO4rHSDIg5hSC15GgwR3B7Rha8nKPiMIZsTTv+eHL7PulF3D1Wsl20uJE/jQHPrcB6VqGue1Ue/0K3UvAmdswcTgqcGZFXnGS3oak3kIkWvYxihK+vsTlNJuUIzyMEnrMjnE/WuU/DVSR1mGqwfIIHPinEUAFvlj5yY1g5cfIg1KqvMbpI6JwEl9jibdcfmbmVqT7W0hkdHP7RiLh6ygaZTQ3I9E7kPANmKFvY3Z/D4ncg0hlNgtjjVIGquHq/A+NKoAK/r7yXMbYQ9jqWysRiD1Y2bmmGhNAxC1YsIBYLEYoFMp6ra2tjb32yix4icViecVYW1sbzc3NOSNwmzdvLmtZdqzQy6llIuk0hsPBO4kXmLnPu4qOj27aSrQ9xpe+vwcAO3mi9KVd1Lrj1BJHxLIKGcl0VwzvMBEXeDXMPue9MNi4HkA+VIP83wyoG7ZEm3wa2f5paLrLMgHNg1IGNFyLbD8D0q/nHuQ/w3bXg5FI9AEk8sehhGG8iO9ESxRW0XxVJG0toY4G5fRK9Syx+rHaEIBqFBuT5zyfYyY03mBVzppbswcYTZap8YiCDlXzeUuEh6+mlLy6jGN4R7dPpPJ/ConczYBhdVHcB2XlkknvBRSL0krvL8F3vGUTMspIelO/ZYsNei9Bhok9id4DvRdB3c9QvsnjNaeMIDTeBol/IdG7If02KC/K837wfQRl1FV8DslnOpxz7JtF8xU1Y4vX6+WYY47hiSeeYOnSIe/HgZ6qI/uhrly5ko0bN3L00UdneL91dnaybt06Fi5cSGtr6+D2gaXa9evX86lPfWqUf5vy0SKubARlGCQ6t+ObW9zry3HPdZz5naGI127ePtoiNaT7g6H58mYX+PrFmghz797EHj95BWfUEnXiUciF0+G0utwHSL8GkTug5uyCc1OOWdB0D0TvRaIrIPU/UG4r58R/alk5TCKC9PwAoiOLAmIQvceqig1ehfK8r+Rj5yT1MpibqnOsEZQjPJRyg/8MK1+pEO73WZWIORCJQeyvYG4GVQOe96McTSXPJef8XO+Baasg9idrudjsAqPBMsL1npS3K4VR+1XE/zHLy6u/khLXImtJOHpz4ZM6F4B7dKublWOWZQC9/UxbQk75P5Pxb0k8BXa6WUiP1bqsjMifmH39Pn0pcOyS1dc2Czv5i0NHz7GpG+n+utVKz/uBUqY6riilwHMIapQq4pXylZBBqTtDZFDFiFolLFiwAI/Hw+rVqwkGg4PCK1cXhpaWFjo7O7Py5FasWEE8HmfjxtyifiJH4UCLuPLp/wynI3Ec/sI+Mvu3/4H1sz3M2XXoxuhzmBxcv41/dTcNCrmR7OnvZrYnhqMvxZ4/fIU5DwxL1F9Yg1zTCAsLX1wkegeqiIgDrMTuwKer50kVvT2HgBs+sQgSOhem/606PVpHa5nW+Z5B49+SCZwD6XcgekeeY++JCv42a7OIQPhKJLx8RPWwC/GeiKr7cVWMc5URAP8nUf5PlrafYxaq9msj5pxCzE6IP5p7J8dcVPDKManyU673wvS/Wya60RXkXYYMfBnlPSpzW7I199gcSPIFFPZFnJghpPdSiP1p2DKeQtwHW51F3Hvn3lFVHnUC07K88RylKy0H8BwJfb+zNVR5jxzlyUwyzMp94qpFS0uLrUKExYsXs3jx4qzt55577mhMa8zQOXHl0n8dlGQShyd/tVo6GueR5e9w1jey885muuN8oGEzu3r7cAwmLAuz3FEOq9/CuwO91P23h0OWrskUcGeeifx5ZlEBZ03gTcS0kfdRZSRcoOJrcFAvRIdyi0TE8mtKrLOXzzccx1yo9oKHY2dUw5Vl766Uwqj/OaphOXiOsZLuVQ249kHVX4RqusMyKR6B9PwI6bssh/1LEmL3I12fGd3cwjJQyokKXoaq/1VmUrox0xIoTfcUjzhVcz5GAKP+QlTTPVZRBgPfUQXug1HBazAqrji0H40wE88jW0+2Hm4y8rAEEk8i209H4v/Mua9yzgPneyqbKkD6DUj8q/LjTBGU6z3gspFX53ovyjWxWy9pdlx0JK5cbF6/d/rPtex76kw83tyWInXOFPvVhtinJkRSDJzKxKEAEVqWv8nuv9yAI2mdTGprUddeCx//OHS+m4K9BYczxv0rJbk+f37dyLGxR8D/aYjc1N+aaiCkbSCeI1CBL+SPUAxDOWYh7kP6G7NXiGqwIlSBz1Ul90Z5DkZ5DrY1VuJrIHpX4UHJFyB8E9R8oeK5VROlDPCdhPKdhEgcJFlZx4vkS/09bP9hRVodc1G+Zf05UfaOq1x7ooK/QcyItbyqAoUjvyXcrO3c2CX6IBK+3vIsLEgCCX0dZjyRs6m7CnwG6f627bnlJdU2pQy7K0XV/x+y/dShPq4jMaZZDyaaTCbIcqpGR+Iqp8DSRCoS48UnQxz7wWyj2ZEYCjyGJeBcoST7ntPKe37WNijg2H9/1HPPwSc+YS2HFC3B78e559j3XSzFFDjdjYTOtVozZSQamxD/G7L9NCS2ytahVM0XKf+5ZNhXQbosr7nei8Y8iinR2+yNi9xhGRpPUJTyVCbgwtcj2z5sLcmbW63oVWo90nshsu0kJGU/KR1AGX6UY3bRpXvlPsDK3St6wDrwFc6VNHsvs3LRigq4fiRk5dnlOp3vZPCfYe84BRm9BzoxI0jqTWQ0bWSqjHK2oJruAu/JZOa9ucH7IVTjXSjnLuM0uwnMBKhO1VhoETeKTPvLVRx7xiwMw/4yX8NTIQ494T/MXDXsyfD88+HJJ2G33QY3Kf+pto5Xar5TVTBKaOquUhD/a4EBSST0DVs3BuU+ABW8lPKSkEdGNRMQvRvp+tzYWjTEn7I3znzHyrebAojEkPQmxAxZ/449arU9yxfuTr+FdJ2JlNSeyT6q9kcMLb/mG/P9gg9HEv8XhK8o+dySeDzva0bd91HB34N7WI6m8oGrBCPqUk2rbSDJ9ZihbyGbD0S2HoVsPghz2yeQPIJ0oqEcczCC/4easRrV8EdUw82oGasxgpegnJV1hJiSiFgdG8r90UKuqujl1AqQAh/G+JYQb2+IcM637Tmo15hx3nvNqwR/vQnVH2CRpjq48WbU0hyGvN4TLJ+jQgLIfSj4TrZ1/mqinC2Iax9IPld8sGknahez+pjWFG+WrLzHwvT9IXoXEv+7dfz065SSv5RB8jkI/7FohW+liJhWGzAppRJx4iQXl4MkNyCR6yH6Z8ASyuLcA9I2jDXT7RB7rGg0zPZcUq9bolgFwL0fquE6pOdHkH4zc6DRhKr9jhUZAyS9tb/n6YuAspb+fR+1bHXKmkiRFnveY1HeYxGzx/IvMxoAhWw5rLidjWsflOvd5c0rDxJfjXSdy8Dfb5Dks0j3s0jyGYy6H1f1nKOFMhqg3CImjWac0CKuAtLxGIbXnfM1933X8JlvLrRVCfaubVuYf34b6omhZHU5yIdc0Qgtd4B5ZFZullIGBH+H9P7KyqEaniytfFbeUO33xrRFkJhhiD2AxJ/EVq9NY4Zln2Hn2PG/oGyIOMCy4aj5Iqrmi5i9l5UVEck4d/QOqNDsuOg5en5gr9fqAKoeRvi4DR4rtRHMTlC1SHqblUyfWAukwPkulP/j4P2gZYMyTkj8n0joy9lVxamX7B8jeh+qDBFn2Yi8BjgtaR+922rFNoDRbEW6mx5GJf+NJJ4F0sPablnvm/RdbQnvYZ5yEn8Mei/DbjeQLBz2ij+s68Gwa0LdhUjoPPL696kaVN1Pix5XxITEaiuSSBLl2AV8J+fMDZX0ViT0FbIE3HAityDOPVH+jxQ9t2byIDK5HyCnElrElYuCZDSMs9af9dKB71xPa52DnXcvnhO0+z/fYpfzN6C2WhdfUcDXG5HzG8GhIPkMEvoqqvHG7CkoF6rue0jNeRBfZXl9qSB4P1CVhPxSkNgqpPs7IDbb/hhzoPZ86P6mzROUWY2ZfLq8/YaTftNq4+Ww15mjVCT+r9IEHFgifUQCvMT+joSvyRQkI0k+h3Q/B5FbrV6bo9hBIR+S3mYJjkorbG0+AAyeN/Z3pO9XkCrSM9fstFq3JZ+D4JUYnsOzjxW+voAHYOFoWiGU/2Pl7ef9ADRcY+WWpl7NfNG1L6ruJ0WjcJJ4Dun+VkZuqgD0/RoCZ6FqzsvcIboCO/2BJXw5+D6EGuMCK80oYuol0YmCFnFlICIow0ky0odjhIhLRWI8dN3bXHjDfqQkRdKMk5IUIBg4cBluXMqNkRIW/OY1dr16aOlIZjqQK2bCwSOEYeJJJLEO5c5sIzKAMmpgjF3/hyPxfyGhrwKpAqMMwAfOuSjfKeD7CJgh+4ucxjTrXMmXIfmy5Sbi2hfl3LnI5ArNqQRGsYhAIvaKGQYxZqICZ2YeI3xLf6cBm+9o8gUkdH7Oh4NRZ2TkuFxK8E+T6J+tIoNSlqDj/7Cao498r80w0ldZdDcn3g9W1MVEeQ5DeQ6zIo3JV0AZ4NoP5Sqe0iHJ/yJdn80tyiSK9P0ekThG7dBDl8QesTex9FtI12eg4YZxjf5qNFMRLeLKQMTEcLr7RVyms/3sf17DQZ+dDZ4E0XTmE7lJmrgZxfVWDwd9/XUanhvKB5Oj/Mhvm2Fa7j+JRO/JK+LGG+m7lMICDsAE17tRjbcMLUsatYhrf3vRMnM75raPQfL5YRsV4n4fqu6H+W9+roWQfKb48QuhguBoLjqsbEqJFjp2QzVcjXIMFY9IckN/c/QSn44TTyLJF1GuPUvbr0Js3/yLoLzH2TufGUZ6fkg5OYQSuQ38n81cSo89aD/ibBfPsaj6/1eVQyn3ASUXMEjv/xWPqoWvR/ynogYi0lJCU/jEWqTn56j6C0ual2aCoosTJgy6OrUMBBPD6WJr8G0cdUNRs3Qswctrejj0qGkk8yQoz3m0iw+c9OKggBMXmD+Zhtw8O6+AA0atpVSlSPKV/hZCNkg+DfER1Xd2BUTqlRECDiyj1H8h2z6BJHO3SlK+T9g7fiF8Hx3dCEIJ+SWq4VqUM9OdXCK3Um6Rg0TvL2u/iijl5p8PVW8/+hz7U/miK/1mf/7cEDLi3+XjAO8JqKa7MRp+n9MfbiyQ1BuQ+I+NkWkkMqz7iDG9tBNF77MKQTRFkVQ7Zs//w9xyFObmgzC3fhgJ32y1bJsImGb5P5qqokVcGYgIhstDqruPpllDvSzn/PNqjvpkM6kROTEuhAXpKB+84FUOPfc1PL3W0lyqpQl5YCf4QoNlFFcIlZ17NyEo8YYmI1tQpasgTqXHKgzIgXLtbi3dlosxExX4XPn728HGcheQFRGU9FYk+ZKVD1kuif9YnnNj6e3VvzReNiqAarjCtg+d2G0en5cRifulFAvl+94aTaimuzCCvx3/bgDJl7C/DD9UeKJKrnxPWhX1moJI9D5k6/EQubE/H3c7pP5reSRuPREZmfM4LpPUPnETBS3iysAUE8PlJhXqw9VQC0CyN8Ira7s56oSZyLAL4ixHkg++s5W9P7KBwM2hwe1yUg19j7bAPvbyepTn6Kr+DlWj1OrX5MsjNlTJ6yu5DknmNlVVdReC71RyGp0azeDaL/cxnbtby7+OEiMOJWLby89/Ckq5kcTTmF1nI1sORbadnN9t3g6pNqTnx8jmwzC7f2R1WhhlSr/5D8P5XquFlzu7B2JeKspndIAxK2OLcpdgQxG80qoKde0Ljl2GigymrbJ6vE4ESumlOnxZ2XsSGLkrpPMhlXxWdwAksRbp/j5501PMTcj2M8ellaJmYqJz4spA+kVcOtSJO2iJuIZHr+KIs+ZYCff9Gq7JSHHInzowvrcZFe1vneVRyIXT4bQ66pTNZSWjGbzHljA/gcS/rQRnBOVc0G+NMAp2I+79sYxR7VoqDAkpSTybXUlXCYn/gCu7x6RSTlT9T5GacywD31Q7KA/Kc1h/Q3AnknoVid4H6U4walGe48pvfF8qnqPBfVDhJS1jNsr/OauNU/e3KZ6DWCoJiN6JpN+ChmvzflYk+V+I/x2RKMox10rGN2pLO5X3Q9Dz0zLm6Ec1XocyGkvbzfkuiD9axvkAz5Eox4jIoXsJOFqK+9k598DwHAwcbNucu1Qk3dH/md4AOCxx6z0JZZQQuXfthfU8X3ypS7n2Hvp/IwCNNyDbPmZ7uVqpwh0zdnSk71ry2sQMYG6yUgTGw8gdQASpZFlUR+OqihZxZSCSxuH2ku6J4Qh4ObJ3OX/ZlmTJ4bNJmZaYcfalOfjC13HcM9TEXBa4kWtmwu4l5L6oWlTwctsCTBJPI90/yOhdKgC906H2W1lREEm1WzlKxjRUHt+xgtMzGhHPsRB/0N4ObqtdmEQfsuwMqilGinjTKccsqDmPXHEH5ZyPqv1W9eZSAko5IXiVZdESX0XW0pbzPajg74C4NabqAm4YiSch+ifwfzRjs6Q2Wn+vYQbO1ufqYsT/GVTN12x5IoJ18xfXAZC02Z0CQPlRwStKF3BYth0SvoqiN8cs3Kgc/WmVUlB/cX81Zx6bFFWDqv9lxiZJbrDaqg1EjF17W1FYY7qVL5Z80drVvVe/EMu/XCwill1K+EaGfx4k9iD0XgL1F6K8x9v6LZVjNuI5AuJ/KzLSBb5MCxTlnI803Ajbl9k5U0kPo5UgZgii91rpBvSLT9/JFbWCG20kvdV272eJ3js+3XgGJ6CF2ERBi7gyiHiEGo/VcseMJ1nxm4385Jp9AHAoJ8H/Rjjka6/hf2NoaUpOrUMumA5+uyvYHvAej6r5Asq5q609JPEssv2z5PSpMrdYERxJofynIJF7kchNkBpY3lSI+yBU4POoEhtkq7rvI1tXY6dnqvKfiqTfHp1oUgX2DOONMgKohsuR1P+sYgNzsyXgvcei3PsDYPb+irJNZEtAIreihok4SW/qbxKew5dNIhC+CpFuW2ayg3iOtC/iPMehar9Stv2GcsxEvB+F2F2l7IUK/j4jX00kbf2+yo9y7wuNf0R6LhpRXazAfZBltN2f6ygilv1L5JbMUySfRyLLsS7Dw4XYfZYQq/1eXt84S8Bdl3vq0ouEvg5BL8p7pL3ftvY7VmRcQgXGfCM7KgkY7r0wPYdnFy2NxPN+lNOemXElSPgGpPe3DM9llNifLL+7Au8pgEiq32/TaXVwGEvMzdguUEp3jupUNJMHLeLKwCSNZ3otbFXM+OuVHPjZ2dTWu0CEnW9+i91/MdS4XmoUckkznFzCkpP7UFTwtyUb9krPBRQzGpXeXyLJ5y2vrsxX+pdg10DdT1F++1WdyjENabwHti2loHu7akBQsP1Mqi5GjGZLGEx6nCAJy+eLFGJuBkmgPAdDrNwChmFr/HZIvYhIEqVclgDp/n5xY93IbYjv4zkNZUXikHgWJIbghfCvIdlqby61P8MIVBZxkPQ2SP6r1L2g/2FGki8i4eUQewQrh9ODeE9ABT6D0XSbVRmd+i+grO4EjkaGX1ql79JsAZdBjocZ6bdFUU7UiMIcSW/uj8AVIo30/cq+iHPuAk23WVH8ke3yjGmomq8UvCao+ouR7Z+GVO4qcZy7V81CpRASvtkyPM79Yv976kH5MlsZSrrTeqiN3D0oZMW5h7UM7vtoUaNikQTEHkWi91jFWioAnqPAdwzKmGUvAqhKiBKOd0RRm/1OGKaciGtvb6e9vZ1gMEgsZgmKxYtLSIK2galMQs4oytPAc0/18bnz5+AKJXnvd15i5mNDibuylwe5eibsXKI9RfK50gVcYl3/jaTYwL4cAm44JtLzM3DvnxX5EDM0tBTkfFeGV5kynEgxYSZdsL0Klh85ULXfsOUIL8kXkNjfgRjKsVNJOV0iCTBDViRmFC6iEr4e6b2EjKfxVBsSexhxL4FSkpkdc62br/dYq5enGYGtR5QyGysC13V2/htz1vyvhfqLh9pSScxqSxVZUTDCk3v+86DuAgzP+0rbL+e8/gDpt0rcywCcSPReS9hkLMXGIXaftXRZfzHK90HEMQ0J3wy9lwwm74tzD6t3cXh5+XPv/RV4l2amU0TvxlYUO7UBSTw9GMkthnLORzXdaS1BJv5lpSc4d+nPGy2czqGMRmi8AyJ/tGxIBiyRjDmW+POfVrXvjEgcog9ZEct0p7V07T0acR9uRTCL7d97CXhPtNIYwMqH3X5G9oNK6iVL9EX/BI3LB8dnHS/9NrL9TEj/b8T+L0L4MgQQ5+6WQbf3pMG0A0mut3wI46uBuPWZN2bZs5PyjM2ydF50260Jw5QScW1tbaxfv56lS5cObmtvb2fFihUsW2YnZ8Mekk5hRmM4m6az5fU+/nt3kK9e9iC+TUNRMPPcI0h/cxMOTxkf9iIVgmL2WG7y0mf1H/UcZt+rzRZpJHwTeI4A6UNwWeeLPcxQpM+JeN6Pqj0f5dwN6b2C0nOOqoDyWUtXRSoeJfVGf07X0Ptk5XRdhPg/i6r5at6cLkm9hoRv7Dd5tQxRxX0gyv8plPeYqvwaZvgm6L04/4DEE5Y3mi0MVNPdg/ljknoDIndYPXXttLpy7AqSsG5sw3IrixJ7CIk/ifg+DN6PQPdXStt/AN+ZKNfOSPwvmPG/WyLEc1ROkS5iQvwfSPTu/gb2PpT3KCt6YjRYwrvUlmYA7oOtm3iWgBtOEun+DqJqrUIN8+3Ml1MvQa/9XrA5MbdaEVjfCYObpFjbsGFIYh04d4fYg/3WFE6rutZzeN5ewMq1B7j2sHd8SUJsFdIfiVSufWHaX1HSZQ0wmgbPY0WrHra6rijDGus5suDDl0gK4n9F4n+3Pruq1hI9ZkfmuL4XgUttzRlzs5X/5z0GkTTS9cXCkebkWmTrh2Da/VliViSObP9c8c956hXr+hP/B9T/GiI3WgbLwyPkpl0PPY/V/1ijYQqJuFgsxmOPPcZZZ52Vsb2lpYXVq1fT2trKokXV8WOSVJpUby9Oh8F3kwm++f37cPZX60hTLfLbBvjA27kMLezh2Cn3eSWK9Pw/iN5PxrKl0QTOKndziN6FRO8sMCAF8ceQxD8RxzzLjHescMwD13tQrn2sHqJFopbWk/Jpua04JArhKxHpQdX9OPvl+L+Q0JfIcrNPrEESaxD/GRh13y/7VxGzG+n+KcRt+GdJd/ExAJhI+Hqo+SbS+0uI3Ewpy6nK/0mI3lueAJOQ5W8VqaCdV/QGJDo0X4kst6ws6n+J8hw6tD29Fen6vBXxGD6F5DPQdznU/wacu5YeBaQ/dzN8E8UfTJJW/1/bf5vSkVQbihOGbSnhytL3f0jfr8nIuYvcYEVq6y+2ujuUO6/og9bna5j4ELD6Itf/zKr+HjznvUjvxVY0PmPsbKj/ecbYwdcT65DQV0bH6Dy1ATjGEnPFqowB0huQ7p+ggpnFKkQfKv1BR7D3fc+JCxX8dVlFaNVE9HLqhGHK+MS1tbVRX1+P1+vNem3hwoWsW1e9SJVyuZhpprl7zVp+tL5tSMAdugh5bBp8oDLndeXPjhoOPvFF7yAr78zcBolilWWlYvNLKpGxFXDug1HT/owRvAwVOMPWsrP0XlbcSy1yC5Jcn7mfuR0JnZst4DL2W1521wMx+5Dtn6rggl6A8HWWcI3cREn5cM53g28ZEl1R/TnZJsd8zQ6k6xwkbtmwiKT6l3pfzB4LIBEkdJ7VUaRUVAPiPqg/B87OdEdPwFlkXqZL8qlDyLn0mn7L8htLlHddlOhKpPsbuaNH5ttI1xeQ+BPW2MjdSM93MwTc0Nh3+sc+mXn85Aak64xR7FRjCWGJPWx/l9g9SDoz2irRu0s/tV27G8fwzixOq9Ct6Y6qRf8rQszyfzRVZcqIuPXr1+cUcADBYJDNmzcP5shVyocXLeKJfz7J4ZutELypFNedeCJy984wu8LgpjEbfDmWfiN/rLwH6GTGuQBV91NUw3UltcASM9S/DGxjbOT2zA2Ru7HjfyVl5jxJ+PrRFcCl9GQFq6Cm8UbLYyz1v+Ljx5ykFfkBiP/FRg5o0oooGjOKjBuBdEH4DxQrEhorsqJlvqUlLK0XIob0ll5sIJJAeor16k0hPRdgmpH8hQYZYzN7qkr4cpDRM7SVAb87s3hF/bC9kMgI0ZZ+p4yz26zKd+6Omr4aNe1h1Ix/Ww+uE8EgWqxIXLk/pbZ41hRmyoi4zs5OgsFgztfq660LXnd3dZ6Y7/rb35jWZ93cO+vqOO2LX+DqE48FGdmNIB95RIhjp/6baOYFWsTMFhh5KeLVNd4tfuxi7AQ134Fpj6BmrMGY9iDKf2rphsWpNmzfjEdUTNp+Sk+9ZPntlYBIEsY12jUMzzGoppUYjTcM+bCNZq/YSki9YlnpRGy+d4nV4D2x9PNE7wfGp5dpBo5dUSOKO5TyVq+RfPLZ0qOVsYdzR9VGkn4D+i7DjvUQ6deGoqzpbRD7S2lzKhE1kBuawzKlIOk3RxzIV50J5cLsRDlmopy7Zd0TNJoBpkxOXDwex+MpfNHt7u6mubk552tPP/00zzxjL9J1Tv9//7H77nzz1E+yvaaG/YIlvJWufVG+pUjsz2B2g6MJ5f0QeI/JHWUyN2VfPPKh6sCoza7GU0FU7TfBtQjZtoyJEmXIiWsfjKZC+XhjhJ2bz+DYEh8Q0huL23aMEcq1COVamLnRfQjEHxufCRUj+VIJ1aYmeA63qi1T64sPH9ztHfAcB3GbS6qjgjfLMHgA5T0WsVvJWIzkS/b79wKSfMH+sRMlrB6k/gueg/qrPEfXD1HMLhSgvB9Covfa31GNuMd43w/h0vpH2z/XxDQm9tS5OOL75edge+pGoXPQDsyUEXGFGBB3hZZTE4kEfX32Wsfceccd7Lbbbhyx//5kLlh9saR55cp9yznOMQc1057Ng63jzSzhIjzKPP300yQSCdxuN/vvb88KoRSUe3HZ750x/a9Vns0QyrlbVf+mA1Tr/TQaLq/irKqPCpxe2g6elWWdZ7Q/n5VgzChirjta5637IdT9sKx97byfyn3AqHw3cp7L876KzmXUfgvGqdMLjM/nUxkKb3ACRKk1wA4i4uzgdrupqSn+5BMOh3nrrbcIhUIT7qI+GXnmmWfo6+ujpqZGv59VQL+f1UW/n9VFv5/VZSzfz0AgMKGPt6OyQ4i4eNxaOsxX+ACw//772/oSXHPNNbYjdhqNRqPRTAVOP73E6LdmTJgyhQ0ajUaj0Wg0OxJTRsTV19fnrT4dyIUbqFLVaDQajUajmexMGRHX3Nyct3BhQNzlq0zVaDQajUajmWxMGRHX0tKSNxIXCoWYN2/eGM9Io9FoNBqNZvSYMiJuwYIFxGIxQqFQ1mttbW3stVeVe4tqNBqNRqPRjCNTRsR5vV6OOeYYnnjiiYztAz1VFyxYME4z02g0Go1Go6k+U8piZMGCBXg8HlavXk0wGBzMkVu2zJ6prkaj0Wg0Gs1kYUqJOLBy41paWsZ7GhqNRqPRaDSjypQTcaPNfvvtN9jmRFM5+v2sLvr9rC76/awu+v2sLvr91CgRkfGehEaj0Wg0Go2mNKZMYYNGo9FoNBrNjoQWcRqNRqPRaDSTEC3iNBqNRqPRaCYhWsRpNBqNRqPRTEJ0dapN2tvbaW9vz/CfW7x48TjPanLS2tpKKBSis7OTWCxGS0sLhx122HhPa0qxdu1ampubtd1OBYRCoUHzcK/Xi8fj0Z/TCmhra6O9vT1j25IlS/B6veM0o4lPLBbjiSeeKPrZ0/enHRddnWqDtrY21q9fz9KlSwe3tbe3s3btWm0kXCKrV69m0aJFBINBwLpIrVy5ks7OTs466yx9Qa8CsViMK664gqVLl+pOJWXS1tbGmjVrWLp0acZnde3atVrIlcHq1auzPDxDoRArV65k2bJl+ns/gtWrV9Pd3U1zczOtra20tLRw9NFH5xyr7087Nno5tQixWIzHHnss6wvU0tJCLBajtbV1nGY2+Whra2PhwoWDN0WwIhxLly4lHo+zcuXK8ZvcFEJ/Jiujs7OTxx57jGXLlmV8VletWkVbW9v4TWyS0tnZCZAVFQ4GgxxzzDGsWrVqPKY1oTnssMNYunQpixcvxuPx5B2n708aLeKKMNB7NdeT4sKFC1m3bt04zGpy0tHRQXNzc9Z2r9fLokWL2Lhx4+BSgKY82tvb9RJqhaxevZrFixdnfedbWlpYtGjROM1q8tLe3s7MmTNzvtbc3Dwo8jSlo+9PGi3iirB+/fq8of5gMMjmzZu18LBJa2srK1asyPnagLjTF/TK6OzszCmUNfbo7Oxk48aNOcXaokWLdJ5RmeQTE6FQiPr6+jGezdRB3580WsQVobOzM2NJZTgDF5/u7u4xnNHkpZC4GLjQ6NyY8mltbdUio0JaW1vzRjY05bFgwQI2btzIypUrswTFU089pT+zFaDvTxpdnVqEeDxeMCcBGExA1RSmUJLtwIVGv4/lEQqFtPCoAu3t7YM3v7Vr1wLWg0UoFMq5xKopTjAYZMmSJTzxxBO0t7ezdOlSWlpaBhP29fJ/+ej7k0aLuAoY+PLocHXltLa26nyjCmhra9MRjSowcMNbu3ZtxvsZCoW45ZZbOP3007WQK4PFixcTDAZZuXIld999N/X19Zxyyil5o0iaytH3px0DvZyqGXdWr15NfX09S5YsGe+pTEra2tq0lUgV6ezszHo/g8EgLS0tupKyAjweDwcccADz5s2ju7ubu+++W+fAajQVokVcBcTjcUDncVVCZ2cnra2tnHLKKfp9LINYLEYsFtMRjSqT6/1sbm6mra1NRzbKYPXq1cTjcQ477DCWLVvG0UcfTXd3N7fcckuWAbCmOuj7046BFnGacWXA7FOLkPLQy9DVJ1+15MB2HT0qjQGvsuHRzUWLFnHmmWdSX1+fs+BBo9HYQ4u4ItTX1+et7hm48OgS+fJYsWIFRx99tE66LRNtJ1J97FSm6mq/0sjX5SIYDHL66acDsHHjxrGe1pRA3580urChCM3NzXmfEnVFZfmsWrWKxYsX68q0Cuju7mb9+vVZruwDn9c1a9YM+kjla9mjyaS5uZlQKFR0jMYesVisYPWk1+tl8eLFRd9zTW70/UmjRVwRWlpaBq0GRhIKhZg3b94Yz2jys3btWhYsWJAl4EKhEN3d3VrY2WTBggU5CxoGeqceeOCBuuChRBYuXJi3/dvATVFHNuzj9XoHc7MKodMpykPfnzR6ObUICxYsIBaL5XxSbGtrY6+99hr7SU1i2traaG5uzinUNm/erG+QmnFlwYIFeDyenD1S169fz6JFi3SieInU19cXLF5ob2/XYqNM9P1Jo0VcEbxeL8cccwxPPPFExvaBnnU60mGfzs5O1q1bR3d3N62trYM/a9euZe3ataxZs0Y/kVeBgYiRThYvj6VLl7J69eqM96+1tZXu7m5tg1MGA+/nSCEXi8UG0yq0MM5PPB7P+13W9yeNEhEZ70lMBtrb22lvbycYDA5+obS5amlcfvnlBZdW6uvrOeuss8ZwRlOLzs5O1q5dSygUYvPmzXg8nkFHfF3BWhrt7e20trbi9XqJxWLU19fnTM7X2GfAZmQ4S5Ys0QIuB2vXrqWzs3Pwuwwwb948vF4vCxcuzBJn+v6046JFnEaj0Wg0Gs0kRC+najQajUaj0UxCtIjTaDQajUajmYRoEafRaDQajUYzCdEiTqPRaDQajWYSokWcRqPRaDQazSREiziNRqPRaDSaSYhuu6XRaMaUe+65B4COjg46Ojr48pe/zMyZM8d5VhqNRjP50CJOo9GMGcuXL+eUU06hpqYGgCeffJLPf/7zXHvttVrIaTQaTYno5VSNRjNmrFu3jr6+vsF/H3LIIQQCAR555JFxnJVGo9FMTrSI02g0Y0JfX9/gEupwamtrCYfD4zQrjUajmbzo5VSNRjMm1NTUcPvtt2dt7+jo4CMf+cg4zEij0WgmNzoSp9Foxo1HHnmEmTNnctxxx433VDQajWbSoSNxGo1mXOjr6+Omm27i0ksvHe+paDQazaREiYiM9yQ0Gs2Ox0UXXcSyZcvYbbfdxnsqGo1GMynRIk6j0Yw5y5cvZ8mSJVrAaTQaTQXonDiNRjOmPPnkk+y9994ZAk5bjGg0Gk3p6Jw4jUZTFh0dHVx88cW89tprRccee+yxfPnLX+b5559nw4YNLFmyZHC/kZYjI3nttddYsWIFM2fOJBwOc9xxxxEIBOjo6GDvvfeuxq+i0Wg0kxK9nKrRaEqmo6ODH//4xxx88MG8613vYsOGDYTD4UFR9cgjj2RUnO61114AnH322Tk94X7+85/nFGRPPvkkN910E7/5zW8GuzwsX76cRx99lPnz53PBBRdU/5fTaDSaSYKOxGk0mpK54oorMoRVR0cHxx133GDrrOeff55DDjkka79cPnH5eP7557n44ou59NJLB88DsPfee3PvvffqKJxGo9nh0TlxGo2mJAaa1g8XVhs2bMgQcNXog3rllVey1157ZRU/DCy/ahGn0Wh2dHQkTqPRlMRIgTYyp+21116rWMTdc889dHR08JnPfCbrteeff55AIKArWzUazQ6PjsRpNJqKeOSRRzKiYsUKFezwz3/+ExjKpRvOunXrmD9/fsXn0Gg0msmOFnEajaYiHn30UQ499NDBf1dDxA1E84Yv2Q4cOxwO58y302g0mh0NLeI0Gk3ZPPnkk9TW1maIrb6+PjZs2FDxsXfdddesbc8//zwwlA93zz33VHwejUajmaxoEafRaMrm7rvvzlryDIfDtrzjCrHbbrvltCJ59NFHCQQCgzl31Yj6aTQazWRFiziNRlMWr732Gq+99lrW0mZzczPr1q2r6NinnHIKr776asa25cuXM3/+fGprawfPrytUNRrNjoyuTtVoNGWxYcMGdttttywhddxxx9HZ2VnRsQ855BB6e3u54oormDlzJr29vZxyyinU1NRw0UUXsXz5cmpra/noRz9a0Xk0Go1mMqM7Nmg0Go1Go9FMQvRyqkaj0Wg0Gs0kRIs4jUaj0Wg0mkmIFnEajUaj0Wg0kxAt4jQajUaj0WgmIVrEaTQajUaj0UxCtIjTaDQajUajmYRoEafRaDQajUYzCdEiTqPRaDQajWYSokWcRqPRaDQazSREiziNRqPRaDSaSYgWcRqNRqPRaDSTEC3iNBqNRqPRaCYhWsRpNBqNRqPRTEL+P48aoKoNGPTjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the function\n", + "def func(x, y):\n", + " return (x / y)**(1/3)\n", + "\n", + "# Create a meshgrid\n", + "x = np.linspace(0, 10, 100)\n", + "y = np.linspace(0, 11, 100)\n", + "X, Y = np.meshgrid(x, y)\n", + "\n", + "# Calculate the function values on the meshgrid\n", + "Z = func(X, Y)\n", + "plt.contourf(X, Y, Z, cmap='viridis', levels=np.linspace(0, 1, 5), alpha=.9)\n", + "\n", + "D_theory_values = [point['D_theory'] for point in data_for_plotting]\n", + "D_support_values = [point['D_support'] for point in data_for_plotting]\n", + "\n", + "x_values, y_values = zip(*[(point['pisq_a'], point['bc_squared']) for point in data_for_plotting])\n", + "\n", + "# Create a scatter plot and color the points based on D_theory\n", + "scatter = plt.scatter(x_values, y_values, c=D_support_values, cmap='viridis', edgecolors='black', linewidths=.0, label='Data')\n", + "\n", + "# error_values = [np.abs(float((point['D_support']-point['D_theory']))) for point in data_for_plotting]\n", + "# plt.errorbar(x_values, y_values, xerr=np.abs(error_values), yerr=np.abs(error_values), fmt='none', ecolor='red', alpha=0.9)\n", + "# Add a colorbar to the plot\n", + "cbar = plt.colorbar(scatter)\n", + "cbar.set_label('$D^\\#$')\n", + "contour_lines = plt.contour(X, Y, Z, levels=np.linspace(0, 1, 5), colors='black', alpha=1, linestyles='solid', linewidths = .5)\n", + "\n", + "\n", + "# for i, (x, y, error) in enumerate(zip(x_values, y_values, error_values)):\n", + "# if i % 5 == 0 and error !=0: # Display error for every n-th point\n", + "# plt.text(x, y, f'{error*100:.0f}\\%', fontsize=8, ha='left', va='bottom')\n", + "\n", + "plt.plot(np.linspace(0, 10), np.linspace(0, 10), color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "\n", + "# manual_labels = {1.0: \"$\\pi^2 a = bc^2$\"} # Add labels for specific contour levels\n", + "\n", + "contour_labels = plt.clabel(contour_lines, inline=True, fontsize=14, colors='black',\n", + " inline_spacing=10)\n", + "\n", + "# Customize the spines\n", + "plt.gca().spines['top'].set_color('none')\n", + "plt.gca().spines['right'].set_color('none')\n", + "plt.gca().spines['bottom'].set_color('none')\n", + "plt.gca().spines['left'].set_color('none')\n", + "plt.gca().xaxis.set_ticks_position('bottom')\n", + "plt.gca().yaxis.set_ticks_position('left')\n", + "\n", + "# plt.xlim(0, 10) # Replace with your desired limits\n", + "# plt.ylim(0, 10) # Replace with your desired limits\n", + "\n", + "# Set custom ticks\n", + "# plt.xticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "# plt.yticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "\n", + "# plt.legend()\n", + "# Customize the plot\n", + "plt.xlabel('$\\pi^2a$')\n", + "plt.ylabel('$bc^2$')\n", + "plt.title('Phase Diagram of the Cone, support size $D^\\#$, and target $|D^\\#-D^*|$')\n", + "# plt.show()\n", + "plt.tight_layout()\n", + "# plt.loglog()\n", + "plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram.pdf', dpi=300)\n", + "plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram.png', dpi=300)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('be93e3a1e3cd2893f62f838768340107', 0.0),\n", + " ('55aa665af4383cdfab486497a526b948', 0.0),\n", + " ('ae1a96698d6d1339b5ae36a9fc93a239', 0.0),\n", + " ('9cfef1c0d73313a1414d49bc38ddeccf', 0.0),\n", + " ('446276eafc7b7cb1df263d2d43575334', 0.0),\n", + " ('ae03a35d8fe5b10029fb688ae9f08611', 0.013178100348074429),\n", + " ('c2e711ccd4e5b1706d05d5bd98ef5a8e', 0.0),\n", + " ('d323b3bd3f8ced38f7e5ed1370e95681', 0.0),\n", + " ('0aa3df8dcb703508b12d1c306410ba06', 0.050000000000000044),\n", + " ('818deb373f5d6257aa085493e2a12fb6', 0.0),\n", + " ('39582b0fef781ef7dd59b969861740bb', 0.0),\n", + " ('7021e9afc054e604d2e15dbc07a9db83', 0.0),\n", + " ('c3066ac9a8f4a735e144494a06586074', 0.0),\n", + " ('0bd67cc936b53d779e505e7860e8d3a0', 0.0),\n", + " ('5f009deebc7c75e793bc5c2a3881177d', 0.10795092217091007),\n", + " ('f5987d8fb47e09c39afd3e4aba484450', 0.0),\n", + " ('7d21decc9d7b00098894bc65c19ccd48', 0.0),\n", + " ('9f6e9f4b03f77f59fd59a719ce310950', 0.05374073117645395),\n", + " ('1da28d85e36e3d87bbd150884f1a6a4a', 0.0),\n", + " ('47724b1983ad0ec6fb3a085868e6406c', 0.0),\n", + " ('d42c5f930bc58a9b85355978626be7d8', 0.0),\n", + " ('046c79dade1d3ac0d860737fb091750e', 0.0),\n", + " ('9444e6515b8c6baac6410af233373084', 0.056724978733314724),\n", + " ('3fa875212869f8bb87ecec023e3594ab', 0.0),\n", + " ('245a0619f72f8fa174e14ad18ed79ef8', 0.08159678970749107),\n", + " ('81211387b53a1545755003f8b2a1fc18', 0.012244112782159922),\n", + " ('00ffda65398984695ae5576fe383f02c', 0.0),\n", + " ('ce9436b3ab369c9ab0d19d5fd85d64fe', 0.10232349565466503),\n", + " ('bfb5281dbaf30b871676f44cc1395433', 0.0),\n", + " ('6e3e4283c6d55967a64bf8d1b588732a', 0.0),\n", + " ('adc4418b5f4802de2918f2932e0ad1c6', 0.0),\n", + " ('961ec9441a2fa5a82bbed869080b8b3a', 0.0),\n", + " ('c18632626e637957d7850f27ba8ed27e', 0.07138733183280277),\n", + " ('5bb43003ce8ab88ea3e2b5835b018f9b', 0.0),\n", + " ('5e1b92e1c2392c4742c4b8caac239078', 0.0),\n", + " ('08c18d207e645c06bfbac1f997b0edad', 0.0),\n", + " ('04c979b82e2ec3add9a38959f42f52b1', 0.0),\n", + " ('c20e9b135c36e94f7498a133cc45e442', 0.0),\n", + " ('e0d28a7fc82849a64a0fbc6f584ea8e9', 0.0),\n", + " ('873a5a261a51d2c352cec13cbf8fdf0c', 0.0),\n", + " ('bec3d3e00694ea0d182b04366cbf8cb0', 0.0),\n", + " ('7f1430bcb0a6e3812cc44d0015cc2e19', 0.0),\n", + " ('bc4a60b8d7abfbcdec8bb45d864e38a8', 0.0),\n", + " ('d5612d1467c7b6d3624c53bc688289df', 0.0),\n", + " ('ec046ac8dc9f3843ba2d44fc1f32bf0d', 0.1166666666666667),\n", + " ('fe1bd5e0aae1254c90a08b9fe2d4fcac', 0.0),\n", + " ('3e66ff5126900e8b3aacf615357995c8', 0.022292344023789157),\n", + " ('a6830e9ed97c7590c32e359c547bae37', 0.0),\n", + " ('55f85e04d355cf55f777c22037403b12', 0.0),\n", + " ('8498148bb21e28e65acd6e832dd392e5', 0.01666666666666672),\n", + " ('e1690d753f1cfe4e6c8ed1999f242f70', 0.06745008350636561),\n", + " ('ebfe4b19968441962ec69b81048f5a40', 0.0),\n", + " ('787493f255c3e1fe0f7590724463af47', 0.0),\n", + " ('49dd09f415ed6893adec2902800ecfbb', 0.0),\n", + " ('dd6df4f37eb57a3022cd311c11ed40b8', 0.0),\n", + " ('14dffef10402801b89457241dc466ce3', 0.0),\n", + " ('02bd5bbda8beff8f5cc0fbd88b599173', 0.0),\n", + " ('1a9321268f43fe71c8ad7f9ab0ffe154', 0.0),\n", + " ('95e026c0be6029963131d95f104d98f9', 0.0),\n", + " ('bc600344f6d97e175bdff42d5a0d9660', 0.1166666666666667),\n", + " ('99b28ae6fc8d44b1389a5fe6da60a557', 0.0),\n", + " ('68c28c98150c0491f40b510fe53d5150', 0.0),\n", + " ('3595514d555f90e66127a53c00ad6142', 0.0),\n", + " ('e5593a7c5757a917c4833284b849e8e4', 0.12002953286242235),\n", + " ('154863f5eba04c9bd04c821204662c46', 0.0),\n", + " ('7762cc6ecd7e5663aefbc1ac3d1d183a', 0.0),\n", + " ('6d28de9a1db1dc3ad984dc0fed840b85', 0.0),\n", + " ('76162cca14bfb91a3e02d6e29627bc11', 0.1166666666666667),\n", + " ('6ebe9390869deaeaae9fe15f64d1d60e', 0.07656050529059855),\n", + " ('ba40fab16ef2ffaa80483f7a471cf2bb', 0.0),\n", + " ('a190267e13d71e0a2cefd795da6d16a2', 0.04924737794575529),\n", + " ('390c1586d26f4ecb8965bb7caafd1a01', 0.0),\n", + " ('30b166d2e6f48e17020d5e5457e6e26a', 0.0),\n", + " ('0709aa4181151c6be88b7bcafc3e014c', 0.0),\n", + " ('9b0cc6ef9c3464d738b9e6c4be7917cf', 0.0),\n", + " ('7ed36b8dcee86d9a4d55b31fdd6f7199', 0.0),\n", + " ('ef35e224f60f9f4f67a652b6b2bfabc3', 0.0),\n", + " ('5f728c69b35c2f0b870a23f20c1cf1bd', 0.13354505913792347),\n", + " ('aa1c7bcfbf8bd723b77f5710a6a9f594', 0.050000000000000044),\n", + " ('3834fb17dbfd82a9e6b6c78c159139b4', 0.0),\n", + " ('379c9f5ef533b7996ca5a6f6e2aebefb', 0.0),\n", + " ('19c6e4fb5e77a4485581566f5ac85e7c', 0.0),\n", + " ('96e85c7780b0f7c34955ed4e9e8f6075', 0.0),\n", + " ('29a13ad515a4e0b380c0765b509f4bd8', 0.07574612701505623),\n", + " ('70a947a5ab7ce7fea419f5942119a162', 0.050000000000000044),\n", + " ('0e5f3c92253e55d958c60f6c4b3c3c94', 0.0),\n", + " ('fa49c46e19fa64edbd26b7a87ff6c06f', 0.09449143669903226),\n", + " ('ff220f0b4c41c9194a0d56982ad9d9df', 0.0),\n", + " ('25739f21e5031ff02151d7be8da54f32', 0.0),\n", + " ('9b092eb12c6b86663f750cc82741a54d', 0.0263934732628871),\n", + " ('197773ce0c3bd5db1389a4e328fc1127', 0.0),\n", + " ('384d216e638296c3f2e43c1bc10e6aa2', 0.0),\n", + " ('cc67da412eb68626108ce80d9973105b', 0.0),\n", + " ('2f31290d5784e79695d28a07513df7cc', 0.050000000000000044),\n", + " ('90167d1609a729e7134e4a923351f671', 0.0),\n", + " ('36ba82b093b807f3d4156df5aef56265', 0.035903028496375056),\n", + " ('6426c7b91e31a7164aa0ac3fe5ca7cc7', 0.07403470566622339),\n", + " ('b33a98e1400345111df1f4a5186d8830', 0.0),\n", + " ('0bd72656f57f527e5863ef191c372831', 0.0),\n", + " ('a3c39f11e5abdfdb1f68559d8d04e975', 0.0),\n", + " ('043ebb377c5c5699e4d0c39a6efff1bd', 0.0),\n", + " ('64765b11b3c0dfd58defa91fe80ef236', 0.0),\n", + " ('941d48ed62b7edc24a6b564a91b4d6c6', 0.05573916119997491),\n", + " ('2f170fb0e88ec9e9ada917e40dfe9b56', 0.0),\n", + " ('4363c09f4f41e45ec5a021d2b68e8276', 0.0),\n", + " ('e8a1433809df201ba869c62c16c0870c', 0.03069248927826862),\n", + " ('12e557a7aa59790b9b017adcc2d61778', 0.057229568274394516),\n", + " ('2ab9598ff854eb657a12d777d1374f74', 0.0),\n", + " ('a80319cc10e4c333d4b0bdd3b113526d', 0.07956876389911094),\n", + " ('67450e668b5e0f33bd764955db697890', 0.0913666019291075),\n", + " ('fab2c241b23cc097ef2a6c33ca7d1cb4', 0.0),\n", + " ('f44e21cb4fe6fab825843b049649c479', 0.0),\n", + " ('63664dec0d71acbc99c1bc0610834138', 0.005295092418231895),\n", + " ('f582d6b1956c5d8756fcecd3ed31854c', 0.1166666666666667),\n", + " ('37c112d0c344dfbd6591d46e6aa4bf2b', 0.08791257901802674),\n", + " ('d0b0b2ded7b4d07b0615afe8c5c3bd29', 0.0),\n", + " ('af46e6dbd26ef9975009e0f908a0703d', 0.0),\n", + " ('4dd050367ed3d746a44a8627a27c0d86', 0.048600357090002544),\n", + " ('a26e29a64522fde13f1a0939a6436b09', 0.0),\n", + " ('b16a7008d41ce565818e053e6ef9451f', 0.0),\n", + " ('5e62740f1e3d26cfadf3f31606f04c93', 0.0),\n", + " ('c9874acaa4e7cea139377a1cc4aa96da', 0.0),\n", + " ('a07a340d8cd563655bef328ad2631adc', 0.0),\n", + " ('879c22c6dd6ba9258ed2b3977c02dd3f', 0.022898297919306476),\n", + " ('c4e8f9a815f3c85c2b3bc35ded8d4c55', 0.0),\n", + " ('7fd56cac090b0910c9796189bb13f529', 0.0),\n", + " ('8c2849493a108685ea6d16538cee0ff5', 0.01253150526048652),\n", + " ('704218ec1ab1084c07564e6f679b9f0b', 0.0),\n", + " ('e2f0baf33acd97c5fa0650b3ac188b33', 0.0),\n", + " ('7a5fe95e68652560e04a4f04a6cc2ed0', 0.0),\n", + " ('28a07bc7bb355d05782734af39a111e9', 0.016666666666666607),\n", + " ('3ced327f796a04949713bfbb43236c70', 0.0),\n", + " ('a68e8bf1ea79b67d5e12e0814b0e9b02', 0.0),\n", + " ('2afb851ba8413ce5291c1f7281b0b60a', 0.043776156869068994),\n", + " ('ff554b36ebfb02ba497f4de21e7bfe39', 0.0),\n", + " ('89829464cf9d8abc402d2b289511db80', 0.0),\n", + " ('3957404c3a99817081032e3304cc2eb2', 0.0810510125865681),\n", + " ('bdd49d4f44c93368e0813b6e75c2cff9', 0.0),\n", + " ('a07cb68a370231f37c708389c12628ea', 0.0),\n", + " ('034189f38c18e6c04e59770762ddf137', 0.0),\n", + " ('41a9fd1aaeefba3a8b4e181a3f57a26d', 0.0),\n", + " ('1b32af79ec982846c16e8da2dece9111', 0.0),\n", + " ('5971508ca172ee7705ba9867da5f2799', 0.0),\n", + " ('89d72ebf25cb6d5a889723f29e937e64', 0.0),\n", + " ('812f71e51faf4596904b7256abf7468f', 0.0),\n", + " ('64cb9ae1176525d58b69364473f71172', 0.0),\n", + " ('b6b45a5ed94214a2ab70c5631f8bd38c', 0.0767465806947949),\n", + " ('de17f9e07113ce99eff6166bf2d5151e', 0.0),\n", + " ('1ed7e041da9cefb263f8e5283ed9eabe', 0.0),\n", + " ('da90dc28fb90db28270d1efd575cbf90', 0.050000000000000044),\n", + " ('840d841d4f4ab073d4675980ae0c65e2', 0.0),\n", + " ('64beb86873a673b4b1d7d131a3b7cca1', 0.0),\n", + " ('4a42005d5d1db515c58f10fb2a977b4f', 0.0),\n", + " ('77b345b3ac23acd4b0c793607df72b86', 0.08333333333333337),\n", + " ('8c959694f7c0083563629bbd7f6d26b9', 0.0),\n", + " ('40e1eb6b7c27798bd70c26bb89188010', 0.0),\n", + " ('e5cebd7454caec5911970426e4ebfa02', 0.0),\n", + " ('5e00139ccb323f8a614dbc86e4adee17', 0.0),\n", + " ('53326ce0c7e2e31e9e711749f6c9872f', 0.0),\n", + " ('9283ffcb15cf65f0be191c4877fa3f8c', 0.09948254078199681),\n", + " ('06fd589cfddf7421b0f422bd92c4f077', 0.0),\n", + " ('aea34470dff6023e11932e8f26ea8fae', 0.0),\n", + " ('b746fbbe0449671bc3fef0ba56043a91', 0.0),\n", + " ('4fb5053042bc75c426a6bbcccc364670', 0.0),\n", + " ('e3e24962746bbc142697dac71768e280', 0.08333333333333326),\n", + " ('63ef09428da038d6a13c1db516b12cba', 0.0),\n", + " ('7bf0064c79e577a339a3bdaa8b664053', 0.0),\n", + " ('186ab8e8139e59cdbddc72429ba378be', 0.0),\n", + " ('23a4e99376dd709c7a7926c1b512d89c', 0.016251302537317602),\n", + " ('a94574b4ab665c6845a57507127c7f19', 0.07623861193026349),\n", + " ('ca10db54d8b535438ffcde1fd38529f8', 0.0),\n", + " ('0ce6d727b36b2329f0bbb7bbcdbedc32', 0.11947344563078954),\n", + " ('d8eafafce323951597ee1a2ccd103a09', 0.0),\n", + " ('f8e44e6d6d9486ac535ec276bfb1b520', 0.0),\n", + " ('6ea3722739a32d235c59aae7015d2132', 0.0),\n", + " ('f2ad2e96cf1f087e6a016e4dfe16cc9a', 0.0),\n", + " ('22c97e323c9093987f705e9112b3640a', 0.0),\n", + " ('287b7dad39b1a76397aff28461a3ae8c', 0.0),\n", + " ('26df8fc60531553c4539463d1c28dfec', 0.0),\n", + " ('7d1d96b15a68e392abeffe502f84a042', 0.0),\n", + " ('55decbb21da6eccb8c64662f82e90e07', 0.0),\n", + " ('1e684c7c8d3b74ab8946e9d16a169644', 0.01666666666666672),\n", + " ('eda0bed753c4b3d8ead98daa3fbaaa4f', 0.007395804678753906),\n", + " ('cfacf6ef677c8603351e06e2bd728418', 0.06338503533339257),\n", + " ('8683c8a249116de1e4a1f2efb7540756', 0.09545792190231728),\n", + " ('35992c02ce19e70d4b7646206dc625fb', 0.0),\n", + " ('0044f692a05422bb98c4bd3c6d04770c', 0.050000000000000044),\n", + " ('133a813220736fd35ca5780e0704fc1f', 0.09270749730641381),\n", + " ('e91e3e141d58633d9f065fe841e1d704', 0.0),\n", + " ('d13a4206c4dc9798f6918905bd964ef1', 0.0),\n", + " ('38ec6d9ed3750e2a349aab9393a444c1', 0.05437135052298603),\n", + " ('80bf33f54ca3cc39d55895987d22db6a', 0.09001452734728133),\n", + " ('43f6745ab4a8087d95d6dad67b61c455', 0.0),\n", + " ('6ca3ebf88d38ddd014eac49e0ef69663', 0.0),\n", + " ('ba6bde1c11d365939c1e66712a8a818b', 0.0),\n", + " ('08024b8d0f056a2e29555bbcff919b96', 0.0),\n", + " ('86ff1f0a410c7220fea17218daac0b51', 0.0),\n", + " ('1dc98a04e21fe62758b71ea2affc59ef', 0.0),\n", + " ('182ec8780648c9a9ab4b05e10b28263a', 0.01953558921725773),\n", + " ('fcab5744d2c104f2879ab24a05eb5965', 0.0),\n", + " ('8d808fc699689924b60841e1e2164771', 0.07172736827350634),\n", + " ('b98b104f64f2bda9eb8854ff4d53ecd3', 0.0),\n", + " ('45638e207aa96b4f92e27f59f0b544f5', 0.03899271137947047),\n", + " ('699b629be39a2827f23a164b8bb30c1a', 0.0),\n", + " ('154b1d59bc43f05c208cd7e9315d48c9', 0.06339225480268651),\n", + " ('7d44e0b425e269c22219e93ee416e825', 0.0),\n", + " ('1d99dc57effa20f609a0cf624bd5e04a', 0.0),\n", + " ('459c554af4f32b088b68a93b3a02f60a', 0.0),\n", + " ('3768e99b08bf76083993540fa0e931b5', 0.07366037452003926),\n", + " ('b091b8fc793c49134b42139b7933be99', 0.0),\n", + " ('f0d2d1392eba4f49035c1ce0d431ec6a', 0.0),\n", + " ('3f02e8edb6dc1f797b9be04d540e0b77', 0.0),\n", + " ('bb8fae8e118a003c63c47a3c93963786', 0.0),\n", + " ('5869943e0762f690d3334659af3af68d', 0.0),\n", + " ('802c675e74c573280a1fb772daaedf9c', 0.0),\n", + " ('303619e93fae27433a982bc1565704fd', 0.06308166098376233),\n", + " ('a3c633c5b54b9f0cb5e4ed723d52b162', 0.016473090194560336),\n", + " ('5240559833b5075c63c9ced7cf58d9dc', 0.0),\n", + " ('942438a56c8ffba16a34fefb4a9aca6a', 0.0),\n", + " ('b48b6c1cae8f9873ac2b5fdd6bfca86a', 0.050000000000000044),\n", + " ('cb8f68bfb97cc6dac3d6e3db3377c222', 0.0),\n", + " ('6e7f390a6ef123e2c2a6788f98edf934', 0.0),\n", + " ('fe65f734e95ed43aa28396952f76bc12', 0.0),\n", + " ('35b902ddb2944770f8fcc585b48334e2', 0.10388829287288226),\n", + " ('9a0ebd16dc2c6873f51f15b6614b73e8', 0.0),\n", + " ('1bde21d6d9e399af2546e2f9010b9350', 0.0),\n", + " ('824d7bb2017e24e06fb6a4d7d87994f0', 0.0),\n", + " ('f81b240be91d490535164f911aada9ed', 0.050000000000000044),\n", + " ('7c63c15b4401024888916ca9b42b21c9', 0.028975344790746482),\n", + " ('4332c6bbfc3a256c63470ab9c3d7e8a9', 0.0)]" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# error_values = {'signature': np.abs(float((point['D_support']-point['D_theory']))) for point in data_for_plotting]\n", + "[(point.get('signature'), np.abs(float((point['D_support']-point['D_theory'])))) for point in data_for_plotting]" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_26783/1541847198.py:3: RuntimeWarning: divide by zero encountered in divide\n", + " return (x / y)**(1/3)\n", + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_26783/1541847198.py:3: RuntimeWarning: invalid value encountered in divide\n", + " return (x / y)**(1/3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAHVCAYAAACe6K1dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXxU1fn/3/fOvmQjCQlrhLArEAVR2dQqQm2pFbFVa4tttbbV9lu1rba1ra22avtTuwjWrYJatQJapd8WpF+rbHWpEnYDCRAIkBDIOvvce8/vj2EmCdkzk8wknHdfvGrOnLn3mbnLfO5znkURQggkEolEIpFIJP0KNdkGSCQSiUQikUi6jxRxEolEIpFIJP0QKeIkEolEIpFI+iFSxEkkEolEIpH0Q6SIk0gkEolEIumHSBEnkUgkEolE0g+RIk4ikUgkEomkHyJFnEQikUgkEkk/RIo4iUQikUgkkn6IFHESiUSSgqxduzb236tXr06iJZJEI4+tJFFIESeRSCQpSGVlZbJNkNA7x2EgHNuB8BkGAuZkG9BdKisrWbt2La+99hr5+fnMnz8/Nt7Y2MicOXOYNWsWAGVlZSxfvhyPx8Njjz2WTLOB9m1vbGwEID8/nwULFiTTxJSjuLiYzZs3A1BUVBQ7tp3RV8d++fLlAKSlpeFyuUhLS2PWrFksX76cm266qdf2K+kfVFZWsnr1atatW8fMmTMZO3YsELnmKysrufbaayksLOxwG8XFxZ3O6WuWLl3Kpk2buPvuuykqKkq2Ob3K6tWrue2221qN97djmwh7m9Pe9yLpY0Q/5d577xWPP/54q/FbbrlFrFq1Kvb31q1bxS233NKXpnVKe7Y//vjj4sEHH2wx9txzz7UaO5NYuHChaGxsFFu3bhVbt25td94///nPVmO9eexLS0vF9773vVY2HTt2TDz44IMpd84NFNo6zt2lr6+p0tJSsXDhwlbjjY2N4pZbbhGlpaWtXjt27JjYtGmTEEK0uJ+lEm2d/22RiGOWKHpiS1v36ij97dh2195Nmza1+RmE6Ph7kfQdA245df78+axYsSL2d1paWhKt6R633XYbXq+3RbxEUVERc+bMSaJVyaOsrIz8/HzcbjdFRUUdPvEXFxe3GuvNY//www+zZMmSVjZJb2rv0tZx7i59fU21521xu90sWrQo5s31eDwsX76c5cuX8/DDD7Nv3z6WL1/Opk2bWL58eb+NnUrEMUsUibalvx3b7tj70EMPUVlZyb59+3jooYf6xD5J9+l3y6md4XK5gMhJ6Ha7k2xN95k1axYrVqyICYGBvlTRGdHj2RFr166lqqqqD6yJEL3RtXdsioqKyMvL6zN7zhQSdZz7+poqLi5m6tSpbb6Wn5/Ptm3bgMgPaXQJvvly/OrVq7nmmmv6wtSE09fXZkf0hi397dh2x97bb7+dn/70p+Tl5XHPPff0mY2S7jHgRFxZWRmFhYWtBFxZWRmVlZWx2Lnm8Uoej4d169aRn59PcXExCxYsaPG0snbtWvLz8/F6vVRWVuJyuWIia/Xq1eTn51NZWUl+fn6XY7baY/bs2SxbtoyysjIgcsFXVVXx1FNPddlej8fDihUrKCwsjHmzCgsLWbt2LQsWLGDFihXk5eWxYMGC2JPpTTfd1OF2i4uLYx7O22+/PfY9lpWVcdttt7F27VrS0tLYuHFjt2Irot8fRGI2oje0srIy1q5dG4vjaO+7LS4upri4ODYPaHVT7OjYN7ehq8dwy5Yt7d4Io5xuQ3ufs63vNVF2nk5b5/HYsWNbnWPLly9n3bp1LFmyJHaOrFixArfbHdun1+ttYWNX5nTn+zj9/CwqKur0OPf081ZWVnLHHXewePFi8vPzaWxsZNmyZfzyl7+MCb54vvvS0tJOvbMejweAdevWAbBt2zZWr14dOxe6+pnb23Z3ruuOzr9o3GdX6Oja7IpN7d2j2ru3RYVGW8eqK/eJnpDsY9tdumPvihUrWLx4MS6Xi6VLl8r4t1Ql2eu5PeX0uLLGxkaxatUq8b3vfU80NjbGxktLS8V1113XInbj9LX/5557Thw7dqzF69FtbNq0qUUcxbFjx2J/P/jgg7HYhqhN7cUPdGT76SxcuDC2j9LS0lbxVR3Ze7pd0ViH5mzatCkWz1JaWiqee+65Lm03GmN2+ncZfX/zbXeFBx98sMW2jh07Ju69997Y32199rbYunVrm/vsyrHvyTFcuHBht2JZOvuc7X2v8drZnI7O47ZiB++9994W8zdt2iQWLlzY4vx47rnnWpzHXZkT/SwdfR/tnZ/tHefuft7Tz6vS0tIW9pweMxfPd3/s2LFYXGdb/POf/2wVo9Q8/rP5tdVTenpdn36PbP59NjY2ioULF3YaE9feMevMpvbOgc7ubR0dq+6cP81p716dCse2O/TE3k2bNrU4Ts2RMXGpQb+OiSstLWXt2rWsXbuWTZs2UVRUxGOPPdbKC+f1elssoeTl5bVIj66srGwRK5GXlxdzKwNs3rw59nSSn5/P2LFjqaysZMuWLS2eyGfNmtUinq236MzeLVu2xJ5q3W537Ok6isvloqysjKKiIgoLC2NP3J1tNy0tjcrKylbfZXMKCwu7lHpeVlbGtm3bWmwrPz8fj8eT0LiVjo59XxzDrnzO9r7XRNvZ1nkc3f/pnL6M7XK5KCwsjHnPABYvXsy6detidnZlTle+j/bOz+7S3uc9ncbGRsaMGROzb926ddx+++1A/N99cXFxLK6zvddP91pHP3ui6Ol1HT1mHo+H1157rYUHx+12x5VV2ZlN7Z0DHd3b+vqenArHtjv0xN5Zs2a1uJ4lqUe/Xk4dM2ZMl4LITz8JXS5XrKwHEHPDezweqqqq8Hg8sdejN4EbbriBwsJCZs+ezTXXXMPatWtxuVwtbkSni6We0PxHpz06shciQsrr9bZ4z+nba2v7nW23rfe5XK4eXeT79u1r8315eXkUFxcn7EbX0bEvLi7u0TGMLtV0RHQpp6ufszfsbE5753E8uN3u2I9te+fA6XN6+n10l+583ubnWjRhJfpDF+9331EMEkSW1pYsWdJiLHrcPR5PQpJzenpdR+ds27atS7GpvW0TdHxvS8R10h366thu3ryZjRs3djqvszCWntgrSX36tYhLFGVlZaxcuZKioiJmz57dyrt0//33U1ZWRnFxcSyuASI3j+Y/AIkQHqWlpQAxz0BP7J0/fz4rV67k9ttvZ926dXz7299utY22bsqdbTeRnH4jTiRRAdUVG3pyDGfOnMmWLVs6nBON80nE5+ypnafT1nncnrDprePT1e12RTR0dpy783khEksVjcOKbj/e776jH8ZozN7pD6LRH/fS0tK4Y2whMdd1ojK9o8esKza1dQ50dG/r7rHq6n2iPfrq2M6aNSsh50FP7JWkPv16OTUReDwe7r33Xq699loWLFiA2+2O/dBEi/NC5Anwmmuu4dFHH2XTpk3tLhtGPWk9Ze3atS08Ad21N8rtt9/Otm3bmDVrVpcuzK5uN1EUFRW1ud2qqqp2l726SjQppDN6egybB/O3RfOn7ER8zkSca+2dx+3RlW17PB68Xm+HT/+nz0nkce/oOHf381ZWVrJixYoWwdvR5aWefvfRz96WkIgG6N99992tXosKzaKiorg9kom4rrsaItEVysrK4rapvXtbd49VV+8TbZEKx7Y79NReSepzRoq45t6AqqqqVj9E0Yu+rKysVd02iCz9FBUVMWbMmFg3gSgd/VB0xurVq/F6vR16CzqzN/r/0SzBrt4ourLdtuipx6awsJCpU6e2EELR/XT3qbP58mZlZWWHoqK5vfEcw7vvvpsVK1a0EnLRrLvoZ+jp5+yOnc0fNjraXlvncfT/m//4eTyemBeqOdEf4CirVq1i/vz5Lc6xzubEc9y7e5zb+7xtEV1GjdpZVlZGWlpaXOdIdBny9GuwsrKSxx9/nMceeyyuH/KuHPdEXNfR7jLN9+XxeGL3x45o65j11Kbo6+3d2zo7Vt05fzqjt49toulv9kq6jiKEEMk2ojtUVlayefNmVq1aRVpaGvPnz2f+/Plteq6iLvstW7awZMkSrrnmGlavXs2qVavIz89n8eLFsRZJ0OR6z8/PZ/ny5cyZMycWwxD1rFRWVrbY3/Lly8nPz4+93tEPUUdtt6JLAc0FXFv2R/fZnr2zZs1i8+bNPPzww7FyAC6Xi/nz58fS9VevXk1paWns80cv3o62m5+f3+53OWbMGK655hrS0tJicxYtWsTixYs7rdUX/f6i30/Uy9X8sy9atIg5c+Z0eNON2h5dEujqse/uMWxvv9HvGWjT89mVz9lTO9euXcuKFSt4+umn2/2+oz/A7Z3H0TIHURs3btzI/v37WbJkSaxEQ/OSA9Ef2+bna1fmdPZ9dHR+Nv++O1v6ae/zVlVVtfq+165dy7Jly/j2t78dC/JftWpVi5ZS3TlHokJ+3bp1NDY2snjx4thr0ftJIlqydeW4R22H7l/Xp59/0dId0fM8WpqkraLXbe2/+THryCaXy9XuOdDRva35/to7Vl09f5rTvLxGXx3bRNGb9sqyI6lBvxNxko7xeDw8/vjj3H777bjd7ljg8PLly7u8tCrpf0Q9DL31NB0VaB31oe3KHEli6e3jnkok694mxUrbpML3EggE2LhxIzabjblz5/ZoG+Xl5ZSXl5OZmUkgEABgxowZiTSzVzkjl1MHMuvWrYvFmUBTKYCbbroprhgQSWrTUYaoZOByJh13eW+TRNmwYQNr1qxh+/btlJeXEwwGe7SdvXv3sn37dubOncuUKVOYMWMGeXl5rFy5MsEW9x5SxA0wCgsLW8WEAAkt2yFJPU4vzyA5MziTjru8t0mizJ07l4ULFzJjxgxsNluPthEIBHjrrbeYN29ei/GCggICgQDbt29PhKm9jiwxMsA4vU0QNKXSJyJNXZJ6VFZWxp3R2xHROLWysrJ2ez12ZY4ksfT2cU81knVvS3SNvIFCf/9e9u7dS0ZGBna7vdVr48ePZ9u2bUyZMiUJlnUPGRMnkUgkEomkX/LCCy+Qn5/fyqPWGdEl02uvvbbVa3v37mXNmjXcdtttbYq8VEIup0okEolEIjmjqKqqIjMzs83XMjIyAKivr+9Di3qGXE6VSCQSiUTSIS+++GLCOrmEQiE0TcPpdHY6d9q0aUyfPj0h+21OMBjsNJ6uvr6+VzsXJQIp4iQSiUQikXSI1+uNuyPR6XRle6FQKKH77ApRcRctOZLKSBEnkUgkEomkSyiKgcvu6/H7vQEnQqgoitKl5Air1drjfZ0JSBEnkUgkEomkS7jsPr6+6IUev//Z176Mx+/G5XJx6623JtCyxBGtO5fqSQ0gRZxEIpFIJJIuIgBdGHG9X5I4pIiTSCQSiUTSZYwBIMUyMjLazT6NxsJFs1RTGVliRCKRSCQSyRlFXl5eu4kLUXGX6pmpIEWcRCKRSCSSbmDE8b9UoaCgoF1PXF1dHSNHjuxji3qGFHESiUQikUi6iEAXPf/X11FxgUCA8vLyVuPjxo0jEAhQV1fX6rW9e/cyderUPrAufqSIk0gkEolE0i8JBoMd1nNbs2YNq1atatXQ3m63c8UVV7Bx48YW49GequPGjesVexONTGyQSCQSiUTSJQTxJTYkwg/3wQcfUFVVRV1dHfX19dTX17Ny5Ursdjvjx49vIcAKCgqoqqpqM75t3Lhx2Gw2NmzYQGZmZkwMttVPNVWRIk4ikUgkEkmX0ZOcnTpjxoxuze1ofkFBAQUFBYkwKylIESeRSCQSiaTLDIQSIwMFGRMnkUgkEolE0g+RnjiJRJJwwobOvyv38GZFMdWBRtxmO/OGTGLhiCJcZluyzZNIJD0k0rEhuTFxkiakiJNIJAnliK+Wb7//Agc8J1qMf3jyAEtL3uZ351/PtOyzkmOcRCKJm9Sp9iaRy6kSiSRh+LQg33zv+VYCLkp92M/tH/yl3dclEolE0nWkiJNIJAljTcU2yr0nO5zj1YIsL9vURxZJJJJEoyN6/E+SWORyqkQiSRivHfqo1djitR/h9IfwOaysWjANgH8e2cE9Z1+Jw2ztaxMlEkmc6FKLpQxSxEkkkoRR4asFIsLt2rUfAzCq4gQm3UA3qVy79mNWLjiPVQumcTLoYbh5UDLNlUgk3SRS7De+90sShxRxEokkYdhVC40EcPpDZNd5ADDpBqoRufVn13lw+kMA2EyWJFoqkUgk/R8ZEyeRSBLGnLxIuxufw8rJTDcnM93oJhVDVdBNKicz3fgcViZmDCHXnpZkayUSSU/QUXr8T5JYpCdOIpEkjOvOmsHrhz5m1YJpsfi3tmLifnHWBck0UyKRxIEh10RTBiniesDMs6/nrPyiVuNbrLvIHjaUjBGj+96oBGJoGju3vcSkb12dbFMkKYoQAp7+Dd9/eDIWa0uH/oL8ofyzsqkXYVS4RSnKqMaq380/DvaFpRLJwObKs9Yn2wRJEpEirgccOr6tTREX9tRjhHP63qAE4ztZBap0e0va5+zdT1I7xtFKwAFcnHuUQdYA7xwfxpGAOzaeZQkwM7uSWTnHUOTpJZH0SwTEtSwqnXiJRYq4BCIMHcVkSrYZcXPUvBv7yPxkmyFJUTSvn42rj/PrFdPbnTM5o4bJGTVUBhw0hK3YTTrDHR75bCCRDABkbFvqIEVcAhGGgaL2fxEXKK+kYL6MWZK0TdqapVz8zeFteuFOJ9/uJ9/u7wOrJBKJ5MxDZqcmEGHoqKb+r4uDR0/gGDE42WZIUpB5gefx1uvMuXhosk2RSCRJwhBKj/9JEkv/VxwphNAHxnIquo5qHgCfQ5JQhGGw8tFyfvjolGSbIpFIkohcTk0dpIhLIMLQ+/1yasjrweR2JtsMSQoy9uM/Eb44i0G5tmSbIpFIkoRAQY9jEU9IAZhQpIhLIJHl1P4t4jxVh7EXyKQGSUvC9V4+WHuSB5+fjl83UVyXw8mgHYtqMCGtlgKXJ9kmSiQSyRmHFHGJZABkp1byCbkTCzqfKDmjsL22lHnfHcG/qkey6cQQwqLpPP939XCG2j1cN6KUwTKJQSIZ8MjYttRBJjYkEEPv/8upgfJKXKOGJNsMSQpxScNyFAWqRlzIv6uHtxBwUY4G3Dy5/2xOBuVSq0Qy0JFtt1IHKeISyEDITtUbvFgzZU9LSQSh67z2h8N8/ntF/Odkx+Leq1t4q2pkH1kmkUgkkv6tOFKNfr6cagyU7FpJwjjrvScYd2U2u4zWS+xt9UTd2TAIj2bGbdb62lSJRNIHCEAX8SQ2SBKJFHEJxOjn2am+E5VYh/b/tmGSxCCEoPZ4iG/eM5En9rti44vXfsS1az9mVMUJTLqBblK5du3HrFxwHqsWTKMy4GSMuyGJlkskkt7EkIt4KYMUcQlE6P07O/WoaZfMTJXEuKXwNXJ+PKnVuNMfIrvOg0k3UA0BGGTXeXD6Q31v5BlMyFA4GnIQNFSsisEwmx+rKv0ckt5HxralDlLEJRSBovbfJ5RAeSUFV16UbDMkKcDNo1e3+HuE08NhfyRW0uewcjLTTbonAEQ8cScz3fgcVsyKwRC7LwkWnzkYArZ5Mzjgd7Wo17XVY3CW3cdUdx0m+RsrkZwRSBEniRE6dhLHsNxkmyFJEXJsTUuoFw6qZMupxIZVC6axasG0NmPizs2oxiXj4XoNIWBLQzbHQo5Wr+molAXceHQzszNOoEohJ+kNhBJXTByyPElCkSJOEkPIdlsSWnvhAAbbA8zNOcqGE009U6PCLUqaOcQVeYd63b4zmUNBRysBd8lrJdj8YYIOC+8sGk9V2E550Mko6RGV9AKRAIqeCzG54J9YpIiTABD2eWW7LUmM5l64KFcOKcdu0ni3eihBo+Wto8DZwBeGl5JllXFxvUmZ391q7JLXS0g/6ach28E7i8bH5kkRJ5EMfKSIkwDgOX4E24jByTZDkmRuHr26TQEX5VODjzA75xjb67I5GWpquzXUIQVDbyMEnNSsQMT7dsnrJQDkH6zHpBk4G0Pc9+U3eefq8byzaDy6QMbGSXqFeHqnShKLFHESAGpHnGRI5vhkmyFJIm0to7aFVTWYPqi6l62RtE1Eldn8YdJPRlqcmTQDVQjQDNJP+rH5w0C00bhcvJIknrhi4iQJRYo4CQCuc0aTniaXUwcqoXoP1ozWS3Gn05EXTpJcFAXSTWEadAtBh4WG7EhsnLMxBJqBblZpyHYQdFhwm8KYFSngJIknEhMni/2mClLESSQDHN+hKhr3HSbvsuntzumqF06SXAodHrZ6snhn0fhY/Nt9X34zFhN33wufA2CKvS6JVkokkr4i5UVcIBBg48aN2Gw25s6d2+688vJyysvLyczMJBAIADBjxoy+MlMiSVlCtY3UFe8jd24RitmEorQdKCW9cKnPWXYfBwIu6k7FxgG8c/X4WHYqRLx1o+3eZJkoOQPQZZmQlCFlRdyGDRuor68nLy+P8vJyCgpa926MsnfvXkpKSli4cGFsrLy8nJUrV3Lttdf2hbkSScpS8989+A4fR7U0Xe6+imrqtu7FNXooX7/gPbKtmckzUNJlzIpgbsYJ3m8YRFXYDhDzyAHkWgJcmF6DRXZukPQaSpyJDVIAJpKUFXHNvW4lJSXtzgsEArz11lvcfPPNLcYLCgrYsGED27dvZ8qUKb1m50CgamJVsk2Q9AJCCBr3lFP5j/cY+rnZAITrvdR+XEL1u1vRfEH2/+l1fjPGwVe/P5aLrpDZyf0Bm2owN/MEdZqFQwEnQaFiUwxG2HxkWcLJNk8ikfQhKSviusrevXvJyMjAbre3em38+PFs27ZNirgukC2TGgYcJ/+ziz2/WoEtJ4OcOVMBaNx7iIwphWRNG48l3cW8wPOsefwov/rmdu747SQuu2ZoJ1uVpAqZ5jCZ7vpkmyE5AzFkdmrK0O+PRElJSZsCDiAzM5Pjx4/HYuQSxcjBU9t+Qa5gSFKIQdPHM3zxJWScMxr/0UhJENvgLCwZbizpLr4+ahUFk1zc92wRN95ZyDtvVhEM6Em2WiKRpDKCSJ24nv6TP5OJpd+LuKqqKjIzM9t8LSMjA4D6+sQ+rZ6VX5TQ7UkkiUYPhlGtFkZ99TOM+c5iVIuZQy+tp2L1OwgtItQURSHLHPHAXn7NEMIhg7oTsuOCRCKR9Bf6/XJqMBjEZrN1OCeaINER//3vf/noo4+6tM/BoxSOH2j5PCGEESnkJJEkGWEYHFuzicDxWkbf8jlMdivZF5xN2viR1G3dh2qztOjMIIQgZ4idiedlIORjskTSLzA3aEz6ZQms6vt9y+zU1KHfi7iOiIq7riynhkIhPB5Pl7ZrMreuhG4IA0WVzeMlySdYXUfVv/6LJdONEdZQLWaEYWDNTGPwpedx8+jV7N/h4UCjn/PmDMJkVjlZFcThNpM/wtH5DiQSSVIZ9F4tU76/C+eRxIYKdZV4iv1KEsuAFnHdwWq14nZ3XtEeQNdaL88aho5iSj0RJ4Roty4YyMzUgYYwDKrWf0igqoZRNy/k+L8/ZuhnZqKoTTfdcMhg29p6/veFCv74jwsI+HQ++bieS6/KT6LlEomkM9SgwbhHyhj1TDnJasghUOJquyVkiZGEMqBFXDAYBGg38aE506dPZ/r09ivaN+eGVx9uNWYIPSU9cYqi4D1+lJCngZCvET0YxOpKw+pOx5aeiREKk5udkWwzJQnCf/Qkx/7xH0ZcdzmDpk/g2D/+Q/3O/WScMxphGNwy5nVA5ZZ7xzH5giwqyrzYHSZmXJZD7tDOrxOJRJIc0vY0MvWOXaSXNFsx6qAAvuTMYECLuL7EMFJPxAkhqNm3k6qdH1JTugtDC6MoKqrVBoYBqop5eAbGlTPJu2xa7D0dee4kqYsR1jj2980I3WDkFy8DIHvmOdRvLwM4JeCIJTNcOC83OYZKJJKuowtGPVPOuEfKMIUj7jdhtaL86ldwxx1JMcmQ3rSUod+LuIyMjHazT6OxcNEs1d7EEDpqii2nagEfnuNHGDlzHpMWfe3UmJ9A3Qm81ZU0HDnAyZq9lP5xJeXP/5NJP70J95jhSbZa0lOq3vqAo2s2U/jtq4GIqLNmpuEpO4qv4jje72oU5GYgZPaCRNIvcFT4mXrnLgZ9WNc0OGUKyosvwuTJSbMrnuVUSWLp9yIuLy+v3cSFqLjrLDM1ERiGDinmiQv7PGQWjMWdPwJDC6OaLZjtDtz5I3DnjyBv8vmkT6wiO83JiS07qHr7IyyZbmw5mck2XdJN9EAQz/6juEYNYehnZgLE2myN+uqVDP33H9i52UbB5zNQFAVdFygKqKp8opZIUg4hGLb6GJPuK8HijZQEEoqC8oMfwC9/CZ1UZJCcOfR7OV1QUNCuJ66uro6RI0f2iR0iBWPiPJUVmG2RbEPVbImNC8PA0HUqxx5FaDpC18mZORl34fBYDTFJ/8Jkt1Hw5fnkzpnKkb9tIFwfaYAe9boNHe3k1d8c4qHbd9BYF8ZkUlBVBcOQXjmJJJWwngxx3re2M/UHu2MCjrPOQnnnHXj44aQLOFnsN7Xo9yJu3LhxBAIB6urqWr22d+9epk5tp7tCHHj8NdQ0HqGm8QghLeIF1FNwOdUxaDBHPnyHxmOH0cNNPRUVVUU1mVDMJnKy0mJZtbacDCyZackyVxIn1sw0RnzxMnLnFmF2R8S7oijcPHo1RZdm8dAr06jY7+WG6Rt45oG9hIK69MRJJCnE4P+rZvaC98hfV900eNNNsG1bSiUxGELp8T9JYukXy6nBYLDdJVO73c4VV1zBxo0bWbhwYWw82lN13LhxCbdnzX9+2+Jvq9nO4KzR6EOyEr6veEgbMoLDwSCHNq/DnjGIzFHjsadnYbY7MdnsGIEQutWCoiqoFjONn5STcc7oZJst6SHRpBTroPTY2M2jVwOQZXJgGqlyzx8n88byw6x54TB5IxwsXDIiWeZKJJJTmLwaE3+1j5EvH4mNiZwclKeegquvTqJlbaGgx+X/kUIukaSsiPvggw+oqqqirq6O+vp66uvrWblyJXa7nfHjx7cQZ+PGjcNms7FhwwYyMzNjgu/aa6/tFdsuLfp6i7+9gRqO1x3g5K738V+yAMeg1Mn6m7Toq5RvXMvRjzdyaMtbqCYzFqcbW3omYoid+rwsFFWlduteRt+8EMXU752zZyztZRVHOzMADC908ZW7Cpn7mTwmTZelZSSSZJP5cR1T79yFq9zfNPjZz6I8/TTky9qNko5JWRE3Y8aMbs0vKCigoKCgl6xpSf6gMa3G0hw5BAryOLT5LcYv/FKf2NFVCuYsoGDOAoKN9dQdKMFXc5ywt5F6/SjeA8fImj6Bs3/2VRzDUkd8SuIn6oU7nbRMC5MvTC2vsURypqGEDMb+YT+FTxxEMSJjwuVCeewxuPnmlG7jaMjs1JQhZUVcf8MQOiabHXu6q/PJfUCwsR49FMCZnYeh6yiKgi0tg7wpEXGsh4KcmFpHdpozyZZKEoHQDRST2qrOX3MvXBTDEDIWTiJJIq5SL0V37CRjZ2PT4IUXorzwAoxp7SRIJSKJDfHdP+TdJ3FIEZcgmor9pkbuTbChlpqy3Yy46HJMFisAejhMxfv/x/Gd/yVsC2NdnwWfvpDsC89OsrWSnuItr8RVkN9KwH3trFXk2NpuIycFnESSJAxBwYrDTHi4FFPwlPvNbIb77oO77478t0TSDeQZkyBCmp/6/bsYOrVrrbt6G3feMPa8vpysUePJGFEIQNn6VQjDIHvcZOotx9GPVrPn188z5MqLGPX1z8bqiklSH++Bo1S/W4y3vJKaD/YwaPoEMs8dR/qkAr43/4OYmIt63U5UBti6sYYpF2WRN1w2uZdI+hr7sQBTfrCbnM01TYMTJ8ILL8C0ackzrLuI+JZT1dTwcwwY5K92D1i94RdYLZFlyFDYd6rMiCBzbBFDp81JrnGnUM0WfCcrCTbUAdB49BCDzz4fd94wzHYHVaeK/DbuPUzJIy+TtnkHgy85N7lGS7qE0HXqtpWRN+98HMNyadx7iIMr1nLolfU48rN5dYfOFZ8bTs6UJq/bsYN+Hr93Dw+sOE+KOIkkAdRUB/nPumrsDpWMHCvTL85pd+6QNys556efYGnQmgb/53/gwQfB0f+ux3iWU2U0XWKRIq4HjMybAoDF7MBmcZLlHkrZYB/u9NSJL6vZvwdVNSFExGWvhQKkDy3AZI0UihSGgRCCtHEjOPcPd1D6x1VSxPUTTr63G3fhUBzDcjE0nbRxI5n8q2/QWHIIy9oX+ddLdezaVM+NdxQyc/5gACZfmMXTb89i8DDZ5F4iiZdPttZzaJ+HEWOclJd4eewHxXzl+4UsXDICh6vpZ9VSF+bsn33C0DVVTW8eNgyWL4fLL+97wyUDDiniesD541vX7SnVt6KmSMcGPRRi16tPYeg6ejBI2OfB5s6g4chBskaNByIFf2MB8IaBfUh2Ei2WdAd/xXGyF18CgGo2YWg6ikklbfxIbv70eA5s8fPMA3t57Ae7EIZg1qcjbeekgJNI4udgiYc9H9Vx9c2RaghTLhzEoDwbv/2fndRWh1jywzHYHSZyNp5k8g9346gMNr35+uth6VLI6t/Z4TI7NXWQIi5BCENHMaXG16mYTEy8+quEGutQzWZOfLKNxmOHEMIga9R4hGGge3wYdiuqxUyopgHH0PaXAiR9h9rgx0hvubyiBDWErenc0jx+dvzkKcbfdT223ExUc+Th4asjI8kMOZe6OP/SHP7250M8/0gZI8a6GTkmNbKmJZL+zrtvVmJ3Rq45XTNQTQqzFgzm+A8Lee2pchxWlV/5dQpfqGh6U2YmPPEEXHddcoxOIAIFPQ4RJ1BkdmoCSQ3VMQAQuo6aIiJONZnIGT+lxdgQZqEFI0WQD2fsov65DWhTChk0fQINnxwic0phMkw9I3Gu24X/kvEthBmA4929BC4cjePdvYQmDUHPTcNcUYt111F885syiEfeMI+9v1/JoVf+xbDPz8UxLIdbxrxONHFfCxuYLSqf/9pIhBCUbK2XIk4iiZNo9vfQUU72bmugsS5MWqYFXReYTHD11wto2NbA28+W828dYnfUefPgueciy6gDBEPKsJRB+kQTRMQTlxrLqXAq5u1U3FsUsy2ynKZYLZjTnHgPHMN3qIrMqWOw5WYmydIzC7XBj3X/CdJefJ/0ZzeT+cS72LYewlxRi5FuR9jM6LluhM2MuaIW8+FaAhe1bIVmctgYfMm5nHxvFzvvfYqjb27i5LEg2dZITKbZoqLrkeM+49Icgn69zz+nRDJQ8DSEY9cTgNmsULzpJCXb6gEwmRSMgEbhH/fz8j+PU6jDz4HdViv84Q+wdu2AEnCS1CI1XEcDAKFrKeOJg0jMW3tYB2cx9juL+9AaSRS1IUD912bFvHDW3UcJTRqKuaI2NkfYLBjpDtSGAPrgtFbLqwDZF57NoPMnULrsdQ49t4b/97adq28qYOpFWWQPsWN3RB4ojh8JcPFVsnWPRNJdhBBsWVdN6Y4GPA0aQZ/OnY+czaWfH8K6V47w8u8PUDDWTUHQYOpdu3BvrUcFXgbOUVX+evPN/OI730n2x+gV4llOlSSW1FEd/QiPv4aQFulz53ZkYzXbU84T1xFCCISuQ/PkBkmvohuCoK4jBqdhVhWsQmDbc4xwYSR7VBuehaWsGiUYKUGgBDVM1Y0Ezx3Z7jYVk4kxty3i1q95effFav50Xwl5w+186uohKAqMnZLBiWMBzp0jk1Ykku4Q8Ou89lQ50y7O5sJ5hdRWB/nhFz7irms+5Du/nsj//GYS3/vcB/ztOzt4encDWYGIp05TFM66916eGTeOG77yFX7w8MO43W0X3e7PGEL+bqQKUsT1gDX/+W2Lv61mO6asQeQWpna7lCiKoqCYTAjDoG7nfsxOO+5C6e7vDQwhqA+E8WstlzTtniA5vlCLuLjAhaNRG/yEC3Ox/2c/gYtGY6puRG0IYKTb0XPTWm3/ljGvk2PLY8b0PL72o7G88edDnKwKYuiC4YUuPnX1kF7/jBLJQKNkaz0Tp2UwvigDwxDk5Nv53Rvn8z8LP+BP95Xwla8M57fD7Nz2cT0XAbcBrjFjMK1YgX7BBVxnMvHW229z/PjxASniJKmDFHE94NKir7f42xuoYWftf9m9+lnOv/VeHIOS30heGJH6cM2XVYUQVE2ohFPdXkK1jZT+fiVpEwoY//3rk2HmgMYQghO+IJrRukR5+t7j1A5JxxQK47ZaAE7Fw6Vh23qI0NkR8WX7+BC++WdjKatuJeJOb3CfnWfjaz8ai64ZmMxyuUMi6Sn//tsxTGaVc2dno6oKWtggPcvKj5dN4bdfL+bt/9nJr8KCR4C7gMw5c7j+r38lbcgQousxaWlpmAdgG61I79R4slMliWTgnWF9QP6g1h63A/YTnH31Eg5tfovxC7+UBKtaEhVveigIiorJYol44FQ11vTelp3B1Me+iwhrHW1K0kMag1qbAg4g/VANtWNzCQc17GYT5lPHK5Lg4MBId8SWVoFWmaxR2mpwLwWcRBIfZ8/IYs9H9VQe9pM/woHZoqLWhbnm+cMMPhHiG8DjwOODB3Pgggu4f+tWjDfe4Otf/zoWi4WNGzcyc+ZMRowYkeyP0iuk0nJqeXk55eXlZGZmEghEKjDMmDGj29vZu3cv5eXlLcbmzJmD3Z7a9TWliEsQQtcwO5wp4YXzVh/j6Ecb0fw+QKCarZisNiwuN6F6K66pY7APjhSbtKSlTpeJgYQQAt9p4vi69R/iCoTw2q28b3WgnxJm3pBOhl1FCWotslGFzYywW1CCGmqDH2gqEHq6F04ikSSOYaOcPHlfCWPOSWPB9cPI/rCOyXfuxH00yPXAJuAJ4MY//YnfX301+Q8+yLvvvssbb7zB3Llzueqqq5gzJzVaMCYeBSOuwhaJE4B79+6lpKSEhQsXxsbKy8tZuXIl1157bZe3s2HDBgoKCpg3b15srK6uLradVBZyUsQlCEPXUVQTyXYW15WXcnzXhyiKihb0E/Z50IMBtGCAkLcB4//C1I0dzuBPTWPwpedJEddLhA0jdiZct/5Drv/Xh4w+Wo1ZN9BMKvuH5vKyxc8r884npOtAZEn19HIi/ovHYa6oJTRpaKt9tOWFk0gk8SGEYNK0TBZcN4wX/l8Zs9+v5TN/r0IRoAHmtDSW/vGPvP/HP/LIs89y6dVXc88996AoCocPHyYjI4P09PRkf4wBTyAQ4K233uLmm29uMV5QUMCGDRvYvn07U6ZMaefdTVRVVcXe15zMzEyuuOIK1q9f30IkphpSxCUIIxzk0Ka1uAa3/rHtSxqOHGD4BZfhzB7cYlwPhwnUVlOh7ECUV3L0jY0Ej9dy1lcWoJ6KyZIkjmbl+XAFQuTUezDrBqohMGOQU+/BFQhF5kbf086SqTa8ZYuem0evlgJOIullvvHpXPa/WMFv1lQxHRgDmOfOJfT001jHjWP1JZdw0UUXsW/fPsaOHQswYJdPmyMAPY7l1ES5Ofbu3UtGRkabXrLx48ezbdu2Lom48vJy8vPbLsOUl5cXE3mpihRxPWD1hl9gtUQ8WKGwj5AWAARZn7qKodOS50IXhoFqMuPMHoyhhUGJuLwVNRIT5xo8lMyJplhM3OFX3+bom5sYvvjSpNk8UDE3Syjx2q2cyHCT7vVjJuKJO5Hhxmu3AmDpoKbf6chlVIkkPqKdF9pDMWDUMwcZ92gZeSHBp4EfKgqP/ehHFPzyl1hNJkKhELm5uSxevJisft4HtSekQkxcSUlJu8ucmZmZHD9+nEAg0KWl0G3btjFu3LhW43V1dWRkZMRta28iRVwPGJkXUfcWswObxUmWeygfN77PyJlXJNUuPRQk5G0EQDW39q5Vjj/GIIcDI6yhWswM+/wcjr+zta/NPCMwqQp2s0pAM3hl3vm8Mu/8FjFxr8w7PzbXaelefUHphZNIeoauGfx16UHOm5vNhHNb/zg7KvxMuWsX2R/UAXAusHL0aC4/fJhBVVXcc+AAY8aMwWq1IoTAYrG06Ioj6TuqqqoYP358m69FhVd9fX2nIm7cuHFs3LiRNWvWMG/evBbzP/zwwx4lSfQlUsT1gIkjL25d7Ld+S9KL/ZrtDoxwkN2rn2Xk7AXYM7NjrbYg4pGLNksHCDf6ZH24XiTNaiGoBWPLB82FWxSbScVm7tp543r1EWq+OoSckVLE9RaaUKgM2QkZCnbVIN8aQE2+00GSICr2+9jw9yo8DWGyh5pJy1HQDQ1FURj9Wi2T7y/D4jlV01FREHfdxZwHHuCVf/yDn/zkJzz88MPceOONTJw4kS1btvD973+f3NzkJ7P1NUYCOjZ4vV6efPLJTudNmzaN6dOntxoPBoPYbLYO31tfX09eXl6HczIzM5kzZw4bN26kvLychQsXUlBQwPbt2ykoKGgVK5dqSBHXA9oq9iscdgK1J5KenTp0+sUc3vIW+/75Cra0TNKHjcKelY09YxChLA8BXwCEQOgGntIjOIafeTegvsJiUhnksFIbCNFWpRG72USmvWvxiJ/yruDfjRrjRg5KsJUSAEPADm8G+wMutGY/UDZFZ6zDwwRnI7K5Sf/myH4vb716lGGjnXy88QTOQQafvimPNI/OtHsPMuJf9U2TCwpgxQqUiy9GCMHVV19NQUEBH374IX/5y1+YMGEC3/72t1M6a7E30ROQYSqEwOPxdDovFAp1e9tRcRctOdIZM2bMIDMzkzVr1rBq1SoyMjJYvHgxmZmZ3d53XyNFXA9oq9hv8bF3+e9Tv2b6N36cVCHnzB5MwZwrqdr5ATX7dnGw9O9oAT8oCorDijXDhWvUEIJVNQy+dBo5czoP/JT0HJvZRJ7Ljl/TCWoGAoFJUXBazFhMXXuaFbrB6t8d4se/n9rL1p6ZGAI2N2RTGWrdozYoTOz0ZeA1zExPq23j3ZL+gBCCIwd8zPr0YM4qMvP0z8t475+1nHUyzC9WnsDiiWSTK8CBRTm4l64ge/AcVIjFz5133nmcd955yfwYAwpFUXC5Ol9VsFqtfWBNRPidf/75VFVVcejQIVatWsXChQs79eQlGyniekBbxX4/CX7C1Otupeyt1Ukv9mvPHETB7AUUzF5A2O8j2FBL2OehOv0QFo8f1Wom9/ZrsGbIdjB9gXJKtDl7mAQ86oMnMM3LJiO7b25mZxoHA64WAu6S10qw+cMEHRbeWRSJuTkQcDHc5iPfGkyWmZI4UBSF8z+Vg46OX/fwlduH8NTVe3j/ueO8A8wDhAk2/6GQI1dkkau9xKfUiwH473//y8SJE7skOM4EhIgvsSEaQuhyubj11lsTZFVLgsHIddpVT+mGDRvIz89n7ty5AGzfvp3169fz4osvsnjx4pReUpWl3ROI2WZP+nLq6VgcTtx5wwhdmUnG7CmMuPZShl01Rwq4fkKorpGtb9dwzZdHJduUAUupv+WP8yWvlzD/L7u45PWS0+bJa6Y/oygKYSNI5n8b+dwXS/hTZZg64Fmg2AwNhQ6OXBHJNK0OfExjqJxPPvmE+fPn88ILL8gEhmYYQu3xv1Rj+/btAC2yU6dMmcLXv/51MjIyWLNmTZeXZZOB9MQlCtHqP1KObFnYt99he+0JPv29kagyur5XCBkK9bqVS14riYm2/IP1mDQDZ2OI+778JgDvXD2ejYvGJtNUSZwoYYOJvytn4hNHEQImAj8H7gae0+H75X6uuGo3uoiEPOi3Ps6E7/6We++9ly996UsdliU5s1Aw4oqJS8z3mJGRQX19fZuvRUVXV8qDfPDBB60KBkMk4eHGG2/kmWee4dChQ22WIEkFpIhLEMLQKVv/Wsp54iT9l7m1z/GeVeH86akdk9Gfif4Y2fxh0k9GMs5NmoEqBGhGbMzmDyMS2C5I0re4Sr0U3bGTjJ2REkwKYJgVrkg3UVKn8WcDhoThluoQLkVBFwLDG1mSu+OOO5JouaQ98vLy2vWQRcVdZ/FsgUCgwwxXu93OjBkzqKur67GdvY0UcT2gvWK/g8efndRiv5KBg6HpvP54BT97oijZpgxobIqBTdEJOiw0ZEfi4pyNIdAMdLMaGws6LKSbw8k0VdITDEHBisNMeLgUU9CIDKkQzLbgyzahqip3+HT2BQUrBeTbVGY5TbxSr/Mtqyy/1B7xdGxIFAUFBXzwwQdtvlZXV8fIkSM73Ybdbo/Fz3VEKmepShHXA9oq9vtR/RZGzpqfZMskA4WRm5cx6XM5pGXIlmi9iaLAKIeXdxaNjyUx3PflN0k/6ach28F9L3wuNvc8u8xO7U/YjwWY8oPd5GyuiY0ZE8bx9kMOTp4dua4MXbBg0R4erg5xjc/gW7UaIwdbeOyvd5JTdHeyTE9pBPHViUtUwNG4cePYsGEDdXV1rUTW3r17Y0kKUQKBAFVVVa2SFDIyMigvL283eaG8vLxL7buShRRxPeD88Ve3Hqzb0veGSAYkwRN17PpPPb9ePi3ZppwRjHV4KA848RuR2+E7V4+PZadGyTCFKLD7kmWipJsMWVPJOfd+gqVBaxr87ndRH3qIsdoGaqp+jkBHNSmUXZeL2acz8UMP+8oDPPjCZ5g34Z7kGS/pEna7nSuuuIKNGze2aFAf7al6egzbmjVrOHToEPPmzWshyhYuXMjKlSuZO3duCyEXCATYuHEjM2bMSOl6gFLEJYrke5fbpWpilUxq6Eeof32CW388QQZS9xF21eCSzGo21+fQoDeVFYmSYw5yUcZJzErqJi1JIpjrw5zz008YuqZZ0/Jhw2D5crj8cgAKmI9VTWdnzVPUBHdSdn0uG14/gbhsMK997SaKcr+DRZWZyB2RCr1TIeKNs9lsbNiwgczMzFiM3LXXXttqbkFBAVVVVa3i5Ox2O1/+8pfZsGEDe/fubfHanDlzUlrAgRRxEklKccGRZ9mdb+Os8fJHpC9xm3SuyKqiKmzjcNBJ2FCxqToFdh85lu5XjJf0PdmbTjLlB7txVDaLcbruOli2DE5rUj/EdRFDXBdRFyzFEz5M0ZfCDMs9hyPed9h24nFUxcIQ54XkO2fKh6k2iC87NbF0tTXWjBkzOuyDevrya39BirhEkcIP6b6SQ2RPn5BsMySdYIQ1/vHsEX7xtKwKnwwUBfKtQVnQt5+hBnTGP1zKqOWHmwYzMyPi7frrO3xvpm0MGdZCdgb/xNpDv0QXTcd+X/0ruC0juDDvfrLtZ/eS9f2TVPHESWSx34QghEGqNlYUQnDibxuSbYakC+T/eymXXpeP0y2frSSSrpC+o4FZCz9oKeAuvxx27OhUwEUpPvk7dtf+uYWAi+IJH+adI9+mNljSxjslkuQjRVwCMISBYjIl24w2CdSdxJKbmWwzJJ0QqDzJgR0ePv25Eck2RSJJeRTNoPCP+5m56EPSSr0ACLsd/vAHWLcOhg/v0nY84Qr21r3cYqzw5WrGP1tJ4cvVAGjCx/aTSxP7Afo5A6ljQ39HPvInAMPQUdTUFHFHLDuxj5DFYlOevz7JN2Uyg0TSKc6DPqbeuYusrc2q9Z93HsqLL8LEid3aVmn9ak6PhSl8pRr7iTCBHAtl10eKt1f63sMTPoLbImvHCZT4eqemUDzdQECKuARgCA3VlJpfZeBQFUMvlPEcqcx5B57mwGgHw0bLBtsSSbsIwYiXjzDxgb2Y/ZHCvUJVUX78Y/jpT8Fq7fYm64IlFL5cTeEr1bGxtP1+VA0sDRpXXLU7Nh6+9RH47qPxfw6JJIGkpvLoZ6SyJy54qArXFy9LthmSdtADQd56/hi/kjXhJJJ2sVYHmXL3bgb/+2TTYGEhygsvwEUXxbFlBbNPx36iqRuHqgkUA1SNFuMhT+o2Qe9rUik79UxHirgEoBtaysbEGcEQJkf7veEkyWXQ2mVc8NWh2Oypef5IJMkmb+1xJv94D9baZm3Pbr0V/t//A3d8pXhy7FMJOP+XQE5TYWdLg4aqgWGmxbgrszCufQ0kZHZq6iBFXA84WFnMWflFsb8NoaOoqfdV6qEgSg+WGCR9g6/iOIFDAb71o+7F8UgkZwLmRo1Jvyxh+KpjsTGRl4fy7LPwmc8kZB+FGVez5vo/x2LfAK64ancsJu6tNyYBMNx1GbOG3JWQffZ7RJwiLoXLcfVHUk959AMOHd/WUsQZOkoKxsR5qo5gHzk42WZI2kAIgfHK09z+i0nJNkUiSTkGvVfLlO/vwnmk2RLm1VejPPkk5Oa2/8Zu4jDnMjn722w/+cfYWLQNl+aMeMdtpkFMzbk9YfuUSBJJ6imPfogh9JRcTj2m7MZekJ9sMyRtMKXkKY5PcTN4uCPZpkgkKYMaNBj7aBmjny4n2uVMpKWh/OEPsGRJr9TjnJj1FSyqi101TxHQa1p45XLt53L+4J/itnStZMmZglxOTR2kiEsAhqGjWlJPxAXKKxkza16yzZCchuYL8M6rVfx6+fRkmyKRpAxpexqZescu0ks8TYNz5qA8/zycdVav7ntMxjWMTr+KI953aQwdQlUs5DsvJNM2plf32x8RxCfi5GpqYpEiLgEYhpaSy6nhE3XYBmd1PrETDD3yT1EhBT9mvyNtzVLmfnM4FpssfCmRoAtGPVPOuEfKMIUjP/HCakV54AG4807oo1UOVTEzwi0z+SX9C/mTnAD0FFxOFUakFVg8xWODfvDUgL8ROJVSbnMK3FngSEuMnWca84LPs65OY+7FQ5NtikSSdBwVfqbctYvsD+qaBidPjhTunTIlaXZJOkaWGEkdpIhLAKnoiYu02+q5F85XDzXHgNMu1qBPIeiDtGxBRuLii88IhGGw6rFD/OC3k5NtikSSXIRg2OpjTLqvBItXjwwpCspdd8H994PdnmQDJR0hY+JSh9RSHv2USHZqanniKsw7e5zUEA61LeCa03hSweoQOOIr03RGMX7bkwRmZzJosKzbJzlzsZ4Mcc5P9pC/rqlLgigoQFmxAi6+OImWSST9DxmUkwB0Q0NNsTpxwUNV5E0s6NF7vbXQkYCL4qnp0ebPSMKNPt773xN88aujk22KRJI0ct8+wewF77UQcNx0E8r27VLA9SMMofT4nySxpJby6KccGQppGanV9zJYcRznyJ41vvc1th67fst/AHh5ZlOLm6AvkvCQoh3HUgrn35Zy+e0jMJnlc5PkzMPk1Zj4q32MfPlIbExkZ6M89RQsWpREyyTdRRCfGBMyni6hSBGXAAxdQzWn1lcZT7stobcem7W3BKsWeaFJyCkYhpAirhMu9SznXU1w0UWyZp/kzCPz4zqm3rkLV7m/afAzn0F55hnIl9dEf0R61FKH1FIe/RSh66gmS+cT+wg9HEKx9Nwekxm0cMuxkNlCqyVWRQq4zhC6werfHeYnf5yabFMkkj5FCRuM+cMBxiw7gGJExoTTifLYY3DLLb1SuFciOdOQIi4BCF1LqcQGX/UxbMN7njrqzICGEy3H7rzxS63mOdygytXBDjnr/WWMXZBNxiDZw1Zy5uAq9VJ0504ydjSLzbjwQpQXXoAxsoBuf0dIT1zKIH+CE4AwdNQUKjFy1LQHWw/j4QBcmaCaOqurLUgb1ONdnBGEahvZ9m4di740KtmmSCR9gyEoeO4Qsz/7fkzACbM5UjZk40Yp4AYIBkqP/0kSS+ooj35MqsXEBQ5VMepzs3v8fpMZcobDiQqBobdx0SmCQUPAKtt+dohl1TKuvWMkqipvXJKBj/1YgCk/2E3O5mZp6xMmRAr3TpuWPMMkkgFM6iiPfoTmCxCsrsWanYmiKghdT6liv6GqGhxDs+PahtUBeaPAWy/w1YOuRZZOHengzgSzXB3skNknn+O/LhPTzh2cbFMkkl5nyJpKzr73E6wNWtPgd74DDz8MDvm0N9CQiQ2pQ+ooj36E7gvQsLMM1WrBVTgcYdNQUygmDj0xxYdNZkjPjvyTdB1D03ljWQU//1NRsk2RSHoVc32Yc376CUPXVMXGxLBhKM89B/PmJdEySW8iY+JSByni4sAIhWnccwB1WGPKeOJCngZM6alVs+5MY/jGZZx9dS7u9NTJWJZIEk3OxpNM/uFuHJXBpsHrr0dZuhSyet7yT5LaCBGfJ050Fm4t6RapoTz6OaajdahGajyZeI4fwR5HUoMkPoLVdZR82MADfz4v2aZIJHGjC42QEcQ4VTzSpJixhcxM+s0BRi0/HJsnMjNRli2D669PlqkSyRmJFHEJQBg6pj3VMDv5646VfELu+J6125LEj/LXJ7j1x+NRZA0sST9GCEHA8KGJlgUjM3bUcuFdB0jfH2gavPzyyPLp8OF9bKUkWcjl1NRBirgEYGCgHPMm2wwAAuVVuBZckGwzzkhmHHmGT4bZGDnWnWxTJJK4CBr+FgKu8MXjDHu7jrzNDainCvcadgvqbx6B226TBSPPMGRiQ+ogRVwCMNBRldRIbNAbPFgz05JtxhmHEQrzj2eOcv+zchlV0r8xhEFYhGJ/u8sDFP2mArPfiI3VnO3ko0fP4dLLb8EsBZxEkjTk1ZcABAJlSEayzcDQdUilLNkziLy3l3HZDfk4XPK5SNK/iQk4IRj9SjXzF+6OCTgB7Pr2EP7v1QnUjDao8LydPEMlSUOInv+TJBb5i5MIFODcYcm2Av/JKmxDkh+Xd6bhP3aSg7s9fO1745JtikQSN0IYjH+qkklPHMXqafK+CUC3wtB36hn6Tj0A/q+/AndemSRLJckh3s4Lcik2kUgRlwD0TAc4k1/99ohpF7aC/GSbcUYhhIC/Psm3fjJRJjNIBgRD19VwzuNHWyyfRkOgVAPsJ5pi5cI+va/Nk0gkzZAiLg4UkwnnqKHo2u5kmwJAoLySgvkyqaEvOe/AMxwa52ToWc5kmyKRxIW5UWPSL0sYvupYbMwwgXeoDUd1CFUDwwyBnKb6h+lZ5yTDVEmSkdmpqYMUcT3AZLfhPqsAe96gSGeEA8m2KELw6AkcI2Sbp75C9wdZ/8Ixfr1C9oWU9G+y3q9l6l27cB5pKh1SMS+T/95fQDDbwhVX7cZ+Ikwgx8Jbb0wCIN95ERcP/VGyTO5XGCKAx/cmDd6/EtaPoKou3Pb5pLtuxGIemmzzuoUgzmK/iTNFghRxPcLsduAYmttsJEWeSnQd1SwTG/qKzH8u5aKbh2K1ye9c0j9RgwZjHy1j9NPlKKd+XUVaGoHHfs5Hl64jaNQCUHZdLmafjuaMnOsu8zBmDP5ZsszuV4S1Co6cuI6wtr9pUIea8B5qG5eRN+j3pDmvSp6BPUAmKKQOUsQNEGS7rb7Fd6iK0NEgn7pcFjiV9E/S9jQy9Y5dpJd4mgbnzEF5/nkcZ53F5eHr2VXzLIc86yi7PvLQalHdjE37DJOyvobdPChJlvcfDBFoLeCaIQhRWfMdzKZ8HDYZCiPpPlLEJYTkP5Z4qiqwy6SGPkEIgf7XZ7j9/rOTbYpE0n10wahnyhn3SBmmcOTeJaxWlAcegDvvjJUpclmGMiPvpxTlfI/GcDmgkGEdjVl1JNH4/oXH92a7Aq4JjZrGxxnWj0ScjIlLHaSISwjJP6GPGXvImzw62WacEZyz5ylqzktj8DB7sk2RSLqFo8LPlLt2kf1BXdPg5MkoL74IU6a0+R6rKY1sk0xg6AkN3r+2Gkt/0YvqFRguhYYbI6snvsC/0fQqzKb+0fdairjUQYq4AULwUBWuz81OthkDHs3rZ8OqKn69YnqyTZFIuo4QDHvtGJN+XoLFGykLIhQF5fvfh/vvB5styQYOTML6kRZ/p7/oJfcXDSgaiFO/vhEhZ6Dplf1GxElSByniEkLyl1N1jw9Lmixz0du431zKxd8cjsUqm50MFAwBXgN0ASYFXCqoA8jRYKkJMfkne8hfW900WFCAsmIFXHxx8gw7A1BVFzQrpad6BYoGGKBokb9jryn95P4t4uydmvyfywGFFHFxIoQg2cuphq7LBtR9wOX+Faxv1Jlzcf8qCSBpGyHghAZ1Gi0q0KsIssyQbYb+Xr859+0TTL57N/YTTb1Quekm+P3vIT09aXYNdCorK8nPz8dtn09NeA8Afp+JdJeCNlgFA1DBcEVOMIt5DFbL2CRa3D1kdmrqIEVcnAhhoCRZQPlPVmGV7bZ6FWEYrHrsEHc/2nbckKR/IQQcDYHHaK3SDBROahASgiGW/inkTF6Nib/ex8iXmpbzRHY2ylNPwaJFSbRs4LB582YaGxspKytj1qxZFBUVAbB06VKWLFnC0qVLufzyuZhcyyj5xMZ/Nuay5Jb9sTi45mS6b+pb4+NExsSlDlLExYluaChqcuuEHbHsxj5SxlL0JuOK/0To4iyycmXs0ECgQW8p4Cb/tQKLTyPsNLPji5GyMY26QppJkNbPygBmbq1n6p07cR30Nw1eeSXKs89CfvsZ7JoR4Kh3A36tGovJzVDnHFlGpB3KysoAWLBgAR6Ph1tuuYWXX36Z4uLiiAfO7aawsJCMjLM4UP5D9u5ZwWevrmhzW27HVWS4bupD6yUDCSni4kAIgT8YwuZRMP3nJNhNGMMdiBxrnz6+Bw9VMeLS8/psf2ca4QYv7//jJA/KzgwDhjqt5d+TX63AdSKIN8cWE3HRef1FxClhgzF/OEDhsgOop9qeCqcT5dFH4RvfaPeeJITBrppn2Fv/CmGjMTauYmFk2hWcl/sDLKqsQdmcxsZGiouLmTVrFm63m7S0tJiwi5KWlkZ+fj6VlTMpmuxkxPD/wxf4N5G1VLCYC8l0f5UM100oSv8JhxHE54mTK7GJRYq4HqLpBg2+EP6gH0tYRT0ZiTlRj/gxMi3o52dBH1XyDx45gWOE9MT1Fo7XlzHvOyMwmfvPjVbSPoaAwKkfocl/rWDyqxUM2u9F1QW2Bo0brnkPgB1fGM6OLw5DiNRfUnWVeim6cycZO5pEGBdeiPLCCzBmTIfv/bD61xxoeKPVuEGYg43/S0OonEuHPYFZlSV1ohQVFcWWTyEi6goLC4HIMqvHEymg7PF4KCsr45prbgJuQtOr0PRKVMXZr2LgTkcKsdRBirgeIISgwRs61UNOR1Vbfo1qXRjl/Rq0WTmRdLfeticcxmSzdD5R0m0ubVzOBiG48EJZSHkgYvFpuE4EUXWBYghUwHUiGHstkrSUwj9ZhqBgxWEmPFyKKRjx8AizGeXnP4d77gFzx7f4Kt+HrQRc4cvVsRZbZdfnUhPcyb76vzIxa0mvfYxURwiBHnwXzb8aYVShKG5M9isxOz7LsmXPcvvtt8fmLlmyhKqqKmbNmsXy5cu56aabKCsriyU7FBZOTeInkQw0pIjrAbohYrd1YWioSmuPm9KgoRzzI4b3btq4Fgyg2mWcVm8gdJ3Vvz/MT/4ob7oDCVUBsyLQhELYacabY8PWoKEChknBmxO5nsJOM1ZFpKwXzn4swJQf7CZnc03T4IQJkcK907q29F9av6rVWOEr1bFm99F2W2X1rzEh88v9atkvURh6FcHar2OEd7QY14P/x8Z3fseUc77FrFmzYuNutxu3283q1atZsGABACtXruSee+5h8+bNMY9df0YmNqQOUsT1AMNoejJvyxMXRS33ofeyiPMeP4JtxOBe3ceZysgtTzD+MzlkDLIm2xRJgsk0RcqL7PjicHZ8cTg3XPNeLCbupdUXxublmlPTCzdkTSVn3/sJ1oZmwX3f/S489BA4ut4WqzqwlcKXqyl8pamGXNp+P6oGlgaNK67afWp0N6Hb/h+2b/8wQZ+gfyBEgEDNlxFaSavXduxx47TXMnn8Q+wrGUlaxljyTyWORBMc8vPzY0urAC7XAIktTM3L4oxEirg4MQyNuXUl/ObEVranncVvRl8Te03x6h28MzEcUz+Rmam9QKimgZ2b6/jVczKZYSCSaYZ6XRA+5VHY8YXhsezUKFZFkJliSQ3m+jDn/PQThq6pio2JYcNQnnsO5s3r9vaEMDD7dOwnwrExVRMoBqgaLcZpJkbOFDT/G20KuKpqK79/qiD2t9f3W958800gEgdXXFzMTTfdBBBLfPB4PFRWVvaJ3ZIzByni4sQQOg4hcOpBrMZpKW99sPIQOFRJ4Rcu6/0dnWFYVj3BZ+4YiTqQSvdLYpgUGGGFIyFBUCgtMlIB7IpgmC21OjfkbDzJ5B/uxlEZbBq87jqUpUthUM9KgWTaxqI5SwnkNMXUWho0VA0MM7FxRTGRnn7mxYVqvpfbHM/LDfHMY7uaBhQnQvhRlIgXNCrgotx2220UFxfHllf7N0qcy6kpdFENAKSI6wFKsyAZQ2hUOnI5qqp8nNEy1kH0QU2xcHUd9rysXt/PmcSs6j/zUZqJaUVymXogY1HhLDv4dEGD3tR2K00VWNUwmqGhAapiwqJYW1z3fYka0Bn/cCmjlh+OjYnMTJRly+D66+PadmH6Iv5z/X9jsW8AV1y1OxYT99YbkwAYn3kjRTnfjmtf/RFDO9hqzHrbCZSQQJ9rR/tyWmRQ+BB6FYr5LNxud5vbap7N2t+RHRtSBynieoDaXMQZOp+kj+L23GtbzdPP6t34B3HqSkp2x4iBhKHpvPmnI9z3p3OTbYqkj3CaIv8ANCNMwPARaBb3ioAgfmyqA6vat0lE6TsaKLpjJ+4yX9PgZZehLF8Ow4e3+76uMtx9Kbn151Ed+LjdOU5zHuMzvxT3vvojimJtLVhCIvKv1eQzJ8FMJjakDlLE9QBVVbCYVcKagSHazk7Vx7kho3fLfgTra7BkZ/TqPs40hm1YyjmLcnGlD4xLQxdwOOjkQMCFRzdjQpBvDTDG4SHdrHW+gTMIzQjjN7ztvh40Ih0Q+kLIKZrB6CcOMvYPB1C1iGAQdjvKww/D7bcnrFeyqpiZM/RR3q+6jyPedwAouy43VmIk0zqOWUMexmHOScj++hsm21w0/8oWY8bcSL28mBcOUMzjUE1D+tQ2iQSkiOsRigJpDgv+oIauGKhK09coXCb0MW7EiN7NSgWosOzEVnDmxan0FoGqGvb+t5EH/jwwul/4dZUN9bk06C0fJsoCbsoCLqa66hnnPPOC1dsjKtI6m9PbS6vOgz6m3rmLrK31TYPnnRcp3DtpUsL3Z1FdzB7yWxpCBzjY8L/4v3ECVXUz0v0ppjsGxrXQU8yuJa1EXHPxFsXi/HJfmZR8BBCPJ04uxSYUKeJ6iKIoOO0W6keqZFjT0EZmgt2EyOq7jtmB8kqGXpD4m/qZivLqk3zz3glJi31KJELApoacVgKuCYVt3kycJp3hts7Fy0BHExrGqXZIUU4vehslLEJYe2PpTAhGvHyEiQ/sxew/VbhXVVF+9CP42c/A2rulbtKto5iSc3vnE88gTJbJWNx3EvY82v4c2+WYnWfWcrOMiUsdpIiLE2HoKIMciKFdr82UKIKHj+P6osxMTQTnH36GvSPsjCgcGHWcjoXs1Gktf/Qvea0Emz9M0GHhnUXjAdjjS5MijkiWeZRo3bRovTTDTKyOWtl1uRy6YVjC92+tDjLlnj0MfvtE02BhIcrzz8PMmQnfn6TrWNP+B8U0jLBnGUJv1h9VzcHi/BIW93dR2gipkUj6Aini4kToGmonrW16CyMQxOQ4c4Jpews9GOaffz7KA38eODXhDgZaL+df8noJ6Sf9NGQ7YiKuTrNSp1nINIdbzT9TidZNa6temtmX+NqPeeuOM/lHe7DWNjsG3/gGPPIItJPpKOlbLM7FWJyL0UMfR7JQ1TRU6wwU5QwtBC49cSmDFHFxYugaqqnv+5ZqwQCq7Qy9gSSYwf9ayrQb87E7B87TtN9o+iyXvFbCJa+XkH+wHpNm4GwMcd+X3+Sdq8fzzqLx+HXTGS/iTM08KZrTRCDH0ma9NM1pajE3HsyNGpN+WcLwVcdiY2LwYJRnn4XPfjYh+5AkFpP1zI4RjCKzU1MHKeLixOxwYXH0fhLD6XiPH8EmOzXEjf/YCSr2+rj5rvHJNiWhmJWmR2WbP0z6ST8mzUAVAjSD9JN+bP5T3iXFaG8zZwwmxYyKCQOdsutzKbs+t52YOAV3ArwvWR/UMvXOXTiPBJoGP/95lKeegtzc9t8okaQC0hOXMkgRFyfZky7Ald33Sx5HlT3YZWZqXAghMF5+km/9ZOKASGZoznCbn+PhSCmEoMNCQ7YDZ2MINAPdrNKQ7SDosGBXdbItoSRbmxrYTQ58elO2bvNkhtgc1RHXuaIGDcY+Vsbop8qJ6myRlobyhz/AkiV9lhQlkUgGBlLE9VOCB48xYvaUZJvRrykqfZojE10MPavvPam9zUibjx3eDMJC5Z1FkWXTthIbzrbXp1RrqWRiUsw4TW4Cuh+DlrFvCio21Y5F7bkXLu0TD1Pv2En6J83KusyZg7JiBYwa1ePtSiR9jVxOTR2kiOunhE/WY8vNTLYZ/RbdH+Ttlyv59fLpyTalV7CogpnpJ9lUn41+qolvVLhFGWL1M8HZmAzzUhaTYsZlTkMXGpqIFEM2YcKkmHvugdMFo549xLj/V4opfKpwr8WC8sADcNddYBo4sZiSMwS5nJoySBHXDxGGAYoy4JYA+5LMfy5l5s3DsNgGbsuywdYgl2Ud5xNfGhVBJ8apxtNppjCFdi9jHB65etcOJsWMSYn/9miv8DP1+7vIfr+uaXDy5Ejh3qlT496+RCI5s5Eirh8SqK/BIr1wPcZbXkn4WJBLL0t8va9UI8OscUF6LecadfgNEyZF4FJ1Kd56GyEY9toxJt1XgsUTWZoVioLy/e/D/feDTZYGkvRn5A0kVZAirh/iPX4E2wiZmdoThBDorzzDN399TrJN6VOsqsCqyl6pfYGlJsQ5P/mEIWuPx8bEyJGRwr0XX5xEyySSBJFCy6nl5eWUl5eTmZlJIBDJ9p4xY0aPtlVXV8fGjRsBsNvt2Gw25s6dmzBbewMp4vohVWIv+eMHVkmMvuLs3U9Se346uUPtyTZFMgDJfecEk3+4G3t1s4zfJUtQfv97yMhInmESSSJJERG3d+9eSkpKWLhwYWysvLyclStXcu2113Z7W++//z4LFy4kMzMTgEAgwIYNG1JayA3cgKABTOBwFS5ZXqTbaB4/G1cf54ZbxiTbFMkAw+TTOfvePZz/1eKYgBPZ2bB6NSxfLgWcRJJgAoEAb731FvPmzWsxXlBQQCAQYPv27V3eVlVVFW+99RbXXnttTMABrF+/nr179ybK5F5BeuL6IYYvgNnd971a+zuuN5ZyyW0jsFjls4ukNYbQCRlBNBFGIFBRMatWrIoVRWn/nMnYWk/RnbtwHfQ1DV55ZaTzQr582JIMMAQQT4mRBHnx9u7dS0ZGBnZ761WV8ePHs23bNqZM6VoZrg0bNjBjxoxW2yooKCAvL7VDl6SISzAibEDAiMR9Ok0oCS7CZWgaiixJ0G0u863g//w6s2cPSbYpkhQkbIQIGL4WYwYGISNAmCAOk6tVtqoSNhjzxwMULjuAeqqsnHA6UR57DG65RRbulQxYRAosp5aUlLQp4AAyMzM5fvw4gUCg3TlRqqqqOHToUIsl2ShdFYHJRIq4BCH8OuJoAFETbnrSMCkouVaUoTYUc2K8P74TlViH5bQaVxv8GOktvXNKUEPY5CEWhsHq3x3insdkSQdJazShtRBwp7fbEgj8uheXKS3mkXOVeSm6YycZO5rV2bvwwkjpkDGpvVxviBCGCGFSXLJMkaTfUlVVxfh2YsMzToUv1NfXdyritm/f3q5Hrz8gf+ETgPBqGJ94QT/t8UQXiMogoj6MOsGNYolTyGlhNO8OCjJaijjHu3sJXDgax7t7CU0agp6bhrmiFuuuo/jmnx3fPgcAYz/+E9qlg8jMib/npaRvMYRBWIQIGyEEBgoKZsWCRbUlrBF92Ai0+LvwlWrsJ8IEciyx1lsCQViEsAobBc8fZsJDpZiCkZ6zwmxG+dnP4Ec/AnPq3lJP+P7FkYYXqQv8BxBY1EHkpy1mWNqN2Mxy2VfSDRLgifN6vTz55JOdzps2bRrTp7cuyh4MBrF1Uqqnvr6+0+XQ8vLymOj74IMPgEhmal1dXZtLrKlG6t5x+gHV9eWc2F5F0O9iUOY4TOZ2RILfQJT7Uca44tqfqbEapc6Le/zw2DVkrqjFSLcjbGb0XDfCZsZcUYv5cC2Bi0bHtb+BQLjBywdrT/Lg8wOzM8NARhcaPt1L81+MqJgK6yHsqjOuNlgAQhixzgydYTrq4fwf7SZ3U03T4IQJKC++CNOmxWVHb7Pv5H0cbXypxVjYqOFw/VNUNq5mSv6fcVsnJsk6Sb8jAW23hBB4PJ5O54VC3e/tHBV30ZIjHREVeh988EGL0iR1dXW8+OKL3HjjjSkt5KSI6wGaHub/Pn6K43UHYssRQghGjV/AsLNmo5paf62iNowIGShxBNXrWUPx1NWTlT6etk5rYbNgpDtQGwLog9NaLa8mkv6yfGt/bSnzvjsCk0kuG/UnDGG0EnCnEzB8qIoaV2cF49T2C1+upvCVagDS9vtRNbA0aFxx1W4ALPUa9pNhzIFm9nz3u/DQQ+BI7SSjow0vtRJwzQkbJ9lR9Q0uGPYvVFUWIZb0DYqi4HJ17tiwWnt/BaWqqoo5c+a0GMvMzKSgoID169e3GS+XKqTWL24/ocFXzdkFl3DhxGs5NjQNU12QxvrDHPjkH5gsdm4FPnfofd4ceQFrRl4YeZMAUR9Gye3+TTIsDAwhUJSI50AxNQlBbXgWlrJqlGDEm6AENUzVjQTPHZmIjwqApawaYTOjDc8C+s/y7SX1y9mkKFx4gVwq6m+ERYjTBdzpsWoAISOIo42Hpq6inKo8b/bp2E+EAVA1gWKAqoH9eAhLo4452MwbOGwYynPPwWmlDVIRIQQVDc+1GBvyUj0mr4HuUjl2Q2QZKaRXcdz3v+S7FyXDTEk/Q0nAcqrL5eLWW2+Nf0NtEAwGAbrlQWteWiRKXl4e69ev71KChM/nw+l0tvrv3kbWWugBbkcWhUNn4HJkYTZZsdrcZA+eyPS5d9FYe4gpx0sY5j3J9Op9Ld9odG8/fkOjWvNzQvdTYwSoajyBajgIN7bMDgpcOBq1wU+4MBfbx4cInjsSU3UjlrJqTNXxNThXghq2jw/FRGJ/Wb4Vus5rfzzMrfdMSLYpkh6gGa19zYWvVDP+z1UxjxkQKQcSR6qcqqiomNCcJgI5FgI5FgyzglAVhAK2Oq2FgOO661B27OgXAg6gMbQDv1YORMTbeZ89ROH91Yz6zQkK76/mvM8e4rzPHmLIS/Uc9/xvkq2V9BtEHP9SkIx26jhGx6uqqjrdxuOPP97mf/c2UsT1AJNiRlUjQdXGKSdA9IfE7hyEZrLgM9sIneYh6M5SaqMRos4IojVTfsHjxzC7MwjVKHjKmpYHI4IqDdvWQ4TOjpTQsH18iHBhLmpD5zEBHWEpO054TG6br0WXb4FeX77tLiM2L+PCz+SQlmlJtimSHmCcOu8LX67miqt2c8VVu0nb78dWo5G2388VV+2m8OWImBPdfTo6Datqo+z6XN56YxJvvTGJxrPsGBYFUzjijQMIpZsIPL8UXn4ZsrLi2l9foul1sf82eQ2s1RrKKU+jogms1RrWag2T10AzapNnqKR/IZSe/0sQGRkZ1NfXt/laNBauPXF2+nY687I138+2bdvw+Xyt5jR/mIznwbK7yOXUHhDUfITCfqwWB+E0FVud3iJV/8GpX4yJvBgWBTK79nWHhI7HCLfeb9VRLBmZAASOK1gyBPZT+iriIXNgpDtiXjMgrhg1U3VjbLk2Sl8s38ZL8GQ9u7bU8+vlqR1sLmkfBQWBaH+Z80QYs0+PzY0Hi2pFFzphESRrlxf7SQ2zv0kYVs3MQP/zkwwd/8W49pMMLKZBsf/WXSqhXDPmBgM0gTArhHLNsdeaz5VIUp28vLx2ExeioqsrhXrz8vKoq6vrdE5zli9fjsfjwe12U1RURFFRUQsN0Jelezr8ha+qqmLt2rV4vV7GjBnDFVdc0eL1devWoSgKeXl5TJ165tTg8gXqqfdWkZt5Fj7vCRqqS8gbNI2G2nLc6UPbrO6uDLV3+cB62xBwAI76k2RkZ2BurCVsdeCvzMWeK1CCWovlTGEzI+wWlKCG2uAHuuY5CIUEHg+EQpFaxZnH/Zgm5nK6L6v58q39P/sJXDQaU3UjakMAI92OnpvWpf31FpZVf+Ir94yXNbD6MWbFSlgEY8ucEEk0ULWI9zuQY0FzmjAp5g67KXQVh7Ax8YkjjP9DOaoWeYrWbAqH7r2MzDsfI895Ttz7SAZptnNwWkbjC+/n2A0ZHLshg/M+ewhrtUYo18zHf296+Jrg+lwSLZX0K1JgWbSgoCBWEuR06urqGDmya46F8ePHs2bNmjZfi4rB5h69qVOnxvSO1+tl27ZtLF++nG3btrFixQqKioq68Snip10RV1lZya233orL5cLtdrNu3TpWr17N/fffz+DBgwGYP38+W7Zs4ec//zl/+9vf+srmpJOTMZLczLMA8FTs48hHb+IfV0OWezRZOeNaiQdlqA01r+sJDUGhtxr7wkdbeOlAKVVXNAs8bgRDE5igVTya/+JxmCtqCU0a2un+hBDU1kDzbO/cssMEnHb4qBrHiUbMzQRae8u3vvlnYymrTqqIm3X8z3ycYWLUxOQKSUl8WFUrYT1I2fW5sSSGthIbHEr82ZTOch9T79xF1sdNSyb6uZMRz/+Z0ef0/9I0w9O/zt6TP4n9feyGjFhiQxSbaRi5rgXJME/SH0kBETdu3Dg2bNhAXV1dq6SEvXv3tmpaHwgEqKqqoqCgoNV2bDYbe/fuZdy4cS1eKykpYcqUKe0ut7pcLmbOnMnMmTNpbGxk/vz5bNu2jdLSUn7zm9+Ql5fHnDlzGD269+LF2xVxTzzxBHfffTczZ86Mja1du5Y77riDBx54gFGjRgFdc1cOZHImz2TsJREPpWgII46HEP5TyzzpZpTBNhRH94qStnV9zNhfwr98Hi7/aAuvTms6JsJof8k0mk3aGXV1LQUcQHXhiNh/O+obUbLTsDQTZ72xfBsvRljjzT9VcN+T5yXNBkliUBUTdtXZopNCVLhFsap2zGocMY9CMOKVo0x8YG9saVaoKsqPfoTpZz/D1AelDfqCIWnX4gvvp6LhWYBYRmoUqymPyXlPoyoD4/NKzgzsdjtXXHEFGzdubFECJNpT9XRBtmbNGg4dOsS8efNatdNauHAh69evZ+TIkTHBtn37durr61uVF9myZQuFhYWttI+iKOTn55Ofn09xcTE//OEPqaysZNu2baxcuRJFUSgqKmq1ohkv7f7i5uXltRBwAAsWLGD27NksXbqUa6+9tlfVZSoTCvsxDD0W96aHw9Tu343Z4SJj9GhUNb7lHRMK+mlS7qCmMdR2Wl02k0CNUzPpuqCxof3X3SdqcZ+oI+wPwAg3IsOZsOXbRDP03WVMXpyHK12Geg4ELKoVVVFjTemjmBQzVsUWl4CzVgeZfM8e8t4+0TRYWBhpm3XRRfGYnZIUDrqbQY7ZHGl4kRr/BgRhbKahDEm7liFp12OV8XCSrhJvlmkCvXhRL9qGDRvIzMyMxchde+21reYWFBRQVVXVpuOpoKCAefPmsX79eux2O4FAgIyMDG6++eZWc/Py8li7di2VlZWkpaXFYuKaE12Ni4q6+fPnA5Hl10TT7q/dkCFtNwp3u93cfffdrFixgsbGRtxud8KNSnWq6w/y8b6/M7VwAWDBZLEwaMw5HNq0lq1//n9c/NOlqHE0qXeqFhpPK7Hwq3Mi3qWdk5uC9W25EG84UGfnlCcni9LZEVGWbYZoacZ4lm97g0BVDfu2NrLk9rFJ2b+kdzApZhwmM0IIBAIFJe5Yx7y3jnPOj/Zgq2kWe/qNb8Ajj8AAvp9lOWaR5ZgFgBAaShxFkiVnMkpKLKdGKSgoaLVE2hYzZsxo0ZGhp9spLCyksLAQiIiy0tJSVq5cSXFxMcuWLaOoqKhdsdaV4sbdpd2rWAiBz+ejsbGRysrKVokLS5YsYcuWLRQXFyfcqFRnUNpwTjQc4j+7/0rWhBsAN6rJRNaoCRz4d9sBkt3BqZjxEW7hjQseP0rGlPNjfysmgXNo/FeSdloOxQ0b/8Nt/3wb1TB4f9xovve1LzXNPbVqGu/yba/w1yf51k8myGSGAYqiKHFnoZobNSbeX8KIlcdiYyIvD+WZZ+Czn43XxH7F6QJOD21HGEdRFDeq9XyUBMQaSgYuiSj2OxBwuVyxRIfKykqWLFnCtm3bOHbsGL/5zW9wu93MmjWLsWPH9lrx33ZF3KJFi1ixYgXbtm2jqqqKv/zlL63mzJw5E6fTybp163rFuFTFYUtj7pQlfLT3TSreXknmNTdhcTgTVhtGVRQGmezU6IGYkAudOI41OxITpJgFGRMFpgS0cztd8ziDIQbXN6AKwQX79nc4N1WYXv4MZaPsDC9M/FOOZGCQ9X4tU7+/C2dFs5IEV1+N8uSTkNt2HcQzAc3/JiHP4witpGlQHYTFcT2WtO+hyDg5iaRLRNuIzZw5k40bN/LDH/6wRfaqx+Nh7NixXH311Qndb4f+9CVLlgAdr+MWFRXxq1/9im3btrVZZqS9Nej+jhCCaeM+x39su6l4//8YOWsBipo4lWNWVHJNDgJCx2eEEYqONVPFlmNgzwWl56u1LXA4oLFZUwefzcrxjPSIJ25syyVTRwr2ANaDYdatOMr9f5Y14SStUYMGYx8rY/RT5THvgUhLQ/nDH2DJkjafTPzhw9T4/41u+LGbh5HjnDcge4qGPU8RavxV6xeMGsLepRjhHdgG/RlFkQWzJachPXEdEl0Rap69Cn0cE9ecjtZxt23bRnFxMa+99hpDhgzhT3/6U4vXN2/eTGFh4YCrIxc9SJljpmLUHKSyeAv2rBxQElfoT1EUHIoZ1evFMsxJ5jmJv3JsdjCbm5ZKX5pzES/NaR3YbbOBxZp6rrjB/1rKtC/lY+9mBrBk4JP2iYepd+wk/ZNmqddz5qA8/zycdVar+SGtmpKT91Ljf5fmPfLMaiYjMm5hZMYtvW90H2GE9xFq/HWHc/TQBjTvn7G4e6e/pUQykGieH9BerkBvxMTFXSWzuLiYJUuW8K1vfYuL2sjqWrRo0YCLmzt92TR77DlkjZ7AiT3FvfKE4j1+BNuIwYnfMBGhmNNJgoTJBNk5vbL7uPAfqaZin4/5nxnR+WTJmYMuGPVUOTM/935MwAmrFX7zG/j3v9sWcHoNxZU3UOP/N6c3OdaMOg7U/paymof7wPi+Iex7ga7crMK+F/u0hZBE0l/59re/3eZ/9zYJS09asKD9QpGLFy/mrbfeSnh9lGQh2rj5ObPzGH351VTv+Tjh+6vkE3LHd54101OsVoX8fEFdHfhPawnndEFmJpjNqeWFE0Jg/PUpvv3TiTKZQRLDXuFn6vd3kf1+XdPg5MkoL74Ip9WGak553eOxRvHtUdHwLHnuz+O2jk+QtclDD77basz8QiSuQvtyUz1IoR9C6PtRzIV9Zpsk9ZGJDalD3CKuqqqq0zkulwvP6dVk+zFqO24ri8PJ7B8+kvD9BQ8fxzX/goRvtzkWi0JuLmiaIHwqY9VqBZMpNQXS1H1Pc2ySmyEjeyfjR9LPEIJhrx1j0n0lWDynCvcqCsr3vw/33x+JB2gH3fBR5flbi7EhL9XHuho0L457tPElxmX/ogvmGAlpB9ZriFCrIXVDACV0quVYMyHX1lzJGU5cjewHrgL0+XwUFxezb98+vF4vLpeLsWPHUlRU1PfZqV1lzJgxvP76651mXJyJ9eQShVbvwZLVN22kzGYFc4qXj9J8Af79SiW/Xt7/WyJJ4sdSE2LyT/aQv7Y6NiYKClBWrICLL+70/d7wPnQRecgc8lI9Q16qx1kWQjnVJH7IS5F2XMduyKBhSfue9rBWQb3nORp8K9GNEyiKC7fjM2S6v4bd2r4XMBko5rMQoaMtB9uMebWhmJJT+1Ei6U+sWLGC119/HWgKuWq+SjRr1iyWLFkSa1uaKOL+uV60aBF33nknpaWl/OAHP2h33rFjx9p9baDgqTpCyFPPoMJJCdumMAxQ4i9wOpDI+PtS5tw6HIsthT0dkj4h998nmPzD3dhPNPMWfeUrkezTZk2rO0KIphg4k9fAWq2haALFADSBtVqLvdaeF8EX2MKxk1/FEE2p3kJ4afS9SqNvFYMzHyLDfWO3P19vYXFeTzC0pcVYaGnrwFeT/dMoate+R8kZxMB1pvWIhx9+mC1btjBz5kzGjh1Lfn4+jY2NlJWVUVpaSllZGZs2bWLz5s0sWrSIr3zlKwnbd0J8Lr/85S+55ZZb+NKXvsT8+fOZP39+i7IiPp+PysrKROwqpdANA9uJMErQj8iwcPDdv3Ny7w7m/uSPCRNdgbqTWAcnsYhuiuEtr0Q7EebiS3rPOxA0VOrCVhQgyxLEoso7Vqph8ulM+PVeCv5yJDYmsrNRnnoKFi3q1racltGoig1DBNFdKqFcM+YGA0554kK5kduk7lJxWSe0er+mV7UScC0xOF53D1bLGBy2C7tlW29hsn8a1XwOhraz/UmKC6v7tr4zStJ/kLfEGFu2bGHbtm08+uijsU4Op+P1etm4cSPr1q1j9erVlJWV8YtfdB6W0RUSIuLcbjdPP/00Dz/8MKtXr+a1117D5XIxZswYgNgHHCgYQtDgCxHWDDL2AQQQwNnDPkfgos8l1GtWYd2FbWTv19nTdIEvKBACzCZw2BTUFPP+CSHQX3mGbz54Tq9sv1Ez89+GHEp96Wgi4uWzKjrjXfVMSz+Jw6T3yn4l3SNzaz1T79yJ66C/afDKK1GefRby87u9PYspg1znp6ny/o1jN2Rw7IYMzvvsIazVGqFcMx//fWRsblHa9a3eX+95oQMBF8WgtvFPKSPiFMWCfdAKArU3Y4S3tjEhC/ugp1At41q/JjnjkYkNTWzatInbb7+9XQEHkbyABQsWsGDBAtauXcsTTzzBb3/72w5XL7tKwqKf3G43999/P5s3b2bt2rWUlZVRXFxMYWEhjzzyCKNHj+58I/2EcFgnFNagWR9HBbDWgqVRQUsPQ0ZiCmQGyysZelHviBYAXRecbDQIhFpelaoCaU6VDFfqLFlO2vkkDRdkkDMk8VWHa8NW3jg+Er/R8pIICRM7PIM4FHDz+cHlOKWQSxpK2GDMHw8wZumByFInIJxOlEcfjfQ+jeOhoyDzdmr8GwgbNUAk/i2a2BAl13klGfbWRaUb/a+3Gkt/0YvqFRguhYYbI7WhvIH/QzcaMKnpPbYzkSimHOzZr2OENhP2vYowKlEUJyb7fMyOz6MojmSbKJGkPGVlZfzwhz/s8vwFCxZQVFTEz372s4RU7Uh4CPusWbOYNWtWojebUngD1ew6+CYAZpOd7PTR5GSMQVFUFE1gLq5DuzgxrXyCFdW4CrrvXegKuiGoqtPR2tAlhoB6r4FhCLLSkl9IN9zoY9PfqnlwRe90Zlh/cmgrAdeces3KOzVDuDK3olf2L+kYV5mXqXfuInN7Q9PgBRegvPACjB0b9/YdlpFMzX+R3dX/gy+8r0VGqoKZfPdixmT/tM336vqJ2H+nv+gl4y8+rKUaigbi1CkVEXI6hlGbMiIOIoHXJttsTLbZyTalVxAiBIF1iMBaEI2g5qI4Pg/W2TLOOB6kJy5GTwr45ufn88tf/pK77rqL2bNnx5W5mhARt2XLFlatWsX+/ZFem4WFhcyePTvhPcJShZDmo957hLDmI6z7OVz9AUIYTBjxaUYMnoHSqKGcDCKy42/VYwRDmBy90/Kn3mu0KeCa0+gXuOwCqyW5NzzXG0v51G3DMVsS7xk8GnBwMtzSu7fgjZ3Y/WECDgtrr4p4QssDLho0C+nmcMJtkLSDISh4oYIJD+7DFIy434TJhPLzn8OPfkQiU6ld1jGcP+x/qfW/x0n/2xiGD5t5GPnuq7GZ23+QUtVMDD2ynKp6BebjBooGGKBokbEICqpMEugzRHgXovabYLQsgyUCa8B8NmT9CcU08FpC9jqJEHADSD/3tPJGfn4+V1xxBZs2bYrLGxf3HXDdunWsWLGCqVOnkpeXF8vGKC0tZe3atdx2221M6aDIZn9kUNpZnDv2BgCurP4vV1b/l5eyzmaF5uFA5SZGD5mDciIUt4jTQyEUS+/U+zCEwBvo2tXY6DfItiTPG3epZznvhASzZg3ple0fDDRdhAve2MmCN3cx/FAtJs1AN6sseHMXaz93NmuvOoeDfjdT0mp7xQ5JS2yVAab8YDe5m2qaBsePj3jfzj+/1/ab5biQLEfXY9fSnFdR2/g4AIZLQRusRjxwBqBGxgCctkswqZmJN1jSCqFVIGq+CqKu7QnaLkTt1yB7lVw2lsRFPB7dxYsX89Of/jS5Iq6srIyXXnqp1Xg0Nu5nP/sZd999d5stuRLJmjVrsNvtTJkyhby8PAKBAFVVVWzfvp0ZM2a0yJZNJOfVlzE0UMOnvEfZMuaLHKzcHHnBiP9xxVt9FNvw3mm3FdagrW46N/z7fQBeurSpuHAonDzfudANXvv9YX78+97rvRs2mrx7dn+YzBovJk1HNQBNJ7PGi90f8b6FRerECJ6OLuCUswqbCilap7lLDPl7JWff+wnWeq1p8DvfgYcegl4qmtlTMlxfoc7zLEL4abjRFYuBO53MtIHTezXVEb5n2xdwUbR94H8TnF/sE5sGEnElNvTj+1KiSUQv1bhFXHtGRGPjiouLWbZsGfn5+YwaNSre3bVLIBBg7969bN++PTZms9lYuHBhrwk4gJBqxmeyEVIjX6XDFikHIlzxe9COmvZgL+g7d/8N/36fS4v3EDabW4i4ZIY/jPnoTxiXDSIj29pr+0hrtjwacFioG+TC7QnBKU9c3SAXAUckUSXNlHpLqSEDTmrQqIMgmmgjSDNBjgWSvBLeLcz1Yc7+eQnD3mgqSSSGDkV57jlI0bZ9FvNwhgx6kmM130CIQJtzcjJ+ist+Sd8adoYiRBD8f+vaXN9fUaSI6z7xdGwYYKmtpaWlHDhwoMf6Jt5GCF1WGj//+c8pLCykqKioW8ujRUVFPProoyxbtqxbGRzdJS8vjxkzZsTagGVmZjJuXO+nx/9m9DUt/m7wHmVw7tmIofFnUAbLKxl9zSVxb6ctLKbIA9Hpl1PYYiZ0WpyRNUl9U0P1Hj586yQPPt+7nRnGORv4sD4XA4W1V53D2qvOaTMmzqrojHZ0VkqibwkacDgI+mmPtwKFBh18umCEDayp60CMkb25hik/2IXjWLBp8ItfRFm2DAYNSp5hXcDluJyRg9dR63maRt9rCOEDzLgcV5Dp/jpOW++uREiaoVeD8HZx7sFeNWXAMrB0WFx4PB7uuOMOAKZOnUpRURFTp07tckWOeBNsuizi9u3bR3FxMa+99hrQZGxRURHLli3j29/+drvvdbvdveoNi1JQUEBBQe81io8SDHuortsLgGYE0bQAgVA9lbW7mDr6WoyxbjDH/6sZqqrBnt87P16qquC0Ky3i4l669IIWHrgobkdyFIBt9TLmf29Er/dvdZs1Jrjq2O1tKqocFW7NKUqvwZxihX+PhVoLuOZoKFSGBSN7JzcmIagBnfG/LWXUnw/HxkRGBsoTT8D1reuypSpWy1jysn7D4MwHMUQjquJEUXrPgyxph+585/L4SBLAlClTKC0tpbi4mOLi4pgw64qoE23FNXWDLou4aB24yspKiouL2bZtWwtjt2/fzqJFi2IJDqfj9Xbxyagf0OA7SnHpy7G/zWY7eVlnM238V7CdMwKjMP4+sbHea2rvCagMl4o/qHcYvue0Kdjb7KnYu8yte44tZoULzu+d8iqnMzuripBhotTfdvmHye4apqWf7BNbuopfh+BpyxqT/1qBxacRdprZ8cXhkXmGQtAQpGKXsvRdDUy9Yxdp+5rdHy67LLJ8OmJE8gyLA0UxYVIyk23GGYtiGowwjwetpPPJ1oFZWqW3GWAronFRWFjIL3/5SwAqKyvZtm0bW7duZfv27V0SdX3miZs1axaFhYUUFhbG6sA1F3Tbtm1j6dKlKIqCy+VqIea2bdvGggUL4jI0lRicNZppYz+PISx43VbsDiciw4Ix0onhSEwWZ7C+Fkt275YjMJsU8rJMnGjQCWutX3fbFbLS+v6X39B0Xv9jBT97oqjP9mlSYF7OUc4J1rLTk8nJUGQ5PN/m52x3LbnWYCdb6Hs8TS0/mfzXCia/WsGg/V5UXWCYFCa/WsGOLwxnxxeH49FJKRGnaAajnyxn7O/2o2qRXwRhs6E89BB897vQiw8vkoGP4vwSouFnXZiXOv1s+xVSxMWYPbvpQSA/P5/8/Hzmz58PdE3UlZaWxrX/Lou4JUuWtBrLz8+PtZKIGhwVddEyI/n5+SxZsoSpU3svuzBKXV0dhw4davH3jBkzsNsTW+HfYrKR6Y5kjVadbcGSHb/n7XQqrDuw9VKR3+ZYzApDBpkJhAT+oIEQYDIpuOwK5iSlNw7fuIyzP59LWoK6XnSHITY/Q2z+ziemAM298BafhutEEFUXKIZABVwnglh8EXWeSvdcZ7mPKXftYtBH9U2D556L8uKLMGlS8gyTDBwc10LwXQj+X/tzXN9EsRb1mUmSgcmiDno1d0XU9ZknriucLur6kvr6eo4fP94i6aKqqooXX3yRG2+8sVMh99///pePPvqoS/uy9kGFg8DBSoZe0Hc/aHargt2a/M4MwRP1fPJBPb96rnc6MwwkLCpwqlhz2GnGm2PD1qChAoZJwZtjI+yMXOIpkaEqBCNeOcrEB/Zi9kUMF6qK8qMfwc9+BlYZnyRJDIpigsw/IjzLwP8yGM1CIUwFKK5bUJxfSJ6B/Ry5nNozThd1xcXF3HfffXFts3cqySaBhQsXthrLy8sjLy+P9evXt/l6c0KhEB6Pp0v76otuLcFDVbi+eFnv7yjFMK18gm/cM0G2xOkC6SaoDgsECju+GFk2bSsmTj1VbiSZWKuDTL5nD3lvN7WoorAQ5fnnYebM5BkmGbAoihkl7bsI9zch9GGs7RaW8+T9JV6kiEsI3a320RYDRsS1R0FBAevXr+90ntVq7XK9ljiTSbpEb7bbSiRh3cAb1tBOZUfYTCpOixmT2v2b5EVVf2bbIAtnTUj88vRAxKRAlhlqmsUzRoVbc7LM0IPDkTAGv3WcyT/ag62mWY29b3wDHnkE4qyRJJF0hqJYwTaw+3lL+i+FhYVxvX/Ai7joMmpVVVWHZU6mT5/O9Oldq0d2/72/T4ht7aEFA6j21BZwQgjqAmH8pzVfDekGjSGNDJsFl7Xrp5cR1vj7kxX84qnzEm3qgCbHDLoQ1Ottq7QskyA7SVe5uVFj4gN7GfHq0diYGDwY5dln4bOfTY5REokkfqQnLmG0lW/QHQaEiFu/fj02m425c+e2es1mi4ihQKDtSuqpiKfyMPY+SGqIh7YEXHPqg2FUBRxd7P065N9LmXJtHs60AXFK9hmKAvlWyDQEdRoEjEgRZ7sKmebkZaRmfVDL1Lt24axodt19/vMoTz0FubnJMUrS6whhQPAdRHA9GF4w5aM4FqFYJiTbNEmiEHHGxAlk660EMiB+MUtKStot8ltfH8mA64tiw4nimLKH3Akjk21Gu2iG0aGAi9IY0rok4gKVJ9m/w8NN3+39DhsDFbsaEXPJRg0ajP1dGaOfLI/d6EVaGsof/gBLlvRNQKkkKYhwCaLuNtAPtRz3LUfYLkXJeARFlcvnEkkiGRAibsqUKW164QDKy8vJyMhIeJmR3iR4+DjOOb1fkqWneEOtBdx16z/EFQjhtVt5Zd75AGiGIKjp2MwdR9WLV57kmz+ZKION+znuEg9Fd+wkfU+zBKE5c1BWrIBe7JssST5Cq0DUfAVEbdsTgv9G1H0LspZHMkclEklCGBAiLj8/v82Yt0AgwN69ezvNTI2HEzv/Q9bF8xK6zfDJemyDszqfmCR0YbT4+7r1H/KT5/+BWTfQTJH1u+ZCrqPovvMOPs2BQgfDRvVB3RZJ72AIRj17iHG/LcUUPlW412JBeeABuOsuMMkf7YGO8D7ZvoCLEnofgm+DPbH3y1RBhPcgfH+JfE6hgXk0ivM6sH1q4AlXGROXMgwIETdu3DjWr1/PlClTWgi5lStXMmXKFMaN651lOiEEDQf3QAJFXKzdVgp7pZTTAhpcgRBm3UA1BGYMXIFQ09wOPoYeCPHWimM8IGvC9VvsFX6m/mA32e81+wE/55xI4d4+KPAtST7C8EJgTdfm+l5B6UTECSEg/CFoh0Cxg20mito7PaQThdH4e/AubTkYOoIIbQTLdMh6EkVNS45xvYCsE5c6DAgRBzBv3jw++OADSkpKCAaDBAIBLrjggl4TcBAJ4k202Ap5GjBnpvbFbjOrLWLivHYr1ZluVENgqApee1Nwlq0DL0zO+qWcv2QI9gS1KuttAobCsZCNBj1ib5pJZ6g1iF1N3h3NEJEY4T7X/EIw7LVjTLqvBIvnVOFeRUG56y64/37oR+ELkjjRj4DwdW2u1nGLIeH/O8LzB9APNhu1IuyfRkn/CYqa2VMrew3he7m1gGtO+L+IujtQBj3Td0ZJzhgGjIgDmDFjRp/uTyAS/uvprTqCbcTghG4z0TjMJhqUMKdKw/HKvPNjy6enz2uvXpyvohp/mZ9bfzixN01NGAcDNg4G7TRPq6rVLBwK2iiwBRll77vs56ABtRo06CBQUE4V880yRxIcehtLTYhzfvIJQ9Yej42JkSMjsW+XXNL7BkhSi+4sFXYwV3hfQDTe38YrIQi8gdB2waCXUdTe7SndHYTQEZ4nO58Y2oAI70KxnN37RvUF0hOXMsgu03EghEBREvsVVvIJg8enbmYqRJZ6s+wdp0KaFAW31YQhjNgScRQhBMYrT/Gte/uHgDsctHEw6KDtvHiF8qCd8kDf1PVr1KE8CPW6gjhlj0ChQVci41onG4iT3HdOMGfBey0EHEuWoGzfLgXcmYrpLFC7WBLJekGbw0I/hmj8dcfv1UoRnt6t0dltQu+BcbTzeYDwr+plY/oQEcc/SUIZUJ64vifxnrjA4Sqcn7mo5V4EhBohUKcgDDBZwJEtMCdxxcpmNpHjtNEYDBPUmxIdFMBqBpM5hFcEQQcVBatqw6ZYURSFyZ88RfUUN/kjHMn7AF1EF3RJoB0K2hlmC2LuxWXNkAHHQsTEG9CqzVZlWGBVwZHgxzOTT2fCr/dS8JcjsTGRnY3y5JNwzTWJ3ZmkX6EoJnBeh/D8rvO5zhvaHBe+V4g1Au4I/98Q7rtQVFf3jOwt9GPdmFvZe3b0IQrxxcSlbrR3/0SKuDjojZg4vcGLNaOpllLYD3X7FfRgy/14q8CeCRlnCRLsDOwyVpNKttOGZhhohkAIQQg/QmmZvWogCBgBwoSwBUy8u7KKX6/oWneMZHM8bEU7zWF9war92HwaQaeZ9xePBkBH4XjYylBriIYTCuk5Le9yQR/Y4kzArdVaCjiAya9W4DoRxJtjO9VyS6FWEzgSWDMuY2s9RXfuwnWwWdzTlVeiPPMMDBmSuB1J+i+ur0Lw3xDe1sGcW1Ask9t+LfR+1/YjPBDeCba2PXp9TnfEpJIiwlMyoJAiLg6EECRSQRm6DmrT9rQg1O5TMLS2l/ECdWDsh6xCcWppNzlZrWZVxayCR/dGKra3g47Byb++xuJvDsdi7R8r+X6jyc4LVu3nwlX7yT3QyCOTi7j64H6GrqlizbSxaN/Nwa+rvPuKhQs/F+bdVyxMmqWRO0JQUaKye7OZK74W6mBPndOoRzxvk1+tiI0N2u9F1QW2Bo0brnkPgJ1fGEZgyfC4ncRK2GDM4wcoXHoA9ZSTRDidKI8+Gul9msIZ1JK+RVEckLU8siTqXwM0ixFVB6O4bkFxddReKNzBa6fTyzED3cE6GxQHCH+nUzvLyu1XyGXRlEGKuDhIdGKDv6Yaa3527G9vZXsCrolQg0LlQYPwKa1hsQjcaZG+4n0p6HSho4mOb67+A1WcOCk4+6JRQLBvDIsTtdndyubTSDsZwKQbVDmd/GL6DEZ5G5mWVsv75FBTCuk5ApsTckcY2BxQUaJS8YnKhZ/rzo9U2+iAxafhOtH03am6QDEEKsTGzT4dnfgubleZl6l37iJze0PT4AUXoLzwAowdG8eWJQMVRXWhZPwKkfYDCG4E4QU1D2xzUJROzkZTIYR3dGEvKphHJ8TeRKCoaQj758H/cscT1aFgu6xPbOoLZImR1EGKuDhI9HLqUcsu7CMjde4MHQKd1M6M2eFRIT3iAQuHobYGfF7IHSxQ28kOTTRh0VKkLF77Ebe8uilWduSpa2fxyIf7GHbbZ9hZX8Pc3G7EkiSRLLPGwVOaKeg005htx94Q5pr9ZVxQXUX1qDTeS4v8qKSZNKLP4zanID1H0HBSIXek0Wp5tSeYgLDTjDenKUbP1hBZ7DVMSmxcc5rocdEWQ1DwQgUTHtyHKRg5p4TZjPLTn8KPfwxmecuQdIyiZoKjewXWFed1iMDfOp9om4tiSq0lfCXtboT2CYS3tjMhAyVraedCViLpAfKsioOIJy5xy4KB8kpGfCpS+FYPgjBaCrDfvvoiFxwoxVBUnrjkcv46YyYAShvxwMEg1NRATk7CzOuQ0zNQnf4QObWemIjbs6Mc1+SzsGSn49cb2tlK6pFh1nGrGh4jEv/2/uLRXLBqP8WH3HyQfhYlUyOie5iqM2GSxrvbLQRPhY4FfVB9WOXcyxOz/JNmgh1fHH4q9i3CDde8F4uJe2n1hafmCYb2QLvbKgNM+eFucjfWNA2OHx8p3Du9dQxjILQDr/+fGMKL2TSUNOcizCbZ3F7SfRTreQjb5RD8VweTHCju7/adUV1FKwHTUAjvApqHTNjAsRDFdSuKue3e3v0W6YlLGaSIi4NIHFriPF3Bimqc0RpxbWz2goNl5HoaMRQFV6jz+CqfF7RMgbk3UyZPoShqiwvb57Cim1TAoFpV+PBgFTl3fh4Atzn+pcW+ZILTR7HHHUtwiCYzVAGZQNmjQeZeGHHXXfi5MA0nFQrPNXjvDTMXXqVRfViJJTvkjuj53S/LDPW6aJXc0BJBVg+u6iF/r+Tsez/B2rxGyXe+Aw89BM6WGRlhrYLKmtsIhD5sMX6i/tdkuG4gN/OXKIql+0ZIzmiUzMcQ9fdA4H9bv6hmo2T8DsVyTt8b1gHCs6z9rFw1KxILOBAFXDwiTgrAhCJFXDwI0SIRIe7NaRqqNfLjZ7aBahYtYuLeP6sw5onzWpvSDw2L4IaN/+GGje/z0pwLeGlOU4kSnw/S0xNmYrtYFQuBZsHMqxZEPIpOf4hXP9gLX/4UitmESTGYmnmi9w1KKAZZFg8NmoOgMNOw0yBwRDB4vgmHquF2Gei1AtyRDNRcp2Drv8xMmhVxkW5db+GKr4Uo26rGJeKsKgyxwrFQk5Db8YXhsRIjIMi3dK+8iLk+zNk/L2HYG03lD8TQoSjLl8O81oHYml5NRfUiNL2i1WsQpt67At04yZDsp7r34SRnPIpiiwg57TaE71XQD4NiR7FdAvZPoygJTLlOAJHuEr9rf4JRiaj9OuSsTTnb40XGxKUOUsTFgRBGqz6iPSXs96E6mwq/KSo4csDbrLTQD75wY5vvNeyC2Xv2UVB9gtl79rUQcUb7yaIJRVVULIqlRWzcqgXT8H1SQc2RkwyfNAKAaVnVuM0plF3WCX4DjobArAgGWXzoQsGSa0JzK+RYNMyKIOCzkjO86a5WUaKSnh2Jgws2q8oRb4kRiCypWm1Qpwka9MjyarRjQ0E3OzZkb65hyg924TjWLMnki19EWbYMBrXdq7K28Y/tCLgmPP6/4wtsxGmf03VjJJJTKOYxKOk/TrYZnSK8T3c+Sa+AwFpwfK73DZKckUgRFweCxHniPFUV2AtaVj135QmC9aD52xeKut1AmCFkNuGx2QiZW4a0m/qwkodTdeA1RCxLVegGVX95hxE/WATAhLRaPjfkQN8ZlABqwi1rs5kUQc4IjePbVWp2KDRWmJh6c5hGHdLNkTi4ik9ULrwq8h3YnJEkh6APGk4oMD5+m2wq5FkhDzCEoLu5K2pAZ/xvShn13OHYmMjMjIi3669v932G8NPgXdmlfdR7n08pESeEH/x/R4TeAzQwjUZxfiHlguQl/QMR3gvanq7N9b+BMtBEnPTEpQxSxMVBIrNTj7GH3AktYydUEwwaK2g4DIE6QDTtSygC3SEwHJGr6Xtf+1KL91p9fkJOR4twJiWoIWy9d8gVRcGlOgmLMEEjxMm3PiBr1njGDwlzYXYJZ6fXdFtwJBNNgOc0T+bpHRIGT4lMqD8l4oCYgIty8XVhKkrU2PJqIunu95m+s4Gpd+wirdTbNHjZZSjPPQcjRnT43rB2EEPUN23rRS+D/ugBA1Ch5jtuGm6MFDQNhLZ3z7BeRATWI+p/BKJlQo3w/gnh/DJK2j0Jb58nGeAY3QgJMap7z45kIUVcyiBFXBwIBIlqIhIsr8R9eesMQNUMmaMEehiC9SLSdssKDSGB3qCRWxYp1VFd2PQDPGzHXo5NGE3BJ3tRnUPRc9MwV9Ri3XUU3/zebcCsKApWxQoNQTK2v8evV0zHZNrdq/vsLTQBnNbi6uKHSlB1gWE6FZN2KlM0fOqm1t6S6fDxfbSu3Q6KZjD6yXLG/m4/auSDIex2lIceiiQwdMmj3PJcV70C83EjJuJUr2h3brIQwc2Iuv+h7QKxOviWIxAo6T/pa9Mk/Rk1o3fmSiTdRIq4OBBCoCTItaTVNWId1H4GgskCzmblQqwG+A/VYgqH0S1NmYDuE7WEnA4sbjPmYWnoNjPmilrMh2sJXNR3RTJtq5fx6e+NxGRKjR/znnC65Raf1qK4rsWntTs3lXCW+5h65y6yPm7yonHuuZHSIZMmdXk7FvNZqGoWhhEpYGi4FLTBakzEGa6mb8FuPTdR5seFaPwtnVb4972AcN2EYhrWJzZJBgDmSWA6C/SDnU5V7Ff2ujl9jUxsSB3kGkI8JKjtlqHrKKbulWdVVQXntFzMuQ7UZm81m8HhgsF5gMOCkR5pMq8PTov9d28zp+Y5LDaV86fn9cn+egurApZmd6tIoV0r3hwb3hzrqYzQCO4eV9dtiRAGutDQhd6q9l4PNsaIl48w+8r3YwJOqCr85Cfw3nvdEnAAqmIn3fnF2N8NN7o4+H4eBz/M4+D7ebGlVIBMd0ctlvoGEd4OWle8wEYkG1Ii6SKKoqA4v9KFiVlgH2DxcNBUZqQn/yQJRXri4sDASEgsja/6GNZh3avKq4UFugFOCzjSwToyMq4UDMLx7gkCoUj8lRLUMFU3Ejx3ZNx2dgVD0/nb0gp+9kRRn+yvN1EUyDRD9amE29ML7TYhyIxTxOlCI2QE0Zpl9yqoWFUrFsXW7dhLa3WQyffsIe/tZrE7o0dH2mbNnNljOwel3Y438BZhbX+7c9Kc1+KwXdjjfSQMrbQbc/f1nh2SAYniujHSqcHfzgOAko6S9SSKKhvfS3oPKeLiQSSmd+oRdSf2s7qWJefzChoaIFrrd1Ad2ASE/eB0RmwJXDgatcFPuDAX+3/2E7hoNKbqRtSGAEa6HT03LW6b22PYu0s5Z1EuaRkDo9hrlgn8usBjtHecI7XZLHFoec0I4ze8rcYFBkEjgKZoOFRXl4Vc3lvHOedHe7D9//bOO1yOqvzjnzMz2/f29AoJJNQQWgApgtIsgFKkCAgIivITREUUFWzYxUaRXqUXAQtVMQhSpIUiCQRISEJuyu3bd+f9/TF7y967ZbbclpzP8+SBO3vmnLP37ux8561tA4oqn3EGXHKJ01S3CkyzmRkT76W17atEE/9i4KO1UgEaQ6fS0vDtqtaoHWV8venixJoKMBp+jHj3QqK3QOoF56AKQ+BTqOApKGtkHp5HGu1OHTtoEVcFInZNYuLi761ly0+VLsfQ0SF0dQ49nk7DhvXQ0Cg0NCjEZ5GZWIfvpZUkt3fEoe/FlUQP2R7P8vXDJuISGzpY9kI3P75ul2GZfzRQCqZ5oT0ttGcgPSBDOGAILRaEqrDCiUheATeQjKRJSgKf8hcdZ3Wn2fZHS5l5V39fWpk0CXXNNXBYeb0si65jTmL6xFtJpt6mJ/YQIlEscyrh4OGYYymI27sbTsfZ0lnByrvHsG9Hs2miAp9ABT6B2N0gcTAaN/2OJVrEjRm0iKuCWvVOTba2EZha3J0ai+UXcAPp7AC/T/D5Fdaqduz6AHZ9AJXoD+wezhIj5l1/5Ixvza9pK7KxgFLQ7HHaXiVEsAUs5XRQqJaUDG2fNve29VjRDOmgyfLjnV6kKTuBt4hbtem5dnb6+usEV/V3zeBTn0JddRVMHJ5+pl7PVjR7/m9Y5q4FypyG+PaHxOMlBoY2zbglzYiijDpg+LwcYwot4sYMWsRVQc3qxImgSlTl7e4eeiy8oZ3whnbMVJpk0E/n1Il0d4NfpXOyUcVnIX4PKpHG6IoBTdXveRB7rb2WJS0etphfnbtuLKMU+GusT3tj4Obetp65tzv1pOreiWGkwbboO7b8uImsOTGENeiSNRI2W/9mOXOuWtHn4pBwGPX738Mpp9TE3T+eUfXfRTa+Cva6AiMMVP2PUcam+7nVaDSbLlrEVYHUoHdqKhrBDBXPGhUR4rGhxw//35sAOW22YjGgniHlRGIfnoe1qp3kdtOq2m8+7FSav1y1mh9cvem4UUeK3gxUK5rBv8ERdEZaUDYYafqOWdFMNgaz/9y6N3vY6dzXqH+zp//gPvugbroJttxyxN7DWEaZ06H5dqT7x5B4AqceShZrHir8dZT/gNHankYzLtm8Hw3HFlrEVUEtLHGR9WvwzSju7spXaeKEJ//DAa/+j5Rl5Yg4EbC9Zt6LLD2j9hY4gCn/vIyFx00hGNYfp3IxlIEtjus0PsGJo/F0pfsscb3H0kGzPxPaFra8diXzfvk2ZrbKsHg8qB/9CL7xDSizXM2mjrJmoJr+iKRXQeo5kDRYc1HeXUd7a3lxWjq9DcoEz24os2W0t6TR9FNtqRDtiq0p+q5bBbWIifvAeJMJ84q3O1LKWUYGFf1PWdbQXqkmIxqTFvtgA+++2sOpZ88bsTU3JTzKS1pSLD9+Yl/828FHvIF/Q4r4BA+P3O/UcjMwCSkT/6oYO533Bi3PtPdPsv32TuHehQtH4R2MH5Q1A6x8JWLGBpJ8Hun+NaReHHDUg/gPRdWdjzInjdreNBrN2ESLuCoQkaoFU+L9dYT2WVB0jFKKcEhy4uJu3XevHAtcL6ERLEkkIsjtV/Hl7227ySUz9BK3FWuSPjrSFgIEDZtp3gQNVm36oJrKwsDEHpBBufy4iX2JDb34lI/p96xhu+8vxdPjjBWlUOeeCxdfDP7imauasY3E/4l0/B+QGvRKCuIPIskXoeV2lDm+C2hrNg10iZGxgxZxVSBiV22JS23owDeptJuzrg56evK7VnsxDAiPYHLULu9ew8r5QabOLtAwdJyzKuHl7XiAgREg3RloTXmZYCXZNhil2q5iSikCZohYJtIn5Hotcr3UdVjs/L03mfrQgOD8mTNRN94IB+h4rvGOSBzpPJ+hAm4A9mqk68eopj+M2L42dcRuA7sHjGad2FIuWsSNGbSIqwKhOkuciDiZqS7msDyKiZOEDevBztNL3TBg4iSwrJGxiGXiSR69+QMuvmFk4opsgfcTAd6Nh4hkLEwlTPXGmRvoIWzWxio2kLVJD2/H+8XpHne/gy+aJhG0ePboOWxIe1kag+2C0arXMpRB0AyTlhQpSWKLjQJM5WH64m52On8J/vUDSpGcdBL84Q/QMIZqsmkqJ/ZXkI7S4xKPI5m1KHPKsG9pU0bijyCRGyH1fPaIB/EfiAqdjvLsOKp7GzdoETdm0CKuCqrNTk10dWAVaXo/GL9fMXWaEIlANAKZjBMDFww5hfiNGhQedkvLw5exxynT8PmHP4g+ljF4snMCnRlvzvHumIe3YmF2DncwN1C8YG452Da8n/DgUylsFCkx2fPud6jbGKe7xc+zRzuZv+tSXmZn4oTMPKq6TJRSeJQXD857NKMZtvnpW8y+ZVXfGGluRl15JRx9dNXracYOknzK5cg0JJ+FwBHDup9NGbv7lxC5etDRFMT/jsQfg8Zfo/yHjsreNJpK0CKuCqrNTo2sW41/ZnkxLqapqK+Hevfar+ZEV60jviLOmd/adtjXEoF/dw0VcH2vo3ixp5GAkWGaL553TDlrdWRgQ0pRb/XXdEmLgUF+obY26WVuoLp1B9PwUicLv/Y6ofcGWPkOPRR13XUw1V17Ns04Ik/B58Jji7hcNUWR+MN5BNxAUkjHN2DC9iireLLZ5o6OiRs7aBFXBUJ1MXFr5U0mbzO3hjsafkQE+/arOesH243IemuSfjrSuQJu/3uX4oulSAQ8PHHkfEDxv2hd1SKuNQWdGUeU73jHKna8s98K1vxuBCMj+LtSnHPcY33HX/vMLDKn1iZrUKVstrr0XeZe9i5G1kMsgQDq17+GM8/c7Av3brJYW0LC7dgthnMnmzTSc4WLUUkkdjuq7rxh38+4Rou4MYMWcVXgZKdW4U5d2UroiNI9U8cSO7xxJRsX1jF5RvECxbXivfjQdNv971tK/cYYXS2BrIiDtrSPzpRFgyc9ZLwbujP9Ag7AE00T2tB/ZzUygrIFE5u6jf1i0RdLU31UHISWR9jpa6/TuKSr/+CiRaibb4Z5unzLpowKHINErqLkndHaCuXdbUT2tKkhmQ2QfsPd4PhDoEWcZpygRVwVONmplVtHMpEYnrrxk9mZ7omx+N71/PTGkSuSGrWdmLv9713K/vctBWDKe52YaZtgd5Lvn/QAT3x6Pk8cOZ8VCT8LPD3FpitIxyDtN+mNbkQpxIBYkxdfVxoDsE1Fd0t/OQ9vWFUn4kSYfdMq5v/sLay447IV00RdeCFccAFY+hLd1FHWLCTwGYjdUWwUKnzuiO1pU0OSz7ofbLeXHrOZo92pYwd9h6gCESFcX5kIs9Np1Di7Qdf99XL2/9J0LE8NOr+7xMp+W/hiKeo3OnFqZtrGEIG0Tf3GGL6YEye0Me3BFig3v0MEonauG7X5Hcd9apuKWJPjzk37TTpmBvjdbQcC4FU2e9Z1Uelvw9eaYMF5rzPxybb+g/PmOYV7d9+9wlk14xFVfxFCBmJ353nVj2r4Psp/0Ijva5PBrRUOgPzxt5oBjCERt2LFClasWEFjYyPxuOMlWbRoUdXzPvfcc0yePJnZs2dXPddwMr5UxBhj9XRFXYXu1OiGD/BOn1DjHQ0fkXfXkOlIsc++te+9Wozp3hgbUj4SAQ9dLQHCHQkMW1ACJkK4I87sN9uyiQdCZ8aiySrPpTrw+6jXjdrrPjWA0IYEGY9i9W6NvPvhiYBzfLtgpGzB2MuUv7Syw3f/h7dzwF7/7//g5z+HYP+DgUiKSPwfpDNrMFSYoP8jWLoN0yaHUhaq4SdI6PNI9I5s2y0L5d0DAkehjMbR3uI4p4zvaWt8xSlvzixbtoylS5dy2GGH9R1bsWIFd911F8ccc0zF88bjcZ588smceccqWsRVgYhdcYmR1cbr+LcYH5mGYtuk77iOM38x8jWUtvBHeDXSwBNHOi7TQ/70Godd8wr+aAqFY9ZfsU0zfjOFUpCyy1dVhnIEYQZFKmgRmeDLcZ9GJvgAePfDE3npMzNpkTRb+OPUVVCfzupKsf2FS5l+/9q+YzJ1Kur66+GQQ3LGtndfRXv3ZWTs9X3HFD7CwSOY2PgjTGMEKztrRgRlzUXVXzDa29jkUOaW7o1HPm3xLEbv924159eCeDzOI488wumnn55zfPbs2SxevJglS5awYEHxbkiFWLJkSS22OCKMnF9sU6SKxIb4irVM2W6L2u5nmNj21SvZ/kMNtEz2jfjaXkOY6euh116WCHjYMKOOtNfENhQZyyAdNAgajkvVY1T27dKQfZx59dgZ3HrPnrTNCRFr8tA2J8St9+zJrffsyavHzmCCJewYilQk4FqeamPfQ5/JEXAccwzqtdeGCLgNHT9iQ+f3cwQcgJCgO3onq9cfg23XrjaeZtNEUm9hd/0Ae/0h2Os/gt32eafYrdS+QPaYJvAxUG4eevyoYOUWnM0CqcG/GrBs2TIaGhrw52k5OH/+fF555ZWK5l2xYsWYd6EORFviqsGuvGND8oONBKaOfXdqqjvKUw9sKJjMEElb9GQ8+IwMjZ4y6l2VwZxAhM6MScz28MSR83jiyPnsf+9SArEkmZDBK8fMQinwKZtGs7Ls1CYLOtOONQ7g1c/MwBNNkwr2XyKWElo85c9txDPM/+XbbHnd+33HpKEBddllcMIJQ5Jj4skltJcoh5BILaG9+zJaGr5Z/oY0mwXS80ek5zfk3DUzq5Dkk+DZBZquRBmbR9cPpQIQ/jLS/fPi48JnoYzcjHhJ/heJ/gkSTwEpMLdABY+FwBHOvDVCJA12Jyjf2G8DNgZi4pYuXZpXwAE0Njaybt064vF4wTGFaG1trUlM3UihRVwVVOpOFRFHAJpj3xDqv+dSDjp75pBkhlWxEE+3T+btSAOSFT6TfVF2b1jHTg1t+aaqmBYrTaOVwmPb2JLAFoNXjp2BiaBUv3l+pi9ecbKwpWCmD1YlhbQoXj12Rs7rHiXM8DrjyqH+9S52Ovd16t4aYDX7yEdQN9wAM/MXFO3sucHV3J2R22iu/xpK6ctYk4vE7kV6Lik8IPUi0vEVVPNNI7epUUaFPg8SQ3ouAwZbIk0InYkKfzHnqN39C4hckzs0/TrSdSFEb4am61BmeQXbByPpVUj0BojdB9LtHPPshgqdhPJ/rKq5N2VaW1uZP39+3tcasi0JOzs7yxJxS5YsGVcCDrSIqwoRG1WBiEt0tuOZMPafgPfvvIF/K8Wee+b2anyju5H7126JPSi6oTUR5C/rtmBVPMwnJq+s2T6Ugh1CEV6JhIjbJoYa2j1hmjfBDF91lkCfAXN80J0RujLO17wF1FsQNsqsJpMR5v7xPbb+7TsYaeexVXw+1M9+BmefXVT8xxLP5Pxcf0uE5j/0gA0Y0PaVMF0nhsjYrSTT7+Dz6Dpymn5EBOn5Y+mByWeQ5Eso787Dv6kxggr/HwSOdpJHUksAAc+OqOCxKDM3aUuitw0VcANJv4W0fwla7qnYIyPJV5D200E6c19I/Rfp+C8SeAqj4ccVzT2c1KLESCQS4corryw5btddd2W33YbWR0wkEvh8xUN8Ojs7mTzZncju6Ogo22o3FtAirhoqjIlbZS3BN8aTGiRjc+8f3ue7l+6Uc7wz5eGB1i2GCLiBvNw1gRn+nppa5AKGza7hHtYmvaxJeonZBgpottJM8yZoqbDI72CUckRbfRVXRnBFlAVff53mFwZ8Me+8s1O4d/vtS54v5L4XIyJY6+w+EWdEBnyDSm3et2YTIvVfyLznaqjE7t6sRByAMqeg6s4pOkbERoq26MqSfg2ST4Nv77L3IXYU6ThzqIAbSOxOxLMtKvjZsucfVmog4kSEnp7SdT2TyfIfznvFXW/JETcsW7Zs3FnhQIu4qhC7Mktc7L0PmLF3ZVkzI8Wc56/APLSF+qbcmkkvdk4kI7nv+Yi/vEwgniTm93L/JxcC8HznpJq7VT1KmOlLMNOXQGQMdqESYebta9j2x8uwoo67RgwD9a1vwUUXgddd/SmfZxvSmf6WX3ZIIRaoNIjl/AygVBCPNav270MzvsmsLT2mb+wHZU0tEofYg0jyP04fV2suKngMypxe5ibHOKkXYMA1WAyJ3YeqQMQRfwDsjaXnj9wIgROq6tM9FlFKEQoN7cgzGK/L781qWLZsGfPGaWccLeKqQeyKLqzEynUEPzt2LXHJjm5e+kcbP7lxqAl7aU8j4Ai3I/72MgCz32/DStukLYMj/vYy9398Ifd/ciEdKe+wJTuMte8z7/oEO37rf0z+x4b+g3PmoG66CfYu7wu+PnQSkXh/f9auE50vOiMi2CHV93Nd8NMYYz0AWjPyqDIKkKvSN9FeJP440vmtXMtRAiTyRyT4WVTdBShllrHRMUxmnfuxgzLI3SLxv7ncy3uQfh08O1S0znCgpHpTXCgU4otf/GLpgRWQSDgtE924R+PxOPF4nMbGxmHZy3CjRVwViEhliQ2pFKavgjTHEcJ3z+V87JxZGHkq2SazVrhAPElLmxOsb6VtlC1YaZuWtgiBuCPcEvYm8oVegsmPrGOHb/8PX1uq/+Dpp8Mll0Bd+bXcQv6PEvDtSyzxZN+xXuHWi2m00Fz3lYr3rNmE8e4JKgxS2lXltguEJJ5GOr4C5HPf2xC9GUFQ9ReWt9exilHvfqwqY+xA7K7SY/rGFnG5jgZjIDu1VozHZIaBjP30yLGMbZcdE5dOxDH8I19vzS37bLwej89g993yB4PWWY5Qifm9bGwOsbE5RNoyEEORtgw2NoeI+b0ohLCZyjvHpoLVnWbH899g1y8u6RNwMmkSPPAAXH11RQIOQCmDaS3XEwp8PO/rHmsO0yfeqV2pmrwoIwSBo0oPNCaC/1BXc0r3r8gv4AYQvRVJ1y6haVTx7gFGs6uhyuXvcAhGGZ1Xyhk7Aiip/F+taGhooLMzv7jtjYXrzVItRGtrq+vEh7GKtsRVgYiUHRMX3bB2zLbbslNp7r/sfS66snCg84K6jayJh7j/kwv74t+u+/INtLRF2Ngc4rTLTwFg61AHoTLbX40nmp5rZ6evv05w1YDA2SOOQF19NUycWPX8hhFkWss1JFNv0RW5nVRmDYYRIuz/OEH/AZtcfIymtqi6ryOp150kh7wDwqjGS1GqdLyRpF53AvhLYiOxO1F13yhvs2MQpbxI4HiIXFZ8oDEN/AdXtkbgcKdmXymsbVCebSpaY1Nm8uTJBRMXesVdKYHW2dnJ0qVLh3Ro6J332Wef7atHd9BBY7OThxZxVSBSviXuA8+b+GZMGqYdVcf0xZez41GTCNcXdvXuWN/Gf9on05nutybe//GFfYkNAAbCh5pah32/o4GRsNn6t8uZc+WKvqdKCYdRv/sdnHpqzYP1vJ6tmdD4vZrOqdn0UcoPzddD5DokejvYvQkMXvAfigqfibK2cjdZ+i33C6ffLnuvYxUVPgtJvwmJx/MPMJpRTVegVIWhMf6PQc/vSiZQqNDpRV8fFcaAO3X27Nk899xzeV/r6Ohg1qzSnop58+blTWiIx+Ncdtll7LHHHmM+4UGLuGoQG1VmB/TE++uY/Ym9+n62MyAChln9/V9ESNlOXxNTGZhl7C2xvoNlL3bz42t3KTrOa9gcP/1tblu9VZ+Q67XIAZjK5vDJK5gR2PRaQoWX9rDw3Neo/9+AWKN99nGSF7bccvQ2ptHkQSkfhL8EoS9A5l2QJKJCqMSjSPclTgybZ3sIHFOiYG05t4lN55ailAWNl0LsbqdjQ/rN7Av1EPg0KnTqkNpy5c3vhaZrkLZTB4jsQYT+DxU4vOI1hotaukUrZd68eSxevJiOjo4hSQnLli1jv/32yzkWj8dpbW0dVy213LDpXHGjgNg2lGmJS36wkcC0icS6oacdEtFsuQhDCNZDXTNYZWZU2yJ0J9JEU+mcB6SAZVLns7BcuHyNO6/gi9+e78pN1+JN8IXZ/+PVrmaWdLfQnfbgVTbzwx3s0rCBhmHKSB01bGHLa1cy75dvY6ayhXs9HtSPfgTf+AaYm0cCh2Z8opQJ1lZI5Cbo/gVC//Upiceh53IkdCZG3dn5J/DuhnOrKB0eobx71GbTYwSlTAgeiwoei2Q2AinHAufCDe1qfmsOTLgfonchsbsh8z4oH/gOQAU/i/Lmb3eocTJPDz74YJ588kkOO+ywvuO9PVUHW9AefPBBVq5cyUEHHcSCBcVLfPW6Y8upMzdaaBFXDRV0bBDbpnODSaRDDTquiHRAtEuYMAN8LqsE2CJsiCZI20MfjWLpDPF0hpagD2+RFl97rb2WJZO8zNrafbkKr2Gza+MGdm3cUHowjrWxNeVjRTxI3DbxGjYzfTGmeWOUacx0RVqgMw2dGUiJk8FTZ0KjBf4y/mT+VTF2Ou8NWp5p7z+4/faoW26BhQtrvW2NZliQ6N1Id6HK/2mIXIooDyr8pSGvKnMK4vsIJB4pvogKQeDT1W92jKLM4UkuUEYjhM9Ahc8YlvlrTrVN7GtoxZs3bx4+n4/FixfT2NjYJ7qOOeaYIWNnz55dMpGhtbWV5557jo6ODgAWL17MihUrmD17dknhN1poEVcFYpfXsSEVi6I8/iECLndOxcZVwpS5jou1FJ3xVF4B1zcf0B5LMinky2tls1NpHrxyNT+8prgbtRqiGZOnulroSOc+va5KBAkaafZp2EBDDZMg4jasStDXzB6cZgedGejMCJM8TsP7oogw7b61bH/Rm3h6soV7lUJ97Wvw4x/DOGzPMlpI5gNIvelYrT07olxm/Y11JP0+ErsdEv8EiYM5HRU4xok5q5GlphaIpJCe35QeF7kSgiflbb6u6r+DbHwF7EKxrgaq/kdjv3G7piaMBXdqL7Nnz3blIl20aFHJUiKTJ0/OseqNB7SIq4Jye6dG1q/Bmlg6hsK2FdEuIdxUfFzGFmLpwY2c84wTIZGx8VtDVeHkxy9j4fFTCIaH56OQFsXizgl0Z/IH/0Zti391TOSgplYC5tCeqOWSkaECbsc7VuGJpkkFLV49dgbrUoJXQaiASPa0J9nhO28y9e/9BT9l5kzUjTfCAQdUvcdCiNgkUq8hEsUyp437EiKSWuY0YU88gSOjAbyI/1BU3ddR5tgteF0Kid6DdH2PHBdjZhWSfBYiV0LTtShzSsHzR5TEP9wVpJUoxO+HPC2elDkVWu5Aun6U/XsO+N6x5qHCX0f5h+/a0Gg0+dEirhrKbLu1Rt7EO3moiDv+6f8AcNuH+hMeol2UFHGJTK6AO+7R5/nyfU9g2IJtKC7/9P7cftDuAMTTmSEiLvbBBt57o4fTvjp82TfvxYNDBNz+9y7FF0uRCHh44sj5JMRkWayOncLVF7R0GtfnWhx3vHMVoQ0JIhN8vHrsDEDRlpa8Im7iExvY8Ztv4F8/IK7v5JNRv/89lKg5VCkiGdp7/khnz4057bYC3r1oqvs8Qf9HnSD1cYSkliBtp+QpOJuE+AOO2Gm+DWXNGI3tVYUknkS6vkO/MB1E+i2k/Qxouc8Jjh9t0stdD5X08oJdkZU5DdV0BZJZA8lnnL691lwdt7U5MoYscZs7Y+AbZvwiUl5iQ2LlOsJ77phz7Pin/8MBb7xB0jJzRJxd2sDG4M4noXiSiR09fSIuFE8WHCsi2LddyZe+s+2w1hx7Jza0rc/+9y2lfmOMrpYATxw5H3DE3o6hTtfxcSI2AihUzv47XXplo7YTN2dlTzWjGbb56VvMvqVfRElzM+rKK+Hoo91NWgEiGT7YeAaR+ENDXosl/0Ns43+YZPip838YFTwR5f/osO2lVogI0vG14h0D7Fak6zuo5htHbmM1QnquoKCA6yW91ClN4T9kRPZUnNpmlypzGgSOrHw7mnHPWHKnbu5oEVcNZRb7TW1sx2oeGg+UtCySVu6fwnTxlxlcQiTi95I2DSxs0qZBxO8tOHbh21ezZrsw07bIn0HRtUFRPyH3Sk1E3Sdc9NJrhdv/3qXsf99SAKa814mZtgl2J/n+SQ8A8MSn55M8ow6/Kn5zTNlJUnaCzAB3jqU8eA0/pjLJ4LhPd7yzX4w1vxPByAi+rjQnHPVM3/E1J0zngxNn0PBSJwu/9jqh96L9Cx16KOq662Dq8Lr8OnquzSvgBrLOjuNPPIkn+RQSPAWj/oJh3VPVJBdDxkXl/uR/HMuPNXf491QjJL2ycAHdwWNjd6PGgojzfQhKd+ACQPk+NLx70Wwa1KB3qqY2aBFXBeXExDndHcAbgNSArOXbPrRXjgWul6CLdnw+08BQ0JvX0Os6DcWTRPzevp8Bgp5+32EmnuTxW9fykxt35aXHLOpbHOE0d2fnv/+63cOeh6f41+0etts7zcSZwqqlBm88ZXHwaeWVDzGUYIvCF0tRvzEGgJm2MUQgbfcd88VSGCVs9PFMjJQkhhxPS4p0JkXACGHgwRNNE9rQP87ICMoWDMg57ulOs/VvljP3sncxsppQgkHUr34FZ55Z88K9gxEROntucDW2y07RYvogegNibYMKjl1LiCRcVKHvJfEkjCMRR6ZAPa+8Y9eWHCKZdWCvczooWFtUvq8iKM8OiGcBpJYUH2jOAO9+xcdoNJoxhRZxVSBl9E5NdLbhaWmgrhna1hQfa1riSsQppajzeuhM9PcoHSjceglYZk6tuJZHLmPR56by8DUBDj41iS8Id//Cx9ydE6xaalA/QfAFYeJMG18AVi01WPWmwZ6Hl98LdbInzupkkETAQ1dLAIBgdxLSNhnL6DtmhhReo7CIS9nJvAJuIDE7Qr1ZTypoEZnQH0Pm60pjALap+o57EjZz/rSK4OoBinrRItTNN8MIVehOppeRyrzX93P9LRGa/9DjeOoMaPtKuK/xfVQy9BY4kOj1Y1rEUeLvVPHYsYBRhilaFR4riWeRyFWQ/De9AUZizUMFT0IFj61yk3m2Uv8TpO2zIIXiTv2ohl+W3YFGs3mi3aljBy3iqqEMS9wqz2v4Zk8hWA/plNC1Pr+Vx7CECTPdh9qFvJZT7DeZPxjMbxk0+vsTC6Kr1hF/L85RJ2zHS1mjwvr3FUd/c+jN1BcU6icIXRsVE2fZQ9yrbtgqEGF1MsgTR87vi3/7/kkP9MXEff9mpxr5bnVtbEm04DxJO3d/c29bjxXNkA6aLD++v1dp0Ejy2rHTswkMDicc9UxfYsOtd+/BTre+z36/fgsr7lgexTRRF14IF1wA1shdEiKxnJ+NiGCts/tEnBHp/33bA62U6aVI+m33bZNGGGXNdh/3bI2z6unW9mBMB3t1yaHKd2De4xK7D+m8gJwMT4D0MqTre0jqFYyGn9RgswP24pkHLbchXT/NEY4AeHZH1X0T5d2ppmtqNmG0iBszaBFXBVJGdmp8xVqm7bEdAPUtjkCKtEOsB8QGywPBRgg1uIuHG0idz4PfMomm0iQyjjCxDIOQx8Q3ICNVRMjcdjX/98PtWL/CoGuDomujIyb/dbuHDx+XYsZ8m+UvmSSyeioRhfXvG+x8YGV13CZ5E2wd6OatWF3fsSc+Pb8vOxVgujfKFr7CAs4WGzt7w5t723rm3r6eundiGGmwLZh7+3qWHzeR5cdPxJYk071+VicFyebZvfqZGXiiaYy08OkvvMQWT23sn3z+fMf6tvtQC+ZwY5nTcMoQO38zO6QQC1QaxHJ+7sUzWNXb7Yw0IhlIvQh2Jxgt4FmYPynG/yno/g1QwnJrTADfR1yunQSJOW5HNXodMpQyIHgC0vPLEgODEByaECPplUjndxgi4AYSuxvx7IoKHlXdZgdvydoK1XxtNq7vFcAGazuUZ+uarqPRaEYOLeKqoJzs1MTKVkLH9mcW+gLOv1rhMQ0azOIFRrd5/WqWbTeNx9WORD7owbBidDd72TLYzfqVBuvfV0ycKex5eIqujYq5O9s8c7/FnkekWf++6kt2mDizvMewheFOwmaapdE6orbVZ5HzqQzbBTrZLthdNPxMBjz2WdEM/g0pjLSgbDDS4N+Qwopm+saGTZjtg/a00JWBV4+dwby/r+WjP/gf/q4BYvT//g9+/nMIlpmtUSMscxIh/0eIxB8D6HOdGhHBDqm+nwHqBpeqMIanenw+RASi1zttm+wBsQDmLAh9HhU8Pme8MicgwZMhem3ReVX4rJJFcSXxLBK90SmoSwZUCPF/EhX6XF5LpGQ2QuxOJPm8M96ajwoej7Jq2Ns2dBqkXobEowUGeFENv0EZQ2sESfRW3LSvkujNNRdxvShrFozzGoSbGpJ+H6QdVBPKmjna2ylJifwzzQiiRVw12O6zU+14EjMwerW+Uj2d3H1bjG1+fBjvRE28IfCEFLetmcp0fw+NwRV0bXBEnC8IE4PCS49ZbLe3I45eetTDwaclWf6SUbaIA8etOtcfYX3KR9w28Bo2kzwJVyVF1IDKVemgSXyCB09Xus8SF5/gIR00s2Odv4fPgClemNaZYoeLljLj/v4gc5k6FXX99XDI6GcONtWdQzS+uK+f5UDh1osXg/BAEWft4PRcHCGk69sQu3foC5mVSNdFSPrdIRmzqu48hBhEb80zo4kKn4PKU1Q2Z92eq4davCQCsTuQ2P3Q9AeU78MDXroF6f4pORbA5H+Q6I1I8HhU3YU1iflSyoTG30P0ZkeU9cU1muD7CCr8RZSnQIuexGPuFkm/gWTWVNVgXTP2kfhDSOTarGU0e8yzEBX6/NjIbC6EdqeOGbSIqwKRjCsRl47HMEZRwAkpVt76F2actC9GNks1NTOE77UOAFbHw8RbvRwyrz/ubNVSoy9rNTHA0+kLVlZqBJxkz0ne8gPZDWVgKouMpFl+vOM2PfiIN/BvSBGf4OGR+7frG+sx+i07LU+1seC81wl8MGDNz3wGdcUVkKfUy2gQ8O3KlJYrWNt2FiJDmy17MZhq+nPclip0+ojtT2J/yy/gBhK9AfF9GOXbu++QUgaq/vtI8EQkejuk/pdtu7UzKnhcSXEiicUlXJZxpOMcmPCQ09sz9mek+4eFZoPorQheVI3KsyhlQugUCH4OMu9k225NLd1STAqHDQzBjsDoeY41w4z0/AHp+cPQF1IvIx1fgfBXUeEvj/zGSqCkusQGnRRRW7SIqxI3hXJ7Wlfhnz16LXi633uXVE+S+h36g/3FZ5LYoRHfa+141kSJbN/E08/AVH+UuTtnWPWmQSKmmDE/xTMPeBBbSERhxeuVlRqpFq/yEZN+N9Ty4yb2JTb0olB4lBcjnmH+L99my+ve73+/DQ2oyy+H448f9tIh5RIOfIwtpjxHV+Q2eqL3YWeW48GmTnkIKTNXwIXPQQU+PmJ7k+ifXI8bKOJ6UdZWqPrvlr9u5Ho3izoCMXw20v3b0uOjtyCh01HmpLL3UwilVHklUsypYG9wMdACc2LpYZpxiST+k1/ADRzT81vw7obyFu/3qdm80SKuGlw+UayRN5i47ehk4dl2mpXXP8qccw/tO3bEX14mEE8S83t54KAd8b/WQc/B02k1LN763QfM3TnGjG1s1r9v9JUamTHf5o2nTUyTikqNVItlePARIGE7GZ0DM1LBEXABM0TDG93sdO7r1L0V6X/xIx9B3XADzBy7sSaWOYHm+q/QXP+VbFzX7Uj07mwMmg/8H0EFP4vyjlwChkgMUs+7G5xYXLt17TZIPu1ucPyv4N05N1avIGmI3QPhL1W1v2pQgaOQ1KulB/o+ijIah30/mtFBoje5Gxe5eQyKOKmBO3VsPUiPZ7SIqwaXn8P4u2sI56nfNhLMePFmVu+6Jb4JTnboEX95mbOv/AdW2iZtGRzxt5e5/+MLuR9o32Awa35miKu0t9TIxJlCIioVlRqpBV7Dh6ksUnaCtKQQBAMDy/DizVhsdfn7bP3bdzDS2bpbPh/qZz+Ds8+GMjprjDbKbIHwWajwWU6R6NGyHEo51tZUyb2KJCH+EBK7C9IrcDI0faAsMBpRvgMg8BmQblzfJewOSL/nepeSfnd0bx/+IyByDQzokTsUDyp8xohtSTOyiGQg8YS7wYl/jO53QAG0S3TsoEXcCJDpiuBtqis9sMakuqO89LcPmHrRx/qOBeJJrLSNsgUrbdPSFiEQT+J7rR1zdVefm7TWpUZqhalMTDNXZQZXRFnw9ZdofmFAIdOFC1G33ALbbz/CO6wto/rlrerAaAa7rfRYc1ZxAZfZgLR/HtL/yz8gA5J6GXqugPrvM7D0SlGMBiiR4ZpDOWOHAWWEoOk6pP20AkLOj2r8deHECM34RxIULTGTQyr7b3Q/t5qxy/gxT4xTMqkkagQLyA7Ef8+lfObsaTT6+t2fMb+XtGUghiJtGWxsDhHze0ns0ETLbh6eeaC/MPDAUiMvPWqx84FOqZHlLznlSEYdEWbetpp9Pv5sn4ATw4BvfxuefXbcC7jRRikDAu7KXKjAZwq+JiJI+xcKC7gc4tD1PfC4LDwrUcSzO27N4sq3j7t5hxFlbYGa8FdU/cXg2cVpd2XNR4W/gpr4GMp/0GhvUTOMKCMIqtHdYKO5ZBmeUUGq+KepKdoSVxWlbxzRDa34Zox8gPI+G6/nOUux115TkLYN/HPjdADu/+RCgL6YuPs/uRCVyABCagsvb99nMXfnDDPm28NSaqRWeNcn2PFb/2PyPwYEic+Zg7rpJth7aIC9pjJU8GQkdl/xYHxjOgSPKfx6cjGkXytj1RSIS4uvvQGVXoJ494FkiZ6txmQo0EVhpFEqAMFjUMV+b5pNl8CREL3OxbjhqRVYLdqdOnbQIq4qSn+SP/C9iXf6yIo4yWS4//JVXPTHhQDs0bSO96J1vBtzGrL2CjnAcaN2pggdGMBj2kT8Bqa/f67eUiP1E2RIqZHRYtIj69jx2//D1zYgweL00+GSS6Bu5N3WmzLKnAxN1yPtX8yfPGBuiWq6qmgQvpQqUZKP9KuAh5JdHwCJ3olq/DWy8TiwWwuMyropBxdN1mhGARU6CYndDdJVZFADKnjiyG2qHKQaFTcGvDibENqdOswkVq9n0tYjmxU55/k/sujQFsL1jmvUVMKnp75Di68Hc3Cp7fkB6mZmCK3uJPJYBN8ufiKTnFYSiSisetNg7s7OOb6gk+SQiELXhpG/EM2eNDue/wa7fXFJn4CTSZPg/vvh6qu1gBsmlGc+auIjqIZLwPdRxwXoOwjV+AfHLViq/2mmkLAqhcss6PQ7KHM6quUO8H8cR/z17R68e6Gax2KWn2ZzRZnTUU1XF3arqiZU0zUoc+qI7ksz/tCPpVVRWsgk12wkOLN2dalKrtfRzYuPt/GTG3fLOd6W9tISiNLkjxJPe7BRnPODx9nupTUs3WUqV/1oP7xznNiLtUmnwwLAnkfkurU+fFyKVUuNPvfqSNH0fAc7ff11gu8PaBp/+OGoq6+GSSP3+91cUcoLgU+iAp+s4OShXShqSjZmSJnTUI2/RTIbnLZYvW23rC2Gd/1hQhLPZi2SgGeBFqGbGMq7M0x8FGL3IfEHnX7IRhPKfzgEPo0y6kd7iwXR7tSxgxZxw4ydSGL6cwNTMxmhpweiEbBtME0IhiAcBsNNH6oi+O65nI+dOwvTzJ3HFudnQ0HQ41g4tnvpAxo3xpj/4tq8Ywu5TGfMH7nGeSppM++37zDnj+/1fXFIOIz63e/g1FPHXOFezVCU/yCkVLzaYIxpoPxON4RSeHNjIJU5AcyxEftWCZL4D9L1Q8gszz1ubeW0DvPtOUo709QaZTRA6BRU6JTR3kp5aBE3ZtDu1Koo/km202mUmds3Jx4T1qyGzg5IpSCTgWQSOtphzWpIJiq/OvZtux6Pz2D3XScPea3OGhoovnSXKXS0BFi6S243iTpzdMuI9BJe2sPen3qOuVf0Czj22Qf1yitw2mlawI0X/Ie7z8bLooLHoYInuBsbKt6DdTwhiaeQ9tOHCDgA0m8j7Z9HEi4LIbtZT9JO3TKNRjMu0Za4YSTWtg7v1Ja+n1MpYf36wjGhtg3r1sHUaTLEklYKO5Xmz5e+z0VX7pz39UYrRZOVpD3dbxW86kf75R27ZSCS9/iIYQtbXreSeb94GzOVLdzr8aB++EM47zzHdKkZNygjCE2XOmVG3PQO9e4Hoc8DyukEkSzSDSL05U2mppqIjXR9j+KxgCmk60KY8GjFNQRF4hC7F4neBumlzjHPjqjACRA4HKU8JWbQbO5od+rYQVvihpHVnjfwDYiH6+4qndRj29DTXf5akx+/jAOOm9KXzJCPHUKdqBLWw5m+KI3WyLfV6sW/Os6iE19k24vf6hNwbL896rnn4Fvf0gJunKK8i1DNdzpWOQp8Ro0pqPC5qKYrUMqDUhaq6XIInTnUkmfORtX/GKPuq8O88xEkubhEJ4csmZXFhW0RxO5C2j6LdH2/T8ABkHoV6fo20n66I/I0mkIIYEvl/7QArCnaEjeMJN5fx8z9HcuYiBBxaeDq6YGGxjLWWd/Bu6/1cNpX5xUdN8WbYI+6Np7vbiKTR7/P9EXZvc5Fdf7hQIRp961l+4vexNPjuHdEKdS558LFF4PfX2ICzVhHeeahGn+F2BdC5gNQXkRMlP0BGAGwtkepXJGulBdV9zUkfBYknwW7G8zJ4Nl1zLUiqhZJvljG2JdQvg+Xv0bn+VCsd2vSicdTDT8pe26NRjPyaBFXDSWeKBKr1hOY6cSn2fZQK9xvr/sTeyx7B9swuOxjH+HWffcCnDi5cjDv+iOnnD/f1U1tpj/GZG+c9+IhWlM+bFHUmWnmBCKjZoHztCfZ4TtvMvXv6/qOycyZqBtvhAMOGJU9aYYPZdRDNvPO+cTOKn2O8oEvv/t/06GchKHyk4sk/S4k/lF6YOx+JPw1J0FEo8mHtqaNGbSIq4YSmklSKUyf4zrKp6+86QzhRAJBEUz0Nxsvx8Cw5wfX8upED7PnhV2f4zWEecEe5tHjfqFhYsK/NrDgm2/gXzeg2fpJJ6F+/3tobBy1fY0kktkIpLMtdnQ80uaKsrZ1fW9Unm3LXyD+F9zdfVMQfwhCY7TQrGbU0TFxYwct4oaJdCKO4ff1/WwYCr9fiA8IN/n3tlsza4Pjvoz6+hMOgi67IdipNH+9ejU/uHqXmux5JDGjGbb56VvMvqU/Bkiam1FXXglHHz1s64rdA+llgA3WXJTRNGxrFd2HpCB2JxK9FdJvOQdVExI8ChU8BWW6r30nEofEU071d2MiePfUnQnGI/6DoHtC8RZnAMakitqHiV1GqIS0lz2/ZjOiqo4Nmlqiv+mrocjnOLJuzZCeqXV15Ii4W/fdq8+FOpCwy8YDk/9xGTsdO5lgeHz9GRte6mTh114n9N6ATMVDDkFddx1MmzYsa0pmA9LzB4g/ANIbnOhF/IeiwmejrNIuvZrtRZJOG6vkU4NeaIfINUjsQWi+CWVtWXqent9B9E6Qzv4XjMkQOg0VOnUYdq8ZLpTyQt35SOd5xcfVnV+ZxVaV8cBSZkkYjUYzOoyvu/9Yo4jb8wP1Bv7ZufXXAkFFfb3QVaRdXmMT+Hyl/anRVetZ+UaE084pnswwllApm60ue5e5l76LkY37k0AA9etfw5lnDlvdN8msRdpOyJP5l4T4A0jiSaTh56j0m4h0o4wJ4P9EWdawsvbT/auhAm4gdivS/mWY8LeCcY4iaaTjLEj8K//53T9FMu9j1F9Yo11rRgIVOALIIF0/zRXmAKoRVX8BKnBYhXN/Eolc6mKkB/yHVrSGZvNAu1PHDlrEVYiUMCfHV6xlq70PGnK8sUnh8QrdXU6R3158PqhvgECgtJARETK3XcXZP9xuzGboBVUPDaoNv4o6Wvdtg+lf3UDdkgHWt0WLUDffDPOGV4hK53eKl26Qduj4Qp9hVQC6f4kEPoWqv8gJqq/VXuweiN1VemBmOSSfLBzMH7s7v4AbSPQWxHewrvA/zlCBI50esLG/IqlXQYGyFkDgE1V9FpU1B/EdAIl/Fh8YOAxlTiw+pgokvRyJ/gnijzhWcWOy856Dx4xaeIOmTLSIGzNoEVchIjZKFS6zl9rQgW9S/i+kUEgRCkE6Ldg2GAZYlnsxtvM7V7N6xzCTZwTK3nc5iAiSvVqNIu910FlMNlZTb3T2TkLDjVEmXNyFkXUli2miLrwQLrgArOH9CEp6BST/XcGZaYjdjWRaoemqIaUvKib55AB3bnEk/hCqgIiT6J/czRH905gXcWJHHSGtwk4bIg1K+SF4FIqjyj632HeTavgF0nYqpF/Lf7J3D1T9RWWv6Xpv0XuRru8CA7rCZN5Ben4F0Rug6RqUZ7thW1+j2dTQIq5CRGyUkf/GLrYNSpW0kpUj3HrJxJM8/qe1XHzDrmWf6xZbMiTtBCnpNxUamHgNL5byFn1fLca6PgFnrs0w+RudhP6V6Hs9Ocek64+HMeGgEXLzJZ6gqsfG5JOQeLR27iW7iC99MOnliMiQ37fYbbmFWouR/E8ZmxtZJPUaErnWschkuxSId09U8HMo/0dHd3PjDEm/h0RvgdgDIB2Iqgf/J1GhE1HWVn3jlNEALX+C6N1OUk1vey9rO6fNWeBTTmzecOwx+RzSdQEFy6PYG5D2M2DC38d083cNKJ3YMGbQIq5CbMma0PIQa1uPd3LzsKzb8shl7HHKNLy+4elckJE00UyEwcLHJkPcjmGpNH4jmFfIKTI0KCcDLvxgjEnf7sTs7J+n43NBNnynHgk8R33qHbyeOcPyHnJw0+ap5BS3omol4owy3FSpl5C246Hpihw3kySfL2PBsdEHdzASfxjp+BpDWkwln0GSzyChL2HUnTsqextvSPyfSMc5wICsKemC2K1I7C5o+CUq8PG+l5QKQOgkVOgkRBKAGiLcJLMaid4NmXcAD8q3txMnWoXAk8g1lKxvZ6+H2L0w3hrCb04IlZQpzD1fUzN0260KsSVT0GWxynwV/5ZTa75mbPV61r4b48BDZtR8bnDcp7E8Am4gaUmRlH7LmkGGRrWBWebbzDXfxNOVZvLZ7Uz9ckefgMuEFe2nBln/4wYkoAChO3r3sLyHIZgzq5+jWIX7cvHtA0ZL6XF9a7+ItJ+JyIBvzaiLmLpezBEQymUi6VVIx9cp2iM0cgUSf3TE9jRekfS7QwVcDimk8zwk9b+8ryrlyxFmIhnsrh8g6z8Kkcsg/ncn+afzfGTdvkii0nZfbU4fXDdjY3+uaA3NyKFEKv6nqS1axFWIiI0q0Mcz/u4HTNm+tjfP3mSGL323giKfLklLqi8GrhgpO4GI4CHBLHM5E81WfCpB8OkEsw5aT/19/TcUMcCICY23Ram/pT8WLJ1pHZb3MAT/gWOqXIJSXlTwlPJOSr3Ul8QgdltZMX4qeGx5a40AErsNSJYeF7lx+DczzpHoLRQWcL2kkOhN7ubr+gFE/0ReU4u0I+1fKtMSnCWzMf+c+bDXlR6j0WgALeIqxpZMwZi4xOr1BGfVtjzFdq9fybxd64Y1mWFgDNzc29Zz8BFv8Mn9XuGwfV7hk/u9wtzb1gMgCBlJMc1ciUelUHFhwg+6mHFcG54PnC/qTJ2i6wi/U4ZFgDQ0Rvt/X8YIxbwo5UeFzqhuEs+OtdlML6EvQOC4sk6R3ozWcm6GmBA4vKx1RoT4Q+7GpZ7LdrPQFCT2oMtxf0WkeD8/Sb8DsTtKTJRCun/tbs2BGC6LXwKoMsYOIyKCJF9A4g8hiacQKf3gUfFamY1IegVidw/bGjVFqvinqSk6Jq5CxLZReWLiRATswla6Skh1R3nqz+v5yTAmMwA5VbitaAb/hhS+thTKdixqVrT/JuBXUbwqie+1FJPP6cC3rD/2Krq3l9ZLGgn+I07g+SSmjfO4EIbJhodWO0U48MnhfS8DUOEzEOmAyNWVnR88obb7UQrV8ENscxb0/MLdSZn3nf+WczM0pjvxT2ONcm5U0g2U4X4eQ4jEIPYAknwWyIA5FxX8DMqckmdsAuJ/RWIPgL0RVD3K/zEn0cDI31JPJAPS4XI3cScrWhV+eJLoHbi6y6ZeRFJvoTxbu1wblDkF8SyE1MulB/s/5nre4UKitzsxfJmV/QeNFgieAKEv1awjisQfQiI3QOrF7BEP4j8QFTwN5d2pJmsMC9otOmbQIq5CClni4u0b8EyqbVJD3YOXc8CXZmB5htdwqpQB2af1dNAkPsGDpyuNkRZsS5EO9r/fOrubpkt7aP51N0ZWv9kWRA/wEdnfS3qaSdeJIbpODDHRsPBkEyFMIGRuTcA3zIJ0EEbdeUjg005GXvIlnLZbW0FqCWRWFD7Ruy/4htb7qwXKu7v7B1Pld/5Tzs1wBIXyYERsSD6Zdb3ZKGs++D/mxF+ZEyHd4WIWE8Zp3TCJP+zUJ5TcbGSJXIEET852XXCuZ0kvR9pOB3t17tjU89Dze2j6I8o7tLWeUiaiwiBueiB7QJXo55d+28U8vWPfQowwEr0dEo87CUTGNFTwyGwCxNB6dir4OaTz5RIT+1HB8qzUtcbu/hVErsrzwkan60vqTWj8Q9ESU67W6fo5RK8ddDQF8b8j8ceg8VeOkNdoiqBFXIXYkt8S976xhMCc2rWOiry7hkx3mn32qX2ixGA8yktanGDz1Sc0kjzJYs5tGzCjNpmgQep4i0AmhbVCWPDN9wi90J/gkJpqYG60Cf0zQfDJBBiKrhNDANgIA9tbNHmGpxNCKZS1FWpQBwOx25HOb2cLoA6UVB4IHJEt9js8mcB4tnOyVe31JYcq3/79/+/6ZlhePJzY3RC7D+ktwmpOQQU+Db6PlvU7kMR/nFpgvdZDsr/Zrp9A3TdQ/iOcumCl8H1kXNaNk8RipOOrQD73ZQai1ztXRP23EbvDqdtmry0wWYdTdqPlvvyt4fwfh9idpTflP6S09aicv3HqZeg8j5zklMwqpPM56LkSmq9DmdNzpw98Akm9lke49OJFNV6S11I5UkjyhfwCbiCJR51i28HPVL5O/O9Ffg8AKaTjPJiwA8qqQXJWDVFU17FhbJanH79oEVchherEJddsYNqe29doDSFz53Wc+fMax2QVwFQWBgb1RoQtPG0YCrpP6n96nyARtrxzAxN+0I0VdeKyxID2L4XI1Csm/LIHbFBpMCJC/S0Rgk8m8PpM0pdN6H9fhW5Yo4AymlBNf3SKAsf/nm271eLU2Bqmtlt9aysPEjgWSrZC8kCg/4bh/mboXvhL4imk4+ys+zJL+nUk8ThY86Hpalc3V0k+j7SfTt7MU2lHur4DdeeD0QxFG7KbqNDnXe9/LCHdvyK/gBtA9CYkdArE/lJYwPVPiGw8GsJfgcCRKCPU95IKnozE7qNopi8mKvi5kvtW3j2QxBMlx4EJ0Zsp+B4z7yJtp8GEB4eUJDHqz0e8C5HIzZB6LnvUC/5DUaHTRr3Qr/si2reiqhFxrpJ2kkjsdlRd8V66o4J2p44ZdGJDhdiSgXwi7oONBKZX37LG6Iqx3WtXss2ielomO66JRPUlz4qilKLB9PQJuIGY6zNMPa2dKed39gm45CyTVXe3sPFb9dj1BulJ/f/skDOBkQQjYQ9aZ+zFaSlrNip8Jkbdec7NZJgFXN+64TPBW6yjgolq+NmQNkhG/fmoxj+AZ9GAox7wH45quRPlP9D1HiT1JtL+pVwBN5D0UqT9tGxNsRJzdf2I4oIC6LkUGn9fpCG7x3nPeVyIYx1JvgLpN12MzCDRO5GYy1I70oF0/wjZeBSS6Rd9yjMP1fBzwFPgRBNV/wN38VWBowAXbb2MJkqK1My7EP9b3peU/xCMlltQk55FTfgHatJzGI2/GnUBB0DCZeZ3+o2Kk24ks25ADFwJ3CYBaTZbtCWuQmw7g/IMFXGZSAxPXYnYkyzBh18nsYvjIvG8vZ74Xk5ZksC/ltG9wxSWPtbIyd9uBGDVUoM3nrI4+LThy5ACaDLbhwi40MNxJp3fibWxX4xFT9yO1u/ZpINOd4be+LfBBJSBPagwsOn7cO03Pk5RygtN1yA9lzuZgfaAG4Nnd1T4y06h1Xzn+g9B+Q9B7HawIwg+VPJJSPwTST7nuEFduGIkchUly1Sk34bYXyF4ZOF5ki+6EzASQaWXw4S/QexOpy6Y3Qoq7Lj9giegrLml5xmLpN8qY+zbxXv65iPzDtJ+puNezV5XKvBJsOY4AfLxv+KIaAM8u0H4GyjfQldTK6MR6r+f7apQwNJiTHJdAkRi96ACnyqyXtMYjHks8QCSQ2XfxWJ3uh9su4l3HHlUNcV+NTVFi7gKcRIbcg2ZUqaJ2eiKE3pgCZlJYaIHOy5Ya1U7dr0f34N/ZNv95hKsU6xaqlj1psGeh5fzBVMZdar/C0b12Ez8fhcNd8T6jqUnGKz7eQPRQ2JMa7mdDzaejD0oeLuXgFIYJ9WRzhFxCit44nBtf1yilBdV91Uk/GWnsLDEwZyOsrZwOUEDErsJojcgA/uydv8M8R2AargYZeRPthG7C+IPu1pGYnc6geuFSBXox5lvrtSrGMHjIfwlVPhLrs8b85QTP6ksJ2FFyryu029A8mnIEfd2NjEh1f9z6jno+gZS923XbcxU8Cgwwkj3JY41rQ8TfPtD4BjoONPdPjMfuBs3ljC3gPTrpcepuvKKdg+knOLh5XR4GUm0O3XMoEVchdj20OzUVKQbqyF/OYB8JHaZRWru0It0y+h/WW4qtt2+jvoJNl0bFRNn2dRPKH7h2AJR28AWhd+w8RrlXmg2ZvYRy/9ckqmnt2G1988hBrR9MUjkYD9IHJ93W2ZO/jsd3VfRHb0HO5sl50ERUgbBPIkfnrrzMazZZe5r5BFJZwVVtDxBVQVKecFbftaudF1YILjdhsTjyMZ3oeWO/EkCmbW4tj6UazXaHPEuwolSKW2qUN49EEyIP1D2MhL7c5+FVlKvIW0nOckog8msRDrOgsbfuM507LPwJp+D9DuAF3x7osxpSPrtMjKqC4dNiMSznycDzJkoVcgdPLKo4GeQrotKDwx8uvIWZK7iDrN4d65sjeGk2npvWv/VFC3iKiRfx4bI+g/wTp9Q4Ix+bBFEwL/OsWCphHMTTW43jdTUepbemeSMH29D+xonDm79+wY7H1i4B6YtsDLhY03SR1Ic4aQQWqwUs/0J6swS8St9GGQSikm/6aTp8khfBpI4E4Ki34WDH0MFMa0tmdT0UyY0fh/bbkPsGJmub5FJPsfAq1UZU/HUfQ1PFcHAhRC7DaJ3Ohlf0g3GBMeN4z8iJwjc1VySgsiVTumEAW4j8eyGCp9V0LU5WkjyhdLZiZl3kMhV+QOks6VLXFFqrMd9XSvlWeB+3XGEMqcjvg9ns52LDQw78YvWNkgFIg57Q9//StdF+QVc/2Ck8yIn2zdP6Y+CW/QuyorSAZhzwdxykJWuAL6hcZmSWYdErobYff3lV4yJSOBoVOh0VDl1EIcD/xEQuQkyywuPUU2o0KmVryFluFM30etEUzu0iKuQfHXiPjCWEZ40k/Xvg9hgeSDUCL5siFwslSGSSpPMOE/paodpBD0mIa9F023Pk5o7iS1fuhL1IZNMsom5O9s8c7/FnkekWf++omuDon6CMHFmvzjKCCyJhOnM5P4pBcWGtJe2Hg87hiI0WaUboYeX9jDraxsJvtEfwG4Hnd6nGAoM+hIWwsHDcspOGMqHYU4FEzwtdyKZDWQSixHiGOZMDO/eVddVyoeTVfl/uTexzCqnBELP5dB0Lcoz391cknLijZJPDn0x9V+k/fPQ8FOn7MYYQaK3uRsYvRsJnzPEeqCsWYg5J9vovAQDypzkQ3l3QqztS7ujsgJmU0XVfdfJHi5YOsbMuriD4F0I4XORnt+Ut0i244mkXnPnnpMOJ14uUMQd7gKlFAQ/i3T/uMRI75ASN5J+H2k7EexBblZ7vdMrN/E4NN/sxMqNEsoIQvP1SPsXIZ2n36wxBdX0xyHlU8rCKP2g37cfM09ZmVGn2h6ouSWnNNWhs1MrZLA7NWqlib3VTtI7mUREkYwpol2K9SsV61bAuq4E7fFkn4CrW9HGxBffJ5LKsD6SwPZa2B+08cJjbRx18mwmzhReesxiu70dK9pLj3qYu7NN14bcD/97cX+OgNvj7nfY76Zl7HG3c1O2UbweDZIpds3ZwpbXrGDvw57tE3C2BzZ8u47lb0zhvRem8N7zk3nv2cnZ5AWLxnDx8g/KnIAVPBJP8ARM377DI+DSbyMdXy5shbDXIe2fdwL/3RC5Nr+A658Q6fxuTnbgqOM2y03aIf1e3pdU8LMuJjBQweNLjlL136NUhqOq+7Zzs9xEUdZMVPPtWdE76HNvzUc1XZHj2lThL0HdRUAZN3f/x53/Sbr8+5NNPKkFwROd+nQFsVANvxhSkkY6vzpUwA0kvQzpvLDw6yOEMqegWv6MaroG/J8E7x7gOxDV8GvUxMeqzqJVblvhGdPBu3tVaw0bIpX/09QUbYmrEFsyfe7UhJlhXSBOqq0dq2noU2QypiDjQU1I0Bvjnwr7sL3O+QJIPIX6x40cdc5MTFOxaqlBfYsTBzewtIhvwL0vI/BBKteysufd71C3MU53i59nj3ayXdNi0Jr0Ms03NJvKvzrOgvNeZ8J/+oVOZttZrP5NikTecncWk5t+g987+mZ+iVwHEis+yF4H0bsg/IXic0nGcaGWJIVEb0fVfdX1PscOBb5AgydA4mlIPl7wTFX3HVcZo8q7CzRfh3R+d6jLzZiIqjuvaMbipoKyZqKarkLS70PyeSAN1lZ5y6bY3b+HyBWULNvRizkDfL2JCuWkCdYmpVApAxouAc9uSPSWAVZcA3wfRoW+gBoU2ynJl9xZDBOPIZk1KLN2BdMrQSkFvv1Qvv1qP7l3P6f2Ynpp8T2ETh2Wh1/NpoUWcRWyahrUZZMYOrzJrHVY8nZxACBpQsIAv/NFGm8JUbeijboVbQQ2Rli6RZi6N8PssWgKiShONuoRjgvUFwRf0BFzXRsUZL2DnWmLtBjscfc77Jm1vE18txszY+PvSnHOcY/1Lf/qZ2ZjnzogiUKEaX9ey/YXvomnx7l5iFKoc8/FvPhiJpvv0tFzLd3RPyMSRSk/4cDhNIY/j987MsWHiyGScAqluhkbuwdVQsSRXgr2GneLJ56AsSLirO3cJRyoMJhDy42I3emUpkgvyX+eZydU6Itl1Z1T3t1REx9GEk8jyf8CtuPS9h04ZgLYRwplzYQiZV4kco2LYs8DMCaiGq/s775gbVvGXrZxv06puZQBoRNRoROR9HLnYcqYPKSeYS+SeNTlzBmIPwahk2u217GGUgqarkLaTikcWxg8GTWWfwe6xMiYQYu4CpGM405NK5uYlSHT04MZKh5ELxGL4598ii/f9wSGLdiGor0uxC0H7Mrvnn+DrS46FFgG0CfgevnwcSlWLTWYMb//6sn0xhV0Z6jb6NT5MjM2yhZM7L5jAFY03VfVyNOeZIfvvsnUvw0I3J85E3XjjXDAAQD42JbJTb9iUuMvEYmhVKAvqWFMYLdTsrZZL25KHYjLucodO8yo4PFI4pHSAwOfHuLClMw6J6ux0I3E3BLVdFXFMUrK9yGU70MVnbs5IHbUqQ/oBtUIwaNRwZNz3JTKt4e7mEYVhGGK5XRV06+cemdFkzQ2DZQ5FVrugdi9SOwOJ9RBecC7Nyr42TF/3VQXE6epJVrEVYjYjjs1ZdigIPnBB3inOF+ul9zyJ/Z4+21sw+DyAw/ktg/t5ZyUNgjFk0zs6OkTcaYtPP/Cm9QfuBvtnibWJfy8fLvNh49L5rhOAZa/ZLLn4Sn+dbuH7fZO459mE1lu88TGiezZ4jRx93elMLHJmAbdLf3ZhBJyXLcT/rWBBd98A/+6Aa7Vk05C/eEP0DC0BIVSClWqcfZoUE7XBzfxV+Z03JaGoJqg5lrj/RD4DnL6ORbCmIIKDbVESuc3imcZZt5FOr+DanIpNDTlEf8b7prXA+FvYITyZ3ar+m87CTlF3LEqfM6oZn4qc4r7yhKj2Dt1JFFGGEJj3OJWCC3ixgxaxFWI2BkM00JlrWHJNWvwTnPiOPZc/jYTu7uxlSKYTHD80//hy489hiE2gXQSAWxDkTYNloT8vN/ZQ2jPHUiR5J5l01Evr2HVUkeAJWOKPQ5PMXGmEx/nC8LEmTa+AHS+LSSXpwmd1sDvvuG4u8457rG+mLjf3d7vAttFdbDX995k9i39rjdpbkZdeSUcffQI/dZqhzIaEM/ukHq+9OA8pQ6GzGdORnz7QuJfpccOQ5mUSlFKQeNvkK4fQOxehtzIrR1Qjb9FmZNzDktqKSSfKb1A4h9I+v28nR/EdoI1N+UkheFE3JTp6MV+v+BLyvdhaPwD0vW93I4fACrkCLjQKZVtslYEjoCe31PyIUmFwXcwAGJ3Q+xuJHaPEzKgAuA7wLFUeWrTn1qjGe9oEVchkkljmCa+jIFhK5JrPiC8ixO0/MzcrfoscVGvj2AywaSuLgxxrG+P7boNL8+bRcTv5XdLV9B0xL54laIhEIfWNPKVmdTXJfj05JUsfdpgu70zrFraH2vnCwr1E4SujYottkzT2dyf3PDM0XPwRdMkgv1/2m1fX8dh3/kvofcGZEgceijquutgqtMkXUQg+SQSvRMy7+EU+NwbFTyuunT6YUSFTkY6Sok4w2X2JajQl5HE0xQtfmvt4EoUjiRKeVENFyPhr0Dsz4i91rl5+w5CeRfmPUdc92S0IfEIWE42skgMonch0Vv7XHhibY0KHA/BY8qqQzZSiCQrL8w6rJSzp+KxhMp/IPj2g/gj2TjEDMqzTbZWovsC5MOFMqcj/sMh/ufiA4Mno4wQkn4XaTsN7NX9r0m0X9TVfRMVKp4hrxlGtCVuzKBFXIVIxnGnKhR1KYs13d2YdY674msn5oqG45/+D2nTxLIzpE2DpxZsxe0H7U7sjXcxV63DO3MyHjNNvT8OWzhuwvWpAP96IsTeezjulhnzbZa/ZPZlqvYXAU6yKgFvxwOA6stIBTBSNh+/7nX2uWopRtZAI4EA6te/hjPPpDdVVuxup1RH8tncN5l+zQm8rv+uayE0kij/IUjwcxC9sdAIVN13UR53wd/KuzM0/g7p/Hr+rFdrB1TT1Tn18cYSypwC4TPdVWAqkRk3ELG7UTgtuqT91KFZhum3kO4fQvxBpy7fGBANklqKRG/KuiwjiAqD/zBU6CSUtdVobw9wYgYlcpnLsfuUHqO8EPik00t1DKIafoRIe2Frd+BoVPhsRJJOTcaBAi4HQbp/7nR68B88bPvVFECoLrFB67+aokVchdiZNIbpPB3XRQyUt/CN/dYP7Qn+DGFiRPxebj9odySdpv2eJ5j89eP57OPPMs3oJB0yeeiIHZyTOlKs7vTjC/bHzOx5eIqujWpIEeDEhjRbNfWQmOyhLe3BBqav6OTIC15gwqsDqoMvWoS6+WaYNy9nf9Jx9lAB10fGcdUZE1D+Qyr5VQ0rRv13EM/22QzLN/pf8O7pVIAvs0SA8h8I3n86Acfxxx0xZ05DBY4G3/4VpfxL4t9I9E/Z33HGKTUROA4Ch4+K5UrS75XV+keZk5zzOr9dvExE6iWk41zEmg6JZ3DKasx13qvvwyNWLkFif0E6zyfHoio9ELsNid2OBI5C1V0w6mJTeXdHXJSawNo2b2mS8YZSPmi8EpKLnSLVqf8BBnh3RgVPQGVroknsb64yriVylRZxms0eLeIqROwMhuX8+mLrPyAwp4VwkxDpBLH7bSFi2kjA5k8H7gGGjWVlUMqm/S9P0XTgQs584XnOufEfWGmbjOXc5B46Ygd4pYfYFrmxRr4gTAwOLQJ88GlJlr9kMHeLOHMlxqxbVrHNT97CitvZPZioCy+ECy4Aa1Bnh+SLkHyq9PvtuXRMijgAFfgUKvApJL3SaWljTHCyv1wiyef7RZZkRVbwWFTzjVW54UQE6fouxO7KfSH1KpJ6FaK3QvO1BZvTDxcSvQko3cHDwQf+jzm/28RjpYcn/wUDyxFmViKJfzoFUxuvGHbhJKk3hgq43BGOSy7+EDRd2SccRgvV8Auni4F0FxhQj2r4+chuahhRynAehop0/5DY/e4mSy1B0u+grDmlx2pqis5OHTvoSoIVIpl0X7Hf1bxGYM5UGifD1K1gwkyhZbpQNy0DjRnwZj/wtgEZg5npt/C8v5ydPz2VCXYEK53BsAUzncEfy958lkaxGzx0pHNjYYoVAfa1Jtj9lJfZ4cKlfQKOefNQTz8NF144RMABSOxud284vRRJFaglNkZQ1iyUZ8eyBJzd9SOk7bOO283e6LQnSv0X6TwPafssYpfR53AwkT8OFXADSb+OdJxT+fyV4vYmCU6cm9HktGyqxg+SfBbpPLfy813iCNQiMY19A3uQ9i8g6beHfU/FUJ5ts90dPkzu17HhBPG33O7Etm1OFGxXlm/shtJjXCDpd7G7foK98TjnX9fFSNpFK7rNFd2xYcygLXEVIgPcqfHlq9nqRMdKZRjgz5aLC2BQJ4poXIgnnQ+vZVq8+Zt/sf25B6CUIh7w0N4SQtmCGM7PAPgNrKDwZrSOPevbAIoWAeaf3ex75fN4OwZYWM46C37xCwgWyR50Uyi2b+zqcdOQWSQGyf86wdDmjLzZbBK5FqI3F54k9QrScQ6q+YYK1k86Lt5SJJ9Fkq+gvO6bx1eDSLyw1Scf4a8659kd1S+e+BeSen3YMgtFMhD7WxknRJDIdaiGnwzLftyiPFujmq5G0qv6+856dsibUCTJV5wuCYnHsgV2p0DgSFTw+IKFdscdqoxSKKp6y67d/Qun5d7Ah5TUi0j0RiR4KqruW2OrRqZGMwAt4irEzqT73KmpDZ34JjbmHWcoRTigCGfLmu207Cre2C1McIrTwPqhI3boi4M79P7X8MdSHHr/azx08g4EPDFWJwKkbIXHcL5gBhcB/ujHoxgXfMCn71/Wd0ymTkVdfz0c4sL9WVYNOH/pIaOMSAzp/i3E7gHp6j9ubQf+QyD9ltNvUjIgLnqqJp9GUq+iPGV2qUgsdjc/IPE/j5iIc/qaesn1eRbCg8reUJXRXJN4ZIndM3zlISSK6wLQvcT+gtR/D5Wn7qBIDGIPIskXcLpObOMIpmFq0K6sGWDNKPi6RK5zAvoH/iXsNRC5FInd6iSVbAKlN5T/UCT1QumB5pZldazIh/RcDpFrCg+IXg9GGMJfqWqdTQ5tURszaBFXIU52qkUmlUR5LFdPanYqzeO3reWH1+/KbW1pkrbz6z/0/tc49IHXmbGyHTMbG2cZGZ45Zi42irht4jHSQ4r/Nv+njZ2+/jqBDxL9+zpiC7j0+8j0/V1lKSrf/kjiHy4GhsG7yMWMo4dIHGk7NX9T+PQb0PPG0ONu5o3dV76IK8fNk6mNS8gNSinEfyjEHyg92P+x/s+1/xPQ8xuq7rfjpntGpaggjkhNlBo5gDhk1oM1K+eoxP6CdF2UY7WU+P3Q/VsI/x8q/MVa7Ng1Ev8n0v2zwgPsNqT9DJjwyKgnbFRN4Ejo+UPOQ1g+VOjkqixkYvcgkatLj4tcB8FTx//vtZZoETdm0DFxFSKZNIbloXvNCvxz3DVrnvLPy/jI8VMIBkwm+3rwm0kUgj+WorEtgjkgNq4h0V/iwlS5F4yRyLDNj5ex5wkv9gk4qTewL52MXGEh1sXI+gOR1JulN+U/HNTQTg1DCByJMoq3FSuE2J1I/O9I9F4k8axTk24YkJ4r8wu4asmsKz1mMOW4hIz68uevAqdCfKlL30AFT+o/x5oB/kNrsHgZnTbKnVqZle1R5VqYJf5wtsxMPrdzAun5tVN6ZwRxIzawNyDdl2B3nIO9/hDs9Ydid34XSVX28DJaKKPO6RKiinzfBI6GwAnVLZQtP1MSiUDcXZ/mzQa7in+amqJFXIXY2WK/qxOvMGXnrUuOj6/dyLuv9vCxw53K99P9McKeJE2+CBKGrpYAGctwch8sg0TQiY1rtJIEzf4q/HVvdLP34c8x59qVfcdk7wDy+Cw4qr6v9ht2K9J+KpJpLbovZQRRjb/FsWAUwLMTKvy1ku9xMGJ3Y3d+B1m3L9JxDtL1LaT9JGTDwUjsvrLnK7qWpCB2Z03n7KOSdkW+Dxe/CQ1A+T9e/vxVoDwLUPXfp/Dlr1D1Fw5x8ar6i8Gza3VrD3OhZKczQRkOBmuHvhIqACI20v0LSiVxSM+lTkeBEUAyayD1X3eDY7dA/O9OO7XMOxC7E9n4KeyuIla8MYjyLkK13AOBz+SGfHgWohp+jdHwk6rj1CSzsvSgCsZqNCOJdqdWigjKMEh+sJHgJ4o3KxYRuONKzrxgm74vnrn+CMtjYQyleOrorXnq6K3Z/96l+GIpEgEPTxw5H4CtAtk6cRlhzlUrmHfJcoy0c4MRn0K+3QJnNIKR5wvN3ohEb0bVfaPo/pRvb2i5Dem5DBL/pO9xyWiBwDGo8JfyxgwVfc92j9NcPZ3HCpBZ4ZSBsNtqV3U9/b/ystrKoJLSKsoII4GjIHpT8YHWPKf/6SBEMpB43BG79jpQYWcf/iMqtojm7C94HFhzkcj12b95BjCdjMjQqXlLbygjBM03QuwBp2ND79/WswPgh9RzxRc1JoP/oKr3Xgzl2R4aLkY6L6BYL9G+8YOLWCf/DZnCLa76kCjE/gyhk0oOzTlNkhD/O5L8D0jaaR4fOCpHSA5hcCutSoheh5gTUKHTq59rhFDWHFTDj5H674LdBspf03I8SvnKiPMce51IRg+pssSIdsXWEi3iqiQTjWOFiwuc7d+4kvXbhJg+p//mW2+l2SXcwQs9jZCNXusVbr1s4YuwpT9KYGWUnb7+Os3/7S93ITuEkUubYX6JL5fY3Uj46yWfWpVnB1TTFY7lLrMS8IJn24rrpEnkivwCbuCY7l+A70CUNbuiNXIncxOoXwHmluAtr2BwL6rum0h6eeE6fMZUVONlQ/42kvnAiW9KL8s9nvyPE5PVdFlN6psp7+5OwVk74sQfqbqScT9KeSF4NCp4NCJ29piB2BGk/XNQqAyNqkM1XopSxdtH1QIV+DRY85DO70H6tcID/Yc78VcDSb/leh1JL3PXHaN3fOJffQ8vfccAev6ABD+Hqjsvf0FkN+EObtbvudppazUmW5AVRik/mO5CVsrC92En9s7NHnwfrv3645kxFBO3YsUKVqxYQWNjI/G4k9i0aFH58dtLliyho6OD1tZW4vE4s2fPZr/9KvvuH0m0iKuU7Le3pDMYnsK/xmRHN0/9eT0/uWGoG2pOIELQTPNmtI71qf64nDozxdaBHub4ephxxxq2/eEyPFHHqiCGAd88D/nSPeB1cQux25yYDpep+MqcDIOapZeLSAKiReqj9Y9Eoreh6r/luEPjDyOJJ/rLggSORnnmlZwFAHMmjnuwhkEXxiRU02UVdxpQygtNVzkureht/aLMaHFaDAU/hzIn5JwjEnOSMzIFalRJB9L+BWi527Hi1ADHsle+dW/g70UZIWi6yYndit3lWA8B8IL/UMeaW8F+JfNBNtM3DuaMbOeH0l9byrM9asK92LGHnHp9Ax8ozBmo4MkQ/Fyeh5ty/tal2685PYmfQnqug9RT5LdCpCF6LYKNqv/20PdizUKsHYoLUjdIOyQeB//HqptnE0F5FiCeBYUfPHqxti/Yg1gzuixbtoylS5dy2GGH9R1bsWIFd911F8ccc4zreRYvXsyCBQtYsMApoRWPx3nwwQe59NJLOf300/H7x25lBi3ihpmGh6/ioLNmYlr5bw5TvAmmeBNEMqaThaps6q003g1Jdjz7DSY/NiBzcc4c1E03wd57I2sfxFVRUxSM9JN36k2naK4bkv9Bki86rb/s3AQCid6A+A5BNf6ipDtXmZMR3wHOTapqFFjzoe67VffZVMoDwc+igp9F7DantInRVFiIxB4oLOB6kQgSuQbV8NOq9lZrlBFE1Z2DhM+C9NtA2ulvaZRvSZLMRic7NPE4OW5RYxKEv+S6l68ROBQChzpFfTPrnPhGa/vCwryMDOxS1lDJrEbaz3TfpzZ6IxI6OW99OBU6DeksPy51CJk11c+xCeF0zPhsYZe10Yxq/NXIbmqsI4BdhSWuRka8eDzOI488wumn54YIzJ49m8WLF7NkyZI+UVaMZcuWMX/+fBobG/uO+f1+DjvsMC677DIefPDBsgThSKMTGyrFxQcxtmYD7a1J9tprSsmxITNDiydJvZVm0qPr2feQ/+QKuNNPh5dfhr33dn522xPUu9couE/ctnTCESTtnx8i4PpIPOwIPBeo8FnUJnZFIP0mtJ/qvgWQC5TRjDInFrUkSbEODwOJ/dVxg45BlLJQnm0cF30lAs5uQ9qOh8QjDIlrs9chXT9Aei4tb0/WVijfh5yOHkUsq8qzPXhc1OwzJkCRvp1idyJtn3Mv4ACwkWj+5BwV+CSEzihjrgKUVRfSPZJ8EbvzO9htp2G3/x8S+7MT/zfGUdYcVPMd4P8kMNDV7wH/J1DNd9bM4r1JMQY6NixbtoyGhoa8VrL58+fzyiuvuJpn7dq1TJ481Pvk9/tZsGABK1eu7HPTjkW0Ja5aCnwonWSGq/jid9y3zJkQ7Wb+j96m4fb+p0KZOBF1zTVw+OE5Y1XwRMSF1cmtxaKmmLNxPlouxJwkSqf5J/6FJJ5B+fYsOkx5doCmPzqtrErUmHJHymn6bs5CeXeuwXzFkdRSx4rpirgjfI0th3VPw0mfqzF2j1M/TgXB9xFIPAGZ94qf2/MH8B9Wm3jKQaj6HzrWGekpMMJC1V/cF98n6eWQeh1QTia3NQuit2djS8tkUBzkQIy68xDv7kjkZicBA3EyoL2LsskppXASV2qJ2F1Ix1cg+Z/c44lHoPsX0HgpyrtLTdesNcqahWq8BMlsdB7eELC2GRLqoBnAGIiJW7p0aUE3Z2NjI+vWrSMej5d0hS5ZsoTW1ta81rZecdfa2srs2bX/rqkFWsRVgZ3J9PVPHcxuK67h3a0DTJ1d+sm3XiVY+PL7hM5ehVrZL3zkkAa44gLY8vAh5yjf3kjw8xC9tvDEgRNQw5wNOBhJvwvJp8HaKvuFWAKXRXEldntJEQfZTNuJ/4L4A04R4/QayLgPVh9KGolci/KWZ/kpF4n/I9tHtQzrhSr85SQiTmFfO+r8LpLPA2mUtbUTj2eWtg4PJ2K3Oa7G1Mu5LyT/7XYGJHpr3hiykmdKLFt02EJUCBW7C4nd67gaVRD8B0L9jyB6CwzuHGDNd9ow+fZGUq85HRSSzw4YoBDv3mUlSORSPM5OZZvHi8RAYqDqARPZ8HHILC8+te9AV393sbsg+QKQBGtuwZACkYwTn1moNqO9wbGyt9xVdVjCSKDMFjD3Hu1taFzS2trK/Pnz877W0OB4ADo7O0uKuHxWuF56LXA6Jm4TJR2LYIaG/nHT0TgP3/gBP76+dE2t+lScvf7wBsZlbahsTL6EFPKjiXBcPajLoceHCn9pyLlG/fmINcfpATowjsqcjQqdMqJWOEm/j3Rd6Ag4t0EP1o6QftXd2HSJG9QAlBGC4PGo4PHY7V+pUsQBiX8gdjeqknpxLpDMGqTjq5TVacCajzKnDprnAyT6J6f0hb0OwYfjjhzwYMDfoedyJHQKKnzeqPSEFEkjbadXH6iffL68dTOrnQzN+P0DrL8GMjAZRpIQuxti96DqvgP133dEimScbG3vrtlhLyPtpzhJOLmrlCFEh6JcxuQpFcgtnNz4e6T9pJzM1xzMuaiGHxSdU+x2pPuXEP+rIxB7j3t2QYW/OvQhKvF46eLaEkG6L3GK92o2HWpgiYtEIlx55ZUlx+26667stttuQ44nEgl8vuLhM52dnUVFGlA03q2z06kIUWqO0USLuAoQEVAGqWgPZsPQrD7P7b/nU2fNwOtXJDIxMpJGAEMZeAwfVjYmKryshz2+9jLm6/3+dtndj/xhCszuj8+Qnkuz1pOhDa5V8BhU8Bgk9Wq2llIjeBaM6M1Z0qucGKZCcW358B0IwZOh/WSXJzgWCrHb+gWdtW3pVjg1qR2Xdn63wyXiordSbs/PwQJdkv9F2r9IbpeBQqIwDZFrEBSq7ryy1q0JiUerF3BAOZnIklqGtJ+cR+QUmkOQ7otRTVeigsfnviKCdH4zj4CrEhWEwKcrO9WzNTTf5ZT2if2Fvs+TanTq0IXPLBqfKHYbsvF4p0jwYFIvIu2nQePvciz7heL3hpB4DLv7Vxgl6lVqxhHVJDZkERF6egqFLPSTTJYfW9kr7qqNZXObHDGaaBFXAYJgWB6SkW6sulwRt2j1NbxRb7Jo7xYimdy4LFsypDMpTDHZ7sY25v/ybcxktnCvB+S8FvhyE5iDBVi2G0H4rIJ7Kru3Zw2R7p+7E3DGdPB/JFs6ZFun16lqAOksfS6C3fF1iD9EX1auCiL+w1Dhs/MKXGfNGgmvYRJwgNP+pxx8hzqV7LNIZoPjmszbJqoIkeuR4MlOWZkRxPXNvxSWu/IzIjbScVZhK1XhM5Gea1C+/XMPJ58qGbNXPgpVf1FV1l5lzUQ1/ASp+3Z2f6bjDlWlk32k+xf5BVwfaUe4ep/sf3AqlUU9kMhViNFUu+LemnGPUopQqHRpI693dOoaLl68mIaGBvbdd99RWd8tWsRVgIiN4fGyoWkVZjI04LjwyE1rOf/325GwY3nPDXyQZI9vvsvkZwY01p7vRS6dAjsU/rKV1GtlFRYdKSTT6r6sh70aFTgC5dkWcIp4ineRY5kpRfp/zr+cxaMQuwNJPgXNt+aN91G+Q5HEv9ztrxDePWtaKX4I5bRvCp42tChs7I4KEznSjuuwyMPBsJBZUZNpBlvICpJ4ovI1U88hmTWoAcVmZVAQf9WYW6LqvlZRZ5B8KKMODPcPdWK3Q+yvLgZGHFd0nxW4vJur9FwBwRPK7v6yOSKZtUj0Dkg85vzejamowJEQ+IRT/Hi0kerrcYZCIb74xS/WYDNDSSQcL0SlsWytra0sWbKEE088cUzHw4EWcRXhiDgfqY4eJm7VX9Np53euZvUudXjD6RwnzbzbWpkUT9K8PIbvbz0Y3f2vyhcbkW+1gH+cVntJvUw5JUUkeiuqYaB5ugYfwcwqpPM7qOY8SR6BT0DPJVW5VVXwc1VszgVGM2TcWCNNVPjLTqN3QNIrnR650bsrXlpif3UKQfsPHUGLXA3KwPg/5jpjWOIPV7eWvSG3Y4C4qc/oAmsHqPsGyrvXqMQm9pF8HrfxmJL4d78r3/chiJZhjZMup6/r4C4Zmhwk/hDS8Q1ykpwyq5DU807h6qZrnQzoUaPaUiGjn9lait7acANrx41VxqlyGF1EbEyPj3R7N96megDsVJrHblnL8V/YAnuAhJtuptjp1lam/XodgTu6+gScTLOI3Lk18v2JrgSc8oxRv7yU7k+ZQ3Jwf80axRUl/42k3xtyWCk/qumKEq2LitxAQ2eh/B+tenvFUIEj3A307Y8y6pHEk9gbT0A2HJgtVLq68sUzbyPdFyPrD8DuOM/JZh1ufFW6JwJHoxp+6X58wVIhLlH1uT9ac9yf6/uY06FjIEYzKnwOquVuDN+HRlfAAWW1rBswVgVPoOi1k+/0dDGXrUaSLyEdX6dglnpmBdJ+mpOdPFr0Fvut9F+NNFxDQ0Nf4sFgemPherNUy+Guu+7ioIMOGtPJDAPRlrgKsMXG4/WR7tiAt8X5gp/51BXscPQkPH5Fxoa5t61n3h3rqOtJw4pUzledNBrIFxoJuL6XeSDgvmK02D0DykrYKGubgokRVePJn+JdeHMDMiXjD0PSXUFGFxM7bjPrlCGvKM8CaLkHiV4HsQGZidb2TicFaz5EbxgQb6fA+yFU8GSUv7Z1tfIS+AxEri8RG2g4VfujdyJd36P2T7NpiN+PZNZA8/V5C0TntkaLgTkdFfxM2eUjVPCzSPSGyrbZeCVGuX+TaiyM1nYoa4vcY/5PQvfPS9c3NJpRjVmxmXwa7HYn0cC3d80KcEvyBSR6u1PSRJng3QMVOB5lzXQ/iVVGrcEBdfmUtRWEv470uO9oMN76to40ErmKkp14Miud5JXg2O0iMBJMnjy5YOJCpVmljz76KIsWLRqzNeHyoUVcBfRa4jLdUay6IJEVa1n63y5+ePUuZLIXoKczRfidOCrWf7MVgAYDfKqse7AKn+O68KTEHnDaFQ24wThlJS5FQmdg1H21/7jd4RQJtbvBnAS+A1wFQefszZqLWLtC+oXSgwGsrZ21Izch3T8ua62SFHk6VdYsVP33kboLsrXpfE5dKLK2BO+vEftHIB2gwiijvuBctUaZE5wixe1fLBDbZqLqfwjGJKTrZIbVHZF6HmL3QfDYnMOSfMGpY5evNZr/Y6iGn7uO1VHWbMSYXr4FMXhq+QIOUIGjkOgtZZ8HoEJDXenKCEPoy0hPcWugCn+1T7SId2+I/w2JXAkdX3H+gp6FqODxiDEV4ndCKpux61mACn7W6R5RAJEk0vG1bFeLAaReRSLXQfjrqLC7Dg/Ksz1ibQ/p10uPDeR+LlT4C4j0OG4+N3hHJkhckv91+hWnsu/JuzMqeMKoJoCVQuw250HUzdjYPajRFHFjoNjv7Nmzee65wZ4dh46ODmbNKs/l/NxzzzFv3rwhAq6jo4POzs4xK+y0iKuAqM8m7A9AN9jJNPGbrubbv12AYSiUWDS/0sM2N6zDGCjgFE4c8Mxs6ZCgC0+2akSF/w8VcleGQ+IPI53nkf8mn4LI5YgyIfh5pPsnjlVqYCyMaoTQ5yD05bJcPKr+fKTtONyUfFDBY7FTy6D7Ytfzu8YsbX1Qypsb3zTwNSMIDE9bolIo764w4S+OVSV2rxPDp4LgP8SxCHq2we76KUPaUA0DEr0VNUDESepNpO3zFHR9x/+OSBzVVLrmE4Bk1oFnW0i4FHGqHhX+UsWZjY5IWQDpEo3OBxM8BZUt+SGScor62u1ODGPoVBRJpOdyhlpOvE6iQvA451w7inR8cVBRYJykic48N6H0MiR2NxI4HlX//bzXonReMFTA9WE7AtNoQgWPdvVWVd05ToZzsWvY/wlUHsu7Ufc17Pg/IFO42wTgWDWHuZG8SBrpPB/iD+a+EHsHid2DBE5wsoALfL9J8kVIvwPKchKayiyKLXa385CoguXHmGbW4vr6znxQ3ty1ZgyIuHnz5rF48WI6OjqGxK4tW7aM/fbLbU0Zj8cLdl5YtmwZkydPzvvaunXrmDRpUk33Xks2ORG3YsUKVqxYQWNjY5+pddEi902t3ZAxMsiUILLOYOKjl7HHyVNpnuRDpWy2uvw9tvrDOxjZa1H8CppMyNgwyYM86uLpwJzt9AH1f8y1ZUxEkO5fUcpKIz1/hMRiSOVxY0oH0vM7yHyAanBvJVPehUj9r6CrVINuC0m8ALGvldxn2ahGGOHuFDXHaEEZzYgKABmnZEj8EUSFwDjN9VN61aT/h0gSpbxI+m2k/cuUjF1M/BNJPjekWK2InW2b9s9+S2niUfc11rx7oZqursoNJ+m3IfN22eepum84+49ciURvzu0uYkxChU6BCf9Axe9GUq8BCowmMGaA8iPp5Y6luuu7QwWcG2K3IUYjqu7cQe/nvaEiJQ/ScxkEjizaK7YX5dsfGn6JdH6HvDUL/R9HNfy88PmNv0TaTixc5kY1oBp+UXIf5SCZDyCzDoxQn0tfun9S/HcTu9UpdVJ3Tu5c8X8iPb8e1PbMQHwHOKKvhJiT1GtI5GqIP0avqBdjmlMGx/dhlG/fvMkIIklILQFJICW6deSgM3zx+/0cfPDBPPnkkxx22GF9x3t7qs6bl1uC6MEHH2TlypUcdNBBObXfWltbeeWVV5g/fz5LlvQ/6PXqh6VLl3LSSScN87upnE1KxC1btoylS5fm/EFXrFjBXXfdVbQqc7mIZIipJEagmSf/neLYs7Yk9E4HC772Ok2v9LvDZKHPKdz7dAyitjvrG4C9DhX4VHmbSj7tsoxCKr+AG0jsTsT/CZRvr75DYndD7D4k9SIgKGtbCBzT75L0zHYhy9IQu97FHstHhb9QUvBK6i2no0FvTJc1ExU4GvyHZ61wRc61exyLU2aN0xHC91FUObFEJRBJOO7U5NODXuiC6I1I/K8VPP2a4NvfqSsnEej+fnl7iv8D6Tgbt63ApPMiCJ+ZffjwIqnXHRdsJT1E8UDwDFTdOa6swpJZm22bFXC6WQwQLtJztXvR2IeBiAld34T4A0Nfttc5tdXS76AafuKI7e5f9dWP6/1LiWfn0tdbMaI3IqEzcopaS+zuASsUwV7tdI/wORYJEbuooFOBw5ykk9g9SOJpIOWUPwkei/JsV3Qp5dkWWu5wOj4k/kW/Rc/5DKq6b1TVSF7sHpA4GA2QfM5xSyef6X/dnAPWHKckRymiNyCh053rGJDYg1kPxmArpA2Jx5ENzyBNN2F487tiJf549joZZJG110ByDSSfQLqddmyq4ccocxoiMUdkR+8Cac+eoJzPr5ukBf+BpccMJ2PAEgeONc7n87F48eIcw02++/3s2bNpbW0dEid31113kUgkWLky//dUJckRI4kSGSN/jSqJx+Ncc801nH766UPqutx8883stNNONau83BwMsue22/LMjBkk3n2XH+80g6/c/TBWPJt5ahpkzp1B5itePN5KMs88GFPyx6dIZqMjsuKPOFl3xiRU4NNOfFtPDZ90rW1A1WVj69KQfo+hN3MPKvxl8O7jfAnWvACqS0JnYJToPODE4F1M3pufuSWq+TqUOX3oeWI71snoTYMC2RV490Y1/LTq0hySWY20n+2iBZkP1625mu5EebcDu92xEMTuK2wlGYy1NarxCmTDJym3k4RDA3gWQOopyumq0Ic5G/Bke4Ea4NnFKWvhP3SICJHk8079seRT9P1tzZlO5mTwFJAYsm4vymppBuDd14ml6/xq6bHBU53EmGGKVVT1P+xzzQLYHec4pTrc4PkQeHdzWmll3gGyyQ/BzzoPIlVkxookIf5XJwQg9TrONbEz+A8F1eL8rTzbZ0VLAmIPOHFq6TezY3d1av35DikoLiX+EBK52YnVBMq6Boqg6n+KCh6F2N3I+n1diHwfasKDQ5JcJNOKrD8I19eJMRmab4bOb5VuWVYQD2riI3m/r4aTK6+8kp6eHuLdaf59ZSUPZg77fHEW/jqLcDg8bHXiNic2GUtcrwk1X2G++fPn88orr9RMxPnicbZ46y3ea2riD62tfPSW/puvzK1DLm3EWOirvH5LgRIGkljsPPEN/MLJrHDqB6nGSlfLj5vm9aQcgcPvart2KVSzE9fWG6xc4glf4o8WT6LIvOv08pzwIErlXhLSdZFTTHforE5Zk7bPQsudFRcDlthfnUr4pTLSgLJuXl1fQxp+CR3ngr22rD2pwPGOxbIiAQfQCaknKzyXQRblDKSeRzqfh/gh0Pibvr+R87s7jyF1CjPvZxvTvwDhc6nkpq+CJyKRa9wNjt7EcCabSGZNbiGPclxpqaedf32kIfmUUyDbfwQ0/NyVu3XInuwI0v6FAeIqS/IZ55/vo06bLuVF7C6k/fNDLZLJZ5C+sb9HKU/Oy3bn9yF266CVqxdwzuRrnP/G7nNppU0g7WeiJj6Uc1Sid1DWdWK3QvuXsg8olWCiGn424gJOM3bZZOrELV26tGBl5cbGRtatW1d1H7VePm5ZHCHCv//9bz66rj9bT87YE3lkEiysrsLzwKfuvrlT/0Pazyr8hSMdVa05bvDug5q0GGPCvRj133PlopGIi4D7zPIhnSMk+XIBATfwvJVOnGEFSPLFrAipUfHYgWRWQfvpZQs4PDtC8GjHcjPWSDyM9FwCZC0gnedTtNB04jGI/6WChQzEaBgqUAoyvMkmgzscDGkDVinx+yFSWWN66bqg+O8n8TjS/TNnbOd5xV3Kiccd1/TA+aO35xFwNUQ54RMywCVbksw7WTfzAAomlxSbx6WAMwZWJFDg3Q/VfJPj9h5tRCr/p6kpm4yIa21tLVhdudenXagwYLlcnUpxSE8PzdnWHinD4P0JE5CtV7uPeyuENQ/8Q5tgO1aBWjyFjsXmXS6w5jtupaarygpyl/RyJ3DYzdjYvbk/R13eRGL3IlL+A4JEOIXqcQAAFJlJREFUrqacbhcVLFDGYOW415qud0qFlN1ndISI3uZYgaJ34CpWL/4XMLcucxEbItdVsrvhwfeRQT8fCEZ5WZOFkMjNjlu0nHPSK7M1FUsQvQs7+ZJTxqgUsTsRe0A8ceSGsvZULmJtk/2/8q4/iQ8SbeW0zCsXayvUhL+jWu5BTVyM0XwNyrv78K1XDlrEjRk2GRGXSCTw+YoHttdKxA38pcUti/ZgEH8qCRG3VbQLuEM8C1FN1w0JsneC6l18aQIUzXDygG+cZHCa20HdD2DiP1GTnseY8CAqeNwQd2dJMq2Vj0297O486XLKEpRBOTWhhh3fAagJj2A0XdFfH284e8VWg0QcUZD4h7vxmfehko4biX+CGobi2OXiWTSkrIdSFqrxd9Tk61vaIVGm6zv+AO7cxwnouczlPmKQFUiSejMbvzeMZDqc/5ZZqHpIXKk5jKUnJIGy5qI8O45gSzwXSBXdGmwt5GrNJhMTV4xecVfMnfrf//6XF15wV7D2izhfYauamugMBEApGn0mBF1aYzwLUeHPI/G/gd3plJYIHFH4KcvegGuXmwo6QeXJp8n5orW2Q9V9E6ytkY1LynezjST+wzEa3VeBL8qArL6SqLrarOmGzHpGouabG5RnF9SASvyA05UgOoasUQOxN7rL4OvFuz+kh7rLi5OCwCFQYZHgmmBMRTXmT1ZS3p0Rc7ojUqvF3ljWcBlYaqWWc/eOzVvwusYo5/tUBT6DRK7FdUzjIDGlAp9Gqsk+LrpWGV03NJstm4WIc0MymaSnx12PxZRp8s6ECXzs/G/2Hbv7qJ2Z5nWZaWNNQ/n2Q/n2Kz0W+uI33I0NYzRf79SSSr4AZBxXpHen/jHNtyAdZ0F6qft5RwpV52S81gprBzBnODFipZb2H5J7wLOdu4xbFcpmVJaBCpU3fjjJUwNLBU/IupNrE0daU4xGMKdC5l0XgxXKmgaNv4fI1UjPb3GdMRs4FuL/6A+Cz7uXacVfrxRrJ1TTpcUtMNa2tRFxRmN544v2IR48dxmdT4zsvIN7zQ4H1i4AKGsLJHA0xO5ydZoaHOriPwJ6rgS7jOK7Koybfr4q4K5Q82ggUkHWuWZY2GTcqcVIZGPXCiU+AHi9XsLhsKt/3cEgKatf/35ht93YZdYBYLprjK0CR5W1f2VOcsSIG7KuI2VtgQoe5fS2HCjgcFpQGRMeRDXdCIETHKtL8LTRf/IzmlFN15bXYLwEShlOOYWSA+sgkPsF7TT4dkHgiL6aU673Zc0Aq3jtrRzKFYmuN1IH/oOHHrZmZV121SXpuNwEeHYqPQycBxrfR93f4Lz7oMwpKGWiwmdC0GXRTs8CDM98VPONha9rax6q+Rb3ezdngLmLm8VRzVeWdKGpQa3RKkI19NWRc32K/+MuR1oQctf6Czx9n0NlzXX/fVcJxlQMT3/hXVX/Q3d/Q99HUJ7c+EplhFDN15YRo+jJZkyXuPV690T59nQ55yhQjTtVU1O0JS7Lbrvtxm677eZq7MV/+ytRr49pdXV8YbfdOXnhQgBU+EvZbMMiePdAed2tMxAVOimbjVcM073wAJRvr9yCvtFZSNf3y95bWRjTUKFTkeg9WZeuAmsmBE5ABT45PA2yg6dC6lWI/y3/6yqIarwUZeS6U5V3EeL/RPFMTWMyKnRmRdtSwZORrm+VGgV150Pgs9B2PKRfc7+AuVXpTgXBk4dkP/at7D8AJvzZ6VYQvRcow4XplsDxTkFfoxl747GQeqnE+KNRRhjxHwKReYMq7A/GcoTbAFTwxKyFsXh4ggo6re6UNRsm/A0STyDxv4Dd4bSzChzmZAsqA2m4BDYcSCmXnAocD769sp0NCpe1UHVfc1eyxrsPePfMKXpbNsHjXPe87UV55iPeDw0tTD0Y/8cwfPtgexZBKn+Pyz4CR+S8ZxU+wykUPRzUX5Tzo1ImNN+JdHwDEgW6PXh2RzXkD/FQ1lYwIVsvr+cyCnY3USFU05XO94rRgHR+m7yfQ+8eqEaXsYSazZ5NRsQ1NDQUTFzojYWrVeXl7X76MyaFw/xo5kyMAcUyVeAIyKxDegq0v/IsRDX+oaI1VeDTSPK/Rcz+ymkPU26g7kACx0HiGUi4TKIwt8q6c1xmzaqgU1PNnJS3sfhwoZQBDZeAd0+n/lmfG9nrdBcInYHyzMt/bsMvEKMRoncy5AvXsxOq4ddl91fsmzt4pNMBI3ZngREWquGXqMAnAJCmPyLtp5UQLlkCR0Pdd6HjbEguLjDmM6jw2cX3aM1B1V8E9Rdhp99Hxe9H4g+D3eX8Pe0OkPJiqhwMCJ2GCp/XV3BWNf4eaTu5sJvUu58T1wlOTbGma5D20wv8Pryohl8MiTNV1mxouDh7Ay0Qkxg8ARU4vP8cZYD/Iyj/R/ION6yZSP0Pka4LKSjkvPtC6JTsvm9wHsgGv0/VgAqfjQq5sxYqpaDxcqTz3GyXhDLxHYgKVyaUVMOvkPaTIV3gIcGzEFX/A2ds42+yf9cCpTU8u6Pqv5c7v/9jEH4P6flNgQ3UgznLiZ9TYfDu7sTUxR+msEBXUHcBRp6/o1IK1fRrJHmc8x2R/C+QdqytwePBd1DRpCpl1DnCM/R5SC5GIjdC6jUg4xT4DRyDCp3cN4cKHA7eD0HsLiTxL5AEWLNQgc+A90NVFWEeEXRywphhk+nY8OCDDxKPx/O221iyZAmPPvooX//610dkL5J+26lMnvg3/a1rPpOtkF6dbpbo7Uj0ptwvT++ejhDx7VvdxgGRDESvRyK35Mb6eHYC/6dQRsC5gD3bojzbOfXren6fzbTsvSmaOHFHvR8tj9P+qf5iDLOx6j1Wi2TW4LTwmZTTzqj4ORsgfr/Tr1EFUP6DUJ7aFI+W6L1I9EZI/y97JNuqKHQGypvrfhOJQ+wvSOwOSL0DZED5AQOMOvAsQAU/29dovK93aex2SP3PGefdBRU8viblCkQEkk87DxjYKGs+onwQvTHXQmRMy/YVbXE+O4FjHZfy4PnsbqeMSOz2/jhGawfHJR44YmgxZkk5La9i90BmtWNV9X/EEahF3JGSfB6JXJXNzMzG91jbOzfaQW5117+L+D+RyBW5Wc3GRKfuY+jMIcVsJfE0knwWSDsuRP/Hy7aK9c2VWoJ0X+5YMvvaOAHGVLDmQuotkGz2tWenbAeMwysq9Nu3pt0N0Vucci+93xXmlo7oGWThc8be6lir7NXOQWtrx3MQOKagBV6SLyPRW5xsYYmDOd1xpQePQRlNQ8dLDEm+ArEHIPGwE3umAuA9AFX31aEJPBrX9HVs6Erx5G9dPEgWYN+vzsNf79EdG2rEJiPilixZwnPPPcfpp58+5LXFixfT2tpa0/6po42k3wa7B8xJKHNa7ecX23FBSg+YU0p3RcisdTIAscCzPSg/klkJmChzetXidXNA0qucEhrmxIo7QIwlJNPq1JszmiqyVoodAWVWLGxcrZHZCPY6J6Emj6isaM7025BZ64gHz4Ih4m24yddHVkScz5YyC7rPK15P7GyxcQWqsagVydlHF2AMCV/QjG1yRNxvKk+K2/fc+VrE1ZBN5s46b948Fi9eTEdHx5Civ8uWLWO//coL3h3rVOU2dTO/MmBQQkTR8eaUIVmOtUxQ2ByolYgYKyhz8pCSDGWdX2aySEVrmC1g1jYbUllblV9/rJbr57sWlXLcjsOxnjJAuXvocPZRm7AWjUazCWWn+v1+Dj74YJ58MrdwZW9P1Xnz8sc8aTQajUajcYkIYtsV/9PxdLVlk7HEgWON8/l8LF68mMbGxr6Ehk3JjarRaDQazaiihdiYYZMScQCzZ89m9mwdvKrRaDQajWbTZpMTcRqNRqPRaIYRXbR3zKBFnEaj0Wg0Gvfotltjhk0msUGj0Wg0Go1mc0Jb4jQajUaj0bhGtDt1zKBFnEaj0Wg0Gvdod+qYQYs4jUaj0Wg07pAqLXHaiFdTdEycRqPRaDQazThEW+I0Go1Go9G4wlfvYf8L3LdkzHe+pnZoEVcm//3vf0kmk3i9XnbbbbfR3o5GMy7R15FGUz2jcR0pQ+Fv9I3IWprSaBFXJi+88AI9PT2Ew2F989FoKkRfRxpN9YzkdRQKhcb0fJsrWsRpNBqNRqMpyoknnjjaW9DkQSc2aDQajUaj0YxDtIjTaDQajUajGYdoEafRaDQajUYzDtEiTqPRaDQajWYcokWcRqPRaDQazThEiziNRqPRaDSacYgWcRqNRqPRaDTjEC3iNBqNRqPRaMYhuthvmey66659bU40Gk1l6OtIo6kefR1plIjIaG9Co9FoNBqNRlMe2p2q0Wg0Go1GMw7RIk6j0Wg0Go1mHKJFnEaj0Wg0Gs04RIs4jUaj0Wg0mnGIzk51yYoVK1ixYgWNjY3E43EAFi1aNMq70mjGBw8++CB+v58FCxYwefJk4vE4ra2tLFmyhEWLFjF58uTR3qJGM+aIx+M8+eST+Hw+9ttvv4Lj9P1p80WLOBcsW7aMpUuXcthhh/UdW7FiBXfddRfHHHPMKO5MoxkfxONxli1bxpIlS/qO+Xw+DjvsMC3gNJpBLF68mM7OTiZPnsyKFSuYPXt2wbH6/rR5o0VcCeLxOI888ginn356zvHZs2ezePFilixZwoIFC0ZpdxrN+GDy5MksWrSI1tZWABobG5k3b94o70qjGZsMtLotXbq04Dh9f9JoEVeCZcuW0dDQgN/vH/La/PnzeeWVV/RFotG4YPbs2UUtChqNpjz0/UmjExtKsHTp0rwXCDjWhHXr1vXFIGg0Go1GM1Lo+5NGi7gStLa20tjYmPe1hoYGADo7O0dwRxqNRqPR6PuTRrtTS5JIJPD5fEXH9AagajSawnR0dLBy5cqcnxctWlTQkqDRaIqj708aLeKqoPfi0eZqjaY4nZ2drFu3Lic+p7W1lVtuuYUTTzxRCzmNpsbo+9PmgXanajSaYeewww4bko06efJkJk+ezKOPPjpKu9JoNJrxjRZxVZBIJAC0FUGjqZDZs2ezbNmy0d6GRrPJoe9PmwdaxGk0mlGj9wbTWz9Oo9FoNO7RIq4EDQ0NBbN7emMNerOANBrNUB599FEWL16c9zUdt6PRVI6+P2m0iCtBb5/HfPRePDrzR6MpzNKlSwveaPQ1pNFUjr4/abSIK8Hs2bML3oA6OjqYNWvWCO9IoxlfLFiwIKev40BWrFhRsOK8RqMpjr4/abSIK8G8efOIx+N0dHQMeW3ZsmXstNNOI78pjWYcMWXKlLwxb/F4nGXLluX0idRoNO7R9yeNFnEl8Pv9HHzwwTz55JM5x3t71ukm3hpNcebNm8eSJUuGCLm77rqLBQsW6GtIoylCIpEo6DLV9yeNEhEZ7U2MB1asWMGKFStobGzsu6AWLVo0yrvSaMYPzz33HPF4vO+mNH/+fH2T0Wjy8Nxzz9Ha2kpHRwfr1q0DYNasWfj9/rzXjb4/bb5oEafRaDQajUYzDtHuVI1Go9FoNJpxiBZxGo1Go9FoNOMQLeI0Go1Go9FoxiFaxGk0Go1Go9GMQ7SI02g0Go1GoxmHaBGn0Wg0Go1GMw6xRnsDGo1m8+Kee+4BYO3ataxdu5azzjqLKVOmjPKuNBqNZvyhRZxGoxkxbrjhBo4++mjC4TAATz31FF/4whe46qqrtJDTaDSaMtHuVI1GM2K88sor9PT09P289957EwqFeOihh0ZxVxqNRjM+0SJOo9GMCD09PX0u1IHU1dURiURGaVcajUYzftHuVI1GMyKEw2Fuu+22IcfXrl3LkUceOQo70mg0mvGNtsRpNJpR46GHHmLKlCkceuiho70VjUajGXdoS5xGoxkVenp6uPHGG/nNb34z2lvRaDSacYkSERntTWg0ms2Pn/3sZxxzzDHMnTt3tLei0Wg04xIt4jQazYhzww03sO+++2oBp9FoNFWgY+I0Gs2I8tRTT7Fw4cIcAadLjGg0Gk356Jg4jUZTEWvXruXnP/85y5cvLzn2kEMO4ayzzuLll1/mrbfeYt999+07b3DJkcEsX76cu+66iylTphCJRDj00EMJhUKsXbuWhQsX1uKtaDQazbhEu1M1Gk3ZrF27lgsvvJAPfehDbL311rz11ltEIpE+UfXQQw/lZJzutNNOAJxxxhl5a8L98Ic/zCvInnrqKW688UYuueSSvi4PN9xwAw8//DBbbbUVP/rRj2r/5jQajWacoC1xGo2mbC677LIcYbV27VoOPfTQvtZZL7/8MnvvvfeQ8/LViSvEyy+/zM9//nN+85vf9K0DsHDhQu69915thdNoNJs9OiZOo9GURW/T+oHC6q233soRcLXog3r55Zez0047DUl+6HW/ahGn0Wg2d7QlTqPRlMVggTY4pm358uVVi7h77rmHtWvX8rnPfW7Iay+//DKhUEhntmo0ms0ebYnTaDRV8dBDD+VYxUolKrjh3//+N9AfSzeQV155ha222qrqNTQajWa8o0WcRqOpiocffph99tmn7+daiLhea95Al23v3JFIJG+8nUaj0WxuaBGn0Wgq5qmnnqKuri5HbPX09PDWW29VPfecOXOGHHv55ZeB/ni4e+65p+p1NBqNZryiRZxGo6mYu+++e4jLMxKJuKodV4y5c+fmLUXy8MMPEwqF+mLuamH102g0mvGKFnEajaYili9fzvLly4e4NidPnswrr7xS1dxHH300b7/9ds6xG264ga222oq6urq+9XWGqkaj2ZzR2akajaYi3nrrLebOnTtESB166KG0trZWNffee+9Nd3c3l112GVOmTKG7u5ujjz6acDjMz372M2644Qbq6uo46qijqlpHo9FoxjO6Y4NGo9FoNBrNOES7UzUajUaj0WjGIVrEaTQajUaj0YxDtIjTaDQajUajGYdoEafRaDQajUYzDtEiTqPRaDQajWYcokWcRqPRaDQazThEiziNRqPRaDSacYgWcRqNRqPRaDTjEC3iNBqNRqPRaMYhWsRpNBqNRqPRjEO0iNNoNBqNRqMZh2gRp9FoNBqNRjMO0SJOo9FoNBqNZhzy/5iSdUhba8CjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the function\n", + "def func(x, y):\n", + " return (x / y)**(1/3)\n", + "\n", + "# Create a meshgrid\n", + "x = np.linspace(0, 10, 100)\n", + "y = np.linspace(0, 11, 100)\n", + "X, Y = np.meshgrid(x, y)\n", + "\n", + "# Calculate the function values on the meshgrid\n", + "Z = func(X, Y)\n", + "plt.contourf(X, Y, Z, cmap='viridis', levels=np.linspace(0, 1, 5), alpha=.9)\n", + "\n", + "D_theory_values = [point['D_theory'] for point in data_for_plotting]\n", + "D_support_values = [point['D_support'] for point in data_for_plotting]\n", + "\n", + "x_values, y_values = zip(*[(point['pisq_a'], point['bc_squared']) for point in data_for_plotting])\n", + "\n", + "# Create a scatter plot and color the points based on D_theory\n", + "scatter = plt.scatter(x_values, y_values, c=D_support_values, cmap='viridis', edgecolors='black', linewidths=.0, label='Data')\n", + "\n", + "error_values = [np.abs(float((point['D_support']-point['D_theory']))) for point in data_for_plotting]\n", + "plt.errorbar(x_values, y_values, xerr=np.abs(error_values), yerr=np.abs(error_values), fmt='none', ecolor='red', alpha=0.9)\n", + "# Add a colorbar to the plot\n", + "cbar = plt.colorbar(scatter)\n", + "cbar.set_label('$D^\\#$')\n", + "contour_lines = plt.contour(X, Y, Z, levels=np.linspace(0, 1, 5), colors='black', alpha=1, linestyles='solid', linewidths = .5)\n", + "\n", + "\n", + "for i, (x, y, error) in enumerate(zip(x_values, y_values, error_values)):\n", + " if i % 5 == 0 and error !=0: # Display error for every n-th point\n", + " plt.text(x, y, f'{error*100:.0f}\\%', fontsize=8, ha='left', va='bottom')\n", + "\n", + "plt.plot(np.linspace(0, 10), np.linspace(0, 10), color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "\n", + "# manual_labels = {1.0: \"$\\pi^2 a = bc^2$\"} # Add labels for specific contour levels\n", + "\n", + "contour_labels = plt.clabel(contour_lines, inline=True, fontsize=14, colors='black',\n", + " inline_spacing=10)\n", + " # fmt=lambda x: manual_labels.get(x, str(x)))\n", + "\n", + "# Customize the spines\n", + "plt.gca().spines['top'].set_color('none')\n", + "plt.gca().spines['right'].set_color('none')\n", + "plt.gca().spines['bottom'].set_color('none')\n", + "plt.gca().spines['left'].set_color('none')\n", + "plt.gca().xaxis.set_ticks_position('bottom')\n", + "plt.gca().yaxis.set_ticks_position('left')\n", + "\n", + "plt.xlim(0, 10) # Replace with your desired limits\n", + "# plt.ylim(0, 10) # Replace with your desired limits\n", + "\n", + "# Set custom ticks\n", + "plt.xticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "plt.yticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "\n", + "# plt.legend()\n", + "# Customize the plot\n", + "plt.xlabel('$\\pi^2a$')\n", + "plt.ylabel('$bc^2$')\n", + "plt.title('Phase Diagram of the Cone, support size $D^\\#$, and target $|D^\\#-D^*|$')\n", + "# plt.show()\n", + "plt.tight_layout()\n", + "plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram.pdf', dpi=300)\n", + "plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram.png', dpi=300)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGhCAYAAABGRD9PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhEUlEQVR4nO3dbWxd9Z3g8Z9riF0g9mIyWOQJRZourUkJGyeg0IJwuxNkpIRQkPoqTatSbaSoVeTRdkGMpmK0UiQkCtLgIKK+oEXzIiqjMFLFKpOVkklEpDYEMloUTWejjeSQh2ZCWjs2xEmcuy+s3Ni1jR/uub7nf+7nI13J9/r63r/pwXx7fuec21AqlUoBAJCAL9V6AQAAMyVcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZt9R6AVm7fv16nDlzJhYuXBgNDQ21Xg4AMAOlUikuXboUixcvji99aer9KoULlzNnzsSyZctqvQwAYA5OnToVS5cunfL7hQuXhQsXRkTExsf/Jm69pbnGq2E2zjTdvIjzf2q7rYYrKYYzzcPlr+9sKfY/z9NNn4+739by5RqtZPbOfnmg/PVdt+dn3VfvuFD+elHz/G8/d9/x/8pf37ng9qq+13/+8v8Zd7/lloWZv8fqBf9a/rq58c7MXz8iYuk971fldefLwMBALFu2rPzf8ak0FO2S/wMDA9Ha2hrP/Nf/KVwSdbp5/CZ5513V/aNVdJ80Xx53v6212P88P2n+bNz9uxKJttO39Y+7v+iOfKz76h3nx93/iy/P7/bTfseJcffvarqjqu/31S8fK3/demtL5q+/ZsGH4+5/ubEt8/eIiFi2+FhVXreabvz3u7+/P1papv5nL1zINRGTrXqOmFQCJiKNiJnvgIkYHzHVDpiI+Y0YASNchEsBjY0YAVO5sRFTTwETkW7E5CVgIuorYsYGTISIqRbhIlwKTcRkp573wkSkEzEp7IWJMEqqVD2PkoSLcKkLAiZb9RwxqQRMRBoRU/S9MBHFiJg8BYxwES51R8Rkq55GSRHFiJi8BExEfUWMUVI2kg6Xp59+Og4cOBDf/va345133pnVzwoXIkRM1uopYlIdJUXkM2KMkrJX1IhJOlz2798fg4OD8ctf/lK4UBFnJWXLKCkNRkmTM0qavfkMmJmGSy4vQNfV1RUHDhyo9TIogCWXb37sw+nmUvzx06GIEDBztfTyzf8z8Enz5bjYP/rPs6gBs/Tyzf/gfxLpRMySz1rLX5++rT8uDI6uvdYBc+vg3eWv/yPmP2L+MPiXY+5VP2L+7fMHI2I0YPqv3rzQYFYR88GV1eWv1yz4MD4fuRgR2QbMqTMPlr+u9Sjphsw/ZPHgwYOxYcOGWLx4cTQ0NMS777474Tk7d+6MFStWRHNzc3R2dsahQ4eyXgZMsORyQ/n2x0+HyjfmZunl5vLtYv9Q+VZUSy/fVg6ZTwc+K9/ybslnreXbhcHPyrdau3Xw7nLI/MfnQ+XbfPnD4F+WQ+bT4cHyrRr+7fMHy7eIiP6rA+VbVj64srp8+3zkYvmWpVNnHizfainzPS5DQ0OxatWq+MEPfhDPPPPMhO/v3r07tm/fHjt37oxvfOMb8eabb0Z3d3ccP348li9fnvVyYFI39sSM3QsTYU/MXN3YEzN2L0xEMffEjNsL03wzXvK+Fybi5p6YsXthImq7J2bsXpird5wvx0st9sK033GiHC/V3gsTMX5PTJajpBt7YsbuhYkozp6Yqh7j0tDQEHv27IlNmzaVH3v44Ydj9erV8cYbb5Qf+9rXvhabNm2KHTt2lB87cOBAvP7669Me4zI8PBzDwzc/k+XGZx18e9X/iL+45y+y+2UoPAf0ZqueDuiNKMbxMLUeJY1VT8fDFOWspEpdujQS93/143wd43LlypU4evRoPP/88+MeX79+fRw+fHhOr7ljx4546aWXJv3eH8/f3A13593VObqb4hh3PIy9MBUbdzxMFHsvTMTNPTFj98JE5D9ixh0PE/mJmBt7YsbuhYmY/z0xY/fCRFQnYqbaCxNRveNhbshrxHyReQ2XCxcuxMjISLS3t497vL29Pc6dO1e+/8QTT8SHH34YQ0NDsXTp0tizZ0+sXbt20td84YUXoqenp3z/xh6XOy9/Frc2jpQfvzj+jDwhwxcySsqWUVL+AyYirVFSxPxEzFSjpIj5jZjURknVVJOzihoaGsbdL5VK4x7bu3fvjF+rqakpmpqapn1e2+Wb/xJebL7N3hhmxFlJ2XJW0qi8R0wKZyXV3fEwcaz8dUpnJVXDvIbLokWLorGxcdzelYiI8+fPT9gLU00ihrkwSsqWUdKopCImh6OkCKdWZyGlUdK8hsuCBQuis7Mz9u3bF08//XT58X379sVTTz01n0spEzHMhVFStoyS8h8wEfkcJUU4HiaivkZJmYfL4OBgnDhxsz5PnjwZx44di7a2tli+fHn09PTE5s2bY82aNbFu3brYtWtX9PX1xdatWyt6397e3ujt7Y2RkZHpnzwFEcNsGSVlyyhpVN4jxihpcvUySqqWyyPXZ/S8zE+HPnDgQHR1dU14fMuWLfHWW29FxOgF6F5++eU4e/ZsrFy5Ml599dV47LHHMnn/G5cMfva+H8etjdMf+zITF5vH/8soYpiOU6uzVU+nVvuspOw5tToNn126Gj/6L++l+VlFlahGuIwlYpgNn5WUrXr+rKSIdCImhc9KivCBj3kjXKoULmONjRgBw3TshclWPe2FiSjGBe4i8hkxRd8LE5FGxMw0XHL5IYupGHdMzJiQFzFMxllJ2XJW0qi8R0wKx8M4Kykt9rhkzCiJ2TBKypZRUr4j5oYU9sJEGCXNt7obFY09q+jf//3faxYuYxklMRtGSdmq54hJJWAi0oiYehsl1crng9fir9ceqp9wuaHWe1ymImKYDRGTLcfDpMFZSZOb74ipleHB4XjzsZ2OccmLG8fDjL0+jIBhKi5wly3Hw4zKe8Tk/Sq99XCBuxQIl3k2WcBEiBgm5wJ32XOV3vwHTEQ+r9Jbbxe4yyvhUiNTXaVXwDAVZyVly1V6R+U9YpyVNLn5PispT4RLDhgjMVtGSdkyShqVVMQYJZXV2yhJuOSIgGG2pholRYiYuTJKyn/ARBglTWaqUVIqrl65MqPnFSZcsviQxbxwYTvmwvEw2TJKGpX3iDFKmtz4UVIarg1dnv5J4XToZDidmrlyanW26unU6lQvcBeRz1Ora32Bu7y7NnQ5Dmz6mdOhi8IYiblyPEy2jJLSCJiURkkRImY2hEtinE7NXBklZcsoaVTeIyaFUVItjodJmXBJ1FSnU0eIGKbn1OpsOStpVFIRk8OzkiJqczxMaoRLAYgYKmGUlC2jpPwHTEQ+R0kRtT+1OgXCpWBEDHNllJQto6RReY8Yo6T0CJcCc3Ve5sooKVtGSaOSipgERklFM3J5eEbPK0y4FOk6LtXg2jDMlVFStoySRqUSMXkdJRXRlz77fEbPcx2XOjb22jARIoaZc22YbNXTtWEixl8fJu8BM1Yerw1TJCOffR4fPfffXceFqRklMVdGSdkyShqV94jJ6yip3ggXIsL1YZg7o6RsGSWNSiVi8jZKqgfChXHshWGunJWUranOSoqor4hJJWAiRMx8ES5MyccMMFdGSdlyavWoVCNGwGRLuDAtZyRRCaOkbDkeZlRSEeN4mEwJF2bFsTDMlVFS9hwPk/+AiXA8TNaEC3PiCr1UwigpW0ZJo/IeMUZJ2ShMuLgAXe2IGCphlJQto6RRSUXMmFFSPbv++eXpnxQuQEcVjb3AnYBhNsZe4C5CxFRq7AXuIoobMTekeoG7enft8ufx2+e3uwAdteN4GObK8TDZMkoaJWKKQbhQda4NQyWMkrJllDRKxKRLuDCvnFrNXE21FyZCxMyVs5IETIqECzXjAnfMlVFStoySRomYNAgXas5eGCrh1OpsGSWNEjH5JVzIFRFDJRwPky2jJAGTR8KF3HJWEnNllJQto6RRIiYfhAu556wkKmGUlC2jpFEipnaEC0kxSqISRknZMkoSMLUgXEiWURJzZZSULaMksjByeWaX/C9MuPisovpllEQljJKyVa+jJCp3bbgh/u8Mnueziigsn5XEXPmspGzV22clMTfXhj+PA6/4rCLqmFESc2WUlK2pRkkRIobZEy4UnlESlTBKyla9HQ9D9oQLdcVZSVTCWUnZqrfjYciGcKFuGSUxV0ZJ2aunU6upjHCh7hklUQmjpGwZJTEd4QJjGCVRCaOkbBklMRnhAlMwSmKujJKyZ5TEDcIFpmGURCWMkrJllIRwgVkwSqISRknZMkqqT8IF5sgoibmaapQUIWLmyiipfggXqJBREpVwPEy2jJKKT7hAhoySqITjYbJllFRMwgWqxCiJSjgeJltTjZLIj5Erl6d/UhQoXHp7e6O3tzdGRkZqvRQYxyiJShglZWvsXhjy5eqVUvzrDJ7XUCqVStM/LR0DAwPR2toaz97347i1sanWy4EpXWy+rfy1iGG2Tjff/NMtYiiCq1c+j//19l9Hf39/tLRM/TexMHtcIDVGSVTCKIl6JVygxqYaJUWIGKZnlES9ES6QI46HoRLOSqIeCBfIKaMkKmGURFEJF8g5oyQqYZRE0QgXSIhREpUwSqIIhAskylV6qYRREqkSLlAAjodhroySSI1wgQIxSqISRkmkQLhAQRklUQmjJPJKuEAdMEpiroySyBvhAnXEKIlKGCWRB8IF6pRREpUwSqJWhAtglMScTTVKihAxVIdwAcqMkqiE42GYD8IFmJRREpVwPAzVIlyAaRklUQnHw5Al4QLMmFESlTBKIgvCBZgToyQqMdUoifp17erlGT2vMOHS29sbvb29MTIyUuulQN0xSqISYyOG+nX12sy2g4ZSqVSq8lrm1cDAQLS2tsaz9/04bm1sqvVyoG5dbL6t/LWAAaZz9drl+Mf//TfR398fLS1T/80ozB4XIF+MkoBqEC5A1RklAVkRLsC8meqspAgRA8yMcAFqwqnVwFwIF6DmHA8DzJRwAXLF8TDAFxEuQC4ZJQGTES5A7hklATcIFyApRklQ34QLkCSjJKhPwgVInlES1A/hAhSKURIUm3ABCskoCYpJuACFZ5QExSFcgLpilARpEy5AXTJKgjQJF6DuGSVBOoQLwBhGSZBvwgVgEkZJkE/CBWAaRkmQH8IFYBaMkqC2hAvAHEw1SooQMVBNwgWgQo6HgfkjXAAy5HgYqC7hAlAljoeB7AkXgCozSoLsCBeAeWSUBJURLgA1YpQEs/elWi9gMr/5zW/ivvvui6985Svxi1/8otbLAaiqtsuflW8REX88PzAuZICbcrfH5dq1a9HT0xP79++PlpaWWL16dXznO9+Jtra2Wi8NoOqMkuCL5W6Py+9+97u4//77Y8mSJbFw4cJ48sknY+/evbVeFsC8m2wvjD0x1LvMw+XgwYOxYcOGWLx4cTQ0NMS777474Tk7d+6MFStWRHNzc3R2dsahQ4fK3ztz5kwsWbKkfH/p0qVx+vTprJcJkAyjJLgp83AZGhqKVatWxeuvvz7p93fv3h3bt2+PF198MT766KN49NFHo7u7O/r6+iIiolQqTfiZhoaGKd9veHg4BgYGxt0AimpsxNgLQz3K/BiX7u7u6O7unvL7P//5z+OHP/xhPPfccxER8dprr8XevXvjjTfeiB07dsSSJUvG7WH55JNP4uGHH57y9Xbs2BEvvfRSdr8AQCKmOisJUnRtZHhGz5vXg3OvXLkSR48ejeeff37c4+vXr4/Dhw9HRMRDDz0UH3/8cZw+fTpaWlrivffei7/927+d8jVfeOGF6OnpKd8fGBiIZcuWVecXAMihsQf0Qqqu5jFcLly4ECMjI9He3j7u8fb29jh37tzogm65JV555ZXo6uqK69evx09/+tO46667pnzNpqamaGpqquq6AYB8qMnp0H9+zEqpVBr32MaNG2Pjxo3zvSwAIOfm9XToRYsWRWNjY3nvyg3nz5+fsBcGAODPzWu4LFiwIDo7O2Pfvn3jHt+3b1888sgj87kUACBBmY+KBgcH48SJE+X7J0+ejGPHjkVbW1ssX748enp6YvPmzbFmzZpYt25d7Nq1K/r6+mLr1q0VvW9vb2/09vbGyMhIpb8CAJBTDaXJLpxSgQMHDkRXV9eEx7ds2RJvvfVWRIxegO7ll1+Os2fPxsqVK+PVV1+Nxx57LJP3HxgYiNbW1nj2vh/HrY0O2gWAFFwdGY53fv/30d/fHy0tU3/ERebhUmvCBQDSM9Nwyd1nFQEATEW4AADJEC4AQDIKEy69vb3R0dERa9eurfVSAIAqKUy4bNu2LY4fPx5Hjhyp9VIAgCopTLgAAMUnXACAZAgXACAZwgUASIZwAQCSUZhwcTo0ABRfYcLF6dAAUHyFCRcAoPiECwCQDOECACRDuAAAyRAuAEAyhAsAkIzChIvruABA8RUmXFzHBQCKrzDhAgAUn3ABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQUJlxcgA4Aiq8w4eICdABQfIUJFwCg+IQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkIzChIvPKgKA4itMuPisIgAovsKECwBQfMIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQUJlx8OjQAFF9hwsWnQwNA8RUmXACA4hMuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJCMwoRLb29vdHR0xNq1a2u9FACgSgoTLtu2bYvjx4/HkSNHar0UAKBKChMuAEDxCRcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZOQyXJ5++um4884749lnn631UgCAHMlluPzkJz+JX/3qV7VeBgCQM7kMl66urli4cGGtlwEA5Mysw+XgwYOxYcOGWLx4cTQ0NMS777474Tk7d+6MFStWRHNzc3R2dsahQ4eyWCsAUOdume0PDA0NxapVq+IHP/hBPPPMMxO+v3v37ti+fXvs3LkzvvGNb8Sbb74Z3d3dcfz48Vi+fHlERHR2dsbw8PCEn/3nf/7nWLx48azWMzw8PO61BgYGZvkbAQCpmHW4dHd3R3d395Tf//nPfx4//OEP47nnnouIiNdeey327t0bb7zxRuzYsSMiIo4ePTrH5U60Y8eOeOmllzJ7PQAgvzI9xuXKlStx9OjRWL9+/bjH169fH4cPH87yrcpeeOGF6O/vL99OnTpVlfcBAGpv1ntcvsiFCxdiZGQk2tvbxz3e3t4e586dm/HrPPHEE/Hhhx/G0NBQLF26NPbs2RNr166d9LlNTU3R1NRU0boBgDRkGi43NDQ0jLtfKpUmPPZF9u7dm/WSAIACyHRUtGjRomhsbJywd+X8+fMT9sIAAMxWpuGyYMGC6OzsjH379o17fN++ffHII49k+VYT9Pb2RkdHx5QjJQAgfbMeFQ0ODsaJEyfK90+ePBnHjh2Ltra2WL58efT09MTmzZtjzZo1sW7duti1a1f09fXF1q1bM134n9u2bVts27YtBgYGorW1tarvBQDUxqzD5YMPPoiurq7y/Z6enoiI2LJlS7z11lvx3e9+Nz799NP4u7/7uzh79mysXLky3nvvvbj33nuzWzUAUJcaSqVSqdaLyNKNPS7P3vfjuLXR2UYAkIKrI8Pxzu//Pvr7+6OlpWXK5+Xys4oAACYjXACAZBQmXJxVBADFV5hw2bZtWxw/fjyOHDlS66UAAFVSmHABAIpPuAAAyRAuAEAyhAsAkAzhAgAkozDh4nRoACi+woSL06EBoPgKEy4AQPEJFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBmFCRfXcQGA4itMuLiOCwAUX2HCBQAoPuECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMgoTLq6cCwDFV5hwceVcACi+woQLAFB8wgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBmFCReX/AeA4itMuLjkPwAUX2HCBQAoPuECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQjMKES29vb3R0dMTatWtrvRQAoEoKEy7btm2L48ePx5EjR2q9FACgSgoTLgBA8QkXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEhGYcKlt7c3Ojo6Yu3atbVeCgBQJYUJl23btsXx48fjyJEjtV4KAFAlhQkXAKD4hAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMnIXbicOnUqHn/88ejo6IgHHnggfv3rX9d6SQBATtxS6wX8uVtuuSVee+21ePDBB+P8+fOxevXqePLJJ+P222+v9dIAgBrLXbjcc889cc8990RExN133x1tbW1x8eJF4QIAzH5UdPDgwdiwYUMsXrw4Ghoa4t13353wnJ07d8aKFSuiubk5Ojs749ChQ3Na3AcffBDXr1+PZcuWzennAYBimXW4DA0NxapVq+L111+f9Pu7d++O7du3x4svvhgfffRRPProo9Hd3R19fX3l53R2dsbKlSsn3M6cOVN+zqeffhrf+973YteuXXP4tQCAImoolUqlOf9wQ0Ps2bMnNm3aVH7s4YcfjtWrV8cbb7xRfuxrX/tabNq0KXbs2DGj1x0eHo6/+qu/ih/96EexefPmaZ87PDxcvt/f3x/Lly+Pp/7yv8WtjQtm9wsBADVxdeRK/NOJN+NPf/pTtLa2Tvm8TI9xuXLlShw9ejSef/75cY+vX78+Dh8+PKPXKJVK8f3vfz++9a1vTRstERE7duyIl156acLj/3TizZktGgDIjUuXLs1fuFy4cCFGRkaivb193OPt7e1x7ty5Gb3G+++/H7t3744HHnigfPzM22+/HV//+tcnff4LL7wQPT095ft/+tOf4t57742+vr4v/MXzbO3atXHkyJFk36+S15vLz87mZ2by3OmeM9X3BwYGYtmyZXHq1KloaWmZ0Xrypp63vbn8vG0vO7a9NLe9iOy2v1KpFJcuXYrFixd/4fOqclZRQ0PDhMX8+WNT+eY3vxnXr1+f8Xs1NTVFU1PThMdbW1uT/Re4sbFxXtee9ftV8npz+dnZ/MxMnjvdc6b7fktLi22vRu9X6evN9udte9mx7aW97UVks/3NZIdDphegW7RoUTQ2Nk7Yu3L+/PkJe2GY2rZt25J+v0peby4/O5ufmclzp3vOfP/vM5/qeduby8/b9rJj27PtzVRVDs7t7OyMnTt3lh/r6OiIp556asYH51ZiYGAgWltbo7+/P9n/50GabHvUim2PWprv7W/Wo6LBwcE4ceJE+f7Jkyfj2LFj0dbWFsuXL4+enp7YvHlzrFmzJtatWxe7du2Kvr6+2Lp1a6YLn0pTU1P87Gc/m3R8BNVk26NWbHvU0nxvf7Pe43LgwIHo6uqa8PiWLVvirbfeiojRC9C9/PLLcfbs2Vi5cmW8+uqr8dhjj2WyYACgflU0KgIAmE+5+3RoAICpCBcAIBnCBQBIhnABAJJRt+Fy6tSpePzxx6OjoyMeeOCB+PWvf13rJVFnnn766bjzzjvj2WefrfVSKLjf/OY3cd9998VXvvKV+MUvflHr5VBHqvF3rm7PKjp79mz84Q9/iAcffDDOnz8fq1evjt///vdx++2313pp1In9+/fH4OBg/PKXv4x33nmn1suhoK5duxYdHR2xf//+aGlpidWrV8dvf/vbaGtrq/XSqAPV+DtXt3tc7rnnnnjwwQcjIuLuu++Otra2uHjxYm0XRV3p6uqKhQsX1noZFNzvfve7uP/++2PJkiWxcOHCePLJJ2Pv3r21XhZ1ohp/53IbLgcPHowNGzbE4sWLo6GhofxJ0WPt3LkzVqxYEc3NzdHZ2RmHDh2a03t98MEHcf369Vi2bFmFq6Yo5nP7gy9S6bZ45syZWLJkSfn+0qVL4/Tp0/OxdBKX17+DuQ2XoaGhWLVqVbz++uuTfn/37t2xffv2ePHFF+Ojjz6KRx99NLq7u6Ovr6/8nM7Ozli5cuWE25kzZ8rP+fTTT+N73/te7Nq1q+q/E+mYr+0PplPptjjZ0QANDQ1VXTPFkMXfwaooJSAiSnv27Bn32EMPPVTaunXruMe++tWvlp5//vkZv+7ly5dLjz76aOlXv/pVFsukoKq1/ZVKpdL+/ftLzzzzTKVLpE7MZVt8//33S5s2bSp/7yc/+UnpH/7hH6q+Voqlkr+DWf+dy+0ely9y5cqVOHr0aKxfv37c4+vXr4/Dhw/P6DVKpVJ8//vfj29961uxefPmaiyTgspi+4MszGRbfOihh+Ljjz+O06dPx6VLl+K9996LJ554ohbLpUBq+Xdw1p8OnQcXLlyIkZGRaG9vH/d4e3t7nDt3bkav8f7778fu3bvjgQceKM/t3n777fj617+e9XIpmCy2v4iIJ554Ij788MMYGhqKpUuXxp49e2Lt2rVZL5cCm8m2eMstt8Qrr7wSXV1dcf369fjpT38ad911Vy2WS4HM9O9gNf7OJRkuN/z5nLZUKs14dvvNb34zrl+/Xo1lUScq2f4iwpkdZGa6bXHjxo2xcePG+V4WdWC6ba8af+eSHBUtWrQoGhsbJ/y/2/Pnz0+oP8ia7Y+8sC1SK7Xc9pIMlwULFkRnZ2fs27dv3OP79u2LRx55pEarol7Y/sgL2yK1UsttL7ejosHBwThx4kT5/smTJ+PYsWPR1tYWy5cvj56enti8eXOsWbMm1q1bF7t27Yq+vr7YunVrDVdNUdj+yAvbIrWS220vs/OTMrZ///5SREy4bdmypfyc3t7e0r333ltasGBBafXq1aV/+Zd/qd2CKRTbH3lhW6RW8rrt1e1nFQEA6UnyGBcAoD4JFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCS8f8B/sx8xv8kym0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the function\n", + "def func(x, y):\n", + " # if y < x:\n", + " # return y\n", + " # return (x)**(1/3)*(y)**(2/3)\n", + " return np.where(y < x, y, x**(1/3) * y**(2/3))\n", + " # return np.where(y < x, y, x)\n", + "x = np.linspace(0.01, 13, 1000)\n", + "y = np.linspace(0.01, 13, 1000)\n", + "X, Y = np.meshgrid(x, y)\n", + "Z = func(X, Y)\n", + "fig, ax = plt.subplots()\n", + "\n", + "plt.contourf(X, Y, Z, cmap='viridis', levels=np.linspace(0, 10, 11), alpha=.9)\n", + "plt.loglog()\n", + "# plt.xlim(0.011, 13)\n", + "# plt.ylim(0.011, 13)" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHVCAYAAABxKsZjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwcdZn/31V9X9M99yQzySRMCHiQBBMCJIAnJqvGAwIqosFVRIFdrxX8rYgu4ip4rgsookvYxYskeIBCiGdCAgQwmagcySQhx2Sm5+iZnr6Pqvr90emeq+fo+5jv29e8DN+urnr6qvrUc0qapmkIBAKBQCAQCCoGudQGCAQCgUAgEAgyQwg4gUAgEAgEggpDCDiBQCAQCASCCkMIOIFAIBAIBIIKQwg4gUAgEAgEggpDCDiBQCAQCASCCkMIOIFAIBAIBIIKQwg4gUAgEAgEggpDCDiBQCAQCASCCkMIOIFAIBCUnMcffzz1723btpXQEoGgMhACTiAQCARZ0dvbW5b7KgWzsd/v9xfBEsFcQV9qA6qN3t5eHn/8cbZv347D4eCHP/zhlNt+7GMfw+fzsW7dOjZu3Ijdbi+ipZlz+PBhNm/ejNvtnvJ1TXz969atG/dYZ2cnzc3NfOUrXymW2XllNu9BpZB8LX6/n+985zsFO87mzZsBcDgc2Gw2HA4Ha9euZfPmzVxzzTUFO24puPvuu3nyySe5+eabWbFiRanNKTjbtm3jhhtumLR++PDh1HlgzZo1nHnmmfh8Pnp7e2lpaZn2c9+/fz8dHR0FtDp/to5lqvdiLA888ACbNm0ad67P1/EFcxBNUBC2bt2qve9979O6urrSPr5v3z7ta1/7mnbXXXeNW7///vu1r33taxkfL9vnZcq+ffu0a6+9dsbtPvWpT016bZqmaT6fT7vllltS/10su/PJbN+DXMn3e/PYY49NWivka+nq6tI+9alPafv27Ru33tPTo33ta18ryntYCtK95qlI95mUimxsSfcbT9LV1aVt2LAh7XPGngM0LfGdePLJJzVNS5w7i81sbX3yySenPKdP917MtE0+ji+Ye4gQaoGw2WxcdNFF4/I6xhIIBNKur1ixgosvvjjj42X7vExxOByz2m4qb6Ldbh/nmSiW3flktu9BruT7vdm/f/+ktUK+ljvuuINNmzZN8kS1tLSwfv36gh23kkj3mZSKfNsylSeto6ODzs5O/H4/mzdvZvPmzdxxxx0cOnSIzZs38+STT7J58+ai5sHNxtavf/3r9Pb2cujQIb7+9a9nfIzdu3dP6ZUtxvEF1YcIoRaQ9evXc8stt0xyq/v9flpaWtI+J9uwS7mHa/x+f+p1d3R04Pf7J4k5wXjy+d48/vjjuN3uvO1vJpJh06lew4oVK2hubi6aPeVIsT+T6SiELfv372f58uWT1g8fPkxHRwd2uz0VHhwbTt+2bRuXX355Xm2ZidnYeuONN/LFL36R5uZmPv/5z2d8jF27dk35vGIcX1B9CAFXQDo6OnA4HOzevZu1a9em1ru6utJe2NLlV+3fv58HHngAgBtvvJHe3l56e3vx+XypE95sn+fz+Th8+DA33HADjz/+OA6Hg127dnHFFVek7v78fj/bt2+npaWF/fv3s379+rzko4y9OCRf+1T5ZH6/nwceeICOjg4OHz6cEn2PP/546sS1bds2WlpaUnkia9eundV7tXv3brZu3Upvb28qT6m3t5dbb72V5uZmbrjhBux2e0bvQbrXsXnzZrZv386mTZvGeZvS2T3bfc7m9aVj//797N+/n97e3pRXY+IF8vDhw9Pub7Z2J9mzZ0/aC9JYJtqQPAYk8iWTj2fyujOxc7rveqbHTOb2zZbpPpPZ2NXc3Mz69etTXrNrrrkmp9/NTN+PbOjs7Jy0n/3799PZ2cltt92Wep3Jbbdt25Z6j/NpR75sfeCBB9i4cSM2m4277757xny3sfj9/mm/H4U+vqBKKXUMt1pJ5pOky2NK5nqky4Hr6uqalBuUzFMam1dz7bXXjsuFyOR5999//zhbPvWpT6X++/7779d6enrGbe/z+aY9TjpuueUW7VOf+pS2detW7f77759k73T7+9rXvpZ6j3w+37SPJ4+V3Pds3qt0eV9j826yeQ/S7fOWW24Zl1c0nd3pyPa7kI59+/aN+5zHHuN973vftPvL1G5N07QNGzZklMv0ta99bZwNPT0943J/ZvO6M7Vzps95Nse8//77x33GPp9P27Bhw6xy4Kb6TGayK/mb3bdvn9bV1ZX6Pef6u0lny0zMlNP12GOPaU8++aT22GOPaVu3bk37ndi3b1/q/Rp7bioWmdj65JNPjvtsxjJdDtxjjz025XcxX8cXzD1EDlyBWb9+PXv27EmVj/f29mbs0XI4HPT29o7z2jU3N89Ytj7V88bS0dExbj+9vb3jcmGam5vp7OzMyN4kS5Ys4fLLL+eaa65hzZo1s37enj17Uu+R3W5PeT+S9u3Zs2ecZ2Xt2rWpXMPZvFcrVqxIeSOT2Gy21L+zeQ/S3V1P3Od0ds+WbL8L0xEIBKbcX77sno7Dhw/T2dk5zoaWlhb8fn/qc5jpdWdj50yf80zH9Pv9PPzww+M8rHa7PWeP9Ux22Ww2Dh8+zIoVK+jo6Eh5BHP53eSbZE7X+vXrWbt2LRdddBGHDh0a95tIknwtpSITW9euXTtl+stsjlGq4wuqExFCLTDJMMaTTz7J+vXrOXz48Izhp6n2MxabzYbP58vqedOdAJKhFr/fj9vtxu/3z+o4M7F+/fpxhRvJ3I50dHR0TCrySNq8f/9+bDbbuAvc2AvV2G2TpHuv1q1bx+OPP84NN9zA/v37ueiii1KPFeI9mI3dsyXb70I2+8vW7mSYbjqSYbxDhw6l/U42Nzezf//+1MU933bO5nOe7pidnZ1pL7K5ko1dkPvvJp9MzOmy2+2sX7+eW2+9dVIBS/K1zRRmHMvu3bvZtWvXjNuNTQ/Jh63ZkPyel+r4gupFCLgisG7dOrZv38769esLcsLPJ4cPH2bLli2sWLGCiy66KG+J5hNPYIcOHZryxLpu3Tq2bNnCjTfeyPbt27n++utTjwUCAVpaWiZVsmbK+vXr+fSnP80NN9wwycuSr/dg7MU0X3bni5kuKkmytXvNmjXs2bNn2m2S+V1TVWRnQjZ25uNzzmcVb/IzmY1d6c4j+fzdzPb7MRVdXV2TxMdUn3PyPezq6pr1ze3atWuzuhFORya2ZsPjjz8+rRAr9PEF1YsIoRaBiy66iMOHD7N7926WLFlSanOmxO/3c8stt3DFFVewfv167HZ76kSSzzv1ZIL1dNx44410dnaydu3acSe3iSHfsbZnQktLS6rAZOxFOJ/vwVib8mV3vhgbPp6ObO1OhvWmak0x1tuSLCSZiNvt5swzzyyInfn4nKc6ZrYcPnw4Z7vy9buZ7fcjHb29vQQCgUlFLPv370/7u08m769YsaLo4cFMbc32GFPtqxjHF1QvQsAViLEnS7vdzvLly9m1a1fepi1ke4c23fPcbjeBQGCcZyx5gs/0hD7dBX7z5s3TnpwOHz6M3W5Pm++xYsUKlixZwu7du8etP/nkk1Pub6rXvG7dOu66665xJ89s34OJeWh+vz91cs7W7tkym+/C2JDmTHmYY/eXi90333wzDzzwwCQRl6w+THpQOjo6WL58+bjtku/1dF6WXOzM9nMee8yWlpZUKH7sPg4fPpz1Z5LLbzCX300m34+Z2L17Ny0tLZPOdT6fL+U5TFY9l5pC2zpTfl8lvVeC8kPSNE0rtRHVRLIUf/v27axbt47LL7+clpaW1Ilz7dq1qQvY1q1bU+Om1q1bh9vtZsuWLezZs4dNmzZx+eWXp8IpY9e2bdvG1q1baWlpYePGjbS0tGT0vGRxgcPhSG1z2WWXsXHjRrZu3QqMhldaWlrYvHkzF1988bjjXHbZZWlbVyRHaT388MOpC9zYxzo7O+nt7eU3v/lNWhshcVK74447Uq0ZbDYb69atG+dRSIrApBdn7dq1s3qvxgqCZGn+xHL8iT3MZvseJFsfJC+eu3bt4siRI2zatCl13HR2pyPda8n09U0k+bqSjXQz2d9s7Z7uuMnPEkgbUhor7Ht7e8e1ySmEnbP9nGc6ZrI1R/K1JduPpGtiPJUNY5sbT2eXzWZj27ZtdHV1pWxIvmfZ/m6ms2UmxrazSJ7XkmKjpaVlXGuM5OeYbE6drxBoNhTC1nStPe6+++5Jo7MKdXzB3KPsBVw4HGbXrl2YTCYuueSSKbc7duwYx44dw+VyEQ6HAVi9enWxzBTkCb/fz1133cWNN96I3W5PJXJv3rx5UlhIIBAkKNXvRvQjG2UqASfen+IzV3RD2RYx7Ny5E6/XS3NzM8eOHaO9vX3KbQ8ePMjLL7/Mhg0bUmvHjh1jy5YtXHHFFcUwV5AnksUeyTtWu92e6theqJYHAkGlI3435cd0o7MEhWGu6YayzYG75JJL2LBhA6tXr8ZkMk25XTgc5oknnuDSSy8dt97e3k44HObAgQOFNlWQRzo6Oibl6QDj2kkIBILxiN9N+bFr1y4R+iwyc003lK0HbrYcPHgQp9OJ2Wye9NhZZ51FZ2cny5YtK4FlgmxIXmwmjlWazfgmgWCuUqrfTbm3RSomE98LUUVavlSLbqh4Affyyy+n/RAAXC4XfX19hMPhKbcRlB8rVqwQXgOBIENK8buZbgbvXGPieyHem/KlWnRD2YZQZ4vb7cblcqV9zOl0AuD1eotokUAgEAgEgnKlWnRDxXvgIpHItLFuIJXUOB3PPfcczz///KyOuXLlSlatWjVrGwUCgUAgqDYefPDBvE6NiEajxONxrFbrjNvmch3Ol24oNRUv4KYj+QEly4OnIxqNzror/qpVq/jpj3fyg0f3Uls/fQ7ISXOYOmd2eSInzUHqa2b+IudKtzVxp9FgL/yxMiVm7wOg0VJduTbN9i4A6k35aexcbZxt2Q+A01BTWkPmEKuMfwXAoqsrsSWCbJAHYjR85BVMzwUTC0XoEBYIBAoyTWY2+4xGo3k/LmSmG0pNVQu4TDAajZlNSZAKZ8tYBkcKL+Jag86UiCs3DP6mlIirJtz+JTTbuxiM+IWIS8NLoRUAnM1+QAi5YvBc9HWAEHKViP5gmMYPHUV/IiFqVItc1PwoSVKxmYM57SMQtqJpMpIkzao4xmg05nS8aqCqBVwkEgGYVSLiqlWryi4s2ha2cjLHH0W10B8KVJ0XToi4mXkptIKzLfvxxkaEiCsSz0VfxyrjXwkpHkAIuXLH9BcfDde9guxTAYi3GBh4YBHFrIG1mYN85LL/y2kfP374g/hDdmw2G9ddd12eLMucTHRDqan4IoZS0houkhtujmPwN5XahILh9i8ptQllT9Ib542NlNaQOcRz0delPHIhxZMSc4Lywva/AzR+8EhKvEVfa6Hv0TOJvba46TAaoGhqTn9lPRKqTKl4Aed0OqesFknGsJNVJYVgaDB/CZylpDXoZMBf3t6+/lB1vNcTcfuXMBjJfx5JNSFEXGmYKOQEZYKi4fpSN3X/rxtJSSwF19XQ98sOlHmGkpikouX0V0xKrRvyRcULuObm5imTDZMfUCEqSaRiJcEJgOr2wiURIm56xoo4IeSKS1LICW9c6ZECCg0feQXHjwZSayMfb2TwvkVoVl0JLascSqUb8k3FC7j29vYplfTw8DALFy4sskWCQlLNXjgQIm4mXgqtEN64EiLCqqVF1x2l6d1dWHYkvvuaHjx3tuH94nzQldapoOb4v2JSLbqh4gXc0qVLCYfDDA8PT3rs4MGDLF++vPhG5ZnBkeKFNss5jFrtXjgh4maPEHGlQ+THlQbDgSDNGw5hfCHhOVJrZPofPIPAB+pLbBmAhqLl9kcRw6jVohsqQsBFIpEp3Z1ms5m3vvWt7Nq1a9x6ctbZ0qVLC2KTVKSbnbZw8ZJRW4PlH/OH6vXCgRBxmSBEXGkRQq54WB7z0vSeLnTuOADxdiPuR84kcrGjxJaVL+WoG/JN2bYR2bt3L263m+HhYbxeL16vly1btmA2mznrrLPGvcFLly7FZDKxc+dOXC5X6kO74oorSmW+oEBUa1+4sYj2IrNH9IsrPWP7x4UUj2g7kk80Dcf3+3H+Zw/SaQdV5DwrAz9ejFpfPpdvDXIuRMiH/22u6Yby+QZMYPXq1Rlt397eTnt7e4GsmVsM+INlOZVhLNXYF24sSREnmB2iX1zpEY2A80xUpfbfu7H/bNSzGbisFs8328BUfsEzpQwagcw13VB+3wJBSamEMGq158IlEe1FMkOEVMsDUbGaO9JwnMYPHB0n3rz/1oLnewvKUrxBZbURqRbK1gNX9oguIiXF4G+in76q9sIlEaHU2SNCquWD8Mhlh/5ohIZNRzEcTkwE0EwSg99ZQOhdtSW2TFBulKeUF5Sccq5GHUs1FzSAKGrIFuGNKx9EocPsMT7jp+kdh1LiTanX0/dQR9mLt8QkhtyqUIUPLnOEgCsCHm9uIqMtbC1qK5FKCKPC3AqlghBxmSJEXPkgKlZnxrrVQ9N7j6AbToxWiC014X50CdFVlRFlUHP8E2SOEHBZIs2yj0hbuPwH4lY61e6FAyHisiXZ+FdMbygPhJBLg6pRc0cP9Z88gRRL+KHCl9hx//pMlIWmEhsnKGeEgBNMSSWEUeeKFw6EiMsF4Y0rL4SQSyCFVOqvP4bze6OtkfwfrKf//85Aq6mssVgKWk5/gswRAk6QlkoJoyaZC144ECIuF8Qs1fJjLgs5uT9G4xWHsT6SGOmkSTD05fkMfa0V9JVXJadouf0JMkcIOEHFM5e8cCBEXC6IWarlyVwTcoaXQjS/4xCmfYkoh2qVGfifRfivbSzemJ88kmjkm9uf0HCZIwRclpTiJ1bMQoYklRBGhdNtReaIFw6EiMsVIeLKk7kg5Mx/GqHpXV3oT8YAiM8z0PfLJYTfWllRD0HpEQKuQijmTNQklRZGhbkTSgUh4nJFFDiUL9Uq5OybB2j40FFkf6LuMrrMgvvRM4m91lJiy3JHQcrpT5A5QsAJqoa5FkoFIeLygfDGlS9VI+QUDdet3dR+oRvpdM+M4D856dvWgdpiKK1teULVcvsTZI4QcNlSgXkK2VIpYdQkc8kLB0LE5QNR4FDeVLKQk/wKDR8+iuPHA6m1kRsaGfxhO5q1sipNBeWFEHCCaam0MGrSC1fpIq7FMvl9t+mn7gklRFzuiAKH8qfShJyuO0rTu7uw/MEHgKYHz7fa8P77fJCrxwmgkXsIVTjhMkcIOEHVUUmh1CvbV3Nx01IublqaWvvk2W/FFwvzybPfyhJHMwDn1rXzmVetm3ZfQsTlB+GNK3+SQu656OvKVsgZ9wdpfschjC+GAVCdOvp/cgaB99WX2LLCIHLgio8QcBVEsUdqJWkNOisujArl74X7+rlX8tvuTnb1HeR9iy4AEkKtJzRMIB7hkM+NPx7m3Lp2VtYt4r6uv8y4TyHi8oPwxlUOE4VcOYg5y2+Haby8C11fHIDYIiPu3ywhcpGjxJYJqgkh4LJkDqXAVSTl7oVb4mgmEA+n/n3D3v+dtI0vFqI3lGjy+fJIT+rfMyFEXP4Q3rjKoSzCq5qG4y43DR87hhw+PRbrfBt9j5xJfEl1j1VUNSmnP0HmCAFXJHIdaF8OVJoXrhx7wwXdA/i7T9KumGjS2WgxJu7IP3n2WwHY5znGPIsrle9m05s409HMrr6DGR1HiLj8IbxxlUXJhFxUpfazJ3B9rTe1FNhYS//PzkCt0xfHhhIiQqjFRwi4IlANA+0rrZhhLOUg4sIDHkZOdKGrDWNeYKC2yY5fCrKv62n2v/hXlta0pPLdftT1F+ZZXOzqO8j7F13AQ8f2ssTRzMVNS1PbzAYh4vKL8MZVFsUUcvJQnMarjmD/xVBqbfjmFjzfXQCm6r/MakgoyDn9aULEZUz1f7MKhCS+bBVBOYRSwwMeVP0I1nYHOnOi59Op0CA9YQ/WNgeGJo1h3zDzTleeBuIRunxurmxfzaPd+wF4/6Lz2dV3MLXNbBEiLr8Ib1zlUWghpz8SoWnDIcxPJW4UVbPEwPfb8f1rs8i1KSHHjh1jx44d7Ny5M/X/1YYQcBVIKQoZklRaGBVKH0qNhT0Y68Z3Wn9+6CDzLIlqNJ3ZQKuznmeOvZh6PFnM0Bvyjmsf4o9HMj6+EHH5R0xxqDwKUblqespP04ZDGI5GAVAa9fRv6SD0TlfO+640yikHbu/evezdu5dLL72USy65hEsvvRSz2cwjjzyS1+OUGiHgKoxSjNRKUslhVChNKDXYO4Cxebx42/DIAd720yfp+c3Pecf8C3jfwjfyw6O/Y3CgG0jkva2sW5TKewvEI4zEwtj0JuZZXFnZIURcYRDeuMokH5Wr1l94aHz/EXTDCgDRs824Hz2T6Ots+Ta3IiiXHDi3282uXbu49NJLx62vXr2aY8eOcfBgZvnE5Uz1Z1YKBCS8cDF7X9GPqyphjKbRUTkbHjnA9d//M/q4SnzzHg594g38fMOyxIM6JbXdjya0DPmvl57g3Lp2ftfdmbUtbv8Smu1dDEb81JvsWe9HMJ6kiDub/QA4DTWlM0aQEcnQ6irjX1MizqKrm/5Jqobzjl5q7ho9n4Te5GDwnnY0h5isUGr27t1LU1MTLpdr0mNnnXUWnZ2dLF26dPITKxDhgcuWOZraUKk94aBEoVRtfH9xcyiKPq4iqRr6uIo5FJ20bWCKMOk+z7GczRGeuMIhihwql9nmyUkhlfqPHxsn3nwfrmfg/sVzWrxpgKLJOf3laxLDsWPH0oo3gObmZo4fP56nI5Ue4YETzDn6QwEaLcUJc0jo0TQN6XQyc9hiJK6XEx44vUzYYhyzdXEuAMITVzhS3jjLfryxEeGNqzCSIg4SXrkkFl0dcl+Mhg8fxbQ/BIAmw/B/zMf/z41Ft7McUcvEHxSJTJ0nbDYnOkK43W6am2df0V+uCAGXJVKJq4sGR4LU15QuH27AH6TBXrrjZ0uxQ6mWeU0ETh3F0pro9/bI6XCpORQlbDGm/lsJxtAbiiemhIgrLCKsWvmMDa8qf++l5cMDGE4l0hxUm8zg99sJv1l8rknylccWCAS49957Z9xu5cqVrFq1atK6yTT1zOgkXq9XCDhBaWgLWzlpLl0YszXopNs6u6kA5YjB30Q/fUXxwsk6HZJiRYnE0ZkSP7ekaBtLuCeMc3Fbwe0ZixBxheel0IqUNw6EkKtETj3RytpPPoshkBBvsfk6uu9vIPqqOJTB2K5qQ9M0/P6ZUzyi0Wja9ebmZsLhcNrHhoeHczGt7BACTjBnKVYo1d42H9+xE+icoUntRJRgjHBPGHtre8HtSIcQcYVHhFUrl6X/e4TX3f43ZDXx34PLXPzl3vMJN5ohvX4oG4qapq9JKFqOIdTTrUQkScJmm/m8bDQa066vXr2arVu3pn3M7XYDTCnwKg0h4ARZ0Rp00o23IsOoMBpKLZaIc7QvIDoSIHRsMFFtqmmgyeiNjqJ73iaSLGyALgAh5E6jaRr+7gEkLY6mSZgb6zBY0l80ZoMIq5Y3SlwlcLKPWt0wBiXGOXcNcuavRiMNx9fN46lvvg7FIi6bE9EANccQarKIwWazcd1112W9n/b2dpYtW8bOnTu55JJLUusHDx6kvb2dgwcPpnLhKh3xTcyWLL6rHm+AOufc7BFUjhQ7H85YY8NYU76fv/DGjeI/3o1Z8rKoXUanT3gWBk8N4HNbMbYsQG82zLCHqRFh1fIjMOijIdDF+Uuj6PwaLdcPY/vzaDL8vg8u4MUvngvyHG0/UGFceumlHDhwgAMHDqTWFi5cSF9f4nw/mzy5SkAIuCLRFjZz0pw/t21b2MpJSlvIAJVbzDCWYlalljtCxIHvyCssXBzCYBp/eqyfb6SeOCcPHSLefGbOIg5EWLUcCPvCtMUPseTMOPqTCvOvGcL0chwAzQDurzsZeYNKcMiPtd5RYmvLF6VMqlCTLFs2Odc42UKkGgoYQPSBE+RApU9mgNFZqeUw8L5cmMu94vynBmhbGMJgmrqlS9uZeqLuk3k5nhjJVXqkQTdLFsYx7YuyYMNgSrypZhi+xorvSivzm1Qs/t4SW1re5NoHrhi43W6ampqqJoQqBFyWCEf6KJXa2DdJOQy8LzfmqojTK8OYrOPF27kPHeP8zUc496HRRso2cwAlFs/bcUUT4NKgaRp1ukHsj4Rou2IQ/UCiWkE1JlqFWJ4arVRocw4T9JV55UKJSOTAyTn95auR73S8/PLLLF++vAhHKg4ihCrIiUpvKZKkmK1FKoW5GE416cJAolDh3IeO8botx6k/4kdWNFRd4rZt35XtNLQZOHzYQ83C/In/iWFVEPlxhSYWVjjnF0PM+8HojYpqlUDR0HlV5IDKgn/qx/sBK1xt48DLAayO7AtZBIXn4MGDPPHEE9x4442T1s1mc9rQaqUiBFyFU+qGvtWGyIcbz1yrUJUkNfVvY1DBNhBBVjQkVUM+vZbYTkKSCuMzEPlxxUGOKFx8Sydn/HqMeDODapfQeTRQQYqDvk9FDmioqoZW4gbu5Yyilcd7Ew6HJ+W4ud1udu7cycaNG0tkVWEQAi5LSj2JAUrf0DdJpbcUSVLs1iKVxFzxxinK6CkxatURaDBhHokhA6pOIno6vBoJxJFNhc2jEW1HCodxKMol1++l6dnB1Jp/nQl9d0KgyyMqUhw0PcSbZFSbxMFXjNS1VX7eb2GQ8lDEkJ9r6rJlywiHw+zcuZNIJEI4HMbpdHL11VdXTe5bEiHgcqQ1LNE9GKC2XlzwqwEh4qZmLoi4sGoHEtXi+65sZ9+V7Zz70DGMQYWoVce+KxMNlwfcOmxFupiLtiP5xXHExxuufQbHsUThUswk0/9fNQTePtpku+bBQMLrZpMYuTpxHuh7qQ6LrvQ37oKZWb16dalNKApCwAnyRjW0FIHi94erJKpdxOnrGhnoPkpD6+ipMSnakoT9ClFdPdk3EckckR+XH5qe6ueSG57FOBIDINRo4s/3rKbX6matNpKKrCRFW5J9L5vRzWstur2VhFqkSlLBKOIdzxZxIzaOamgpMhHRWiQ91VyharJbCMit9B+PpX3cPxzjVK8D27zSVC4n246AqFjNlDO2HONNH34qJd6Gzqph+7ZLGDq3Dt0ZZ7HrxQaOnxp/Yu/tg6dedBFoOhujWfg7pkIj0Qcul79iVKFWG+IbWeGUS0PfJNXmhROh1PRUc3GDpd5JNGTh6CE3Jl0AnRxH1SSiihXN2oJ9Yek9X8IjlwGqxopvvsCrf9iVWup+YzO7v7OSuD3hR9UbZPQdHRwLLKTr5X6Mcpy4pkdy1WI9wyIulIKyRHwvi0hb2MxJqnecVrW0FEkiRNzMVGtI1WAxYmhfkPpvHWCZevOSISpWp0cXinPhv/2Vhdt7UmsvXXMG+/7fa9HS5LOZbQbMtvkAVMewpeJRLlWocwkh4LJEEjHUKakWLxyIfLjZUK0irpIQFauTMfeFef11z1D/t2EAVBme/+I5HPrgGaU1rEpRRUZW0RECTpBXqs0LB6LJ72wYK+KgukKqlYQQcglcL3p5/bVPY+tNVBTHbHqe/N4qel4/+xmYoZEI+qFe6nVDmOUYCjKeuJMRQyOOedWX85sLGlLO47A04RTJGCHgqoRya+hbTV64JCKUOj3JvDjhjSs9c1nIzf9jL2s/9RyG002X/a0W/nLfBXiXzv49CPYNs1TXxeKzEvuwPRg83VZkhFPvHODpo61YFy+YYS8CQWERPs8sKYM+vinawuUllKqxIlUMvZ891VylWmkkq1bnRMWqpnHW5sNc8vFnUuJtYHktT2y7JDPx5g1xlr6Lxa1Kas3+YBDHDwPYHwzirJFYu7CbwAmRWjEWFSmnP0HmCAEnEMwSIeJmjxBx5UW1tx6R4iqrvnSAlbf/Hfn0NLRjb5vPH36ylnBDZt33DcN9LJqvTLuN3SbRiDtbc6sSRZNz+hNkjnjXBAWhNehkwF/6MV/5Roi42eP2L8HtX8JgxC+EXBlQrT3kDL4Yb/jo0yz96Suptb/fsJTd312FYtZlvL8GnWdW272qNcBIT3W8h4LKROTAZUs5xVBPU255cNWKqEzNDFGlWl5UUw8528kgr//o07i6fAAoBom9/7mCo+9ZmPU+z3hkmObt428+9V1xpDhIXpXm9QOp9d63HKP7xnOyPla1kGzkm+s+BJkhBFyVUC6D7cdSLUPu0yEqUzNDVKmWH0khB5VZ7NDwVw8Xf2IvlsEIAOFaI7vuWU3/efU57VcKga5fHb8WB9TE/ycf0zTQh9Q0e5ibqKIPXNERAq4EeLzV28x3riEqU2ePqFItXyqtarX90ZNccNM+dNGEgBpZbOPP912Af1Hu3ymfyYrSOP5mWPKqSHHQ9KA0JjxN4YiEbp4j5+NVB1LOHjgxnzJzhIDLkmwjqG1hMyfN4fwaU8ZUuxdOTGrIHBFSLV/KXshpGq+96yDL/uul1FLvBQ08edd5RF3GvBzir+85C9t1Gg776Em+ef0Aun4VpVHG/XgDAL9/sRnT4kV5OaZAkA1CwFUR5TYXdSzV2BcOhIjLlmqepVoNTBRyUHoxJ0cUzv/3/Sz+9cnUWtcVC3nuP5ajGvNXj+eY72LP4flcsvgUFmv6O/Un/25Ht1D0gRuLKipJi454xwUFpxr7wo1FVKZmj2g3Ut6US+WqaTDCmz60JyXeNAn23fxq9v7niryKtyTWjoX85eRi/nrQQiiUSK/XtETYdMcLTcQWno3emHmFa7WSKGKQcvoTRQyZIzxwWSJmoWZOtXrhQHjickEUOJQ/paxcrTns4/UffRrHiUReWtysY8+3X8fJt84v6HFtC5sJ0MwfTnl5zVuOowupyPMcmM9YXNDjCgSzRQg4QVGoxhmpExEiLntEgUNlUGwh17y7j4tvfBajLw5AsMnEznvPx3NObcGOORHnfCcnRauQ6dFyD6HKwgWXMULAZUuZOuDKOQ8OqtsLB0LE5YrwxlUGxRByHT9/hfO+dABZSVzZh15Vw59/eAGheZa8HkeQH5QcL4r5DoQfPHiQY8eOjVu7+OKLMZszm8xRzggBJygac8ELB0LE5YrwxlUOhRBykqKx/Bsv8OofdaXWut/YzO7vriJuE5cswczs3LmT9vZ2Lr300tTa8PAwW7Zs4YorrqgaESd+DVkileEkhkIRHh4meDpBX5LAXuPCYM1emFS7Fw7EtIZ8INqNVA7pmgJD5mJOF4yz5jPPs+D3vaP7vuYM9v2/16Lp5s45txIplypUtzsxo7a9vX3cusvl4q1vfSs7duxgw4YNpTAt7wgBlyW56rdCN/PNx1itaMDPkGcQxWFHrnWl1oM+HybPALXN89EZDBntc6544UBMa8gHot1I5ZGtV87SG+L1H3uGuhcS5wdVJ/Hcl86h6ypRNFDuaEg5D6TX8lQaeOzYMVpaWtI+1tzcnBJ41UB5SOYKJBcPXFu4sO7btnDu3q1YMMigdwitsQF5grtZ53AQb2ig/9QJNDW7UTLVOOg+HQZ/k2gvkgfGthsRLUcqg0xakNT+Y5h1l+9MibeoXc+ff3SBEG8VhIqU018+6ezsTLs+PDyM01k9ba2EgMuSag+heocHkerqpt1Ga2rC19c77TbpqPa+cBMRIi4/uP1LRN+4CmQmIdf6+x4ufd+TWN2JCTX+NitPbLmY3oubim2qoApYunQpx48f55FHHiEcHj/16Nlnn2X16tUlsiz/iBBqllSzfotHIkRkmZnaVEqSRCgeI5uU5WoesZUOEU7NH6JStTKZlCenaSzffIILv3EY6XQLif5za9n5g/OJ1JtKYqMge3INoSYJBALce++9M263cuVKVq1aNWnd5XJx8cUXs2vXLo4dO8aGDRtob2/nwIEDtLe3T8qNq2SEgMuScvfA5dJOJDw8hM7lGrf2rZ8/yPlHunjmjCV89n1Xp9ZjOdo5FwoakggRlz9EpWplc3DkHDbe8SfWPHw4tXbo7U386atno5giEIuU0DpBNqhafq6Jmqbh98/sYY9Go1M+tnr1alwuF4888ghbt27F6XSyceNGXBOua5WOEHBZIsvlLeDyzflHDtPo83H+kcMTHtHQNC0rQTuXChqSCBGXX4Q3rvKw+MJ8+KbfctYzx1Nrj33sAh6/7gJQJQiV0DhByZEkCZtt5vOj0Wic9nGTycR5552H2+3m+PHjbN26lQ0bNtDc3JwvU0uOEHCCSZjsdrx+Hzq7I7X2zBkdpz1wHeO21UlSzt7IueSFAyHi8o3wxlUO9SeH+di//pqWVzwAxA06fvqlS3n+ba8qsWWCXEjMQs21CjWBzWbjuuuuy2lfO3fupKWlhUsuuQSAAwcOsGPHDh588EE2btxYNWFUIeCypNxDqEmyaSdisNkxDntQxlwHx4ZNx2KRc/sKzUUvHAgRVwhEy5HyZvH+bj76mUewDydcbH6XhR99ewNHV7SW2DJBPshXCDVXDhw4ACSKGZIsW7aMhQsXsnXrVh555BE++tGPVkUzX1GFmiXShBDq0GDmVYYeb2ErE3NpJ2J31KD6fNNv5BnEXteQ9THGMlfaioxFVKcWBtFypPxY+bsXufG6bSnx1ruojm//7/uEeKsaJFTknP7yNZ9y7969Kc/bWFwuF1dfnXBEHD9+fNLjlYgQcFky9qvWGs78i1foXnC5Yqlx4dIZUQcH0bTxU4Y1RUHrc1PnrENvyr1abK61FRmLEHGFQbQcKRM0jfU/eIoP3fI4+pgCwMvnL+S7D7yXwTZXaW0TVB3hcBjTNNcks9nM6tWrGR4eLp5RBUSEULNkogeunMl2KoO1rg6z4sTX5yaqKahaIufNbDBgW7A4r2HkudZWZCzJcCogQqp5RoRVS4c+Eueq/3iClY+/nFrbfdk5bL35jaiGmZoUCSoJDVByDKFqM28yI2azmUhk5grmaqlGFQIuG771LeYf9wLl7zlqC1s5ac4+PCnrdDjnzc+jRdMz1woakiRnp/aHAkLEFQBRrVpc7J4gH/nsbzijswdIFJf++tOX8OcPvK66m2jOYcolB87pdHLs2LEpCxWOHTvGsmXLimxVYRAh1Gz41reY99uHSm1F1TGXQ6mQEHGACKkWCBFWLQ7NRwb59KafpcRbxKznx99+J3++eqUQb4KCs2HDBnbu3MmxY8fGrYfDYXbs2MHq1aurooABhAcue1RwHz+C1VWDoyY/ifyFJB/D7YvFXPXCgfDEFQMRVi0cZz19jA/f9CgWf6LJ6nCjjfu++y5Ovqp6em8J0qPmaRJDrpjNZj74wQ+yc+dODh48OO6xiy++uGrEGwgBlz2ShEmtITwQQVF6YV75nqByDaMWk2RbESHihIgrNCKsml/Wbu3k8jv+hE5JZDOdOLuJ+777LrxN4n2dCyh5HkifK+kqUauN8pDMFUjyq2qQTYSHwiix8LTbC2bPXA+lgginFouJYVURWp0d8WiceCQOgKSovPtbf+HK//xjSrwdeEMH3/vxlUK8CQQFRHjg8oBZthMcGICW+oye1xY2c5IAdc7ieFkqKYwKczuUCsITV0zENIeZiUdjxNy9WKRhnNYYSKCclLjqzpdY/mxvars/fHAlj/zrRWg64R+YK2ha7kUMWj7KUOcYQsBlQ38/VtnDf0v3p5YUSUXflYitbz/7IraffXGprEtLJYVRQYRSkwgRV1xEflx6YqEocv9Bli6VSARuTNh7w7zni3+l+aVEw29FJ7Hl/72Zpy47p6S2CkpDueTAzSWEgMsGVUXSoFYaDW9pqMihROKuOTZzHxrBzMzVMVsTESKu+AghN4G+Iyw6a9TDctF3D3HuT45jCiSa84Yden74b8s4vEGIt7mJhJpzDlx55dBVAkLAZYMso8k6hqTRi6kiq+gtCQ9c2JD7dIJCUWlhVBChVBiTEyca/hYVUegAwUEfrc0RkpeLJb93c/59R5FOh7yGF1h4+J5z8bda8PcMYJ9X/lX5AkE1IARcNjQ2ErI6+RfDuwFQNYWheTCvY3Fp7ZqBSgujggilTkR444rPxPw4mFtCTg4OYG/Vg6Zx3v+8wiXfPpQSb1GLjp/87HxCdUaMgCk+DAgBNxfJdRKDIHOEgMuWMQ0pIzo/Jmd5i7dKRoRSxyNEXGmYq0JOL6nIUZUrP/wcbfuGU+uaBJKqsfHa5wHovLKNY6vEeXAuopF7DpyoYcgckXWYA5qmEZaGqW+Zn9NcUI+3uK0iBkcqywuXZMBfmXYXAtFmpHTMtdYjZn+cjdc9P068qVJCwMmKhm0gim0gijGooIpLikBQNMSvLWs0cMZoWrAYo9GS9V7awsXtCt0WrswwZLI3nBBxowgRV1rmgpBrOD7Mv930JAufGQISos3bakYxymiyhKqTCDQYCTQYiZh1hNWaElssKBWqJuX0J8gcEULNElmWqa0r3pB3gQilpkMUN5Seag2tnvHXk3z0s49g8yaalAfrDPzyrnPpWeHig5c/hW0gSqDByP9tuxCA44cUbG1NpTRZUEJyr0IVZIoQcNnw2c8y0B+CzlIbkj2VWI0Kp0UcXlHQMAGRF1d6qknIrXr0Bd5/2w70cRWAU4tquf9Lr8a0IvHd6ryyDWNQIWrVAdDfrRC2tmMRw+ozJhqMcMFPnsMcVtBanDx1xfJSm5QVwotWfISAy4bPfpbBZ49A5y9LbUlWVGI16kREVepkhIgrDypZyEmqxj/94CnW/eiZ1NqLF7Sz+Y63MyKpaId6cJh8dF7ZBsBgj8LIITNqTQuWIk2UqRYiHi/m4CnanD7e9ud/YB2I4a0xsOsCOzQuRG82lNpEQZkjBFyWyOJOs2SI1iJTI0Rc+VBpQs4QjnPVl7fzuicOptae3LiMbTe9EVUvYwSwn0EwGuOFrhHQNCyNNRjqjCWzuVKJ9A2w0HKU+qUyoEt1NTCYJJadNcyhl0cINrwGg6Vy3lsxiaH4CAGXJZJc2QKuLWzlJJUZRgWRDzcdIi+uvKgEIecYDPDRT/+GRX9PzDRVJfjVZ17PX646d1zLJAC90UDNgszmPgtGiYdjNElHqW+eWvCceZbKP14+DAteVUTLskcj90IETeTQZYyQzFmSS9uQibSFzUVvJVItiKrUqRFVquVFuVatzusa4NMf+nlKvEUsBn707Xfylw+8bpJ4E+SO0n+K1vaZL73z6nxEfaEiWCSoVIQHLkuqJYRaqcUMIEKps0GEVMuPcvLInb37FT78+d9iDiTmOA832fnhf72L7rNENWkhWLP1AGt/sReTaXzbWteRIHJcw+iLc9llf02th8J/RzKa2HPZOezZuKzY5maEqEItPkLAZUua7+rQYIDa+sq5SFZDMYMQcTMzVsSBCKmWC6UWchc91Mnld/4JWU2IieOvauK+776LkcbyCu9WE6ZQjJqhCDrd+HU5riGpGnIcrP3R1LpBkZHkOKZQrMiWZo6oQi0+QsBlycQQamtYotsshoGUApEPNzPJcKrwxpUfxRZykqLy7m/v5A0/25da63zjEh68fT1Ri6h8LCQRi4GRWtMkD5zRF0eOg6qXCDaOFi6Ewnoko5FIuX8uWh4EnLh8ZowQcFmSzxy4UlLpxQxJRH+42SFCqjMTD4SIDvvQmUyYGpxFO24xhJwpEGXT//sdr3nyaGrt95tW8ei/XIRW4YVZlcCejcv4w+paXneWe9w15LLL/oq1P0qw0cjDD78OgP4ehW7DcoxWU6nMrTjcbjd79+7l4osvxuVyldqcgiMEXJZUehVqtSJCqTMjqlTTE+4fRIl60ds1LAstqKEwge4+UM1Y29qKdtNWKCHn6vXxsU/+itZDAwAoepmH/v3NPP3u1+a8b8HsMc6bz/Ejbto7pt+ud9iJsb1yxFs5hFC9Xi8HDx7k4MGD0273kY98pCoEnhBwWZLvIoa2sJmTBKgrUTPMSi5mSCLy4TJDeONGCZ7qweCKYJ43OtdYZzVgazegqRr+rkPYFy1BkotXuJ8Ucgm6Uv/KRswt/EcvH/30r3EOJHJegw4TP/7mBrrOW5CrmYIM0Rl0eIxnYjx5iHltk68jmqbxwj8MsGAGhVdGaOQu4PIRQe3t7WXZsmU4nek95+FwYixcNYg3EAIua6QqasBSDcUMSYSIywwh4iAy5EVfE8ZQY077uCRL2JfYCb5yEtvChUW2LkEuXrnlfzjE1V98HGM4DkB/m5Mffu/d9C2qK4yxghkx1Ttx+14NJxVi0ZdQYhqqqhGNwEuHF6G116HTVdFFpohceumlUz62c+dOLrnkkiJaU1iEgMsSSZRMly2iqCEz5npINR4cxtY+Xry9/TcHsIRjhMwGfvvOZYmUCX0YTVWL6oWbSEZCTtN4y+Zn2fDfu1NLXee28j/f3ECg1pL+OWOI+CMEBoaQZA2QMFhs2BsdOb+GasWiM3Nh/YUA/LHvT6n1axZ9iF+ceIiQEh63/dWv3sQjpx5hw7wP89fr7yd85EXqVqxh05qr2PzK/xbV9nxQDm1EWlpapnzswIEDLFtW3q1YMkUIuCyRZAlN0xgJeggrcTQ0wkEI6J3YnJXXpbxaihmSiKKGzJmr3jhJjkBiUBRv/80B3v7o31hwfAh9XCWuT4i1375zGdZWG6Hufqzzm0tobYKZhJwupnDlV//ABb/5R2pt7ztexc9veQuKcfrTvhpX8RztxuhUcbWbSfZMiviGGTjiwVbfiMUpflcTWepYik1vIxAfbZxdb6zj3NoVnOVYCoBVb+XX3Y9wMnSSgcgAISXMidBJDl7aTr3pddQ4zuKRU4+W6iXkRDnkwC1dujTt+vDwMFA9odMkQsBljcrJ4W4M5jpkvR4JcADxvigDA4epaZ2H0SxOcqVGhFIzY05646TR7BtLOEadJ4g+riKrGvq4iiWc6MEl6WTQyqvXQbo8OZs3zL/d8ifOfO5k6pFHr1/Djo+snnGygqZq9Hcdp2GpOVW0sXbbIUzBOBGrnt2Xn4n3RB+S1IJ5ipDzXKVz+ABWnRWLbtS7WW+q5/MH/j3lfbuw/gKeGnyapY4zU9sElSCDUQ/1pnqOB48zGPUU3fZq59lnn502tFqpCAGXJQoaJuvkbuU6nREd9YyccONsn4fBmNlJzuMtXSEDVEcxQxKRD5c9c8obN2YId8hswFNnxeaPpDxwIXOiB5eqqEhy+Q4Xd/uX0HpygC/fei/zTowAEDXquPeLr+eZt3RAdOaRaoETHlrPNI+ruF27rYuawTAj9WZ2X34mzgUWeg73YDY1Fuy1VBIRb4g3bnsBq6Kx4G0tHF/VkfKKPhUZ7bX3xqaL+aN7N0ElxFORffzz4tcQiiv4YmFCcYU6QxO/7dleqpeRM/nywAUCAe69994Zt1u5ciWrVq2acbtqDJ0mEQIuS3S66d86s66WwMAArvlts95nW9jMSXN45g0LRDUVMyQRIi575oo3TlNHWzX89p3L+O07l03KgQMInQxgnT+/VGbOyLLOI3zpP/6PGl/iNzzksnPrbZt46VULYZZjV61K56wKtMwWPaf6F6CzVE6bi7wz0E2d3ENrc5B37TqMvT9MrPkUL5xx5gTPKLRYnKjKAo56e1Jr33txH/Msr+PR424+uuQqfnToLyxxrGWexUlPyEuXz13sV5Q1+Rxmr2kafv/MX9hoNDrjNgAvv/yyEHCC8cymJ1TMH0XTtIpr+ltNXjgQIi5Xqt0bZ7DXEvUMYKwb9ZYnRVsSVVFBtZTtb/nSJ57n09/ZhiGuAHB0UQtf/Mom3C2ZVZpajSHWbjvJ2m2jbUuaXxlBF1ex+KLcdNVjqfVfXOhh+wfW5ecFVBi63oO8pqMfs00HGJFI5EXr9RqtjSMYDxwg2jr6HXpH6wqe97wybh+BeIQun5sr21fzaPd+AN6/6Hy+8rffcHHT0ooScJA/D5wkSdhsM59njMaZveEHDhygubn0OauFQgi4LBl7Iv9///gFy4ePokoSP21/A4+2ng+ATjUQj4UxGGeu+CoXqtELB0LE5Uo1e+OMTgchd4joUABj7eSUBzWqEHgljH1x+fXlklSVazY/wVU/G6163HveUr76hQ8QtGWRoyaBKRinZnA0EqCLq0iahi6ujlu3RmbnAak21IEelqXE22RkncRrX+Nn38tH0ZoXA3Bx09KUSBvLuXXt9ISG6Q15selHvZn+eKQgtlcCNpuN6667Li/76uzsrKq2IRMRAi5LxjbyXT58lLqoD02SsCjjT2qV2m6k2rxwINqL5INq9cZZmpuIeIYJHBtG0kUwOIwo4ThKWEbCiuOMJTPvpMiYwlFuuvMhLtn1t9Tar995IfdcvwF14rT0WRKJG4hY9YzUj4o/iy+KLq6i6OXUuqpohGrmZkuRWtmdVrzpLnkjhjVvZIl9MZ5GN8dfeYYBEgLOH4/gi41Pj7HpTaysW8SPuv4CJDxyI7EwNr2JeRYX+zhW+BeTR7QyqEIdy/DwMH19fVM29a0GhIDLkrGjtDpdi1MeuJBu1K2ryDF0hsrLEalWLxyI9iL5oFq9caY6FyZcqIqCEghjcBgx15fnEPFaj4/bbt3M2S8nKk0VWeL7n9jAr9+9Nqf9joRr2X15oto0yU1XPZYqYrjzp/8EwLGDMqGGc3I6VqXx9kef5u2/fQaj6sdgHC9WGo760HU9jvLodqyLHbwBuETVCEafRNLr+O3bnybwjgsm7TMp3pL810tPcG5dO7/r7izgKykM5dAHbizHjx8Hqq91yFiEgMuSsR64r73mvWm3MdiNGefMlHqk1liq0QsHQsTli7HeOKgeISfrdMg15ftaFh/p4Stf3Exz3zAAQYuRr37hA+w9/+yc963WtnLq8N+Z3zH1pcE3GMevX0R2Pr7KxRKKUuvxYSCKpBt/XtcpGpKqoQPsg6PhT3NMQZJlLKHJ4ebAFGHSfZ7K8ryVK253ZeUQZoMQcNkiqdM+HFaGcDaWb8XaTFSzFy6JyIfLnaQ3rhrDqgCxYJhA/yBxFJBA0iQMOgOO1uaSFDSsfuYlvvDVn2A9LQj6Gp3ccvuHOXrGvLzsX2c2MRQ7i/hLL9O2REbWy+y+fEmqD1z/8Sh94YXoGiqvWXmuhCxGhuocaT1w5pEoOkDRSfjrE1EXVdUIRi1Ieh0hS/m2n8kX5dDIdyzDw8OYTJUXAcsEIeCyRC/riAb70Jlq0elGwyzxeIS4LkDNghYMFRg+nSuIoob8Uo3eON+pPkJaGOP8mnEnSkVR6T9yFFdTC0ZH8b477/rVbj7x/UfQqYlmwi+d1caX/mMTnvqavB5H57ATsL+Ofxw8hV03zMnlZ6JqMv6oHc3Yis5e/WIkHb99xwX89h0X4Bjo5FWvDo177Ib3/hH7YAR/vYm7f/EmAA6/rGOw9rxSmFoSyi0Hzuut/nxnIeCyRKeTaattYyToIRTxAxp+PdQ0u3A5zyi1eXmh2sZrTWSuibh4MEjQ60E5PXlAp0pYnLUYZlGyPxuqyRsX6PMQNSkYayaLI0knY1xYh7e7n1rjPPSmwgoaWVG4/p5HeNdvnkqt7bz4HO686Uoi5sIcW5IkDC2tRGglGegTo9UTeOX5BLwHsTmnDiJHggqDsdYiWlVaNC13D1y+h5w0NzcTDpeur2oxEAIuS5LhkxprHclTfDPQHdeo3MvW3GOuiDjvyeNE7Tp080crB+MkwgzGk4PUtC7IW0iwGoocQkEf+tbpq9cMrU4CpwZwthcuVcIaCPOFr/6E1c8eTK397H1v5P4PvxVNFpKqFMh1jbxwIsCrtW5srskiLhxUeOFQHcxbUALrBEk2bNhQahMKjhBwWTK2CjXflFMhQ7V74aD6RZy3+wTxFhs6w+Sfu85lJ25XGDl1Emdrfi84lRpWDQ16wTW79IeoFiuYHU3uIW6/ZTOLX+kFIKbX8V+ffA/b18+dsFy5ojUt4m89Npynuqm3eVEUDVXRCIclOo8uRppXufnP2VJuIdS5gBBwWSKXaUd2QXZUq4iLh8NEzaQVb0kkvY6oVSIeCqG35LfpdCWGVWOhMPrm8U1wb7vz16z823FUSeJ/3reWX77tXAA0CjPc/uwXj3PbrQ9QO5wYKTTisPAfX/oQB5ZXR3pGNSDXN+KjEa+iEFL+igUNRW9FquDitVwotyKGuYAQcFlSriN1CsFc8MJBdYq4oGcQXev4PK73/34v1nCUoNnIz96yGgBdnYPgqUFqLLOf3ZsJlRRWTdd8e+XfjlPvCaDKEtZwdOzGeeeSv3Ry050PYYrGATjZ2sAtt19Dd5sYHl+OyDodv9twIZZQdE5UmwrKByHgsqSQIVRB6ag2EafK4z1E7//9Xr7wf79Fr6jEdYkcqqSIU4vwla6EsKq5tobhgQEMDfbU2vPnLEx54IJjCgd0Wh7z0DSNq376Jz68eXtqqXPZGfzHlz6Ir8pvniqd36Zp0jvXyHcRgmBmhIDLkmKEUD3e8siDg7njhYMqE3ETvqbWcBS9oiKrGnrU8d6kIjExrArlJeQMNjNy//g+j7fe9K5J26lxBZMhi3mj6Y4ZjfOp727jrTv+mlrb/taVfPdTlxGfJvwtEJQHUh4mMQinSKaIMqYskQr8zrWF83NhyDeDI9Xd3DdJazBRgTjgr+zXKyvjT4pBs5G4TkaVJeI6eZw3SS6GC24MBn/TaGg1FEiJuXLAUd9ArHdkysc1VUM9MYJtfu5hTcdIgK9//kfjxNuPPrKeb/7bFUK8CQSCKRFnhyyZSzlwSebCdIaxVIMnztbQiKevF11TQpAmw6UTc+CUfi/OhuaS2FiOhQ5GhxWnVs/IiQFwGdE7Ros7ou4R9FGJ+iXtOZ8H2k70c/st99N6ahCAsMnAHTe/lycvnltzRgWVj6hCLT5CwGXJXM6Bq9YZqemodBGnMxqxxA2EQxFkS6I1RlK0JVFDUcwxHTpjaSeHlFuhg7HGRkONjbDHS6Q3iIaGpEnUNbWgz0MD3eX7D/Ol//g/HP5EV//BOge33raJg2eJ/mGCykIjD41882PKnEIIuCyZq21E5poXDipfxNnnzYOeHkLeIeRmV8prpGkaqtuLRTVgn1c+XePLrdDBXOfEXDd9U99MWff4s3zquw+jVxK5dkcWt3DL7dfQ31Sb1+MIBMVCFDEUHyHgskQuggeunBr6TmQueeFgNCeuG2/FijhrXCHY40aRNTQN9JqEpXE+Or1h5h0UmXIvdMgWSVX5yI8f570P/SW19vT5Z/Of/34VIauYnSwQCGaPEHBZMpdDqHPRC5ekNeikm8SQ5EoTcrJeh73COsRXk5AzhaPcfMcvuPjJv6fWHn7PWu697h2oOlFPJqhsRA5c8RECLkvSNfuca8w1L1ySSg+pViKVLuTqBke47dYHOOvgSQAUWeKe69/Jb961psSWCQT5QQi44iNu+7JkLnvgIOGFm8tUS5uRSqOcW49MxRmHT/Hf/3JXSrwFrCZuuf3DQrwJBIKcEAIuS3TThDyGBvN3UWkLm/F4y/Mi1Ra2zpm+cOkQIq50VIqQO//pF/nOp79PU38i7N7bXMunvns9z513VoktEwjyiJaoQs3lT5ShZo4QcHmmNTz3PHNCxAkRVyrKVshpGu95+En+40sPYA0lpl28ePYC/uW/b+CVxS0lNk4gyD+altufIHNEDlwOSLKEps7tb95cLmhIInLiSk855cjJisINdz/COx95KrX259cv4xufu5KoqfwqfgWCfCBy4IqPEHA5IMsSyhwXcEnmakFDkrFtRqDyKlSrhXwLuZg/RHQkiMFmwui0z7i9NRDiltt/ynnPHUytPfiBN/G/H7oUTRYBD4FAkD+EgMuBYo3TKud+cDDqhZvrIg6EN65cyFXI+Xo9BAIhoiYDuhorajCCbsCL1WjAtaAp7XOaez3cfsv9LDqWmCQR0+v49mcu5/eXrszx1QgE5Y1G7h444QrJHHFLmANTNfPVNBVNU4tsTWmZ61WpYxF5ceVDNjlyQ6+48cqgttSir7Uj6WR0Dgu01BJwWHAfPIE2IWnnVS8c47//5e6UePPWWLnpzmuFeBPMGbQc/wSZIzxwOTDWAxdXYgyFBgmrEJMk+j2DSHrQW/U46pvQG3KfnVgJCC9cAuGJKy9m65ELuIcIWA3INnPa/UgGHfFmF94TfbgWNgPwhj/t53Pf2IIxFgfgRFsDt9z+YU61NhTipQgEglkyPDzMrl27ADCbzZhMJi655JISW5U/hIDLgaQHLhoL4w56MNibMADj0pSjMHT8FK4FzRiMlpyO5/GWbxgVREHDRISIyz+xQIDwyDCqBLIGFlcdesvsf1dJIQfQT1/q30kx5w8EkZunn0cq6XUEYjFcmsYHfvIHrnlgR+qxfSs6uO3Wq/E7yv/z1jSNwKk+VGJomoaMjLmuHoM1vXgVCKaj3IoYDh48yDPPPMOGDRtwuVwAhMNhdu7cWTUiTgi4HEgKuL7QIAZ785TbmQx1DHf30Lj4jKyP1RY2c9Iczvr5xaItbOUkwguXRBQ35AclEmGkv4eY3YBu3mgxQWhoEMNgnJrm+egy9HKn88pFVG3cSfGK7c/xsS27kFUNVZb44RUXs2XdKvQOK5/9j/9j/e5/pLZ9bP15fO9f303cUP6n1WDfAJGIF9N8B5c99hKWUIyQxcBDFywBt4Rz0cKi5fgKqoQyioO63W6eeOIJPvrRj2I2j96Q7NixA7fbLQScIBFC9Ye9YHLOuK1OcxAY8WCrqSuCZaVHhFLHI7xx2aPEogz1dyO11aOb8Jiu1oFaC0PHT1DfughJN3GLmUkKuailF3VCVrA1FKVxyJ8ScNZQFNdIkO997ResfPE4AKok8aOP/hNbrrgEKkD0hAY8xAxBzE2J89Y7f9tJvSfAYJ2NX79jBVqdxvDRV6g9Y3GJLRUIsmPnzp2sXr16nHgDaG9vp7l5amdLpSGKGHJAkiUCsTB6/cwhB73eRMRXJk1GC4woaEiPKG7IjkB/H1Jb/fQbLajH19uT03GMoRaIjV8LWozEdTKqLBHXyVjDUX52049S4i1sMnDbrVez5crXV4R4AwiHvBhrp/6NSrKEvsVEeGC4eEYJKhwJTcvtjzzNF3e73Rw/fpxly5ZNemzZsmWsXr06L8cpB4QHLgdkSSJd2P/f//ZzVgwdYX/tGfznOe8bfSAPhanlngeXRIRS0yNCqpmhqSoRKTbjnaYkSUSleM7Hk+Omcf+9Zd0qIOGJax4Y4YOPPIMzkEhlGKxzcOtt13DwrLacj1ssgn2DGBpMM26ntxqJDI5gxlV4owRVQblMUzhw4ABOp3OS960aEQIuB2Q5/fw2gxrHGo9gUCdcUDK8wdA0De9IHyElSvz0DqKygj/uwF7fmKXVxUWEUtMjQqqzIzo0DPWOcWvfvvshzn/hCKoscc+738jP3py4o1ZtBpRgCJ01+2Iho6GGmC+AzjF68t+ybhUbn3ieqx57FoOSuAt7sa2BT952NX0NNVAu47tmwXsee4b3Pf3iuLX2Ex70cRV7IMKPP/FAal2NKmx9xwVsWy9aoQhmJl9FDIFAgHvvvXfG7VauXMmqVasmrR87dgynM3GjvHfvXiBRgTo8PJw2rFrJCAGXA5IsYZH1BNQ4sjz6Vv61/kzmhzz8tf7M1JqqxjHYZ59kHY9FcQ93I9U0Isk1qQ9KD8T8cQaGDlN/xmKkMu7uLhr8To8QcTOjKgqSfvxp6oIXjtI47E/kpIWjow/oZFRFmZQnlwnm2jrUvhAKYXQOM5Kq8Zn//T3//Ks9qW3++Koz+PLnbiBkNmHw53CwEmD3S9R7xgtOfVxFUjX0cXXcY5qi4fAax1XuCgSFRtM0/P6Zf1jRaDTtutfrpbm5mb17944Llw4PD/Pggw9y9dVXV42IEwIuB2RZosZax8hID7J99CT3SNv5PNJ2/rhtI8owTbWzTwru8/Ygu9IPvZZ1eiS5iaHjJ6hb1J6d8UVCtBaZHhFSnR6jqwafx42uYbRQ6OlXL0554ILmMTdF/jD6ptwTlK1NrYSHBtGdGuTOn/2Wt+4/nHrsgdev5p5rr0Yt4xun6QiaLAzW2sZFA+yBCPq4SlwvM1g3mp6hRjSC5pnDrQJBohtvjh6409EsSZKw2WZOEzIap3aIuN1uLr744nFrLpeL9vZ2duzYwYYNG3IytVwQAi4HJElCkiTqzQ4GQ0MYLOn7R0VjXmqa62ddlh8IDKNYHNN+OJIkoSlGoqEAxhIN7c4E4YWbHuGNS4/OaMIQk8alj37mhivTbmtU9XnzSC/QdHzr+7/kVa+cACAuy3zjmit4+C0Xz/DM8ubX73wbD79pEbYzRlux/PgTD6SqUD/y/U0AxMMxgsecmOoqI1VDUHrylQNns9m47rrrct5PsvfbWJqbm9mxYwfhcLgqvHCVeRtZJkin+8BZTQ4ajVYIDhAND6cej8S8xGUvjvm1WOwztxpJEogE0M+i6a/e5CDoGcrY7umIBv14+roZ6OtmsP8UgaH+nPeZrEodHBGeuOkYW6UqKlVHsdpqUId8026jDvqw5qlFz9JXTnD/rd9MiTe/xcynbvpExYs3SNz4qbE6Yr7IlNtomkbwSEyIN0HFksyBm2rd7XYX05yCITxwOSCPuds3G220GG3EYhGCoSH6jRqNC1owGDNX+WoaR91/7PoJK3u7eL5lCV+6+AOpdU3JyvTJx1QUBt0niBrN6B2u1PpIPIb31CvU1mQmQiciQqmzIxVSFd64FKYaJ3ZPHL97aNKUBE3TUHs91FjqMNpz90Rf8vwBbr9rM5ZIIr+mu7Gez3zu4xxpm5fzvssFY908Qt0acccQllb7uMdivgih4yqGujOneLZAMAVlUoU6mwpUr9dbJGsKixBwOSCnCYkaDCachkb8Zi0r8ZZg8n6NSgxrLIJRGd+oKh+tpzRNo6/3GNQ2oZ+wQ1lvgNpGhvzDSJKE2VaT9XFEa5HZMzakCiI3zlJXjzHqIHCqn7gUT43SMmp6bE0LkfU5nso0jQ/87o/8609/hXw6FnTgzMX822c+xpDTMcOTKw9T/XzUaAMjL/by0OrXYo1ECRrMRNyNmJqmHyUmEKSjXEZpNTc3Mzw8POM21YAQcDmQHKWVb4xAWNPG5cztnX8WrX4Pe+eflVpTVQWD2ZBmD5kxMtgLroZpc/R0dhcj3sGcBFwSkQ83O4Q3bjw6o5Ga+a35329c4abND3HZH3en1rZfuJLbrruaqDH331e5IhuNmBoW8pt3LEytVe+rFRScMvHAnXXWWTzyyCNpH0t63qYKsVYaQsDlQKEEnKumiW5vL3rHaPf5Xy69kF8uvXDcdvHIEK4FuVehhuMxJHnm5gtxg5Fo0I/Rap9x26kQrUUyR3jjCoc9EOTr//Vjzv/7y6m1+y77J354+dsqZrKCQCAYZenSpZhMJg4ePMjSpUvHPfbyyy+zbNmyqihgACHgckIqkICTdXqcBjPecAC9OX1eTzw0gmIx5GXgdFwbP8B744E9XLv398iayrOtS/j3t10NgM7qIBwcyUnAgciHywbhjcs/re4Bvv3NH3BGdy8AUb2e2z92FY9dVD2jdgSCYlEuIVSADRs2sGPHDhYuXJgSawcOHMDr9VZNCxEQAi4ndLrCFfHWOBqQ/IOMjAygWRzoDIl+TPFoCF04QJ3ZwZCjMHcR1liUhsAIsqZxXvfhmZ+QBSIfLjuENy4/LHv5MN/89n3U+hINQ4ccdj736WvpPLujxJYJBBVKmYRQITG0/tJLL2XHjh2YzWbC4TBOp5OPfvSjpTYtrwgBlwMzeeCGBgPU1mdfGeew1+Ow1xPwDxEJnI7dG8xY6xck9k84632PRTfhZQQNRgZsNac9cKMXNCUcxGjKr2AQodTMEd643Fi3+1luvfcnGOOJAXVH5zfz6c99gu7mhhJbVno0VSXU34uqD3Pl7v1YwzFCBgu//qe3oq+SsJNgbtDe3k57e3k3us8VIeByYDoPXGtYotucn1sSm72WdDKwLWzmJLkPtzfLhnFFE1uXrWHrsjWTtpMjIcy1+esNJfLhckNMccgQTePabb/jYw8/llra+5qzuPlTH8FvE+9dzO8jFDqFcbETnWzjfd95gfphP4MuOz9/66vRDziwNFRH9Z6gEJRPCHWuIARcDhQyhFpMahqaCfUeR6qdeuahEvTjsua/nYIQcbkjwqozY4zG+OIPH2T9nudTaw+/aS13XnMlin7qAp6YP0DI50XVNGQkzHYHxprqayuiRCKE472YFrvSPm5sdhD3hggPDWCuFZ5KQRrKKIQ6V6gOBVIi5DIRcB5vYOaNpkGWdTTWz0Mb6keNje/QrmkayvAANTod1prC9IcSkxpypzXoHDfJQTCKa8THPf/53ynxpkoS3/nAe/jaR943pXhTIhE8x19hKOol2mQn3uwg2mxnWPUzePwV4qH8pC+UC+FhN8a26VsE6Z0WYspwcQwSVB5ajn+CjBEeuBzQFagKNRPawmZOmnO/mOhNZlrmLyLgHSQ0MoSKhgQYZB01TW3IupnbjOSCqEzND8IbN57FJ3v4zjd+QGv/IAAhk5FbbriGnauWTfkcJRZjqLcb2hom3eHKDhuaw8ZQdw91TfPRVcmwd0UfRs/Mr0VXbyDqHcbodBXeKIFAMC1CwOVAtYRQx2Jz1mMrUY9DUZmaHyYWOcDcFHKr//Yid3z3x9hPe8v6ap185t8+zsuLF0z7vEBfH7RNHyaUWuvx9/ThbJt+X5XAe/7wJO964g/IhvE3aYtPDqBTVGr8YX7xqftS61pU41fr3sgv33xRsU0VlCsakGsbEeGFyxgh4HJg7CzUUuPx5l7MUC6IfLj8MJerVd/zhye56f6H0KsqAC8tauMz//Zx+utc0z5P0zQiWmxSOvb7//gMtnCUgNnIz950PgAR4miqilRG54FssIYjNI4EJ5Wj6xQVWdUAlfph/+gD8cRzBIKxaEKAFR0h4HJAnth/o0TkK4xaDoiihvwzl6pVZVXlX3/ySz7w2J9Sa39euYxbb9hEaBbhTjUURrUaSPqi3v/HZ7jqj8/S0dOPXlGIn04l+NmbzkdqcBL1DGNqqCvESykaQbOJfocN2TheiNb4w4CKopMZdCWad6txBRkjwSoJHQsElYwQcDlQjSHUckCIuMJQ7flxlnCE2++6n0v++vfU2oNvfxP//f53o87SS6YqCowZK2cLR2n0+tArCrKqoUfBFo4mHpQlVFVJux9NVfH39BDVYsRlAA2dKmOU9NibW5CnqXwtNr9880X85JwzkNslpDHntF986r5UG5H3fvdaAGJHAtibziiVqYJyRnjgio4QcDlQLlWokL+ecOWCEHGFoVrz45oGh/j2N+/lrGMnAYjLMnd++MqM87T0Niv0DIAj8Z4EzEb6nQ5qgmH0JDxwAbMRAHXIh9HVMmkfSiTKUO9JtNZ6JElirFSLaBqRnuPUNsxDbymfxriWxnn4Dh3CuLRmygbl0ZM+LPb5RbZMUDGU0SituYIQcDkwkweuNSzRneM0hrmMEHGFo5ry484+cpxvf/MHNA6PAOCzWvj8Jz/C3nPOznhfkixj0vTET//3z950Pj970/lpc+CMMQmdyThpH8OnK1jTXc4kSYL59XhP9lDfvjhj+wqFJEk45i8hcPgVNIeCsWW0pYimqESPJMSb3lq53xOBoNoQAi4HguER+vq7QUvkw9ntTsym0oq1aipmgNKJuIjfR2jEh0aiv7jFYcfkmL5PViVS6flxb3i2k9vueQBLJBHWPNnUwKc/93FeaZ3sGZst9to6PAMe5IbRzzsp2pKonhFq0vRFjAyPEHdZxnnd0ok/pd5O2DOEua4wvRWzQZJl7PPOQIlGiBzuR4uqEAdJ1eFoWlJq8wRljiRCqEVHCLgc0EtW9NQkrvAqeD0+RgyDNNYvSI2lKia5FDMosSg+Tz+KCmgaOlnCXteA3lj6ZOViirh4JMJwby9xkxnZMdpPJRwMoPN4qG1uRm+2FNSGUlBxQk7TuPrRP/AvP/818unyt/1Lz+Bzn7mW4RwnJehtVpyxGN5Tg0gtteOqTDVNQ+v1UGN1YayxT3puKOhD1zz++Ff98VkavT76nY6UgJMtJsIjI5gpHwGXRGc0YW1u41fr3oQ1HBEFC4LZMYcFXDAYxHraOz3234VGCLgcmBhCNehtaKqF/sETNDUsLJFVmePt6yEYUdDbXCnhGQcG+gYw6aG2pbW0BlIcEafEogz29iDVNU5u4Gq1oVltDPb2UT+vBb2pOi9qlVDooIsrfP5/fs67//xUau2xtedx+7VXETUa8nIMk8tJY42DgNtNVIuhkhhbY9B02OctRJqisbV2+iqWrF4FUhWsNcEwj9xyFwA/fdN5/OI1r8qLrYVC9HkTZMQczoG76667uOmmmyb9u9AIAZcD6XLgJElGixkJRwIlCadmWszg7eshjAmDfbIg0dtcxOIxhnpOUjuvLd+mZkyhRZyvrx+prnHabaT6BnwD/dS2lv79KBTlXOjg8Ae547s/4rwXDqbW7t34dn70nvWQZ693IqQ4L6vnJqtXgXEVrMk1WziKNJddFiUm1O8hGkqE3fU6Ceu8xorv5ycoPJ2dnZx55pmTPGzamCZ4WhEb4k0r4NxuN48//jiBQIAlS5bw1re+ddzj27dvR5IkmpubWb58eUENLUd0+vQ/eIPeht/vLXk+3EwosSjBSByDfercLllvIBKRiUVCGEylDx0WSsRpmkZYic9qOHA4rlRFA9eZKDch19bbz3e+8QMW9bgBiBj03Hbd1TyxZlXJbJqIUWckGI+nqleBcRWsybWAyYBRyo+3UDB7woPD+Dw+VHsNst0FQERV8Xedwmo14GhrLq2BlcwcuR/ZvHkzfr8fu93OihUrWLFixbiUqWKmT00p4Hp7e7nuuuuw2WzY7Xa2b9/Otm3b+MpXvkJTUxMA69atY8+ePXzpS1/iV7/6VbFsLht0Opmbjmxjme8YBxzt3HnG5anHVKW03+bZFDP4PAPobTPn4OhtTvxDnrIIpUJhRFw8GECbIFDf++wePvHn3yNrKs8sXsLnrrgaAMlRQ8Q7jLm2shu4zpZyEHIrXuriG9++D5c/AICnxs7nPvMxDiwtr55k1qZGgieOpqpXAR655a5UDtyG228EQO3x0NjcVEpT5xzhwWG8vihy/fgUCUmWkRoaCEYiaMdOUdMuWqVkxRwQcMuXL085qwKBAJ2dnWzevJnOzk4eeOABVqxYUVR7phRw3//+97n55ptZs2ZNau3xxx/n05/+NLfffjuLFydK4Jub5+4di14vs9x/jLq4n+X+Y6U2J8VsixkUVZt0t/DVHQ+y8lQXz89fwhcuvXrctuVEvkWcpqogjfeo2aJRGv0jyJrG+a8cTq1LkoymxSfuouoplZD7p117+eIPf4JBSTTNPdLawqc/93FONU0/r7QUSJJETU0dXo8PuS7hbfvpm85LVaECqMM+aqzOqvfglhs+jw+5fuoUCdlkIhiJYPEHMNjLO3oiKD02m401a9awZs0afD4f69ato7Ozk66uLu68806am5u5+OKLOeOMwt1kTingmpubx4k3gPXr13PRRRdx9913c8UVVxTUsEpA1sl02tsTHjh7+/jH9AlhVMpecDN64dLE6lf2HKYh5GNlz+EJm5aXgIP8ijiDzQ5DJ8Ay6oULGI3022sSHrhFHal1xTeCaX52uVHFQNM0oiNeNEXBWONE1uc31bVYQk5SVa7b+js+8qvHU2tPn3M2n//kRwhYSx/OnwqTy4VrRMbf6yVu0aU8ceqIH73bi8NWg8npnGEvgnwScg+iOlwzpkjoamoIDg7hFAIuMzRy98CV3yVmEnv27KGjo2OS40qSJFpaWmhpaWH//v3cdNNN9Pb20tnZyZYtW5AkiRUrVkxKQ8uVKc/s86ZI3rXb7dx888088MAD+Hw+7PbJpfSl4JFHHsFsNrNs2TKam5sJh8O43W4OHDjA6tWrC+Ip1OnkcWHTJNGYnzpXadsDzMYLp9NJTPQjPT+vI+GBm9cxftsy9RbkS8RJsoxJ1o17P35x3hp+cd6aSduaZPIuivKBEosyMtBHWIuj2e1g0qEN9GAm0aPQZM+tvcZECinkTNEoX/rBg1z69F9Ta1vffBHf3HQFShmNoZoKY00NdTU1xPwBon0+QMNor8EwvzzOl3ONaCSKPEtRFlPUAltTjUhlI8AKqQWam5t5/PHH6e3txeFwpHLgxpKMaiUF3bp164BEyDXfTHkV0jSNYDCIz+ejt7d3UpHCpk2b2LNnD/v378+7UdkQDoc5ePAgBw4cSK2ZTCY2bNhQsDCvPs2FRFHjGMwqRkN5eAim88LZaxsY6BtAb3Ol1saGTZPEgyPUl1HD0YnkS8Q56moZ9AwhO6d+rerIMM4Si/N0xCMR+vu6kZqbkGB0CkBdLTFg0OulNh7HUgDbk0IO8tNHrs47wje/9UPO6XoFAFWS+O7Vl/Gz9W/Ie6VpoTHYbSIcVwaUYQCh6iiXRr6F1AIdHR10dCScG4FAgK6uLrZs2cL+/fu55557WLFixZRCzWbL/3lgSgF32WWX8cADD9DZ2Ynb7eYnP/nJpG3WrFmD1Wpl+/bteTcsU5qbm1m9ejVud6JCzeVysXTp0oIeU9aNv5iEY8OYLHrqa8sl2X96L5zeaMKkh1g8hqxPXxGnKQpGKY7BUh5tJKYiHyLOYLVRG1cYGuxDqm0Y38BVVdGGBnHWujCVidd5LEP9PUjTJMXLTidDAwOYHDXIU/QwywcTGwJDZmKu48Qpvv2NHzB/wANA0GTklhs/zK6V5+TXUMGcQidLRLXJOb/pKM9Yg2C2FEsL2Gy2VFFDb28vmzZtorOzk56eHu68807sdjtr165N23YkX0wbB9q0aRMwvetvxYoVfPWrX6WzszNtKxG32120Qof29nba29tn3jBP6E0qipzo6yTLEk21zej1k2cjljO1La0M9ZwkEpHR28bn5cSDXoySUhY94GZDPkScqaaGZrsdf5+bSDyOqoEsgVGvw7FwYVkmnscCfqIWEzPJMqm+Hl9/L84iVBNnE169sPMF/vN7/4M9lLjpcNe5+My/fZyDiyrj+ycoX2zzGgm+4kaqm75yXI1GsdvLI3pScZSJBw6KrwUkSUoVNezatYubbrppXJWq3+/nzDPP5D3veU9ejzurRJ7pXH+dnZ3s37+fhx9+mHnz5vGDH/xg3OO7d++mo6OjKvvE2SwOGuvLu+R8No19a+e1EYuE8A95UFQNTdPQ6WTq62sxmMvb8zaRtnDC3pMkREM2Qk6SZRwt88hvxljhCPi86OrGi+/3Pf0U73/6KX52wYX8/IILgcRJJqIpRbVttkJu446d/NvmLehOx7peXLSAz3zuOgZqXUWzVVC9yHodFgOEY3Ekw9SXPZ13CMtZxbvwC6qPpJd3bJUqFDkHbrbs37+fTZs20dzcnHJZjiUZiq1GATcxhFrJGEyWsunzlg+KOT+11GhpwkJrD77MwsEB1h58OSXgoHQ3yVMJOVlV+dSDD/P+x/+c2vZP5y3n1k98iLCYwSnIIzXt81GPnCRssKKzTeikH4shD3uoXVS+1eWC8mVsMedUhZ1FzYHLlPXr10/52MaNG3niiSfyXkI7keHhYY4fPz7uv1evXo3ZbJ7xuc899xzPP//8rI5z3XXXAemLGNJRylYikPl4rWphroi4dLcRUb2BgMlEdEJuY6lvOcYWPAyH3fzXfT/lzX97KbX2wIa3cPd734lWhqFqQeXjOqONyPAIwaFB4iqggSyDxWrEKjxvOZGvIoZAIMC9994743YrV65k1ar0U1hy0QLZcP3116f9d6HJWcCl87pNxGaz4ff7cz3UtHi9Xvr6+li2bFlqze128+CDD3L11VfP+MFFo9GMbUw3C1VQXswFEWdzOBNhVMfoSLTPXvWBSdtpmoZJKo8WHM1DHjbf90OWnDoJQEyWueXqy3jootUQnLkJtUCQNXo9NNambmY0IAgET3uGBVmS8zD7hALUNG1W1+JoNJp2PVctUAymqhnIlJwF3JIlS/jlL385Y3JeofvFbdiwYdJac3Mzzc3N7NixI+3jYzEajRnbWEkCbq564aD6RZzBasPo6UeZIWlPGxzE0bygOEZNw9nHX+HrP7qbhpERAHwWK//+zx9n35ln0SquoQLBnCZZEDATRmP6gsFctUCmuN1u7rjjDo4cOYLNZmPTpk0zRhvtdjv33HMP11xzTU4VqjkLuMsuu4zPfOYzdHV18bnPfW7K7Xp6enI9VFa0t7ezY8eOGbdbtWrVlO7YqZhqmL2g/MhHcUM5U9c0n/6+bmhKPypIHfZSa3MWtIXIbHh951/54oP/gzkWA+BkQyOfu/ZGTjS3lNQugUCQI3kKodpstlSaUj6ZrRbIlE9/+tOpAgW/388999xDIBCY1qnV0dHB9ddfPyvn13TkJQfutttu49prr+UDH/gA69atY926deNahwSDQXp7e/NxqIxJuksL0c6kkjxwUDgvXDTgw+/zomoSoGHQ6ahpbEaSyu/9qVZvnM5opLG5Dd+Am5AaR7VZkWQZLRDAjIzdUVva/nWaxtV/2M7HH/1lamn/GUv4wj9/Am8Z9tUTCAQZUkZtRNJRCC3w8MMP09LSwg033EBLSwu9vb1s2bKFBx54gLVr19LUNHVvToCR01GIbMmLgLPb7dx3333ccccdbNu2jYcffhibzcaSJUuARLz329/+dj4OlZYdO3ZgMpm45JJLJj1mMiUq2cLh/OfVVJqASzLjjNRZoqoKg90nUAwWdJbRDv8RTaX35Akcdjv22vqcj5NvqlbEGQy45rXh1DRiAX+iCXNTG1KJvW76eJzPPfQT3r53T2rtsfMu4M73Xk1sigbSAoGgsiiHSQzF1gJPPvkkN998c0oQdnR08PnPf57HH3+czZs3c9NNN/HEE0/wwAMPEAgEUrrIZrNht9vp6urK6fh5UyB2u52vfOUr3HTTTZxzzjlomsb+/fvx+Xx861vfKujg+5dffhmv15v2seR6QWahZhhCHRrMfx+YTGkL5yeBU9M0+k8eQ3M0oLOM96BIkoy+pgFfJEbQ68nL8fJNMqQ6OJIQctWEJEkY7Q5MTlfJxZsjEODbP/ivceLth297F1+96hoh3uYYmphnJSgwxdYCdrs97f7Wr1+Ppml0dnZy9913Y7PZUsUZ+/fvZ/fu3TzxxBPTdu+YDXmfyL127VrWrl2b791Oy7Jly9IqboBjx47hdDoLUnmSiQeuNSzRbS6fE1iuXriApx/s9dOOptFbHPh8A1id03c/LxWpvLgq9MaVA239br7xw7tY0N8HQMRg4KtXXcMfz80s11RQuUR8I/j9I0SUOAogSxJGZKxmC7b6hlKbJ8gnZXB5K7YWmK5adt26ddx5553cdtttqYrTw4cP09XVRW9vLytWrMi5EjUvAm7Pnj1s3bqVI0eOAAk34kUXXZT3sRFT0dLSkjaunRxqm++qkyS6WfaBKzdmmpE6G0LhMPIshnRrJjsh7xCWaQbEl5pqDamWkhVdB/nq//wAZzDhdfbYHXz+ozfwwqLFJbZMUCz8g/2MqCpybS0yo+EeBfBGIkROnaRuvhiTVhXkS7zl2Imk2Fpgus4VZ5555qQpVB0dHXR0dOTt+DmHULdv385dd91Fc3MzF154IU1NTXR1dbF582auu+46Dhw4kA87p2Xp0qUcOHBgUk+6LVu2sGzZsoINtddXaA5cEo83+5BuPM0P9qtPPMj2+7/MV594MLWmM5qJRkJZH6dYVHNItdis3/sU3/n+d1Pi7fC8+Xzs058X4m0OEfGNJMSbI/0FTjaZCNttjPTP3EdUIJgtxdYC00WgbDZbXsVaOnL2wB0+fJif/vSnk9Z3797N448/zq233srNN9/MhRdemObZ+ePSSy9l7969vPzyy0QiEcLhMOeff35BxFs8Fkdv0Fd0G5F8eOEmsurUYRpCPladOpzX/RYLEVLNDUlVufax3/ChHY+l1p4++zXces21BM1iQPhcwu8fQa6d3usuG40ER0aomXarykbTNAL9fUQVBdCQAburDr2l+n4PORcx5GlMTDG1QFdXF0ePHmXx4vQ3pw5HYSdq5yzgpmq4l8yF279/P/fccw8tLS1Tvsh8sXr16oLuP4kSV9EbKrcKNUkubUX0aX5sz83vYFV3F8/NH73rUKIRjKbSd77OBBFSzRxjNMotP93Mm/aPjqPbdtEb+N57rkQpcSGFoPhEFGVW4R21xkFoyIOltjzzZHMh6PHg9Y8g1daNKyYKeYcxDvRR17oAqZpGxuU6iSGPZazF0gJ+v59Pf/rT2Gy2VE7b8uXLUyHc6Tx0+WDWAu5LX/oSHR0drFixYtyIiplYsWIF3/72t7nnnnu46aabsjKy3IhH45gsRvSGzC9MQyWciToV2RQ0mM0mgkocWTf6FfrCW6+etJ0U8WFprLwZg9Xe+Def1I14+fqP7uHVx18BQJEkvveeK9l2yZtKa5igJGiahnLa2zQTstGE4vVNu008EiHgGSCmamhoyCQ69Ztd5ZtXGxry4I1FkRsmN9aWa2qIqSqDJ16hob1w3RmKThkUMZSCZcuW0dXVxZNPPsnu3buBhGMrmfvW19eXth9cb28vR44cYc2aNVkfe9YC7tChQ+zfv5+HH34YgOXLl7NixQpWrFjBPffcM+0A16lKbSuVeEwBwJChgCu3SlTIPpRqr2sieOIoWk3TlHcZStiPw15YF3KhmeiNi0ciBPsGiEYUVBUkCfRGGYvTjtnlKpmdajyOpNMV/I5vImec6ubO++6iZSjRLiZoMvGlD13LU685p6h2CMoHSZKQZ/k91FQVSZ56W1+fG388js7pSq0pwFA4jP7YK9TNn4/OkH6kUikZCfiQ66auspVkmZjTRXBwAKuoxq1YOjo6uO2224BEOllnZyf79u3jwIEDKTG3Z88empubx2kmq9VKMBic1Sz56Zi1gEv2eevt7WX//v10dnayf//+1AXjwIEDXHbZZePch2NJjpqoBmKxOAD6Cq1CTUemXjhJkmiYv5DBnpMoRis68+hzNU1FGfHgcNiwuSo/NJL0xr3i60UNRDE565GNoxVAGuAbDhLxdeNc0Fo0uyIjXvwjI0QVFU2nA1XBIElYTGbsM3QAzwcXvPA3bnvgPqyRCABuVy03fexGDovKwjmPERllNht6PFhbF6Z9yN/fR0DWoXNOLoTQmc1oZjOD3d00ti8q+o3LdISGh1Bt9hk9kLLRRNDjoVp8++XQyLfYXHTRRal/JytML7vsMmCyoOvt7eWJJ54ARnvRFa0P3Nq1a1MGJvu8jRVzyYZ1yUG0Y4VcZ2dnzoaWE0kPXDYh1HIk6YXLVMTp9HqaFiwiHBghODKEejoL1aiTqGmrrvyOWDiELhTH4Eo/WUJnsRKL6vD3urG3FN7bHBgYwKcoyK46xn4LNcAfixE9cYy6BYULXV++84/86y8fQne6OesLCxfx/z5yPYNOZ8GOKagcrGYL3kgE+XT3+3RomoZJTu811jQNfzCYNgQ5FrW2jsBAP/bGwt+wzJZoJIzsmF1phlJNcccqeimzJSnW0jFR0CWdXvv37+fIkSMprZQLsxZwmzZtmrTW0tLC+vXrU+JsrKDr6uqiq6uLlpYWNm3alHPDunIiHi2NB07TNJR4BFlnQJbze+xcqlLNthrMtvEnrFg4iH94CEVN/LdOBkddA3rj1Cf0cmbE70Gun6mqzkRoxIe9wHPZIz4fvlhsyouEbDAQdbgY6TlFzbz5eT22TlH4118+xOVP/jm19qflr+P2D3yYiLH8QlmC0mCrbyBy6iRhKfG7mIimacjuXmoXps8BCw4OwCxy3GS9npDPS1lN081g4sQc1DxzlmSBw6ZNm/D7/dx999057zOvkxgmCrpqJXZawGWaA5ck00KGcDAxLD4aVZB0RjQ1jk7WMJkMOOta8ho+yHVCg6ZpDPWcJKrp0FtdqXUFGHAPYDaCq7l4YcZ8ESI+qyp3yVJDaGAAS0Ph8loCXi/yDBc3Wa8nGI3i0LS8fT+s4RC3bb6PC176R2rtf9+ynvve9i60KvK2CvJD3fw2fP1uAiM+VIcD2WRCUxS0IQ9mWU/twjOm9NLHYzFky+yCi0qZqSCDwUgwFkM2zDwqTl9God9cmYsh1Gyx2+1s3Lgx5z65eR+lNReIR7MPoWZayBDwefD5IxhMtZgmnA/imkrfqaM0zV+EJOV+Ac02lDoWz6kTqCYX+jStI/R2F9FYlGF3d8WJOEWa/GO549cPct7xLp5duISb35WowJUNRpTYSEFtiagKE9/d9+7dgy0aJWA08ovVp6uanLUEBwewzRCGmg3NnkHuvO8uOnpOARDT6fjGlR/gd+cXd2yeoLJwNDbjIFGVqXh9SLKEtbV95puKDHRNOeW/AVjrGxg5cRzq06dbJNHiccwVGpFIixBwGWGz2XIu7hQCLgvip4sYIOGFi8Vmla6bMbFoiJGRIEZLem+LJMnozI0M9nfT0LQgL8fMJZQaDQWISYa04i2JbDAS8vtxxKJlWT02FekuEUYlji0awajE0249v8bBqZHxLRLsRiP+aDQnW8aeJ9+7dw/ve/YpzujvQ68qxE+H1n+xeg2yXo8ayX2qxKtfOcrXf3Q3df7EaxmxWvn3f/4E+5cUZsKJoPrItM+b0WgmFAkjz6KHZDlexOxWK75QcFovojzkwbZwUfGMEpQVLS0ttLTklm8j4h5ZkAyhQmELGXwjQ1OKtySSJBMJx+nuOcYp9wl63CfxDHQTi+Y2viqbMVuB4SH0lpmTd/W2Wnye/mzMKhlGbfJP5anFSxn+4Cai11/Pl9/9Zi7sWEjE6yFkMPMvF13ISDjC5950MUsbE3fiqxa0cvNb0g9azoSxYtIWjdLg96FXFWRNQ68q2E4LRE1VkXNsb/6mfc/x33d/KyXeTjQ0cd2nPi/Em6CgWOrqkKcZFJ5EjUSwWsurryaAvb4Bh6KiDg9NekwNh5EH+qmf31p23sOc0HL8E2RMOd68lD3xMR43g0FHoSZ9RqMKhlkMMTDZGgmGB7DYE0JBAfqHPDitFmyOzNt4ZBtKjavaJLnw1R0PsvJUF8/PX8IXLk2EGSVJShU3VAp2vYWhaGRcQvbf3v5uvlXn5Im/H8Lx+JM88bl/5pJn9rNu8Ws4MTTMsYFhXu7rxx+JsmpBK+ctbOX7Tz6Tsy1GebRFQ8BoZMDuoCYUSnngAqeLCdRhD9a2LD2zmsaHdjzGx37369TSvo6lfOGfr2PEVlYp44IqxVFTg9fvQ56il6Smquh9Xizt5Tlj197UjCUaxe/pP92EOOExsdnsmKvN86blIQdOI2/jtOYKQsBlwXgPXHZv4awKGdL8IG599icYVIXnms7k14sT82UlSZq0rcFaizc8gk7vw2zJvJluNiIu3d3kyp7EfNSVPZU5HzWJ3dVAqO844VoZWZ9IRnRZzKxZspAn/n4IXziC1x/g/Fe/BgBn3Ehb2Er30Ah/O+lmvrOGF939k0Kq2WC12RgOhdBZLPxi9Rp+sXrNpBw4TdMwy7qsWrkY4jFu+sWD/NOzT6fWfrv6Qr5x5dXE9eKUISgOFlctDHnwDvQhueqQxnz3lBEvpnic2jIWQmo8TsjjQafJGE1GLDPkxAkEmSLOxlkQi4zPgcuUWRcypLkbMagKBnVizlV6DOYafD5PVgIOMs+H08nSpOadz8/rSHjg5o3OR9U0Df003dfLlcamhQwN9uDXhpFq63jq8HGeOnwcZWQYc1Sh1mbjaP8I9I9wyWvPwGY2Uh814TCZaKup4cdPPZ+XkVyW2jqiPd0EwxI6c8JFmypcIPH+SgNuXFl4JmoCfv7zx99nxZGu1NoP3vEeHnzzusTYiTQEBwcIhcIomgYS6GUJm8OJqcCDnAXVj6W2DrOrlsBAP7FgIq1DRsNWW4/eXJ4zlpVYFO+pXmIKyM46JElCjUXxHTmGxWrGUYQ+kYK5gRBwWTDWA5dtK5HZYEgzMf65pjMBUt43gHBwCKPNlXYfEUU7Pa4m+3TH2Xrh7K5aBge96K2jeXDJsOlYFL+H+tb89icrBgnhqcMQlQkdOwayhKxBja2WL197Fd/51a7Utj/a/gzz6hzs+sdRPrvuQn60fS+vXtRIW62Tk0Ne3MHcJpM457WiHxggOOQhbrags1gSLRq8Q5j1epztizP+zBe4e7nzvrtZMNAHQMRg4Csf+DB/XrEy7fZKLIan+yRKjXNcW5M4MBTwY/IOU5ttCFcgOI0kSWXVqHc6lGiUwRMnkWubx1WKywYjuBoIRSMoJ0/iaqvCaSUij63oCAGXBWOrUAtZxGCvqcXjGcFoHhVEY4Vbyh41yu3PbeF1fYdRJZkHXv1mft2R2E5ntBCNBDDl6IWbjYgzmK2YZA+xCUPux6LEIljMhikfL1dURaHPfQzFVY9ss2GuHQ2HXPSaM/jjs3+l86Qv1WA5EI7SdWqQKy9ezqN7XwTgkxdcyFd+/ntefe58XuhNFHHk4pGzNTRgIzFSKx7wIel0WBYszCox+txDL/Of//MDHKFE1epATQ2f/+gNvDRNiMrT3Y3W0JS2Ekq22YnE43hPdeOcX1ktYwSCbPH2upFrp/awyUYTEU0jPOTBnGFlbrkj+sAVH1GFmgW5hlCTDA1O74UxmW3YrDri0fTbaZqGf6QHc009r+s/TH3YR314BGs8ktpGVeLo9DM3lJyOtnAiVDGbytTaeW0YYj7iAe8kW2P+IcxEcDbNy8meUtDffwK1vgl5Qg7YBWcuxB+Ns/1oHw1mhZbaUaF8bkcrPZ4Reod82MyjLVNMI1JqvurgSO5tPkw1TmzNLVgbGrMSb29/ejff+f53U+Kta14r1336/00r3kIeD8oM44JkvZ6goqAqhWmzIxCUE0osSlSZ+fenM5kJ+nL/3QsEleUGKRPGhVCN2b2Fs82Dq3E1ofN5CPg9qBjQG+1omkrI50bT6zC7mpB1ev7a2JHywAX1o5WSshZDP5tS1hnIJB+udl4b8UgY39Bgqku6QYa6lqaK6v2WJBwYIWaxopsgjtrqnHzr6ren/ttpNXPJp76FyebAZjayckkrP9q+F0h45EZCEWxmI/PqHOw7TErEnSRxMs9HflwmSKrKxx/9JR/44xOptd2vPocvf+ijhGbILwqGgsjO8S1u0jUTll11+PvceR/pJRCUG6FBD7oa16y2jcYrrAx/NggPXNERAi4LxnngjIWfh2pz1GFz1BENB4iE/UiSjGS3oJpqUx6X2y74wKTnaZqGKY/zWtvCZk4yu3w4vclMbUt1hM4CwRF0zsn9+E56vKz90vfHrRmDXky2hBcuKd6S/Nevd3FuRyu/e/alceulEHKmaJQvPvg/vOHAvtTalkvexF3v2ogyTSPmJMqYeY/pmgm/79mn+Pl5F/KL1WuIZzAbshgE+vuJ+MPE4yqaBrIMRpMeW2MderOl1OYJKhSNDMbWldlvIi9U4Usqd4SAy4LYuEkMxXsLjWYbRnNCPFlVBbf7OHp7+nwLTdNQ/G4a5y3Kux25zkutNJQ05cBf/+2DrDrRxXMLlvD5t189adtAOP20hX2Hu6c8TrGEXL3Xy9d/dDevOnEMAEWS+K/L3svDF79x1vuQkFLn63TNhBv8vlRD4XKqNx46+gqKyYlsrxt38lOAoVOD1DTUYKqZuRm1QDARnV6PGo9PSrNIRwUW4U+LRO45cFX2lhQFkQOXBfFo/jxwM+XBTYUs62hqbIPwILHQ8LjHosEhpLCHlpb8zEgdSyb5cNWClOZu2Rg/PUYrPr6li5SH29C2sJW2sJXBkWBecuTGsqT7BD/8ztdS4i1gMnPTx27MSLwBjC2QTjYTjss6VEkiLusYsDsIGI2o8TiGWQz1Lgbek92oltpERWAadI5avP3DKDmOOhPMTSz1DeAfntW2xixTbwTZs3fvXo4dO1ZqM/KK+BZlwfgihuzfwkwH209EpzfQ2LiAWCxCwOdBPR0Oqq1vRK8vXK5ZPobeVxIGSSamqePE8FOLltLmHeSpRaMjpTRNxSjlM2Q93iMHuXnl1vzjAF9+4EdYo4kil57aem762A0cnZd5qNteW8uAdwSdo2bKZsIAkmcA24KFWducLzRVJRKOo3dO/3vV19Tj7+vH2VYd4X9B8ZAkCYvFSCgWnfImAUD1DWNrmn5EYkVSxiHUcDjMrl272LBhQ6lNyStCwGVBNBJL/dtYhBy4mTAYTLjqilvZOZdEnLO+BX//CXS1Dam1LcvXsGX5mnHbad4hahrz398pJeTMox65jIScpnHFzj9y46+2oDvtTfxH+2I+/9HrGZqhknQqDFYbluEhwtEo8unRXWObCQMoAR81dntZzHsM9vWhm+VYuVhEVM0KssMxbx7x4yeIabZxY/eSqL5hHDVWDNMMua9UyrmNyIEDB0ptQkEQIdQsyEcVajUwV8KpkizjNNlQglMP11aDfpwma15C1pqq4h3swTN4iqHBU0ROHzcZWgVmHV7VKQqf2fYzPvnLh1Li7Q8rVvIvN3wma/GWxDW/DWs0jOoZRFNHq+rUWBTNM4DTYMRWVx7jgxRl9s2s1TK+EAnKn9qFC7DrVSSfh/jwAPGhAZThAfTBIWoba7HUVqH3rYw5duwY7e3tpTajIMxd9ZEDsfCoBy4fRQyzmos6gXgsQijgBUnC5qhLNZAtNnPFE+dwNSCPeBgZGkCxOdCdvrtWomF0wQAusx1bTe6NOT0D3QQ1Bam2NiUG/UE/hn4PtfZ6TBbbrD1ytlCI2x74Iee/9EJqbfNb38aP129Ay2Eyx1hqWubhUFX8fe5UtanJYMC6sLxOmJl4AcvAYSiocKwNDVgbZt6uqijTGx+3283q1atLbUZBEAIuC8aFUM25vYWZ5sGFQ378w8PE42A0JTwofSPdGIwSNbUNGIzFb4MwV0ScraYOW00dwREPEV+iUbHJYMbalJ8cr373MaK1rklTKnRWO6rVTv+Qh0bAZEm8x9MJuZbBAb5x310s7u0BIKbTccd7P8jjqydP8sgVSZZxtJR3c2ZLrYtQ7xB6u3PGbQ16EZgQCDJCI3cBVwABeODAgaoVbyAEXFZEQmNz4Ir3Fob8w4wMBzCaXIy9xpvMCc+Px91HbWNDqtVIMZkrIg7AWlNHvjNYAt4BIjWOaUeMybV1DHsGabaMf3+TQg4SBQ/LT7zCXT/9MQ2BROh12Gbj3//5ExzoODPPVlcOeosFPf0zbqeE/Nhc2Y2dEwjmMvnKgQsEAtx7770zbrdy5UpWrVo15ePDw8OYZ2hIXukIAZcF0TE9vkym4rRI0DQVr2cYk2Vqv7zRXM/QQD/NbaURUHNJxOUbfzSEbJ85BBs1GoiFglMmQV/9/D/43KObMSqJPM2j9Y18/OprOV7fCHluSVJpqHY7sUE35vr0vRPjkTBKLIRfcuCf4++VQFAqNE3D75863zhJdIZ2PwcPHqxq7xsIAZcVkTE5cEZT7m9ha1iie4Y8uBGPG6N55gu8LNsJ+oex2l0525UNQsRlR0zSJlUUff2RBznveBfPLlzC5zckmgXr7DUEh704Jwo4TeMDu3/HNTt/k1ra134Wt112HarFRtvspqBVOVbidiue/j7CBhmdK5FMrkYiyD4ftToLNa5FIN4rgSBz8uSBkyQJm23ma4fROHWrloMHD7J06dIpH68WhIDLgmio+B64WFRBNyE3552vPM07jz3Nb9ov4DeLLgBAbzATDnhLJuBAiLhsSHfuW338MA0BH6uPH552W0M8xmd+93+85e/PpNYeW76W762/ivg0Idm5iN5opqlhIfFYhMDgEKBhMJiw1pdX0YVAUHHkScDZbDauu+66rJ8fDocJh8O4XK78GFTGiGzdLBjrgTPlWMQwW7Q00wBW9R+k1T/Iqv6DRbEhE+ZKi5F8ka6GeO/CDvptDvYu7EitqfEYBt3oTUNN0M8dP/1uSrypSNz3xsv49ts+KMTbNOgNJpx1LTjr5mGdZX84gUBQ/hw4cIBly5aV2oyiIM7wWVCIHLiZwqjpWhtEZT1Bg4moPOFjLJM2CMITN3vM6Ahp44dhJ8OmY5FGRrA1JqpeFwz0cvtD/8384QEAwnoDX3/XR9h91rnFMVogEAhOUw6NfN1uN83N6XNcqxEh4LIgGh5t5JtrG5HZYjKbiEaVcf3ebl951aTtYtEgNbXlU0UnRNzscLqaCHq6keobp9xGjUao0Sc8m+cefZEv/vKHOMKJZPtBu5Nbr7ieg/MWFcNcQRGIBHz4/V7Cmop2WtybJRm73YnJVj6/cYEAKIs+cF6vl5dffnnS5IVwOJHY+swzz/Dyyy9jNpu59NJLS2FiXhECLgs0TSMSimKyGIuWA2d3NdJ38hWM5qkv8AmCmK1NRbFptlSTiNMmeMnyhU5voNHewMBAH9Q3TjqGEvRjj8SpaWjln/bt4l+3/xT96ekHh5va+OKVN9Cfh0bCgvLA5+ljRFXR1dSOC6/HgAH/CDXREI7a8vqdCwSlZunSpWmLF8LhMHfffTfnn39+VRU3CAGXJSkBZ86vgJtqKoMkSbgaGhkeHMJoSj+KJRrup65lfl7tyReVLOJioSAjPg9hRUFFAyQMsoRVb8RR15w3QWey2plvtuL19BJCQU1ONpBkHBYnljobH/nDVq58ZkfqOU8tOYf/fPdHCRuru9/RXCLoG2IEDd0UXjadvQZf0I/eP4ylhMVKAsFYyiGEOtcQAi5LkoUM5jwKuJmmMpgsduqadPiGPUTDcSTJgKapSJKCwaSnfl4rev3UpdWlphJFXMg/zFDIj3zaEzLWGxJQFUI9R2matzhvIk6SZVwN83FNWDdHI3z+4R+w9mBnam3beW/mh2/eiJqnsViC8sAf9KObwZsqW+34RoaEgBOUD2Us4LzexOScZCi1WhACLksip1uJ5NsDNxMGo4W6plY0TUOJR5AkGV0Zi7aJJKtTT5KoTs1UyMUjYXyeQZKz03Uy2Osb0J+eTZpP4rEoHv8IOtfoQPYrDuzBEo0SMhrZsmwNam0jnr6T1DcvyPvxk9T7hrhtyz0s7T0OgCLJ3LXufTz6utcX7JiC0qDEokQkidmcVaJaoipZ1hf3HFSN+Dz9hCJh4lrixCJLEiadDkdtI3pD5ZxfS0oZCji3283evXsZHh4GYOfOnanh9tVQqSoEXJYkBZwxzzlws2nqC4mQqt5QuWGzbLxxQ6dOEonLGKyu1JoCDPYOYDKAa15rXm30DfePE28AGw88RUPAx4DNwZZla5AkmTAaqqIg69I1A8mNjt7j3P7Q3TT4hwEImMx85T3X8fwZr877sQSlJxLwobNODp1ecWAPAFuWrUmtyVYr0VAAs8NVLPOqDk3T6O8+iuqoR66xjrsgxoD+/l7qXHWYrPZSmSjIgebmZjZs2FBqMwqGiL1kSTgYAUCWpbxMY5iLZNIrbujUSeI6Bwbr5GHkequLmGRluKc7b7bFwiF8Q0PE+geI9fUT7e8jHkpvp1xTh2+oL2/HTnLhwU6+83/fTIm3Hmc9n/zQzUK8VTE6gxEtNnlEkCUWxTJhXY3FKsr7Xo54ek+gORuR9enP4TpnPZ6hAbTTnjnB1Eg5/gkyRyiPLIkEx/SCMxuIRuLTbJ05UxUzVBuz8cTFIqGE5804zaB3vZFIIEg8Gsk5nDrU200kLmFtXAzA5f/Yw+UvPIWmqiz29qPXVByREL948FsAbF12Ib9Z/JqcjjkOTWPj3t9z7R+2IZ+OS/yj9Qy+vPETDNtq8nccQdlhsjmQRzxgHj8qLZQmjKeLRjBMMddVMDNKLEpYA8MMOaSys56RATfOxnlFsqwC0cg9hFqGIdhyRwi4LBkr4CwWIz5vKG/7nqmYodqYKS/O7/GMC5sCXP7CHizxKCG9kW2vToSV9DYX/sGBnEKpw+5uYjoretPoBdMai9IQ9CWOoarImoYehYZAYs0SjSLl6R5SpyjcuP1nvGP/rtTan159Ht94xyZiItdpTmDW6QhrKpI0KizGhk4BNFXFPIXXSDA7Rob60c+i9Y4kyUTi+b1BFwjygTgDZEkoMFrNYraIMEY+mMobp6jjXeyXv7CHzz71a3SqgnK6sXFSxEUjk8NPs0WJRQlFVQz28Z9n0GBk4HRekiMSAlUhLskMnG7zEFBVbHnIQ7KFg3zx4R+y8pUXU2v/d9Hb+d+LN6QfxSGoSlyN83F3H0WbokWNpqlIQ/24WheXwLrqIRz0o7O5ZrWtKtxDMyLaiBQfIeCyJBSIpP5tsRZGwM2VMOpYZhNStcSj6FQlEV5UFSzxUdEWDYazbrbr8wygt03usbftNWvY9pqEQPzplm/REPTRZ7bwvqs/C4A0NECz2ZLx8cbSMtTP7Q/dTftgDwBRnZ5vv/2D/OG1F+S0X0HlIUkyza2L8bhPEtZAdtYhSRKapqJ6hzDLMnWtiwrSUHouEY/F0s4gToeSJi9RMAEh4IqOEHBZEvIXVsDNtTDqWCaGVHUyjE0hDumNCc/baQ9caEwityQb8Pe7cTS1ZHxcRZ0s/L6640FWnuri+flL+MKlV7Pt1RdijUXxKokTujrUT1N9brkxrznRxZe3fh9XyA+A12LjSxuv5x8LluS0X0HlIkky9S0LUVUFv6c/cVMiSzia25BE37/8IOuJBwPorbO4SY7FCm9PpTM3L1clRQi4LBkbQi2UBw7mphcuSdIbF9NbUPxDGO0J71gyXHr+yYO8pv94avuoz4PJXk8s4s/qeJIkTToHrew5TEPIx8qew4ljn/bEBTzd2LweXPXzciqaeOM/9vJvjz6AUUnk2Byvb+GWK2+kp3amkWmCuYAs66hpyPxmRDAzBrOVaMg/o4CL+YYxmfLfZ1IgyBVxK5clIX/hBVxrWIRI2sJm9EYT0REP6pgwxrZXr0GTwBENsbr7IGosihaNodMbUk1+M0UnJ/pCjeX5eR0MWBw8P69j3LrdbKGheUH24k3TuHrXI/z7r3+cEm/72s/ikx+6Ka140zSVkYFehvtP4e3rIRYKZndcgUAAgF6WMVhriAwNTLlNPBQkHg5hFb32ZkTScvsTZI7wwGXJ+BCquDsrJG1hM/2mWrwjHiSjEaMjUTkWk/UEDCYiqkJsZAiLMzHcO9sIk6OhGffJbgyO0ea9X7j06knbxYMj1NfXT1qfLYZ4jM/+9n958z/2ptZ+u+Ii/nvdVShpmgEPubsJxRR0NbWpysTAiBfD0ACuukYMOebfCQRzEavVijeuoTfbCA+60RnNGByJPpNKJEwsMIKsM2AyGLA6Z65WnfMIEVZ0hIDLkuAYD5y1gCHU2U5mqHbsRhsh2YQm64h4+kCS+Nzr1oF6KUabC8vpPDhNVTBmWRUsyzpsVhOhaBjdFMPhVSWOSVYwTOjTNVucAR//se37vOZkIiSrInHfmy9n6+q3pK00Heg+RtzmQm8d/1PVW2vQgIHBPhoamjCYhIgTzA6/p594NIamgU4n4WhsHteyZK5gddYR6H4F1V6PubYZJRom4ukHEn0lza4mlKCPGsvcPvcKyhch4LJkbAjVahMeuEJjsTrReY5BbRN6w9T5YbGQh9p5i7I+Tk1DM/T3EvQF0NnrxhU1xPxDmA0StfPastr3wv5T3L7lbuYNJ0I2IYORr7/zI+w5a0Xa7QNDA8QtDmTd1D9TXU0D3sF+GuYvzMomwdwhMDSIf8SPbHEhGxI3IIqq0nf8BBaLiZosCn8qnYb57Xh6TxBBh97uSt24qUocxduP01GDtWZyZTpANOgn7E/0gjSYTFjmuJdOhEGLjxBwWRIsQg5cknL2wqmqwoi3H1UDWdKw2+sLNvy5yd5Ez3A/Old6ARcPDeFqaci5vUJNYwt2VcHX7yauJs5KOhlcLU1Zv7Zzj77IrQ/fiz2SaPg8YHfxxStvoKtlauEVDIeR7eMvHhv/vgdrNErQaGTra0/3vpP0xCNh9KbKnY0rKCyBoQH8QQW9vWHcuiTL6O0NhGMR1N5TuFrml8jC0iBJEvXzFhKPRvAND6BqEqBhMRiwt7anPZdEAn58Hg8KRvSWxGSUcDCCb/gYVocNe13DpOdkSywUJOwfAcDsqMna818UhIArOkLAZUnQN7c9cJqmMjBwiqgGemtt6kTnHurHIKk01M9HlvM73N1gtDBfambIO0AIFc1kBkkmFgmATsPgqMFkmzwIPBtkWYezOT8Xs7f/dSf/sv1n6E7PUzzUvIAvXnkDg470d/ZJYqqa+oFu/PseNv79KRYP9Y1rYLz1tWvQ250EfUPUmMSoH8FkNE3DPxKYJN7GojOYCAfCxMKhOZlTqTeaqG2aeYJL2O/DO+hFb6sfd/HUGUxgMBEMB1H73dQ05jbiLOz3ERjyomi6lEgM9XnRSR7sdc68necElY0QcFkS9I2OziqGgCsnL5ymafS6X0G2N2OYcIdqsNUmHu87TkvTwryLOL3BRKOrFU3TiEWCaJqK8XRy/0nT9A2Ai42sqlz7x21s3Pv71NqeM5fztXf9M+EpcuzGM3pLa41GqQ/6Eg2MtUQDY2tUNBcVzIx/oA+ddfqbBQCDzYl/yENtDqPoqp2RQQ962zRC2GglFBjGEgllnZca8g7h84bQW2rHXaCTQs476KVGVTCXUWWsRO4hVNFzIXOEgMuSaDhGLBrHYNRjs8+t0NXwUC+yvWnKUKUkSejsTQwN9VJfX5iLgSRJGM3jhdpMM1WLiTka5v/9+n9Yc6gztbZ19Vu4702Xo86yTFYec0oLGo0MWh3UnB7lpcg6gsZEOFeNRdHpxTg3QXpicQXJOLsbKUURcbCpCI0Mg8E+43Z6mwu/JzshrGkaI4PDGBxNU+/f4mSkvx+T3Vk+0zjEMPuSIARcDgRGQrgaHNgdxRFw5eKFC8fj6EzjRci7u57CEo8Q0pv41ZILkSSJcFzJeqxVLowdxwXFF3INI0N8ZcvdLHGfAECRZL63/v387txLMtqPSa8j2f9962vXsPW1a9LmwBH2YRNFDIKp0GZ/ZdSyvIpqmoamqXn3uJcTkUAQndE5q23j8eyaUfoG3OhtM7cokq21BAb7sDfkFqrNK0KAFR0h4HLA7w0WVcAlKeV0hng8iiLpUzME3931FO8+/DTtI33oVYX46RP4r5ZciM7sJBQYxmqfOXyTb1LeuCILuTN7jnHblnto8A8D4DdZuO2y69i3+FUZ78tR20B/fx+6mtHqtpRoO40SDWM3zy0PsCAzZBmUWW6rkzO72fL3uwkHwsRjGkgSEhoGsw6ry4XZXl15WhnpkyzFTDwSRzLNLIJlnZ5oRIz3musIAZcDAW+iG77ZYkSnl1GyvOvKhFLPSFViEWSdIfXflniEulAiN0vSNHSqgiWeaHIs6XQoSmnztIop5Na8vJ/P/+bHWE5PjOhxNXDLlTdyvCG74gK90USty8XQ0AByTf0kT6YS8mNBwdE0tyoHBZlhr2tgsHcAvc017XbxSIga+8whwiSDx18B2YnObEM34R5iZMCHEotiq82+4XW5kUkgIdu2ehqzzwXLwLFaFEQbkeIjBFwO+L2j44zsDjPeoeKNNyqVF85osqGODIMpUc4e0pvwWBw4YiGk1HD5RFFHLOTD7HQV3cZ0FFTIaRobn9nBtX98GPn0rfff2zr48uWfwJtjtZjZ5qDJZMY32E9EiaNoiRO8USdT46jBbKvJwwsQVDN6owmjXkNRFKQ0kz4gEQKVYz4sNYtntU9v7ynQuabsUWgwOwgOezGY/BitsxeF5Yy9rp6Bnn4MtukjCpqqYDJll5OaiUjMduJMwSgjARcOhzlw4ADhcKJbRCQSIRwOs3r1apqbyyjsnCNCwOWA3ztaiVpMAVdKL5wky5h0cuq3+qslF/KrJRdOyoEDMBDHYCyvlgT5FnI6ReFft/+Ut+1/MrX2h9es5ltv/xAxvWGaZ2ZwDL0BV55amgjmJq55rXi6jxOXLOgnFP8osQhSxEt92+zyKDVNIxKIYpjh5kFvcRLwDFeNgNMbTRh0KpqmTju5QgkMYF80OyE8EYvdht8/9SSYJPFICEdNdbyv+SYcDrN3715Wr16NeUx6ycGDB3nwwQfZuHEj7e3tJbQwf5Sbhq8o/MOB1L/tjuILlaHBwMwbFQCHrYZ42Ddu7VdLLuRnZ78hJd7iYT92S/meYNrC5pSY83gDKTGXCfZQgP/8xffGibcHLt7A19/5z3kTbwJBPpAkifq2dv4/e/8dJtl513nDn/vkU7mq0yTNKFiS4zhIlsE4EWSwjcjeXYOBd8HgZ8EsaU1YWNbA8i4sC8/Cw5oVy/rhJbNag40tGyyMjRyRJRuNA9bIsjSjmelYuc6pk+/3j+qu7p6u7qqeTtU953Ndc6l16tSpu+qE+3v/YrFgglcncWskbhW6NXKWZOrMTSibWOeuxqktotmjxbVGwajRd4eDyskbwF0kiaMNr0kpidqLVI4fu+bELbtYhrA1dD8Rt7ELpWv6jL1CSLmjf7vF+fPn11nfVrjtttswTZMHH3xw1z7roEktcDug01i1uOUL+yvgDtIKZ9l58lFAy22gZ0obXg+7LfK6RvYAkhe2y7Va5I7XF/lPf/H/cLo2D0CgavzXb/xePvScu/ZusCkpO8TKF7Hyo2VSbkYSxYgRs02TZIz8aruAEILJMzfTqS3iuS2iSIKUKIrAtDQqp28YWQhvRvn4capX5tCyG7vKSCmJnUUqJ8fQIj8mp7pY7F3fvu8f8Ej2nlTA7YD2Ggvcfgs4ONiyIvn8BKbh0u7UCeKEhJ45V1cUJnMlTGs8iumOynaE3HMvPs7b3vm7FLu9/eqZPG/7jn/DF07dsj+DTUk5QIQQyGS08kBjU6dsl8lVpsjtUetTzbSYvOEknaUFfD8mWa7Np6gC09Qonz69Y5G4F4xLEsOZM2d4y1veMvA13/c5duzo9PxNBdwOaNVWBVyhdHCxXmsTGqSUJHGIompbxmnsBoaZYcIc495818AwIfe1n/skP3H/H2Esu1AuTBzn5//lW5gr7V7/w5SU/SLyPZylKkm0LBI0QXZyYsu+utnJKRafuoyRGa5gNCON0rkWVE2neCztiLGbPPTQQwC8+MUvPuCR7B6pgNsBrVqn/3extD0hE4QerU6dIEpAghASXVPJZ4uYxujHWnGldjtNuo0mkRsh0JAyRrVUjJxJfuLoZN3sF1cLOSETfuzRD/HGj93f3+eRm57FL3/rD+KMc4PplJRNaF66RNgVGFYRdUVnJdC4uISeERRPDhYQiqJiGGJoke4ocMmVjlYtuJQtGBML3CBWslLvueceSqXSQQ9n10gF3A5oVdcKuNFdhh2nTsvpYholzKti3avNFlnLoZifGvl42VqdlhCYehH9qrascTOk2r3AxKnxybrx3BaB30XTdDL5PfJDLCOlpN1aJEh6wdQagmJpemTr5CnPwogC/u2Df8LLn3ykv/3/POcr+fWXfxuRL8E/mGSSlJRrxV+cw9IqGNbGZBvDKhGHIbNf+jLmJk3ZZbZId36WTPH4QBEXBV3CyKErs3SvIUEo5fCxWy5Ux3G49957h+53xx13cOedd276+opoazabeJ7Hd3zHdxwp8QapgNsRzepqJuaoLtSu36HdDTCN0sDXTb1A13dQlTq5IfWGAFy/TUeCaQzO+FRVHRHmaC7MUpy+toKyu0W7uYTb7SJVG83I0w1DmrMXsQydUuXaM7c2o9VaohV0UXLlfoufUCa0a5fJqzql0vBYiGK3xb9/4F6eufgkAAmC//cl38ZfP+drOBYKSIuhp6whjgJ8r4OqmWMbBxoGXeZjC/Xq1eMaVFXH8Axm2gL96lXhMknxRqrNWVyRoOYnEIpC5HfRPIeyalPInwZv4FtTUjZFSkmn0xm6XxBsXSTesizuuquXVHbhwgUeeOABnv/853PbbbftyjjHgVTA7YCu4xN4IYalj2yBazstDK205T66lsXpjibg2oGDbm9d7VxRNLx2Czbvj7zn1JYuE2KjrhmrquqomUkimbAwd4HpY2d2TcS1Wku0hUArrI9NE0JBz0/ihB5JfZZKeXNRe7p2hZ9/4O3MdGpAr2jxb77qX/PQmbO7MsbrjSgKaLeqyOVTnMsUMY5IDKXTqdHxXQKpoFlZ4q6D0qphaxql8u4vTnZCy2kM7coAoGdLtDo1Jja5RxRFZap8CikTOq0qCQmGbmOXbtjlEaeMPbvYzF4IQTY7fD41jNGLJZ85c4aZmRn++3//79x9992cPXs0nuGpgNshjaU206cqlMrDLzgpJWEYow5e0K4jSXT8wB0aD+dLyQiHQxd5Os0lcsX9D7bvtKsE2Gj64MBoIRQUe5J6dZbK5M7T46VMaIUu2hZuaFW3cAKPfOgPtDC88NIX+Km//30yYc+EsJQp8Z9e/W94cmJ/Jqco8IjiAMPMHvoG4VImLC5dJhACLVPui5kFp4XeWqJSmtnUynMYaDTmcVFRMxVWphRF1cHK4ScxcwtPcWz6xrERcdE2am6Nsq8QCvni6CEfKUeT3XKhZrNZ3vzmN+/OwdZgWRa33XYbDzzwALfddtu6Ir+HlVTA7ZBmtSfg8kUbVVWI4837ocZxAGKj2+KnH78PXcZ8pngL98/0MmR0PYsXOEMF3KB75mc/++cYScQjE7fy3lMvAXrWriTsDth77+l2u2jm1rFuQij4QTQ0MHoUmo0F1Nx6q+S3nl/tFPFXty13itjEwvAN//wgP/iJ/40qe+fySxM38Ct3/xtqI1gtdoKUklprDldGfMvFz5JNYlzgPTe+kKKZJ2PvrH7XQSClZG7hKUR+Bv2q86rbvUr+i/V5psszaIdQxHXdFo5U0DZJZBGKCrkpqrXLTE6c2ufR7QZjHJmekrJNZmZmOH/+PBcvXjwSrtRUwO2QxuJqHFyxnKW21N50X0XRkMnGyuR6EqPL9dslCWKEtsaD9jDkgOPJBKEcjAUgCBPMNXPzN3/5E3zPP38QRSZ8ZuoWfukl3wWAapdwWtUdWwlD1re6+dbzn+DHHn436nKv1m95/BO869av5K9u+0pCuSq4lSThXz/0Tr7p8x/qb/vkmefzm6/8/+DvsbiQUnKl9hRJZQahKPyLD3+GiW6bqp3nXS+8m3mniXJ5jqJdoFjq7XMYaDTmELnpLUW5mp+k3lpk6hAKnLbbQssOWZwoCl6c7MriZDfQthG6qY3BeFMOCWOi9X/nd36HM2fOcM8992x4bcXq1mg09nlUe0Mq4HZIfaHZ/7symRsi4FRUdeNV/plSrwDsivUNIAybTJaGuxONARLukcozAPrWNwA/bDBZ3v9MVCmTfszTCnbkM+m1EFLywsUn+tsVRSNJRusnGwYenXYdKQEhyWTyWHavZIG86kliRz5qEqNICUnMRLeNHa2v0m0HHj/54Xfw4qc/19/2zufdzR+9+JuRe1xPD2CpeYVkYmbT7Fg9WySU0PEUnMVLFDJZ8vmtYx/HAS+KUKzhv5+fSJIkPnTu4iBJGKVpmpYt02ktki8eYCDqMoVsmTmngT7Eohw6DSZy43+NpYwH41DI1/O8LTswrAi3o5KNmgq4HVKbXyPgJob3/jQNjSRZbyFaK9ygZ43RdWWkUhc53aIRdtH11SzYtcKtd7wELavueWHfQQihbGi429VMIkVFS+J14iiOAlRz68BUmSQsLV4ikhq6Xepvb7QdRLNOuTyJimCtI7urmcSKCssWuKqdp6v1LGoqMNmp8fMP/C431S4DEAmF//FVb+CB279qB998dGSS4AqJOuT86LkigTNHLjdN22ujdOpj3a5MSkk4Yoymlq3QaS9RKB6umoWDAia+5fFPkIl8XM3kXbf23PVCUYmTzcMr9hPdsMl0avhx2IvVG0AShWSQhzo2MWWf2cV+pteKZVmcPXuWu+++e+DrFy5cwDTNI+E+hVTA7Zh1Am5yuIArF2aYW7qArk1uKqj8cIljE6NV4c7ZJbz2PL4QaNrGoEwpE3y5xOTxg2vzpGvrrSrvvrk3qa3EpK0ggzbZLZIEpJTMzz2FmtkYT6WZWSBLtValmM/hrrEwrMS8XR0DF/kOdzpNfvlv/h8q3V4D6Y5h82tf+wOcO/HMHX3n7dDsLKIUR6uHJ/XeNaNZedpudcwFXAIjuuCEEHAI+2aOuiSSSYw6gtu7l7wSYprZPXWTT1ROUq1dxhXKBktc6DTIIJkoj2G/zZSUIbz4xS/mgQce4OUvf/m6RIVz586xsLDAG9/4xgMc3e6SCrgdsl7ADa86LoTg2ORpFhuzRAEYeqkfF+MHTVQ1ZmbiBKo6+qmZzM/QcGs4bgepZ9F1mySJiL0GphCok8cOxPq2QjaTpdV10IzVTN0VEbdCHIdYW9SlAmjW51AzW8dT6ZkJHLeGpUqiZLXp9opoW0FKyd1Pfppf/PT9mHEvImg2P8Uvv/rfcHmE+nC7xdd/8SN83ec/RHJVb8MbGwuoSUze7/Inf/Ub/e1JHKEKjXfd8hX8n9MvoOs2sTPjmdygKGrPbT0Ckedg2sMXQOOGoSgbQn9WrG5riZw6uanBixOZJNRrc/hhhFQMFEUjbjQwVEE+X+yHBuw2E5WTFAKPllNjuZMWmoCJ3ERqeUvZNuPgQoWee/Tuu+/mwQcfBHr9Tz3Pw7IsfviHf/hIZJ+ukAq4HVKbWxVwE1OjPWiFUJgunyRJYpqdpeU4LpiqTKBro9e2WUspU6EEdL02gddAUVRy+eX6Uz4H1vQeIJMrEYbzdIP1Im6FOApQ4zal6a1LdPhBhGoPF6JhLJgqTVFvzROYmWXr3CqR7/KvP/t3vOWf/6G/7fMzt/Cfv+7NtK39FRFW6FPxOsirrC1qEqOwGrO3gkwSBAp25KMZNp4/vgIOwFTVgW7Gq1EjD9M6fKUo8pkCNc9B26Jor0wSbFUduPBIkpj5uYtomWl0ffV1bTn7vN5qUYhDsnvUOV03LCaM1NKWsguMiYBb4RWveMVBD2HPSQXcDqnON/p/T04VtvVeRVEpF3Y35se28tgMFpL1AxRxxfIMeqdBx60ShhKhGiRJgK4KbNOkMEJ9tSjpxayt5Zu//AlgvUXPyJTpOg2mJ0/TdVu0OzVWcnKNJOJt5/6O16xpi/WhZ9zF77zsu4g2iQfaSzzdpJkpESQhYo3VNe9318XsrZCEIaqqr3E9j3eWYDFbYslpoGZKm+4TeQ4lezy7FgzDzhTIBvO4vos6oCixTGLoLFGZvnHg+6uLV9C2sCrrVoFmu4ppZg9lmZWUlJS9IxVwOyT0I+qLLcpTBaZmtifg9pOVpvcHKeIyuRKZXAkpJXHko6rG9uJ8Brjjrs4m7e+68nqmgJ3pnZec7/DTH/yfnJ0939/vj190D/e94BtGjtXabf72mS/nb5/5cubrlwjKE/2J/E/+6jf6ZUS+61t/EoDQaaF7AmPZohj5LvlN6o/tJTJJaNbnSZbPh6ooFMozA0WIYWUpJSG1dhUtV9mwT+g2Kej6yBYmmSR0WktImWBY2T1zL26HUmkGvVOn49Z6nRjMLHHko0R+rxPDJkV8w9AnkuqGeM6rMTITtJrVXSlynZKyV4jxyNG5rkgF3C6wdLlOeapAeSKHrquE4cZab+PAiS58OaoyuzSHriqAQNEVjEKGXHn/OjQIITbtyrAVg7Te2iSIFSLfIZdfL2yONxf4Dw+8nZPNBQACVeO3XvE9fPTmzZsh7yfTxRNcrl5AblJKJOq2UZwAI7MqdJSoi53Z384ajdocXS9Et8r9uoJhEjN35WlyWZt8aaMbNJMpYRgZWq0l/CQhQaJIga4IyrnySO204iikUZsnCBN0u4wQCm7LRWk0yGazZAsbBaDbaeA6HaJ4RWgKLMsgV5za9Xps2VyZbK7c74Wq2VkMa+uSIZ12bV0m9VYEWxQITzmahIGH322jajpWpjgWNQS3ZMxcqNcDqYDbBRYu17j1Bb0aa1MzRa5cqh3wiDYSxxFzrTky9gSKsea0JxBVQxYbTzB55qaxLhBr6tqGeKqrkyEAFOlj2atC4tmzj/OzH/w9Cr4DQMPK8yt3/1+cn75pL4e7LYSicLJyhmpjFpekl8EpezFSweI8ujAx14i3yGtTyu6v9alevUKYWBhXWb2EomJkJnB9F1mfp1DeGBagaQaVyrVZkKIoYHH+EkZmBmONl1s3MkAGp+sSxfMUlz9XSsnSwkUSmUUzyuhr3uOFEc6Vp5icPommX1u86VaomkFmZGsiG2MCNuMQZuimXBtOp4HTaRPHCrqZJ/ZCmo2nMQyV8sTxsXxGC7nzJIZxSYI4TKQCbhdYXCPYpo4VxlLAzbfnN83gVFUdRU5Qu3SRidM37v/gRiRfqLBUq6Lbm5fOiIIO+eyqReerH/8kP/zRP0Ff7oBxoXSc//TqH2JhDIvgCqEwWeqVj/mbm15M0lyka5fIrRGjMomJnBqlXJ7MHrf2WksYePg+6PbmcViakcFxq+SLya5OMvXqPEZm81hR1cjQ9dtY3Tamnae2dAXUMtqAosCKqqHY01QXLjNz8mAF/LYSww+oi0rK/tJuLOJ6CZpR6Wt7TVFBt0ikZP7KU0yfOHPoCl6n7A2pgNsF5i8u9f8+dqLMozx1cIMZgOu1SfQ86hYmeCEEeDpB18EY04By3bAol4rUaovomYkNrsbArZPPmGRzFYRM+M5H3su/ePRv+q9/+uSz+fWv+X5cw7760GPHh1/wDQB43TaK2yCREgGYmkZh5vS+u1PazepI7j7dLtOsz1OaOD5031GIQp8oURhmK9PNPJ12HVU3CYIEw956ghN6iU6rSq5wcEI+lyuxVG+iW8NjZw01FXBHncBzcNwY3RpsWRdCoNnT1BavMDkzPOlrf5G75EJNr/PtkAq4XWDuYrX/9/GT41dYtRM46NbwicrQc7iN+tgKOADLynH8eIZmfYEgjEhkL/9A1xSmJibQDQsjCvjRB/+Qlz356f773vesV/A/v+L1JIds5WrZ+bEI1I8TOVLRWiEU4l2M1+q0axhWaaR9gyih06yiW8PvQVUz6Hbr5A4w70g3bFSWhu4XdOtMVcbPYpyyu7TbDfQh17oQgiDqxYSq2v5nzW9F6gLdf1IBtwvMXljs/31sDAVcgtiwrvnZz/85RhLxSOVW3ntytfVWEo3/XSiEQqkyuNhuyW3yc393L7ctPgVALATveMl38N5nv+rAMk2PAtu5Knazo85KjcTREMRxgtBGe0MyBnFllcoMi4tX0LODEx4iv00+Y6EbR6f4aMpgwiBGH8E5oFtlOq0lipXdsXKnHF5SAbcLtKodnFaXbMHmxKnxE3CDMJK4Hxe2Ft+LDmA0u8OZ2mV+/gO/y7TTi0Hs6ia//qrv45HTzzvgkR1+tuPBGyVcKwp92o0qURCTJL2yMnHkY1hZVE3HMDXy5RkURRDLZKROIkKAUMTIYnPjsmb/0XSD6emTNOoL+GGMahVRhELot9GUmGK2iJ0d3/JEKbuHHPF6FEKQyIO/djdw8Ouh645UwO0Ss08t8oyzp5mYKmCaGr4/PkJIFxBKuS5u6pHKMwDWWd+kTJCaONBacdfKi57+PG/90P8iE3oALGVL/PLdP8RTE6cOeGRHg2y+SLPpbOhqcTVht8nE1NalTZxmjXazg2lV6HuBzF72qOcsgVSIhM38009RrFRwWw0Me3hmp6aCrul44eZN2tfvPx6ToKrpTEydREpJ12mQJAHliYm0cO91xqgOAiklyhj6K8dwSEee8ctHPqRcfmIeAEURnLhhb9reXCvl7CSBtz4z9r0nX7JOvAF47gK36JOc9Hoirl519nOY18xrv/Bhfv6Bt/fF2+OTp/l33/TTqXjbRSw7j5Bd5Bb+0SSJ0fVkyz6aXbdFp+1jWhvvESEEdm4KKROiyMe0pmjVW2gi6pVV2QKvUyVwHHLFSaKgueW+AIHXJFccL2u5EIJMrkyuMJWKt+sQQx9tOg69GvnS1jUGDwQpd/YvZdukAm6XuPSl+f7fp87sb3HVYSiKSkEziMLNBVngt5GJwlzjClJKTnq95eA4izglifmBT/wFb/7E/0ZdfgB8/MYX8u9f9xPUx7g/6GFl6tgNJH6VKOhueC3yHUTUoDJ5cstjOI0mhrF1UoZplwiDDgCGWUYRGp2lL5MMcPkD+G4DVWqY9nHa9XkKhTyR1x64L0Ac+VgmIxUQTknZL3KFMqG39eJDSomuibSMSAqQulB3jae/NNf/+4Ybx0vAAZSyFYRbY6l1CTszhbrcwSAKPQK/haroZDOTJDJmsTnLdOnEuvZbwFi5Ve2gy7/70Du489Ln+9v+z9lX88d3fhNyWwW2UkZFCIXp42foOk0cp06c9PILVAVKxSKmvbVVIAp9okigjvDUEUJBLse+ua0OmcxxglaNRPRqzAmh9PqMJhJdz2EstxTzuyFTlWNAnU67itBy/WtdJjGh3yBjmxSvsahwSspeYZgZsrkujtNBN3MbXpcyIeouMnPyxv0f3AikLtT9JxVwu8TFx2b7f5+5eWM7obEgScja0/h+B7/bBCFQFY2svSo4FaESSIUoDtFUvW+JO+g+qmuZ7NT4Dx94OzfWrwAQCYW3v+y7+OBtG7sypOw+draInd2+hdN3W0OtbytoeoYo6KKbWRIp0Y3McueFnhVCymSgFSJebpuVzZfJ5ss47Rq+3wQEmqIwceKG8W9JlHLdki9MoKktOp0aYQiqbpPEIYoMMUyNiZM3je/1mwq4fScVcLtEY7FFs9qhOJHjxlvGMD4B6MYhipHHHlJrSDdLNJ0aE4XV6vfjYo27dfEpfu6B/0G52wKgbWT41a/7QT53/LYDGU/K6AhVJZEJ6gj9o6SMURR95X/WH0cIhBjNhZTNV9jnjmMpKTvCzhaws4VeGz3PQdNyaGkZmZQBpL6mXeTCFy8DUChmqExuNIEfNMmAOPBvvPIQr3/6o3zjlYf624QQG3qOQk/EHWRs3Euf/DS/cv//3RdvVwpT/NQ3vTUVb4cEO1smClsj7RuFXTS9N2kpmiAKN8bdDSINDUo5KiiKipUpHBrxttIP9Vr/pWyf1AK3izz5hcuc/arbAbj51mPUlr605f5xEuH7HVTVwDT2IaB6G5b3rXbdd2uclHz7ub/lex7+6/6mzx17Br/6tT9I2xo/oZwyGCEEhjmK9W19W55sobicOLF1lVOZxJj27jeoP2jiKKRdWyDsRsgEBBLVVMmWy5h2ev2njAES2Glh7HGsbTfmpAJuF3nis0/3/37G7cd4+BODBZzrNum0m0SeRFdtksRBqgsYGYNy6fiexTjoYmOR0/eeuGvDflHkUxhSxmC/YuO0OOKHPvanfO3jn+xv++CtX8Hbv+oNRCPU+koZLwoT0yxduYxpbR4n6rbnyOR6YQi+t8jUiVN43TZO00E3Nr/OgnCJmZmbd33MB4nntGjOVzH1Sq8f6or+TaA918LLtSlOpRX5U1KuR1IBt4t86dzF/t/PuH3wQ7XZWsRvhehKAX1Ffyg9q4F0JfPek8wcu3GkyvPbpZgpsui00M2tK7vLqE0uv3U5iBX6Qm4PrHF5r8PPfPD3eO7cqhD+wzu/iXee/fq0LdYhRdMMJo+fpL44RxLrGOZqgJrfbRJFXezcFFHkIYTH5PETqJpONl9BJlU6jSqGVV53f4SBCzhMHj9aCQph0KU9X8cyBvdB1fUckdOloy2SK49p4lTK9cMYuUHPnTtHo9Fgfn4ez/M4c+YMr3jFKw56WLtOKuB2kcZii6XZOpPHy9zyzOOo6vrG3p7v0G36mOpgt4cQAiMps7R0mampG3Z9fIZuY6ttvMhD0wbHVYR+k3Jm+617dtuteqI5z3/4wNs50er1mfVVnf/2yu/l4ze9aEfHTTl4NN1g6sRpAt/FbTVIgMh3UTUV3bIRwqFYKWBmZta9L1ecIJsv06zPEwcxUoJQIF/OY2/SS/Qw065VMYytiw1rmk23VSe3w5rEnfoSQdvt90JWdIFVypHJj1dR8pTxZVzi2B588EHOnj3L2bNnAfA8j/e85z38zu/8Dm9605uwrMMRUzgKaRLDLvPYp58CwLL0DdmonVZ9U/G2ghCCqBuRDKk8f61U8tNklIjAqxInYX97FLpEXpWybZMxry1t7+okh2tNdHju7Hn+y1//el+81e0CP/e6H0/F2xHDMDOUpk5QmTrB9KlnMHXyJiZmTlKZPomZGXwNCkWhNHGcieOnmDxxioljp66ppMlhIO6O1o5PkRncTuPaPiMKWXzyCaI66LKIqZYw1RJ6UsRfiKhefHLL7hspKX3GoBPD+fPnuf322ymVSv1tlmVxzz334Ps+73nPe3blc8aFVMDtMo898mT/72c+b30rp2hAf9TXVh/h2xY/yWurj/S3mWqJ9rJ42QtK2QlOlU+QJUANG2hRk5KpcaJ84prF21p2IuS+9vwn+MX3/zb5wAXgqfIJ3nrPW3l86sYdjysl5TCxUtNuGJpmEnneNX1G/dLTWMok6oB4Uk0z0ZMStcsXB7wzJWX8mJubY2ZmZsN2y7I4e/YsFy9exLvGe2UcSV2ou8wXPvVE/+/nPv8097/z4f7/JwnrJPNrq4/wg1ceQJMJNT3H+ybuAJbLeOw0o2cECtm9dY9cnegAm7tWhUz47of/mm8/94H+todPPYf/+tXfR9fYOvswJeUosq14vmvwX7ntOmqc3XIWEEIBTyEMuujpfZiyBePgQj137hzz8/O8/vWv3/DairCbn5/nzJkz+z20PSEVcLvMlS8vUF9oUp4u8sznnULVFOKo5w5VrrJ3WkmIJhMUJMoaE7KUEkU5OsHYw4ScEQX8+D/8AS996p/629777Ffxv17y7SRpYa+U6xTVGM1B4gcNKgOsDkPf1+qgacPjXQ29gFOrUTo2WmJTynXKGAi4Qda3FVYsb0cpBi4VcHvA5z7xJV7+zXdgWTrPfM5JPv9or7yIZmqwGnaGp+jUtBwKknO50/3tftxkJr/7SQwHzSAhd7Md8XMP/C63LvXcNLEQ/P5XvJ73PftVBzXMlJSxwMyaRJ0IRdn6Ma2ZAm1I2Z9ByNFC7AD6yQ0pKePMIMvbCs1mE9ha5B02UgG3Bzz6sS/y8m/uuUNf8OKb+wIuly/RWGz0ExneN3FH3226gpQSzVYH9nk8KqwIudOtK/zEZ97BTLcBgKOZvO3Fb+QfZ54JB9Dp4aAIfYeo00ZZzluRCih2BuMasoFTjhI5HP8yOXMKscnzwOkuYuTL15QwFAQh+oh1j30vPJDuKymHB7FLiQiO43DvvfcO3e+OO+7gzjvvHPm4586d62emHhVSAbcHPPrRx0jiBEVVeNFLbuZPfv8fALCsHHbBxW930ZWN8SRSSnxR49jkTfs95H3nhQtf4Ece/RPs2Adg0Srx63d8P5fyxzm5hzGmUkrabo1uFPZM/gJMVaWYnTyQGmKLzSuAScaorIuPDJ0uSuMSx8onR6oJGCcRjc4SfpwgpUARoCuCQqaEoR8dl8H1hrRPstiZoysEemaif42Gfgst9DhtVTBiC+LtH3sxZmDLvKtJkpiJRKHkHZ2wjpRdRjLaxTTsGPSe0Z1OZ+juQRCMfOgHH3yQYrHIy1/+8msd3ViSCrg9wGl2+eIjT/Lsu27hxKkKp05PcOliFYBicRpHb+K0m8Q+GEqGKAmRio9u6xyr3LQnRXzHBin5+gsf5Xu++Ncoy3fsl4o38F9f9K9pDikwvFO6vkPVqaMbZRR9tZyLn0RcqV2hkitim/vXmmixNUusFdEHuMh0zUaqFvONKxwrnxrw7lUcr0Xd7WCYFXRtdZKVwEKnTsHQKWQHF4NNGW+EEEznj5MkMQ23SkKvlVbFyGPusEZbya4w261j2lsXkYu8OsX8sR19VsrRZ7cscEIIstnhdUQNYzTz8fz8POfOneONb3zjkYp/g1TA7RkPf/BzPPuuWwC462W3culPq/3Xspki2UyRKA6Xe6FaWObRb4ejJDHf+8V38+qLH+9v++Sxs7z9eW8g3OO2WEHYpea2B7ZwUhQNw56k5tTQnBpC7T0YNCEo5adQ9kBQR1GAFwtMffNbUAhBrGZx/fam5V38wKXR7WJagwWaaZbpBB3UbpOsfTTrpV0PKIpKJbe7xYp1zSCnCLpbFPaOgg4l3T5SHS5SxptsNsub3/zmXTvee97zHl7/+tevqw13VDjCpp6D5aG/+2z/76985TMH7qOpOtlMGWsfrT77ieM1WajPcqU2S3PhKf7tP/7uOvH2Vzd/Lb/9/DfuuXgDaLpNDHNzS4PrLhElCcKYQmglhFYiUvJcqc1Sb+9+Tb6GW8O0hpfP1/QMHW/z2KOm28IwS1seQzdytD13u0NMuQ6oZKfIJgGhu0SSrGY1xHFvW0EI8nZpT8cgZUK9Nc9c7QpXqrPMVq+wWJ/F89OYu0OF3OG/PeC+++7j7rvvPlKJC2tJLXB7RG2uyRcf+TLPvONmTp2e4KZnTPPklxYOelj7gpSS+folpJpHM8qc9Or8yhf/Nze5ve8fCoXfe/Z38NEb7tqn8ST4UYK5iU50nUVMs4CqrjfJC6FgWhN4kUe9vUA5v3sWkO2U+Yu3cE0EccIo+YexMPADF9PIjP7BKdcFpcwERSlpuTVC2Qumy6g6+cLeewX8wGWptYRhTKLp6+0JtU4H02szUUzdt4eCMevY8cADD3DXXXcdmZpvg0gF3B7y0fd8mmfecTMAr7z7uTz5pb8/4BFtD8/v4HQ7JIlECIFt2SO54RYbV1CMCYRQeFbraX7pC39MOeytpluazS886zv5JzvHfjmN/cBF0QYLlzjyUVRtg3hbi6ZZOJ5LMYl3Lzt4OzVaN9kexyFyRPeuYeTwgtZYC7i2W8cL/OU6iJC3C5jGznrqXs/4gYvjtZESFAHF3OSm168QguI+x0kmScxis4plDV4YGUaOMPJpdJYo5Sb3dWwph5uHHnqI2267bYN4azQaNJvNIyPqUhfqHvKJ9z+K3+1lynzVVz8LwzwcejmMfOaWnqbe8oACilJEiAJtJ2J26WmCsLvpe4PQI0RDCIVXLX6W3zj3v/ri7Wl7kh95wZv5XOkmpJLD9Vr79I0Em9noPb+JNcQFCWCYZeqd3XOlakIgR+x363otnG5zw/Y4Gb1n7qifdRB0/Q5Xli7h+AKhFFHUEogStZbLXO0SURwOPUbKKkHoMVe9TLXdIaGAFAUimedKdY7FxpWx6W3aaC9hmlsLM00zcTxvbMacMhhBrxPDjv7t0ljOnz/PzMzMQJG2sLBAsXh0YoFTAbeHdDsen/zbcwDk8hYv3SQWbpyI4pDF2gK6NoGhr7fW6JqNoU2wVK8ShINrfbTcBoZe4Lsufoif/+JfYCxXC/1M8Sb+7fN/kMt274Gt6zadfYpxMY0MSTxYdI4anC2EIN5FDVTOTRF49aH7+V4T25ih5QS0OtV1rzU7DWQ8Wv2IwG+QH8NMVC9wqLfbGMYEmrreGawbOTRtgoXalZGF6vVOGPosNpbQ9AqGvpr4IoTAMitIUWC+dmnbx+24DRZqV5hb6v1brM/iBzu7f/0oHun+0/USbbc6dL+UA2YMmtnPz8/z6KOP0mw2OXfuXP/fQw89xEMPPcQ//uM/HqlkhsNhEjrE/N2ff5xXfkuv2OA3fPML+fAHPnfAI9qaRmsR09h6ojeNCq1OjcnyCQDCKKDp1AjDGBn4/MzT9/Oa+j/3979slrmhu8QPP/FefvWZ/6K/PdmnOVkIganuxlpl96wAQijkTRM3dNH0zd27ceBhW3lQTTrdNqbRi2OTMiGIYpASKZOhpWcMRe5JNu1OaXaaGMbWyRy6MUWjvUilcDQDkXeTWnsJ09z8/lWECmqJRnuRUn5jRvbVxHHEQu0yilJAU0usvY1qzQ6a1mRq+TmwXUaNA1UUjWjEhUrK9c19992H7/tcvHhx4OtHyfoGqYDbc5747NM8/ugFbn3+Gc7cPM3zXnSGz376wkEPayBSSoIwxhyhvE4QSpIkxvNd6u0WpllhAof/+ORfcra9+v3+2+QLeEPjPOWoy9nGl9cdYz8LE5SyZRZaVYyry21sQ5Mpu1xKoZSdAKdKu7uIblV6kyu989B1q4hYkltT9sQw8rScBlNGBs93UNUshmHQbs+Ryx9HCMHrrjwEwP0nVhNEOu05Jkaoq7TfBKFHnKgMiyoUQuAH2+j7dJ0SRQFRrKAOeaorioYXjuaWXqxdQdcGF7k29BxxElJtzl1bosE4dD9P2TXEGBjJ3/KWtxz0EPaV8VuSH0Hu/4N/6P/9Lf/yJQc4kq2JkxDJxlTN181/itfNf2rdNkMv0mjP0eh0MM0Kp7qL/PZnf68v3jxF5xdv+1e868bX8mj+NDU9y6ezJ6jXVkWcquyfhNM1k6l8mdBbJIpW3b+6kcX320PfH/gNipnhZT+2Syk7QUbV8Ns1uu1Fuu1FvPYiGa1IdkBtt3DZjytJQAiEUMjZUzideTyvjp0E2Ekv7tL3WzideUw1izZsVj8AXK+NYYxWvHk33ddHlbZbxxwhnhMgioeLJ8dtIJT8lm5OVdHx/Zgk2b6FTFdGm37C0CFzREstHSnGwIV6vTF+T/UjyKf+7nNceXKBEzdN8+yzN/DsszfwhXNPH/SwNiBlghhgF3th4wn05fIC98+8uL+97bbJZs7wguaX+YXH/ox83BNGVT3HLzzzjZzPnUQH3nbm1WTtniUpH3ap154iky0yU9jfmCxDtzlROYXTbeAGjV7fWQF+7CBldlM3ZJLE6EqCfg0Nw0dBIAaKtUGsPOcsM0+9PYummihCJW9PE8UBzbDXmsztLGJoWSxrCt+vYW1RA+/gGP2hLfeqUNQRQggx+k86wn6u56KppaH7GXrPJVvZphUuY9p0fB9N2/q+EtLD2sItvJ+0nRqe5yORCAS2bZLL7KwjxiASmdBsLyITCUKQyxTHuyXebtRyS2/xbZMKuH1AJpK/+h8f5Id/7Q0A/Kt//TJ+4cf/7IBHtRFNNZFsdK2Eirrh5grCNkKx+Yb5R/jRJ/8abTnI/InMMf7DM9/Iorkaa2DqefygjWnk0XWbrKwgEgddG7GT9i6TtUtk17SilVKy0LhMJGx0fb2rMQw6aPhMla4tzmckRO8aGSWge2UXRSjo2nrBqakGf3fDVwOw9lvomrJ75U92EcvIUm930I3h1pURjTVjS5LENFqLhEGE7PXDQjdU8rnyholZSkmzvYDfDfqWMqGAaeoUcpVNFxK6buK5m3dVWMsov2ecjLafEIJkO4UNl8llSjjeJZJERRnQTg4gCBqUc6VtH3u38QOXan0JTeRR1VWrsdsJaLWfZqI8sSsleqSU1Oqz+H6MqZX6z4RqtY6qxZRL0wf23EwZP1IBt098/H2f4Z7vfxWnbzvOrc88wVe+8nY+8Q+PHfSw1iGEwNA3TvS/duvrN2zT1YQ3X/g437nwSH/bl+1pCqHLb33uXs4VbuJXb309r5v/FHYc0IwDHlgWF6aRx/OGuy33CyEEM+VTeH6Htlfvu+sUARPZAqaxtzWoirkJ5qoLmEOC+QGMNVHkxWyRaqu+ZRJAEDSYKBxs4K5ctiYkcc/tm7HzWGYWy8winMZIx7C0w/uo6nod6vUqplZBV8Rq4EoM1aUqmZxJMd+7xqRMmF+8iCbK6GqWdbdjDEvVRUqlEra1UfRmrSKtzmVguIAz9FEU8XZEmSCKQ5qtJcIg6r1VgG5oFPITm4qOmcoplhqzeL7ENMp9wRKGLlJ2KedK2ObBxm8GoUe1XsfUNloBVdVApUK1VmNqQt2xlX5+8SK6KGNddX5MrZdRvLg0y/TkcbSxE3FyF3qhLl80KSNzeJ+KhwyZSP7sN+7np+99EwDf9f2v5NP/+GV8b7xqXBVzJaqNOoZeIoq8XnyYBOgV6hGKShbJL1/+AF+59MX++/7y2FeyZOT5vot/h4LkbOspXjf/Kf6vp96HJhMiFL61/s/cP/Ni7p95MYkcQ4uQmTuQtmaqoqFrEim3tsL5QZOpNSnwppGhnE+otpYw9PI6K1uSxARhnYl8+ZosA1Ec0movsVK9w7IsstcQA1itz+J7Iaa6ak1odNugVimXJsnbeVpuG10f3OsVIPBrTJeHZ0yOI0HYpdFoYumb9KrVi3iOg6o2yGVKvaQBUdnUnW9qpZ4YPJYZmFWctW0cv4uu2QPe3cMP6kwVh59LdcTM7SSJiJMuC/OzmFoJY21sawSLC/MUijly2cGfOVk63rNQdlavt2ImQ8bafdfktdBq1zC10pb7mHqZRrvKVOXaLfWN1gIaxS0zyi1tgnpjkanJk9f8OXtGGse27xxyx8Th4tGPPsZn/qFXXmNiKs/rv/ulBzyijRi6TSlfoNF6ksh3yRkVcmaFnDlBzpjgVAy//dif9sVbjMJv3/SN/O5Nr8XVLKpGjqqR41zhRuw4QEsShJRoMqESdLDjYPmT0pXWWiZLxwnDxU0L7oZhh3zGwNDXT8y2mePk5CkMtUscNfr/DLXLyclTAy01WyGlZLF6mYX5OaSfQURZRJTFaUbMzV3YVvHlxeolZGBhaeV1wtTQshiiTLVaRVM18raO51c3FGuNk5DAX2SiWB5Di8NotNp1TG1rC6iuZXE6baIoIA7EwAlcygSnu4TbrRKHkrmFLw84EhSyFSwtIgg3WrillPh+lXIuv+E6GnysAkHUGbqfH9aRoY6llwcuQCy9RKflbXntKIpKpTDDRLH3L2NtLuj3k0Qm+MFoGTSBn+yoYLbv+SiKRhKHON1F3G4Vp7uE010i7j83IVyuAJCSklrg9pn/339+N895yTMwLJ3XfPOL+MePnOfxL84e9LDWEUU+OWMKXV3/kL/ZneOXvvSnTC1PDo5q8IvP+A4+U3kWQN+6tsLr5j9FpChoSUKkKNSMHN3lllWjru6vFxShcHzyBmqtBfwgRqKjKBpx7GFoUMzlN53UhBAj1fQahYWlp1GTAtaG+DoTMGnW2lCBjLV19mjHqSNDC3WL7FdLK9Fo1JiZPkXGKtBoLxJESc/YK8A2DQql07vxtQ6MwI+wNunBuxYpTZZqlzH1jefR7VaRMiFjVlZdjLHP7NwFCoUS2cx6gVguTGP7Dm23QZgkSClQ6LlNZyozaOoIAwJMI4umNomTEFUZ/J4wckhij4y+teXJ0HJ02s2h18240fVa6OpoiyBVsfAD95qt+FEkCeIlFBQyRmWdGPaCJl7QJGtPYWpFWp0lSuNWFzHNFN93UgG3zyw8XeWdb/8Ab/iJ16GoCj/01tfws2/5I7zu+LhSHcfBUNe7O17SeIyfffKd2ElvnHNGkV+4/Vt43CqhbNIj9P6ZF/Oa2U8wEXWpG3l+6OwP9V8z9dEmkesJIZR+Pa0w8ojiEFMv7lsCQsepI6IMyhbi2tTytBoNMse2noi7roumDp+sZaziB73ixNvNYhx3pJTIZDRLs6FmcPwqxlUhVE53EUsvbBBQ+rKgbjd6FrKrRdxKjOFOmSqfoNacx/M7GPqqGzxJIsKoSda2SILh1jyAKOz171VHFJDjwXbissQ1Z0tLKfH8NnlrBm1AX2bLKBInEU53kaw9NbBawEGz8xi4lO2SmkEOgPv/4EEe/6devbRjJ8p8/1u+bsM+08c2ul0y2b0pY7EWx62jyDUxU1LyrfOf4G1P/HlfvH0he4offeabeFwrMVM5hSI6+EF1nfvA81s47gL3z7yYd5542TrLnBfUKObGsazF+KBrFraZvybxJqWk1V6kXpulXp/F84a7wQBc1xk4eWz8AIPukCSUMBrNxWNoOdzufvXE3V+EEMgRi9UOin8MQxdNMTe1fkHv92u1Gpu+7jh16vVZ6vW5ka+Dq6kUZzg2eQxFaSNlEylbmEbA8alTGIaFKkYTcIaWG3rdjBu2WSCKR/vd4qSLZVybaI6TCEPNbHn/qYqGKnS6fnM8S4qkdeD2nVTAHQBJnPDff+bPiJYnuZd9zbP597/y7f3Xv/9Hvo5O2+P7f+TruPGWaQCe+4LT/MCP3r3nYwvCoN+TUpUxP3Lxfv6vSx/oXygfLj+Hn77te2joOZK4N+lMlo5xYvIEuuogaFJrfBGEQjYzzfuPfyX/58RX9QWc7zco5/LoQ2o/pVwbzeYCc5cvEDYFeDZ0bZqLTeZnLwydPONoNB+IoWbwvF3sY3uEn92aOpqlxI+alErHCKPV3zWIHEx9uDtOlVnaTm3dtna7ytzlC7i1ALo2dC2aiy3mZi9ck2BWFJVK8RiT5eNMlo9RyPW6MyhCJZGjifUkiVEOWT0YRVHRR8rYBcNUhra024xWa4mMOTxpwzIKBFET2z5cruiUvSF1oR4QC09Xqc42mLmhl5327Oef5nkvPNOrSTbbxHV8nvzSPK7j89wXnOZ5LzrDn73jI3s+LkFvPs1GHj/35fu4o70aLP1I/mZ+9aZvRw4IVBZCoZTvic2J4jFanSotd54kEYBAUQSWoTFVLo0UQJ2yfWq1WWJHwbqq+KqhZkFCc7EOU/R6qw5iG0Lq6oSDq1FG7LKRJBGGdphcatvDtHSSYHivWt0Q5DIlOp2nWaniJ+Rov6GmGgRep1/8r9laxG9GmGqRtX3KDDUDElpLLZiQZDIbrfzbxdBtpFhifeXBwUSJg23dsOPP3G+KhTLVWg1ji0xUP6wzOXHtxYbjWKKO2KpvLK1vkFrRDoBUwB0gf/ab93Pzc2/gm77/q1FVhR/7+Xv4099/sP96p+2xMNdk+liRJ87PsTDX3PJ4fuDSaTVIkgQhwLBM8rnBfQw3w7bzmPWL/OpT7+KMtwRAIFQ+VHkuX8yeWife1C1WpoXcBIXc/ldPj5MIz2+jKBqWkdvWd7+aIOzSbtZIli1TqqFSKE6NHAS+n/iBQ+gkGOrm4thUCzRrNewTgwXcqN7aOImGxjAapoYMhhcnDpM2k7nDnaiwFaXCDHMLT2Eom9+HXlRnaqK3+KmUJ6kuLWHq2wwxWD52FAW4DRdri8xXU83Rqtd2RcAJITAtHRkOP9eGqW66j+PU8bouUkoURSFfmNizzifbxdBtSqUS9UYVTVkfjxgnIVHSZKIyuW8L07HMyJbsPIkh1X/bJhVwB4AXuQSxz5lnH+PJz1/iqX++zI3POkkmY/L6734pXzh3qR/vlsma3PSMGd7zfz616fGkTFhceJrEVzDVXN/dGXoxc42nKFTKZLOlkcb2XGeBH//Sn1COugA0VZtffMa/4vNXTbJJEmFnxmcl6HZbdJoNYi9BVzIksktDWcTImJQrxwfWzNoMKSVLi08Td1n3e8pQsti+hFWwKJeP780XuUbarTrGCNlySmzidJtk7Y2Tt2EZJN7wiTiSbaZyZ7bcp5CfZGFhFkvbXIhEcYCdPdrWWCEEM9NnWKpeIQ4Fpr76u4eRA0rA5MRkX6wYus3E5CSNZpUo8Uf6DCklYll8t1pLW4q3FTSZo9WuUsjvfJFVLk4zt/A0lrr5sbyoyvT0xtplXa9Ns7qEGlloaxYf1c4cigVT0zdcs1tyN7HNLPZMllZnCc93+5nSlm1SGHIvjIKiMrIAUrWD/z1SxoNUwO0iURzS8hqEkezf4LquUrJ7KeGNbh0/igELXcnzO7/8V4DHh//mE/zFZ34Lw9QplrM86+xJnvuC0zz00cd5w/e9nD97x0e48ZZppo8XWZht8tQTC+s+d37uKYy4hLgq3kZRVCxKdGodEGJDptrVvPTKZ3jz5/4CI4kAeNqc4D/c+p3MXhWbIaUkosFE7sad/mS7Qrtdxa25GGoOffmKVtHQsZCuZL77JDMnbhw5IWBp8SKKn0W7KhtTCIGlFolaPg0xT6k0Pmn8UZAwyrfTVQvfdQYKuFJhmlnnAtaAivP9z4l9MtnhhYE1VWeiMkG1toSpbqwPFkQOuiUpFcZLCO8FilCYnjxFGAW0O1Vk0ruWivn8wExRQ7eZnjxFXZ8j6gaoytYWFz9qcCx/CoDIjxnFPqwqOqHvwC6UW1MUlempk1RrsySR1u8aABCEHYQWMT11YoPl2vM7tBZrmGK9qxfAVPPIQDI/+yQzx2/ekSV9NynkJinsQa3vQn6Spfn5dQJ/EEHUoVIezwSwNAt1/0kF3C7R9pq0XR9L5DFWHjYSpJ8w68+RiBBLm8JYzjJ62WvOctvZ07zj196L44Q8/cQslmVy8uYZSuUcb/qRu3nW827g/e/qtar65n95F7/1/30vd73s1nUCrtVeRI/yiDUxR6+tfhorCfAUg/dNvAhDydJpNDYXcFLy7U88wHd86QP9TedKN/Fzp+7G0TLrJgQ/bKIakpmJM2PxUA3CLk6tg6luXiPNlCWWli4zPT3cVed5HZKuukG8rUVTTbqtJoVisi3L3p4i5cjVDjZ7zAqhMDl1nKWlWQxR2iB4/bCDmVUoFkYr92GaWY7NWDTaCwRe1BuiBNVQKJYLm8fiHVF0zaBSGk2wBmEXGSU4/gIF+9Sm+8VJhJnR++dqO1PosDjG7aCpOjNTpwlCj47T6Pf2rZQ2j3lt1qoYYvNrQAiBHhdotRcpFqZ3bazjiK4ZGLZCHGxecy+RMaoZj28McSrg9p1UwO0CbuDguhG2sjEzSAgFmzJO1ESqqxf47MUqnVbPTakqOnbW5se/9T/xn//w33Hzc28gX7T52tc8j88/epFO21v9rM56t4rndNGV9Q/B19Y+TTlyqGtZ3jfxot44Ih232yRzleVFj0N+8HP38bLZT/e3/f2pl/COZ38bOUVFdJt43U4vNkUVTJbHq5lyu1nbVLytIIQg6SZEUTA0fqTTbvSCvYdgigLN5gLl0njULlNUMZILZuU8boahWxw/diOt9iK+7/QyjemJrkpp+225etmLx+Fg27EeGpIkZmnhaWRXYCo5ckmFdvsKdmZj7GUQu6hGxER5VeApqoBotM8Se5ARaugWlRHuCT9wIVA2WN6uRhEqXqdF8TpIupyonKRau4zveeusmNCzvKlmzGRlczGfcv2RCrhdoOM5GAPE21qyWhEnbPVLdDzx+cu87DVn+5a4n/vue1laavEr33cv/+53v49n3XEzuqHxk7/wzdz3Rx/DaXtksibTx4vwT6vHjcMEXelZ3V5b64mwU34VTSZkY4/fefz3AXhf5UW8r/CcdQIuH3T4yU//Abc3ngIgQfCnt7+O+298ZT8oOmsXB7rbxoXQCzEZviI11QLtdnVo7FoSxiO5IoUQxOH4tLMxbZOoM9wi6CctZgqbTwKO28R3OshEomkKuVJlfLPejhhSJsxffhIrLvUt6pqiU1SmcJ0GviKRSoJmGhi6QalQwLqqVZqdzeDVN7firODHHSqF/U8yWqHrtnrZ0SOQRNePZWeicpIg9Gi3a8TL31vRBJVyeXwtbyukFrh9JxVwO8SPPGSkjVZRL0l4Tfsc/6rxEAqS5PcELdXmffnnMZc/SyJ1Wq02v/Vjf8gbf+qbeNk9PevZ67/7q/jMp77Mc19wmr9//2fXH3P5nrGSgPJyDSlNJij0+o+ubLOSAJLVG+xEZ56feuR/MdPt1Y/yVJ3/fva7eHjmuTv7QfYZmbDht39t7dNYSYin6Lyv8qI1+x7dB0yhMM1s+0lssXktqUTGGBl1YCyg53doLiygBAa6uirYas051AxMzJweH3fxEaVRn+uJtwGhCRm91P87VBwmJwe3rsplK7SbT6KyeZyUlBLFSA5WEOxiyZqjhqFbTFS2bk02llxn52kcSAXcDvEiF0PZ6FZ6jfM5AN6fXRVEAgUrCajETk/AIVBJ+h0OdMUiiD1aNYe3/8yfcelLc/yLH/0GFEXhhS++mZtumSEMIj7zqSf7x1Q0ARI8xaCu9Va02dhDkwmRUPrbHKGgm72J+blL5/mxf/pDslHPNVszC/z6i76Pp4qHzzy/HU0hRqhNpugqjJD8J6VE1fanxdUoCCGYnDlOdX4OU2wUAVHsI02PqcrGOEDfd2nOLmJS2ODSspQcsiuZv/xljp28ZSziHo8qgeNjiuGlM2I3JorDTcvZTE6dYGnhMiYbk0eSJCZUm8xM37gbQ75mdNPGaTnrFguboaRZl4eDtBfqvpMKuF1gUBscWw7qbSrxhE4klFWBpWbpLrs7gqSLuWYR89e//yG+/LlL/PCvvYHiZJ5SJctP/dK38eDffZ4//p//QLvVpTJTpD0b876JF/Xj3X7n8d/vx8C95dY3AeDLJseyZb7m6U/yfV/4S9TltldPFk7y6y/6PurW+LpJt0K3NPDWb1trdVvBj1tM5oevanP5Ek13eBycnzSZKd24naHuOYZuM3PyDM3mPIEbksS9eoCKrpIp5shlB2fNNquLmFukIwohMMMCreY8xTGJ+TtqSCmJ/ZhRUkhNkcdxahQ3aWau6yYzJ25ccx30HiqqLrDyNpXcTQcuxLOZIh2tDnJrASelxMiMT8xtyuHA8zw+8pGPYJomr3jFKw56OHtGKuB2SNYosOjWsMT6GLiuWP8kfo3zOc56T5BoGX6v8krsJKSr6Lw/f7a/T5KECLPCK7/rTmzd5G/+4GN87pOP8zPf/n/zy3/2I0ye6LlFXvF1z+GFL76ZBz/4eSam8vzMD/821hYukzD2yJeyfNcX38M3PvUP/e0PTz+H3zn7nfiHuK1VvjhBzVnYMpFBSoliKyMVwLSsHG2rityien4U+9jF7Fi6FBWhUC4dh9Jo+wdhF+nJoSEAilDwO+7Ix025BkYUVUKIod6q7V4HB0G2UMCtddG3KD4d0GKqtNq9QUpJq7lA2O2ZyYWmkC9NjH982JFH7kIZkZ27YB988EGazSYzMzNcuHCBM2d2XqNvnEkF3A7RFA1NY4P5eK3rFAAp0ZBIGa8TbStEsY8iVF7yirNUKpPUqlX8qIup2dzwjGN84M8+Tqfh8L3//lswbYN80eZ133Ynly4s8dXf8DI+/LcfQ41sNNXkfZUXYSUBXUWnGzeYyOn8+y/9DXcufL7/efff+Ar+5PZvRA4QIZ7fwfcdDN0e+557hm6TreRw6w6GsjEoWkqJLxrMTN448jEnp0+vK+S77lhxC7NgjVUNuJ3QdZqYymiFrWJ/Y9JGEHbpNGsQS1AFuWIlnUyvASFEvxjvMILYpWgP75s57uTyFeJkAbfRwlLXP2eSJMYXLSaPnUBVetNUp1OjM7+EkeTQ1ria641ZlJzC5LHTY1H097plDGLg1lrbHnvssQMcyf6QCrhdoJgtUm01N1jh1vInxgSxIlEHxK1EsY8Xd8jpFT76/kfJlzJkCzZNr8N0bnUy/PBffgohBM9+yTP4qte9EIBTZyb5j//lDXz7d76UP/y9v+Uz//jPvGvqVgQCzVR5pmnws//0h9zYvgJALBTe8exv4+9v+IoN42jW5/GaHYSvoAuLTlKnZS1gFrKUKuNbcDWfn0DVdDqtBpEXowubJIlI1BAjozNTuWlb1jIhBFPTp/EDl3arThIl/VIaU8VTY9lK61rZ3jN3decoDqnNPY10JKZYFc712iwiA5Vjp8au5U/XbxP47tguTIysCe4IO5oJpjFaBue4UyxOk8n6tJpLRH6vVqCiCMyCRSW/WsDX6dRxZ1tYorih3qEpssiOZOHyk8ycuuUAvkVKysGQCrhdwFBNJvIFap0GIrEwlNW4Di92CKVPyTjGu7UCsUhQwga6YhElPrGMUIVGTt+4ok5iAz/y+NwnH+clX3+WTN7CaXf5f3/5L+m2u9zyvNPc9Jxe4sFzX3CG//L2H+Tz/3SRd9/3EJ/99AVubF7irQ+9nYrfAsDRLH7rBd/DZydv2/BZS3MXEE0FU8n23Wm6akJokixFLHpPMnXipj349XaHjF0gYxeIkwjf76Ao+sAq99vBNDKYk9ure3bY8H0HERkY2nCrmVhO2ojjiMWLT2JHhQGTaQa6sPj0U0yfvhlVPfhHTLM+j1dvo/gqumLhJDVa5gJmMUtpYnwWJvnSJHVnDnOL4rZB4pItHc541c3QNZOJiY1tttbSXqpiDSn6q7oGnU6V3AH0YL7ukayrcnDNx0jZFgf/dD0iGJrFsdIxuqGD63dIpKTjN8kq01h678GzUui3HdXQhIGpZlBE7xS8pn0OYJ171dSyuGELU7P4s9+8n+lTEzz0gc/yr37itbzjl/+Km559ipd90wt58dc9j8njvRi457zgNM95wWkWf+8PKf/Iz6MFvQj/9sQxHnjzf+LY8TNcHYbuddtE7dMoW/hwpEwQOYVMZvwsF4cBCXhem8j1kXHP3y40Bd02sQ6oI0GUhLhLJ3vlRfThblRpRmSzRZx2HdG9dWjnh1BzUdGRSQJCoOgqZjaPpuzfY6fTqiHc04jl0ilR3CVZTuCRSBI9pjJ1CjFqG4s9Jgx93HYbfUBtw0h6GFkLyzoa1rdR8QOXsHG6/6zcilgPyZcOv3v5UDIGLtTrjVTA7TK2nsXWew/YidwENbeGF3roZFGERpC4CCEwrgrcfaF3EV2uxBh9ZX/7yrTitj2e+ufLfOP3vYq//9+fBOCb3vQqfusn/pjH/+kipqXzTT/wNRw/Mwm/+ZtMvfWtqzfUS19K/l3v4tumpvbyq6ekpKSkXK/skoBzHId777136H533HEHd95556585mElFXB7iCIUJrOTSClxwzaxDMipGWruxmDwcED9/zAOCKMOpeWA5ed+xa0sXKqycKlGJr/qpu00XD75ycf52Lsf4q3iEZ73udVMU97wBnjHO8BKq+mnLHPvvdDpQC4Hb37z7h0Tdu94KSkp1yVSSjqdztD9giDYh9GMN6mA2weEEGSNVdejobX7zZ5X+PWp1wDwgq+6jde+7DayBZunvvwUH33fI0RJRKGY47kvvZU//833AT2LXKfZJZO3mL6hQvZjHj966a95rnOxf8yHXvptPHzDN8Lb/mrTsYVxgBuDpowQcC4lQrhktKPjwpFS0vRbG/rJriVKPGxdxVC3X24liH26Ya8l0lZESUDGUNBHOQ875PV/8KtknAZtu8AfPb56XSZJTJh4sFLweLn5vKHaSOmSM7IEkYefaChXuUHvfPgjADx81fHiOOjFUl5FGDuU7L1zHScyoeX76IqFHzuYSmaoyzdKXIrWaBm544SUCV7cRUowVbOftXlU6EZdImluGeKxQpR0KO5CgkcQ+/hhSCzFcsarJJIeqgIZPYM6oJvJuPFDv/qG/f3AXbLACSHIZoefQ8MYrySpg+Bo3emHhIJV4kpzgbwxveG1f/rYef7pY+cJY48o8rDUAi2vQaGY64u3Ff7XL76T537FrXzuT/6Wt138S04GvbZYoVC598Q38PHGzfDez2w5lljGzDsdbH14YHQQuxQNgTVCwPs4IKWk5TeJkxghIGfk0dX1N329W0MmhaGFTcOkwfQ1BEcvOVVUURpp35gGk5m9D8B+TdNFi0LagcPfv+vTI71HyhoVq0IiY+adNtaa1k4AZnMBgL+/tHo8N2hgKZmBE2+cRBi6R8Hcm4B8L3Rp+QJdtegESwOThK4miLsULYGlH44FShD7NLttwkhiKQVA4CdtNFWSszPY2tFJwJl1alj61vdGIiM02hTN0o4+q+O3cfwYQx0s5r24xmS2tOFZMm7su4DbpVaF2WyWN6eW/JFIBdwBoCkaipB0giWy+kRfPLx18f3oMuZT5gzvtm4ho5UAiOOexW0Q4d9/iF9++t3k4y4ALdXmN2/4Fs5nts7qWkEVKpoyYlN26WFphyNAuOZW8YMYQ+T7AmLJayOUEEUIEqmABF+GI4kIKY1+Xb7tkPTKo42E3OdWNIKepWpYiRUvbDK1XHZDESqasnGg7y8+f8M2KeNNrSaqohEnI15314CumUTdNrpqIUZqVNyzNHpxc1MB5wRtvMBHIhAC8lbumqyyu4EfedSdDqZSZG1Ht5V6as1OG5lJyBiHz6I4iKym4cVDiv5GNSqZyR19TpREtH0PS928MLqlVqi5VWbyR6MWZMrhJRVwB4SuGOiygBvUexuEQIk9FGKEVPribeW1QXxV4wv84Ozf9pMfLuhF/uPU3SyKDIUB7b02w9Z0upE/0NW1QpQEWOr4uw0AFtvziCSPdZUryVru1tAJa9hqBlXRiZLWSMc01AzdqLltAbet3MZ9ToRUhYofVbH1zZNbpEzQlBBtTTmQnG7TCtoY2uYuUC9soY/Q13OvUIWKOurCZAhe5NJwOqjSRlNWXcS1VgdFbTCZn9r3rhx1t4mpbL6YMtU8DbeOrWcPvG3WblAwC0ivgRv6G6y/YeyRJC2mrI29X7dLy29gKqWh+yFtvMjFOkJWzh2z3yvQlFTAHRSqAiIRZNcItXP2zQB8IPe8/jYpEzboJin5jsWP8W1Ln+xvesQ8xX+uvBZHmCR+zJy3QMY2KVolhpE38oRxnTBmoIiLkgAh2xTt8a+v1PGbEGe3jAPK6RU6YY3cFhPgbqGpbIh3HISUCdqoprrdQsCEVaDqV7HUyoYxxklEnNSYzqwXeLZuE8sO7aCOqZU2vM8JaqhS3bK2XBh75Ky9dUFldI1u5CNH7LIdxC4lY/2Y/ahLo+P2JvWra96pOaSUzLfmOFY4vm9CyQk6KDI7VPBbSomGV8NQDMI4AAHZAWEEh4WiVSIbR7SCKpEUSEARkqxqkLV3J8M+jMBQhp9HQ83gBM1UwPWRuxADl5Yh2S6pgDsg8laeesfpFc5d5v1rhNsKnmxx3Fp9OOlJxJuv/A0vbX2xv+3+zHP53dIriJfdVYpQsUQJv+vRSGqUMsOFSsUu0w7auJFDnCioikGchGgixtI0Cua1i7dYxjTdGlEklx+6Ass0yO9B/JPr++gjrKBVoRPLaORVYxB7FPXtW5SKVpn5dg1L29wlA+DFTY7vQ/zb1ZiayTFVo+HV8WOQsjd5KYrEVlUK9sY4TYCckcNSI1pBnSDuTaYCiBMXneLQwsASj8yQmKadkjeLhEmVrkyQI1ikhQgwr7IqNt32lhYZIQSmrND0apT2aYHjBT66Mrweoxe1iAIPW9HRlp8z1W4TVZOUDkEM1yA0VaOyp23EtiHCU72xSlrI90BIBdwBYWoWmt4mjnqdGAYRJB5ZS+9PPIXI4Seffhe3dmeBXvvV3y+8jL/KvWCgm1VXLFy/Sd6OUUfI4MobefJGLy4qSgI0JTdS5tdWtL0mbdfDEgX0lTFK8J2QTneWiXxlV+OI4hj0EYZsa3mcsIFEjjS5I7yhQdSDUIRC1tTxgs3jd4LYJW8aB+bqUoR6TZPi4Mm0zHxnHinNTftSBnGHvLU/7tWKPYEmmlS7VyiZm8eF+nGb4lWldoLIJ0k0hoXQCaHgBTEDau/uCaPMc05QxxQWtrY+Bs5U8pDAUqvORKF0YDF848s2VMTh90ynHHJSAXeATGanqDlVvDDBFKuZkFImeLJF1tIpWj3LzUlviZ96+i+ZCnsxW12h8Wvlr+cfl92um2GJAs1ufVvBvYpQMNSd143r+C1cN8FWNlraVEVHpUy1VWOmNLNrMUTbWsQJyKhFOv4ieWuwpQkgSBxyxrVPdAWziKCFE9RRRa5fUiRKAmLZO3bOHGxRkVLS8ur4fohMJAiBpisUM+V97WiwHaaz0yy5S8SxhrmmSXmcRESyRcG0yYzQ+WG3KFhFMkaWJWcJgY2hrlq9Exnhx01KdqZfgHsFN+z0BM8IJNcY/uNHXTrdDnLZ/WQYBoVhYQ+CLS/0IHLR0LYsDWSJIo1Og+liGoi/Fl0TyHj4gs6PHMojlLq4rhizTgy+7+N5g5P/jgrjOQNcR1SyEyQyptFtEMfLE7QqOG5N9R8iZztP8m8vvYdM0itcWNVy/NzEV3NBu3Ho8YUQhHuX7LcljudhDHH1mJRodOtUdsl9OKoRK5YRCiqKULCVAm1vAVsvoq2xSEgp8eIGedMgu8NsvrxZIG/2RG2QuAggY+hkjc2FtR91qbVqGEl+NSFAgvQkC94iuZw9fLI/AIQQTGWnCOOAdtBguZMWpq4xaR5MNxBN0TiWn8ELXZywQSJ7OshQVSqZqZ1bP7c5dyUyYak1jww0DGU1jioIImadKxTzeTLGYPGYMyyaTndDN5cVwri7LrZ20zHEGkHkY2ipFW6FklVmrrWEPSTbXig+pna0etLumDEQcA899BDz8/M0Gg2azSbNZpP77rsPy7K4/fbbue22jX3ADzOpgBsDFKFuKmC+rvZPfO/cB1GXZ4gnrRn+6w3fwhOejzbqqv8A7is3cBCxMYL7SeAHEayJBQ4ijzAJem7mbRa2NXQFRhCsXtQmq/esm5qik1cm8KIOTrCEbWYR9FyxxzKVXc0w3MzSdjVhHFBrNrAobXDVCCGwKdBtd1FFm6x5ML1Uh6GrBpUxS3yx9AyWPlrgualZtH0PXRlujd5OXdc4iblSu0iWKcRVAfOq0FAp0mo5UFDIDChKa+lZGso8O/XZmkqWjt+mkgq4PopQKNkZWl4bU914X0kp8ZMaU9nDUU7peuOuu+466CHsK6mAG1OETHjj/Id5TW21MOqn8s/g7Sdfi68YKL4/8rGU/a1wAPREmK6M5mJYcT81nCq+5yNDFU0YtGQNxZBk7Ax5e7TVbt7KU2u3MLew/IWxjxf1WrXowsRYziSz1ByqHmCqPc1r65l9Lw+xQqvbxGJrsWcoNh13fAXcbuIGHZyuQxImvYQJBSzLpGDvvHTEZth6lpZYAIYLOEMbfp0EkUfTadJyWpSMY1uO2xRZ2m57oIADmMiWWerUsHaYSS3SQK4NZIwcqtKl5TcJI4kqTCQJkgBDE8xkJ3ccG3wkGQML3PVGKuDGECsOeMvl9/Kizpf7294z8WL+fPoVyOWHfs7K0Wg7GENEUhB3KWbGv3PCQnMWxbMwRL5vtVOFBhF4zYAwWqSSH+5+M1STQiai6TSx1PWiL05COv4SSgIVZQoRC4KkixM6oKiEiYMlbGLZSxxpyDZCb5DL5sjss0gK/GgE2QDEGl7ojmxVOowsNGehq6OvcTWSQNSOmXUvM1We3rOMyqxl43TddW7Oq/GSBlPZIVnGoUuj3sQkhyHC0RYGkbZprTFdNZjKVWh6LYIohkQHIZCEJETDj03PmnRA65Oxx9RspjS7Z3GLu6jCRFOGd2y5rrnWQNCUayYVcGNGJWzx7y7+FTf6iwBEKLzj+Nfx4fLZdfuZmoVQm1vWGJNSguZtKHy5H9hGhoa39cS3QhA7GGF502xcTTEIHZ+23iRvDbfEZYwsuqrT8lqEUYJMBLEMiQOfojIJaxbPhmJjYONHLgK7V+x3+ec0hA0RtJtd4nxM3i6N8tV3hSRhqPsZemP0wu6RFXBLrXlUz0YZ4KNUhIqdFKk2Fjg2cWpPPj9n5ollA9drYl2VjJPIGF82mMiV0dSte93Wm/W+RXVUEWAIG8/vblprTFN1JrI9F3WUhEgkmtCpu0sQDj++L1sc2yJ5Zye4gYPTbZPEPauMqikUMqVDF28nhEhrvaWMLamAGyNucmf5yaf/kspyWyxHMflvp76Jz+fODNx/Kj/NQnsOJc5tiBWLkpBYaTN9QO1eTM0GZXiXAykTVKluKt5W0BUTt9sZScBBz0IxkV1NEJivz5JVNk8YMNUMXuwQJj66sn6SMbDptNpYRmZfamcFkYcfdkhksLxFgAK6amOqAyaTI2IUcIMObtcB2XORZuwsQTfCFltPoFqU7fUL3qOEjqJVIqMHtL0WYSxBCoSQmIZGxRrsCl1bmqbl1dHjzJ6ep5XMZuj1Wl70axsE51oSGWMYyq5blBKZsNCYBV/DEPbqWimEqlvDyKpM5PdGNKYcMKkLdd9JBdwYIKXk2QsP89bqR7GWI/CvKHl+tvAy5qXNZlEuQghmCsdx/DaO30QmAolEUSCTsciZx/fvSwygkMnR7HQwlcEZnFJKWvEs2aQ0krUp8kcryHo1QeQjAzG8cr2axYkb6Gy0ElgiT9ttUNnjyafdbdJpOJTE1Ibx+mEXJ6n3ky8APNlh0tjafbeWbugQJ3G/bMU44Ece9cYSBBqGWHUczzZnKRnDFyCq0PC7ziihakOJkoiWUyOJE0CgmzoFq9xLyMhuXYqn1a3TdbpEYQSJAEVi2DpB7JMRa5I5Rvztw8Qndw3FozVVp5jL0XJamGJjHGUsI2K1w3R29xd3C41ZdH9w+y5TZIickLpYopzbWc/SlDFkjJ4p1wupgDtgZJLwNZc+yA90Hu1v+5w2wy9l76YlLJJ2zHx0mZny5kVIs2Z+bALZO14Tx+kFm4MkUgJCxcVWK+usbEHiIrSQkllEdtZbtV7T/QK2DOkKnffbz+5vV1CJZYgmtmcF63gtTDFqzabNVV4Y7G09Fi90cRouJoMtTqZiE8Y+XdHGXu4YoOpsahXseE2C0O+VkokC4kCiBBoykiRSEkUh7W5jX13DVxPEPrXqEmaS2/DT64o5sliPr6EKfCITmp0l4qgn1tyojRaamDKLsvy5oRMzq14iX8xv+TstNmbB1dFFBh1WFyRdEEmCK9pk+l0eRiseLbWAjHFtSQoZI4umarS7bYIw7s2tEjRdYBk6BevYSMcJ44BWp04UxiBBUQV2JkNugCXcCdoIT9+QWbsWTeh0nTbFbHJgCUIpe4CUu9CJIRWA2yUVcAeIKmPe+PR7+HrnS/1tHzSewX/LvJxwTVssuhYNY4nSEAvAQSKlZKFxGeEaaFh0kzZS9gK5pIyoKU9SLE6hChUhBCUri6lVcIM2jgzRxNYxRAAJMeoI++0Ze/x8aTstjCGlIXTFJIiboOXxZZtyduNE2nRquG0HNdTRhI4EwiQmliGmqiGEQEiBkApu3SeKFynnDqY+W7Nd64m3HbJdR2C9s0i35WLGWRSh0onr2Gqx10N3zcEUoWIlOZx6FxADs6HrnSVw9U3DACwli5+4+HEXU7XJKAU6YY28sXmJlUB2yWZ2FntlqCYTuWuPOas7VbxmF5Ms/bsuBLfr0zaeZrIys27x4LgOujI8YcqUOZbac0wXTlzz2FJSUlIBt6f4kUe7UyfyouWMLwXDNijlJ8knAT/29Lt5jvt0f/8/tO7gT60XbKhGqwgVz+3AGBf+XmrOo7o2YeLhJW0ySn5d4LmRmDjNOjeceAb6moDvjJGnpc6iJavb1lrd1qFGCCGQUuIGbWIZYeu5oXFpK+8ZzZqzuUrbyrKwGwTdAHsEP6AuTdpygeniTC/WcA319iJBM+pZ8dYM117OVnaS1rKwXj4WBkHTx9FbZEesUbdbJDIm7MZsVpBBQSFKwnXxXZuhjtI/bZlae4GokWCJntUvSDwMJdMTb5tgYNFptQYKOM/1MMXWItRUMjhJE1O1EULBVnK0gyq2ll8XvyqlxKNNLmuPXDNwL2i5NYJGONByrQkdLdRZrM1xfPKG1Q4y8WgrHCEEbtPBNVtkDvA7puwucsS+0im7Ryrg9ohmZwm33nOHGavrV6QvUZtf4G3eJzgZNgEIUPmv2VfwoHELAK/1/xmA95nPWn1foBDGwVg2oI7ikNCNUJIEKWNyamnDPoZiYWBxZeEpTh97xjoxZdgacTvacgINYx8vdFlqzBK4AXpkoqDQEbOotko+XyJjDp5EC5kyC50FLIZbejaz4ksp0c29u10SGS/HTQ3f11AsrIy+IfPUC138pr+lFS+rFEhY/6DVhYnjdPZdwLW9BqbMbmo+s5UcnaRFXtk6xi+QXUqZ0cYexSFe08NaI0xC6ZPVhscRapFFq1unYK/u2/YaaJE1mglwzbWlCZ28WsaLOvg4IAQxPvl8nmOZ6QOvM+a03aFhB0aQpenWKGW3X6xZQ6dRbaDPWGP5TEu5BnbqQk3ZNmkQwh7Qdut49WBgLNPz4nl+t/2hvnirC4ufyr+uL94ALBliyfV1AFShE8ajF+/dT1puHVNmCBMPa0hdulxUpuEsrd+YSDpBjSgZXPsgjH26QQM10VDaOlacRRUaQihYZNG7Fq3FBm23PvD9qlDRLDE0cN+Jm9jqYJHniRbFzN5VXxcoSDHaA1DKpB+jtZa20xzqgu1/1lWWxtAfrXbYbjPMKqpLjW7c2fT1SIboGYGpjZbB0HRqWFebskeMxVKFRhgE67ZFcTQ0g3orLDVHVi2iqQrHJo9TyU4duHhrdRto0XDXqyIU/O7qM0kZoZgx9GIPpZRYSZZWZ/A9mzKYKImoteapNuaoNefxQuegh5RygKQWuD3AaXcGTqRfHZznJ/xPoi9bQJ7Uivys/Qoa2vrMRm9AnFckA4wR+hseBEksiaU/UnKBEALf9VhrDIuCmIJSwg1aeApoqtWL9Uo84jhASUBIyKubW0kMadGptbHM7MAV/WRhhrn4MmaYRwyYsN24iYo2cDL26VAulfc06FoIgWaoo9XvUlwq1saklsiLUBl+DpQB3dBlMlpg/W5i6zmW5NI6a9jVmEoGP3FpxPNktVK/xEsiE5ykTr6Qo5wdPX4vDmK0XXzsCSFIRvzdFFUQm11CP0RJeucpUQJ0q1fPbVwsUWEUjBxrmkSriT35bJ5mt4Uutl5EdKMWGdFL6Ai8ANKWokORUrLUuELQCTHjnhteAo1GDewq5fI0pr4Ladg7G+TBfv51SCrgdhk3aCOC9RN9N2rxfeHn+N7ofH/bPyrT/Jz1AqSdQ79q0l7rOl1Bs5SRYoEOAiEgSHyyymiZsHF4VTbncuxEZvn9YRTgyxa6MLFEjohgpAnSlBlanRoTxY0ZdkIIjpVP0nCrBF5AFEpAIBSJYWpMZCq4fgffaxNHsucRU8EwdCrZMsaIFp6dYNkmUbB1dp6UEsPW+r/HSiZlEsWE0WCr71Z04zZxFJAQMT93EdXUKOQrmPred+8wNJNY9SHZ2mprKhmiOCCKffyo526USUK+nKO8C4k9kQyG70Tvt1fU9eemYJeZa14ZyT2vmRqTxel+dX8AU5085NX9V8duaRnadpO4u7lVMoi7vQXZcjypTN1uQ5FSMrd0Ed0xsYS+zl2vY0IXquEckzPH9uU5tSlpJ4Z9JxVwu4wfeOvqiPnhIr/nf5zb5aqr4K+12/hd/cUkcYTr1RGxQ0Yrbiggu0IofTI7zEjbS0zTos3wor2bIVQFL3aJZE+o2UoefU1gty+7ZLfobbqWsBtuuqIXQvQm/GzvoSiR68SSpWcgN/i1/aCYmWDev4zmbd6D1dfbHCv2rG/V5mwvSzC0eyJASBhB4y9XlCBOIvRA6QXzA3R7/2rNOYyKxURx7+sIGoZB12ljD2gcvoIbtzGVzDoLb1dvXVPslaKtF0tu3IY4IVSDddfcIHzV4Vh2veVTEQq6rSHdra1wkQzIZnpCddyr+9umTbvpbPo8Wouir79Op4rHeTp4AiUwsLXVe1ZKiRs1URKJvWahl/ZiHU7TraI5xkDPwQpmlKFeX2Jmam86koxEaoHbd1IBt8v0TNu9C9mIFvhN/x/74k0Cv6vfybu1Z4IQ6BhkgyJh4hGGbTy1iWWU1k0kkfQxCsrIzdxX6NVvqiHjpCeKMvlNg/x3Ss4qUjUWCQIPQxm+AlTXxMq0nBqB46CEKlnR6z3YpU6igq0Wtm11HLVArRBi08ljq9f2EiEEM+WTVFvzdLshVpLriwIPB81SmC6eQBEqi7VLUBdYYk226YhuUEkCsidQB1lKDGkTLUXUxTzlwuBir1Ec0nKqJFECEsxM5prqyZXyE1xqXiCSITl1fWN6KROcpIkh7L54k1Lia22mKtPXZLnK50rU2zUMYeEvW4MKSpl21EQ3NnfFxjLCzlkDhfVEcZq58NKye37jmCIZouYYWDttt3G8Jm6nTRL17ns9Y1LKTW3rt8oYeVpmE8KtBVwsI7LZjdbTmcopFq7M4vi11Yz6JCGjFDZkcmtWOgUNw3e6aGK4mI678dgmuqXsDends8tkrTxLYo7bI5+3eR/imOy5SiIEn1OmeLe+3j2qKQZ+4pIVeUig5VVRDRNV09FNjWw2u63sQCkli9VLRO0QM7GW53ZJq7ZEM7NEZXIacw/6Zk6Vj7EwdwVjTRmMRMb4iYcqNIzl1byUEiPT+7veWsBfdLHWlLwQQpAhBwl0kgb2Nvu4CuVw5+UIIZgsHkMWJC23RiITEDBtTff7bTp+k7iRoF8Vc2jT6ySR2yKjMpEJiUxQhuQvaULDbTiU8vIqUbUci9PsYkZ2/zW33qJj1yhOTJKxRr9eTc0ml8vT7bi4SX15wu/F6AVJF11YhIpPmPjEMsQuWhwrnLpm66ip2ShZkI7Ejx1EInouehIayRxZo7LBEufFHYyCQTk3WMwqQuHY5CmqrQWCboiVZBFCIZIBiR5gZ22KmY3WwpZbw3Pc3iJLVbCzWfKZ8vLiq4qMez9HLlca6tIO44DFhUuojoom9P75jdshV2pPUJie3JbALhSKtKrtTZNipJREtkfO2ih6DdXEyGho3TXvHZCXEeBRyo4+pp2yblGLwM7u3aJ2N4m8CG1Ad5irMaWN021ROoguF1Iid+pCTS142yYVcLuMrhp8hTLPz7sfI0svs29RZPgF86v5sjI4i1ERGrGMUYVKgSKRGTEzfcO2P1tKydzCk+htE1Ost4TpGOBCdXaWieMnMDSLprOE13KI/F4QnqJrWHmbUmH7mXAZM0e+XMRr9HpZhlEXJRYYmMR0aYs2QlNRbY3judN4oYO31Fkn+K4mR4FO1MRQs7hxi4w6XBjo9njGCW4XIQTFTVyEnVa7dz6vQhEKRqzToUFuQMJLJEPaSW1k26IZ9q6R0poivwvVp1EaynrLHz3Bh6fRnK3CcUHGGr0ziJ3J0OpUCSNBRiv0M4HXus0D6ZMt27vSymyidIwLzhdRI5XssvtYSomXOLTjBXTNRFkuaSNlgp5omMbW15UiFKaWhXfbq5PImKxmkzU2jtcLXarzs2juStJM715z6y0WtcsosUpuufG9BKrVKyg5lYmpEwOtK4lMWJy7hOltLGcihMCKMnTm6qjHlZHFdcbMIyeg1eiVSVlrqfWlg5ZROFba3F1XLk2zGM5iRYMFUoiPWTKwjL0vbrmyqA2bAWbSe95IJM3qIs3sIpWpmT1Z1O4WV2eMD9v7wEgF2L6TCrhd5u7aZ/iexoOoyzfSY8oEbzNfRU1keG14nhfGs4Qo/Bfr5f336IpBFAeoy6vdpBMSTmzfFN50ltDaxpbuEjO0qdXmkUmC1u5V6tdWAqciiN2I2daTTB2/AUPbXhX3icIMs+EFkmrUmxiXh6GiYQAyTPAtH4GgVlvAlMPdrUoiCBIXVIa6B33FYSp7dKq7+6GL222DBN2wyC270WMv2jSTUhcmSqzRiWugCoSqoKoqqqFiZ7NUzFsR5z820nNeCIU4XC0v4nhN4lqII7uEshfrqQkVKQAhyIg8RmLSqi2ROTFcwAWhT702R9QJKMc9q2EUhTSUWQw9S0YrECYBXdGmWC7vSreIRCbMzT1Fvltcdy0JIbDJYUlJJ2qS1QqrrysQx6uJN37o0mrVScJ4g5tSCEHB3rzcTBD6VK/MYgYbxZYqNApxGVe2iVjtTmJIC9qwEFxk+uTpDc+FRmsBo2tuWYvOSEza9TqZ46NbR7NmnuxMnla3TuAHICVCFUxmp4c+m3TVYGrqOI3WEqEbYSaZXks36SPNhGyuZ23ca6SUzM0/idYyBi9qHVgKZ5k6cRJjQBan4zVx261eqMDyuS7nR3ffS9mzpMdRCEKQy5S2/VxVtNGy00MZYOlpSu/1RCrgroHLF76EoigYeZtysVd0U5EJb5z/EN9Q+0x/v39QTvIb5ivw16xedZINz9koCdDXRJ8b0qbjNihv09rgtZwNbrVBOM0mRSYGPoSEEJiezeL8JU6evGXAuzen6zvIRrzhQbl6bAWzbfGE9yhKqGKqwx9kGZHDoYNNnlZUpaANHnegdMlPlPpuxsNMN3BoVhdJOhGG7P1GvnRoZZbIlUv9rN3NUIVKlp5LXpQFleLVrr/tx455gcvC7NOosUpeFIACnnSJZYQhTHRh4tJEVyyUrorrt8lc1Z/X9Tt0WnUSPyJKQqIgIpfkUddYYTWhU5BFQj+gKi4xMXGMmdxt2x7vZtQacxidzXusCiHIySJO3OxbMaVMEIpGIhMWFi+SNHvnRV3+HaNGl8vm4xSmJilkV8Wb47fodto94aOrFHOTNJtLPfG2BRmRx5Gt1YXVMqZvU6/NMz213jrvO12MEWKkZDfBCx0sfXtWr4JdZoTyghvQVYOp8gmSUkyr2wCZUNDz2Mbe9G1OZELHq5MkEtvMYmo2TWcJtaVvvagNLOq1BWZmTve3hXHA4vzTKB2Bho664pJu+lyuPU5xemqoAK015+g2Ouie3nf5z/MkgeZj5/LkciUKA2pLSilpdWvIJEZVdfSMAc3h319a8cH2xE4zivedIyfgLly4wIULFyiVSnieB8Bdd921q59hdHsiKe4EXK59iZPHJnnr0od5YefJ/j5/PXEX/y0+jR6s/sTv0wdPRLGMsK6qnTRqMP5aoiAc6FpbS5D42GSHriA1R6Pl1tY9YKIkotlaIA5iBKDbJsU1AdLtdh0j2XoiEUKgBirKNoqfCgSKUMhTxInqoCho6CiKSqzEGLZOsVDBHmFiSmRCo72A33J6FhRFoGVMCsWJkdw5URz2CgYnCaquk7cru1oGohs41C7NYkYmawOHNKFDF9xuE9/q9suFSCnpJm2SpHdOpJDoio2p2CQyHmhVEIqAEcJVIhmStfK4fpv6pTlyYWGd9rNEbwyedJF4ZJUCbtKrgVitz6JNGRiquezav0BSjzAwUFHxcMgpm1sLdGGQDbLYxu7FKEkp8dsu5pA6ZUKIde4gX/OYsI/1LDlNbUNAuRAKVmDTma0jTgg0zaC+MIfo0BdhiYyZ1b5MIhKyjGIFEz3heFWsX9jxSSbXl5qJ/QhGiJHSpUnX276A2ymKUCkNiAHcLaI4pF6bw293MfxetqYjGiTZmNAPKYie0IqTCI9eiAcCLLL97i9RJyCc7Hk9EpmwMHsB0x1w7wiBFdg0Ly2SnIwpblLGZrF6iWQpxBTrLaM2WewoS6fWorkU0cwsUpqeIZ8pIaWkWr+C13T7os+XDoEVEBBSUjZf0EcEZPMH3JZszFpp7YcWOGiOlIA7f/48jz32GPfcc09/24ULF7jvvvt4/etfv+ufJ4TgBj/hly+8k1tkr4xGhMLbp17Gu+NpOm6DvKKty6S8WsRFSbghoDyR8ZZByz0htUgSRCAERsaikJkYyS0W4JEVw290VWi06lUCzwMpcf02igtGsGq98GWHy1adwvQkuWyZbqvTs/wMISdKdEZZUrIsZPsJDgpZ0Zv0XatNZWIKQxucGTgIP3RZvPw0hmugCZW+QHITatVLGDN5JsuDXbBhHFBbukLY8jCj3oM9WLaKZUolKqXBAe7bZW72yyi+IMJDAoaw+gkg0BMEuh8S4pOIhCBysBMbZY3lNYh8WmoHoWuU1mRW6vkFXvzKC1T+uAuzw8eS2BE5u8SlC49jbpGRaIkMjmxhSIuMyNFKmqh1WGw9hZLX6UYuuU6+n0kaymCkos+GNKkuXUEXBjKKQRFoGYNSYXqgpdUPXZrNKkHLXd5fQc+YZEsl8pkyfuSieOpAA2SYBPiyi1i+iSISfKXbawGXN2l36yhNsaVYNxKD5uIiIhIYy7+Xl7gk9NyvYRiQU8sb+t+8Lv4SAPerz+hvM7EI8DGvMn0ZoUW7W1+fFLHF+iFIfALZRcje48GKcrS7DbrNJkkYI5Xe26GFwAAAE/xJREFUQqxUHPybbpcoDmk0F4i9sJfpbKjkChPY5kbRmMiYenOe0PUhkSi6SqZQJLdFsoWUcjl2t0MSREigG3awwyymsuqWjpIAta2iKiqJSGhEC71FJwYCgSShxSJqYpBTy5iJjdNtUspN0WgvYDhbu6QtbKpXrmDdmN3wrHa8JlHV39IbklMKdGSTrFegdWkRTkrarTpaQ1kn+hShYvk2hjSpm7OUlGMbrkEfD7uSoZDde5f0YWG/tcBBcWQEnOd5fOADH+BNb3rTuu1nzpzhwQcf5Ny5c5w9e3ZXP/N2WeWX5Meo0FP3HcXibcWv5OGlAjpQpERHaZDRSwPLYURJiJ90Ngiq0AyZsgffjEvVS3j1zjoh5ckm7UyVUETYQzvej24tito+sqXjyBYmmV6g+pq3K0LB9E3aTy+xqF5Ek9ZIzdmEUDZtm3U1XTrYyvp6Ur7V5djUxligrUhkwuLlS5ibxArp0iScc2koC5SK61e6YRwwf+kpTNfAXOPuU4SK2VUJ3A4Lkc/05OmrDzsyrtdmafZprK7d+52XCRKPtnTJKsW+ULVkhvnkMgVZJEtuw/cxhImRmNS9Jeae/jJTJ09z9uXn+dGfeYpiQSDeJ3FbMWzRhScQHvlKhZZTRXO1oZeNTQ5XdnrZ1DJBSJUkinHrPff32vIRIf7Idf2ipo+JzsqFJVshc9UnyM9MUMyvitOOW6d5eREjMjBXrFEx0IROs0p3qkMmX0C5Kh1SSkknqaMlGlmxGsieyAQnaOIXXG4sPouF+QsjtcxSPbV3X0uXiGD5vrGWj2njxm0UtHXf3xolwGkZITa2hFMNrVfDbw1REuLGLfREJ7Pme/mzDovUyJDrfx/ZCpmtPkFupkK5cO1JIvXmPM5CHTOyls+WABLq1cs0SzrTM2f613CrU6U5t4gZmKhrMo/b1UVahUWmjp/ZcH+HccDClafQ2hqqUFCXrZsGZQJ8nKRJViniSRcdvdfjV3aoxVfIUdwQ2pHIBEe2aEaLlLTVa8lvuegjdKIwY5vZK09w45nnrtveaTaGekKgt0iOZIiRmFRnr2AHmU2z6BWhkPcLdCstdExkLHsxeZbORH565FZye8m4FGU+CC1wUBzumgtrOH/+PMViEcvaeCHffvvtPProo7v2Wd8hH+NHk4f5Dfnhvni7JLL8+NQ38EijuC6eLZfk8PwmnbCGn3RJZIKfdHGiBmHibhBvkYzIFAe7jRaWLhLPB5ihtW4V1hMSJrqn0k12rzeeQBDKAB1jnai4GgMTNdJGzkKSUqJJDTdpb7lfIhM86eIkbVzRIrQ8lEmF48c2PtyHUW/OY7hbP5Q1NDr1+oYJsrZ0BdPd/PNUoRIv+pv2Yh1G1+/QuDSL7WU2/M6GsMjKPJ2ksW5cZmJgDQlMKjFB0g2ZvulT/Owv9sTbCpmsZOJ4l+INi+uOG8sI3+ySP14mZxXxOi7qCBnJvYm5dxwVjRCf3hRr9Cwj18ggi5cZWjiXG7ScGrBsebu8gBENPkcaGsmCT7frEKrr+wm3kxrZJLchhGHFZW86Go7XWnZTrud1yZd4XfKlddt0YeBJF4CsKKw7n4pQyIk8RqzhxKsWaA8d76p4Nx8PY4BbNBD+BmuWmcusP4dJhBu3yMn8BtFiCpu8KOHhEsvVxAwrsvCuNGl1qhs+cxQarQW8K+2+dXotujRQajA31wsx6bh1OpdrWFc9x6AXKqC3deavXFj3naSUzF9+CqNjDLS4G8LEwsZN2sRE6MtubidpUKQyMC5XEQp5UUJBoRXXMJYtaXEwmqA2FYvESTbc91F3tM4etpIlWJ4/rNDGF90t91eEihqoHJs5zfETZzh+/DST5eNjId6Angt1J/92if3UAgfNkbHAPfbYYwNPGECpVGJhYQHP8zbdZzu8ST66bh1/jil+VryAdjvBHLDyypCFqOdCaVJHmBolsTEmJCRAm+y5iK7G9TuEix7GFmZ5U1q0kxb2Fg3lpUiIk+ENuKWUSJkQ4PesKkOwydKSzaH2P4BOUsdKMiQiWbawbRSscRJRUxaZqByjWJjcdubW1fgtB30EC4ruarTdGoXlEh5RHPbcpluUO4Gea9NtNq4ps65ZXUQPNz+vvcD6Qt/CFSQbXWubvS+Rkn/xPQ10faMQKlckf/S+J/jb9zzN7NMm7/vL48TBcQprvoOUyehFjeXqHwKBIUwiuVH49I47Wv/QzWJBdanTqdYoZCs0m1WMIc3XVaERNB30nMlK05Bu0iGznB25GXps0FpcHPjaC+U8OjEkcL/yjP54VcSmiTzQEylREhKKXveHta7TVeTAyvtKVsHU1p/7Un6Kuc6TmMt117qyQ05ufc9mRQFHtteFPGhSp12tUshtL15NSklnqb5q+RyAEAJRT+iUGrSWqujJ1ospo61Rby9QWS4k3ewsone2tgSrQiORDobslbiRUmKT6WfzbkaOAg2W1tSEG91LoQqNbqez7r6/Fi2iCm2kuOfEDXvPb2XMpm65Cxa4XTLg7acWOGiOjAVufn6eUqk08LVisRc31WyOFnc1jLXi7QPcyE+LV9AQBqq79Y2vC4OiKGNIFSYEgeXjaV183SMuxORPVZgsDY7BajdrGCOY5TNxhoa6hBzwFPGVLuVj08T24El1La5sY8vMyI8yRSgIKfGTrVeRUspewWLqmMJCTVQ6cYNO0sRJWnSSFp24gZM0uOHUrUxVTu5YvAEk4fDv3PseKlGwuoJuu/WBVoVBBI4/fKer8EOXpDV8xd9znfXOaYi/wWK0GZqR8Mqv3fzJqOuCb/y2kB/40Q7f8t2NdeINQFG3UQ9w+WLxEhd7i1hImyyu3Nr6CsvXyhaTmuhIHK9J0HJHGp7qKCiWQqj0zlOchCO5RYUjiZSN5yhEIbzKJduJm2RGiAO1RAZfDh63K9sDBXqgBORKGxcIilCoTB2nHs3jx11kPJqCEGwUyKqjbNuS3OwsonvDXY6a0GlU5xHO8JlaCIHf7PT/32t1Rop1zVIgonf/tmWN3GZ99dagCAVdGnhhz3uhmqPFAvpJFx19QwFbRRttWo2TCLHNKVhJFMJ4NAvf9cp+aoGDZsxk/LXj+z6mufVE32w2mZkZHGz+8MMP88gjj4z0WW9e/u9HOcGvixf3yqUbEm2EhxgACUyUjkNptN0BYi9AGeF0qUKjkKugWSZ+p0sS9yr567bBVOEGdNVA10waVxYx4sG/l594iDjpFfPdxqpIRyeOA3zEQLeZlAmtpEZ+zUNWF0YvXkSut8qE2XBbHSiGsp3K/Vd1HhgZKfma+qN8bX10E30cRyNXME9IUCKl998RH/wyjFFefdUD/0sBRBKaCeLui/3N39q8xKsW17sEkyRenmiGtefqdVgViUJMhIoGEhJilGSjCExkgpJs/R1631Nwv7yF+8XNG17XhI7vjS5YVNHrUmAey9Ceq49sWdTQiXWI3XidO/nX1K/csG9IQG4EizVsvLaiJKRDTwBeHTPbFQ7FmYl+LcCrSWRMNs4T4KEyOFHjaiwy+HR7nVCWUYVG6Huwjbq2kR+OnEgUexHmSHZ6iIPVRVccxv1SHluxPkZwNCsvgIJKlPQ+zyxkiDv+0PeGBGRFAXnVsMy8jfTiwW9aQxenL/Z7/ZeHE2vJwTas3wSzoPOqf//8HR8DwHEc7r333qH733HHHdx5550btu9UCxwmjoyA24qVk7mSSjyIIAjodDqbvr6Wv/jzP+eWW27hZXfeyQO7MsKUlIOnxLbWFLvGww8/TBAEGIYx8IH8Y8v/UlJSRuPhhx/m4x//+Kb31G4jFIFV2rmnBJZd8iPMxUGwfUvkKFrgMHFdCLhRMAyDXG54zSnHcbh06RKNRmNfboyUlKPOI488QqfTIZfLpfdUSsousF/3VDa7uzUFgyAgiiIymeEmYMPYXiLbUeS6EHC+34t52Spo8c477xzpQr/33ntHttSlpKSkpKQcVd74xjce9BC2xSha4DBxZJIYUlJSUlJSUlKuF46MgCsWi5tmlqz4u1cyUFJSUlJSUlKOHteTFjgyAm5mZmbTwMSVk3kUsk5SUlJSUlJSBnM9aYEjI+DOnDmzqepuNBqcPn3tbY5SUlJSUlJSxp/rSQscGQF322234XkejUZjw2vnz5/n+c/fWY2alJSUlJSUlPHmetICR0bAWZbFq1/9aj7ykY+s277SF+222247oJGlpKSkpKSk7AfXkxY4UmVEbrvtNkzT5MEHH6RUKvX94K9//esPeGQpKSkpKSkp+8H1ogWOlICDnv/7zJkzBz2MlJSUlJSUlAPietACR07A7TV33HFHv+1PSkrKzknvqZSU3SW9p64PhNxWt+6UlJSUlJSUlJSD5sgkMaSkpKSkpKSkXC+kAi4lJSUlJSUl5ZCRCriUlJSUlJSUlENGKuBSUlJSUlJSUg4ZaRbqiFy4cIELFy6sqylz1113HfCoUlIOH+95z3uwLIuzZ8/2+xbOz89z7tw57rrrriPTpzAlZS/wPI+PfOQjmKbJK17xik33S+eso08q4Ebg/PnzPPbYY9xzzz39bRcuXOC+++47coUBU1L2Gs/zOH/+POfOnetvM02Te+65JxVvKSmb8OCDD9JsNpmZmeHChQtb1jhL56zrg1TADcHzPD7wgQ/wpje9ad32M2fO8OCDD3Lu3DnOnj17QKNLSTl8zMzMcNdddzE/Pw9AqVQ6Uu1tUlL2grXWtscee2zT/dI56/ohFXBDWOmfZlnWhtduv/12Hn300fRmSEnZJtdDlfSUlIMgnbOuH9IkhiE89thjA28E6FkOFhYW+vEFKSkpKSkpB0k6Z10/pAJuCPPz85RKpYGvFYtFAJrN5j6OKCUlJSUlZTDpnHX9kLpQh+D7PqZpbrnPSmBpSkrKaDQaDS5evLju/++6665NLQcpKSmjkc5Z1w+pgNsBKzdJao5OSRmdZrPJwsLCujic+fl5/viP/5g3vvGNqYhLSdkj0jnraJG6UFNSUvaVe+65Z0PW6czMDDMzMzzwwAMHNKqUlJSUw0Uq4HaA7/sAqcUgJWUXOHPmDOfPnz/oYaSkHFnSOetokQq4lJSUsWBlUlmpD5eSkpKSsjmpgBtCsVjcNGNnJY5gJbMnJSVlax544AEefPDBga+l8TkpKTsnnbOuH1IBN4SVXo2DWLlJ0myelJTReOyxxzadXNL7KSVl56Rz1vVDKuCGcObMmU0nnEajwenTp/d5RCkph5ezZ8+u68+4lgsXLmxaQT4lJWU00jnr+iEVcEO47bbb8DyPRqOx4bXz58/z/Oc/f/8HlZJySDl27NjAGLeVBvdr+z2mpKRsn3TOun5IBdwQLMvi1a9+NR/5yEfWbV/pN5c24U5JGZ3bbruNc+fObRBx9913H2fPnk3vp5SUEfB9f1M3aTpnXT8IKaU86EEcBi5cuMCFCxcolUr9G+euu+464FGlpBxOHnroITzP609Et99+ezqxpKRswUMPPcT8/DyNRoOFhQUATp8+jWVZA++fdM46+qQCLiUlJSUlJSXlkJG6UFNSUlJSUlJSDhmpgEtJSUlJSUlJOWSkAi4lJSUlJSUl5ZCRCriUlJSUlJSUlENGKuBSUlJSUlJSUg4ZqYBLSUlJSUlJSTlkaAc9gJSUlOuTd77znQDMzc0xNzfHD//wD3Ps2LEDHlVKSkrK4eD/397dcrWuRVEYnkcn0VSTohtNqCYaikaB4T8gwLSGqiJQqUJA0aknPtEhPugmmqPIobT3Hi7pIHePvo9roNm7bo619gcBDsCPC8NQg8FAtm1LkuI41vn5ue7u7ghxAPAFtFAB/Lg0TVWWZf3Z931ZlqUoilqcFQCYgwAH4EeVZVm3TT9yHEdVVbU0KwAwCy1UAD/Ktm3d39+vPC+KQkdHRy3MCADMQwUOQOuiKFKn01EQBG1PBQCMQAUOQKvKstR0OtV4PG57KgBgjF9vb29vbU8CwPYaDoc6OTmR67ptTwUAjEGAA9CaMAzV7/cJbwDwH7EGDkAr4jiW53lL4Y1jRADga1gDB6CRoig0Go2U5/lf//fw8FAXFxdKkkRZlqnf79ff+3ysyGd5nuvh4UGdTkdVVSkIAlmWpaIo5HneJn4KABiDFiqAbyuKQpeXl9rf39fe3p6yLFNVVXWgiqJoaWdpr9eTJJ2dna098+3q6mptGIvjWNPpVDc3N/XtDWEYaj6fq9vt6vr6evM/DgD+x6jAAfi2yWSyFKqKolAQBPV1WEmSyPf9le+tOwfunyRJotFopPF4XI8jSZ7n6enpieobgK3EGjgA3/J+Af3HUJVl2VJ428S9pre3t+r1eisbHd5brgQ4ANuIChyAb/kczj6vYcvzvHGAm81mKopCp6enK39LkkSWZbGDFcBWogIHYCOiKFqqhv1tU8JXPD8/S/qzdu6jNE3V7XYbjwEAJiLAAdiI+Xyug4OD+vMmAtx7Fe9jm/b93VVVrV1fBwDbgAAHoLE4juU4zlLQKstSWZY1fvfu7u7KsyRJJP1Z/zabzRqPAwAmIcABaOzx8XGlzVlV1ZfOhvs3ruuuPW5kPp/Lsqx6jd0mqn0AYBICHIBG8jxXnucr7cydnR2ladro3YPBQC8vL0vPwjBUt9uV4zj1+OxEBbBt2IUKoJEsy+S67kqICoJAr6+vjd7t+74Wi4Umk4k6nY4Wi4UGg4Fs29ZwOFQYhnIcR8fHx43GAQDTcBMDAACAYWihAgAAGIYABwAAYBgCHAAAgGEIcAAAAIYhwAEAABiGAAcAAGAYAhwAAIBhCHAAAACGIcABAAAYhgAHAABgGAIcAACAYQhwAAAAhiHAAQAAGOY3hCGA0oxuQuQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the function\n", + "def func(x, y):\n", + " # if y < x:\n", + " # return y\n", + " # return (x)**(1/3)*(y)**(2/3)\n", + " return np.where(y < x, y, x**(1/3) * y**(2/3))\n", + " # return np.where(y < x, y, x)\n", + "\n", + "# Create a meshgrid\n", + "x = np.linspace(0, 15, 1000)\n", + "y = np.linspace(0, 15, 1000)\n", + "X, Y = np.meshgrid(x, y)\n", + "\n", + "# Calculate the function values on the meshgrid\n", + "Z = func(X, Y)\n", + "fig, ax = plt.subplots()\n", + "\n", + "plt.contourf(X, Y, Z, cmap='viridis', levels=np.linspace(0, 10, 11), alpha=.9)\n", + "\n", + "R_cone_values = [point['R_cone'] for point in data_for_plotting]\n", + "\n", + "x_values, y_values = zip(*[(point['pisq_a'], point['bc_squared']) for point in data_for_plotting])\n", + "\n", + "# Create a scatter plot and color the points based on D_theory\n", + "scatter = plt.scatter(x_values, y_values, c=R_cone_values, cmap='viridis', edgecolors='black', linewidths=.1, label='Data')\n", + "\n", + "error_values = np.clip(np.abs([(point['R_cone'] - func(point['pisq_a'], point['bc_squared']).item())/func(point['pisq_a'], point['bc_squared']).item() \n", + " for point in data_for_plotting]), \n", + " 0, 1)\n", + "# Add a colorbar to the plot\n", + "cbar = plt.colorbar(scatter, ticks=np.linspace(0, 10, 11))\n", + "scatter.colorbar.mappable.set_clim(0, 10)\n", + "\n", + "cbar.set_label('$R^\\#$')\n", + "contour_lines = plt.contour(X, Y, Z, levels=[1], colors='white', alpha=1, linestyles='solid', linewidths = 2)\n", + "contour_labels = plt.clabel(contour_lines, inline=True, fontsize=14, colors='white',\n", + " inline_spacing=10, fmt=lambda x: f\"$R=$ {x:.0f}\")\n", + "\n", + "plt.plot(np.linspace(0, 10), np.linspace(0, 10), color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "\n", + "plt.errorbar(x_values, y_values, yerr=error_values, xerr=error_values, fmt='none', ecolor='red', alpha=0.9)\n", + "\n", + "\n", + "for i, (x, y, error) in enumerate(zip(x_values, y_values, error_values)):\n", + " if i % 10 == 0 and error > 1e-2: # Display error for every n-th point\n", + " plt.text(x, y, f'{error*100:.0f}\\%', fontsize=8, ha='left', va='bottom', color='white')\n", + "\n", + "# Customize the plot\n", + "plt.gca().spines['top'].set_color('none')\n", + "plt.gca().spines['right'].set_color('none')\n", + "plt.gca().spines['bottom'].set_color('none')\n", + "plt.gca().spines['left'].set_color('none')\n", + "plt.gca().xaxis.set_ticks_position('bottom')\n", + "plt.gca().yaxis.set_ticks_position('left')\n", + "\n", + "plt.xlim(0.0, 10) # Replace with your desired limits\n", + "plt.ylim(0.0, 10) # Replace with your desired limits\n", + "\n", + "\n", + "plt.xticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "plt.yticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "\n", + "# plt.gca().dist = 105\n", + "# plt.subplots_adjust(bottom=1)\n", + "# ax.margins(0.05)\n", + "# plt.legend()\n", + "plt.xlabel('$\\pi^2a$')\n", + "plt.ylabel('$bc^2$')\n", + "plt.title('Minimal Eigenvalue in the Cone and target $|R^\\#-R^*|/R^*$')\n", + "plt.tight_layout()\n", + "\n", + "# plt.loglog()\n", + "\n", + "\n", + "# plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram_R_cone.pdf', dpi=300)\n", + "# plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram_R_cone.png', dpi=300)" + ] + }, + { + "cell_type": "code", + "execution_count": 413, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHVCAYAAABxKsZjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7lUlEQVR4nOzdeZwcdZ34/1dV9X3P2ZNzEhISBE0COZAEooghUYwKhENFcdcDV/SreIDuovtbdddjPdZdYRePNbAoQgKoiCQEPJIQJBw5QCRDAkzIMT1n33dX/f6YTM9MpufumenueT955EHy6ZqqT9d0V73rc7w/imEYBkIIIYQQomyoU10BIYQQQggxOhLACSGEEEKUGQnghBBCCCHKjARwQgghhBBlRgI4IYQQQogyIwGcEEIIIUSZkQBOCCGEEKLMSAAnhBBCCFFmJIATQgghhCgzEsAJIYSYdNu2bcv//f7775/CmghRniSAE0IIMayWlpaS3t9kGkndo9HoJNRETGemqa5AJWtpaWHbtm1s374dt9vNj3/840G3/fjHP04kEmH9+vVs2rQJl8s1iTUdvSNHjrB582YCgcCg7+v0979+/fp+rx04cAC/38/Xv/71yap2UY3kHJSLnvcSjUb5wQ9+ULT99nwGHnjgARoaGvKfgUgkQktLC2eeeSZXXnnlqOvZ95xP5e/htttuY/fu3dxyyy0sW7ZsUo892e6//35uvPHGAeVHjhzJf89Xr17NmWeemf/9NjQ08OEPf3jI/e7fv58FCxZMUK2LW9ceg52Lvu68806uv/76ftfyYh1fCAAMMeG2bt1qXHvttcbhw4cLvr5v3z7jm9/8pvGjH/2oX/nPf/5z45vf/OaojzfWnxutffv2GR/72MeG3e6zn/3sgPdmGIYRiUSMW2+9Nf/vyap3MY30HIxXsc/NI488MqBsIt/Lrbfeavz85z8fUD7YZ2Moheo5Wb+HQj772c8a+/btG9G2hc77VBltXYb6PR0+fNjYuHFjwZ/p+x3vcfLkSWP37t2GYXRfHyfTaOq6e/fugtftkXxmB9umGMcXwjAMQ7pQJ4HT6eTCCy/sN+ajr1gsVrB82bJlXHTRRaM+3lh/brTcbveIthusNdHlcvVrtZisehfTSM/BeBX73Ozfv39A2WS9l77Wr1/P9u3bR/Uzheo5FXUfi0LnfaoUsy6DtaItWLCAAwcOAN1dips3b2bz5s18+9vf5uWXX2bz5s3s3r2bzZs3T9o4uJHW9Vvf+hYtLS28/PLLfOtb3xrVMZ544olBW2Qn4/hiepAu1EmyYcMGbr311gHN7tFolIaGhoI/M9YumVLvyolGo/n3vWDBAqLR6IBgTvRXzHOzbds2AoFA0fYnRqaUznux67J//36WLl06oPzIkSP5YMXlcuW7CDdv3pz/+/333z+qbvTxGmldP/WpT/GVr3wFv9/Pl770pVEdY9euXYP+zGQcX0wPEsBNkgULFuB2u3niiSdYs2ZNvvzw4cMFb86FxvXs37+fO++8E4BPfepTtLS00NLSQiQSyV8MR/pzkUiEI0eOcOONN7Jt2zbcbje7du3iqquuyl9EotEo27dvp6Ghgf3797Nhw4aijFXpe+Poee+DjWOKRqPceeedLFiwgCNHjuSDvm3btuUvavfffz8NDQ35cSRr1qwZ0bl64okn2Lp1Ky0tLfkxTC0tLXz1q1/F7/dz44034nK5RnUOCr2PzZs3s337dq6//no2bNiQ37ZQvUe6z5G8v0L279/P/v37aWlpybd4nH7zPHLkyJD7G2m9R+KBBx7giiuu6Fc2UZ+7ofY7mvN5//3343Q6R9XqN9R5H0m9/H4/GzZsyLeaffjDHx7Xd2O4z8BoHThwYMA+9u/fz4EDB/ja177W7332bH///ffnz3Gx6lHMut55551s2rQJp9PJbbfdNuyYtx7RaHTIz8ZEH19MI1Pdhzsd9Iw1KTSOqWccSKExcIcPHx50rE/fMTcf+9jH+o2TGM3P9R2XtHv3buOzn/1s/t8///nPjZMnT/bbPhKJDHmcQm699Vbjs5/9rLF161bj5z//+YD6DrW/b37zm/lzFIlEhny951g9+x7JuSo0dqrvmJyxnINC+7z11lv7jTkaqt6FjPWzUMi+ffv6/Z77HuPaa68dcn+jrXff7W699VZj9+7dxu7du42tW7cOOCc9xnLOR/JZHG6/IzmfP//5z/vVORKJGBs3bhzRGLjBzvtw9er5Xu7bt884fPhw/js73u9GoboMZbgxXY888oixe/du45FHHjG2bt066Ni2ffv25c9XoXGRE2m0dd29e3e/302PocbAPfLII4N+J4p1fCEMQ8bATaoNGzawZ8+e/PTylpaWUbcsuN1uWlpa+rXa+f3+Yae1D/ZzfS1YsKDfflpaWvqNk/H7/fkxGqO1cOFCrrzySj784Q+zevXqEf/cnj17+nUr9LSM9NRvz549/VqA1qxZkx9rOJJztWzZsnxrZA+n05n/+1jOQaGn79P3OVS9R2qsn4WhxGKxQfc33novWLCANWvWsGbNmvxn4YknnhgwFquYn7vR7He48xmNRnnggQf6taK6XK5xtw4OVy+n08mRI0dYtmwZCxYsyLcIjue7UUw9Y7o2bNjAmjVruPDCC3n55Zf7feb76nkvU2G0dV2zZs2gQ1yGO8ZUHV9MH9KFOol6ujh2797Nhg0bOHLkyJi6n07/QjudTiKRyJh+bqiLQ083TDQaJRAIEI1GR3Sc4WzYsKHfxI2+Yz9Ot2DBggGTPHrqvH//fpxOZ7+bX9+bWN9texQ6V+vXr2fbtm3ceOON7N+/nwsvvDD/2kScg5HUe6TG+lkYy/6KWW8gH4zcdNNN/PjHP84fe6I+dyPZ71Dv/8CBA4PeaCe7XjD+70axnD6my+VysWHDBr761a/2C3Z79Ly34boa+3riiSfYtWvXsNv1HQJSjLqOVk9X9VQdX0wvEsBNsp5Zdxs2bJiQm0ExHTlyhC1btrBs2TIuvPDCAS12Y3X6Be7ll18e9KK7fv16tmzZwqc+9Sm2b9/OJz/5yfxrsViMhoaGATNZR2vDhg3cdNNN3HjjjQNaYIp1DvreaItV72IZ7qbTYyLq3fN737ZtW79xnBPxuSvGfos527XnvI+kXoWuFcX8boz0M1DI4cOHBwQfg82sh95zePjw4RE/wPa03I7XaOs6Wtu2bRsyEJvo44vpRbpQJ9mFF17IkSNHeOKJJ1i4cOFUV2dQ0WiUW2+9lauuuooNGzbgcrnyF5piPsX3DL4eyqc+9SkOHDjAmjVr+l38Tu/y7Vv30WhoaMhPMOl7gy7mOehbp2LVu1j6dh8PZSLr3XPeJ+pzV4z9Dvb+x+rIkSPjrlexvhsj/QycrqWlhVgsNmBW5f79+wf9XvcM4F+2bNmkdg+Opa5jOcZg+5qM44vpRQK4SdD3QupyuVi6dCm7du0q2moLY32CG+rnAoEAsVisX8tYz8V/tBf7oW7wmzdvHvLideTIEVwuV8GxIMuWLWPhwoU88cQT/cp379496P4Ge8/r16/nRz/6Ub+L61jPwenj0KLRaP7iPdZ6j9RIPgs9sxJh+HGYffc3EfXevHkzTqczv0JDMT93fY11v33ff89KEn3HkUWjUY4cOTLm8z6e9zue78ZoPgNDeeKJJ2hoaBhwLYtEIvlWw55ZzVNtous63Ni+cjpXojwohmEYU12JStUzTX/79u2sX7+eK6+8koaGhvxFdc2aNfmp9Vu3bs0vN7V+/XoCgQBbtmxhz549XH/99Vx55ZX5rpa+Zffffz9bt26loaGBTZs20dDQMKqf65lc4Ha789tcccUVbNq0ia1btwK9XS8NDQ1s3ryZiy66qN9xrrjiioKpKwZbRqnntQMHDtDS0sJvf/vbgnWE7ovet7/97Xzahp6bfd/Whp4gsKcVZ82aNSM6V327ZHqm7Z8+VX/z5s1jOgc9aRF6bqy7du3ilVde4frrr88ft1C9Cyn0Xkb7/k7X874aGhry4zFHur+R1huGX0oLulNi9A1ARnvO+9Z9sM/iaPY73PvvSc3Rc9PtST9y/fXXD9ulfPp5H65eTqeT+++/n8OHD+fr0HOuxvrdGKouQ+mbyqLnutXzO2xoaOiXGqPnd9KTfLoY3Z9jNRF1LZTW47bbbhuwdNZEHV8IkABOlLBoNMqPfvQjPvWpT+FyufKDvDdv3jygy0iI6WQqvhuSi6zXYAGcnJ/SkEwm2bVrF1arlbVr1w66XXNzM83Nzfh8PpLJJACrVq2arGqOm0xiECWrZ7JHzxOty+XKZ3OfiHQIQpQL+W6UlqGWzhKTZ+fOnYRCIfx+P83NzTQ2Ng66bVNTE4cOHWLjxo35submZrZs2cJVV101GdUdNxkDJ0rWggULBozhge5Bv3KxFNOZfDdKy65du6TrswSsXbuWjRs3smrVKqxW66DbJZNJHn30UdatW9evvLGxkWQyycGDBye6qkUhLXCiZPXciHrGHEHvLC+5WIrpbCq+G6We9mgynX4uZBZpeWlqasLr9WKz2Qa8tnjxYg4cOMCSJUumoGajIwGcKGnLli2TFgUhCpjs78ZQa+xON6efCzk35eXQoUMFgzcAn89Ha2sryWRy0G1KhXShCiGEEGLaCAQC+Hy+gq95vV4AQqHQJNZobKQFTgghhBCjdvfddxd1JYl0Ok02m8XhcAy77fLly1mxYsWYjpNKpYYcIwfkJ0OUMgngxuD953xxqqswpMXnzeOWOz6KATzy6+fY8n97prpKQzpuM6iqKY/xNcdsSaq95VLXODWe4S+EU+24I0Stq/TrCZBxtVJnL/3fv991mBprcRKFT7Sz7Pvxmj1TXY0RWWF5DrtWPdXVGJE5M/dP+DFisdiErCAzkn2m0+miHxfIB3Y9aUVKmQRwFUhRFGyO7g+hyaxNcW2EEEJUMkXRcdri49pHLOnAMFQURRnRhBmLxTKu41UCCeCEEEIIMWZOW5yPXPF/49rHzx74INGEC6fTyQ033FCkmo1eKpUCKPkJDCABnBBCCCHGwQByhj7ufYjRkQBOCCGEEOOil1EI5vV6B51l2jP2rWc2aimTNCJCCCGEmDb8fv+gkxR6ArtSn4EKEsAJIYQQYpz0cf43mRobGwdtgQsGg8ydO3dS6zNWEsAJIYQQYhwMcsb4/kzmKLhFixaRTCYJBoMDXmtqamLp0qWTVpfxkABOCCGEEBUllUoN2k1qs9m49NJL2bVrV7/ynjVSFy1aNBlVHDeZxCCEEEKIMTMY/ySGYrS/7d27l0AgQDAYJBQKEQqF2LJlCzabjcWLF/cLzBYtWoTVamXnzp34fL58sHfVVVcVoSaTQwI4IYQQQoxLrgRmoa5atWpU2zc2NtLY2DhBtZl4EsAJIYQQYlzKKY1IpZAxcEIIIYQQZUZa4IQQQggxZt0rMUz9GLjpRgI4IYQQQozL5GZyEyBdqEIIIYQQZUda4IQQQggxLqUwC3W6kQBOCCGEEOOSk/ht0kkAJ4QQQogx607kO/59iNGRMXBCCCGEEGVGWuCEEEIIMS45lKmuwrQjAZwQQgghxkWXPtBJJ12oQgghhBBlRlrghBBCCDFmBuPvQpUGvNGTAE4IIYQQ4yJj4CafdKEKIYQQQpQZaYETQgghxLjohrTATTYJ4IQQQggxLtKFOvkkgBNCCCHEmBko5MY5IsuQAHDUJIATQgghREVpbm6mqakJq9VKKpXCarWydu3aqa5WUUkAJ4QQQohxKaUxcHv37qW5uZmrrrqqX9lDDz3Exo0bp7BmxSWzUIUQQggxLjmUcf0plkAgwK5du1i3bl2/8lWrVuVb5SqFBHBCCCGEqAh79+6lvr4en8834LXFixdz4MCBya/UBJEATgghhBBjZgA5Qx3Xn2KtxNDc3FwweAPw+/0cPXq0SEeaehLACSGEEGJcdNRx/SmWVCo16Gs2mw3o7matBDKJQQghhBDjUqxxbLFYjDvuuGPY7ZYvX86KFSsGlFut1mF/NhQK4ff7x1S/UiIBnBBCCCFKgmEYRKPRYbdLp9MFy/1+P8lksuBrwWBwPFUrORLACSGEEGLsDIWcMc5u0FNpSBRFwel0Dru5xWIpWL5q1Sq2bt1a8LWertPBArxyIwGcEEIIIcbMAPRxdqH2TGJwOp3ccMMNY95PY2MjS5YsYefOnf0S9zY1NdHY2EhTU1N+LFy5kwBOCCGEEBVj3bp1HDx4kIMHD+bL5s6dS2trKzCycXLlQAI4IYQQQozLeNdCLbYlS5YMKOtJIVIJExhAAjghhBBCjNO4x8BNgkAgQH19vXShCiGEEEJ0j4EbXwBXrES+Qzl06FBFLWhf+iGzEEIIIcQINDU18aMf/ahguc1mK9i1Wq6kBU4IIYQQ45Izircg/Xgkk8kBY9wCgQA7d+5k06ZNU1SriSEBnBBCCCHGQSnCJIbiBIBLliwhmUyyc+dOUqkUyWQSr9fLddddVzFj33pIACeEmHCGYZDs6kDPZbG4PZhtjqmukhCiQq1atWqqqzApJIATQkwYPZcj2HaChJbDqPGCZkEPdWGLtOOyunF4qqa6ikKIItDLYBZqpZEATggxIXLZDK2tR8nNqkNRlHwHiebzkAE6IzFyna3gqIykmkJMVwbjzwM3GbNQK42EzEKICdHVfgJ9dj2KUnhsi+J2EtQy6PHEJNdMCCHKn7TACSGKLptOkbCqwz4hqlUeMh0tUF8zKfUSQkyMUpmFOp1IACeEKLpYqBPV7+tX9oM7f8H5h4+gKyq3rb+Ee9Zc0P2CjJ0RouyNN5GvGD0J4IQQRacXGNHy5sNHqAtH0BUFZyrV+4IMfhGirBko415KyyhSGpHpREJmIUTRaSgYRv/ILKeo6IpCVtOIWftMXJDrthBCjJq0wAkhis5ZVUu4/STU9aYJuW39JThTKWJWa2/3KYAqTXBClDtdnsQmnQRwQoii00xm7BlIGEZ+Fmq/oO0Uo6MLrdoz2dUTQhTZeLtQxejJGa9Aum4QCyeIRhJk0rmpro6YpqrrZ2M61oqh6wVfN4JhqlUXql3ywAkhxGhJC1wFatr3Gh+74Kt02hxU1Uvrhpgaiqrin7mAcOAEcSVDxqyC2YSSSGPTNTwuH1anmy5CU11VIcQ4SCLfqSEBnBBiwiiKgtc/Cy+gZzPomSxajRVFlcZ/ISqJLnngJp0EcEKISaGazKgm81RXQwhRdMq4W+BkOvroyWOwEEIIIUSZkRY4IYQQQoyLLrNQJ50EcEKIMcll0kTaW0krBgYGJlQcNgd2X/VUV00IMYm6JzGMvwtUOlFHRwI4IcSoRTtaCWWTKLVV+TxvaSCZTGI69io1dTMxWSU9iBBCTBQJ4IQQoxLr6iBkBtU7sKVNtdnQG2y0txzHP2t+PrgTQlQwY/xdqLIgy+hJACeEGJVIMoJaVzvkNnpdDdH2AO66hkmqlRBiKo23C7XYI+iamppobm7uV3bRRRdhs9mKfKSpIwGcEGLE4l0d5DzuYS+2iqaRyKVxT0qthBCi186dO2lsbGTdunX5smAwyJYtW7jqqqsqJoiTAE4IMWKZdArV3bu6x/uefJJ/ePwxVF1HV1X++5K3c88F3WueZiW3uhDTRqnMQg0EAgA0Njb2K/f5fFx66aXs2LGDjRs3TkXVik4CuApx7U3v4Fc/eGSqqyGmGUcqRX04jGoY6IqCI5Wa6ipNS+muIGqyA7MpiaJAV0eSrJakZrYXk1WSJ4uJZaCMezF7A6Uos1Cbm5tpaCg8dMPv9+cDvEogAVyFMAyon11N67HOqa6KqGBWu5NIPI7mcAAQt1pp9XjyLXDxPjNPzbK0zqRIHW+m2h/HOtsK2E+V2tENg9ePdlBf68FZ5ZjKKoppQC+hJCAHDhxg0aJFA8qDwSBer3cKajQxJICrIN9/5BZee/E4L/zlZV548jA79x+f6iqJCmPzeDGfaEY/FcDdc8EF+S7TvvRMBofFPqBcFFe65QS1s5OYHQNTtiiKgn2Oh9ZjYWbbzZht0hInKt+iRYvYtWsXDz30EOvWres33u3pp59m1apVU1i74pIAroLc873fc8YbZ3PxpvN519+9lS8p8ML+o7yw7yjP72vmtSOt+W3fdeUKfnf/M1NXWVG2PC4vnaEwqtdT8HXDMDC3d+Gcc8Yk12x6MQwDC12YHUMHyvbZHjqOh2hYMPTMYSHGY7xdqD1isRh33HHHsNstX76cFStWDCj3+XxcdNFF7Nq1i+bmZjZu3EhjYyMHDx6ksbFxwNi4ciYBXIWIBuM8vPnP+X/Xzqxi/kXn8O5rz2fjVSu59sMXEo+n8sHcBWsXSwAnxsTu8VEdNOhqbYPqKhRT72VED4WxJtPUzJo3dRWcJtJt7dTNtvQre/uvX8QWz5B0mHnsvWfny1NGbrKrJ6YZvUhDJgzDIBqNDrtdOp0e9LVVq1bh8/l46KGH2Lp1K16vl02bNuHz+YpSx1IhAVyF6Bu8AbSf6KLpN8/h9Nj54/bnmTu/jjed18ibzm3kI596O0iCVTEOdl8VNq+PWEcb6VwMg+5EnC5vFeYaGW81KXIpTFYt/8+3//pFPvTDPWhZg5xJ4e2//huPvfcNPPbes9FlRrAoE4qi4HQ6h93OYrEM+brVamXlypUEAgGOHj3K1q1b2bhxI36/v1hVnXISwFW4njjt6KttHH21jYdPtbp96RtXTmGtRCVQFAVXbf1UV2PaMk5r8bDFM2hZvTujfdbA2xnHFs9MTeXEtNK9Fup4Z6F2czqd3HDDDePa186dO2loaGDt2rUAHDx4kB07dnD33XezadOmiulGLY3ELWLCOJyF16NsbQlObkWEEEVl8tUQCyTy/046zARrHHRV2wnWOAhVO0g6uicuWBS51IuJpRvKuP4Uy8GDBwH6zUJdsmQJH/nIR/B6vTz00EMkk8miHW8qlXwLXDKZZNeuXVit1nw0XUhzczPNzc34fL78L6eSZpuMxDnnL8ThsfPCky+TiHafgzevXcwL+4/2m8AghCh/JoeN2AkzzlM9Qo+99+x+4956ZGJpPIM8yAlRHAr6uNuDihPE7d27l49+9KMDyn0+H9dddx0//elPOXr0aME0I+WmZAO4nTt3EgqF8Pv9NDc3D9nk2dTUxKFDh/plV25ubs4vmzEdXPPZd7Dx79+a/w60HuvE6XVwz8938+a1iwcEcMVJmSiEmFK+uXS9doSqeYVnouZSWdSOFN5FlTPuR4jBJJNJrNbBH1ZsNhurVq0iGAxOXqUmUMkGcH1b2w4dOjTodslkkkcffXRAxN3Y2MjOnTs5ePAgS5YsmbB6lgqn284PP/d/OL0O/HNqcLrtPPlMMy/+9Tj/70vv4m3veBN/eOR5AOwOC3UNlZPMUIjpyuSwkeEMWl8+htOXxlnXHcjpWZ3UiQhOs4V6Cd7EBDOA3Di7QYsxzcZms5EawWowlTIbtWQDuJFqamrC6/UWXJx28eLFHDhwYFoEcK+8eIynH3uhX1mnzUFVvYcf/3A7P9vyKTZuWklrS4gzzvTzkx/umKKaCiGKyeSwg+NMYrEE4Zc7UFTw2VqZd+YMFJltLiZJMcexjYfX6x2y1665ubliYoKyH9l66NChgsEbdEfZra2tFTNgcSitxzq4eFPhMX/JRIbP/P1PiUaSzF/o59f37mXvEy9Pcg2FEBPJ5LRjnTkbS8Ns3LM9EryJaWnjxo3s3LmT5ubmfuXJZJIdO3awatWqQWOGclP2LXCBQIDFixcXfK1nzbNQKFQxv7DBvPjUEV594digr7e3RvjKZ385iTUSQggxJTKTn/dPL9JKDONls9n44Ac/yM6dO2lqaur32kUXXVRRsUDZB3CpVGrIQYtAfjJEpUvEhu/7F0IIUbnML8Sp/tzr8MLw2xZTrsQmxg2VtaJSlH0AN5SewG4kXajPPPMMzz777Ij2W3+Og9a/xsdVNyGEEKJokjreHwRw/3criqycNi1UdAA3Gul0ekTrrwFoltJoKhZCCCEsT8eo/sLrmA9PTS+MYYx/EoMhq72NWkUHcD3TiUfS522xWHC5XCPaby4dHle9hBBCiPFS4jm832rB9b/tKKcCIMOsEP5MPZOdKKpUxsBNJxUdwI3GihUrWLFixYi2ff9/fnGCayOEEEIMzrorQvXNxzAdTefLUuc66PrubDJn2Sc5gFPQxz0GrrTG0JWDsg/gvF4voVCo4Gs9Y996ZqMKIYQQ5UwJ5/B9/QSuX3bmy3SbQviLDUQ+VgeaBELTRdm3efr9/kEnKfQEdtNhBmpff//VK/J//8in3j6FNRFCCFEsth1hGi4+1C94S17gJPDYYiKfqJ/S4C1nKOP6I0av7FvgGhsb2bt3b8HXgsEgc+fOneQaTb362dW9f58hrY9CCFHO1M4svq8ex/lgMF+mO1WCt84gdl0NqFMbABmMfwyczGEYvbJvgVu0aBHJZLLg4rRNTU0sXbp08itVQmRmjxBClCnDwP7bIA1vPdQveEu81U3LHxcT+1DtlAdvYuqURQCXSqUG7Sa12Wxceuml7Nq1q195zxqpixYtmowqlixZTUcIIcqPGshQ89HXqP2HZrSOLAA5n0bHD+bQfvd8crMsU1zD/nRDGdcfMXol24W6d+9eAoEAwWCQUChEKBRiy5Yt2Gw2Fi9e3C8wW7RoEVarlZ07d+Lz+fLB3lVXXTVV1RdCCCFGzzBw3teF719OoIZ6M/LG3+Gl699modebp7Bygxv/LFQxWiUbwK1aVXhh9sE0NjbS2Ng4QbURQgghJpZ2LE3Vza9j/3NvUvlcrYmub8wi8S5vSXepSCva5CvZAE4IIYSYFnQD110deP/tJGpMzxfHrqgi+C8z0avlVi0Gkk+FEEIIMUVMr6So+sLr2J6K5cuyDWa6vj2b5Ns9U1iz0ZGVGCafBHBCCCHEZMsauH/ahuffW1CTvekCoh+oJnjrTAyPNoWVGx2D8U9EMGQM3ahJAFfhJI2IEEKUFvNLCao+/zrW/Yl8WXauhc5/n03qQvcU1kyUEwngKlLvk0wJj3kVQojpJa3jua0Vzw9bUTLdT9eGAtG/ryX0pQYMR/m0up1OZqFOPgngKlJvs5u0wJWnhio3LV2RfmVOm4VYMj3ITwghSpn5YJzqz72O5W+9OU0zC610fncO6ZXOKaxZccgs1Mknow4r0OP3/aX3778/MIU1EUO56Jz5LJxZwztXnsU7V56VL//Mey4ikkjxmfdcxMKZNQCcu2AWn3vv2qmqqhBijJSEjvdfT+C/7OV88GZoEP50PS3bF1VE8IZRhES+0tgwahLAVaCnH3uh9+97Dk9hTcRgnDYL175lGYdPdPDn51/hplPB2bkLZnGyM0wsmeblE21EE2nOXTCL5Qtn8ZPtT01xrYUQo2HZG8V/aROe29tQTmUHSZ9tI/D7Mwl9aQbY5BZcTIFAgIceeqjg0pqVSLpQhZgCsWSaG29/EIAZ1W6ePXxswDaReIqWrggzqj0cOtY2oEtVCFGalFgO7zdP4trcgXKqZcmwKIQ+6yfyyXowV153Yyl0oYZCIZqammhqahpyu4985CP4fL7JqdQEkgBOiEliGAaRjhYyOQMwUBV43/q3sHLxPL5+z2MA7DtynLVvPAOnrXudQ6fNwpkza7lvl3SFC1EOrDsjVH/xdUzHMvmy1HkOOr83h+wi2xTWbOIYjD+AK0YPaktLC0uWLMHr9RZ8vWeZzUoI3kACOCEmRbSrnUgsjuquQrF2d5vkgP/9/Z85/NpRPrr+fH74m10A/HT7U8yodrPrr6/y0fWr+On2vSycWcOMKg8nu8IcPtExhe9ECFGIEszi+9oJXPd25ct0m0LoSzOI/n0taFPfQjUdrFu3btDXdu7cydq1lTOWWDrghZhg0a52IpkcmrcGRe39yrntVkwuH0+82s7ac+Zx7oJZQHf36uETHVx90VJ+t/dvALxv7bns+uurzKgqn8zsQkwXtu0hZrztUL/gLbnaRcvji4l+rG5aBG86yrj+FENDQ8Ogrx08eJAlS5YU5TilQlrghJhAhmEQiUXRvHX9yq9c/Sbm1Hr5j9/uRtE0QrEkHZ2d+dd7JjO0dEXy3akAUUkjIkTJUDuyVN16HMdvg/ky3aUS/MpMYh+onlaJOEthDNyiRYsKlvdMaqiUrtMe0gInxASKdrWiuKoGlD+6r4kXjgY4f9FcPvvuC9n65Avs+9vLQPe4t+ULZ7Hrr68C3S1y4UQKp83CjGrJ0i7ElDMMHL/uouGtL/UL3hJvc9Pyx8XErquZVsFbqXv66acrrvUNpAVOiAmVyeZQ7f2/Zv+2/W5WHD+Mrqj8dOXb+Y83rga6W+t6/HT73n4/88Pf7OLcBbP4/dMvTXylhRCDUlsyVH/5GPZHw/mynE8j+PVZxC/3TdvArVgtcLFYjDvuuGPY7ZYvX86KFSuG3a4Su057SABXIewuG4locvgNgTq/h7ZAePgNxfgVWApjxfEj1MYj6IqCI50esO1gqy3sO3J8QqoohBgBw8Dzqyj13ziOGtbzxfF3een6xiz0OvMUVm5qFXMxe8MwiEajw26fTo9sOMmhQ4cqNoCTLtQK8Z6PXTzibd991aoJrInoS1NVDEPvV/bMrAW0O9y0OzzELb3j27Rp+uQuRKlzHotz8YefpOHmrnzwlqsz0f6TRjrumDetg7ce416J4RRFUXC5XMP+sfS5dg7m4MGD+P3+iXzbU0pa4CqEw22f6iqIAjy1fmLHj2Hy1uTL/nH9dQO2y6WTuB2uyayaEOI0um4QOdaFyciQNVScM6o5+95mln73RczxXH670JUO2v7Zh+7TIdc5xB7FaDmdTm644Yai7OvAgQMVlTbkdBLAVYi3bTqfN15wJvFwIl+WVVVMJm3AtvUzvLx6JMAfHnl+Mqs4LSmKitNqIZ5OoVmsBbcxDAMtEcY+e/4k104MJhONkoh2ktUyoBooBmg5E0o8A40VsHal6McwDBKvHWeWuY23LEijaQra4QzW94XxHeztqovNsLP3G0s5+ZZTrTolPCm88HzMiWOUwCzUvoLBIK2trYMm9a0EEsBViFgkwQt7XiYW6Q3gkiYzNkeBZuZ9UN/gm7zKTXPeugb01uMkoklMrv4Xk2wyjikVpXbm3CmqnThdsrODhDmKqdHF6R1jeiJJ25ET1C2YOSV1ExMj3fQKl57TjsmkQBZct0Vxfz+CkurdpunaRvbfcg5Zt3SXFlKsXG7FcvToUaDyUof0JQFchXhq20H+9+sP9CvrtDmoqpfEr6Wgqn4WrlSCaLCTrG5gYKApCh6XG1udtLyVikw0RsIcwVRbOF2LarcRV1WCr7fjm1M7ybUTEyHS3Mr6N3QHb6YXM/i+EMJysHcZrGyjRte/e9jlq8UuwVvZCAQCU12FCScBXIUIvC7LK5U6s9VOlX/WVFdDDCEZ7cTUOHSuPdVqIRqM4pucKokJVqd0YDHA/e8RXLdFUbLd5YYCqQstdP1vNYZdYcbhDrqMWSgy2aigUkjk21cwGMRqLTxspVJIAFchHt7856mughBlL2tKY8LRr+yaR5/GkUwTt1m499KVAOSq3MRaunA2DEzSLMqHnjOYf7idun8IYz6UzZcbCqCC5ek0NZe3E7/OwTnXGDzUHKF6tvRqFFJqY+BCodBUV2HCSQAnhBCnGEr/vH3XPPo0X/r5Nkw5nazWnXXp3ktXolrMZBOJQrsQZUJLZHnT9/7GG+/qRDmV6ccADCcoye5/KFnQ2nSUmIHZrGBkc0PtctoyjPG3wBVImTkufr+fZHJkuVHLlQRwQghxinLaTciRTGPK6ai6gQkdx6kky4ZhlNiQbTEadXvbefOX9+NujuXLsrNUDJuCYVcwHc6iZMEwQa5OxXAqtHUaWL2SrqlcbNy4caqrMOEkgBNCiFO0XP9LYtxmoc3nQjUMdEUhbuue1W20BnGdUT8VVRTjYIpmWPadF1n0y9fyZTmzQuzzLqKfcIKpOyyv3dCG1qaTq1Np31YHwOEmD665tqmodlkotS7U6UACOCGEOMVicpGKp1Ad3YOf7710ZX7cW18OFVRtYI5FUbpm/DnAqlsP4DzZ2/Xddl41f7plMY0LjzLb1Gd5rOscKDEDw9kdlHR0QafFj2QAHFypTWKYDiSAE0KIU2w1NWROHkX3K6j2gTkUDcNAPdFO9cIZU1A7MRaWYJrz/u0Fznjg9XxZ1q6x/wtv4OXrzsDQFA6eNJM9cYR5M7uDuPh1vaFaoAOe7WjEOVcmrIjSIgGcEEL04Z4xl3jrSdIEUeocqDYLhmGQOxFCUVLMWjgLzSyXznIwe/sJVv7zQeztvRl5W1bX8tS/LiM2pzdIc8yo4sXQG3n5pVZqtS6sWpaMrnEyZMVimFi96yhKopkOi51XP3EOmkmWET9dsSchiOHJVUgIIU7jqJ+BA0h2dKBn02AouOvmkfV2SPBWBmztSVb8f88zd9uJfFnaZWLfl9/IkavnQoFcbg6vDbxzCTGXVDRNQ9tRNp2TxOU0UG7tgLYs1JkwXW7iRW0mtobKXaJp9JQirMQgXbCjJVciIYQYhK2mZqqrIEbDMJj3m2Ms/8bzWIO9qykcv9jP3q8vJdEw/CzSbDrH3M7XuPiNWWBgS9uqRQZ1LcfZ2aFhrXEVs/ZCjIoEcEIIIcqe/WSCVV89wKw/9i6hlKyy8OxX30Tzu2YVbHUrxDjZwcVnZ4fcZn4DNB1qpQsJ4HrILNTJJwFcBVp07jxu/p+PYADbfruPrf+3Z6qrJIQQE8MwWHBvM+d+669Yor2BV/Nls3jmq28iVTO65ZQaTSPL4P/GmjiPBpPYfZJaxKAIiXyLU5VpRQK4CqSqCg5X90XFbJZUB0KIyuQ8GuP8f9pPw5Pt+bJEnZWnv7aUY+tGPlN44T2vsfCe1wCwZZMop09APpyGrAEhHWXdUQBmA+9JtqBaum+jh983j8PvmzeOd1PeZBLD5JMATgghRFlRcgaL7nqFpd//G6ZE7/JWRzbN5bkvn0PGOzAFzFBMsSy29u5ll8y57MA7Y9YA/dT/23pb+exZA0XL5vchxGSSAE4IIUTZ8ByOcP6X91G3rytfFp1lZ+83ltFy0dhWx8g6TSRru3stspkUbutpzUkhvTt4MylQ133bTGchgRVVVfL7mM5kDNzkm96fOCGEEGVByei84SeHedN/HULL9K6a0HTdfPZ/4Q1kXeYx77tv92fytTauP7sVpc+kB2Xd0XwaEWPHXAAe/ZuDyNx5Yz5mpZEAbvJJACeEEKKk+V4M8eYv7aP6xd4JBuF5Tp765rm0rSxuqhfLnFoefj7Mu5akBt3mhdcV2j1+Rjc9QojikgBOCCFESVJTOd54WxNn//hl1Gx3t6auwksfXcjz/+8scrbiT9JSNYWu2Y38+oVjrGyIMqu2Nxecrhv88UUTza5Z2H3D55SbNowirIUqkyBGTQI4IYQQJadmXydv/tI+vEei+bLgIjd/+da5dC6Z2HVJzVYTyfnzeDSYxPVSJ4vXJ1HjBiGng9bGRUjoNpDMQp18EsCJIaUzCcLRLrJpHcMARQWLWcPnrUdVJUWJEKK4tESWpd9/icWbj6CcCgpyZoW//sMiXvzEInTL5K1DavfZyPlm8uI/zJy0Y5YrGQM3+SSAE4MKRdqIRzNYzR4sfWI1I2vQEjiOr6oKh809dRUUQlSU+ifbOP8f9+N+PZ4v63iTj79861xCiz1TWDMhSo8EcKKgaKyLZEzHah540VQUBZu5mlBXCFOtCYtZOhSEEGNnimQ49zsvcuapZLoAWavK8589i5f+bgGGafJa3cToGYy/BU56YEdPArgxeGfH0yRVC3+oWjrVVZkwsVgUs2nocSZWs5dwpIvaagnghBBjM/fPHbz1/2vC2ZLMl7WuqOapb55LZL6sNVouJACbfBLAjcFlHc8QNDkrNoBLpqIYuhVG8NCbTkn2cSHE6DmCCS7/3p9Z9fDf8mUZh8b+L57Nyx+YD6qMqRLjEwwG2bVrFwA2mw2r1cratWunuFbFIwGcGCCZimExOfuVvbPtGc4NHyGjmPjOGVfmy3UdDMPol/RSCCGGsvTxl9n0rT/g6egd6/b66ir+/LXFRGbZIReB3BA7ECWn1CYxNDU18dRTT7Fx40Z8Ph8AyWSSnTt3VkwQJwGcGEBRlIJBmVnPMSBOU5DgTQgxIu72GFd96w8s/cPhfFncbeXXn3sLT737bFAUSExhBcXYlVAfaiAQ4NFHH+WjH/0oNpstX75jxw4CgYAEcKJyOR1VtEYD2My+fNnv61YU3NakSfAmhBiGYbDy4b9x+Xf/hDPcu8LB8285g/v+8RLCdTLWTRTPzp07WbVqVb/gDaCxsRG/3z9FtSo+CeDEACbNjNnCgCeq04M4w9Cx2iyTVzEhRNmpOhnm6n97nLOfeC1fFvXZ2XrLxey7dBEDm/VF+VGK0IVanM9BIBDg6NGjbNy4ccBrS5YsKcoxSoUEcKIgn6eOto4ANlN1wdcNwyCtd9DgmTe5FRNClAVFN1h9/0He/cNd2OKZfPmzGxZz/xffSqzKMYW1E8VWKisxHDx4EK/XO6D1rRJJADcGuVyOLGniqSgOa2U2/ZvNVmpr6ukKtmHkzFhMve8zlQmhWQwaahtl/JsQYoDao0Gu/foOznz2WL4sWOfkvn+8hL++ZcEU1kxMlGJNYojFYtxxxx3Dbrd8+XJWrBg4tKe5uRmv1wvA3r17ge4ZqMFgsGC3ajmTAG4MFAPIQvDVE4R8Jvz+eahK5SWatJht+OvmkErHiMUj3RMbVIU6Xx0mk3SdCiH6U3I6b/3lPt7533uwJHtTDO25/I389rMXkXBXzs1TTAzDMIhGo8Nul06nC5aHQiH8fj979+5l1apV+fJgMMjdd9/NddddVzFBnARw42A2LBidBgFeZUZD5T5VWi1OrBbn8BsKISqentOJt3U/0Dlq3Wjm7nX2Go60875/2cG8F1ry23bM9PCrr7ydpvMbp6q6YjIYwHhb4E51wSqKgtM5/P3GYhm8ESEQCHDRRRf1K/P5fDQ2NrJjx46C4+PKkQRw46QoCnTpxHwhnDbvVFdHCCEmRDqehI4TuM0hGmd2X/vaTupEYy4ufTjAO+96DlNWB0BXYNc1y/jdp9aQdkhr/XRQrDFwTqeTG264Ydz76cn91pff72fHjh0kk8mKaIWTAK4ITJiJBYM4GySAE0JUnnQkgTPaxJxFCqDly5dGo7z9n56l7lBvl1dgXhX3fHUdry6bNQU1LU+rtx7EmsiQspvZs6myZkpOhZ4xcIOVBwIBGhvLv1VYArgx8JLCSYbbjcfyZUbQwBy3jnmfj1ctrdiluYQQ5c0cfOVU8NZtyd1HWfBYG7P3BlFPtbzkVIU/fGg52264gKxVbi2jsfqB5/G0xwjXOss3gCuRWagjmYEaCoUmqTYTS75lY6BiYEKnmt7Flw0DtOzY1wW16YUHZAohxFRKtHVxxsw0PS1vM54LctG/H8GU1vPbtC12sf1fzuJPjkU4JXiblkplKS2/308wGBx2m0og37Qx0FHIotJJnyhfZVwzM5OqjBMRQpQeUyrIyodPsuSe4zhbU9i7MvmUqwYQq7VgKHDpvxzCdHGKJz9aGTdHMUol0gK3ePFiHnrooYKv9bS8DdbFWm4kgBuDEFY6sfFJ5e0AZJUM3nkzKjYnnBBi+tLUHHV/i1DzchS1t9ENA9A1QAFHR3cPgi2VKbgPISbLokWLsFqtNDU1sWjRon6vHTp0iCVLllTEBAaAykteNsl0Q0etsUjwJoSoOLZIimv+8yBL7j2RD94MBXKagq6BblKJ11rzf5JW89RWWEwZw1DG9aeYNm7cyM6dO0kme4c5HTx4kFAoNCC9SDmTFrhxSGspzNV26mrmTHVVhBCiqM758xGu/rfH8bXF8mXHVvp47Otv4J03vYCjPUW81so9D3QnS82kdF56fSaSMXLkcskM9V2vYcvG0fQMSibdnTC9HFe4KZEuVOhetH7dunXs2LEDm81GMpnE6/Xy0Y9+dKqrVlQSwI2BoQCaQv2C+Zg1GbsmhKgczq4EV3z3T6x45KV8WdKmseeWhTx/9SxQCwcXr7+m4phTN1nVLGuGYdBw/G+8s76ZJeflUGwZMOdw2BO8M/gHHs+dQ7q2YaqrWdYaGxsrIlXIUCSAGwNN0zCZzBK8CSEqh2GwbEcTm779R9xdiXzxi6vncffnLiRpPUHjqeDt+WtmYo7nyDi6Z6Yeb9ZJeRZiLceWoykw69jz3HReMyZT//OlAJeenWBR63PcHjiPTFkFcfK7n2wSwAkhxDTnaYty1bf+wJI/HsmXxTxWHvz8W3j6XWeDopBN+vhb03FcWpDopX4UBYJdKpEmF1TNwOqyT+E7KB9GZ5DrFw0M3vqaV6/zlvZDPEYZBXAl1IU6XUgAJ4QQ05VhcP5vX+S93/8zjkgqX3zg4oVs+fLbiNT2jmgz2cyY5swjbRgcjSQxdANbvR3LIF2qorAzM83U+4Y/Z2+dF+LxpgBGueQskwBu0kkAJ4QQ01DViTDXfOMx3vCX5nxZpNrBli9dzIG3Lxr05xRFweaR1jboXgJr9QPP4+xKoOoGuqoQqxr63LhzERSr3r/wcBqyBoR0lHVHAXABX0q0kTGPPuXFniveBOeO+sdEmZEATgghTjF0nURbAB0dxVCweqsw2SsrWFF0gzVbDrDxv3Zji/fmbXv6nWfxwBfeStxXWe93IlkTGTztMVxdCRTDwFAUtJw+9M8YWTCdtk3WAP3U/9t6V/RxZSCn5sZUr0llcGp23zj3IUZFAjghxLRnGAbRlmNkzCm02V4UtTtFZqQjgHLSwFU1A1MFJP+sa+7i2q/tYOG+4/myLr+L+/7p7bx44fwprFl5StnNhGud2CMptJxOTlMJ1w6dSMWeVbDa+gRYs+fDnw51B28mBepM4PZCJEQwYccwj36yXMo++fn4DAnAJp0EcEKIaS98/DVodGIyOfqVazVuqIHw68fwMLu7X6sMqVmdt/7iOd7xP3uwpHpbdJ644k389jMXkXRbp7B25WvPpiXs2bSEL7z/F/nF6L/7yw+w1LeERC5BU+Tl/LZvq7+YjnQHSijMFe7/wu1UUDxfw4j8O8rOH8OP74CW5zH+fC2K4xoe+8stPOS5ZMw54a4p1psUJUsCuDF4uGaFrF0qRIVItLVizLKjmrRBtzHNqSL2WguOWseg25SqGS+38/5/eZS5LwbyZe2zvdzzlXUcXjl4EvJkMIYRaUdTchiGSs7swdFQPRlVLmt2zcY6/yXsCDyeL/vkghv4+Wt3ksgl+cLim7jnD/fx8dULMXJHwYjAi/sgFIQ3vw3FsprOk9/lz8kzUbxlNEFEWuAmnQRwY/D7mpUAJDMxIqEuMrF095JaqorZacXjqcE6hoGnQojJl9bjqDb3sNvl7Dq5VBbKZIhYMBri2l+8yLqf7cWU7R5zpSuw833n8vCNa0gP0s2WTWXIHH8Vvz+Fe6GJpfcdxRLPETepPHL+XLLuOVirhj9f09Uy3zKe69qf//ds+yziuUT+79899ANy9efxuyaVty0AB0CoE46+CkvP5GjLC/y0yU1kRpkloS3yclhieBLAjVEw0k68NYxFt2KhT/dDCjpCx3E1VOFxyNOqEKUup2XzF8JrHn2aax59lqpwDNUw0BWF/9m0lnsvXYnJ7yXd2go+75TWdyS8z9q45Qe/YO6RznxZy/xq7vnqOl5bOnPQn9NzOrnjL7PwDQo9t4dl9x3D2Z4iVmvlr9c10nqsmWh4PlaPLJp1OvPZb6Ip0sRS39J82RzHHGqtNdRYagC4es5V3Pf6Fh4HalKrePHQbt6XUVEdVeQWruDfWzvQZpwxRe9AlBMJ4MYgmgiSCISxGIXHjVhyNmItIUyzzDis8qQqRCnr23DgSKapC0a7A7hTaSEcyfTUVW6ULKkMH7prB5u27kTTu/u0cprCQx9cyq4bLiJrHfqSHz/WwqKzhj5G/WyN2OGT4FlYrGqXJaMryOJ0M2+yt1CTC2EycigzGug8fgj6BHB2zU48G+dYonviyFzHbGbbZ3EscZyHOh+lZtZb6HrsO9R/9st0/Pe3aXzPzdRYa+hIdeR/phwo0oU66SSAG4NoMIh5kOCthzlnIRoK4qiXAE6IUqboav7vcZuFNp8LdyyBCZ2sphK3dY931eMpzNbSHfv6xudf5fPf28rs4+35ssMLZvLdL2wiuiwBJCE1+M8DOJUOFGX424LHFeO1zg7Mzuk5+aGq/SSfmdvEGfXdUYtiBT7zecxdzfzzObW8rnhxO7y8EjnGa7HjuE1eOlJRAILpCBbVeerfUY7F2/nI33+S5F0/I6fnWFv3Vv7r5TtYWX1e/mfKwjQO4OLxOA6HY8DfJ5oEcGOgx3JA7/iRy3KHsZEhiZmHtd6n0lQ0iV6noypqgb0IIUqBOWfO33vuvXQl9166kmsefRpHMk3cZuHeS7vHvBodSSxnlN4DmS2R4iM/28Z7f7MnX5Y2a9x93du57+q3kDNpMEwccNnv/sJlDz+FTY9gsfYfy1T9ShQ1Z2ANZ7h+U+8xwvHnwdx9HXz4svN5+F1vLt6bKmG2UCtfXbg7H7zl3fZdqDPhvXkuFvObePwQPBW34DSluLBmLoFo972hxjKDP55IEct2//vc6kZSRx/H8urr5Bpnkco6CUQXctxSlf+ZsjCNx8D96Ec/4uabbx7w94kmAdwYmHVrft3ey3KHuUF/rvtpHZV36of5vbqQh7WFaFmNrJ7GosmEBiFKld1XR7jlJKYGT76sJ2jrkYslsamll0PkvGebuOkHD9AQ6MqXvfiGuXzv85s42jjyJZjsiTTVnRFMpNC0/jdiNWeg6AYq4GzvbcLTMlkUVcv//HSxxvw3Fvqzg29gWY3DvZr3zG/nuVcO0ZII8fDx/bxz1lJcJis/PfxnYtnu8+g0WVlePY/otoepBvRImHAmidNkZYbdxz6aBz+OmHQHDhzgzDPPHNDCZvRJgmdMYkK8IQO4QCDAtm3biMViLFy4kEsvvbTf69u3b0dRFPx+P0uXLh1kL5VHJ4d26tTZyGBCR8XAhE41SWx0J2nUFR1VGTw1gRBi6plsNpzpamLH2zHN8g14PRuMY+7UMXur0HPhya9gAa5InBvueJgN25/JlyWtZv7379fzm/esQddG1+qfsFvorHZjySmcnq/YGs6gArqmEKvt7jLNZg3iWSecOk7CXrpdy8VkGAZrvK8NvVF6D0bHFdi64ETLVaheL7tamwbd/KeH/8ztff79w5ce5dzqRn5//EBR6jxppkkX6ubNm4lGo7hcLpYtW8ayZcv65eoba96+sRg0gGtpaeGGG27A6XTicrnYvn07999/P1//+tepr68HYP369ezZs4d//ud/5te//vVk1XnKZa0ZtHT3qUtipgM7KgY6CmGsJE91r6p2DZM6+RmxhRCjY/V4MaXtJJpbyahpUA1AIdcRQ3VZSbtMZE3t6CeS6FoUr8+JvcYz7H4nwgV7/spnfvggNZ2RfNm+ZQv4wU1XcnJmzZj2+fC73szD73ozlkATbzm3/8D56zftyc9CvXPragD2/9VFW9XKQrsqGz3dxqOiG8w1d6CYT7tJF1jLdAZwR+QnGObh7wFzXm/DlM3hjCW5/R9+yMOXnc++cuuSngYB3NKlS/ONVbFYjAMHDrB582YOHDjAnXfeybJlyya1PoMGcP/93//NLbfcwurVq/Nl27Zt46abbuIb3/gG8+d3L7vi94+8mb5SWD0OjDYdRVF4WFvYb9xbD8PQsXnKL+mnqFyGYRBrayWb7c7EbzJpOOvqJ/WJsZRpFguuhtlA97kKHXsF8xv8KObeVnTN6yQNBEJRqlMdeMYYMI2FNxjlxtt+w8V/Opgvizms/Pjjl/HIO1ZiqOMfa5usms9Lfwtw1hsG7yJsPWnQqp5BuX9qerqNR8MAFCU38M5ZYC1Tw4CqdBxG8HvJaio5VcVQoLozMq26pMuV0+lk9erVrF69mkgkwvr16zlw4ACHDx/mO9/5Dn6/n4suuogzzpi4lDCDBnB+v79f8AawYcMGLrzwQm677TauuuqqCa1YKav2NXAy8SqWqLXgzc8wDDKeDLXu2VNQOyEGirW1Eo0lUDxVKNbugCSdyxFrPorTacdVVz/FNSwt0cBxlPluFK3wEAjV66IzGMESjGLzTfDYOMPg4j8e4JO3/xZfKJYvfmrVWfzwM5fTVu8r2qFUi5nmzHmkDx7grDPjWOy979/A4JUmOJI5B6Vq8gLXidLTbTxahmFQaz9tsfiQ3n8tUyCU1OhkbDkDy65L2mD8LXBl0IK3Z88eFixYMKDhSlEUGhoaaGhoYP/+/dx88820tLRw4MABtmzZgqIoLFu2bMAwtPEaNICbMWNGwXKXy8Utt9zCnXfeSSQSweUqvYG9E01VVGbMmE9b+3GykSSWrA1FUTAMg7Q5idljY0b1fGnZECUh2tZKLKegVtX2K1c0DaWqlmgigREI4J6GremFGIZBRkth0oZeckH1uQm3d01oAFfTHuIzP3yQC/7yt3xZ2O3g9k9u5PFLzoUJuMaoTicB52paXm6hWm2hbu1CLIkc7ZqXw/a3oLgqY1Z9T7fxaNV0vMKPVz6Oy9Fn3NO6o90tb3UmjB1z0XWDL+1cxSu102VsuFIyAdhDDz2EzWZjyZIl+P1+kskkgUCAgwcPsmrVqnH1Gvr9frZt20ZLSwtutzs/Bq6vnvt+T0C3fv16oLvLtdgGDeAMwyAejxOJRGhpaRkwSeH6669nz5497N+/v+iVKgeqouKvm0O2Jksk1omh66iaRo1zpqQNESXDyOWIxhJopwVvfWl2O7FgB85sFtUkE9OTra1os/q3zBRKKwKQyE3QXcsweMcjT/PxHz+MK5bMF++86E3816ffQ3ASlrJSahvoooFfblrWWzbhRy19HTVn8PVnAnx15Qs47QPPiK4bfHPXPI7ULJlW56tUEvkmk0mampo4eLB3qIHVamXjxo3jHvK1YMECFixYAHQHZIcPH2bLli3s37+f22+/nWXLlg0aqDmdxV+5ZNCr9RVXXMGdd97JgQMHCAQC/OIXvxiwzerVq3E4HGzfvr3oFSsXJtVElVu6n0RpirQGUH3Dd3ep3mqiba14Zgy+zNJ0YaCjaP27sD5x/07quqJkT8267AnidL34x2842cln/+N+lj93OF/WWeXivz59ObsvemPxDyhGbX/1BXz2GS/r3C/xzkUduAEMCCVVbt29nJeqz5UemCni9/tZtWoVgUAAAJ/Px6JFi4p+HKfTmZ/U0NLSwvXXX8+BAwc4efIk3/nOd3C5XKxZs6Zg2pFiGfJx+/rrrweGbvpbtmwZ//qv/8qBAwcKphIJBALTcqKDEKUgmzP63UiueXoPn9j5GKqhoysq/7P27dy7cjWKopCdqNakcmMoGLqO0mfwuaobqHp3qqC+S2upRbxHK7rOe37zJH//v49gT/aOsXp03XL+5xPvIiKTokrK0aqz+Rlnc+fTAW6L3ok3naQTL4eqz5tWLW95JXT5aGxspLGxcdKOpyhKflLDrl27uPnmm/vNUo1Go5x55plcfvnlRT3uiPpLhmr6O3DgAPv37+eBBx5gxowZ/M///E+/15944gkWLFgwrfLECVGqHOk0ddFwfqF2R7o3GJnMBJSlzF5fT/LkK5hmVeXL9p4zj1V/fQ1dUfJLawHYtOLcquccbeXz39vKOS/2Jm5trfPyg5uu5JmVi4tyDDExsjV+ciYrqDJzVPSOges7SxUmeQzcSO3fv5/rr78ev9+fb7Lsq6crVgI4ISafqkCuz7/jFgttLk++BS5u6Q1GRpn7tWIpqoo5Y0E3elsvv/jZTQO20yNx3N7xjWtRczmu2rKTD931GJZMb+qO3258Mz/7yDuIO2UVFyFKXd/JnINN7JzUMXCjtWHDhkFf27RpE48++mjRp9AKIYbmrPLR0RVGc3Unnb135WruXbl6wHa5aASfzzfJtStdLv9sgocPoy6o6teV2kOPJvDmcjhqq8d8jDOOnODz39vKopd7E+cen1nD9z+3iYNLp2eKJlG+ijWJIRaLcccddwy73fLly1mxYkXB14LBIEePHu3371WrVmE7fZmRIvnkJz9Z8O8TbdwBXKFWt9M5nU6i0WFWUxZCFJ3Z4cTS1k72tDFdfRmGgTmbwuxsmOTalS5FVfHNXkj06HEyWgq1zoliNZMLRbGlMng8dlwz68a0b3M6y/t/+Qeu/dUfMeW6Z0HkVIUHL7+QzR++lJStzHKACQFFWMy+OwI0DGNE8UI6XbjLOhQK0draypIlS/JlgUCAu+++m+uuu27CgrjRGGzOwGiNO4BbuHAhDz744LCD86ZjvjghSkHV3Ll0NjeTsbvQbP1zm+WSScyJMNVzJ2/Ab7lQVBX3jDnd+R27guiZNNSrzJg79pm6Z/3tKJ//3hbmNbfmy15rrOd7n7+Kl94wtxjVFqKs9UwIGI7FUvhBZ+PGjQPK/H4/fr+fHTt2FHx9PAKBAN/+9rd55ZVXcDqdXH/99cP2NrpcLm6//XY+/OEPj2uG6rgDuCuuuILPfe5zHD58mC9+8YuDbnfy5MnxHkoIMQaKolAzbx7JYJB4pJPsqdQXJgXcLhc2//yprWCJUxQFa3X3hIaMq3WYrQuzJtNcf+ejXPHAbjS9u6Uhq6n86tqL+eX730bGIvn3RJkrUheq0+nkhhtuKM7O+mhsbGTHjh1F3+9NN92Un6AQjUa5/fbbicViQzZqLViwgE9+8pMjavwaSlGuGl/72tf42Mc+xgc+8AHWr1/P+vXr+6UOicfjtLS0FONQQogxsvl82GSc26RbcuAVPvf9rcw60ZEvazpzFt/7/CZeWSB590SFKPFJ7D1dp8VMbfbAAw/Q0NDAjTfeSENDAy0tLWzZsoU777yTNWvWUF8/dI7YcDg8ruMXJYBzuVz85Cc/4dvf/jb3338/DzzwAE6nk4ULuxd5P3DgAN///veLcSghhCgLjliSj/zsEd790F/yZWmzibs+tI4tV12EPsg6q6L8PHzZ+dgT6fJbw7SISmElhh07dmC1Wlm7du2A16xWK9C9UkOx7N69m1tuuSUfEC5YsIAvfelLbNu2jc2bN3PzzTfz6KOPcueddxKLxfJxkdPpxOVycfjw4WGOMLSitdu7XC6+/vWv88QTT7Bt2zaOHDnC/v37WbBgAd/73vem7cL3QojylQ6GyCYTqJoJa+3IF3Bf8fQhbvrB/dS3hfJlL5wzj+99fhPH5oxt8sNEuex3f8kHH2NZG1Qg561EHDp0aNAEvqFQ93exmAsLuFyugvvbsGEDBw4c4MCBA9x22234/X6i0SjRaDS//KiiKOOesVr0gRdr1qxhzZo1xd6tEEJMmnh7gIwRgxorWoOVXDpLMvAKSjCFcaZj0GWS3OE4n/ifh7h0x3P5soTNws8+soHfvvsCjEFmAk+lyx5+iurOCJ3VbglExNiVQAvckiVLCra+ATQ3N+P1eos6C3Wo2bLr16/nO9/5Dl/72tfyM06PHDnC4cOHaWlpYdmyZeOeiVqUAG7Pnj1s3bqVV155BehuRrzwwguLvmxEqcvmMoSiHeTS3alTNYuG11WDSTNPcc2EECMVOXkUo8GEZvfkyxSLCdMcL0ZOp+Wl12k4a86AIO7CXS/w6f96kOqu3ov6s+ct5Ac3XUmgYez54oQoecUK3saZiaShoaHgGLeeBe6LPQN1qOwaZ5555oBVqBYsWMCCBQuKdvxxB3Dbt2/Pr7Tg9/vzEebhw4fZtm0bN954Y798LJWqIxQgGYxhzdrRlN6xLYGuY9iq7NR4JceWEOOVS6VJtHWgq6Dq4GioQzUVryMh2dGG4ddQBxnLpGgq2Rk1dDYHqJnX/Z32dUX49H/9hrW7ns9vF3XauOOGy9i2YSWU8KLm2Y52lGwK9Bxk0ui5HKqMzRNlatGiRezYsYMlS5b0C+K2bNnCkiVLir6o/WAt8dA9m7aYwVoh477yHTlyhF/+8pcDynvGwn31q1/llltu4YILLhjvoUpWRyhAtj2DTXEMeIKw6XZy7Vk6aJEgTogx0rM5QsdOkNQUtJrulB6GYRA9cRKrAb45swZNVDwa6VwU1eEechtFU4mnc1TrOm//w34+eftDeCLx/OtPvvkN/PAzV9BR6xliL1MrF+ykVn+FmXPS2G05zGYdhz3D7ORTtET96P6JvfGIyjPuSQxFes5Zt24de/fu5dChQ6RSKZLJJOeff37RgzeAw4cP8+qrrzJ/fuFUTG730NeS8Rp3ADdYwr2esXD79+/n9ttvp6GhYdA3Wc6yuQyprjhWxT7oNppiItUVJ+NKY9am7ywlIcbCyOXoeO0o+ow6tD5PvIqioNRWkzYMOo68Rs2CeeMK4gzDIKdl6dnD1duf4ZpHn8EXjqMaBrqicMemtdy3fgUNCvzLzT9hzYFX8j8f9Dq5/ZPv5o8XLy3pVrdcqJMzXIeonanR/xagMGO+idpUK399KUNuxllTVUVRjsa7EkMRp7GuWrWqaPsaSjQa5aabbsLpdObHtPX0RsLQLXTFMOIA7p//+Z9ZsGABy5YtG1WX6LJly/j+97/P7bffzs033zymSpayULQDqz548NbDqjsIRzqo8c2YhFoJUTnCx1vQZ9QNejFUFIXcjDoiJ1rwzB5HXjVdx9B6j+FIpqkNRqkKx1F1A11VcCRSXPXoM9x856O4Er1L+fzxrUu57cZ3E/KV/oozNblXTwVvhZmtGmfO6+SFQBCT5A0UI1UCkximwpIlSzh8+DC7d+/miSeeALobtnrGvrW2thbMB9fS0sIrr7zC6tUD16YeqREHcC+//DL79+/ngQceAGDp0qUsW7aMZcuWcfvttw85HXawqbaVIJfKop12Gm9O72aJHuCg6uc7lgvz5dlTkxtGyjAMwskukuksxqns+aoGNqsVj9U77roLUeoMwyCp54Z9klVUlVQ2O65jKZoG2d67UNxmod3nwh1LYkInpypc9dhznNEnIW9HtZsffuYKnlx99riOPVmynZ3MnJliuEu/02vCdewkSXyTUi8hytGCBQv42te+BnQPJztw4AD79u3j4MGD+WBuz549+P3+fjGTw+EgHo+PaC35oYw4gOvJ89bS0sL+/fs5cOAA+/fvz19YDx48yBVXXNGv+bCvnqUmpoOleoBqEizVT/vljOIJJatnaQu3YsGHRdHI9+sYkI5naEmexO9pmPAmWiGmUroziOF19xse8x8/uYc3H3oFXVH40bvexi/f0p36Imsxk0um0GzWMR/PlOudMX7f+hXct34F1zzyNBftP8xF+17uF7w9smEFd9zwLmKu4VvgJ8tlv/sLlz381KCvK9kUdlv/B8m6VyNoOR1bOMOnr3k8X55OQVZ7dMjjPXzZ+ZJ6RAClkch3sl14YW8DTc8M0yuuuAIYGNC1tLTw6KPd36eeGGnDhg3jOv6IA7g1a9bkK9iT561vMNeTsK5nIdq+gdyBAwfGXdFSpVoGdkUcUP35Fri+NMvIx+e0R9uxKYUTh2qqGdWooi3SSr2nMls2hQDQs1kUZ/+8TW8+9Ar1oQi6ouBM9nZjKmYTejo9rgDOZvURD4Yx+boXmD7jWBvv2XmAcw8dy29zrNbLP3/grTx7yVJAh0TpPJzmwlG8nYMvz6PqOSzm/ndaLaej6AYaOu6O3iz1WiyLbsQxFIWkrXAqpFw4SlsJvX8xhaZhANcTrBVyekDX0+i1f/9+XnnllXysNB4jDuCuv/76AWUNDQ1s2LAhH5z1Deh6Uok0NDRw/fXXjzthXanyuKvp6DqBxeh9Cu/bbdojpSSpdY9s/FssHUXNOXpb3QpQFAU9ZyaVTWI1FS8xYTqTIBLpwtANUBRsNhsup+SwElPD7HGjd3SgVfvyZX9ZfEa+BS5m650UZMSTmKrH91m1+Hxk25LouQgf/+M+brzvz1iyvS1W/3fpcn7w1ovQ5i3EPHgOzymTUmvo9PgG3yCXxu1M0XfKny2cQUMnp6lEanqvJTWhCJZclpymcWKQfabUGszRodd7FEKQn+Bw/fXXE41Gue2228a9z6KuxHB6QDcdWDQrJp8VvTOHqhQeGKwbOcxVZiymkbUMxFMJzOrwKQisqpNoMoLVNf4ATjd02tuOoWdMWDRX/vIeT6aJhJrxVlfhsJVuWgRRmUx2G5acQd9Ov89+7H0Ft7UqSvc4tnFaFsty67//kjccO5kve7XOxz9du56DZ56Fvba0lsLq68FLLuTBSwY+QPYwdJ0zLX+icXFvAPfpax7H3ZEkUmPjv+69BIBcRucjlz9BTSRJh8/DB//tSxNed1HepmMX6li5XC42bdrEwYMHx7Wfoi+lNR3VVc2kjeOkgkmsRv9gKq0kMVWZqauaNeL9GQW+CF/s3M6S1HEOWmfx79Xr8+V6Eb40hmEQaGnGQjUmrf+YOpNmwYSFUEcYpUbFbiv9WXaisjjdLoLhKKpn8M+eHorg8o1vYo85k+EjD27j+od2YMp1zxrKKQp3v+NifnzVZaStVkpntNvYKKrK0Y5G/LFXsTkHD3ZfOmgFzQIUb+FvUeEkgBsVp9M57smdEsAVSV3VLNLuJOFIF7lU92w4zaJR7WkYQxfnwIkJZiOH3chgNnKnbTn+b00o3IqZqiEnRFg1D5FQlwRwYtLZqn24W9uIBMOovoGtwHpnEI/VhsUz9qSZb3z5Vb7y419wxvGWfNnhOTP4+sev48UFhRfHLldp7wKe3Z/mjYuO4a3rfwvIpHI0vWDjBMuB3VNTQSGmgYaGBhoaxpfcXwK4IrKYbNRWjT/Pm6aBkTH6BVT7bHOZkQuzzzY3X6YbOmbT+LuMUokU5iESEeePlzGRSsewWsY38FKI0XLW12GNxYl2dJHWdQy6H3OsqoqzphqTY2xtY7Zkin/Y8juu3fYn1FNN3xlN43/fu57N77mUbBGX6SolSd8b2PvqLHyvNpNKKtgzkEio7Hr6LHTfLFSZ3S5GS1rgJl1lXp3KnNfmpS0dxKb0tjY84nwjjzjf2G+7tBGm2jb+AcS5rIH5tE/CO9uf5Z0dz/L7muX8vnY5ABaTk0QiKgGcmBImpwOf01G0/S3/axO3/uSXzG5tz5e9eMZcvvbxD3Bk7siHPJQr1ekhzJtI8zA5cmQVB0bVbDAMlM7jKLl09xqphcZ0CNGXUYQxcD1PZWLEJIArQSbNjMNuIplIYlELd7+m9Tguu70oeeAKXZ/Pi7zCzFQn50VeyQdwg24sRBlxxhP8v1/+miv+8ES+LGk2c8emy7jnnReTm8aLudtCTcz2HWP+BVnczhTWZA67FqEqto8O8zmoFlkKUIhSIQFcifLaqlAJEUuGMBkONLU7D1NWT5NTE7icdlyW4iyUq5kGBoFpRSOuWkn3mVmbySZxW4vXAiLEZFuz7wW+/LNf4e8M5sueO2sB//qx93N0xsABxelQkFQygqGCooPZ4sJWVTWJNZ48ai7BmuWvYrZp9M1hZLYonH9+B3/d9yTN6QskiBOiREgAV8LcNi9uG0RTITLZFAAOkwWntbh5lyw2M0ay/5i778wbmKDQ0JI47JLzSZQfbyTK5++6n3c88XS+LG618KP3vYetb78IQ+2fdDGbTBLpOg41VrT67ocWA0jE4iROduL2zsDkqIyHmQcuuRBHVxtzFraeCt4KO+fcDJG//JWg5dxJrJ0oG9I5M+kkgCsDLqsXxp5cflg+bz0t8dexaYMnQc3kEri8xWnxE2LSGAaXPLWPL27eQk04ki9+8k1n8W8ffT8tdQM/87l0mkjoGNq83pa2ax59GkcyTdxm4d5LVxI5fhK3OguTrXhJtKfKg5dcSEN6L8vOG/77Paeujc5IDrUIk6dEZZE8cJNPAjiBqmrU1vtpbwtgxoOm9n4sDMMglQvh9DhwuSqz60hUppquELdsvo+Lnz6QLws77PzHdVfw0FveDIOMH413BtAa+3/Wr3n0WeqCUdp8Lu69dCXaLB/x5lY8DXML7mMqXf74bq54fHQpQGxKGIu1//mofTWCljOwhdP8w9V/zJeHo38B0+i7UR8YJsmwEGJ0JIATAFjMdmbOnEc40k4yEcbQuycEaTaNes8MTFrhtRCFKDmGwWW7nuJzd92PJ57IF/9xxRK+/XfX0FE1eMJfwzDIaGlMDN89mjVnMHK5IVd/yEQiXP74n3Gk0iSdbn77rnWjey9j4EimqAkOvh5qIWYlhXraWFgtZ5xaIxVcHanebVNZUEef4NeRTA2/kShf0gI36SSAE/143LWMIx+qEFPK397JP/30Hi44+Ld8WafHxb9/+GoeO//cQVvdeuQSSd73zF95338836/8jONtmHI67liCB77wP92FhsH956/gofcMXDowHQmRzbRhqla45tl91HTFaPc4+NXq+Zi0GizeiWvNjtusdBRIeDwUKxGsp/UG28JpNCCnKURrusdw6LpBNOEAbfS3jrhtAseBiKknAdykkwBOCFH2FF3nisef4NP3/Bpnn5aebauX890PXUVoiGW4+jJ0HWcqTV2w/0r1ppyOqhuY0POvGRjYC7QqpUNd6PYObHP6t+IpmoLtDAeZjg5SQR2rr2a0b3NEhlsPtRBP9HlWvznQr+wfrv4jro4U0Ror/33fxQC89LyZ15S3FK2uojIojH8MnKSAGz0J4MYonooSDXeRS2aA7mWzHB4fLvv41mMUpSEcbiORS+dzS9pVM25P6S5iPp3NbmnjKz/+Bee9dDhf1lrl5Vt/fy27lr9pVPsyOezEFJU2X/+Azx1LYEInq/W+ZmRzpKt8/bYzDINMrgV7/eDXAXONg2S0DUOvQjlt9utUCWrzOdncwozGwW+jyWiOE9GFIC30ogzt3bsXv99PY2PlLI0nAdwYBNqa0btymDGjcmpsWAKiwQ7C3g4a/PNQldK4MI+EYegEQ62kE2lyGQMw0EwqFrsZr7ceVZ0+M86SySjtsQ4UVzWqdupGDURyWcKdr5OtsoNXVqIoBaqu875H/sgntvwOWzqTL//1xav54fvfS3QMqzYoqsrW81ey5er+rUwPfOF/8pMYrvjuJ7oLj0bx+PvfDFLtLdjmD9/aZ53jJnn4JPb60ljxQbW7eP7kUgzjIDPnDXw9Gszy7F8bSXsLvCgElHQXajKZZNeuXWzcuHGqq1JUEsCNgdIJZmXgoH6TYsYIGbQqzTT4509BzUYvm8vQFjiGlSosih36vC0jYdAaf50a/wzMpsofv5JJJ2iPh9C8A3PdqZoJvHVkIp1kvHHMFZIDrFydcewkX7njbt54pDlfdryuhn/92Pt5+o2Lx7Vvu7eW8MkWTDMGH0eWC0RwOesGzPjUs2nU02Zzznu9Ay2n444m+cWnf9a7bcpAPW0251TO1NRd9exvX80rLa/S4GklkzLIZSEe19j94grw1k5JvSZCNp4g1RXGMAzMTjvWISa2iJEp5TQiBw8enOoqTAgJ4MZgqNY1RVEwQgZxXxSHdWTjbqZSR/sJbErh/G+KomBVquhoO0nDjHmTW7EpEIx1onkGz4UHYHNWE+3ooEoCuCmhZXN8+LeP8pEHt2HO5QDQFYV717+F26/eSLIIA+VNdjvuXC3R5hbUWV4Uk8a9ly7HkUwTs5jJNnfitNdjdjkHzPg0jBxK/PTZnN3j50CnpivWu23WQDltNudUz9RUbQ6inMNh/RwSxlM4jDBZ1QGeygjeMtEYkdYgacWE5u0O2mKxBFrnMZxeJ/ZaSZVUaZqbm2lsbGTXrl1TXZWikwBuApgxEwt34agr7QAumYxCxgLD9JBqOQexWBdOZ+Ve3AxDJ2HojCRZSjapo+dyqNN4zcypcNYrR/nKj3/BoqPH82WvzfDz9Y+/n4OLFxT1WGaXG5/TReJkgAwJ7jnnLBRdwWxYqKpvyK9acvqMz0ItcO5oEtDJaSodVb3d74Va4GSm5sRJh6ME28IoVTX9Lnmqw47hsBOOxdBb2nE2VEawOulKtAUuEAiwatWqqa7GhJAAbhwu0w9zrf4iKgY6Cr9Sz+ZhdSEAuUx2ims3vGg0jEUbfjyXSbOSiEcrOoBLJWMop63zevmhJ/m7g4+hGjrPNizkn9d+AACT1UsqHMReNTGzCEV/lnSGjz3we6773eOYdB2ArKpy97su4SdXvJO0ZWJyFCqKgqO+YchtTp/xmQ6HwNuOyWvPl/3i0z+jpitGR5WTD/zXRwDIRZMYHVUTmk5E9BcOBFFqBg/OVKeTSFcXtmQKTQLp0TEYfwA3AQHgwYMHKzZ4gwoK4B566CFsNhtLlizB7/eTTCYJBAL5X6DfP3Ch6vGykaWGZD6As9EbtCllMInBOHUz7Ovm5gdZEm3moKuR7zReni/XcyX6eFUkhebe2bMpahJhVMNgeaB3hiOGMWw+salgGAbhrhbiRoa0YpDDoL1VxWLTcNTVYrKW301pyaEjfOXHv2Teyd4UF02Ns/jax6/j0Pw5U1izwiweL7GWAKZhhlSlT2Rx1kvwNllSHUFyDifDXZW1qipigQ48jTMnpV6VpFhj4GKxGHfcccew2y1fvpwVK1YM+nowGMRWAUvdDaViArhkMklTU1O/wYpWq5WNGzdOSPAGkMREB7Z8AJfsczo1a+mfWqVAEGLWs9j1FGY9e9q2k1WrqWGxOaGzC/q0wiVMVjrsnu4WOP/CfHk2HcbqmT0V1RyUoeu0tL1Grq4WRdUw0fvlzgJdxwL4/NWYXaXdrd/DnkzxyXsf4upH/4xqdN8Z0iYTP7t8A3duXEeuhNfitFXPI37oFexnulHU/l8cwzBIHo5g85bHJKdKkYwmUN0jC5jTpd95UtEMwyAajQ67XTqdHvL1pqamim59gwoK4Px+P6tWrSIQ6H5S9/l8LFq0aEKP+bC6MN9l2ldKS1LvLf1cM2armWw61y9NyD7PGczIBNnnOSNfZhgGJmvp3jCLQVFUbKpG32v3g4sv4MHFFwzY1mTXSi61SlvHMXL19QWDcgDNXUPwRCu1Cx0lk3tsMCtfOMQ//eSXzGrryJc9v3AeX//4B3h19owprNnIaGYLzrpFJA+fxDBF0dM6Rk5HT+ukmwwcdYtK/ndQaUbXOFTZvQ0TpkinTVEUnM7hh/ZYLIOvx9vU1DTh9/9SUDEBHEBjY+OkJOnLKBnMRuFxN1ky2GpdmLXRL/Y82TzuOlrCzdjofTL9fc1yfl+zvN92ST1Ig7f0Fu0uNp+rlkC4FW2IGXeJaDs1jRPTojtW2XSSpFVDG6aZVPXUEmsJ4JpZekFQezTOPAU+84sHee+fnsyXJy1m/vuqd/Grd1yMXkZBj6Kq+RxvqmZFUVKomhW7v7RabqcLdRQ9CKPZVvRRpADO6XRyww03jPnnk8kkyWQSn89XnAqVsIoK4CaLc6aPSHsn5qQJVeluiTEMnbQ1jaPaS5VnYB6xUqQoCp7qKqKdESxa4fTq6VwMj89TVomJx8pstlLvrKEt2Irh9KCZe8dP5DIplFgItdaN2WYfYi+TLxLpQKvxDbudoqqkEllKrRN1VtzLWS8/yTd+8QANfVJyPPuGhXzjYx/gWEN5r4DxwCUX4kimym6GabnWuxBHXRWJk0HUYW7qRi6HtQyGv4jBVfrEhb7kkzoGHmc1bkcVkXgn6VQKDDBbrdQ65w7ahVWqnA4viqIQDQUxMiYspu6m63QuDqYMrmovTsf0SXJpsTqYZW0kFusiHulCB1TAbbbhqm3kmC053C4mXa7AZ+7bv76blUcP8/Tchdzy3uvy5UaJ9Q55o1E+8+C9XPrs3nxZxGblR+9/Lw++bQ1GGbW6DWaqEvOOV7nWuxCT3YZFz5AxjKGv0R3tOBZXfm/DRCiFRL6BQGDCxryXoooK4ILBIEePHu3371WrVo1oJsozzzzDs88+O6Lj1J/joPWvcTzOGqiAVZUcdg8Ou4dkKtadG84w8Nrc2Gyl1lYzeZzOqrJJm1LodmTJZXGmU1hyJToZxTB4275nuOmBe6mKRvLFT77hjXz++ndzstoH8dILlkX5MuqryDQfx9wwA6VADsdMaytalYuOWGIKalcBSiCAC4VCHDp0aMDKC8lk97Xkqaee4tChQ9hsNtatWzcVVSyqigngQqEQra2tLFmyJF8WCAS4++67ue6664YN4tLp9IhmvgBolvJvFSjEZnVis1ZARDrNOK1O4okYqr33d/fk/EXMCXbw5Pz+A3lN5qn/7NaEQnx+yy9Y+8KBfFnY4eA/33s121a+GVVRmBWfwgqKimXU+4i0thAnTUYzMABTDuyGGU/VHDTFAvLZK1uLFi0qOHkhmUxy2223cf7551fU5IaKCeAKLVLr9/vx+/3s2LFj2EVsLRYLrhGmWMilw8NvNE3k9CzBSDvpjI5uGKCAWVNw2pw47dOn63Uq2ZxetLbXMPoEcPedt5r7zlvdb7tsuAvP7CnMMm8YvHPvHj796624E713yT8uPY8fXHktnR75vIiJpSgKnroZDL7KrRirUuhCnW4qJoAbTGNjIzt27Bh2uxUrVgyZFLCv9//nF8dbrYqQTMfoCHVhsVRjtvTvmwsnEsRTJ6jzSULMyVDjrqO1qxO1qvBarrlEDKfHgmmKElv6Ozu4+d67Of/Qi/myTpeb7296H39atnyInxRClIUSDuBCoRDQ25VaKSo+gOvpOp1ugxsnmq7n6Ah1YbUWXk7KbLKT0010hgNUe+S8TzSrzYkfha6ODlJmDe1Ua1YuEUfNJXF5ndhrCgd3E0nRdS5/4s984qEHcaR7F2rftuJ8/vPyqwk7p+84y+kgm0oR7Wonmcth0D1e06KoOD1erK7CM99FmSrBAC4QCLB3716CwSAAO3fuzC9u33e4VbmqiABux44dWK1W1q5dO+A166nlgyot8p5qwUgbFsvQAYGmmkmkIhjDzfwSRWGxOfDbHGTTSeKdQdrNSaprq7B6pyYNx5zWALf86i6WvdK7DFnAV8W/X/0B/nL2m6akTmLyJEJddMWj+VbhnitAGkhEI7jjMTzDrDUrxHj4/f5hh0+Vs4oI4A4dOjRoAt+eplNpfSuuVFbHbB4+KDNbvISi7fjc5Z3Lq5yYLDY81Q2EbXGsHsfwP1BkWi7HNX96jI9sewhrJpMv//Xqtdz+7iuIl1gePVF8mXiMrmR80C59zeUmmkigdbTjHGKB+Upg5HLE29swAIvDicVdmS2P8og++SoigFuyZEnB1jeA5uZmvF5vxS9qO9n0AgnFvtS0hSXhVznomc+3Fl0FgKpo6Lo+2dUTU+SME8f58j138obXm/Nlx2tq+da1H2LfmYunsGZiMkVCXahVQ6fhUe12Yh0dlZCJqaBsKkW4vZWUYaBUVaMoCpF4DFM4iNPhxDFIcFuWDMbfhVqCXbClriICuIaGhoJj3HoWuK/kJtSpUuhpy6xncWTTmPXs8BuXuXQ8SjoeRdPM2HzV076L2JTN8qEdj/DBxx7BnMsBoCsK9619Gz9953tIWss/m78YuVQuN6KvfcbhIBUOYR1iBnI6GiEWCpExutN+aIDNYsFZN/jav1Mtm0rRHjiJUltH38Q9qsOJ7nASisfQ21px1ZXHqj2iNFVEALdo0SJ27NjBkiVL+gVxW7ZsYcmSJRWV96VUmLSBF87nfAuZkeriOd/CfFk6HaXGUzkD1dPhLtqD7ehYMdtcpNJZIsGjWKwa3hkzUSZ5ybFMKk4kFqS7jdPAYXbgcE9uAuKzjr7Gl++5kwUnT+TLXvXP4Fvv+xB/nXfGpNZFTD3DMMhiUHi16P40u51MKDJoABc6cZy4pqH5uj/TCqADsVyOePNrVDc0YCrBLvlgWwCldvBhI6rDSSQcxhqPYXZURhukpBGZfBURwAGsW7eOvXv3cujQIVKpFMlksuKS9pUSl91FKBbHbO4dY/Vww0oebljZbztVSWO1VMb4t65wC6rVimaz05PHXdVMqI4adMOg/dVXqZ03H2USln/S9RxtHcdJ2c1oNb03v3gyian9KDXOarBNbD0s6TQf2fYQ1/5xB9qpLvWsqvKLS9azef1lZEwjuYWLSqMoCsoIm927JzgVfi0caCFht6NZBrbeKpoGdfV0tJykvnF+SbXEZRMJMiYzw337VI+HaKiLqgoJ4KQLdPJVTAAHVPwCtolMjFQuhQK4rb4pXWDeYfMQT54klzOhaZaC28QTrWgaBIItqAp4HV4s5tJ7Wh6JeCJExGLCbC1cf0VR0Bz1dJ04RvXsiV1L0TAMAm3N5Pz1aKfduDSbDcNmo62ri1zcChM0iWHJkZf58q/uYk5ba77s0Ow5fPPa6zk8e86EHFOUD4uiMJKRr0ZnB46G2QPLDYN4Kok6XKqR6lpiba246ktnklo8FET1jCxVcCpXQeODJYCbdBUVwFWqSDJMPJUEw4ZFdaEbBoFEB2Yz+Ow+TNrUtHTU+mbQGW4lkYpgNvtQ1e52qWQqTCoXw2GvxtQnYGuLhrGoXdR5yy+5byQVQfMVznnXQ1EUMmkDQ9dRVJWGKjctXZF+2zhtFmLJ9LjqEu5qIVdfN2Srg1JVRbarFRqK2/ppTyb5xO8e5Mrdf8qXpTUT/7vhXdzztkvJFVhjUkw/drOVaDaLYhr6FmNDLbguaaytFcU3/CB/RdNIptOU0iANXSIZMUmmfmFEMaRgvJNEEiyKD4vaPZNWURRsmhdN99IW6SSbywyzl4lT7alnZu0sbKYkKmEi8WYUsxmPZ1a/4A3AYvWQ0zy0h1qmqLZjlywwwOOKl57kN7lDfG2Rk3/84NtZ9Ya5mBxVRDta+cx7LiKSSPGZ91zEwpndgd+5C2bxufcWni09GnEjO6Cb9urn9vDhv/yJq5/bky9TNQvZRPEW5l750ov837f/pV/w9vy8M/i7L97K3eveIcGbyHPX+zF3dmKcmtBSiNHaireucMtZVs8VDOwKyRWYET+VNBSMEdaphHp+x00xxvdHjJ60wJWwZCZOKq3kA7dCbGoVJ8InsZq7n0EVDGalhm4pKjZFUfC4akml4yR0ExbL4GM6NNVMMgPZbBqTqXDXaykyClxoL/GpVCfCWP77Nr7zepbffusjvO0zt7PirHmc7AwTS6Z5+UQb0USacxfMYvnCWfxk+1Pjrkta0fNf3Kuf28PVzz3J/I5WTHqO7KlW0PvOW43F4yMZCuGyj6/b2h2P8alfb+Wyvb3BYcJi4cfvfA/3r30b+iSM+RPlp2bOPEInjxM3dJSqqvxDRy4YxJrN4vPPRLMUvgaMKq4psSjIWVtHJHASbQRpQmyV9NAjQdikkwCuhEVTMSzq8At8mwwnKk5Mp8aiGUxNoshIIozFMvwMSKu1imC8k1pP+WRhVwtcnJTqanjLKjLPNBFNpAjHkiyeXYPaJ6CJxFO0dEWYUe3h0LG2AV2q4+VIp6mNRTDpOVTDwKTncKTH10Xb10UH9/P5rb+gNhzOlz175mK+fc0HOTHELDshFEXBN3M2Xl0n2taKjo6CgsNXM+yavFa7g3gijmYffgynucQCONVkwmYYpE8NpRiM3tlZUmP3RPmRAK6EZbIG2mnf/3dEnwfgEVfvUkR2k5tYNoxJ62556zsDLJedvO7VnDGwT/5Lf7uPpaFXOOA9g2+94ep8uV5mT2tWQ+W07HZ80nImPNkFb/0AAB6njRcOHaJufiOXrvbgtHUH1E6bhTNn1nLfrgNFqYupz7mLWyy0O924k4l8C1z8VKtGNh7DVTW2SQy+SJib7v8Vl+x/Nl8Ws9q47T1X8tsLLhrQ6hHraCOTy6AANptzyLxeYnpRVBW3f3QPazavD+31ozBMAJdLJPCU4MoG7qoaAkcOg8ONoqgYGBiagrm2BkVV0UNBfG73oC2Q5Ui6QSefBHClrEC/3bnJo5jpHlfSN4gbTDpZvDFQY7E09CrV6ShLQ69OaT3Gy2vzEIiHMTkKzy77xw++nW9s3o7FbkZRFH66/SlmVLvZ9ddX+ej6Vfx0+14WzqxhRpWHk11hDp/oGHNdbJjoWdn3vvNWc995q7n6uT040mniFgv3nbcagGwyhsUzykShhsG6557mMw/8Cl8sli9+4uw38d2rP0Cbr38La7SjlUgmge7zoJ4a8xiJxzG3NON1eLF5fGN9m2Ka8/p8dIVDqIM8DOjZLNZkHFvtxM76Hq1IIEA8kcU2e2G/ckPXSTYfx+owUeufUTH53/IkgJt0EsCVMKVAv11G0QZ8UQzDGHQcSC6dxTD0SUkwqykDv8MHvPNPtcDNz5cZhkGBPMAlzWp1obQcIw1YTgviLll+Jk8+/wqPPfkUNY3zAIgl0xw+0cHVFy3ld3v/BsD71p7L13/1GBedM39cAZzXW0ei/SRKbe8akj1BWw89GkVzjm75uNpgF1/c8gvW/PX5fFnI4eQ/rriGHctXDfiMhdtaiNg1VF8NKvC+J5/EkUoRt1q554IL6AyFqAqDXYI4MQZWt4cqINTRTs7pQjvV7WoYBkZXJ3aThneCU/aMVqyjg0RORSvwmVdUFfuMOejBdlTJkSiKQAK4EmY2qXDaJK5/r9kwYLt4LsSVmeOc17WbjKLxCJ/Ov6bqKql0Apt14p/2PA5vd6oQa2+A07fbtEc61cVMX3ktIdPWdQy1fg56Kk4y2AooaGYrq86eS0drgCcPvsy55zSieDz5cW7nLpjFyc4wLV2RfHcqQHScaURMJgv1zjpaAy1QW4Oi9f8a650d+FQHoZoRdi0ZBu/6yxN86jdbcCWT+eI/LFvOD668li73wFbHbDJBWMmi2XsTOFz75JPURSK0ud3cc8EFKF4vwUC7BHBizKxuD/VuD8lgkGQkhKEbmFQV18xZI56lOpni4Siqt3bIbVRfLbG2NjyzZk1SrSaewvi7UMvsmb4kSABXwjw2D+2RMDZ18KSQhqFjqN3j3szGwCn7BgbaJF3oLGY7FrWLnJ5BUws/YWazKRxmUz5nXDnIpBMkrBZMqobZ7sZsd2MYOjOqHHzvc+/Pb+dx2njrF36I2WrHabOwfOEsfrp9L9DdIhdOpHDaLMyodrPvyPjqZLE5mGWdTyTYSsLIkMNAoXusntfbgGayECI+7H5mdLRz8713s7Lpb/myDreH7131fnYuOXfQn4sEO9DqfMPuX/e5iXe246ge+qY2mXKZDLFAG9lsDlBQVLC7ndiGWXxdTB2bz4cN31RXY0jJYBDd5mIkV7ZUevD0KmVJFrOfEhLAlTCzZsHjsBGJR7CqA1tTdCNHNBfEbfPziHWQGYEamLTJW0i8zjuT9lALyUz3bNMehmGQTnXhMJuodpfX7MVgvAuTt//NXVFUWoJJ3vb/bu9fboTwzeh+su4J3nr88De7OHfBLH7/9EtFqZeiKHiq/Iws5/tpP6vrXLnrT9zw8IPY+8xa/f3KC/iv915FxDl0i+0V+5/hmucP9itb0NqKKZfDk0jwm+9/P1+uZnM8vPYSfrNm/DnwxivW2kosnETzVKNYu5/5DSASSxLteJWqubMqamC5mDyZZALNOrJvY67cZnGNRAW+pVInAVyJc1pcmFSNSDJMOqPTkx8yRxpNc+C2+fMZ+R/xLAXgjX1+XrWYJn2dwFpvA9lsmmC8Mz/bVFMUZvrqy6rlrUeuwOn7+p9+wfKWwzzbsJCvnJqFCqBnu9/wYKst7DtyfELqOBpzAy186Vd3seTV3mbAgK+K71xzHU+94Y1D/GQvRzpDXaR/ShRT7lQqk1yu32uKrmNPp4pT+XGIt3cQT4LJOzBPoma1gdVGV/NxahbOK6m1NUV5GM0nRj5eohgkgCsDVpMdq6t7hl9Phu+snqE9Hh72RmO1T81MJ5PJUlZ53kbLnMvgSKcwT+EqGKOl5XK87487+LttD2HN9iZFeeDCt/Df77qCxDC5ufpKms20nZa+wZNIYMrlyGpav9fUbI5EgQXJJ1ssFEXzDN2Vq3hqiAUCuBoq97MrJobN6yPaFsTkGr4VTlMrL4KTNCKTTwK4MtMTsJk1C7UODx2JDhTsWLTefEkZvTd1iCpZ8sfNbAyYS8LeWYuZHe1k76zF/co10/gvzIauE+4MoGOgGGB3uLE6x5frauHx1/nyPXex+NjRfNnrtfV8+9oPsn/holHv77er1nDXxW9BNfeOdfzN97+fn8Twns99DgC9swu/px6TdWoDuERHB4pt+HOoqBqpSGmtrSnKg8lux6y3DduTaOSy2B2jmyFeFkoogEsmkxw8eJDkqUlZqVSKZDLJqlWr8PsrJ3myBHBlyDAMQqkucjkDs6qg6xF0Ut1fIMXAbamc2U2lwOusIRrtwOTqHQf3wFkX8MBZF/TbLhPvonrO+C4Ona3HSOg6qrcqn/ollohiinTh89aMukXVnM1w/aO/57rHtmHSdQByisK9b307P3vHu0mNcbyXs6aOyLFXMGYMPpvY0HVsGWPKgzeAbCqNahnZ+KRKHJ4kJoenvoauQCeqt/AyWoaho0Q6cM6fX/B1MX7JZJK9e/eyatUqbH16FZqamrj77rvZtGkTjY2NU1jD4pEArswEE13EM1lsqhdVUcEAgyzpTASX1YLb6sU8iZMWpgOT2YorphDLpNDMhc9tLpPC6tAwmcc+AL7tZDMZjw/ttLQgmt2FYXfREeqkFgXLCJYXAljyejPfeuhe5reczJe90jCTb77vQ/ytcfw3kNrambSfPIHur0VRVX51wQX5PHB6KoW1I0T1bLlRienD7HDiqzcIt7aTs9jR+jxwZUNdWFUd3/z5FTnGUjFK48mnqamJgwcPsmTJkn4B3KJFi7BarezcuZMPfvCDU1jD4pEArox0JTrIZu3Ytf5dQZpiQtOqiKfiQGhqKlfhanwzIHiSoBrB6qrJX4ANwyCT6MLuMOFpmDnm/cdC7aSd7gHBW1+qt5pgqIP6YQI4aybNh//8Gy5/+nG0njGTqspd697B/617B5kiJRE12Wz4Z80n2tZCQk/zyzMXoQAmQ6EqBY45ZxTlOMVgdjpIhhNoNvuw21bi+CQxeSxOF7XzXaRCIZLREAagKlA1q76yZziXRvyG19u9ckcqNfUTpyaaBHBlIpNLk8yo2LTBLwAWzUE02UmJPAhVnBrfDOLmGFoqjJ4FFNBU8DXOQh1nrr1YMoE2SLdLX2mTiUwijnmQIG5JcxOf+/1dzOpqy5e9MHM2//Te99HUMBPiGaDIEy9sXjTol/8qASTCw+ehmzSKmUy8c9gALpfNkFWgo5TqLsqTYga3D+geQxtMZiF5+orKlaNUJjE0NjbyqU99quBrqVSKhgqaoCQBXJkIpyLYtOEXCLdoPmKZyLDbibFRNA3vjOKPMcwaBn2nm1x1cA8ffeoxVEPnmdkL+fI7rwPA5PQQj4XwnhbAOVIJPvqHB9i4b2e+LK2ZuHPtu9l6/tvRVY3ZSaa1hLmK9kgYtcDKEtDdmmpp72Su/wyY5udKiEqzd293Xs6VK1dOcU2KRwK4MpHTu5vh+3pHpDuR6iPuJfkyVVErM0lkhTv9N2ZPp6mLhVENg5XH+i/bYOj9t11x5AVueuRu6sNd+bIXZi/ge5d9iGM1lfO0OV52l4/qqEFXWytUV/dbgiwXCWOLp6mrmzd1FRSinJXwbadnVurGjRvx+XxTXZ2ikQCuTHQvWN+/zG4M0hVWwl8kUdjpHbAJi4U2p+dUC9yCfLmezWA2d39t3YkYn3jsPi59/i+9P2e28rOLL+e3y9+CoUgKmdM5XVU4nD4iwVZSRnd3lmqAx1mFuX5kk0MmSzoRIxLuImV0J/BWFLAqKh5P9aBd6EJMlWJ1ocZiMe64445ht1u+fDkrVqwY9PWeoC0UCpFMJtm0aVNFBW8gAVzZUAsMrE4ogwxGl/t20RmGTjDSRjKRJpQMYXW6sI0gYedIWVUTScPIT47YsmQ1W5asHrCdEg3hbGjkwpee49Pb76E6Fs6/9uy8N/CDd15HwFc6646Wop4lyEpZpKudUDaNyVPV7+ucAQLRIN5UHLf8nkUFMgyDaDQ67HbpdOHVbnrYbDZWrVoFQHNzMzt27GDp0qUsWjT6vJelSgK4MuG0WIkmk5jV3mnRfbtOe6RyYZxmSd1QTJ3hFiJKFsVbjVVVyQLJYIxIVxBPdTVW5/jTvnqq60i0H0fxDb5ObC6dpDGb48sP3MHal57Ll0etdu64ZBPblq6RNXoqQCIaJKLnMLkKj3k1ubyEY1FM0RD2QbYRYlIVcTF7RVFwDrMWM4BlFDN6Gxsb8fv93Hbbbaxbt44lSwbeO8uRBHBlwmF2EU4GMAzroDmEdENH03KY1Mr9tWazacJdbflxYKoKnqp6tCKlxjhda/AYCY+334oDACabE3ASbO/CB+MO4jSTmRpPLe2dbahVNfkkvj1ysTBXHtrPF5/agScRy5fvOXMp/7nh/XScmu0myl8kFkX1VA25jeZ0EQ13SQBXJMloiFgsQkY3MDDQULBbLLiq6ysyZ9tEKFYXqtPp5IYbbijOzvqw2WwsWrSIHTt2sGjRon454spV5d7pK1C9q47WaCua4cGk9n/6yOSSoMaocwyeGb/cdbWfIJXIYbFXoZwaNKYbBq0nW7DbNXy1Y8/DVkgsHiRqMaEaOQzDVPBCbnJWEe7ooK4IrXBWh4uZNgehzhZSuRw5DBRgTjTCV596lAteeym/bdDu4rZLr+VPZ6+QVrcKkstmSKOM6MKcAvRcFnWI3IFieJ0tr5M02zC5+ndXx/Uc0eOvUls3A7N1+PyBovT5/X6ampo4evRoRXSlyje/jKiKSoO7gWgqTCKTyC/5o6oGLrsdh7m0x/WMR1f7CbJZGxZ7/8BVURSs9ioy2TTB9hNFCeKymTTBSBvhbBLV5kLJpclmwuiqwbXHX8KJQcJk4f6zu8eo6aqVVDSC1TW+9UoBFFXNvwfF0HnH/t18/PH7caZ781r88eyV3LbuGkLjXB9VlJ5UNIzqGPgwcNXBPQD9xkUqNgfpeBSbtL6OWVfrcdJ2FybTwO44RdXQqvx0tLXgnzVPWuKGUyKT5370ox/R2NjIxo0bB7zW0+oWDAYnuVYTQwK4MuSyenBNo9WyMpkUqaSBxTb4mAfNZCGZiJHNpMe1nFUmnSQQCaB56+l55r780JNc3vQkAPNCATRdJ6dqXPG3J3ngDRdw/9mrScZCRQngeszoauNzD9/FsqNN+bIOl5cfbvgATy5aWrTjiNKimc0Y6TSY+l+a7ZmBA7aNbKZgsCdGxtB14ukUZqdvyO0UTw3RzlbcNZX7gFwMpZDIN5lMDrkCQ0/gVimzUSWAEyUv0tWOxTaCJMb2KoIdJ6ltGPtCxW3hAJqvfze0PZuiJtGdHFnTdVTDAD1HbSKCPXvqxlqki5eq67z3mT/wd3/6NbZsb5qYR5au4Y5LNhGzSfqISmZ1elDCR+G0FSMSBR5KtHQKiwQVYxYMHMM0xKShHoqmkYilkPbuYZTAEkA2m40lS5awbt26gq83NzdjtVorovsUJIATZUDXDdQ+g1Pe/dpf+NChx1Ex0FG4a/El/HbemwFIxMa+BFIiHka3uwbmZDNZ6bB3X77d6QToObKqSrvdTcJkwdBz415KC2Bu2wk+//u7OPv4q/myFm8N//GO63j2jLPHvX9RHmyaSqpPShlgQEoZw9CxFeEzN53FEzHMnpoRbZsrgeBEjMzKlSvZsWMHF110Ub+JCgcPHqS1tZXrrrtuCmtXXBLAibJjz6aoSUVQDANDUbBne5vMFcVCLNyJ0zP8uqKni6WiaO6Bs/8eXHwBDy6+AIC7Hvo+NYkIbVY71135eQCykTZq5o291U/L5bjmL9v5wO6HseR610r89fK38rOLLydpKf/ZUmLkqupm0nL8VYxqf8FxV4ZhQGcrvlmSLmg8cjmdkc5d1zNFXj+4ApVCFyp0d4+uW7eOnTu7lxVMpVIkk0lsNhs33nhjRcw+7SEBnCh56mmJiRMmKx1Wd74FLmHqMyBQUUjG42MK4PQCY5T/ZecvWN5ymGcbFvLPaz/Ag4suwJ5NETrVdapn0zgcg6d2Gc6ClqN84eG7WBh4PV/2erWf7132If46Z2G+LJtOEQl3oNO9IIfD5sQmKSQqkqKo+GfOo7P1OElA81SjKAqGYZALd2IDambOH5BqRoySopBLJtBsw88wNXISwA2rRAK4HmvXrp3qKkw4CeBEyXP7amgPdGC1+wD47bw389t5b+Yrz/6Sc9tfYWnHK/x23ptJxYNYbT50PTb0DgdR6AnSomdwZFJY9O4LeE9LXDzahpqMYVHTeGbOHvWxzNkM1+1+mGue3I52KqldTlHYev467rpoI+lTY54Mw6Aj8DpJTUXz9rYOxpNxtEAz1e4arDKQveKoqkZtw1xy2QzRYDvGqS5Vd93MoqUNMU7rpp1urA4XqVh42AAuG4tinaA8k0KMhwRwouSZLXZy6RC6xd1vrJk5l8WRSWHOZdGzWXLZNDa7j1x2bOPgHBY7XekkWp8uy70zFjMr0sneGYvzZYauo+sxqrzV2Nyjz7v3hmNH+MLDdzG3oyVf9krdLL73rg/RNGNe73EMg9aTr5CrqUc71dpy1YE9ONJp4hYLW5aupi3URR1IEFehNJMZb+2MouzL0HXCbS2kUhmyuVP7VxUsFg13TS0myzSa2g5YNI2cyUo6HMTi8RXcRk+nSYfaqZ+7YMBrhmGQjoUxdB2L01OUcbDlTNGnugbTjwRwYlyyuQzhWGd387kCbkcV5gI5lcbLU11LqCOA2erCYu9eg/SZ+kXMinfyF98ckvEOnG4/hmGgmcbWquB0VhHsOAp9Ari+4996ZJIdzDzr7FF3YdnSKT78599w+dN/QD3V35BRNe5Z/Q7uWfMOsqe1rES7Wsn6alH7HOeqA09SG4vQ7nSzZelqNG8Vwa5O/BLAiSHkMmnajx9Dc9WjOZV+E3V0oLMlQFVdLWb79Jnl7PbVkOxoRzWZSXa2Yna4861xhq6TDrYDCk6nC5O195qQy6QJt7eRTmVRLE5QVPTOE5hN4KqqKsrSej3SsQjJWPe6oDaXG0spf89LrAt1OpAAToyJbui0B0+SyalYzN58V0xrVwcmTafGW49JK163g9tXTzyaQNXMxCOtKKjcW7OQX9WcgcXqwWnuvsCmk53Uz5o15uPUumppC3egDTI7LRXvwuOvGnXwtuy1l7jp9//HzGB7vuzQjEa+e9n1vFZfuL6xTArVNfwFO2M2kUnEp9XNV4xOV8tJTO7BU45ozho6Ay3UN86fNt2qJqsNt8NOJJXB5qsnEwuTjZ9aRF1RMHtqIdRGdf2c/M9k0yk6TpzE5Kqjb6+qZu5uvQx2hnBnMzi8Qy+FNpxkOEg0GEFXLZis3Q+swY4oakcXriovNpdnXPsvNsUY/ySGUpkEUU4kgBOjZhg6Le2vY7bUYdX6X+ytVh8Agc4TzKiZjaoWp1tBURQ8Ph/RUBynq3C3ZTYdw+lxjGuMkNXqwK8oBCNdJA0dzVUFCuRiIayGAT4btkG6WwpxJBN8/A9buWz/7nxZymTmzrUbuX/V29EHOT+XPbeTS59+DE57L/M7WzHpOdypBPfd9b18uarn2LbiEh4+r/IH7orRScej5FTrsBd71VFDrLMNV03lLsd3OpevBlM0TCTSiWIomN1VGLksJCJYEiF8sxv7XcOCLS2YXIPnjjPZvYQ727C5xt6lGg92Eg2nMNmr+y3tZbJ1P8yFO0MYuRz2cQaJovxJACdGrTPcitlSO+STusVSR2e4lVpfccbvADjcPhRVIRLsBMWK2ewEIJtJYhhxnC4XTu/oZ5+ezmyxU2exo+s54tFODAPszlpMZgvHbMnhd3DKqsPP89lH7qYuEsyXHZyzkO+/80McHyYBqz2TojYRg9Na+kx6DtUwMOk5amORfLli6Ngzg2cgF9NXLBTCZPMNu52qmUglI4ylk84wdPRcDlUrvGZwKbO5PNhcHnLZDMloCM1iwlrdOOB9jDQQNrlqibQH8PpHv6yfYehEOsOY3cMEiR2t2Dy+EjrXRpG6UEvl/ZQHCeDEqKUyOSyWobsQFUUhldaLPtPN7vRid3pJxiOkklEMHZweGw7X3KIdo4eqarg8w2dqP507HuWTO+7l7X/dmy+LW6z89OIr+N15azFG0P2aMFtptzsHtMC5UwlMeo6sqtHesxaqYaCd+hkhTjeaHLT6KBPWRlpbSMVTZLPd6U/Qs5jtJhy+0uvmG45mMuP01Q76ejwcxjSCFWEURSGdyY2pDpG2ACbn8MmFTc4aYu2tuOpKZyUO6QKdfBLAiVHJZlMYp31sLmt5mvcd+xMqBgc98/nWoqsAMJncxJNBnPbiN/XbHG5sjhJb3MYwWPvSc3xq+z1UxXtbx56ZfzY/eOd1tHpHlvUd4OHz1nL3nDNInPaUfd9d38tPYrj6Q92JhOlqZ4Z/7ImERWVTlJE3joz0UcswDDqbXwNzFZpt4OolkfYIuVQKZ83oH4BKlaEPPItXvrgHezZNwmTh/rP7rJYxxhmZmXQOxTr8A56iaqRTkptuupMAToxKNpdFVU5baDuXpiYdRcVgSfi1fLmqauT0gYtwV6LqaIhPb/slFzbtz5dFbA7+5+1X8eibLui+i46Sx1dPvPMEStXgN0E9GcdrK+GZaWLK2Rx2IolUfqD9YAzDwGwe2bitcMsJFEs1yiBjOE02N7FwGLM9WtozJ0dBUUfxHZ6EHMsl1+BVchWqfBLAiVGxWOzk9CBmemc8JjQLHRbXqRa4efnydCaKz+Gb/EpOJsPg0uef5BOPbcGd7M0/t3vRMv5rw/vpHONqCZc9txN7JkUE+F/dQKmqQVE1tiy9IJ8HLhcJ4VY0XNWV08ohis/urSYSfA3MQ39OstEOqucOn5TaMAxS8Qxm59DBntnuIdYZrJgAzuHx0PX/t/fnUZZkd30v+tkxx5lzzqrq7mpJrZYEoiUh0QI0MBiQEBYWRsLGiGtfm8HvgifufP2W7/Jw14P7rsGMtvADi4UucGmEMRJCA2MLocES6m6BpO5Wq7uqqyrnM8ccsff742SezKw8ec7JqqzMrKr9WavX6ooTGREnTsTe3/0bt3pY/q7lf5/VbRulFM6UQvh6jCNYS6/vUHPaaBfqyaMFnOZIGMLAua7O2u8tfw2/t/w1B/a1jAL7Do7LWug0+We//6t8zZc/P9zWKlX5uTd9L4++9KtvyOq2w3d89lFmgy7Nco0PPvwt9JrrREXKb158CQJwMFmqzGC7k9sAaTT1+XnaWy2s8uhwhiLqUmtUp8oaD5rrWFOGRWRJPnmn2wSnVMHc3ALGh27k/U1mL947dp/D8KoV+r0I05nQHSIOqDXOXgjJzaETGI6KFnCaI1Mt1Wj3+9j24SvrLOtTK5VP8KpODqEk3/EXH+UH//i9lNLdzM8/+MqH+fff+rfoHrPFQQhBbW6J2yskXHOWcMsVZgxBb6tJrgysbct4HvVQaR8LRRFD3O3g1cZbjWUuD3WdXs9Nz+lnjMby8rAO3CjyqENttn7D5ZP8WoN+61mYIOCEDG+oC4zmzkILuFNCKkk72CRLCqSSCCGwHYt6aeaGCuCmRUov7ZNKWIh2M6myW1BawncrFEVGJ2zjOo2D15J2KXsWZf/Oa7Z+b3uDf/W7v8VDzz893LZRbfDvvv2dfOqBrzrFK9NoxuP4ZebuKZMnMXGvQ9zvQlTgOHNYjo/KINyMCDYuUZqr4TdGW9mEIVD5dNnlZ6fMxfFgOS7zF84POzFglxGGgUz6OLZBY7Zx050YZs6dp3nlKmZl8cD9U0pSBJvM3nPjxcpvFdqFevJoAXcKhGmfdruFK6vYe1/QHDbCdSq1CtUjiJ8gC+imOZ41i2eAY+2a1rNeTHPzKrPzx/vCV0ozOHZMN2yTZsVOJy1s02CuVsd1RncFSLOYXtxBqoGHseyUwbt1lro0DugGbfJtU4AJVEo1/NLR7FmGlHznX/0h3/uZ9+EVu26h33vl6/nFb3474YSG2BrNWcFyPUS/j5FXca7r9GHZPuATbfZBNfFnDtZVLM8tsPnsFexpyl1MKDd0O2LaDjPnLgx6oYY9VFHgLF44tl6oluOycP/9dDdWSaOMYjuj1TQErmcxe/Ei4qwFwIFOYjgFtIA7YZI8ptvu4qnaSJe/S4WwG2EaJiV38kouyWN6aYFnjRZ8JhaymdOx16nXj9fk7tge8/XlqfaVsmCtt0ouXBxvd1JoZgHR5jXK5Qs43vG2gtrcfJ5EONj+zDApTAGtJKDbf47Fhfumaol1b+sa//ij7+HBjeeG267UZvk33/S3+K/3vBgSCUlwrNdeFBIpFUUhaXaO99inicxT8jjEdDzMPT1n7wTSbhuilMHqBJQlcObmj9x27VajpCRb61Ia44Kz3AqdlTVCYY+8/kzlWBNqPGZJiLLNO+r5PYgJmIT96Qt8T41Xx/TYV6IlB1q96PjPpbkt0QLuhOkGHRw13uJk49MLelMJuF4W4lrjuw9YwiVu9o5dwE2LUpJrnWtYpSWc6wZ8yy5TpUzn+TUaF5exJ8R+TMvm5hVyt449oq2W5ZZRjs/GxvMsLh5eP80qcr77iQ/zjsd+H1sOCnNKBO//ym/kPa/+ThLb5Z5bMG4DWBIMpbCl4J749hc6vd4WYRySChPP9Sm6MWbRw7dtGo3pFgFnlSyN2Wit4fk1TGfXsquUJL+8wUy5Srly8x1CjotWa4W4cnjB2h388gL+apfGzMHfR5bv5VrzMmp2aaSIK5KIWpIx6y3DLXpHNGcL7UI9ebSAO0GUUqRxis/kCVmmkOYJjjU+izMrBOYUC3wztQnCNuVTKOvR7K9jlQ7Gc+zFs2bprW0we+/Nd1TIs4QYgTOmJ6oQBrnlk0Q9XP9gNteLNi/zjz76q7ygeXW47fn6Ej/3hnfyxaUX3fQ1jkIpxVawStfNSYyCwoBYZDyfXGFWVm/bmMJma5XYsDErczjb28zt5zoqctKNSywu3J6FiKUsWG+tYY3o2CGEgV1boB33EGGX0hHd9reKVMmprILCMEgZ3VHAMEwuzF5kq7NCKCRGdQZhmBRJiBmHNMwStSmt85o7AMXA8nxTx7iz4iVPAi3gTpBC5YjC5Pqy5W+JvwDAB7yXDbc5+ERZf6KAG1Xw+3ubHwf+u33bLMMhTyI4BQEXS4U1xYRRRIo8T7EsZ+K+MHAF5VmMaTn7Gth3e02c0v4A7Ld96eP4WUJku/zOA18HDJpD98LWPgFn5xl/+7O/x3d97g8w1eDuFsLgtx/6Vv6fV76FzDp6gslU30UpLofPkd63hDAMhGmCEAjLIrkwz/OdDtala1StCr7rUjsla+pRCfpNYsM6tCyCYVoU/gyt1gozM8fXN/ekaLfXMavjrVmWV6UbNM+MgDvKNDsui1QYBvMzg1iwoLeJlBLH8fEaN1ZCQ6PRHA0t4E4QIQyUOCi5PDW6JcpUWV4jBlhzxKpZKXW0SuLHhFKKXO1/0P761U/yfc/9MYZSPDbzAv4/X/m3AXCtOlG3RXV2fH+/sNcm7PfIMolhuCiZYZgK13eozy5TqN17/LYvfZy3fekTXOyuD3uIvu1Ln+B3HvhafueBr6PYc/9euvYM/+ij7+Geztpw25dn7+Fn3/BOvjx//L1W97IWXhuIt0OErlWvk9+nyDcsQmyS9UssjHH/nhX6cYA5IdjdMC3CMOf4G67deuIix5ziPS1MhyTu456Brhkm4hC72kGMKWpzCSFuqGew5g7jDLlQn3jiCdrtNmtra8RxzMWLF3njG9942pd17GgBd4KYwsSwOGA2i8VBq04i+sy45yce0zIPvjVPu+d4xXXbYtFnqfrCI1ztcaFQ100Cg9ZbPYRSvLL97HC7EAI1oXBUt7VOEiosZ+b6Pu/kacbmyiVwdu+nnyXMxj1MWSCUwpQFs3EPf095FS+L+f5P/y5v+fyfYmyPQplh8ZuvfDPvfcWbKG6wptO0KCnpldREt5bVaBBtrVKzFinEDM3mCrOzZ9tqlUrFNPZUw68R9JqUq2cnVmwaCqUO9AEdheVViKLuWAGX5ylhv4VS4Lo+3i2y2FW8Cs0kxHTHJw3lSUBjRHiBRjOKsxID9+ijj/LQQw/x0EMPARDHMe973/v4uZ/7OX7gB34Az7v9Y4p3OFvpUXcBtmcfECkf8F62z30KYLsmxhRuR88wKeR+C94nywdjtKyKc8PFJW8GIQzM697sQeutKk2nymONFwy3p3kfd0yD+ijobou30UkghmkjjDpZvzO8x5Ht0vSqFIaJEoLCMGl6VaLtDhFfu/EsP/Pb/wd//fN/MhRvTy7czz972//Kb77qLbdcvAG0ww2Yn0645KXBM2GYFlGWTRS8p4mUBWrEM/y2pz/O3/nCn/C2pz8+3GZYNkV+G/bNPUqds0P2zdKYzfUrrG+sk1AhM6q0gpS11efpd7eO6UJ38Us1jLg/cT8zDvC0gNNMi1I3998x8NRTT/GSl7yERqMx3OZ5Hm9961tJkoT3ve99x3Kes4K2wJ0ws5UFVpMreMXhAemJ0WN+yirbNa/OeriBULMYYrTYiK0e86cYJO4Ksc+6/v4Lr+X9F157cEc7x/UPz9ANe12sEYWD92IYFqbhkwdN7Mocv/PA1/E7D3zdgRi4ShrxP//5/83bLn12+LeJafOeV38n7//Kb0LeRJ2lN33xo7zpi3829f65zCic/b/dC7YGLt9qHPHIu//tcLvKciy1/doqhUBiTlH4+UMvfT0feukbpr6m48AwTIQaFaV5EJlnmFPGPp4lph1As6jLzIjFSZZGbG5tYJfm91kqbacElOjHAUWxRn1mfFjBUVmcOc9a8yqiNn+gq4KSBaq7wdKcjmXT3F6srq7y4IMPHtjueR4PPfQQTzzxBHEc3zFWOC3gThhDGCzOnmers4ZMDFyx68bIVIRyCubqC9jm9JPZYmmBZtQkysG1Gvs+K5yc+XsvTp0YcCto+HXWoxa2d3iUU1YE+EvjsyyztGCa1p+WXUdlGxTpbk/BncQFgNdf/Sv+x0+9l8W4O9z2uXMv5ude/32s1m4+OcDLEmai7uQdt5GyQKbGvrqAliwwlMKSBfNBb/eDQiLUrrgUyKksq94xduRQStJtrVFsZ52ZpkmtMTrL2BkRd/k7L/66A9tk1KG8ODnOUBY5/e4mCrBtj1KlceTrP048yyKZUA8NwFY5zoiC1a3WQLwdhuWWCeMufhLiTHB5HgXTsjm3cJFOZ52oyMi3Ax0swDcd6gv333FdFDS3lrPgQn3iiSdYW1vjHe94x4HPlpYGi6C1tTUuXjz78cPToAXcKWAZFkszF0jzmF7URUkQBtS9Gp59Y4P0rD+LUopu0kGp3Qm/VKkPxVteZHTbG6RhSpFJBGA4Bk7JodFYumUuVsf2mZMFm8E6dulgYdMwaVJeqlKqNsYeR41IU/9/f+bXcGTBpxdezO/e/7XAwJVacuoocvr9TazyLEIYNOI+//Qzv8ObLj+2e27b41e+5m186KWvH+nuuxFi26XlHyF+SSkSkYG1+zpW42iYdLFZ3mO5STLMPTGTQhaYU2TGxvb4bOZp6TTXCKME259BbNevSWXB6rXLVMplqo39YqTilumk45tzyyKnZI//DnmW0G5ukBUK25tBCEEcxvR6lyn5pQPnVUrRba0RJxlFLkEIDAMc26Q2s3BsC5pGfYlrG5ewaodbyPKow1zp4OIkiQMK4U6MY7G9Gr1ui7mF4y10LYSg0ViicaxH1RwHUhZ0W+vI7aLQvl/BL5+NLOZDOQMCbkekjSKOBwUJ7xTrG2gBd6o4lsdc9fgeJiEEda9BzTnoqkmzmK2Va7iqjiu83V9eguop1vrPMX/+XuxbZKnz3QoXnBLt/gaxVIPWWwIcAebMDJWZKXIQR8x0jsyHRXZ3ULLAsAWVxiI1Jem0VvmG5/+Kf/bEh5hJw+F+n77nK/n3r/teNo+5yOqHXvqGI7srV4Ir9O+bG1o9Hnn3v2U+6LFZrvKOv/ffA1B0u5TXBM52DGAatlhuLGDZJ2NdbW+tkhQ2Tml/IL5hmDilecIkRLXXqTV2rZjl6ixJa4UoBWuEiJNFjhE2mVm8/9Dz5lnCxvoKTmlhn5vRsj2wPcI0Jt9aZWZuUHdMScn6ynOY7jyWa7K3Eo8CNtZWmJtfOBaLljAMlmYvsNFaQTolLHfXyiaLnCJoMludGRlLFgZdbHe62n5ZcQZmR80tRylFa/MaSVpge7MIczAedHsh3e5l6o1ZPP/0M5nPKqMsbzt0Oh1gvMi73dAC7i6hubaCR2Nk+y4hBB4zbK1dZfnCCw7ucEwYwmC2evDluWpNNznZ9kEL4acXBvEOO9Y3gCxtMbNdYmMu7PLPP/O7vPbyE8PPe06JX/rat/PHD7z2aEHot5Bl/zyXL186tJRI0evhrqU4zq7YdJEnJt6yLCFKCxzv8KB2yykRBFtU6/sLxc7OnKPX3SLob5EbFqZbpsgSjCLGN+2x4g2g1VzDKR1epsKyPdIkJwq7+KUam+vPY3qHF452/Hm2NtZYvnA8bkLLdji3eJE46tEL28O8a99yqC5ePPQcR0lAOcvJKprjY3P1MtgzOP7+sc7ajolst9o0BHhnoBzN9YhjekaDIOBd73rXxP1e/epX85rXvGbq4z7xxBPDzNQ7BS3g7gL6QQsz9yfmHIvUIYy6lI7i/jtBSpUyQS/abrg9YK9wg0F8lu3aCOCvPfXn/P1PvpdKuts78M/vfxXv+rrvoT3CpXWaCMPgvtJFNi6t0PckSkpQoIoCeWkNP3Xx9oi3vLfO4tzkMjPHRa+9ieM1Ju5n+zN0Wms0ritvUq3NUWWOLI1IkgDbL+F6k2uHZWlMUVgT3YyWWyHot7Asm1w6B1q2Hdjfm6Xf2aDaOL6CyJ5fPVLWpiEExRTxc4N9b+bKNLcD/d4Wyqxijgllsb0G3dYW3rkzJuAUo6vKH/UYDBYr/f7kLOk0nT5r/dFHH6Ver/OGN5xsItetRgu4u4C4H2AZk91FjukT9s+wgKvOkibXyFL2ibgdlJJk6QYvr9X5kQ/+LK+69sXhZ22vyn/4+r/Nx1/wqpO85CMhhMFi5QKLgJMLRF5gpJJqVsV0PJRSZEET14DF+fMnmphSSDVVzSEhjEHM2SHYjj/sdytlQb+9jpQCISTCMEApDNOmXBu4k4N+C3vKFmJZLul3Wzje5P0NwyKOe5xmkYxKfY71zQ0cf3z4gFIKx9ZD9Z1OFISYzuRwDol7ZopC7+W4LHBCCMrl8f3CARxnuvFvbW2NJ554gne+8513VPwbaAF3VyClPFBs9C2tv8CTGbFh84GZrx5uV2c81qYxf55+e5MwaIJysZwSssgoih6uY/Lfdi7z3/zh7+Lnu1mXf/zAw/zSa99O74wNeOMwDBPTtHBsl7otyLJB4eOFhfOnUs/vSO2XJqzElZQ016+SpQrHHSQkSCWJ+lsoJJ4/S9C5jFuyUUKMdPuPRgyCvqfMRZGn7Ja0LAfHkKgJvUmzcIu55QsneGWa06CQ0z26tlshCnpnTsAdF+VymR/+4R8+tuO9733v4x3veMe+2nB3ClrA3QWI6WfA26J0QKUxT6UBSdwnjQNMy+HFuceP/Nl7+Mq1Z4b7bZYb/MLr/g6fufflp3exx0CpfPpNpswjPBbmmJ2VkqxfeQ7bXcD1dvcTwqBUXUApSdBdoVw7T5EXhP3L+LOVqZqvyyyBEZbZwzgLz/rcwgXWVy5h+AfrsQFkUYuZRuNURLvmZLntwxzP4PU/8sgjfOu3fusdlbiwFy3g7gIs30al+1f5e61uOxRFRhA3mVMXzsTkNgnXq+A7Pm/73B/yvZ99P06RDz/74Etfz7u/5ruIxpSv0ExPuVqn3Qmw3fGujSzqMDemq0RrYwXbXTj0+RLCoFw7RxRsUqos4JcuEPfW8WvLE68xTzLMcokkiwcZqhOwjqJKbxFCGCyeu59ue504SsnlQOQahsC1TOZnZ4cuZ82djWFMp4BkkeE6Z3DqPmMK9CMf+QgPP/zwHVPzbRRn8CnQHDeN+iKrnecGWahjiPIOZXeZra0rzM+f/SrsF5tX+McffQ8PbF4eblupzvPzr/8+Pnf+Jad4ZXcenl/FaDdRqnR4VqUssM0C2xktnpRSZEmO444XToOFxnaRYMsl7/cpihzz+ua3e4j7m5QqS8giRBUBTBBwadRkYfH4EhhuBiEE9ZklzlZajeakcWxrqqSWIu1SWZhc9Ppu5lOf+hQPPvjgAfHWbrfpdDp3jKjTAu4uQAiD2vwM3fUOnjk6QSHKOtiWj2lYxEFAPpNhTdGi6TSwipy3P/5B3vHYB7G2A64kgvd95Tfxf7/6rSTHVLRWs5+FpXvZWLuMMisHkkiyJMAUEXNjuinEYQfTnC5ux7RcijzBtFxUDnF7Db++gDEicSMJmpg4WJZDmvRpzM/SbrWxD8mazdOAStnD0s+J5gxRn11ibeUKjn94Z448iymVzt5zK7j5TgzHZQ9/6qmnWFpaGinS1tfXWTwjC7fjQAu4u4RyeYa2tU4Qb2GZLq41mEiTrE8uE2zLx9nuAuEaNbrdDWZnTq5MxbQ8sPEc/+ij7+H+1rXhtucby/zMG76fpxZvXQ07zaDUyeK5+wn7bcKwRVHstNIyaNRreP74gTHPMwxzusnHNB2KIsO0XAzToVo7TxQ0KVQ+7ACBUiAVjlMduhmVAs+vMCME3XaTQlrY3mDRkqchyJhKpUy5drzFm0+COOiQJTEYgkr9cDe05vbEMEzm5hfY3FjD8Q92rMmSLq4DtZlzhxzhlDkDLtS1tTUef/xxXvKSl/DEE7u1P3e6MDz55JN8//d//2ld3rGjBdwpEaQ9wihAFgOTuWWbNMpzGMfUzmkUluHh+FWyPCJImwA4Vomyu98qIoRAnrFsVCdP+d6/eD9/4y//EHN7oMiFwXtf8SZ+85VvJj+j1sIb5UMvfT1elhxbC6zjpFRp3FAPUs+vEHabOFN0H8jSENcfnEPJFKUUfmmy6NrRNK5XZmG5TJqEREEPUJSqJfzy5NpzZ41ec4O4F2JIH8v2UbJgo3kJyzeZWbowKL+iuSNw3BLnLlyk21onSTK2O2lhWYKZmRncEf10Nbs88sgjJEnC5cuXR35er99ZgQpawJ0wWZGy1V5HpC624Q/Le6hEsRpco1qrUN2euI6bnfW6bfnY1qTA6LOzuv+K1S/xox99Dxe668Ntz8zdy8++4Z08O3f2Y/VuhKO24rodsB0fw5iu2qdSxTDzslxvkCYtXG+ygLPd/WLGcUvH2gT+pGmvXaWIbBxrhp3BQhgmrjOLyhUbl77MwsUXahF3ByGEQX12ctLOWUPcbCHfY+BHf/RHT/sSThQt4E4QpRSbrTXconag4M+gnVWVoBsjjC4V9/iL6RqOBcnk/fIixfdPP/PNT2O+/9P/he/4wp8Ot2WGxa9/9Vv4na/6VgpdWuG2o1yrEHQDLPtwS0Ka9IcxdlkaUJ2pE/V7E+ulpUmHmcXbzzV6GGGvSRFZWNbohAwhBI61QGv1CrPnbzyoXSlJb2udrJ8g84F123AM3KpHZebOiRfS3GLOgAv1bkMLuBOkHW7i5NWxxi0Hj36vd0sEXLU+Q2tlE3dCIHlhRlTKp7sCfOWVz/Mjf/ZrLAbN4bYvLr6An33DO7nSOKMxIJqJlKoz5Pk6cb+P7R58DpO4g5ISrzRDlgZ4ZYFfbuCV6mxcfRbLmhtZLy1Ne5Rr3m1tbbueqBtgWeNdPkIIsnjQeu1GrHB5ltB8/gqeMYsjfNiJRFBQtHM2Os8wf98LtIVPMx7FzdeB0/rvyGgBd4IkUYojJrf/EJlNmPYpOcdbadt1SjhVm7yXYB0STJ4UfWqLc8d63qNQTkL+wSd/i7/29CeG22LL4Vdf/Z184Cu+Eaknktue2swirtsj6LbJsgKZF0hZkOcJhmFhuz5StqnO1vBLg4WMEIKFCy+g21wljTLyAgxhI1WC45jUZxt4pdNsjHX85HGONUUIpGs36Lc3qM4evVhp6+pVfHN01qNhWLhqjubVy8zde/+Rj63RaG4tWsCdIKMSA/6n3h/xULbCE/Y5/s/qNwNgGy5xGh27gAOYnT1Hx1gn7LVxVHUYZ5TJCGVm1BZnT6UXamsr4Nt7T/PDf/4bzEbd4fbHz72En3/997FWOzy1XnP74ZaquEcUXEII6nMD66sscmSRY9ruHZuNOa1HSggDJY9uvgg6TayiMnYWEEJAYpEm4R1l3dQcN+oYeqEqzlLs9e2AFnCnzEPZCrMq4qFsZd/2o7S/Oir1xiK1+gK9/iZ5GiOEoOJXKE3ZNPy4eVmnz9966nf45quPD7cFtsd/eu1385EHv343tfAOJs9Tom4LAK9S09X3J2CYFsaYwr53AoYx3XMvZY59A83uk14fe4KLFsCxq4TNFs45LeA0Y9AxcCfOnT0CnjFMy4B8/7Yn7HNDC9wOqYqp3wLr216EENSqp1xSQSm+fuWz/L0v/A7VLBxu/tjSy/ilb3onW7eoB2iRZ/SbGyABA8oz81j2ZNf2rSCNQ/rrG8hQ4pp1hBB019cRHpQXZnDL01tD0zgkarVQhUIYArdewyvfWW7FuwnLMwfP6ATyokujdgOV5Yvpdz1rZYU0Go0WcCeK67kUvf2ZdDtu070Iu8B37ux6PzNxh3/wV7/Fqze+MNzWs0v8ysvexm++4JUQC4iDYz2nUpJ4axU7M/CdmaHrrbV+hcwucGeXTrRpeJYEqFaPsju77010rRrk0L3URFYDnNJ4ESeLjKS5gVs4eM7uvlG7S4tVrJkZLG3Ru+3IcciSLt6YhKZC5mRK0W6Gh+5zGGmaM+26JYkzWlvH+z5q7jDOQBmRuw0t4E6QemmWlegKXnH4gJyqiFrlzrGaSFnQj1qAouTWsUybb77ySb7vyfdTyuPhfh9ffgXvftnb6LpVLkxR6uSoKCW51rxKzVtEXNeLs+TOoJQiuPwlSm6NQTiRwDQYuJbdW/N7XG21sb3DraC+Uydpb3BeVA8tnyGVZKW5St1fGtYJ28GxSziUSDY3Waya2GewKLBmHFU6skU36WGNeAZlkWGFLR6onYd4xJ9PYLOAfIrem1LmzEuLenxrQxmSNCROA4QwqJZm79jYxjuVm4+B0xwVLeBOECEEi7Pn2GyvIlIbW+zWd5JKkhh96o36LRMMJ0maRbTDNokUw8r7pc0v8z98+cO8urtbJbvlVvnlr/huPr308lt6Pc3eOrY3uv2QUpJ+sIbrLWHY/r4Sfe0opBdeYbFx4VgnlH7URliT3aOON0erv8FsdXSGYau3ju2Nr9XlevO0giaLuvzKbUe9NIOd9OgGmyQopGGClDhA2bBp1G683V2jNMe1oIk7ocNFHreoVW/ds9MPW/TjCKkcbLsyqEu3eQ3HFszVTtYqrrkJtIA7cbSAO2Esw2J59h7iLKQf9bZbaYHt2Mz595ypVWeWJfSCJkoOxGelUsexJ7vi4jRkK+xgu7O4gKEkf+PqJ/gHz34YX2bD/f7kwmt4z0u/k8C+9cHRSSGxrdFWrCBYo1JaHGnlsu0SUrlstK+xOHPh2K4nyhIsuzFxPyEM0jEZhnEhcazJz0wqB9bQszwZxkmfIA5QKARQL89ijWhef7dRcqvDRZ2UBUIYU40TeZ7SCweJMaZhUi3P7fs7y7SpWRZBGmAdErKRJV1mnfItG5fa/U2i1MC2d0WkECauN4dSipWtqyzNnsO6w1rlaTTHgRZwp4Rnl/BOQLjcCFIWbG5do8gMXLs2zIdtbrQR1iazs0vYYybWZtDC9gZlP+4NN/gfnvxtXr7H6rbmNviJi9/ItRe87kQEa5bHSHHQffgd1z5FUST87uKrxlb4N4RJik2aRVMJ2GmQSk2dZxwlIWHUPVDeRcqCXMI0EsdxZ+iFTeqVs9cLNM0itrpbgIdtD76jAtZaW9imZGHm3Njf525iGgGe5ylb3Q3ywsB1GwBkeUFv8xq+azFb27XmNkpzGFGLXrgJThVru/BclkWILGDGKVP2dp+7vMgQQmAaNz91JGlAmCqcQ8ZBIQSut8hWd52lY1w8aW4R2gJ34mgBp9mHVJLVtcu45hyWvV9iOPYgM3Zj4xqLixf2rYqlknR6G0RpRFRARfT5O2uf4b957o9w1G7q7X85/1r+4wveRGjaOMEGM5Vb36onz7ORE44vU7IswJkiYcRxanTDNvP14xFwBtMXHhfCoR0k5MUWtcpukeVWdw1xfU+2Q48hzmSl8zSL2Ww3cdyDxaNdt4FSkpXN5zk3f9+Zsk6fVfI8Za21iususLfKimGYuO4sucxZb15lcXZXENX8GWr+wK2fxCECQdXyKNUGbtM0i+j226RZgVImoBCGxLUtZmoLN2zV7QZdHHtypnlemOR5qq2xZxnFzScxnMHx6ayjBZxmH632Kq45N3ay9Kw52u115ucuDPq7dlZIMoXrzOA4NV4WrPBjj/8SD0a7zedzBF3L58vlZSLLRTBwa54ErlMiD9cP9JSMDIfUnH5SkMe4wix7ZdpJiDXBCiuLDEMKHK9CP+riOiGuM/ibNFdIlY39+x3SpEu9cmtL09wIrd4Wjnt4DJYQBpYzR6e/QaOq+3JOotnbxHUPt7IahkWhKnSDLWrl/aK54je4/gmJ4j6tXhfXbuBe96oopVjdvMLi3PkbcnFmUk1lPXbdBt2wtc9yqNFotIDTXEea5LjmFDFVSY5SkrXmVQxrBs81sWXO33n+T/jbVz+KpQbibEeiCRTVPEIEu6JOnZDJ3TBMnBGGqt87/zBhuMn0juzjswCV3Cqd8CpMEHBhuEV1e0J2nBrdoM2CUyLNIiQOyGjf/t9x7VPA4LvtQ0Y49tlyn+Z5Sl4YTKrHawiTKM1pnMhV3b4UMicrwJ1gEDNNhygJqE0wPCslaXWbuM7oLihCCFxngc32Gstz9xz5erXH7c5CZ6GePFrAaYYURYYqjAPlKN6y8WkAPrDwmuE2x6qzsvFlLGcJQ5i8tPc8//2X/jP3RxvDfZ4tLbJh13hV58sYKArDJHNqdDvPU6vfe6IusapfoR33sO39Gb5KTWcFVEphHnMY1nx1gbXuOo4/WliFwSaeWd13n7Jtq2WWJ1img2FYRNEWvj+wpvgyPXCcOOlSOu6LPwaCqD2M0ZpEcYcUku2HLYp8EEdWrcyNje2L4h7Rdi1Ey7IOJCFcT6+/hTNFYgxANsX97PQ2cezxGaoASjok6a5leFqmff3VEeJFbyVJGtIL2mSpRCowBNiOSa3SOLbY2B26/U3iOBm0SBMC2zFpVG/cXX0iaAF34mgBpxkiVYEQBweIr+5+GWs7jm1HxAkM4jRhwZb8vWd/n+9a+TjmdhBDgeC/Nl7Mv3zp9/Izn/tFEsMislzec98386HzD+NELZKkR806ucev5FbJi4xusl80eF6DKG7he+NjcdKkxfmZ43Xh2JbDcn2Jq5vPIg1/MDgLgSxyhFR4dh3rOhfvzhjpOiXa/SauW0dmBUF/jVJ5gchw9uyriKItijShvni6QeCDGl99TGFRLg2KKB9tuL+9J4dWZ504jrGoYJqlQWxf/yq2YzA3ew5jj5CL4j7dbgslXRxr4NRM04KV/hVKJY9G7RBLqhDTt+Cb4nYmWY41hfB37Ar9sIvrlEjSkH7QRimBEIpyqY7njjb1OYdkhV9PmraYmz1d92m3v0XQT3HsOs7eYUvC5labSiWiVpksdieRpCHN5ga2UccyPHZCXFWqWF27Rq1WoXKLOtRobj+0gNMMsUwXxW5MlVQFUdIikgW2kqRZQJx28Zwaad7n1VGTf/6l/8KFuLn7Nwzmhld2v8yb1j8LQGy6NC1v6Nbz/Rmarae55/xXnuTXo1aaxbMjOmGLrJBIBAYKlQfkuX8gRm6HLI8oO/YtWf1apk3Vr1PIKgoJSmE4h7+WO1YLy3QwzUEvJNcu41g+YX+LR+ovGOwQbKCkxHdnUEZ3mF04LYXM6XQ32DFQer5P2W8c9evRD1oEQR9V2NhmiUxJup3nsV0Tv1QhCkPsKbKxjds4gWGjeQWyEq65t1SGgWfPoKRide0yy0v3YQiDKO7TbndwrRn25qcYholnzJBGCVtyhbkRNf0s0yFOEixz8m89TVLvUUIc8iJndf0yFDaOVR3KyHazhzCbzM4uYl/3DNZKdTY6462wSklsc7rs21tFGHUIggLHHl230bVrBP0+ltmj5N94Dc8sT9lqbuJZBxN6hBB49gz9Xh/DOJiRfibQFrgTRws4zRCxbapHQZR2ULKg5M7xb1/8vcN9rCKl6F/hxzY/wXdu/dVwu2RgUTFQmChMmfN9V/6Yah5hKUklj/j3f/Fzu/sXGc6lj/CH93wtf3jf153Yd3Rsn4URmaTt/ib9eAvHnRm6taQqyJI2FdelcQvLb9TKs6w1N3CdmYlhdvYei0jZ8wniCMvyEcKg7B8c+LM8ouJN795RSrHZvEYWF7hWfeiyC9oJ3fYlGjOz+N50k1Snu0EcSmyzMRxphBgIEVUoup0tlGnCFFGIzqggxtuAXn8LlfkHLKk7CCFwzTmarRXmZy/Q6bQG4u060rRPVsQIBUWSkWXPMTdzbp8oqpQadMMrMIWAc6ZxqR9BNIdBl7p/74EZxbEG1reNjVUWF87tyyR1bJ96KaYb9XCcg8+UUpIs3eDc3L1TX8etoB8EOFZ97D6OXaEftG9KwHV7W3jWLEnaJS8ShBrcfyXANGw8t45jVej32lrAaQAt4M4si/fMsn6luW9bqeoR9m6gZ84RqFUbrKxdw7OqON7BQevr+pf4J5fez0LWHW77XPUisWHxqs6z7PXN+HmKJQfSzkIyk/aHnyklsWSKV9yCvlk3QKMyT70safU2KLYHItc0WZw9f8tj9SzTxrG2Y33GnCtNO8w3GsN/V0uzZPkaaQ6WdVCk5XmEa2VUS9O7n9Y3L2PKGp693+JhmS4WLu1mB2aZKOLipE8UFMMJ/HqEELjGHFG+RmaMt8KlaYv5+s27p06DKIqwzMbYfYQQJElBEHYQav/vqJSkH63jWdVBz9zhB7C5toFbtphtLA83lzyPOBtvhUvTDnO18YIEBiJPTtFqK8sCPGv87+NZs7Q7G8zP7XflV0ozmGafftQiySVCOCiZYxoS17KYnzvd8jF5kZFlME2yepYNLNc3WiMviTOydAXPqVN29+cD50VKL1ihUlpCSuuGYg5vOboX6omjBdwp8vC3fRXrzzd54csHGVx/9MgnAfgH//t38+s/+Xv8g//9u/nD3/wEz33hKi//2hfz177ntfz0j73nll6T65axLQvH3j/xVvOIf/j8B/mW5hPDbaFh8csX38TvLj/MW9Y+QyMPqWUBBgqJoGuXuTfawJKS3DBoObuDkpQ5juUQT2EtOCmEME6tVMFcY5mVzcs49sLIwPYs61EpOQeCpWdrSwRRhyAeTIAoAUKh8hDbsDCM0tQFiPtBC5GXMMzD3VWuVaPTaU0UcP1+F8cav48QAgMPx8pI0g6Os19UKKVI0i3mqjM49mj39lknyyTTlC9zrQat9golZ7/A6YdrVLzFkSLGtWvkUUJLrDFTHzy3jco8W+1V0lxiWz5p2ifPBpnKjlNBqoR6uTTV5N+oLbCyuYLnjBdnUdyk7k1u6ZVsZ65f/3z7bgXfraCUIi9STMM6M8H6cdI7dBFyPZbpk6QBpREL30kopQijDjPl0YLVMh0q3iL9aJ1qaZk46Z89AXeGiOOYj370o7iuyxvf+MbTvpxbhhZwp0Sp6vE3fuCb+eff89OsX9ni//eJf80fPfJJXv61L2bt+S3CXsyzn79C2It4+de+mJd//Yv59Z/8wC2/rjDqYon9q7/Xtz7Pj1z+ALN5MNz2F9UX8hP3vJ7V8gKOMPi95a/h95a/5sDxfv6xn2M269Nya/y/vvpHh9tF1mK+vnxg/7sVQxicn7+PZmedJC1AOBiGTZ6HOBbUK1VKh4imsl+n7A8mjW53g7AXYsr6IKYxhGZvC8OW1Gfmcd3DB/0oDLHMKVxA0iGO+3je4XXlsrTAnWJ0cc06BhHz9UGJlKxQqEHiHa5lcH7u/JmZzI+KUmrqODIhDOR1GdFx0sV3GmMtUJbpEvVbNGq7wmiuscxm83nC1gauqOJv99yN+10Mu8CoTufmMwyTerlML+zh2KP/Jk42sZlOXDtmlTDuHhpLKYQ4ECd32piGTSFTjCmsalLmmMaNLTSyPKY04bcWQuBaFdIswHfPWkyoOoYyIjfvgn300UfpdDosLS1x6dIlLl68eNPHPMtoAXdKhL2Yf/49Pw3A4j1zfO7PnzqwT78Tsn6lyeI9c3z5L58/4FIdRVZkhFkwcb/DSNII2xpM8jNZnx+5/AHe0P7C7jWZLu+65018eO6VxHmbRrlCq7+FO6KSfpz2UagDEdNJ3GKxevRV6mmQZjFR3EUgqJRnb6mYEMJgbtsdlqQhhcxwncWpXTLtzhppV+Ka9X2lYFyzAhJaG5vMLBwu4vK8YIzxbYhjlogmCDg15WA86BChcGyf+cbxlmI4bYQQUydf5EWCZTv73OiFTPHsycWXXatOp7tBY9sK1+ttUQQmVXu/NdnbDsLvrDdhQU0Vy1gpz2CYPfpBm7wwhkIuzdrYtqBWLhPK6XxnAgM1Zt8sT8jzFMfxj6VV13HguRVaXIUpRKoS6Q1bxbq9Fp4zhVvbKtEJrzE3/4IbOs8t5QzEwO21tj355JOneCUnw9l4S+4ypJIUMsM0bL7le76Or/q6F/PTP/arAPzlJ57mtW96iFJ1MGCUqh73f8UF3v/LfzL2mEEW0M9TpLK4T+ya/KOwh1RyX5mCcQgGloNvaT7BP3z+g1SL3Zi757wF/tcXfz/NPQHHJb+K43h0+lskmUQqSZLFmJaL45QPCJ407VLzDroCbxalJO3OOlmYIAsJQmA5JpXazFihcRhR1KPXaSEThWMM/n6teRnLs6jPzh/79V/PUSeCNIuIOynuGLela9RoNTdYPnfIqvQI4+8ky9K09gGlFIZx1qwJx4fjWlPd14KQ5fn7WV27hrfdXkpM+XsIYVBs1wcsZE6v1cO3Gofu75o12ltb+Bems8SVvIH1N81ioqQHwGx9GcMwkUrS616dygqXFj1m/P3Zs0opWu0V0iCFzMA0bDK1ieWZlGt1yqXTXegNihWbqGJ8LKBSEte58cXdlOUoATANE9s+W5ZKzemgBdwxkhcZnf4WWZiilMQwDJyyR6OygBCCXtQmDEPypMBQJlIU/Pp/+M8898yr+d4f+w5+6V++F4Bf/8nfY/GeOT714c/xt3/sLfzGT36A+192gcV7Z1l/vslzX7i677zdtEtU2Djb6efGnvoDIjFYu/wMS/e+cCrr0QUKfvDpX+W1vWeH29pWiY/XH+Sp0vl94s3cruNkmTZze9yhSinWW88TpR1+Z/6rKMmCvgCZNZnxK5TcG8/UGkWaRWyuXsOjji2cXfWQQnutjV3pMDc3fR20ftAi2OoNhNueW+aZdcigubLKzNLSWHfkSdPttMaKtx1E7hDFvZHWFzFFBw7Yjl+0x7dOsl0LisnHSoo2y9WjV/G/XSiVq3Tb/WE9t1HkRUrJ97b7lZrIPJ/KZTeKTmd98JxOwFIl+kGTSnn65BDH9g7EIhrCwHaMqUSqZYt9ljWlFGurz2LnNVzhwfYjZeFCDsFmj7yeUq+fbgeRmcYSq+uXccz5kSJOKUVabHJu7mTcdY5zBnvCKkDepAXu9A14tx1awB0TvbBFd6OJm5cGImKbIsi50nqa1M6oqHlsUcIWgIByzSfoRnzi/Y/zP//sD/PJDz3BX37iacJezHNfuMpf//vfyB/95icA+Bs/+E389I+9h4e/7av2CbgkjwkLE/ewbD8EXlZja+15Fs7df+j1CyX55uc/yd958v2U9mSG/vHMy/n3976ZznVJDVJJXG/0JC6EYGn2PgA+NXuevMhwbJ+lW+B+lEqytXoNX4wubumaJfIgpW2u0WhMTlCQsqC72cQ3Dy+W6Rp1WptrLF84O26MPM2vb6AxEsf0iYLRAs71HGQ8OeswVT3myveN3adWnaG52cSxDi93oJTCdsyprcO3IyWvSl5JCPujRVxeJJh2Qr02SAKYmz3P+uZl+r0YWWSUvMkCS8oCxx4M5XlSYE/htrUMhyQKqEwXnz+WWrVBq9kZm7SS5j3qM41927a2ruLk9UOfN9soEbcDXHe8u/5WYwiD5YV72WqtkmaDLjRCiEGSTdbBdhTLixfHdtWYhGUbU717APb1TWnPCmfAhXq3oQXcMRDGPfprXTxVPuA7EsKglNcg6w/CKLY///a/+wbO3b/IL//L92IJh14rYH19bfh3L//aF7N+ZYv1K82hOxUg7O4vI9LLQ1xrf6/C1wZPX3cNgiIoyItsZNPpxXCTH/rLR/jK5jPDbZtWmZ+9+FY+0XjJgf2VUmSyyVz1/nG3BQDLco9cRPYodNpruBO6ZFqGQ9TrUK9PHiA7nTU8Y/zxAIzcIYg6w+SBU0epqf2Whw2zjdoC14JnUdlgIjJMG8/ZL8DyIqFcLk28j47tU676BL3RwkUqSa6aLM3eP91F38bUKvNYVo8w6JKmBVIqhADbNvErPtXybgZnFPUo+il1MUsiQrJscqHjVHaZqwwE9VHm0OPqRey6ZWr1nFa7iWfN7Hs2lFIkeYtao46/R4QpJcmCFM8c/90cs0y/1z5VAQeDhI6FuQvkRUYvaKLkwPW/PLt0LPF69doiq8HzeCNqAO4lzjsszp3R5K9jep6CIOBd73rXxP1e/epX85rXvGbifncyWsAdA71OC0eNFyklUSHIA2xnsN+j//nTvOobX8arvuFlvOobv4IPvPtRPvepL7I0f55S1ePlX/9ifmM76zTsxfQ7EaWqx+K9s/CJ3eNm0sA04ds7j/GWzmMA3HvuK4aff0v3c6x0HuMDtVfQ62wyM7sbgyKU5Nuf+yjf8/QHceVuB4Y/vvAw//HiN3A1iLGvq2uU5n2ElbG0eLr1mYbXEyY4YorCpVTo9TapHdaGaJsszrHF5Hge2/SJg/6ZEXCGIaZyQSilECNizqQs2Nq4iogVJVFBCEGWpoTxKlg2pdIcad7HKRnUa9NNINXKLJbVp9/vkqYZBg5K5RiWwvFclmr3n4ln6CTYiSMbR5pFdNc2h9ZkzyrTjTYwLe9QK2VWhFRq5eF9NAymcl0DCOP4LJ+lUh3Pq9DurZMlBUoOcpds22R5/p4D4Rvd7iauMd27k0fZ5J1OCMu0mbkFpYYMYVCulon7IfYhojYrYvyKM3IRfiehlKLf70/cL00P9n2+29AC7iZJ8hgZThmBWuTD/w26EX/2u38BwGf/dJDlKZUilyngDcXbDr/0L9/L69/61cNacTuUqz5FPGhiPrNd5sPcsxLyVIYv06HJf4d7eqv80F/+Ji/uXB5u2/Bm+I8vfwefm38QgPO1QVPlNIlQDEo7zNTruM4x+F2OCVmwr+XQYRjCJM8mF0E+ilXiKIHHtxrbd1DBZAtjUvRYqO0PJJeyYO3Kl/GKBraxO3nYhoNtzJLJhH54maXzLzxycoXvVfC9nRpfCYZhnZkMw7NGr93EFfstnlVrnn5vDdMp4e2pL6aUJMk7lGtlapVdC7xb8kk7k4vJpkVAo3q8PTUNw2S2frDF1yiULBBiuudA3iWuuXp1HiE26fdaOKI6jIOUqiAtupQrJeq1xVO+yjEc0+8khKBcnjzHnMlYwBNGj6Q3SZT2cdRBi81b8kFZkA9YDw63CTmo9fS/BH/KQ/kKEsFv+K/kA+7LgEHwbjff4i1/8404prcv8/Sw4r5f/91fzU/800eIDIfWdhxcRYjhDxsLm8gYlCfAEJiy4Duf/WO+60sfwVaDpbpE8OH7XsdvPPjtJNf3K6zMw+l6L8ZyFAPONNaeo8SxnKXyZI36Iiv95/DF4TFTSkmsknFgBb+1cRWvOLwGlW24IBtkaXLDZRIGNb5uz2K8J0UaJPjXWX+FEFTtebIiJeyugWFQyAx/xufc4r0HntdadZ7V7rOYHC7OlFIIJz/VQrDCmK7LAxx8b6Us6PU3QSlct3Lq7tXjpFaZp1qeo9ffItsuB2VbJnPVs+HxGMvNJjFsUy6X+eEf/uFjOdadjhZwN4lAjGyB5JMf2Pc7i2dxkg1sCnyVoRhYyHbIVcrrX/f1eJ5Pr7fbqmpccd9f/j8fAeD366/k9+uvBOA/2l9kJ6/vD2pfxe/Xr5CoLq8VDv/w4z/N/b1rw2NfKy3wi1/1PTw5sxuQn6QBSRLiOD6ee7YHR8MxYAoPS1qE1EuNifs5vkPRm1x2JS1C6pXjtWDcDEIYzC0s09xYHxnDJ2VObvVYnLv/uu0FeZBjTyjlYRseUa9H5brvnBcZvc4mSkqEYVCtz9/xLp5bgVISVahDR+QdaygwyIy28kMXG7OLyzTXVnHEQVGulCIRLZYWTrfAabW2wFrnEp6Y7Ea1/cHzlOUpnc0Vsn6GpwZu/q7couutU5ptUKncnu3WrkcIQa06P3lHzV2PFnA3Sdmrs2Zdxiv2r2ajEbfWFzkOGZ+1L3BODuopxWJ3ssvJ+MTvfY6Z2Tp+3aUdbNEo7y+Qe31x33AlIskyXHvX9fKJ8gO8fc/fWEXGD/b/K3/rmc9ibvv9CmHw/vu/gfc+8G1k2xNup71G3O4jEoEtfLpqg467hlsv0ZiZzjVy0pSrNYKNENscb90RdjHVSr1eX2Sl+yy+aIzf0cnx3LPjSgZw3RILy+fpdjdJowxZDFbElmPgVX3mqgezZnu9TTwxXVmXvbFIg+zf5yl6KS4VDGGilGJz8znMis3c8r1nqoNCXmT02hsDK4EhqNTnsafpcXViCKato6CUYpzedmyf+XP30O1skEQZMh/URTRtA6fksFy//6YyJo8DQxhYJQsVjbfCZTKkVm2Q5Qlbzz+PV1Sx8IYJO47hQQrRSo9iPqc+c4ZdjHc6Zymm5C5BC7ibxDIs7LID3f3b97pOYTDoRoaNFDYfcF82dJvuUKgcIXYnPAOTKEpolMcX93Usl7JMCfPeMI3/k+UXDwXc7DOf4+eu/Ccupu3hsS9Vz/Gul/8tnq3v1t/aXLsEbYFrlIcxZY7wIYNiPWcjfpaFc2enbMYO5VKD0O8i48NrZyWyR31+utW5EIKZxQU661u4xsESGAMLRpuFhXtv6Hr7/SZpHCIQOH6Jcvl4rXiW5TA7O7kv5fB6ei3KYsrV/naMi1KStctfwkuq2HsSSIQQeFRRfcXa5WdYvvgAYdQliyOEgHJ1DuuERZNUkq2VywOhqSoIYZDkfa5cW0WUDC5cfNmZaN8khMB0rKkagieqx3x5fO08y7SP9BycBvNzF1hdeRb3EPd9VkS4dQfPq7B+9ct4xeELDVt4xBt9vFLlTNVnvHtQxxADd3fEOh4nWsAdA42ZBTaja7jZ4dX522zwIe+rsEY0by9UTih71Jz9E6lTlOjFbapeY2Jx388/8TT9fJNCmeTyAgQB/PN/zjf/zM8Me9TlwuR9L30TH3jJt1AYFjtX2+1sUCo8rNphk6tLIXPSpEl95uylsN93/wM0m9dI+zGuURtOBpmMkGbO8uy5fSUMDkMqSa+9jigKqjMuhYqRGVAYgELY4PoOy/UXY5pHe3X6vSbhZgszsahs90vMo4hev09pfpbKMQeUT0OaxdgFeJ6BMYXbU+Djlxxam1eZtecRzuGWk5Jy2bjyRSpqhpIxOHYUrGCUHeqLyydSSV4pyfrlL1OTVURFEGVdCpVR8cvMGDMoJeleeQ5vtsbs4sFMyZOmsViFrjMx1sl2S1SrZ8v6e6O84EUvpdW6RhrlmIWDaThkMsRwBrUEK+UGaRbhGx5uZUKmPy5F1se/rt6c5gTQhXxPBS3gjgHHdJlfPsfW1hoiFNjsCqFYhWQio24tERcBiQxxzBK24ZKrlERFCGHyr+PHseOCz9r3AK8HBpmTYdKj6jWmKO5bomSXkKrg3Oc+jnz5T2E899xuabCHH8b6pV/iu17+cr7rZG+PRqPRaDSaY0YLuGPCsT3OLV8kTPtEQQ+lIMoCiA1qxiCOrczAJdeSWziihCVsKtbAtWerAntEAacg6sN2nO+k4r5+kfB9a3/KN7ef2D2A58G/+TfwT/8pU3Uq12g0Go3mqJyxci9JkhDHk0tH3c5oAXfMlJwKJWfXXZfmMd2gTR7noBTCFDg4VFRj39991hnEtKy86W/ylm98GeVaicvPPs9H3x/RTzoszi+NLe77qo88w99f+Qhz+W4BxC+U7+WL//B/4wVf8w0Yn/jSyOstpKRQU5bPUCBEjnUb1PGSSpLLArXHrC/EoBG0QJCrAtSgxpIhJrutFDnODWRXZkXG9K9Zjn2CGZxJkWFsJ9HkMsM0rJHPgVQ5SuZ41sCVXijzwP1ayjoArNl7a5UplCowxMGFg1QFtmFgHGMx2f3Hl2SFxBAWxfZ3m0ShclzTPrQ0jVKD+wSDmLVb+R5IJSmUHHqVTAzM6+5VVuRIOfiOu2041OCZNjjRZ+lWkhUZiOm+i1QZ7k1+76zIB41NRjy3g3Pk2IZ5y57d4+Kh1x3sonNLOQMC7lOf+hRra2u02206nQ6dTodHHnkEz/N4yUtewoMPPjj5ILcRZ38mvs1xLI/5+vLQigbQjzuE7WRQX2ub3/e3uyc8+kUee/SLg/2KFhV7liQNAUYW9/2ar7mXl/67f8HrO18Ybg+Fza8vvZE/mnkl6vefgd9/hsMoVMFa0Me3J6fzp0VE3QHPOjzW7ywQpgHdMBqZhJDKiDDr0nAH1dSDok3ZnTuw3/UkRY+5UgnbPFoQ/kZ/C2uK1lwAuWqzUJ58LcfFetDEtnaTO6KsQyHkboV+NYgjc4SHbcTMejMUMmc9DPCue16+vfM4AL9ff8Xu8dIOjvAOFU9KdJj1b03phzgP6cSD3q9BukXZnhxjqJTCMLs0rus/KlXBVrBFnolhjGUuMwoR4Ds2df/k4xc7cZskMbGN0dnXhcrB7DNfPt1G8MdBoQrWwx7eNL+h3GJ2iv6xh5EWCc0gwDUP7+ELkMgmy9WznfH6a3/1/z3tSzhxHn744dO+hBNFC7hToOLV2eBpqmoec0818m+PPo+vMiJh84h9Dm+7h6SSA4vbPpTitd0n+bu/+nM05O5nn3bv49/Vv4GrBpSSDnWvMfZaTGFiGlP23lERnnXjg2MuU7Iiw7W8kVaZ4yAtkkPFG4Bj+Bi2RZh3KVm1Qb+fKXDNKkHWoWEe7fsfaU16wgtY2xQoJYdWt8NEfJJ1qW7XAzQNC2vE87JXuO1QyAzTHpM8cgu/r2N6FKoN+EzbJHbQrWT/NqkKVjvreGIWy9w9jmXYWDRIk5RNucl8+eTqdimlCOIM3zw8kcEUFklu00u6pFk6+F4CbNOg5s2c/aKwezCFiSXykfU29xJnTRa88cJrEr2kh2s2Ju5nqBJh1qc07vm+2zgDFri7DS3gTomKVyWOA1ShKJnVoaDJVEpChmdVsIyBted6jdHI+vy3q3/A1/R23aI94fKL9TfwB6WXghB4QBLFdFRrooWgZFrEMsEyDs/yymWKdwMxdEop2lGTJM1RhYkpbFpqE9sWlL3SPnfzcdCL+4eKtx0swyYpJvfaO8ANjE9H6hRxwh6ZhttgJdjCtw8XH0opTCPF3mORKNsuvTTAsQ4XEEnWxzYOt1YOrF03dt3TYAgD29j5wab74XbcunvZCrbwxOyhwsEyHLJM0U+6VNybEw/T0o5beBOecaUUaRYicxvf3C2/kWcFq/EatXKZsjNd/b+zwLw/x2q4jmMtjCyyneQd6o6DdcTs8OvJC3CmeA9t0yPKOlrA7UXqOnAnjRZwp4TjuhiZjzANoqKLUorfci7gmiUswxn+MKkMafjbA61SvLHzV3z/6h9TlsnwWB/zXsjPN76R1nUrctvwCOIOFa/AHGPxqro10qhJLhkp4nKZIlSPun80955SirXuKras4wpjUEEesHFBQq8fkflt6n7jSMcdR5oVeFMMwJ5VJcp7IKab3HOZ4TtHf13KjkcvjnEmFBpOi5C6P9o1HaUBQRxsx+UMegDWJlhWp0EIwZxXoRW3cEe4p6SSpPkmy9e54Up2mUJ2CfIernVQBERZF2SBbx0uMpKiw1Lp1roeK45HN+lPrbvTostsafcZl0qSZWKf5W0UtuESJu0bEnC5zOlG7UGrOwUlt4Q/oddwUSjMCWq/l65TNecOCE9DmHg06PUDqPQpH/MC6lYhhGC5tEA7aZMWilyK7e8mcQyYcUq4x9Kq7QgrLm1w0pwyWsCdEjWvwUp4DV/VKVlj4s+cAtfymcu6/MC1D/OK4LnhRy3D5xca38CfeQ8caurxRI1O1GK2NN7FM+fP0ku6hEWAlCam4VLIFEPk+JZJbYo4sevZCjZxZP3QBAnH8ImjANcK8ezjKb45rRXfFBZSFagpR+FC9ak4R3eTlewy3XgNOHxyUUqBiPCs/TE1eZGx2d1E5A6OsTupp2nOSnCNerVOacJkPwnX8pjzTbppk1SCkgIEmELhmoLl8sJI61PVreGYCb2sSSbFcDIzRUae51SdpUPPKZXEttTEdmU3i2+XyWWXtJDEeX8YkjD6mgpc29j3Xbtxe6Kla4diyiiEHZRSbPbXyWOFKyoY2+ftxjEdq8tMtYF7g7GmUdahbB7e2xbANcr0w85tI+Bgu8i2NxD9SikUx/8MiSOoslNuZnH20C7UE0cLuFNCCMFcfY5mu4nHIRX/zQ6L1SW+pflZvnf9UXy528roD0ov5Bdr30zPHD/ICyHIppxcqm6NKgyK9hYpjlmaKntvFEop0rTAn5Cp5Rhl+nF3KOD6cYc4SQYuNkPgH9HNetTIHs+oEKYtSs7h1qBcJvjOjWe2zZfn2Ag2cIzZA7F/UuWkss1SZeG67ZKNzgaeqg87Y+xgCguTOt1uH1EX+Dcpfm3TZu4Gkglcy8Ud0cUgzAK6UQd3xMJEqpxctVksHT0APM5D4jhEAbZlU/EmJ95U3Rqu5bIRbBBlEt8++K4VMkfSYdG//pqma7YO089deZHRDdt0wg51cwnruvfDMTyQHq12h5kGI0WcYShUfvi1FTLHtCa/t0J6BOntY4XbixACceS3fTK2ZaAKeeiic4ek6DLn3T4u6BNBC7gTRwu4U8S1PBZmFuhGLdK4oJASgcC0BI5r80qrxA89/15eFl4Z/s2WVeGXzn0rH6GOJadcoR/xvTINC/8mSyR04xaemM56kWaSOAtpdVpYhY8ldr9XP4zpOh3m6gtTZYBOCtOL8x55HiOLAkMYJFlGJnJylVN15g9Miknex7Yy6u6NB6lbhsVyZYlu0ibOC6QanMMQCt+ymC0tHjhvO2ziytpYReqKCr2wh18/W62DSnYZS1j00hZpDmq7z6dlCFzLZM473Do3iigL6fY6kJmD9m5ApDL6/WuUyyWqE1zwjulyoXYPcRbQS1tkBSglQCgsAzzLou4dFJSmYZGofF+i0aFMYY1p9jZIw5xCKqrW/FiR4IoqnaDLYv3gO15z62ykHTxztICdVtbYhkuaBbelgLtVNLwZVnvreObhHodBXGh+5Iz0OxqljqETgxaAR0ULuFPGMm1mK4uwZwwVSvKWrc/wjo2P4ah8uP0PGw/xa0vfQGS6GP3Nqc9xGuWKBhlj0504LzJarfbAEnnd7GMbLuQum80NFmYXsSbUeCq5LlGUDhNA9tKPN3ClO3CL7RF6Sik64QatqIfrVAc3TIEqcuzCIrFTUifBuYmemUII6t4Mk21GA9Ikw8YhKeJBTOQhdbBkKkjzGOdY4n+OD8dymTuGHqNRGtBp93Cp7Hs2LGFjSZuom1CoLRqlyS5+zy7j2QOXs1Ryovut6tbpR+uYojHx2I41XjZt9dZRoYUrPPp0MI3JFt3DflvLtHEcKPIpxeUpEKYBQdhDFmrgkrcMaqX6mXtOr0cIwWypRjNs443IRpWqIFUtlitHW4RoNLeCs/n236X04w7LvRX+WfvjvCzbGm5ft+v84vk38fnyfcNtFa9CuxfiGOOtL2kRUS+dQt02wcS0/x2KIqVqjHepeapGJ2wxN6H2UsWtE6VrFNLYN7kFyRa+Gu0SFkLQsBfp5y38wseQeyZ2E5A+W+0NlucunEj5hV7UJowCXJVjGy6ZCohFjjBsyteV+nCNMmEWnPmJcRJZkdINWmTJdrkIw8B0BGEYUzMOt37awiXqBZTcBGdEn+HDmCTepBpYwz3HpMjGC6W06NMoDVZgSR4NuqcohTAE9fIshSxIwwJv23o47TPkGmWCtD/yt50rzbMZbJLm1r74SIBiREeXURQyw5vC1XoUpJKst68hYgfb8HfXSRlsBS3sssF87WyLH9fyWShbdJMOaa6Q2zVYLANc22TWXbqtyrCcFErpLNSTRgu4M0CSx3Sbq3xf/2m+L/4cNoMXQQK/7T/If77wTajrUv5dy0NYHVThHzqYKKUQVoxnN27xN9h/zk7YJEsS4iKiMqZEBYCU+b7eseNI4wymCDtZqC7RDLeI0wJHVBEYkBcTG9CXzQahHASAX49TVOhGTepTWHpuhlZ/g7QraewRLZYY3J9C5nSTTWrXu3MP8TxIVRDnEaYwMTDphm3yNENJhTANXM+hXjqYqXjSdMM2QSfApYzDtggrIIr7+0pgHIYnyvSCDnO1o8fVJXlElPQBgWnaJElEEqbsaCDDMUiMFiVzeaTLLJV9Sr6FwGBt6yoqMYZuXqkUq/0VMiOmyo0VfRXq8N9mvjxPksf0kg6FHGRkGkLgewKZTbYw5iKk4k4WU2EaECfBoBOLKaiX5g499nr7GnZSQRgHr9s1ShRhTlOsM3vGi+Bapr0vI1kzBTfrQtUcGS3gTpm0SJhfe4r/q/9feUHRGm6/bNT5qfIb+YK1RNzqsDDvHphAFiqLrPdWMYrKAZdhLjMKo8di9eRWu72wTa/bwylKpDInkSHYg9oXjlMZWUqjm21SF9MF0KtCUKjxJVF2mC3NoXxFN2nTCzuUjMklK8YJGUOYJHEEtzDcrB93SLsSW4y2JJnCoqwqBFlr2FkglSGN62KYoiyg3+2SRRmWcgZCTg2EnG/WBpNvDkUsWelfZmZ24aYTIW6UMOkRdmJcDmbTSiGxp7Sq5dNm6gzP26fXa6MigSM8UhmTiR5ls4GPuxvTloOjSvTNVQq/gpLGbjkX26BeKmEIk83NDTy5380rhMBTFdy8RFduUrN3YiyPULrGGu9qdS3vQPkMpRQrnRV8Dn+vMhlTLo232kZZQKfdgtTC2X4mpVKs9q7iltwDgjlIe4jYHSnedjCFRdDvUyvfHi35NJqzjH6DbiH9qE0YBORJhpKD1avjO1QrDVzbx5YZ33n1j3hH//OY24N6geA3vYf4Ne9VZNtuG09W6PRbzNf3izEhBEu1c/STLmHSQUkxSK03oFRyqbjnTuy79sI2YSvCkAahbOMblUGl+G2rehL06Vltyv7CnqLFMbYDpFOeRAlQiiDtksTRdjFYg3plfqRFYCfuLM8yRD5tIODhk8+tjrENwgBbjBdShjBRRQE787pd7MtU7Mcd+ls9HOVj4gy+jrBx8FBK0cubVMwZDMNECAOvqNHeamItWKcSlN3v93E4WRf/3ns0cPVLUhIq5miRL4SgUsySFxFLs8sHPl9vrQzE2yEIYVAx6oRFl7JVR0k1VXhBYUY39A4LIVisLrDZ38QsygcWd7HsUfItqmNqCUZZSHuzjavKB0WprCB7BRvyGguN88PPwjDANib/liVR59K1p7ln6SLuKS0cNLcAnYRw4mgBd4vYbK8guwpLuFh73EL0oRls8nA55J9s/Rnn012r2zPmLD9VeiNfsg66HZMoRdVGD/oVt3ZiVeBHoZSi1+thSJNC5VRGuCBdw8cpFL1gFdevYViKsu8xY51nc3MLj8mZcKkKWd+4hplYWMJBsG0R6D6PW/WYOyS25laUGzhulFLkScE0xUo8USbKe5imSbW062LMipTuVhdPjZ4UhRBUjRkC2aFi7FpnXFmm228xVz/Z2KQkj5AJh2vmI0wI09bkUkrRabbw1e59C2WPstUYf3whkDGk+f5klqxIKWI5cSA1hImSAythyawS5G0qY3p7ZjKhVLlxYWuZNsv1cwRJjzDpIdWgxpllCRa8xsRkoE67hXvIcwSD75MFJoHfpbw99hSFZJrmGkIIHOWzubnBueV7bllbvTuVXGbEWYhl2njWGRLAuhPDiaMF3C2g099Edndjl3YoVI5VBPyT/PN8Z/fJoZcmxeDXvFfxiPcKCmHwlmTQmP4D7suGf2sVDkkeDrPozhK9uIWT+0SyS/mQ0gawLSBUDelkLFR3V+6FGcMYC8YOMstwi/oIi0CZop2zUaywMHPQYlHyy3TC/jA2aRxqjGgw7Vs30UjkwFo5hRAxhUVXNVmqLu8r5NsNWoeKtx2EEJjKIpf7M3WTKGXqFNljIs7Csb+JZ5R3e9aOQaoC15suiaMdbOIV+61KCDFVHKBLiV7U2ZdIEyS9ke7fkWw/WoYwcZVHL9uiYs0cyNZOZIBbMqkdQ4eSslul7B6tXlmchZAaE+uR2MIhDIKhgDsqXl6m3d868/FwZ4V+3CHodcnDAke55GQoV+GVPWaqB0sRnTjaAnfiaAF3Cwj7Ie4eV1hY9JAq5+F8i/8x/yznVDD87AvmPD9V/gYu73HfeCrjAOIoNcJPlizNKJQ8IFhHIYSBjOS+ZARDQpj3KI1oy7RDL92kIg5XGKawyPoJYbl/oPCvZ5Xo2G3IR//tDqmMB2VLRpCokNnSrVM4BgYY0/3ChcpYmlmi4tZIsohev43MJVEcURWTY/18o0Igu5jCJiw6qKJAyoKVK89hehblav3Ik/6NMs6VaAqLouhNdDcmZp9Z78JU58uSDOu6GEPJ9JYDVez/jcYJ/nHYhoulHMKsMziOAGUUlHyfGb92TG2hbowoCXDEdOfP093YQ8syJ75jMMhU3cnSTaNkqsSku51Wb5OkFWErdzBpC3AwIQWZSFaTyyzP33f6Ik5zomgBd8z04w5W6gxXr728yZyy+O+yv+TNxTPD/WJMftn6Kt4t5nDSHMwtXKuKbTjEI2p+FSLBHeFaHYdUklymg8r9tzJgWEEqE8rGdCNxnu2fMHNZUERtEtHGMhyEaVJyZjCESS4zgqyFJU2sCbWzbFyCfo/S7EFrXqM6Q6vVHtQTG0GmUlIZUxnhSstkglsxb2mpDiEElmNNFQ+YWwkld461jcvIvsRRHibmIHh8yp+5oKCXbFBR1YEFSDA4dwq9bpOw0WFh9p6xxxj0So0xTWts4/rDqHozXON5SmNMf2WjQTfbpGw1Dvz+SikSo8d8Y3S7r1Fcr7fCogdHEHDXB+g7tktfRdhTLF6UIUnU7uJOCEHZrJOoEMuH+dr4+z0tUdojyRIMQ1D1Zo88qUuljhB0sHtDq+Uaragz0dId5R1KYjBWyOKsLkvPDmHSJ2lGgx7SIxDCwA5cNu2VfTGJJ4pSqJt1oWoL3pHRAu6YyfJ0WDMqKLp8U9Hif0k/QYVdq9rjxhL/zvlarhk1qjIlkzG+8onzLqlt7XOd7mD79tR9/4K4S7/bJg9SjMJAConpW3jVEo1b4K4wLOPQGkA79bT2TyKDFzUvMjY2r2D3LcqiNNhcgMoV/WSVzJT4ZglTCUrGdNXii3SE9RJwbZ+ZGWj32pAZONuTqFQFqRFgugKnsEizaDgBFSonNyP8ik/9FjdeByiVyoRJMlYMSCVxfYe19cvYfRdr7309wviXZiFzYnGkm8zGRbYKtswV5uoHXdJREtDrNsmCBDM3kUKCK3CrPrO15akFgyEMpJUzrmzZTtxeK13FNUvDYDepCpyKyVLtwpH6YRp7BFich6RFQK4yTMPFNypjrz1VMQ1vv7uw7FTpOR3IJgu4UrlErdygF3Yo8sHiKstiPNtHKJusSLFNB6UU3aiFLHKEMKiVZ6f6jt3+FkG3h4jAxiFTkp7zDE7VZ65xbur7ZJkm2RSFjmGQmLWDa/mYpTYyzDEOqZuXFhGGFEMhfJL2IqUUvbhNkQ/GiGp59rbIhO33O4eKtx2EMEiCCFWfvv3bsaMF2Ilz9p/e2wxhGEglaaiE/yH5JN9SXB1+liP4efthft96MWr7JbMMZ1BuA/AokaUpkejh73EnJkbAXGU661unt0m00cdWDhbW7ggZQRYmrMaXWJofFATuhk2ibp8iyVCA6Zi4ldKR4ynq5Tk6nTapTHCES1JEZHmEkgWGGmTGKsPAsCzKVh3TMlBKsb5+GTf0D4ziQggq1EiLBCk40ig/bgxxbZ+lWX9QbDXuIxBYpsmsd374feMsJEpCFArXspn3Tm5FW/XrpNk6eT8d6Y6WqqDwIxzTJ+/bB38jOV0pjbDoUVONsffVECZxJ0TW9k/k/ahNb7WFI10M5aNQ2BiQgIolK+GzLC/fP7VYmK3Nc231Mp4oI5QCw6Bk7TZiV0rRK5rMWLvCUCpJUYpYqk/nNt2LXyoR9EOSok+eJ1RUDUOYFFFO39hA2BZla2b08+8WeM7BeLdyqULYTg4t/wK777BjutQrs2xuXoNeRlkOjqco2Nh6ntROMHMbN3MHiQ9Kcc35Mk7VY372/KH3dauzQr6Z4eypqWgIAy8robYUq/FzU/8uNX+Wle6VsZm1MPhtXH//d16onWNNXSHqS0pmbc/vKAnzLoYcuPB3MN2TmYKanXWiTg87tof3dc16DqvqMDd7bmJSx2mSRSnmFOlNbuafSK1KzdlBC7gboN1bx7IcKiOCjGteg68o/px/HD1Gg2S4/VnR4I/M+/mA/eCBvzGENaxvZguHNAvAqg6sQ1bAzMz8VG2cwqRPuNnHUaOtAYYwoSPYslbIkhiza2EJayD0ADIo+hnXus+weO6+qctKGMKgXm/Q3epQqBSynNJOwbSdeVCBTAs6xQblapVLa1+kHFTHighHuARFD8OyUWpyg2kYWAMn4Vo+7iEZfp5dwjvF0gZztUW6Vosg6KNSgSt8MpWS0Mcreyw17mFt7fmRrbVcSoRFl5I5Pqg8lgEzxuRB3s182v3NYZB5kkesXbkEBQRICiXxcAetx8QgaccNfDa3rrI4f+/IY2ZFSpj0EIBh2PSaW5QTD3f7+ygl6RtrCMfBMC0KlVExdwVVrALskmCxfmPCuuzWWJWXqGUzGKI0fP52auzJRNKTG9Tc/ZbqULRZbJxHKkm7u07SC5F5AUJg+Q6qBEkkca8riTJw8/aZmZnFMV2kKlhbuYQbenBdzqZTeDiFR0+1cBm464UQeJmP2lKsJM9y7twLDoiwIO6QbSaHFsQWQuAELpvNayzOTXbTCiHwKx5ZJzu0hRtAYvVZLh883lL9HlbiS4RJa1Awb3AjKInqPhd0RkKlfOv7sK5vXUFtFbjCG/7eQgjcwoc2rCWXWTp33wERlxUpnc4mST9E5QphgFVyqdTrlN3p4mH7UYew10HlEiXALrnM1BaPlHl7fdzlYQhh3Lwb82bQhXxPnDtOwF26dIlLly7RaDSI4xiAhx9++FjPkV0JiVWPTmkdv1FntjEov9DI+vz9lY/wmmg31q2Lw39wvoY/NF8AQvCW7CmAfULONhzyIsXcHvwd6RAaW9RqM8x5905tDQt6bRw5XnQZwqDV3KBejK7AL4TAjXw21q5w/vwLD3we71RlF1Dy68P2RTOVBbphC9lO8cXorDxDmJQKn+bqCrawMcwpxJbyyJWir9pUzfEFf6WSuOXJmaZZkdLtbiKzAmEI3FKZ6hFcpFmRkMkM1/RuSWxhkaXIboSZm4R0MbEpC5csSFhJnkUmCmvPijyXObEaWBSzLMPAxDMP/gZKKfqyhSXtqayaQgjUdoHcrfYqwXqTarHHOoYiJkQpSVnUSGREZASIrqBXaVH1du9plAZ0m5tkvQQnd8lUSm5mlEUV9ogEIQzKqkwe54RWgG17RHkXSYFyJefn7ztSy6zrafXWqaUzh1qiDGHgZx6B0aJkNQhlF1Xk+DMllCq4dvkybuxiC5thMb4EMlJkI0O6gjwpyIqMIs/IkhCrsNgKI5xaCUmOE7hj73+FBiE9yuwKcSEETt9lq7XCwux+y2O/153YzUQIQdaPkbPTuUZnKgtsyTWyXoQtrhelktgKmJ9dPPRYs7OLbG1s4snrFnLbFCrHqIobzmC9njgL6HZa5OFg0WzYJl61QppFFFv5MCwhkTE5KRYOrjEQyW7k0Wyusriwu+gI4x6tlVXczMPd675ModPapDvb5NzCCw69nqxI2Vh7HqMntkXwQLDJbsallS+QqxSvVKbcqDNT223NleYJnc4mWT9GSYlhmsRFH1u4E2OAlZKIKXrs3jLOWCutk9ACp80dJeCeeuopnnzySd761rcOt126dIlHHnmEd7zjHcd6LlOYmJFJGvZZTyPeYfd459qfUJa7Vrc/NS7wC+7X0d4zAPoj0rRymWLvmZBtYeP4HjV/tGCRqqDVXUemxaAivO9TK8+RBjHehFYBmUzxVGmiKDT7Jmuty5jKAqXIVIKKFPTl8Fo3zDZW1aYxv4RteYhc4YvxK2pTWDjKw5qyCbclbHr5Jrbhkots7CCWOiFz/sVDP1dKsbH5PGk7xM0Hg7cCArVFr7xJY2mZkjc6EUMpRbOzStzpo8ICU1kUZo5VdanMzFLxjydDdWXzGeKNEAODTICLN0wQsHFQbUXHbOIZJXKZERVdjEJQ2o7pc5VNL9sicrq4VgXPKCEpyK2U3EqRaYbK1PRuaSHYaq+SrgSD3/a6Ei4+ZQqV05ddKkaNWIYYmGx8+TLd8iZutUymMvKtEE+WB5YlAZlIxmYVW8LCzx2kaZCKGElKRVbpB00a1aWRwiGXOe3uOmk3ROUSYQjsske1MTssvxN3Q5wR7ulcZsQqZCfXO4ojsAs8UUHgYlkWGytX8RJv5L2zcShaBWJRARl2W+EJl1gWSAqKIiOM20hTUTPGL0SEEKAOZugKIYh7EWpm//Y8TLAOee9TmZCqGKEUKoeNzjWqfoOg20RmEratQo3awXs6V1si9gJ6YZc8KUCBYQkcz+F8efTCUipJq7tGHqVImdIlxFVl3GF7MUlqhvjVEo3KIs3uGlkQo5CYlkW5NkPJHT+GBHGboN2hyPLBPSHG6Al8UR6OTZlKabWugSGomrN08ya5irFwMDBISAiLNo5ZomzUyPoJcr7AECZpkdBaWcPNRictOcIh38p4Lvk8Fy+87MB9UEqxvmNlHREeUhV1EhmjQkkeJlzrfYnl8y8giDp0V7Zwc2/ffFCnQUSXzHHxzcPvTWLHzPlnu8/sSXGSWuA0uWMEXBzHfPjDH+YHfuAH9m2/ePEijz76KE888QQPPfTQsZ/3PDH/dPPTvIaN4bYtXH6GV/Ihc4b6davXaMQtL1Q+bHS9w2ECa7N5lbjZw0ndgYUECFWbXmmLOI/xJlTyT4goi8mrXlNY9FabVKhuT2zGwAWxx+3jFM7ABdF7jkLkGIV1vVdoJBVRJ6Q7ecdtXOFTMmoERQdLeXjm/u8oVUHqRCwsnB8rTFfXnsVsiu3vsf+7miG0rlyDe84fEHFKKVZWv4zZEjg7lhcBlrSgA93eGvm5lEZtYervdD1h3KO1toIRCCrbGXooSFRErAIqRh0hjEHmYlElkF0KmVBR+93QhjCoM0ORFPSzNj1ngwvnHyAOcthQ+KpEIEKmaT+bkeJ7VXpXNw7cs72YwsJUg4xhzyjRlpvYwkEGGd1gA4GgYjSG+6dqfLzYDrZw2IxWmVXzCOFCCHkr5pr7FLXlRWrlXSEUJX02r17FjR3svYuDqGCreRV/qUa5UodQ7rtfA6tkG0sag0SabRzpEquQ1LEQDojcw43GW85MYdLfauGmPjkJsUpxKWFt3zupJEHRJ6BL2Rj/Djq4ZKS7vWF3ticuvbi1b3GnRriucpkTyS5WYVHaM7bE17qssEGZ6jDZKm/FXNt4itryArXKfte655RHxv2Not3doLe+hZu6GELgbofeB6JFUu1Sq85hWxZz/n30ozZXn30KJ3YwxE6ga0F7c4VO3WBh+eKBBIO8yFhfvYzoqO3Qj8FgU6ZErEJC1aNkVMlVSkZKxWgQioCtbAUfn6rY/37mKiMs+nSKjJqapRu0aFTm6Xa2cLPxz6dl2NAP2dh6nsXtmOIdWv31iVZW1/Doyy4uArvncG3ly5iBgStHv2c+ZZI0JnHjoeVwL0pJ3LJ7qmVERj2Hp8FpaYHTYPr0rTPOU089Rb1exxtR0PMlL3kJjz/++LGeTyjF31Bf4j/y4X3i7UPcyw/yJv5c3IuZC3K5PyvyA/aD+9ynucwGNcD2kIp4pCVoffMyxWqMm3n7XlRTmDiRg5PZRDI48HfXXfnU39EQJlIVSOTYCdwvSoiM3XiXicc1KNQUBaMYrKR3JpqyUUco6OcteqpJaodkXow9b3Fu6eLYmL1u2EQ05dgBzslcOpsbB7ZvNq9itYxD3UW2dAhWWkTJpHs/mijt07qyghM6B2KOXOFTVlV6sj2sOWYLh7joDcTbIZjCpCTLVOIyG9cuI9cS7O3YSFuaJDKaeF3Kk+RxhDNhMgPwRImYQTKOpSxiNbAimpgHFgw56chJaBS+KB2wQrmpR//KJv2wDQz6CTevXMNLRk9gjnRIVvq0euv7XM8APdmkLMsHFj6WsKioGiqOkU5B2o+nmhxLRZkeg+4qZVHbZ2k2hEFV1HAKi6DojD2OgYkckZ5rCAN5XbKKYex/LgtZEBZtyrJy4L31RImamCEmpFCD4wghcDOP/tUmvbDFjdDpbRJda+NdNzYBlFWVUscnCQPqpTmCuEvv+U3cEb+XjY3VMVm79uy+GnsDq9Zz2F1zpPXeEyUcHCLZJyGmtO0JCIoOVWojwzosYVMTM0BBpPrslJNJeuFU39mjRG+rRZon+7Yn3XDKwtAeiYoG+/YUYkIOkotHlh+8NqkkWTlhrn6wzduJouTN/XdMnLQWOE3uGAH35JNPjvzBABqNBuvr60M/+M3yferz/Cc+yI/yGP72ILuGx//kfi3/l3gtvW0XTYkyYdY+IOJ2yGVGIvsHBhejZOLa11nukoB8Mx4b/Orhk+fH8x0HKCLC4WA4Dhf/0FIiB46qFFmeUsjJIi4lwTV2J1cbB9OxOHf+IsvL97G0cA/10uh4vr2Ene5QCI69tn6+T4gppUja/YnHd6RDv7M18fijaG+u44wpQyGEoKyqhKoPQCFzbDU51sUWNgU5Ziz2fXdHuKR5cOhzCZCYMfW5eYokn3pVL9ROaQgTE3NYDHaa5JOjYkuH7tYmAN32Jk463qRoYZF1IzJjt9BeJAN8OT6cwBU+RswgYWEqBCYHrbz7rkXYGHIQznAYKfEB6xtARnZgbLDL+/eLVI+yHF+TsSxqxOxfcNjSprdx9GdYKUVvcwtrzDMphIBWQRB36G5uYMvxz6/VNen0dxdTvbCJ2R3/HFnbz7uhjOF1ubgTa/SVqREVXaztBaDMpxvHLMPGkhbdzua+7UU63eLUNhyK7ZAaD5+EZMJfgJIDsVmonERFpE6EOWecfhFfNbDA3cx/x1Wp/iS1wGlzxwi4tbU1Go3GyM/q9UGsTaczftU7Le/kC1zYM/i9jxfy/byBTyYHXWgVWSFJuvSzJomMkEqSyIggb5PJg+7M1IqpzR4sGdLrbA0tKONwlU8k+4d+biiDXE03GakjFPS0hE2uJg9AAKHqAYpAdcZWso9kn1Ql9GWHkC6pEyFmYencvVNl5e4lj6a7Nls5hNGue7cbbuIk050r6U+2ah34myxE9iYP+IYwUNu/W0xIecry9QpFacS+ZVUhznr0i/agMv42GQmpn9BYnqfkVlA3MKomMtoTgD/qCRL7zjn2+sfVhekrgrhL0pvO8mmFJtLbPV4h06liMUUwKOY8DZEKRt7v6/FEiUQdbumRyNGLtZLCv67TSLU+Q2oMJiSlFKoYb2neRRy4vyKAXtSe4m936QZb2NHkBYWFTau5Bv3Jz5QhDKLO7jgWdrpTZW6W2H1m+6pDZYr+cKYwsbCx7e0FxxFnxSLb//7eqIya5u9s6TB7foHy+Qpz9yxy7txFZs9CG60zxElqgdPmjomBS5IE1x0/0XY6HZaWRgd5fvrTn+Yzn/nMVOf64e0B4iplfpJX84RYJDD7lIvR5/cpQQ5ZlhLSJzQD6s7CvniHXGUUvmRmYQl/RMxJHqfYU/xclrCIZR9/xCCklMKqWRRphpWMHwxD2cNTPgnTuRN2jp/KGGeMe0wphZQ5JiYVVaMvW9jCw9tjZZNK0ldt8A3m6ss0KtNX2h9z4ql3FXt2lUUxfZX/4uhugCDqTcwc3r2u/a7E6Ti8z2eJEipThKIFAnK74Nw9L6C0p42W6dioafojAWrPjdsVRgfviU+ZUPXGJjHAtnhThydc2NjESYjMpluQWNgotyCPMizs6RcnWCRmAocbLIdkMsWfoucu7H/O9pKo0VX3c3LK9YOxc55dxppzidcCLOFgKWsqNeBTIiHal/hkCYssjuAIfVizJJm67l8R5bgTEq2G+ya7N7xIM8wpAjcNYQwtOZJ86usyMcmKGNfysH13qt86lP3tsjH7b7bpWlP9fSrjAy79SSghcSx3Xx/js4Bbs/nG/+0VN30MgCAIeNe73jVx/1e/+tW85jWvObD9ZrXA7cQdI+DGsfNjjjObpmlKv3+45Wov/89v/AYvetGLeM1rXsO/PZYr1GjuXj796U+TpimO44wckDUazdH49Kc/zZ//+Z+f2DslDIHXuPHyPntRSk01F6fpFH0Hr2MaLXA7cVcIuGlwHIdKZXKsVxAEXLlyhXa7rScbjeYY+MxnPkO/36dSqeh3SqM5Bk7qnSqXp8tQnpY0TcnznFJpspXWcc6WFfI0uCsEXJIM4lcOC2wEeM1rXjPVg/6ud71rakudRqPRaDR3Ku985ztP+xKOxDRa4Hbijkli0Gg0Go1Go7lbuGMEXL1ePzSzZMffvZOBotFoNBqN5s7jbtICd4yAW1paOjQwcefHvBOyTjQajUaj0YzmbtICd4yAu3jx4qGqu91uc9999438TKPRaDQazZ3B3aQF7hgB9+CDDxLHMe12+8BnTz31FK94xc3VqNFoNBqNRnO2uZu0wB0j4DzP49u+7dv46Ec/um/7Tl+0Bx988JC/1Gg0Go1GcydwN2mBO6qMyIMPPojrujz66KM0Go2hH/wd73jHKV+ZRqPRaDSak+Bu0QJ3lICDgf/74sWLp30ZGo1Go9FoTom7QQvccQLuVvPqV7962PZHo9HcPPqd0miOF/1O3R0IpY7Q5Vuj0Wg0Go1Gc+rcMUkMGo1Go9FoNHcLWsBpNBqNRqPR3GZoAafRaDQajUZzm6EFnEaj0Wg0Gs1ths5CnZJLly5x6dKlfTVlHn744VO+Ko3m9uN973sfnufx0EMPDfsWrq2t8cQTT/Dwww/fMX0KNZpbQRzHfPSjH8V1Xd74xjceup+es+58tICbgqeeeoonn3ySt771rcNtly5d4pFHHrnjCgNqNLeaOI556qmneOKJJ4bbXNflrW99qxZvGs0hPProo3Q6HZaWlrh06dLYGmd6zro70AJuAnEc8+EPf5gf+IEf2Lf94sWLPProozzxxBM89NBDp3R1Gs3tx9LSEg8//DBra2sANBqNO6q9jUZzK9hrbXvyyScP3U/PWXcPWsBNYKd/mud5Bz57yUtewuOPP65fBo3miNwNVdI1mtNAz1l3DzqJYQJPPvnkyBcBBpaD9fX1YXyBRqPRaDSniZ6z7h60gJvA2toajUZj5Gf1eh2ATqdzglek0Wg0Gs1o9Jx196BdqBNIkgTXdcfusxNYqtFopqPdbnP58uV9/3744YcPtRxoNJrp0HPW3YMWcDfBzkuizdEazfR0Oh3W19f3xeGsra3xnve8h3e+851axGk0twg9Z91ZaBeqRqM5Ud761rceyDpdWlpiaWmJj3zkI6d0VRqNRnN7oQXcTZAkCYC2GGg0x8DFixd56qmnTvsyNJo7Fj1n3VloAafRaM4EO5PKTn04jUaj0RyOFnATqNfrh2bs7MQR7GT2aDSa8XzkIx/h0UcfHfmZjs/RaG4ePWfdPWgBN4GdXo2j2HlJdDaPRjMdTz755KGTi36fNJqbR89Zdw9awE3g4sWLh0447Xab++6774SvSKO5fXnooYf29Wfcy6VLlw6tIK/RaKZDz1l3D1rATeDBBx8kjmPa7faBz5566ile8YpXnPxFaTS3KcvLyyNj3HYa3O/t96jRaI6OnrPuHrSAm4DneXzbt30bH/3oR/dt3+k3p5twazTT8+CDD/LEE08cEHGPPPIIDz30kH6fNJopSJLkUDepnrPuHoRSSp32RdwOXLp0iUuXLtFoNIYvzsMPP3zKV6XR3J586lOfIo7j4UT0kpe8RE8sGs0YPvWpT7G2tka73WZ9fR2A++67D8/zRr4/es6689ECTqPRaDQajeY2Q7tQNRqNRqPRaG4ztIDTaDQajUajuc3QAk6j0Wg0Go3mNkMLOI1Go9FoNJrbDC3gNBqNRqPRaG4ztIDTaDQajUajuc2wTvsCNBrN3cl73/teAFZXV1ldXeVHfuRHWF5ePuWr0mg0mtsDLeA0Gs2J8+53v5u3v/3tVCoVAD72sY/xQz/0Q/ziL/6iFnEajUYzBdqFqtFoTpzHH3+cfr8//PfrXvc6yuUyH/zgB0/xqjQajeb2QQs4jUZzovT7/aHbdC/VapUgCE7pqjQajeb2QrtQNRrNiVKpVPj1X//1A9tXV1f5m3/zb57CFWk0Gs3th7bAaTSaU+eDH/wgy8vLvPnNbz7tS9FoNJrbAm2B02g0p0q/3+dXfuVX+Kmf+qnTvhSNRqO5bRBKKXXaF6HRaO5efvzHf5x3vOMdvOhFLzrtS9FoNJrbBi3gNBrNqfHud7+bN7zhDVq8aTQazRHRMXAajeZU+NjHPsYrX/nKfeJNlxHRaDSa6dAxcBqN5qZYXV3lJ37iJ3jmmWcm7vumN72JH/mRH+Gxxx7j6aef5g1veMPw764vK3I9zzzzDI888gjLy8sEQcCb3/xmyuUyq6urvPKVrzyOr6LRaDS3DdqFqtFobpjV1VX+xb/4F3z91389L37xi3n66acJgmAoqD74wQ/uyyx9xSteAcAP/uAPjqz59q/+1b8aKcY+9rGP8Su/8iv85E/+5LB7w7vf/W4+9KEP8cADD/Cv//W/Pv4vp9FoNGcYbYHTaDQ3zM///M/vE1Wrq6u8+c1vHrbDeuyxx3jd61534O9G1YE7jMcee4yf+Imf4Kd+6qeG5wF45StfyW//9m9r65tGo7kr0TFwGo3mhthpQL9XVD399NP7xNtx9DX9hV/4BV7xilccSHTYcblqAafRaO5GtAVOo9HcENeLs+tj2J555pmbFnDvfe97WV1d5e/+3b974LPHHnuMcrmsM1g1Gs1dibbAaTSaY+GDH/zgPmvYpKSEafizP/szYDd2bi+PP/44DzzwwE2fQ6PRaG5HtIDTaDTHwoc+9CFe//rXD/99HAJux4q31027c+wgCEbG12k0Gs3dgBZwGo3mpvnYxz5GtVrdJ7T6/T5PP/30TR/7hS984YFtjz32GLAb//be9773ps+j0Wg0txNawGk0mpvmt37rtw64OYMgmKo23Dhe9KIXjSw38qEPfYhyuTyMsTsOa59Go9HcTmgBp9FobopnnnmGZ5555oA7c2lpiccff/ymjv32t7+dL33pS/u2vfvd7+aBBx6gWq0Oz68zUTUazd2GzkLVaDQ3xdNPP82LXvSiAyLqzW9+M2trazd17Ne97nX0ej1+/ud/nuXlZXq9Hm9/+9upVCr8+I//OO9+97upVqt893d/902dR6PRaG43dCcGjUaj0Wg0mtsM7ULVaDQajUajuc3QAk6j0Wg0Go3mNkMLOI1Go9FoNJrbDC3gNBqNRqPRaG4ztIDTaDQajUajuc3QAk6j0Wg0Go3mNkMLOI1Go9FoNJrbDC3gNBqNRqPRaG4ztIDTaDQajUajuc3QAk6j0Wg0Go3mNkMLOI1Go9FoNJrbDC3gNBqNRqPRaG4ztIDTaDQajUajuc34/wMrJN0e3EO7hAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the function\n", + "def func(x, y):\n", + " return np.where(y < x, y, x)\n", + "\n", + "# Create a meshgrid\n", + "x = np.linspace(0, 13, 100)\n", + "y = np.linspace(0, 13, 100)\n", + "X, Y = np.meshgrid(x, y)\n", + "\n", + "# Calculate the function values on the meshgrid\n", + "Z = func(X, Y)\n", + "plt.contourf(X, Y, Z, cmap='viridis', levels=np.linspace(0, 10, 11), alpha=.9)\n", + "\n", + "R_vector_values = [point['R_vector'] for point in data_for_plotting]\n", + "\n", + "x_values, y_values = zip(*[(point['pisq_a'], point['bc_squared']) for point in data_for_plotting])\n", + "\n", + "# Create a scatter plot and color the points based on D_theory\n", + "scatter = plt.scatter(x_values, y_values, c=R_vector_values, cmap='viridis', edgecolors='black', linewidths=.1, label='Data')\n", + "\n", + "error_values = np.clip(np.abs([(point['R_vector'] - func(point['pisq_a'], point['bc_squared']).item())/func(point['pisq_a'], point['bc_squared']).item() for point in data_for_plotting]), 0, 3)\n", + "plt.errorbar(x_values, y_values, xerr=np.abs(error_values), yerr=np.abs(error_values), fmt='none', ecolor='red', alpha=0.9)\n", + "# Add a colorbar to the plot\n", + "cbar = plt.colorbar(scatter, ticks=np.linspace(0, 10, 11))\n", + "scatter.colorbar.mappable.set_clim(0, 10)\n", + "\n", + "cbar.set_label('$R^\\#$')\n", + "contour_lines = plt.contour(X, Y, Z, levels=[1], colors='white', alpha=1, linestyles='solid', linewidths = 2)\n", + "\n", + "for i, (x, y, error) in enumerate(zip(x_values, y_values, error_values)):\n", + " if i % 10 == 0 and error > 1e-3: # Display error for every n-th point\n", + " plt.text(x, y, f'{error*100:.0f}\\%', fontsize=8, ha='left', va='bottom', color='white')\n", + "\n", + "plt.plot(np.linspace(0, 10), np.linspace(0, 10), color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "\n", + "# # manual_labels = {1.0: \"$\\pi^2 a = bc^2$\"} # Add labels for specific contour levels\n", + "\n", + "contour_labels = plt.clabel(contour_lines, inline=True, fontsize=14, colors='white',\n", + " inline_spacing=10, fmt=lambda x: f\"$R =$ {x:.0f}\")\n", + "# # fmt=lambda x: manual_labels.get(x, str(x)))\n", + "\n", + "# Customize the spines\n", + "plt.gca().spines['top'].set_color('none')\n", + "plt.gca().spines['right'].set_color('none')\n", + "plt.gca().spines['bottom'].set_color('none')\n", + "plt.gca().spines['left'].set_color('none')\n", + "plt.gca().xaxis.set_ticks_position('bottom')\n", + "plt.gca().yaxis.set_ticks_position('left')\n", + "\n", + "plt.xlim(0, 10) # Replace with your desired limits\n", + "# plt.ylim(0, 10) # Replace with your desired limits\n", + "\n", + "# Set custom ticks\n", + "plt.xticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "plt.yticks(np.linspace(0, 10, 3)) # Replace with your desired tick positions\n", + "\n", + "# plt.legend()\n", + "# Customize the plot\n", + "plt.xlabel('$\\pi^2a$')\n", + "plt.ylabel('$bc^2$')\n", + "plt.title('Minimal Eigenvalue in the Ball and target $|R^\\#-R^*|/R^*$')\n", + "# plt.show()\n", + "plt.tight_layout()\n", + "plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram_R_ball.pdf', dpi=300)\n", + "plt.savefig('../../test/output/rayleigh-benchmark-parametric/phase_diagram_R_ball.png', dpi=300)" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_91885/930303367.py:10: RuntimeWarning: divide by zero encountered in divide\n", + " return (np.pi**2 * a / (bcsq))**(1/3)\n", + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_91885/930303367.py:10: RuntimeWarning: invalid value encountered in divide\n", + " return (np.pi**2 * a / (bcsq))**(1/3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAHbCAYAAADmob+6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1zTd/7A8dc3jATCiCASF6gouMWquK0djg7aumqXtXe1u9fd2rvr+F17nddx7amtbe+qva6r2mUHjrYWnLiAai0oKqhAQCSBBBJI8v39EYlQ2QlJgM/zHjyOfPNNvu8iJO+8P5/P+yPJsiwjCIIgCIIguIXC2wEIgiAIgiB0JiK5EgRBEARBcCORXAmCIAiCILiRSK4EQRAEQRDcSCRXgiAIgiAIbiSSK0EQBEEQBDcSyZUgCIIgCIIbieRKEARBEATBjfy9HYAgdDVFRUWkpKTw+eefo9VqmTVrlvN4RUUFU6dOZfLkyQDk5uayatUqjEYjr7/+ujfDBhqPvaKiAgCtVsvs2bO9GaIgCILXSaJDuyB4x5NPPolWq+Wee+6pd/z2229n1qxZzJs3D4CMjAxWrFjBO++8440wG9RY7MuXL6eiooLHH3/ceWzVqlUUFRXVOyYIgtCZiWFBQfAxs2bNYvXq1c7boaGhXoymde655x5MJhMpKSnOY4mJiUydOtWLUQmCIHiWSK4Ewceo1WoAjEajlyNpm8mTJ9dLDhMTE53DnIIgCF2BmHMlCD4mNzeXuLg4QkJCzjteVFTknJt1yy23OO8zGo1s2LABrVZLRkYGs2fPJi4uznl/SkoKWq0Wk8lEUVERarXaOTdq3bp1aLVaioqK0Gq1LidCU6ZMYcWKFeTm5gKOYUGdTldvWLO5eI1GI6tXryYuLo7c3Fy0Wi1xcXGkpKQwe/ZsVq9eTXR0NLNnzyYjIwOAW265pcnnzcjIcCZ99957r/PnmJubyz333ENKSgqhoaGkpaWxYMGCevEIgiC0hqhcCYKPMBqNrFu3jiNHjvDss8/Wu6+iooKKigomT57MvHnz2L59uzN5AVi7di2TJ09m8uTJ3HPPPbz00kvOyte2bduAcxWkusnTiy++6Eyo5s2bR0pKSr3nbYvapPDw4cPExcXVSwJbEi/AsmXLSExMZPbs2SxevJgNGzaQmJjI448/TmJiIvPnz0en0wHUG3Js6nkTExNZvHgxJpPJ+bOcPXs2mZmZrFq1itmzZzN58mSmTp3KsmXLXPoZCILQtYnkShC86MiRI6SkpJCSksLWrVtJTEzk9ddfP69qZTKZSExMdN6Ojo6mqKjIebuoqMhZwam9PzMz03l727ZtziRDq9UyaNAgioqK2L59e71ka/LkyfXmS7WX5uLdvn27s3IUEhLirNjVUqvV5ObmkpiYWC+Ba+55Q0NDKSoqOu9nWVdcXFy9awmCILSWGBYUBC8aOHBgi1oXaLXaerfVarWz/QHgXIlnNBrR6XQYjUbn/bUJ0w033EBcXBxTpkxxVqnUanW9ZOT3SUxb1E3iGtNUvOBIcEwmU73H/P75Gnr+5p63ocep1eomYxUEQWgtkVwJQieQm5vLmjVrSExMZMqUKedVY5599llyc3PJyMhgw4YNzuNarbZeFafu92115MgRwJE4tjXeWbNmsWbNGu699142bNjA3Xfffd5z1E78b83zCoIgeIIYFhSEDs5oNPLEE0+wYMECZs+eTUhIiLPqU9v0ExzVoHnz5vHaa6+xdevWRoe/XF2lmJKSwuLFi88b2mxpvLXuvfdeMjMznXOjmtPS5xUEQWhvIrkShA6o7pCZTqfDZDKdt9oOHJWc3/edAsc8o8TERAYOHOic8F5r69atbY5r3bp1mEwmZwPUhjQXb+3/h4SEMHny5BYP2bXkeRvy++FHQRAEV4kO7YLgYUVFRWzbto21a9cSGhrKrFmzmDVrVoOVntphru3bt7N48WLmzZvHunXrWLt2LVqtlvnz5zN58mRWrVoFnBvW02q1rFq1iqlTpzrnHNU2Iy0qKqp3vVWrVqHVap33N9WKoantb0wmE1qttl5i1VD8tddsLN7Jkyezbds2XnrpJdRqNaGhoajVambNmuVsvVC7qrL2v782AWvqebVabaM/y4EDBzJv3jxCQ0Od58ydO5f58+c3WoETBEFojEiuBEHwKUajkWXLlnHvvfcSEhLinJy+atWqFg8RCoIgeJOY0C4Igk/ZsGGDc84UOFoxhISEcMstt3ikTYQgCK4zm82kpaWhVCqZNm1am54jLy+PvLw8NBoNZrMZgKSkJHeG2W5EciUIgk+Ji4tj27Zt561czMjIcMtqRkEQ2k9qaioGg4Ho6Gjy8vKIjY1t0/Pk5OSQnZ1NcnKy81heXh5r1qxhwYIF7gq33YjkShAEn1KbQNVuywO4bWseQRDaV90qVXZ2dpuew2w2s3HjRpYsWVLveGxsLKmpqWRlZTFy5EiX4mxvIrkSBMHnJCYmiiqVIHRROTk5hIeHo1KpzrsvISGBzMxMn0+uRCsGQRAEQRB8RnZ2doOJFYBGo6G4uNg5B8tXieRKEARBEASfodPp0Gg0Dd4XHh4OgMFg8GBErSeSK0EQBEEQfIbFYkGpVDZ5jq8nV2LOVSu98cYb2Gw2JEkiODjY2+EIgiAIPqqyshJZlvHz8+P+++9vl2t8+OGHbt1loLq6GqvV2qL3tzFjxjB27Fi3XbslapMuXx8WFMlVK9lsNmRZRpZll/dgEwRBEDo/m83Wbs9tMpna5b2oJc9ZXV3t9ut2FiK5aiVJkpBlGUmSUKvV3g5HEARB8FEmk8n5ftHeJMmOWlXp0nOYzMHIsqLF72+BgYEuXa8tLBYLQKMT3n2FSK5aKTg4GKPRiFqt5o477vB2OIIgCIKPWrlyJUaj0SNTSIJVldwyZ7VLz/H+F4sxVYWI9zc3EBPaBUEQBEHwGeHh4Y1OWK+da1W7atBXicqVIAiCIHQCdmRvh+AW0dHRjU5Yr026oqOjPRlSq4nKlSAIgiB0AnYX/+crYmNjG61c6fV6YmJiPBxR64nkShAEQRAEjzObzeTl5Z13PD4+HrPZjF6vP+++nJwcRo0a5YHoXCOSK0EQBEHo8GRssmtfuHlY0WKxNNmPav369axdu5asrKx6x1UqFTNnziQtLa3e8do9B+Pj490aZ3sQc64EQRAEoYOTcX3OlTtSq/T0dHQ6HXq9HoPBgMFgYM2aNahUKhISEuolRrGxseh0ugbnT8XHx6NUKklNTUWj0TiTtAULFrghyvYnkitBEARBENwiKSmpVec2dX5sbCyxsbHuCMvjRHIlCIIgdHw1NVBdDcHB4IGmnb7I1klWC3YGYs6VIAiC0DFZLPDBB8gTxkFgIISEIEeEw/33Q3a2t6PzODuyS1+C+4jkShAEQeh4SkqQp06CxYupCPyVvBe6ceyfEeiuA+uHbyEPHwYffODtKIUuSgwLCu1u27ZtVFRUkJuby+TJk0lMTPR2SIDvxiUIQjNqapCTL8d27ABHvu5B5Sil864yoPAhmb5PlhF5yy1IkZFwxRXei9VDZDi74s+15xDcQ1SuhHaVm5sLwOzZs1m8eDEvvfSSlyNy8NW4BEFogS++QNq1h9x3NPUSq1qyUiL/xW5UTFYh/2UpuJh0dBR2F78E9xHJldBiubm5PPnkkzz44IMtfkxFRQUZGRkAhISEEBoa6kxsvMlX4xIEoXnyW8swjg/GNOb8xMpJIaG7IwQp6yDs2OG54LzIhuzSl+A+YlhQaLG4uDji4uJa9ZjExMR6w20VFRWtfo724KtxCYLQAjt2oX8suNnTKqYosQf7o9ixAyZN8kBgguAgKldCq2RmZrZ5btLy5cu599573RuQG/hqXIIgNECWocaKXdWCdgsKCVkpOdo0dAE22bUvwX1E5Upoldzc3DYlV9u2bSMxMZHJkye7PygX+GpcgiA0QpKQY3oRfKCs2VMD8634ldVAB9jo11WODu2uP4fgHiK58qSxY6GoyNtROGi1sGdPqx6SkZFBXFwc27ZtA+Dw4cPccsst9c5Zt24dWq0WtVqNyWRi8uTJZGRkoFarSUxMJDc3F7VajVarddd/SYNxrlixgoqKCucxk8mEWq0mNDSUd955x3leY3EZjUbWrl3LoEGDAEhJSWHp0qWEhIS0W9yCILSM4pYlRLz0LKf+bMcW3vgATPePjciaUKRrrvFccIJAB0iuzGYzaWlpKJVKpk2b1uh5eXl55OXl1duDqDVt+D2iqAhOnfJ2FG1WOwG8tspz+PBhUlJSmD17NkajkSeffJKlS5ei1WrJyMhg7dq1xMXF1VuJZzKZ+Prrr9stRqPRSEZGBu+88w4ZGRlotVq0Wq0zzlpFRUWNxlX73/Lss88SEhJCbm4umZmZIrESBF9x221I/3iJ2IfLOLYiAjnw/CHC0K1mov9tQnrwUUfX9i7ARtfsTO+LfDa5Sk1NxWAwEB0dTV5eXpP7C+Xk5JCdnU1ycrLzWF5eHmvWrPGtTR7bsVrTam2IJTMzk8WLF9d5CkcSNXv2bFavXs2UKVOclZ+BAwc6E61PPvmkxddYvnx5i86Li4urlyzV0ul0zmpa7RBmUVERoaGh9c5rKq7a/5baZEpMdhcEH9OrF9Jnawmfcw0Jc0+juy0Y/exgZKWEMreGqA+NRP23Ei66BJ55xtvReoxdjOv5DJ9NrupWqbKb2MbAbDazceNGlixZUu94bGwsqampZGVlMXLkyHaLs1VaOQzna34/3yo3NxetVovRaGTDhg3O4TZwtDdoS6XnnnvucSnGuklQ7bBgbZwt9fv/ltzcXEaNGuVSXIIguNnllyP9tIWgJ/5M//tSkaUzyAEKFNV25O7dkB7/KzzxhGNbHEHwMJ9NrloqJyeH8PBwVCrVefclJCSQmZnpO8lVB9ZQglJbyTpy5Ei7z6NqrdzcXGe1qqioqMWx1fa6qnt+RkYG8+bNc3+QgiC4ZtIkpB9/hl9/Rdq2Dcligd69kS6/HJRN9MDqhGRcHxYUhS/36fDJVXZ2doOJFYBGo6G4uBiz2dzoOULLRUdHO78vKiqioqLCOWG9oeTFaDS2unrl6rBgrbpzrCoqKigqKmrR0F5DQ4CZmZksXbqUjIwMsUWOIPiioUMdX12cmHPlOzp8cqXT6UhISGjwvvDwcAAMBoNIrlxUN7ECWLVqFUuXLgUcDTl/v31MUVGRc8++1nB1WLDW1q1b6z3X4cOHWxTLwIEDMZlMztspKSmo1WpCQkIo8pWVnoIgCIJP6/DJlcViQdlM+bd2YrzQdiEhIUyePJmUlBTAsSdf3SrO0qVLWbduHXFxcZhMJrRardd6R2VkZDBlyhTn7cTERGf7iOaEhIQwd+5cZ0uJ2jYNKSkpzrYMgiAILeLhPQ3tsqhc+YoOn1w1pTbpqm3N0JQ9e/awd+/eZs+rW9Xoapoahvv9djLe9PtYWhvb7/873VVNa095+jyi1FEEB3SNJeeC4OtOHdiBTVcEIaHNn+wmYljQd3Tq5Ko1qqurMRqNLT6/+MxpbrjEMRR2vMd+suJ2ExgQSD+S0TCwvcJ0WSkHOMJaFCHh9Os1lW6ahodUhY4l69AK5OoTzBsey9VDYgjwEztbCYK3GLYWctHdB/G7/wmPXVNGwubijnaySM7cplMnVxaLBaBF860CAwNbNPnaZDIhyzI1ftXU/vhMSj2mgKOYgD5c7ErI7c5EIZUUgrGQGutob4cjuIGhPBdDxVEANh4uYM7QxnvCCYLQvso+Psw1/5eHumtsZyg0olMnV60xduxYxo4d2+x5K1euPK/CZZdszu8l/NwemztVoXN+H6SK8mIkgrvkF2x2fr9wZD/8FOLTpyB4mmy3Y3zxF65/t8RZP6rx92wFWcy58h0dPrkKDw/HYDA0eF/tXKvaVYPtRZbObZcpuViWbW+VdZIrlaq7FyMR3KG84jj68sMAaEOCmN7fd3qNCUJXYa+2wp92s3DjuTm526bG4h/dE4sH5+mKOVe+w7czgRaIjo5udMJ6bdLV3isFO1blqhgAf381Af5i8nNHl1+wyfn9tSP74afo8H/SgtChVJeZ0czfxpV1EqstN09j0pajSJJIdrqqDv9KHBsb22jlSq/XExMT0+4x1K9c+W5yZcWMBT0AwWJIsMOrMOZTZnBsDdVDreKSuJ5ejkgQupbKXAPxyduZ8otjglW1H6Q9cxvTV/+M5OEPOjJgkxUufYkO7e7T4ZOr+Ph4zGYzer3+vPtycnI8siecXdExKldVlDi/DxJDgh3e76tW/qJqJQgeY9hWyOS5uxl6yvHhWq+S+PXD15n65DvNPLL92FG49CW4T4f4aVoslkaH/lQqFTNnziQtLa3e8do9B+Pj49s9PnudypXCh3+kVfXmW4nKVUdmNJ3ijP4QAFFqJZfG9fJyRILQdej/l0vyHw/Ss9xxOy/SnzM/fkPidQ94NS7Bd/jshPb09HR0Oh16vR6DwYDBYGDNmjWoVCoSEhLqJU3x8fEolUpSU1PRaDTORGzBggUeibWjDAvWncwuhgU7trpVq/nD+4m+VoLgIeUvZbJwZQl+Z8fQfokLoefmdLr3G+LdwBAT2n2JzyZXSUlJrTo/NjaW2Fjv9PfpKBPaK0Ubhk7BVFlIadkBACKCApk5SFStBKG92WrscH86131/rhXP9kl9uWBDFqoQjfcCqyVL2GQXP2SJVg5uIz7uukFHacUg2jB0DnX7Ws0dFkugn+8m9ILQGVTrzYQv2EpyncRqyw2TmJB61DcSK8Hn+GzlqiPpKJWr2gntykANfooAL0cjtIWpqojTZ7IACFcFcFl8Hy9HJAidW+XxcoYs2sOwk44P0TUK2PnELUz/2/tejqw+GbC7OCwoVgu6j0iu3ECuN6HdN5OrGkxYcfRhUSkjvRyN0FYnCn6g9iVw3rBYVAG++fsmCJ2BYWcR0+48QO+z3X4MKsh952WmLnrUu4E1wtW9BQX3EcmVG9g7wIT2+m0YxHyrjqiyqpiS0gwAwpQBXJ4gqlaC0F70a4+S/NejhFY7bp+I8Mfy1ToumHKVdwNrgstzrgS3EcmVG8j1hgV985e7tjM7QJBKVK46orpVqznDYggKEH++gtAeyl/5hYUrdM4VgQf6q4nevJO+A4Z7NzChwxCvzm5gV/h+5apS9Ljq0KrMpRSX7gcgVBnAlYP7ejkiQeh8bDV25Id2c903Fc5jO8b3ZtSGDILDfXsRkGPOlWsf7sWcK/cRyZUbdIQJ7fWGBcWcqw7nZOGPgCOJv3pIX4JF1UoQ3KrGUE23W3YyLaPaeeynheO58KOtKPw6xt+bTbRS8Bm+OYbVwXSEJqJ1hwVFG4aOxWozO6tWwQF+JA8RVStBcKeqvAoGJG91JlZWBaT+9SYu+nRnh0msBN8ifmvcwN6B5lwFBoaLNgwdjL+fileuGM63v52il1pNSKD49xMEdylPL2bKHVn00Z+9rYTDbz/PtFv+7NW4Wk9yw2pBUflyF5FcuUFt5UpCgeSDv5w1mKg524YhSCmqVh1RpFrJQ5NGeDsMQehUyj4/RvJfcgmzOG6f7OZH1RdrGHPhHO8G1kZ2sVrQZ4jkyg1qK1cdYUhQtGHwTcYjJ1H16o5/sOq8+5YMWOeFiAShczP88wAL/1WE/9lZHb/GBhO5aRt9BiV6NS6hcxBprhvYnZUr30yuKuslV6Jy5Wtkmx3dj3upKXOsUJLt9vPO6a5UezosQeiU7DY71fenc/0b5xKrneN6Erv/GNEdOLGScTQRdeVLrBZ0H1G5coO6w4K+qEokVz7NbrVRfdpA+W95BPWOwlZlofpMBae+SuOSxEJ0/t3oPkgkV4LgqpqKasL+uIuL9licx36eO4Ypn27HLyDQi5G5h1gt6Dt8MxvoYOwK3x4WDCScoKC+BPirxUpBHyPLMgVfp3F6+wHCh/UHoOTnDIp/2kegJoRNHxbylysy+PD1XOf5giC0XtWJCvolb3UmVjYJUh+7jgvX7ekUiZXgW0Tlyg18fc5Vb6bh3y+ByNBgb4ci/I656Aynvkyj2+hBqLSR1FRUEhCmpuflE8/OtbqAU/ssrHrpCKOnRDJsnMbbIQtCh1Oxt5iJt2URU3b2diD8tvxvTFvylHcDczNXm4gK7iOSKzeoHRb01U2bBd/Qs7CUmT/tJeq0gZoAf34Z2p9NQ2IZcPtVSH4KZLsd4+GTBHQLBcBabaeHOoTuE9XMWRLDgfQykVwJQiuVfXWMKx7PRWN23C7Q+FGx9mPGXXKtdwNzMxnJ5b0FZR9c7d5RieTKDXx9QrvgXeEGE4+98RmTd/2KUaXkeHR3gizVzFu/jUVhaj774xX8Lyaa0h0HsRorCY2P4db+a5EkBdLZ17oevYOIjD5/JaEgCI0zvHmQa98oJODsxPVDfYPotnkrCfEXeDewdmIXyZHPEMmVG5wbFvSdkmy1sRzJzw9JUqAQ8wm8JrSikjcfW06Y3sTSRfNZP24UZqXj36P/0TzKVnzA5//8jJDbr2LNNdOwlBrwD1Yhy1CZLxOktaEO8+fQXj3Ji0VndkFoCbvNTs2je7n+C4Pz2K4Lohm2KYOQCK0XIxO6CpFcuYHsI3OuTCVF5Hz3MYa8w/irglGGRxAQpMbWM4CQ03FEXD4Byc8PWZaRJPEJxxPuefdrwsuMzH/sbo5qe9S7L+tUEWeMJl4bPZwX3vma9AsSyIuJZsmAdVgq7XzwyjEK8yq5828J9B2oxj/Ad5J3QfBVNcZqQm/dxcXp51YEbrk6kalrdnX6ieuuDgu6W15eHnl5eWg0Gsxmx7hsUlJSm54nJycHpVKJxWJBqVQybdo0d4frViK5cgNfGBasNpZTevgXEq64EUmhoPJ0EWbDGcz6Uk4bcij+bwoln24m7varibow0WtxdiXhBhOX/JzBa8kzz0usAMo3/Ey3BVfy7fDBXJuTy9Xf7eCN264CoHe3MJ58ZxS5v1bQs28QwaHiT1UQmmMuMNL/pt2MPub4wGuTYOuD85j+6lovR9b+avtcufoc7pKTk0N2djbJycnOY3l5eaxZs4YFCxa0+HnS09PJy8ur95j09HTWr19f77l9jXjFdpGMjKzw/oR2W7WFbv0SCO4eDUBQxLlO7CFDdESGBlN9ppyCb7cTUlhKUM9Ib4XaZUzZeQB/q401k8eed58pPQNbmYGwS6ZgrTCyIqYPy37aR+XLZ98UbDJ+fhJxQ0M9HbYgdEgVGacZvySTfqWOFMEYCIfefIoL7/iblyPresxmMxs3bmTJkiX1jsfGxpKamkpWVhYjR45s9nl0Oh1paWnceuut9Y4nJSWxbNkycnJyiI+Pd2vs7uJbNcQOJMDmKC/XrhQE71auLEYDkp/j+nZrDXZrDbYax5e9xoq9xkpgRBjhI+Ia3GJFcD+NwUR5cBBnQkPqHbeWlmH47gdCL5oIgF9oCP4xvfmgopIzhRa6K9X4+TmGbUVfK0Fonv67PGZen+FMrArDFJz65hPGdbHEyi5LLn25S05ODuHh4ahU57/XJCQkkJmZ2aLnSU9Pp0ePHmg0GpeexxtEctVG/jYlcG4yO3g3uZJtNooP7KbaWI7CPwCFfwB+AY4vRYA/igBHkVJSSPgFK70WZ1dSpQpEbbEQWGN1HpPtdko//JyawmJCpk1wHhsepMLfX2LDB4Xs31qKufLsPD4xN04QmqRf8Svz7ztMt7OtFrL7qGDnThJmXOfdwDxOcnn7G9y02jA7O7vBxApAo9FQXFzsnIPVlNr5Wg2Jjo4mPz/flTDblRgWdFH9ypX3ctVu/ROoOlPM7refBSSCIqII7q5FHdWT6uogAiLDqCooxVx4mvDhA7wWZ1eyZ3Q8gVYbs/f9wtfjRwMgKRRE3XEjlfsOUHOyEIU6GL/gIObszsA2RUNqQCAfvJLLxFk9uHReTyJ6iERYEBoi2+2YH9/HDWv0zmO7E6MYvCmD0O69vBeYgE6nIyEhocH7wsPDATAYDI0mYLUsFkuj99U+VqfTER0d3cZI249Irtrg8OHD1FhkjFUaAkLPvfl5e7VgrzFTiRo6hrLcXyk7nk1lqQ798Rxq0qvQ+fvRK3kyfeZNR1KIgqUn5PftwZ5RA7kn5Sc2JQ6jShmIbLejUKkImeSYhyXLMlfszSLhVBGbnhnCosk9+eI/+Xz65lGytp/h7//tnP14BMEV1spqgpekc8WOc9WPn68cweR16fgHdt1pD3YfWS1Yu6KvKQaDodmkqLnnaOnzeINIrtrgnXfecXwjg7+/0rHEYrL3JrTLsoxss6LwDyAgKJgew8fSfchoFH5+6IboAMTWN16yYkky/3p0BR+88R4P37KQ/B6RzlYYfjYbc3fu4+8ff8Gx2ZFUT+9JgELBtXf149q7+lF8qvmyuSB0NVWFJvotSmdMrmPo3A6kPnANF766rkt/cHSsFnR9WE8CTCYTK1eubPbcMWPGMHbs+Qt2mlKbMLVkWDA6OrrR8/R6fauu62kiuWqDf/zjH1RXyfzykw29Qsf3vA7bQJrsneTKZjFTdvQQUUMvwG6zofDzw26t4eTOzRh+KSUsqhtV44YQ1DMS2W7v0i9AnnYkrjePPHcbzz2zii1Pvkzq0HgO9e1JkKWa2RkH0ZYZOJIcxc7nBhChUCDLMnabjJ+/gh69u+4ncEFoiDHrNONuzaT/acfEdVMAHHj9z0y/53kvR9a5yLKM0Whs9rzq6up2jSMpKYm1axtuo6HTOQoHLUnSvEEkVy7yD/SHJGCv94YFbdUWzhw9hDI8grDe/agoPEHJof1UlhRSSSkVpVnkf7yJuNuvosfFY7wSY1d2cEg/Fr7/Fy5OzWD25j0kZ/xCdYA/6ROG8OXlE5k+YyfdlWrAMYFdIXZREoTz6L/PZ/bDOURUOW7rQhWc+Ww142ff5N3AfIXs+rCg4uziZEmSUKvVzZ4fGNj6pqy186iam28FjtYNI0eOJDU1tV7T0JycHGJjY8nJyWnR83iDSK5cZK8zod1bw4L+QcEYi05iKi4grHc/qspKCNH2YcDFV6E72+OqIucEuk3paBIHERgR5pU4uzJzoD/fz0ziu0vH1qscLhmw7rxzxQpBQahPv/IQ8/9xisCzi7MP91ISvOEnhgyf6N3AfIyrw4K1r0xqtZo77rjD9YDcYMaMGWRlZZGVleU8FhMTQ3FxMdCyeVneIJIrF8mSHY4CZu9VrspPHaf85DEGXHw1AH4BgYT1cawIlK2OHleh8X2pzC9CERjglRi7Otlmx3LagKpHN2SbHcnvXIIVEeCYD1eYV8mB3XqmJ2sJUIqhW0GQ7XbMf93PDZ+WOY/tGRFJ/A8ZhEX18WJkvslXJrSHh4djMBgavK92GK921WBLNNRwtLYNgy9OZgeRXLXJCy+8QGVlJVVVZkCGMUCy95IrQ/4RAtWhKMM0ANRUmbBWmQgICkbyP9fjymauRqHq3Htr+aKyfdlU5hdT8HUa9hor3aeMImL8UP4wfjegRKGQkGUZq1Xmq3/nk3Rxd8KV4t9J6NpslVaUt+/kim3n5tSkzh7CpC/34q8M8mJkQnOamohem3S5mhTpdDp69OghhgU7k4svvpgAvyAKfwskIEbJxguWA97rcxU15ALC+8ZhLC7AVFKIbLNitzkaV9acKef0L7lEjh+Kraq6XsVEaH/2GitmXRk9LrqA3tdMpWD9Vgq+2U7pzgN8NBwuW9CX7rPUSJKEtk8Qj705nPAIkVgJXZtFV0mfRbsYd/jcisC0e65k2ptfiQU5jZCRXN64WUZySxvR2NhY0tPTG7xPr9cTExPj8jWys7N9evNm8VvaBuPHj2f4sBFoIwZiV3h/+xt1lJZu/RPoMfQCIuKG0X1wIipNJLohOqpyT3H4zTWcWPMTPS+fIObzeJjxyEk0owYSEO6YHNoreQpjVz7GAy/1pMpo44V7fuGdZ7Kx22UClApiBoU084yC0LlVHDzDyOQdzsSqMgB2v/EYFy5bLxKrZtiRXPpyl/j4eMxmc4PtEnJychg1alS9Y2azmby8vAbPXbZsWYPHVSpVi/Yn9Bbxm+oiuc72N97cuLmWX2AgAUFq/AIc1Y/+F49h4qfPEHPdpfirRSndk2RZpvzgMUzHiwCwW23Yq2sAGDohnFc+TeK1L8ZxPMfEF+/57jYOguAp+k0nuGThPuJKHMvWSkIUHPv8P4y/7yUvRya0hkqlYubMmaSlpdU7Xrvn4O83W16/fj1r166tN2kdHEnX74cPdTodqampzJ8/v32CdxMxLOgiu49s3NwY0dfKeyRJotuYBE5+/jNBfbqjjtECfsiyTLXFjj1AZtCIMP68bASfv5uHudKGKtj3focEwRP0//6NuS+eRHV2K84jWiWqDZsZNnKKdwPrQFwdFnSn+Ph4lEolqampaDQa5xysBQsWnHdubGxsg9vYjBw5ErPZTGpqKhaLBbPZTHh4ODfddJPPzrWqJZIrF/nKxs2NkRQK7FYbkiSJ+VYeJssyQX2jUfboxr67XyVsSD9iF83ikWsy6a4MdZ4XqgmgV/9glEHi30foemS7ncqnMrjhozPOY3uHRTBw8z7CtbFejKzjscu+Ne0jNjaW2Njm/w2TkpJISkpq9L6OSLyau0j20eRKlmVku6OqZjxykr13v0JV4WkvR9W1SJKEwt+PfotmM+btRwkID+HAE+/y+OUZ/PRlITarnfKyan7dq2fUxAgxH07ocqxVVvxv2cGCOolV2qXxjNxzQiRWQocmKldtUHfjZm8PC9buU/d7kiQ5hwPV/XrS99qLCYxoeV8Rwb2C+/Rg8NIbmWn9iH3f6Pn384f54JVcLp3fkwClH/PvEG8kQtdiLq6kz83pJGVbnce23DmbC5d/K6YytIFjb0FXVwsK7iKSqzaou3GzX2AA6PHaxs2SJGGpMOCvVFF5ush53E8Z5Jw87acKJPqS1m2uKbifIsCffgkhjL0gmtufSiD/sJEgtT9RvXx77oAguJvx0BlG37KfQcWOt3OzP+x/6UGmP/SalyPr2HxtWLArE8lVG9TduPlwt3T2lH/utY2bTcUF5KV9j+6X3QAEBIcQoA7BFiyj2t8D/9njCU2IESsFfcCSAeucewgCou2C0CUZfjzFpfcdIsrkuF2ilij68G0mXnO7dwMTBDcSyZWL/AIVMBmvbNxst1op+S2DuBnzGDrvVmqqTFgMZZgNpRRZD2E9Xkjuii/oPmUk/W653KOxCeeUG/O81mBWEHyJflUOc57LJ+jsSGBudCAB329gxOjp3gyrk5Cwu/w6Iypf7iKSKxfZvdjnym6tIaxPf5RhGmS7nYAgNQFBakK0fbAN0RIZenbPum+3U7rrIJHjh3k0PsExJy4370uMphP8yxDJI1OHE6oU+zsKXYtst1P5TCY3rC51Hts/REP/zfvQ9Orvxcg6DxmwuTgsKOZcuY9Irlxk9+LGzTVVJmpMRsDRckG225FlGWQ79uoabOZq/FSBdBs7GNlmb+bZhPZQZsjGaDoBQGmlhZBA8ScndC02ixX/O9NZsKXSeSzt4oGM/2Y/gUFiaNydxJwr3yFe6dvAVzZuVvgHYCopoOTQfroPTkRSKM4Wdf1QBAbgd3aTZkuJnqC+PTwam+CoWuWf2uS8ff2o/qLdgtClWErN9Fy0kwmH6qwIvG0GF76dIlYECp2aSK7aoO7GzWdGniJzwPeA55MrZWg43RNGkfPtJxz430r8lEqUoRqCIqIgIQyzNhIUEjaTmZC43h6NTQB9+WEqTI79smI1aibGiARX6DqMOWUkLt5HfNG5FYF7n7uX6Y/9y8uRdV52H+rQ3tWJ5KoNIiIiqLHIhARpKJXO7Qnn6TlXsiwT1rsfY2//M5ZyPWXHfqPqTDFVZ0ownSjm9LFCIsYOps+Ci1AEiH9qT/p91WrhyP4oRNVK6CL0W05xyZ8OEe2YtUBpsMTJD5Yxed7d3g2sk7OJCek+Q7zjtkHdPleKvX5wITDZ85WrukNMyjAN2lETAChKKCQ+XMxl8CZDRS7lxmMA9AkPZkpsdDOPEITOoey/h5nzbB7BjjZ7HIsKQPHd94wae4l3AxMEDxLJVRvU7XO1r9e3ZOvSvNbnqiFiLoP35Rdsdn6/cER//BTiE6XQucl2O6a/Z3H9+6edDQEyEsKJ2bSbiL6DvBpbVyDLrk9ol8VyQbcRyZWLJKXktT5Xgm8qrziOofwIAD1Dg7iwv6haCZ2bvdqK4u50rv3h3IrArRf2Z9y3GSjVYV6MrGsRc658h0iuXCR7sc9VQ7JYhvWUhFnTj97aad4Op0vKLzg31+raEf3wE5VEoROrPmOmx827mHSwxnlsyy3TufDfP4gqutBldbrkKicnh7y8vHrHpk6dikrVPvu3ebPP1e/ZsFDKL1AOsr1cJFdeUGHMp8yQDUB0iIqL43p6OSJBaD+mw3pGLN7H4EJHH71qP9j9zJ1M/8tbXo6sK5KwuzyhXUxfcJdOlVylpqYSGxvLjBkznMf0ej1r1qxhwYIFbkuw6vW5+tF7fa5+r5Ji5/cqVXcvRtJ11V0heO2I/viLT+5CJ2XYWshFdx9EW+G4fSZY4sT7bzD52j95N7AuzNUO7YL7dJrkSqfTARAbG1vvuEajYebMmWzatInk5GS3XKtun6u8CRkc1e4BvD8sWIXO+X2QKsqLkXRNFcYTnDEcAiBKreQSUbUSOqmyjw9zzf/loT47Eng8KgB5/XpGjZ/l3cAEwUd0muQqLy8PrVbb4H3R0dHO5Msdxo8fT3WVjFxs45i013nc+5Wrc/+NwSK58rgTdVYILhjenwA/UbUSOhfZbsf44i9c/26Jc0Vg1sBQev+wm8iYBK/G1tXJuD6hXSwWdJ9O9eqfmZnZ4HG9Xk94eHi7XLPuxs2+lFyJypVnmSoLKNUfBCAyWMnMQb28HJEguJe92or9rl0srJNYbZsSS/z+fJFY+Qi7LLn0JbhPp0mu4uPjyc/PZ/369ZjN5nr37d69m6SkpHa5rt2HVgvWTa7EnCvPyi/4wfn9/OGxomoldCrVZWY087eRvNHkPLZl0VQm/XwUVYjGe4EJ9djPTmpv65fgPp1mWFCj0TB16lTS0tLIy8sjOTmZ2NhYsrKyiI2NPW8ulqusfhbAH1lhdx7zduWqihIAlIEa/BQBXo2lKzFVFXH6TBYAGlUgMwd5Zh9H/worvT8vJPprHYGl1diC/DgzLYL8G3tTFRPskRiEzq8y18DQxXsZeurcisBdT93K9Kfe83JkguC7Ok1yBZCUlIRGo2H9+vWsXbuW8PBw5s+fj0ajafaxe/bsYe/evc2eZzI5PrnV+FUD/j4zLFiDCSuO2ETVyrNOFPxA7WyFucNiUfm3/+9Bjx9KGPnAQfyqbGxNGkj+2AjCK6q46JNsBrybx9E7Ysl+dCCIzvCCCwzbi5h+1wF6ljtu61USx/79ClNveMi7gQkNEkN7vqNTJVcASqWScePGodPpyM/PZ+3atSQnJxMd3XSX7OrqaoxGY6uvV39Y0Hs/ztqqFUCQUiRXnlJZVUJJaQYAYcoALk9o/6pV5NZSRt+ZRdq4gfzj7lmUdA913vePu2ay8Os93L1yCwDZS8W2I0LblH2Wy9VPHiOk2nE7P9If6/qvGD3xcu8GJjRKdGj3HZ0quUpNTUWr1TJtmqN5ZlZWFps2beLDDz9k/vz5TQ4NBgYGEhLS/GbHJpMJuc4GTHaFb1Suqur1uIr0WhxdjWOFoOP3Yc6wGIIC2vlPyi4z5Kkc9g+P4c9/nYvtd3O7LKoAPrh2IgD3vr2FE9f2prK/GCIUWqf85Syue7sYv7Mvdb/EhdBzczrd+w3xbmCC0EF0muQqK8sx5yU+Pt55bOTIkcTExLB27VrWr1/PkiVLGm0kOnbsWMaOHdvsdVauXFmvwmWXfGPOVd0GoqJy5RlV5hKKS/cBEKoM4MrBfdv9mpHbzxB2zMQ7/5hzXmJV16fXjGPxZztIumkf2X8eSNHMHsiB4lOt0DRbjR35gXSu++7ca9z2iX0YnZJJUFiEFyMTmiPj+oo/WUxqd5tO82qbnp7urFjVpdFouOmmmwDIz893+3Vr9xaUUCB58Rez3rCgmHPlEScKfqS2anXN0BiC27tqBUT9XEpxj1AyhvVp8rzqQH82XTgUu97O6D8dYMqlO1Dnmpp8jNC1VRsshF+7lavqJFZbrp/IhLRjIrHqIMRqQd/RKZIrs9mMUqls9H6VSkVSUhJ6vd7t17Y5kytvrxSs04ZBKYYF25vZcobiUscCCHWgP8keqFoB+FfaMIQFgdT8C6E+LAhjiJLF7y6m1C+YcdfvQ3XK3OzjhK6n8ng5A6/cxrQMxwSrGgWkPnUL0z/ejsKv0wxwCILHdIrkSqVSYbFYmj2vJasGW0tW+Epy5RgWDAwMx88v0KuxdAUnCn5Elh1DwlcP6Ys60DNvQJaIQKKLy/GvsTV7bp+CMvThwRzrH8X9/7gWs92PgW8e9UCUQkdSvkvHhDnpDD/p+H3WqyBr1UtM+9v7Xo5MaC3RRNR3dIrkCiA8PJy8vLxG78/LyyMmJsbt162dc+XNBqI1mKg524ZBzLdqf5ZqPbrTuwEICvDjqiHu/71qTOGV0YSVm5m+I6fJ8zT6SqbvyOHH6Y7O2WXd1Ky76gJ6fq3D31DjiVDdRnXKTJ/PTtHv/Xx6fVmIf3nHit+Xla07yuWLf6GP3nH7RIQfpzd+xZhFj3k1LqENZDckV2L/G7fpNPXe5ORk1qxZw7Rp0+qtCjSbzaSlpZGUlNToZHZX2H1gWFDMt/Ksk4VbkGXHv/uVCX0JVXquYasxIYSS8d24e/UW9oyMRa85fyWgZJd58J3N2BUS380e4Ty+6ZIh3Pb+ViL26Cm+xPe3R1IfNZHw4hF6/FCCJINVqSDAbMcapODUNT3JXjoQa7holttWhld/YeEKHf5n1+Qc6K8mevNO+g4Y7t3ABKET6DTJlUqlYtGiRaSmppKTU/9T/dSpU9slsQJfSa7qtmEQyVV7qq4up7B4JwBKfwVzhnmualXrwMtDmDBvL/955APe/MNFpE0Y5Fw5OCSnkCUfpTFpz1Ge+csVlIcHOR9XHur4G/Cran5I0dtCf60g6cZ9VIX58+OTQ/jtSi01an+CSywMX3eKMavz6LZHz65Px1ATIYbBW8NmtWN/cDfXf1PhPLZjfC9GbcgkOFy8fnRkYmjPd3Sa5KpWQysG21NtnytvNhAVGzZ7jqNqZQXgioS+hKs8/8ZeFRPMznVjGPHwr7z898/RhwZxspeGUKOF2FNnKOoRyhP/dzXbJg2s97g+p8oAsET6djIiVdsZc3sm+l4q1v17DJY61anKKCXpdw7g8Mxorr15NyMe+5V97yV6L9gOpqa8mvA/7GT6vmrnsS0LxjHtEzFxvaOTcT25EqOC7iP+mlwk+1jlSsy5aj/VNRUUluwAQOmnYK4Xqla1qmKCSV8zltBfKxh9dxYxBWVsungwb98xjR3jB2BvoAfWVd9mUdlDSdk4jecDboXojSUEnzKzdsXoeolVXWUD1KQ9Es+svxwk+Hgllf1Eo9TmVOZXEL9oNyPzHeOAVgVsf/xGpj/3oZcjE9xFtFPwHZ1mQru31E5o940GohJBojt7uzlZuAW73TGZ+rKEPnQLarz9h6dUDA3l12cGE1Zh5kTfCLZNGthgYjUq6wSXbTzAiZt6I/v79p99n7UFnBqjoXRQ0zsmZF8WjTncn97rCj0UWcdVvruY8VfvciZW5UrI/PfzTBOJlSC0C1G5ctG5YUHvJFcysrNypQzUoFCICb7tobrGSGHxdgACFArmDWt8KyVPOz0tkqO3xvDAsh/pe6KMz+aNobCXBoAwQxVXpPzCHz/Yjn6shqN39PNqrC2hKjBzckLzHxJsSj/KYoMJzW79nqBdSdmXx7jy8VzCz3arOdnNj8rPP2PM9LneDUxwOzHnyneI5MoFMnZkL1euajBhpRIQKwXbU0FRmrNqNSu+FxHB3q9a1fXbXwdhiQrkyhUHmPP1fk7GRmDzU9DnRBmSLHNqfk8OPRXfIbbAsQcq8De3bNK9v8VOt62lBJypFhPbG2D45wEW/qvIuSLw19hgIjdtI35QolfjEtqHSK58h0iuXOAL+wpW1ZvMLpKr9lBjraRAtxUAf4XE/OH9vBtQQySJY3f0I+/mvvT8VkfYwQoUVpkj1w3g1JyeVPv4JPa6DKPDidtQzE81duwBjSeDYSer6J5jxO4nEfPxKXLv7e/BKH2b3Wan5pE9XP9lufPYznE9GbEhA3W3Hl6MTBC6BpFcuaC2DQN4b7VgvQ2bxUrBdlFQlIbN7hhTuXRgL6LU7dPWwx3sQX6cmt+LU/O9HUnb5d/Yh9gPTzLk60IOzuvd6Hlj3j+OJdSfYxdHEvvxSXLv6gd+4pN7jbGasD/s4qI953at2DJvDFM/2Y5fQMdJsoXWERs3+xbfHyPwYbVb34CvVK5EcuVuVmsVp3RpAPhJEteO6OfdgLqAisEhnB6v4ZK/HWLgRh3I9ReISzaZcSuPkfjJSfbc249jM6MILrSgLK1u5Bm7jqqTRmKTtzkTK5sEqY8tZPraPSKx6gLE9je+Q1SuXGCTvJ9cicpV+yrQbcNmc2x2fHFcT6JDgpp5hOAOJxf2IjJdT/IDWeiGhHLoqp5UdQsk/GQlw9cVEFZoZvc9sWQt6k3frY7+XVJN1+7SU7G3hIm3ZRFT5vg5VATCb8v/xrQlT3k5MkHoekRy5QK5zpwrb60WrK1cSZIClbKbV2LorKw2M6eKfgZAISGqVh5k6q9GkmHn/f3QZpQz7ZXDKGwyNUEKjlzWgw3X96JkRBgAPX4px6pSUB3ZdVfK6tcf5/LHjqBxfA6gQONHxdqPGXfJtd4NTPAoWVSffIZIrlxgrzcs6PkfpYzdWblSKSORJO/12uqMCnTbsNqqALhoQE96hYlGlZ5iGBVGebyaHgeNfLdyJNhl/Krt2JQKkM69gShq7Az7rJCCq7XYVV3z99/wr4Ms+GchAWc/6x3qG4RmUxoJCWO8G5jgcaKJqO8Qc65cUH9Cu+df2C0YsOOYZyJWCrqXzWapV7VaKKpWniVJHF8Sy4DNpxn26SlQSNhUfvUSK8kmc+H/5RB8upq8xX29GKx32G12zA/v5vrXziVWuy6Ipm/GUXqKxEoQvEpUrlxg9/KcKzGZvf0UFu/AanX0D5vWT0vvcLWXI+p6Ts7vSejBci78v8P03qXnlxt6o0sMQ7LJ9NtSysjVJ4nOLCfrH8OoGBLq7XA9ylpZjfoPu7gyvc6KwKsTmbpml5i43oWJSem+QyRXLvD2sKDYsLl92Ow1nDxbtQIx18prJIlDTydgTAil/7t5DFyUUe/u0nEadq8eTemUrrXlk7nASL9Fu7ngqOP1xyZB2oPzmP7qWi9H5iKjET7+GPbtA6sV4uJg8WLo1cvbkXUYYs6V7xDJlQu8PSwokqv2UVS8k5qaCgAmx/YgtlvTe9wJ7UiSOHF9b05c14tuu/Wo86qw+0uUDwvFGN/1/l0qMk8z/tZM+pU6VgQaA+HXN59k+h3PeDkyF8gyPP888ksvgKkShgU73pk+tcCTT8CNNyCteBvUonrcFFl2vXIld+0Ft24lkisXeHtYUCRX7me3WzlZuMV5+7qRouu3T5AkypK6UZbUdVfE6r/LY/Yjh4lwrLGgMEyBYc2HJM283ruBuUKWke+7D2nZMrhTg7wkFnqfXfVZboPPKpBe/BT5aC7Sxh8gSLRCEToGkVy5wO7lJqK1GzYrFIEEBoQ1e35wpZkxGYdRm8wY1UHsTRxIVbDvdhv3hqKSXVTXGAAY37c7AyK61lwewTfp3/qV+a8WEHj2JSe7j4qwjakMHjLOu4G5asMGpGXLsL8YBYs19e8L84MlGuREJdKCdHjxRfjb37wSZkfha8OCeXl55OXlodFoMJsdfUKSkpJa/Tw5OTnk5eXVOzZ16lRUKt99/xLJlQu8uf2NHRtmTgOOlYKS1PgfVbjByK3/3cDMH/YSbDnXxdqkUrLh0jH856ZZlIeJkrvdbuVE4Y/O29ePGuDFaAQBZLsd85/3ccNneuex9FFRDNmcQWj3jj8XSV72JowIhpvDGz9pbBBcF4L8zltIf/0rBIoJ+43xpQntOTk5ZGdnk5yc7DyWl5fHmjVrWLBgQYufJzU1ldjYWGbMmOE8ptfrnc/jqwmWaMXgAtmLw4IWziDjWH8dpGy8DUNkqYG3HvgX03/I5H8x01h48eNcfPkLLLz4cdb2ncKlG/ez/KFlRJwpb/Q5ugrd6d1UVzuqVkl9ujMosvlqoCC0F1ulFeVN25lXJ7H6+YrhXJCe3ykSK8rL4bsU5BvV9VpsNES+MRypqARSUz0UnOAKs9nMxo0b6yVEALGxsZjNZrKyslr0PDqdzvm4ujQaDTNnzmTTpk3uCbgdiOTKBXWHBT09ob3utjcqVSOrpWSZZ//+AYEVVu6YfB+rEmZSFByBTeFHUXAE/0mYxZ2T/4S6zMzTL3zooch9k91u40RB3aqVmGsleE9VoYmeV6dx6Q7HUIod+Pm+q5n2dSb+gb75Sb3VzpxBkmWIbUFn/f5nzykpad+YOjhZdu3LXXJycggPD2+wqpSQkEBmZmaLnicvLw+tVtvgfdHR0c7kyxeJ5MoF9jrb33i6FUNVvT0FG65cDfstj+HZebwybC5FwRENnnNK3Z3Xh81h9MGjJOScaJdYO4Li0r1Yqh171F3QK5L47k0MUwhCO6r4pZQLrtrJ2COOD2+VAbD7X49z4RtfIik60Ut2yNnVnmX2ps8DOGOr/xihARJ2F79wU4f37OzsRofrNBoNxcXFzjlYzWksEdPr9YSH++7rdCf6S/U8u2R1fu/pylXd5ErVyLDgFRvSORUSQXqPhCafa0ePIeiCNVy+Kd2tMXYUsiyqVoJv0G/IZ8bC/fQ/7SgjFIcqOP7Vasbf+4KXI2sHkZHIF4xCWmds/ty1FcjBKpg6tf3jElym0+nQaDQN3lebEBkMhmafJz4+nvz8fNavX39eMrZ79+42TY73FJFcucCu8Gbl6lx5vLHKVc+iM/wW1hdZavqf2abwIzusDz2Lzrg1xo6ipDQTs8WxOGCkthtDe2i8G5DQJRne+Y159+Q4Wy0c7qWkZlsaQy+72buBtRdJQrr7T/CjEdKrGj9PZ0VaZYTrboBG3rAFB1mWXPpyF4vFglKpbPKcliRXGo2GqVOnkpOTw3vvvedcMZiVlUVsbOx5c7F8iVgt6AJv9rmqdLZhCGi0DYPNT0GA3dbgfb/nb7di8+t6ubYs28kv2Oy8LfpaCZ4m2+2Yn9jP9Z+UOY/tGRFJ/Ob9hPXo5HsmLloEH7yPtCgd+fXuMFvt2MyzVpYZ6d7TENANSbRhaJKMG5qInv1/k8nEypUrmz1/zJgxjB07tlXXqE26WjosmJSUhEajYf369axdu5bw8HDmz5/faGXMV4jkygXeGhas24ZBpWy8DcNv8X2Ze2AbKms1Zv/Gly+ra6pIPHOUT2dMb49wfdrpM1lUmR2J6rAeGkZqu26TSsHzrFVWVLfv4oqt5yo3qbMGM/HLvQSogr0YmYcEBiKt/w554QIUt25E7qeCS5TgJ8HeGqS9JuT4OKQfv4M+fbwdbZchyzJGY/PDtdXV1c2e4w5KpZJx48ah0+nIz89n7dq1JCcnEx0d7ZHrt0XXK1W4kbf2FnS0YXBcu7EhQYD1s8cTbLVwRX7Tc6muyttFoN3KN7PGuzVOX+eoWp1bynv9qP5N9gsTBHey6CrRXrOVmXUSqy33XMHU7w52jcSqVlgY0ncpsH07TJ0PO6Ph5wiIngqff4508DeIj/d2lB2Cu1YLSpJESEhIs1+Bbeg5ZrE4NhtvaX+q1NRULBYL06ZNY8GCBcyYMQODwcCHH354XmNRXyIqVy6ou1rQk5WrynorBRvftFYXHcH62eO5a8O3lASFk9pzxHnnXFSQwZKcFL68YiKnu9gKudNlv1BZ5VjKOzgqnMSeDa+oFAR3Mx48wwV/3M/AYsc7WpU/ZPzjEaY/8A8vR+YlkgQTJyJNnOjtSDo0d82bUqvV3HHHHW55LlfU9sOKr5Ncjxw5kpiYGNauXcv69etZsmSJTzYSFcmVC+yKc8OCnpxzVa8Ng7LpPQX/edccQo1VPJv2Xw5ExJDSeyynVWFEmQ1cdnIPQ8tOsOGiC1h++1XtHbZPkWWZE6fOzbW6YdQAUbUSPEK/+SQzH/iN7ibH7ZIQCd3H7zIx+VbvBiZ0eL6y/U14eHijE9Zr51q1pI1Ceno6S5YsOe+4RqPhpptu4r333iM/P79e8uUrRHLlAm9tf1OvDUMTw4IANn8//rb0RjZfOJo532zjkYzPnfftGh3P4/f9ge1JQ5vtkNzZnNH/iqmqEID47mFc0EtUrYT2V/afbOa9cALV2c9ludpAlBt+YPjIKd4NTBDcKDo6utEJ67VJV3Pzpcxmc5MrDlUqFUlJSej1+jbH2Z5EcuWC+k1EvTMsGKxqunIFICsUbJ00nK2ThhNUZSG40oxJrcKsanqpbGcly3K9FYI3Doyh36oT9NhYgl+5DVuYHyUzozg5ryfWsBZ0jxaEZsh2O5VPZ3Djh+fanewb2o24H/YTrvXd5eRCByK7YW9BN3Vpj42NJT294bm+er2emJiYZp9DpVI552c1xVdXDYoJ7S7w9rCgQhFIQEBo6x4bpKQ0MrzLJlYAZYZsjCZHN/p4hYqlc34l4bkjZFX34Lteg8msiSb+uSNcNH4rvdcVeDlaoaOzVlnx+8MOFtRJrNIujWfE3pMisRLcyle2v4mPj8dsNjdYVcrJyWHUqFH1jpnN5gYnp4eHhzc5aT0vL69FiZo3iMqVC+pPaPfMj7JuG4YgVeNtGISGOapW51YIvvCJmW/HJvLSdbMo6XauX1h3fQWP/m8jCx7Zh6yQKJjT0xvhCh2cuaSK3ot2MT773Aexn26fxfS3vutcW9kIQh0qlYqZM2eSlpZGcnKy83jtnoO/nyO1fv168vPzmTFjBiNHjnQeT05OZs2aNUybNq1ew1Cz2UxaWhpJSUk+OZkdRHLlkvp9rjzzozRzGhlHUhfUgiFBoT59+REqjI5PQsNOg6LbcB66c/55c85Oa0JZevtc/G02Ln/6V3SzemAL9myjWKFjMx4qY/Qf9jFI5ygJmP1h34sPcNHDr3s5MqGz8pUJ7eCoXimVSlJTU9FoNM45WAsWLDjv3NjYWHQ63XnzsFQqFYsWLSI1NZWcnJx6902dOtVnEysQyZVL6ve58swbb2ULNmwWGuaoWm103v7rFnj91lmNT+aXJF5dMIOrt2XS66siTlzf2zOBCh2e/qdTzPjTIaLOrgg8rZYo/PBtJl1zu3cDEzotGdeTKzeODAK0eIuapKSkJvcJnDZtmjvD8ghRl3aBN7a/qULn/F5UrlrHUHGE8opjAAys9KOfPYYT0U2vEiyI6sauIf2J+rGkyfMEoVbZ6hzm3H4uscqNDqQy7UdGiMRKELoMUblyQd3KlaeGBetXrkRy1Rr5p87NtXooV0VZSMN7Mv7e6fBQBlbo2ykqobOQ7XZMz2Ry4+pS57H9gzX0/2Efml5iz0qh/bm78iS0nahcuUBUrjoOQ8UxDBVHAegVFsyVFjV9S8808yiHvqfPYO0mWjIIjbNZrEhLdnJtncQq7eI4hu07IRIrwWNkWXLpq6tYvXp1u19DJFcu8EYT0cqzyZW/XzAB/l1o/zEX1a1aXTuiHyWXRzMit4DBeYVNPi7+hI7EwycpvMJ3NwgVvMtSaqb7nK1c/lOl89hPSy5hyqYcAoNCvBiZIAgN2bhxI8XFxc2f6AKRXLnA0xPabViwUAZAUJCoWrVUhTEffbljpUl0iIqLBmjRXRqFKVrFkx9+S4DV2uDj/K02nvjwWyq7K9HNFD9v4XymnDKGXrmNiYccv0MWP9j24j1c9O5m0WpB8DzZxa8uwmg0snz5cr744gt0Ol3zD2gDMefKBZ6uXFWJ+VZtUrev1bUj+uOvUCAr4Jd/DmXczRl88OL7vHjdbDLj+jhXDo7MPcnST1NIys5jz6pE5EDxRinUZ/j5FBffe4hoo+N2abDEqQ+WMXne3d4NTOii3DG01zWGBhcvXszcuXMByMzMZNu2bWi1WiZNmuS2a4jkygXnKlcSkgeKgJVivlWrVZhOckZ/CIAotZJL4s41Az0zIYLd/x3N8EcO8cVTb5PbpzuF3cLR6ssZeKKEit5B7P4gkTMTxb6DQn1lHx5mzjN5BNc4bh+LCkDx3feMHHuJdwMTujR3dlnvzGoTK4BRo0YxatQoTCYTn3/+OZIkMWnSpGb3PmyOSK5cUNtE1NPzraBlewoKcKLOXKv5w/sR4Fc/CS4b3420LROJSi0lekMxceUV1AwNYPfMREoujAS/rvFJTmgZ2W7H9FwW1//ntPPjVEZ8GDGb9xDRd5BXYxMEoe3UarUz6friiy9IS0tj9uzZzJw5s03PJ5IrF9RWrjzXQFRUrlrDaDpFqf4gAJHBSmYNaqQJqJ9EyUXdKblINGUVGmevtiLds5trN5ucx7Ze2J9x32agVLesrYcgtKeutOKvPWzcuJGUlBRyc3OJi4tDluU2V7NEcuWC2jlXnq9cSahEd/Zm5Rdsdn4/f3jseVUrQWip6jNmohbvYvKBGuexn265kOn//lFMXBd8gwy4mlx1kWHF7du3O+dXHT16lJSUFDZu3Igsy8yaNYt77rmHuLi4eo/JzMwkMzOzxZUskVy5QD67cbMn5lsBVOHoEq4MDMdP0fa+S4NyT3HNN9u5YP8RlNU1nOkWyqZLRvPdjCQqQjtHewdTZSGlZb8A0C0osPGqlSA0w3TEwIib9zK40PH3Xu0H6c/cwUV/edvLkQmC0BbLly9Hp9ORlpbG0aNHGTBgAHfddRezZs1q9DGjRo0CHEOGc+bMafYaIrlywbkkv/1LsTWYsOIYjlApI9v0HH5WGw//ax1XbkpHpw7nh76jMAaq6FdezG3vf88f/ruRZ5feyLYJw9wZulecKPjB+f28YbEo/cWmy0LrGbYWctHdB9FWOG6XBUnk/ed1plx3v3cDA6ipga+/hm3bwGKBvn3hppugTx9vRyZ4iZjQ3jJGo5HVq1czc+bMBqtUTQkOblkBQiRXrpBqf5PbP7mqrVpB2zdsfuRfa5n5wz6eH7+Ab+LGYVOcSzi6mStYmr6OZ/++mkf+fhv7Ejvu5NzKqmJKzmQCEKYM4LJ48WYjtF7ZJ0e45unjqM+OBOZ198e2/msSJ1zm3cAAPvgA+c+PIRXokPsHQZAC8izwxF9h/jykt98BjcbbUQqeJpKrFomOjub1119HrVa3+DHbt29n7dq1zJ49u0Xni8kCLpDP/iZ7Ygph3eSqLZWrwTn5XLFpNy8lzeOrQRPqJVYAZapQ/jplEZk9+vOnt7/q0B+BHFUrR/xzhsWiChBVK6HlZLudihcyuf4v5xKrzIGhhOw9wABfSKzeeAMWL4akSuybY5C390H+oRdyRizy3yNhw5fI06eCweDtSAXBJ02ePLlViRU4ErKBAwc6hwebI5Irl9QmIO3/Y3S1gejV3+6gMETDtwPGNXqOTeHH+8MuJS6/iFEHjrYpTm+rMp+muHQ/AKHKAK4cLKpWQsvZq63Y797FwndKnH/V2ybHkLA/n8iYBK/GBsCvvyI/+CDynRrkFdEwTHnuvhAF3KJB/rInHM9GfvRR78UpeIXYW7BlFi9e3OrO7HFxcdx9990tXjEokisXyFJt5coTw4J1k6vWDwuO3XeYzTGJ2JtZ2bRHO5AzQSGMyTjc6mv4ghMFPwKOicfXDOlLcIAY+RZapqbMjGb+NpI3nGu1sOXGyUz8ORdViMZ7gdW1YgV0D0T+c3fnbgLnSVAi3xEGH/0X9HqPhid4mdj+pkWeeuop7rjjDiorK5s/uY1EcuUCT/4uVtYbFmx9x3CVuZqKwOYn4smSgorAIFSWmmbP9TVV5lKKS/cAoA7wJ3lIjJcjEjqKylwDg5K3M+UXx+99jQK2/u1Wpn+4FYWf7yTo8icfwsJgCGzmA92NYVBldkx4FwShnsTERP72t7+1eHJ6W/jOq0aH5MkJ7Y7KVWBAGH5+ymbOPl+ZJoSY8uZ3AQ+qsdDDpOeMJqTV1/C2k4U/IsuOqtXVQ/uiDuyiv96yjCajnKgtp/Ez2ajpFkDh5dFU9u8cbTbczbC9iOl3HaBnueO2XiVx7L1/MOXGh70b2O9ZrUhnDNgH9Gj+3B7+EBoA7bQpreCbutLQnqtaMndq9erVLF68uE3P3ynfffR6PWlpaQCoVCqUSiXTpk1z+3XODQu2bwHQShU1ONaCt3Wl4OaLL+CmT37g9bHXYAwMavS8Wcf3EWiz8uO0xDZdx1vMljJ0px1Vq+AAP64e2jWrVpp9eoY+nY3mQAWVEYFUhQcQUmwm4ZVciqdFcvC5wVT1afzfv6vR/y+Xq546Rki143Z+pD81X33B6MlXejewhvj5IQcGgMHe/LlmO1TZoJWTdoUOrgsN7bli1qxZfPHFF4waNYoBAwY0el5r52XV1emSq5ycHHbt2kVycjKas0uRzWYzqamp7ZBgeeY3ue58q7Z2Zl8/ezyLPtnMI7s/52+TrkeWzk8IexrPsOSXjWydMIziHt3aHK83nCz8CVl2dMy/akgMIYFtb7LaUUXsPMPYWzLQJYSR8tY4cidHgULCz2JjyIZCLlyRw4R5u9m5dhxVfUWCVf5yFgvfLsbv7J/xLwNC0G7eSUx/H+3zJkkw41Kkz39GvkPT+JwrgG+MSDV2uPRSj4Un+AJRuWqJ1atXYzQaSUlJwWg0Eh0dTWhoaL1zKioqOHq07Qu7OlVypdPp2LhxI0uWLEGlUjmPb9q0CZ1O5/bkSvbQsGBl3cnsyrYlV2XdQnnh4et48uWPCLeYeH/4DLKi+oEkobRWM/P4fu7ISqE6NIDX7p3npsg9w1JtoKgkHQCVvx9XDenr5Yg8T1FlY/Q9v3BidDf+t2IctsBz7SdsSj8OXNWHY5OiWLxoOyMfOsiuNWO9GK132WrscH86131vdB7bMaEPiRsyCQpr/XxGT5Luugeu/B55owlmNTJ0X2lHWl6OfOnFSPHxng1QEDqArVu3MnDgQOcWOA0xGo2iclUrNTWVpKSkeokVQGxsbKs2XGwxDw0LutqGodaPFyZSpQrk3pVf8+7GZehCwjEGqNCa9ATVVLMtaSiv3Defsm6hzT+ZDzlZuAVZtgJwRUIfwlWBXo7I83p9oyOwrIbvnhpRL7Gqy9RdyQ8PD2H+A3sJO1hO+bCut9lwjd5CxC27mJpZ7Ty25boJTPswzacmrjfqssuQr7oS6e4U5FdkuCoE/Op8uDtRg3RfCZwA6ZNXvRen4B1iWLBFtFotzzzzTLPnGY3GZs9pTAd4NWkZnU5Hfn4+ycnJ5903cuTIdrmm7KHf5EoX2zDUtWP8UHaOG8zY/Ye5IOsISotjb8EfLkykUNu2bXW8qbqmgqKSnQAo/RTMGdY151r1/LKIYxO7o49peo5NzvQeGKOU9PqyqMslV5XHyxl88x6Gn3DMWbIqYMdfbmb6s6u9HFkrKBRIn36GfPNNKO7+HPlFFcxWQbACDlbDDyaI0CBt/AYSE70dreBpIrlqkccee6xF57V1Mjt0ouQqKyuL8PDw86pW7clTfa6qOFeabOu+gnXJCgW7xySwe4wPNEV00cnCLdjtjuXzs+N70y2o9SspOwNliYVjSc1XNWV/BWUxwShLqps9tzMp36Vj6h2/0Pts03KDEnLfeZGpNy/1bmBtERSE9Nla2L0bli+HH38+u7fgIKS3b4Ubbjg3kf3IEfj0U8eqweBgmDEDLr4Ymul3JwidmVardX6fmZnJ0aNHOXz4MNHR0cTHxzNx4sTzzmutTpNc5eXlER4eDkB6+tn5NyoVer2+waFC9/LMsKAyUIOfX9cb8mpMdU0FhcXbAQhQKJg3vJ/Hrq2w2Oj5jY6o1FL8TDaqIwIovELL6akRoPD8pFKbyg9VRct6kykrrJiDuk5bBv26YyT/JZfQs/nkyW5+mL9cxwXTrvZuYK6QJEhKQkpKavj+U6eQb7sV6fsNyGEB0DsQDDakl19Gjh+A9MZyaOEeaUIHIQOutmLoQpUvnU7H8uXLycx07EOrVqsxmRwNhOPi4nj88cfp0aMFbU8a0WmSK4PBQHR0NOnp6STVecHR6/V8+OGH3HTTTU0mWHv27GHv3r3NXqf2hw91K1ftpwYTNTiu2daVgp3VqaLUelWryGDPVK16fl3EkKezUelr+G2olrLwUHrn6klas5+KfsFkvTEcw0jPDrmdmdyN+I9OEVBppSa48T/r7kcq6JFTwf57Yz0YnfeUv/YL1y7X4X+2e8HBfmp6bN5Bn7gR3g2sPZ06hTxpPNhOY38jGpJDHBs7yzJyuhnpNR3ylVcgfbYG5s71drSCG3XgLWE97qWXXmLWrFksXbq03j6DRUVFbNu2jSeffJLXX3+9zY1GO01yBY5MdOrUqfWOaTQaYmNj2bRpU4PzsWpVV1e3YfJa+68WrHTTZPbOpsZaSaHOUbXyV0jMH+6ZZKHX54UkPnyQny6OZ/UfJnKqz9mWFbLMkF8LuWf5zyRdv5ddn46hfITnEqz8G/owYGUeYz/JY8etcQ2fJMtMefsw5u6BFM1q+yeyjsBus2N7cA/XrS93HtuZ1IuRGzMJDu/cH1Lk224F62nk9T2hV52WJJIE44OQP1Yh3aVDXnQj0oUnIbLjzbUUBFd88cUXPPbYYw0O+2m1WubNm0diYiJr1qxp87yrTjfwXtvbqq7o6GhycnIwm82NPi4wMJCQkJBmv6Smesu0g7rzrdrahqEzOlWUis1uAWDmoN50V7f/XLuAsmqG/+UQG2YP4fknLjuXWAFIEoeG9eKRV+dzvG8Ewx/91aMfI6v6BnH0tlgu+udvJH1wFEVN/UaTgcYaZv/9AMNSCvntiXjkwE73p+9UU1FNyLVbubpOYrVlwTiStud1+sSKw4cdQ4FLNfUTq7r8JOTnu4O1Gt5/36PhCe1M7C3YIrIsNzufKi4u7rzeV63RqSpXtXOuGjuu0+mIjW24wjF27FjGjm2+98/KlSudFS5PdGivrJtcicoVAFZrFQW6rQD4SRILPFS16rOmENkO794xtdEGjuagAN5bMoWXHv2Cbrv1lCV5rhlr9tKBKGwyM14+xMT/HOXgZb2o7BZIt5OVDE0pwL/azi/PD6Hg6rZP0vR1lfkVxC/azcj8cysCty+9genPf+TlyDzk008dc6yuamb7qu7+cLka+eMPkB55xDOxCe1PbH/TIiEhLdvezZViSqdJrlqyUtBgMLj1mp5oIuquHledSYFuGzabowp5ycCe9AjxTLfxHikl7Jg0AIOm6TH4/RfEUKwNRZtS7NHkCoXEoSfiObGgF7EfnmT4T4X4m2xUdwsgb0kMJ67rjbmn51bTelrF7mIm3Z5FX73jdrkSct76O9P+8FevxuVRxcWOyeuqFnzgiwuAdLH3oND11J073ZTy8vLmT2pEp0muoqOj0ev1zZ7jVh5oxXCucqVApfTt7tGeYLWZOVWUCjgW5S3w4ApBf30NxXHNl4llhURJVAjhBqsHojqfMSGEg88O9sq1vUX/5TGueDyXcMdIMac0fpi++B9jp3es3QZcVl0NBqtjSLq5T916OwSLbZA6E6kLDe25Ijo6mo0bNzJz5sxGz1m9ejU9e/Zs8zU6TXKVkJDA+vXrG7yvtmLV2LCh69onuZKRnZWrIGUECkXDnbe7kkLddqy2SgCm99fSK8xzLQVsYf5EnGnBJx5ZJuKMCUtI12rS6S2GNw5w7ZtFzhWBv8YEE7F5K/GDRns3ME/65hvkV19G2pKGBMjpZhjfROJUI8P6KqS513ksRMEDRHLVIpMmTeKll14iJSWFqVOnOjdvNplM6HQ6UlJSiIuLE01EAeLj41EqleTk5BD/u/20srOzGTlyZLv1umqvylU1emw4PoqLIUGw2SycLPoZcFStFo7s79Hrl1wSyeTluaiNZkwhjf8uDTtQQM9T5aRf2siqPcEt7DY7NY/u5fovzg337xqrZfjGTNTdOvdqyHqefRaeegrGq7Evi0Z6qRTptVLkj3vX3xqnrg8NSMUWuOcez8YqtC8x56rFli5dSkpKCh988AEmkwlJkpDPLkJavHgxc11sU9JkclWbwZlMJgYOHHheCW3Dhg1IkkR0dDSjRo1yKRB3SE5OZtOmTcTExDgTqaysLAwGQ5NtGFzXPr/Qog1DfQXF27FaHZWjaf209AlveqsXdztxXW8GvnmMRat38fY9FzZ4jn+NjVv/vY2KfsGcniyGcdtLjbGa0D/u4uLdFuexLXMvYOqnO/AL6EKNdv/3P3jqKeyPRsCDESBJyN38kG4uQLq7CPm5KMfk9Vo1siOxevI08p13Ig0f7r3YBcHLZs+ezezZsykqKkKn0xEdHe1SV/a6Gk2uioqKuOOOO1Cr1YSEhLBhwwbWrVvHs88+6+xaOmvWLLZv387TTz/Nl19+6ZaAXBEbG8uMGTPYtGkTKpUKs9lMeHg4S5Ysaecrt1dyVeT8Piioky8hb4bNVs2pwi2A46ft6aoVQHWUkt/+Moh5z+zH32rnw0VJ6CPOJXh9889wz7ItDP21iN0fjPZKp/auoOqkkbibd5N4zAaATYKtjy5k+kufejkyD5Nl5OefhUtCnIkVABerkVf2RPpTEVKKCS5Tw8BAxxyr9VVIxRZHYvWvf3k3fsH9xLBgq+h0OjIzMykqKuLmm28GHEODR44ccblg1Ghy9dZbb7F06VImTZrkPJaSksKDDz7I3//+d/r3d7y5uX2SuItiY2MbbbfQXtprWLB+G4YuNMzRgKKSndScrVpN7RdNjMazVataeX+IAYXEFS/8whXf/MKecbEYwoPoXaBneFYBVZGB7Hk/kTMTPLhKsAsp31fCxNuyiD3jeBepCITflv0fF972tJcj84Ldu5GyDmL/uNf5k9evCEGe0B8+K0f6vAJ+NEG1AumWJXDPPUgjOnGH+q5MJFcttnr1aj7//HPUajWSJDmTq9qC0hdffMGcOXPa/PyNJlfR0dH1EitwlNCmTJnC8uXLWbBggXMSmOCJ5KrrDgva7TWcPFu1Au9UrerKW9yXgqu19FlbwICfS/HTlVET5U/G68Mouiwau7LzNuj0Jv36PC5/7DCas72AC8MVlK/9mHGXLvRuYN7y22+O/5/YyMT1SD+4qxvyXd3gWyOKJYXw3HOiI7vQ5W3YsIGioiJWrlyJVqtl+/bt9e6Pi4tDq9U2u6KwKY0mV40tQQwJCWHp0qWsXr2aioqKFjfj6szaq3JVu1LQT6EkMKDrrjwrKtlNdY2j38jEvlH069a637mQw0Z6ryskqMCMPVBB2QXhFFylxRbS9vUcNZoAji2J5diSrrFHn7cZlv3KgtcLCDi7IvBQ3yA0G1NJGNx8499Oq7Za1ZJqRe1uAR7eYULwIHd0We8ila+ioiKWLl3a5Dm1Fay2avQjtizLVFZWOsckf2/x4sWYTCa2bt3a5ot3Hu5/wbJjw8xpAFSqSI9vu+Mr7HYrJwt/dN6+blTLq1aBJRbG3LyfaTN3Evm/YgryVJQdlBj2ZDYXTdhK/3fyxE6nPs5us2N+ZDfXv3ousUof3YO+GUfp2ZUTK4Dayehplc2eKqVWIveOhga2BxM6C8mxWtCVr3bs2ehLWjppXadre5PdRj+6z507l9WrV5OZmYlOp+Ojj87fPmLSpEkEBwezYcOGNgfQObj/F9LCGWQc7yZdeU9B3ek9WKr1ACT16c7AyJZV8ALOVJO0cB81Blj66Bx+mDQYa4CjT1h0iYHFn+/khhd2419h5fDDomWCL7JWVqP+4y6u3FVnReBVo5i6Nr1rrQhszOjRyOMuQHo3G3mGuvGqVKkNPq9EeuxhUIgha0FoabGisLCwzddoclyktoFWU63iExMTee6558jMzGxwdn3t8sbOrD1y/SpKnN+rVF1zjoTdbuVEwQ/O29e1Yq7V4BePIJfauOWVP3KiV/2WCLqocF6+YxbFkaE8sOxHii/tjmFUezWYFdrCXGCk36LdXHC0zorAB+Yy/bV1Xo7Mt0hPPA1XXw3PnEZ+svv5K1TLbEiLiyAoFG6/3TtBCh4jOrS3jNFoZPv27efNK69rxYoVDBw4sM3XaNGkE7W68ZVZmZmZZGRk8Pnnn9OzZ0/efvvtevdv27aNuLg4n+iD1X7c/2mw3p6CXbRyVXx6L5bqMgAu6BVJQlTLEqAAfQ09vy5ixcILz0us6vpgzgSu+34PMf89yS8iufIZFZmnSbo1k/6ljncKUwAcfOMJLrzrWS9H5oOuugreeAPp/vthiwX5lhBIVEG1jLTRBJ+YgGCk7zeAm/r3CD5MJFctMnfuXB566CHWrl3L1KlTKSwsRK1WYzKZOHz4MBs3bmTUqFFtnswObujQnpGRweLFi4mOjm5wfLJ2eLEzJ1ftMaG9bgPRrli5kmUbJwrPVa1uTGz5ytQeP5Tgb7HzxczEJs+z+yn4/NJEbvt8G7/8Y6iY7OsDDN/lM+uRHCKqHLeLwhSUffYBSbNu9G5gvuy++yAxEV5/Fekv3yDZHdMJ5PAQpFvuggcfBA+3pxEEX/faa6+xbt06Vq1aBcDGjRuRZRm1Ws3ixYuZNWuWS8/vtu1vZs+e3eh98+fPd2lJo+9z/5ty3WHBIFXXq1wVl2ZgtpwBYHTPCAa3sGoFjsqVWeVPWQt6YZ2K1hBQZUNhsWNXdeG9G2UZVaEFvyoblu6BWMMDPB6C/u1DzH/lFIGOkUCye6sI3bCFIcPGezyWDmfaNKRp06CkBPLzISAAaeBACPbc3puC0NHMmzePefPmebZDe0u1ZDa9Wq3GaDS6eimf1R6Vq9phQYXk3+XaMMiynRMFm523W9vXyqr2J9BiJbjSQmWwsslzI/SV2PylLtubys9kpe//Coj98ATqY45ykSxByfRIji/uy+kL2z+xl+12LH/exw2f6Z3Hdo+KYvDmDEK792r363cqUVGOL6F9WCywbh1s2+b4vndvWLQIXJib405izlXbaLVatyVVtVx+Rxk4cCBffPFFs+d17n5Y7k2uZOxUOdswdEeSutYb/+kzWVSZHZW74dEaRmhb1+389NRIkCQu33Kg6RNlmat/yqR4evcuOSQYeLqaiQt2M/iFHCzDJXLf7U7O/6I48Vw31MUVJN2SweDnD7druwpbpZXARduZWyexSr18GKPT80ViJfiWf/8buW8vuPFG5B9WIe/7FPmNF2DQIOSrrnRUDb3N5VYMQl0vv/xymx/rcuWqdmLYkSNHePTRRxs9z5Uljb7O3ZUrC2XIWIGuNyQoy3byCzY5b7dmhWAtc28Vuku784cvtrNx6lDKQxvuYD0z7VcGHish/enRbY63w7LJjF2yH9VpM799G4158LnWBsYJcPoGNVGrjAz4vzzM0YEcv9X9c3bMhSZibk5n7BHHOKAdSL3vKi58/Qsk0TJA8CWvvgqPPAILQrHfGwvxZ/9equzIXxuRntuEPG0y0tYdogN+B3L06FEqKioavM9kMpGbm9vm53bLnKtnnnmG2267jRtvvJFZs2Yxa9aseu0XKisrKSoqauIZOjr3Jlf1JrMru9YfamnZASqrHEPNg6PCSezZ+Gq/pmT/eRAT5uzhvb/+lycfuIrsAedKvgE1Vq7elMnSdzdw6spoTk9r2zU6sh5bTqPJrCB7TY96iZWTJFHyh1BUh2sYuOIY+Tf1devQacUvpYy7NYMBJY6qWGUAZL26lOl/etFt1xAEt/j1V+RHH4V7uyH/9XcfdoMUsDAMeZwKKTkP+eGHkFat9k6c4HOrBfPy8sjLy0Oj0WA2O/atSkpKavHjdTod6enpTJ06FY0bG+AWFRXx0EMPNdlmClreD6shbkmuQkJCePfdd3nppZdYt26dczPE2h4RmZmZvPbaa+64lE9yd+WqXhuGLrSnoCzbyT91rmp1/cj+bf7lruwXTPqnFzD6tiz+d997ZA3pzaEBWlSWGi7ccxiNvor8Bb04+PfBXXJIMObjk5hGBmJKanpOWvGtoUR9ZEKbUkzB1e6Zk1C24QSzH8om8mxjcV2ogtOf/ocJly92y/MLglutWAHdA5EfbeKD7oBA5LtDkf7xCbzyKnT30oiDDyVXOTk5ZGdnk5yc7DyWl5fHmjVrWLBgQYuew2AwkJOTQ05OTpPn3Xrrra1KvlavXs29997LqFGjmmw19dRTT7X4OX/PbasFQ0JCePbZZ9m2bRspKSnk5uaSkZFBXFwcr776aiff5Nm9Qxj1N2zuOsOCpWUHMVU5ho/jI8MY09u1qp0xIYStP06gxw+n6b2mgD5HDyMHSJTN6U7mjX0wxTW/mrCzCvu1grJrVc2eZ4kLwBzjT+ivFeCG5Er/7m/Mf+kkyrMrAnN6KQn+/geGjZzs8nN3SCYTGAwQFgadel5qxyV/+hFcHwyBzXwIuy4cnj8DX30Ft97qmeB8lNlsZuPGjSxZsqTe8djYWFJTU8nKymLkyJHNPk9RUREjR44kPLzh1eK11bDWVrUGDRrUZAPRWomJia163rrcllzVmjx5MpMnd9EXSjepX7nqGsmVLMv1VghenzjALfspyv4KdLN6oJvVw+Xn6lTsILfwr1/2l5Bsrn0klu12qp7Yzw2flDmP7RkeyaDN+wiPjnHpuTscWYb165FXLEPacK5SK19yEdLd98I114htanyF3Y5Uqsce24LXj0g/CA/w6sR2X1ktmJOTQ3h4OCrV+R/gEhISyMzMbFFyBTBjxoxG70tNTWXatGmtjq+lC+zmzp3b6ueu5Zbkavv27axdu5ajR48CEBcXx5QpU5gzZ447nt7nuXtYsHbOlUIR0GXaMJQZfsNYeQqAuIhQxrlYtRKaVhkbhHq3pdnzAnQ2lPk1VPZve78ka5UV1e27uGJrlfNY6qzBTPxyLwGqLtaHyWpF/sMtSB9+BKPV2F+Mgt4BUGRF+l86zJuHfO0CpP9+CIFi/0SvUyiQg1VQZmv+XLMdTFbvViB9JLnKzs5uMLECR5WpuLgYs9nc6Dm1mmqP0NLqV0NkWaayspLgZvrANbdFTlNc/ni0YcMGli1bRnR0NBMnTqRHjx4cOXKEVatWcccdd5CVleXqJXxTvY8I7vuUaceG+WwD0SBl12jDIMsy+afqVK1GtX2uldAyJxb2JjzNjPJITZPndf/YiBygoCC5bUOCFl0l2mu2MrNOYvXT3Zcz9buDXS+xAuSHH4ZPPsa+Qov8XS9YrIFL1XBTOPL6Xtjf6wlfrEO+915vhyrUmjUL6fOq5luSfGNEqrZDE5WWrkKn0zU6VFc7xGcwGJp9nvj4+AaP6/V6oPXDgbVmzZrF1q1bnQWhxmzdurVNzw9uqFzl5uby8ccfn3e8du7VU089xdKlS5k4caKrl/JZ7qxcmSlFxrF9haqLDAnqyw9TYcoDIFajZnzfrjOJ31sKr4wm/vVc+t9TypGPorB2P787fdiWKqKXl5N3cwzWsNa/VBgPnuGCP+5nYLHjTanKHzL+8TAXPfCKy/F3SAUFsHwZ8uMRMCe04XOuCEF+yor01Hvwl79Av34eDVE4n3T3vTDjK+SvjXB1I/9uJjvSsnLkSy9GSkjwbIC13FW1csPbmcViQalserGMwWCo11WgNXbv3t3kcGGtp59+utFWC+BIAk0mE9HR0edNbDeZTC1qkt4Yl5Orxmba1869ysjIYMWKFWi1Wvr3b33Poq6mq60UlGX5vL5WClG1and2pR+73x/N+Bv2MvgyHacXqTlztRpbqIQq10r3j41EfFVJ8YWR/PZY67tP6zefZOYDv9H97ErnkhAJ3cfvMjG5C0/0fe89UCng5ma2crohDP6hh3fegeef90hoQhMuuQR54bVI969DNtlhQRgE1HmNOlaN9MBpKFAgffa69+LEDXOuzv5nmUwmVq5c2ezpY8aMYezYsa26RG3SVTsZvbVaMxx4+PBhRo0ahVarJTS0kcS4EeXl5WzatKn5ExvR4uTq6aefJi4ujsTExFaNcyYmJvLaa6+xYsUKHnvssTYF6eskNw4L1l0pGNwFkitDRS7lFccA6BMezOTYtn2SEVrPOCiEbV8kMXD5MXqvKKLXq+XO+yr7qvht6SCO/6Evsn/rfr/1/8lm7gsnUDn64JKrDSTw+00MT2z9xNPORN6zByYoIayZPSyDFTBVibwnvR021hJaTZKQVn+AfLsSxcP/RX7ZALNVECzBQStSqhE5ujvSxvXQxjlAbuNql/Wz2Zksyy3asq66utq167VBdnZ2i3OQgQMHsnTp0jZfyyOVq8OHD5ORkcHnn38OwKhRo0hMTCQxMZEVK1Zw9913N/rYkJCQNpf/Ogb3vQRW1WvD0PmTq7p9ra4b2R8/hXg78SRznyAOvDCU3/48CM1+A35mO5bugehHh0Mr/y1ku53K/8vghv+ecR7bN7QbcT/sJ1zr/g7vHY61Blq6H3YgUNn0fLhOr6oK/vc/5HVroawUwrshXX0N3HCD5yeNK5VIqz+Ahx9Beust5LSfoNoCfWJg1R+Rrr0WghreCaIjkiSpyf5PtQLbsOjCYnEspGluMntDsrKyWpVLuJJYAdzrwtzHFidXtX2sioqKyMjIIDMzk4yMDOfE46ysLObOncuoUaMa/I9vrhNqR+bOOVeVXWhY0FCei6HCsb1A77BgpvVz78aZQstZwwJc2qTZZrEScEc6C36udB7beskgktbvIzBI9G8CkAbEIX/xE1hl8G/iNcMuw34r0sW+sRmwV3z9NfIfboYyA0xSQ08FFNuR70qBRx9GevsduP56z8c1ciS89ZbvVhTdNO9KrVZzxx13uOfJ3CgzM7NVrRdakiC21+NbnFxNnjyZuLg44uLinH2s6iZamZmZLF++3Jnx1k2yMjMzmT17dpuD9H3uTK4clSt/vyD8/Tv3aqq8OnOtFo7sJ6pWHZTldBU9F+1iwm9W57Ett8/kwre+F3sE1vXHPyItX4680QSXN5FwbqlEOm7uuo0ov/kGec4cmKlGfjoW+tWpjpysQXq+1FG9Au8kWD7MV/pchYeHN7oasHauVWONQRuj1+spLi5u9eMaotPpGiwCbd++naKiIiRJYsCAAYwaNarN12hxcrV48flbU2i1WmbPnu1MnOomW0eOHOHIkSNotVoWL17sUpC+zl2VKxvVWHAMqQSpojp1O4LyiuMYyo8A0DM0iOn9RdWqIzIeKmP0H/YxSOd4VTf7w74X7mP6I294JoDsbHjrLeRvv4LycoiIQFpwPdx+O/Tp45kYWuqCC5Avmob0513IgwNhQANDKvk1SI+WIk8Yh9SJV1g3qroaeckf4JJg5Peiwe93r4F9ApCXRwMS3Hk7UnKy6Gzvg6KjoxudsF6bdLV2qlB+fj7Q9vYLda1evbrBOeB1e1rl5uayceNGZs6c2aZruLVD+++Tra7DPUlQFec6+3b2IcH8Ot3Yrx3RDz9R4ehw9D+d4tL7DtHj7LzX02qJwv++xaQ5HhhOkGV48kl47jnkyEC4Ogg50g/pVDHyay/AC88jvfkvuOuu9o+lFaRPPkOePhXpiuOwOAT5+nDo6Q86K9L/yuF9I3TrhbTuyy655yWff46kO439rzHnJ1a1JAn5LxFIX+XBRx+BDw5feY2PVK5iY2NJT09v8D69Xk9MTOt3ZXBlcvnvyc31LMPRDD03N7fN1xDvaG7hnhfBSoqc33fm5KrCdJIyw28ARKlVXDSgp5cjElpL/0EOc24/l1gd7RGI6efNjPBEYgXwzDPw3HPYH49E3tsX+bke8FAk8qvRyBmxcHMI3H03rFrlmXhaKjoaadtOpEV3wvvVKCYcRxF7BEXScVhpRlp4K9KOdOjVy9uResfXXyMnBkNC0z2S6BMAU4KRv/7KM3F1EJLs2pe7xMfHYzabnc0+68rJyTlvJMtsNpOXl9fkc+r1+mZ7Z7VUS0aFKisrOXLkSJuv4fa9Bbsid7ViqLdhc1DnTa5O1FkhOH94LAF+IsfvKGS7HdPfM7nh/VLnsf2Dw+n3wz669fLQ5uwFBcjPPgMPRsD9EeffH6JA/nsUlNvh4QeQFi70rZVcERHw5ptIzz8PP/wAej2EhyNdfLFjA+cuTDboIbqFH1ajFVBQ1vx5gsepVCpmzpxJWloaycnJzuO1ew7+vvP6+vXryc/PZ8aMGY22WWhJR/eG5ObmsmHDBudcKoAjR47w9NNPN3h+RUWFs4GoK+2jRHLlBu6ac9UVelwZKwso1R8EIDJYyaxBvb0ckdBSNosVv7vTufbHcysC0y6KY/y3GZ5dEfjuu6BSIN+pafwcSUJ+MALF2jz47DNoYM6o14WEwNVXezsKnyJ1i0D+pYUllAI7aBpIrrsyHxkWBEf1SqlUkpqaikajcc7BWrBgwXnnxsbGNjrJvFZT87iaEhcX52wVtW3bNpYvX05oaGij14qOjkar1TJq1Cji4uJafb1aIrlyC3cPC0qoOmlylS+qVh2SpdSMdtFOJh6qsyLwjxdz4bubPL4iUN68AS5RNd+Mc0AgcqIa6YcffDO5Es43dy7SRx8hH7DA8CaGgI5Xw3YT0r/ney62jsCHkitwJE2xsc33uEtKSiIpKanJc+pWwNqqtuvB6tWrm+zN6Q7inc0t3DuhXRkYjp+ipd0GOw5TZSGlZb8A0C0oUFStOghTThlDr9zmTKwsfrDthbuZ/u8fvNNqodIEYS28bhhQWdnsaYKPuOoq5N5apGfPQE0jmYJNRnrmDGjCYOFCz8YndHharZbExMR2v45IrtzAHcOCNZiw4mi0qlJGuvx8vqjuHoLzh/dD6d9M5UHwOn1qAVPn7yWhyPFGVxos8duny5j8+HLvBaXtBbm25s+zy3DcBp16d4hOxt8fafWHsMOMdFMRHLDUvz/bgvTHIthgQnr/Awju3L0AW8XFyeySjM9VvtrLrFmzWnTeNddc0+ZriGFBt3A9uarfhqHtnbJ9VWVVMafPOKpWGlUgl8WLqpWv0390mGv+lkfw2V1YjkUFIH3zLaOSmt+Nvj1JN9wEN6UgH66GQU1sv/FzJVK+GW680XPBCa675BKk71OQF9+EYkY+8shg6ClBsYy0vxK5RyTSFx/BVVd5O1Khk2tJy4bGiMqVG7ijclU3ueqMlasTBZup/Vg0d1iMqFr5MNlup+K5DK574lxilRkfRvjeg/TzcmIFwPz5yNoopMdPg9ne8DllNqT/K0O+YBR0xWacHd0llyAdy4d165BGzAHFVKSEq+CTT5BOFIjEqjGyi19CPa408haVK7dwPUftzJWrKvNpikv3AxCqDOCyBB/rnC042autcO9uFm46txfotmn9GPtdJkq1j7QJUCqR1nyOPPNSpDmFyI9oYHqwo+lktQzfGZFe0YMhCOnr/3XNZpydQUAAzJ3rmOTu7VgEoZVEcuUG7qlcnduwWdXJkqsTBT9S+7HomiF9CQ4Qv3a+qLrMTNTNu5h8oMZ5bMviC7nwPz/63h6BU6YgbUlFvut2FDdlIncPhMgAKKpGMtQ4uqB//28YNMjbkQqCx/jK3oKCSK58Rv1hwc7Tu8VsOUNx6R4A1AH+JA9p/bYHQvsz5RoYfvNehhQ4htmq/WD3/93O9CdWejmyJiQlIe3ZD+npSN9849hbMDIS5s9HGjrU29EJgueJ5MpniOTKDdzRob22chUQEIq/n8rl5/MVJwp+QJYdb9hXDe2LOlD8yvkaw7ZCpt99kJ7ljttlQRJ5/3mdydfd793AWkKSYPx4x5cgCIIbuTKhXbzTuYVrw4JWzFTjeGcLUnaeIUGz5Qy607sBCA7w42pRtfI5ZZ8e4eqnjxNS7bidH+mP9ZuvSZxwmXcDEwSh9UTlyq2++qrte1eK5MoNXK1c1Z/M3nlWCp4o/Olc1WpIDKHKztcYtSOreDGT694pwe/sC3LWwFB6b04nMnawdwMTBKHVJFyfcyUWDriPSK58QFOT2Qfn5DNn/TaS9uSgslRjCFPzw/REvr5sArpo352bZak2oCtJByDI349rhoqqla+w1djhvnQWphidx7ZPiuGCDZmoQjTeC0wQBMEDdDodRUVFmEwm1Go1oaGhDBjg3o3nRXLlBq5Xrs4lV7XDgn42Gw8u+5yrNuyiUN2N73qOpTwwmF6mM8z5YjvXr93Ca/fO5ZvZE1y6dns5WbgFWXZ00b5icB9RtfIR1XozkYt3MTWrzorAGyczbfUWFH7i5UAQOjQxLNikjRs3sm7dOnQ63Xn3qdVq5s+fz5w5c9xyLfFq6hauFVMr6yZXZzdsvu+tL7l8425eHjmP72LGYZfOJXBvDb2Cuw59y2NvrqVKpeSH6aNdur67VddUUFS8AwCln4I5Q5vfuFNof6ajBoYu3suwk46h2hoF7Hrqj0x/+t9ejkwQBHcQrRgadvToUV588UV0Oh3R0dHMnDnTWbGqqKjAZDJx5MgRVq1axdq1a1m6dCkjR4506ZoiufIB9YcFI4nN1zHnux38c/jVfBN7/ioos38grw+/hvBqE/e8s54tU0Zi86GO56cKf8YuOzb5nR3fG01QE1uUCB5h2FnEhXceoJfh7G0VHH3vFabc+LB3AxMEQWhHmZmZPPXUU8yaNYu5c+ei1WobPddkMpGSksJTTz3F0qVLmejC7g4+1hmwY3J1WLASR4kyMCAMfz8VV3+3gzOqENbHNLG8XJL4YNAldNeXM2XnAZeu707VNUYKircBEKBQMG94P+8GJFC25ihXLj6XWJ2I8Of05vWMFomVIHQuYvubekwmEy+//DLPPPMMd999d5OJFTiGBufNm8err77KsmXLqKysbPO1RXLlBq50aLdSRQ0VwLnJ7ImZuaRFD6OmmTkwR8N6cjysB6Ozctt8fXc7VZSK3e6YzzMrvheRwUovR9S1lb+SxXVLjxJ6ttXCLwNCUO3JIG7yld4NTBAE93I1seqECdbGjRuZN28eo0aNatXj4uLiWLRoEWvWrGnztUVy5RZtT65qq1YAwWfnWyktNZj8W9ZI1OSvQlltbfP13ammxkShzlG18ldILBBVK6+x1dix3ruL65YXO1st7JjQh4H784jqP8y7wQmC0C4k2bWvziYtLY25c+e26bGzZ88mMzOzzdcWyZUbuFK5aqgNQ2lkGP2M569m+L0Am5XeptOUdgtt8/Xd6VRRKja7BYCZg3rTXd15Os13JDWGasKv3cpV31Y4j225bgLjtx4jKMx323cIgiD4kpCQkDY/Vkxod4u256gNVa42XnIBD/9rHdGVZeiCuzX62GlFv6CxVLLx4jFtvr671FgrKdBtBRxVq2tH9PNuQF1UVV4F8Yt2M+KEY0WgVQHb/7KI6c9+4OXIBK+orIR16+DIEVAoIDERrrgC/MVLf6fUCatProiOjnbp8a4kV6Jy5QbuqlzVtmHYPH00FeogHstaS6CtpsHH9ajSc9dv37E7cRD5fXu0+fruUqDb6qxaXTqwF1GiauVx5enFjL9mlzOxMigh8z8vME0kVl2P1QpPPYXcW4u8+Gbk915GXvECXHMNcr++8M473o5QaA9ivlU9kuS9nvMiuXILV+ZcFTmfQ6V0bH1jVil56ombGak/xr92vM2UooMozm4jE2Q1c9XxHby1bRm2YAXPP3ydq8G7zGozU1CUBoBCkpg/XPS18rSyz49x+c1Z9NE7bp/s5kfJxi8Zs/hxr8YleIHNhnzDdcjP/x2u90Pe2Q95b1/kzBjsG/vCRBPccQc89ZS3IxUEnyY2bm5Ceno60dHRxMa23xt+WytXMrKzgahKGYFCce6fI2PkQO5/6S7ue+tLnt+9morAIIyBKrqZjQTYrGybMIzX75lLaUSYW/4bXFGo247VVgXA9P7R9AwN9nJEXUv5a7+wcLkOf0f+zcF+aqI2b6dPnGtN8IQO6q23YN3nyO9p4bLfDWuMUCH/S4ucEIji2Wdh+nS4+GKvhOmysjJYtQr52/VQboDuUUgLFsLChRDcNV+DOuOkdFeYTCaXHu9K5atTJ1dms5m0tDSSk5Pb+UptKwBWU44NMwBBv9tTEODXwbHc+cb9xB8+yfi9vxFUVU2ZJoSfp4ykOErjSsBuY7NZOFn0MwAKCRaO7O/liLoOu82O7cE9XLe+3Hls57iejNyURXD4+b9PQhdgtyO/+TpcHXp+YlXXPd2Qv6iCN/+J1BGTq5UrkR+8H6w1cFEwDFLAiWzkWzfAIw8i/fdjuPxyb0fpeSK5qicjI4Mbb7yxTXOnjEajS8lZp06usrKyPHKdtlauzg0JQpCq8XlTOYP6kDOoT5uu0d4Ki3dgtTp+Aaf2i6ZPuNrLEXmOosqGdkMx6uOVyAqJ8qGhFF/UHfzaf5y/pqKa8D/sZPreauexLfPHMu3THWKPwK4sPR3p8FHsL/Zu+jxJQl6kRvrrt44KULfGF874nLffhrvugpvDkR/tBd3r/L7n1SA9dRr5qmSk776HmTO9F6fgE6Kjo9uUXAUHB3Ps2LE2X7fTvgrn5eURGxtLWlqaB67W1uTq3ErBhipXvs5ms3CycAvg+AksHNFFqlY2mUFvHiV29QkCDVYs0f5IVpnAUhtVvZQc/tMATl7XzJubCyrzHSsCR+bXWRH42PVMf+Hjdrum0EEUFjr+P6EFzXvjA5Hsdigu7jjJ1enTyA/cD4vDkV+Igt8P28QGIP9bi7SoCPm2PyIdzQM/39karL2JYcH6Ro0axTPPPNPmxz/lwrzETjuhvXaDRk9o6/Y3dStXwUHeX/HXWoXFO6ixGgFH1Sq2W9uXrXYYNpnE+38hbvkxdPND2LUllp07+7NjzwD2ft2X8nGBjPzzIQa+ebRdLl++p5ika3Y5E6tyJWS8+yzTRGIlAAQFOf7faG/+XJO9/mM6gvffB2zIj0aen1jV8peQH++GlH8KvvvOo+F5nVgtWE9iYqLXHt8pk6usrCySkpI8dr22DwvWrVx1rOTKZq9xzrWSgOu6yFyr2P+eoOf3xfy6vCdHn4jCHHtuU2rjCBW//VPLsUciiX/9KBE7zrj12mVfHeOym7KIKXPcLgiVKIzRMObx15ATh8Nrr8EZ915T6GCSkpBVgfB1RbOnSl+ZkAfEQB/fnHLQEHn9l3BJEEQ2U40apUJOCIb16z0Sl+Cb2tqd3R2P73TJlV6vR6XydI+ltiVXVWeTK4UikMAA76/6aw1dyS5qahwv4JNie3SNqpVdpt/qExRfGULprMb/e/Pv7oYxQUm/1SfcdmnDmwe49qFcwh2txDjUHRTaQOJnSci3KqB/PvKfH0XuFwMpKW67rtDBRETAdTcgrTJCma3x845Uw3oj0l1/cjQX7SjK9RDVwmG+HhIYDO0ajs8RlSuf0enmXOXk5LSparVnzx727t3b7HkNrR5oy7CgHRtmSgHHfCtvNjtrLbvdyonCn5y3F3aRbuyazHLUx6s4/ELzk4ULbwhj4N9K8C+vwRoW0OZr2m12ah7dy/VfnHuT2NUHhj4chfracGSF4/dGBjhtRXqoBPnqq5B+/AkmT27zdYWOS3rySeT1XyJdX4T8bg/o+7vfv0wz0q3FEDcQbr/dO0G2VUR3OJXf/HmyDKfsMKxrbffUcd5FOr9OlVzl5OQQHx/fpsdWV1djNBrbeOXW/0pbOIOMY85DbfPQjkJ3eg/V1Y43+6Q+3YmL7FhVt7ZS6hxlI1MLJgub4gOR7KA8Xd3m5KrGWE3oH3dx8W6L89jPsTDpzz3wuzr8/Ad090d+T4s0pwD54QeQdu5u03WFDm7AAKRNPyJfMRtpQh7MDEFOUoJVRvrRjLTThDxyGNK3KRDWsf52pXnXIt+fBoVW6NnE29cuM9LRKpg/33PBeZs7qk+ieuU2Hage3DSz2YzZbEaj0bTp8YGBgYSEhDT71VCFqS1zrqoocX4f1IGSK7vdxsnCH523u8pcKwC70vHn4mdqfrKw/9kJxTZl21YqVZ00EnvVNmdiZZPg50m9mKYKxu+qJt4QAyXkP4Uj7doDLajECp3U6NFIOblIy1dAcX+k16uQVlSD6gL43/+Qdu/rUHOtnBYtgqAgpL+dBnsjmUCVHenvZ5AT4jpug1Shw+s0lStXJ7GPHTuWsWPHNnveypUrG6hwtT5HrZtcqVQdJ7kqLt2L2eKYND26ZwQJUQ1UUDopfWIYtkCJHt9UcOLOpocbun9rpDJGhblnC5bE/075vhIm3pZF7BnHm4cxEA7962mmPfYq8h1Bja+SqnWpGlntj/TjjzDG+5t6C14SEgJ33ol0553ejsR9wsKQ/rMKeeFCpGqQl3Y713ZClmGvGelvZXDIjvTTx83/rXQyohWD7+gUlStPtl1oiKuVK5WyY/S4kmUbJwp+cN6+IXGA26+hqLIRdLLKMQTX2CdTL6npFkjhldH0+q8Bf0Pjk4WDjlbT4zsjeTf2dbStbwX9+jxm35jpTKwKwxSc+vZTxt3+f1BlgfAW/Mn6S6D2g8rKVl1bEDqEBQuQ1q2DfUoU0/ORZp9CuqkA6aJTKJJPgj4K6aefwYMrxn2GmNDuMzpF5cpgMJCdnX1eR3az2bG1zK5du8jOzkalUjFjxox2iMDFYcEOUrkqPr0Ps8UxCX9UzwiG9tC47bnDMw3Erj6B9tti/KsdQ2rGPkGcvLE3+Tf0dmlSuDsd+dMAevx4mhGLC/h1hRZLr/pxhRw0M+z2QipjgjhxfesaiRqW/cqC1wsIODvq+FvfIMI3/EzCkHGOA9oopCOm5l8DS21wpga02lZdXxA6jDlzkK64Ar74Aunbb6G8HKZ0hzcWIM2Y0bFWQAqdUqdIruLj4xucyG42m1m+fDnjx49v80T3lmhb5cqxYbMk+aEM1Lg5IveTZTv5datWo9w31yrmvycY9nQ2Jb1C+WTJOI4P6k6gxcqELceY9PoRen9SwJ4PR1PV1/vNDiv7BZP+wQWMvTWDpGnHKZ2hpnxMEJJVptvPlXTbWUV5gpo974/GGtqyPy/ZZqf68b1cv/bcisD0xCiGbMogtHsv5zHpxsXIy16BJ+wQ3MSbx6cGR1fqefPa/N8pCD4vMNCxSfPChd6OxHeI6pPP6BTJlbe1thWDjN1ZuVIpI5Ek3/+UVXImE7PlNAAjtd0YHu2e7TKiNxQz/Klsvrl2BP+9dyJ2v3M/iz1T+/PZH8fy1EPrGbt4P9u/GY8t2PtbWZSPCCP1h0n0+rKQmE9PEZt6BtlPonxIKPvfjKNoVg/kwJb9m1orq1H/cRdX7KqzIvDKEUxel45/4O/6td1xB7zyD6QnTyP/I6rhIcdsC9Kycrj+BujeMYabBUFwDzHnynd06uTKcLaBXO3wYPtpXeWqGgN2aoCOMSQoy3ZOFGx23nbbCkFZZuDrR9k/oS+r75vU4OTT4t5hPP/yFbx+0//o9WUhJ27wjRVO1lB/8hf1JX9R3zY/R1Whif6L0rkg1zF/yw6kPTiHC19d1/BE3NhYpPf+jXzLLUglNuQ/aWCsynFuuQ3WViC9ooe+g5Be/2eb4xIEQRBc0ymTK51OR3p6Onq9HoDU1FTnRs4jR45shyu2Lrmq7GCT2UvLDlJZ5egmPzgqnJFa91StNPsMhGcb+eb1C5tc1VMQq2HvpBgGfXjKZ5IrVxmzTjPuj5n0L3V81DQFwMF//oUL736u6QfefDNSWBjyIw+guCoPuacK1Ao4ZYEaHJN9l6+ANrYkEQShAxOVK5/RKZOr6OhokpOTPXa91g4L1s63Akd3dl8myzL5BZuct68b2d9t3eTDD1RgDVDwy9jmE6a9k2MZ+3KeYwVhK1fg+Zqy7/O57OEcIqoct3WhCs58tpqk2Te17AmuuQbpqqtg0yak1FQwm6F3b7juOujVq/nHC4LQKYlhQd/RKZMrT2vthPaqehs2+3ZydUb/K6bKAgAGRYYxtrf7hjElm4zNT+HcwqUpNj8Fkux4TEvO91X6tw+x4JVTBJ7t5JDTS0XIhp8YMnxC655IoYBZsxxfgiAIgk8RyZVbtK5yVVmncuWLw4J+Vhs9SvQorDYy9Rucx68f5b6qFUBlbBBKs5XYw6fJG9T0zyHhQBGmXirkAN+f/N8Q2W7H/Jd93PA/vfPYnhHdif9hP2FRnWOoUxAELxOVK58hkis3aG26UbcNg0qpcXs8bRV5ppw567dxZcouIgxGvk6AT6933DcoKJikPu5NBEsujKSyh5LZnx9k5dILGz1PXW5h6sYj5N0V49bre4qt0orytp1csf3cworU2UOY9NW+81cECoIgtIGE68OCHXdMwPeI5MoNWjPn6vw2DN5vLQAQd7SAV554h0BLDWunjGFz4mC+D/oacLRfeGlVJX0p4OS1rWuM2RTZX0HerTFc/OIhDib2ZOus83uRKatqeOipjUgBkN/Kppy+wFxoIubmdMYeObciMPXeK7nwja+QRKNDQRDcRWzc7FNEcuUCP3sQKORWJVcW9HXaMES1V2itEm4w8o8n36VAE84tD/+B0rAQqipzKNM5EqvAgJ6YtH0Y/vhuzFoVp6e5b97VsSUxhOQYuf+ZH0naepyUOcM4Ht+dQLOV8T8f44q1v9D9tJG9742iOqr1+/R5k/FAKWP/mMGAEscrVmUAZL36GNP/9JKXIxMEQRDak0iu2kqWGFH2d7pFhrTqYZU+OJn9qu93ojaZ+eP/3UdpWAiyLGPQ/+i8P6zbxTx58zCGnNLR/1/H3ZpcoZD45R9DMYwOZ9h/TjDxT0edd9n9JHQzoth532AqhoS675oeoN9wglkPZRN5dnu/4hAFpz/9DxOuWNyyJ6iqgnXr4MABx4a0gwfDtdeCWt1+QQuC0LGJypPPEMmVh9VfKej9ypVkt5P83U6+mjCKEo0jgbGYj2KxHAfAPyCK4OBhyJKCf8+YworlHxOSbcSY0LqksukgJPJv7EP+Db3R7DegKrAgB0roR4Zh0Xa8OUn6935j3osnUZ5dEXi4p5KglB8YOnJy8w+WZXjxReRXXkI6Y0CODXJMhMg3wwN/Qrr/IXj6acf2NoLQ2VRVQXo6mEwQFQVjxoh9AltBtGLwHSK58rBKH0uuwiqq0J7Ws2VkgvNY3apVuOZi5/Y8teeEHapwb3JVS5LQX6CBC9z/1J4g2+1UPbmfGz4ucx7bOzyCgZv3Ex7dgsn4sox8111IK1fCrRrst8ZC/0DHfSdqkFYbkJ/7Oxw9gvTBh+JNR+g8SkocHyrefw+prNx5WI6LRbr7PvjTnyDANzZvF1ouLy+PvLw8NBqNc6eUpKSkNj2XXq8nLS0NAJVKhVKpZNq0aW6L1d1EcuVhdZOrYB9IriTZDjj6SAGYzccxm3MB8PePRK0+19HeVvtmbvdsjB2BtcqK6vZdXLG1ynksdUYCE7/eR4AquGVPsnYt0sqV2F/tATeE17+vbwDyE91hpBLpzk/hokvg1lvd+F8gCF6Sn4980TQoLYAbQ7DPi4FufnC8BumjMuSlj8KmDUhffg3KjjXv0uN8qHKVk5NDdnZ2vYbeeXl5rFmzhgULFrT6uXbt2kVycjKas7tPmM1mUlNTfTbBEh9920i2y9gsVVQU5GHWn0G2tyzjqE2u/BRKAgK8P4+oIjQYQ0gQ47KPA2Ao+8F5X7jmonqrGccedpxT2b+FyUIXYS6upOc1W5lZJ7HactdlTE35teWJFSD/65/Ik0LOT6zquioUZqiR33zdMYQoCB2ZzYacfDlYdcibeiM/2R2GKqGnP0wMQl4WjfxRT/jpB+QHHvB2tD5PkmWXvtzFbDazceNGZsyYUe94bGwsZrOZrKysFj+XTqdj48aNLFiwwJlYAWzatImcnBx3hex2Irlqo583/8zB959hz7svsOOff2HPuy9g1pc2+Rg7NZhxnBOkinJrQ862svn58f3MJBZs3Ytcfhiz+TAA/v4RqENG1zv3ls3b0ceHoE8M80aoPsl46AwjkncwLscKQJU/bH/tIaav+K51rRZOnEBK2468qPnhVnlRGFLWQfj117aGLQi+4fvvkbIOIq/oDn0bGfabFoz8qAb+828oLm74HMGn5OTkEB4ejkp1/pzZhIQEMjMzW/xcqampJCUlnfdc7bdXsHuI5KoNUlNTCQwMYMiiP3PR029z0f+9TczEGeRt3YDdWtPo4xz9rRyfDoKCvD8kWOuLKyehqqkh6tdPncccc63OVa1uTUljxr5DHL8jtslNln2dv6GG0F8rCD1U8f/snXd4FFUXh9+7m7LpnYQQCL0oAtJElCKKIE0EEQtiRcEC9q6fvVc6KqKIFRURUBRRKYogNUoXIbT0kJ5Nspnz/XFTIY1kU4B5n2cfyOzdmTu7U86c8jtYMx01WlfKysNcNGYzbeL1b5rgpdj39Xv0vveNk19ZbKz+t7Vb5WNbu5b+jInJKYq8Nwfp7AndPCoeeK0fWAyYP79uJnaqIjV8OYndu3eXaVgB+Pv7Ex8fX5SDVRFxcXEcPHiwTCOqU6dO1c7fqgvMnKtq4OPjQ+uWbUhK8UUKXKmhnXriyMmu8HNZFN8MG0IyeyExYUFMePQyNvEdAP55nrTKaYFDMuiy7yDjf1lHv6i97JvUnKOjGtfzbKuHX1QaLeZGE/ZDPJY8/Zs5vCwcGdmY/bdEnnSo89i83Yx+8RC2Avvs3zA33H9YQccu1Yz/exZsPy2/8rFpRunPmJicquzeAf2r8EARYIX2HtCAw0ANgYZSLRgXF0e7du3KfM/PT6c9pKamlmuAFRIVFVWuB6yhYxpX1cDNza0opHdiaK98r05mCePK09aoNqZWbZb774MU/f8Xf8pi0l+vFb2XfI4fW6Z2JGZ4WP1MroaEL4qh00M7yIuwkviwN9k93SAfvH7LIfzTWJosjmXju51JPj+w0nWJYZD1zFaum59ctGxzB39artyCf+Pm1Z9ku3ZIeCjq23Skd8VGk/o2HQnwRXXuXP3tmZg0BCyWqhfIGGJWyJ4i5OTk4F5J8UFqaiqhoaEVjomOji4yxjZs2ADoSsGUlJQyQ4UNCdO4qgbZ2dmkJB9D0MZGVlI8nkEFxlIFIbNSGlceDce4ysw6SlLKdgCCPN1p/k53/tqViXII2U09SG9fC7ILdUTAhmN0fnA7qaM8iHvFD1yKfx97NzeSJ3oRflsK3W/bxtql55EVWb5hk5/jwGXiBsb8llW0bPXFbei1ZDNuHjX8jlxcULdNQl57Hu7IheblPM0fzYPPMlE33216rkxOfTp1hVVLdHFGRekGsQ7YkQ23nVN3czsVaSCeq4ooNLqqEhYsNMA2bNhQKgSYkpLCggULGDduXIM1sEzjqhq4ubnh4uqKcijSj0az7eN38G/ejtaDxmCpQNyx2HOl8HBvGOrsAAePFlcIXtkxEmnsQULjSnIgThFazT6Avb3rCYZVIeJl4ei7/rS8MIHIDw+x839lu7JzErNpfP16eu0qztP69bZL6T/rB+f1CJw8GT6Zj7rqKPJuCHQ57qKxMwc1IR58G8GDDzpnm6c7hgFZWdoQNb0eDQ51+0QY8CXyWxZcVH73AfVhCri5wbhxdTe5UxBnhQUzMzOZM2dOpeO6detG9+7dnbPRcoiLi6NPnz6llvn7+xMZGcmKFStKST00JMyrTTXo1KkTjcK058knPJLz732ZjmNvx+ZfcVipsGGzu5sfVmsV8gzqgMysWBKTdVmsv82NQW1OvebI5WE7nE3Ib0mk3ORZpmFViHhZSL3ag6ZfH8ViPzHnKXP3Mc4e9keRYWV3gT9em8xFc36s2LD6919YuRJWr4Zjx8ofV0hAAGrlb+DXAstlh1CXH4U3kuDNJNSVMVgGHARLuB4TdmqGaOsEEfjxR+Ty4YibG/j4IB425JqroUCE0KSB0L8/0qc3anIi/JNT9phv0mBaCuqe+8CvApmSM52aJrOXSGoXETIyMip95ebmnvQ0c3L073wyHqeSEgyFhIaGsmfPnip5wOoD07iqBomJiRj5xYkCedkZ5GamFyW3l0UeWTjIBMDm7sTefDXk4NGfKTyjRneMxN3l9Gmr4rM3EyWQ1ady4cHMvu64pOfjcbT0iZry2xH6XbmJtnH6O0r0Uuz9cja9H3in/JV9+y3S9wJo0wYuuQT69UPCw5Cbbqo8IbdpU9TmbfDVV+DTE7XAgpqvwKULfPop6u8d0Lp1pftzxpKXh4y/HgYPhn9/QZ4MwJgRijzoCxu+g7594d57TY2whoJSqG8WQ+RZqCGHUZNi4edM2GyHr9NQo45iuTMOrr8enn22vmd7xqCUwtvbu9KXm1vtOwn8yjGoC5fHxcWV+X59Y4YFq8Err7xCr769yO8wHPDGzcuHhJ1b2fH1XPo9MQ2Ly4l6LXYSi/5vszUM4yorO47EZK034mdzZUjbiHqekZMpfAqrinJE4WNGiXtuyvw9XPHcQTwKIoH/NXLF+v1yzuk2oPz1PPkkPP88nO+FMScMOtvAbsCPmaj5nyPffIX6fjlcUEGfQVdXGD0aNXp0FSZuUhKZPBk+/wxjRihc4VMqj0fuCEDmpWJ54m3w99c9Gk3qn+Bg1Kq1MGcOMnsGlm+Lm7dL3wvgi8moMWNOaQmYusJZYUEvLy9uv/32an/ez8+P1NTUMt8r9DSVZzQdv57KPFzlbae+MT1X1WDy5MnEHoklZt0POOzZWFxcCenQBatr+VZ8YUgQGo7n6uCRFRR5rc6OxOZ6+nitADJb6oRvz/WVu6491+WS72HB3tiGGAYZz27h6v8VG1Zb2/kRsHknkRUZVvPnw/PPYzwRhHwTrtXUI12hnTtMDkR+DYezRStSx8Q4YxdNSvLff/oG/WQgjPI98WZsUXCLP3J3APLyi1UL1ZrUDV5ecN99qF17dTh961Y4ckQbXVddZRpWVaWB6FyFhoaWG64rNIYqqxQsHJOSklLpmIaIaVxVg6ZNmzJuwvW4eftzZOMqHDl2UBZEDMqTYihpXHk0AOMqKzuBhBJeq6HtmtbzjJxPVnNPEnsH4D8vq8IwkLILfp9kc2RkY3KtArf9yVXzkopOjrX9W3LWlsMENGlV/sZEkJefRwZ7w53l5N75WJG5oZCbBe++W/0dMymbd98FXxcYV/ETsdzmD/kO+PDDOpmWyUlgsUCrVtC5M4SH1/dsTKpJZGRkuR6llJQUmjWrQiN7tJp7fDmq/IXrr4oHrD4wjatqIiI06tofn8bNSNy1FYc9G6Us5T5hNTTP1eGYXyh8VBl51unntSrkv9ua47k5l5Dn0rVOznGoHCFsSgqWFIPdo0IIHrWWoSuLpRZ+vfkiLli5t3Kphd9/R+3ci9xayYkeYIVRnsh7s8y8Hycj69ZCf3fwrOSyFuwCPT3gzz/rZmImJnWEkpq9nEXbtm2x2+1lep327NlD5+M0+ux2O9HR0WWux93dvcwegrt376ZTp04NVorBNK6qgcPhKBIPDWx1Fh6BjUjctZX8vPLDT6WMq3rOubLnJBOftAkALzcXhrU7zXKtSpDYL4jtT7cj8P1Mmo1IwndhFq7RDlz3O/D/IJPIQYl4r8zh1ydb0nTyNs7foeOAOVb4/cVJXDT3l6pJLezcqf/tVbmEhfT2RB2Jg4yMmuyayfHk5YKtiuEjd6AalU4mJg0akZq9nITNZuPSSy9lzXHVuYU9B9u2bVtq+ZIlS/jqq6/KbOg8fPhwVq9eXSrMGBUVRWpq6gkSDQ0JM6G9GmRnZ0MJ/Ua/pi1x9w3A1bN870ahceVi9cDVpX7FHw/F/FoQwoTh7Zvi6XZ6HwbRNzQlo7UXLd89QOP7i5XVDRdF7KAQ/rrFm/Ne3kdYul6e7Kk49OFULhhzV9U3UmiAVeX6VDjGzCNxLs1awN/bKxekdAjsdMBVkXU3NxOTM4xCr9Pq1avx9/cvMo7GjBlzwtjIyEji4uLKzJ+KjIxk4MCBrFixApvNht1ux8/Pj1tvvbXW96EmnN531VrCx8eH1Py0UstsfgH0mvJ8mSKiBnnkoJNnbbb6FQ/NyUkhLkG3EfBwtTLyrKrFvk91ki4IJOmCQGyHs/GKzkaskNHKi/ifDjLy6f/wLOi3fSDEFZYuo3PPgSe3gY4d9b+rs2BA+WKIAGpVFhIZgfKqeJzJyaFuvAku+xL5y67DfuXxUyYqJgduvLHO5mZiUhc0lN6ChURGRhIZWflDTM+ePStswlzV9TQkTOPKibi4lx37zSaJQndFfSuza6+VFsoc3r4pPu4nykacztgjPLBHeCCGQeZLf3P1+wlFsfFtbXxpunIjgU3bnPyKe/ZEOndEvbcfucizfM9JvAMWZ6L+96jpuXI2l16KnNUOdf9B5JswCCnj8nYwD/VEMtK/D6pLlzqfolPJyoING3R4OSQEevQwVejPdBqYcXUmY56JdUDJnoL1mW+Vk5tCbIJO4rW5nDleq+Mxch0wcT1XlTCsfu/TnPZbDlXPsAIthvjk06jfMlEvJpWdv5CUjxofB34B0MBd2qckFgvq2yWQ4Y0afBTePQYpBYr7iQ6YmowaehQ8G6M+/aJ+51oT4uPh3nuRJmFw0UUwfDj06oW0aQGvvw55efU9QxOTMx7TuHISRzet4Y83HylTpT2L4lJSj3oMCx46+kspr5WfrWG04KlLco/ZCRj9O0NXZBYt+218X3r/tg93L9+arXz0aHj9ddT0Y6iBR2F+Kmyzw1/ZqOcSUX0OQYwH6oefILjh9JY8rWjTBvXnX9DnctRzx7B0+A/VfB+Wc/aj3kqHYdei1m2Axo3re6bV48AB5LzuyIczYJwLxi/NMLa0wFgUAV1TkEcfRoYPhZxyWsmYnNYoo2YvE+dhhgWdRFCb8ru1Z5c0ruopLJibm0ZsYa6Vi5Urzj7zvFZZ+1I5e/wmOhzVV5FcK2x4egL9n3Ci5tT990O3bvD2m6hHl6EMvS0J8EXdPBnuuQciCqozt26FmTOR5UshIxNCglFjr4PbbiseY3LyREaiPv8CYmPhxx9RaWm6b+OQIRBYcf/PBk1+vhaglQRkRROIKBHSD3NBennAWB/UuF+QKVNQs2fX31xN6gczLNhgMI2ranK8h8rd15/wbmWXhZYyrmwhtTqv8jgcuwoRLTMwpF3EGee1Svs9hn53bKdxQR1Cik1xYN6bXHj1Pc7fWP/+qP79ISEBDh0CNzdUq1bgUZBknZ+PTJ6MmjkTaewOIz2QQFdUdCLy5kvw0ouo2XPglltKr9fh0AaDYUBoKLhX3jPxjCYsDG64ob5n4Ty+/x71z06MZU1LG1YludATedAf9eoHuhdfo0Z1O0eTesMZWlUNLSH+VMY0rqrBxo0bOZaVQkKKjfwm4QS27lhmlWAhhWFBF6sHLvUgw5CXl0lM/DoAXC2WMy7XKuWLfYx4aj/eBbJG0UEu5C9ZTJfzh9TuhkNC9Os45L77YPYsjBdCYLwfuOjEdgH4n4F6NlHnZHl5wdVX61Y5M2Yg789BxekeleLjhbr+Bpg8Gdq1q939MGkQyHtzoIsXdK1ENPEaP3g9RbdjeuCBOpmbiYlJaUzjqhosXboUdw8bqZk5HF2bhRgGYZ3Po92I8ScYWfnkFskweNiCi8RH65IjsasxDG1ZDGobTqDnmePxSHtlG2PnJGAteCL7u5U3jX/eQHDzDvUzob17UVOnYvwvGG72P/F9bwvySgikGHDfFFTz5siIoZCdBld5YQwIByuo9Xbkk7nwwfuoz7+Eyy+v810xqWN274CLqlDdG2iF9h5Qhqq1yemMOCksaFYxOwPTuKoGTz/9NKn5aSw57EdAkBYOTdwdxX8rv6X1paNLjdXiofqIt9VhSDAwOY2+f/yNa3oKD7VYAxZwsSiu7Ni8zuZQLoYQsjqJZh8fJmBLCpZcITvcnSOjwjl0VTh5gTUPWebnGTBlA1f/UKyC/kfvpnT9MQqbt3+N119tZs9GAlzhxgra5CiF3BOA5eKDyKWXQBtB5jeDoGLDXfp7wZQA1N3xyFVjUGvWQgU6MSanARYL5FdxbL5ABd50k9MTM6zXcDCNq2pQVkVgcLtOSL7jhOUlZRjqolLQLzWDu+cs5qK1UYjAowOt2FvpeV2z35XW/+aQ2rn+ejG5pDnoOnEbweuOkXq2jeibAsi3KXx22Gnz1j5azdjPlhmdSOxbfcmK3BQ7gTduoO+24vYmv13bm77zV2Gx1u8hL7/8BJd5gK2SQt2z3JHW7hCdjXzcXHsjjsdmQWaEoi49grz4POrb72plzk7h77/h4491iNPdHfr1gzFjoIH2BWuQdOoKq5dWrkAf44AdWTCx/CIbExOT2sU0rqpBeaG9sh4asuowmd0/JZ1pD87EOz2Ll64azBe9z2Jn0lQQsIhi3F9+9PxsM5vmdSG5V0CtzqUslMOg68St+G1PZ+NHTUm60KvUTWL3Ew46PnCUbrdt48/PupF67sl3O886kEaH6zdy9mFdpZdngT+fuJH+z8xz2n7UiOws8KmiAoo30MKlbMOqEDeF3OyDenSZTp5v2tQp03QaR44g469D/bIKCXGDVm6QKai5c5F7J6NeeV0n7hsGrFgBGzfqxP3mzbW0hXclDbPPINTESTBgIfJrxV0A1Acp2mi97rq6m5xJw8D0XDUYTJ2rapCbm4sjz4GR78DIzyc7OYGjm9aSnZxwwtisEp4rT1vtVu489PZCPDOyueKJSXww6EKOODYhovVuPH27c/eUu9nYMpIuk/7Gmnmil622Cf0pgeB1KWyZ3YSkPt4nPH3nBbqwdVYEGW3caP/q3pNef+qfsZw/ckORYZVqg78/fJU+DcWwAggLh71V+O5zBfbnQYcqhEgHemnJh7//rvn8nMnRo8gFvWD3nxhzwpBNzZBFjZGfwjHWRsLFhk7cHz8eadsSBg9G3nwWmfUyctONWiTz4YdNUcxC+vdH+l6AmpwI/5SjY/VVGsw4hrr3fvA7+YcTk1ObworB6r5MnIfpuaoGjz/+OIKAaOPAxcOTyAsHEXnBpSe47LPqKCwYHpNI77928vDNozgYGoRh2ElP+6PgXQt+fheR4+rKA7dcyZoHXiV8cSyHrq1bLaVmCw6R3N2DY73Kf+oWdwsHJgTSecpRvPdmkNGmap6LlK/+Y/jj/+FTEAk8FOhCzuKv6XrhCGdM3Wmo68Yjt6+FQ3nQtILk5OUZqFQDo38VqksLz2JH3RvMFSGT74KcBGRpY2hy3L62ckPebgRBFpj1MfT1xHg7ArrZ9PlzKA/1cSry1uuw/W/UosXgegq3asrNhbQ0XQHqUUHfw4pQCvX1t8jggaghUTDUCxntAwEW2J+H+iQD9WcmcuON8MwzTp2+iYnJyWEaV9Xg7rvvJiM/gzVxnjRuEsagg/sYsWEVbVcuxioGsb5BfN/9Qn449wKyvWMBcHP1w2qtvSq9S3/ZTIaHO0vO6wRAetqfGIbuQu7l3RUXVx0GPBIcwG+d2tHpmzo2rgwhcEMKu584sev58cQN8sWwHiVwfUqVjKu01/9m7My4oorAf1p4EfrznzRt2bGms3Y+114LjzyIeiARmR8K7mU4j2MdqOeOIS4K4quQwbxR/860auXcudaEw4fh28XIC0EnGlaFKIU8FIT6NE176LqXMDqauiKPBUNvD9T1P8Jrr8Fjj9XN3J3J6tXIjOnwzTcoh/4tpX8f1B13w6hRJ590HhyMWv07vPsuMnMalm//K3pL+l0IX05GXXml2bfyTKWstlsnhXncOAszLFgNmjVrRpNmETT3CeSDT2fy2KJ55BzN5D2jI9OlC3+nejH+lyW8+d4T5KHbrHh61G5IMDg5jejQIOzubhhGLmmpawveUfj59ys1dldEGO6xuSeupBZRDsGSDw7vyg85cVMY7has9ooNi/w8A8fd67l6RrFhta5XE1ptPUhIQzSsALy8UAu/gfW5qFExsDJTV3YBZBnwWSpq2FEgEK64ErUgE/IquGCKoOalI716wNln18kuVIlvvtH6XaMraSlks8AYX/guo+z3+3vB1d7IjKmnVnhQBB58UCfub1mKPB6AMbcxxmuNwL4ZrroKGTEMsrNPft2ennDPPahde+G//yAqCo4eRf22RhcJmIbVGYsZFmw4mJ6rGjBz0Rx80tKZyMXsI6DI6F9KK96VTgzxWwvo3IjaTmbPdXXBK1tvKyN9A4ZRYNR5dcLVtXQ40jMnl/yyPCa1iLhZyA1wwXtv5T3PbIdzcckysIeW7+nLS83F/6Y/6belREXg2PPo+8naeq8IrJQBA1C//obcNQnLuG1IoBv4u0BcLmTlw9DLULPmQFIS0v0b1APxyBuNisRGixCBqcdQazLg60fqZ1/KIykJAl2hKsZ0pCsquXxDWsb7YVlwCH79FS691JmzrD1efRVefx3jmWCY4F/K4JFxfsgvmagJPyM3XI/68qvqbcNigRYtnDNfExMTp2J6rqqJQkh1j+NO/67sUydW3qUrd6YGRxb9XdvG1baOLWkZm0jb6EOkpa4uWu7n37/UOBdHPkM2/UPaeXWf7HpkZGOafJWKyqm4Q2jTz1LI87YSf3HZ31lWdDotRqwtMqwcFlj9+PX0//zPhm9YFXL++aiNW2D9etTkx1Cj7kA99QJq3z7UkmW6t2DnzqiP5sPXGaihR+HLNEh0QEo+/JSBuiYWy8tJ8PTTOsTUkPD2hjRHxV63AlRSPnhVcClqX2BkHznipMnVMhkZyAvPIbf6w20BZXuSBnghrwShFn6te0yamDgDqeHLxGmYxlU1MZTQfRIsv6r8Cq3U4Myi/zex127bm7W9ziYh0Jfm/ywiPz8dAE/Pjri5hZUaN3rtZhodSyd6XN03Bj44LgKX1HzaPxsHRtlnst+WbJp9eIzDY5uQ73liPkraX/GcN3I9nQ4WVAS6w9YPXqTv8/Nrde61glJa+PN//9M5RQ89dKIn4tprUSt/gdDzsUyJw3LOfiwd/sNyQwxktoEvv9Sfb2hcdhkq0wHLywn3FZIv8E0aXFzB+ZFRYIyfKppYn3wCmVnI7f4Vjxvpo3tLzppVJ9MyOf0xw4INh1PkMb/hoqT8/IbM4PSi/3ePtrOxee3NI9/FyrRbLmOp8UXRMr+AAUX/V4bBiD+38fzHizk0ujHpZ/nU3mTKIbOlF/+80IFOj+zEFpPHgYnBHOvhAUrhluAg4ssUWsxMIu0sH3Y/cGJy9rFF+xn26D78CiKLhwOsZC9aSPd+V9TxntQx/fqh+vWDf//V+TWGAa1bo7p0qe+ZlU/Hjlo24O3NyMVe4FnOc9xnaaiDDoyZFXhSv0tHLBbUhRfWzlydzV9/wTme5TdXLsRFwSXuyIY/zDRik5ojlPvQWvV1mEeiszCNqxqijPIPxqwg/dTunQOBjpq3dKmMTzrYiTmo/z9sj4VRv29kf2gQARlZXLF+K81jkjgyIox/XqynvnrA4bFNyPN3pd0re+l5dTS5gVbybRbc4/MQFwuHRzdm5+NtMWylvVapb//D2GmxuBQ4MXZEehK8ch0RrTrVw17UE61b69cpgnpnOtLnAtQ1scgbwdC6xDmQbcDHqahnEpEhXtCtHHmCLAP1fgaMGNbwBFLLIy8Pqnq6u1kgr26LS0xMTGof07iqKeVY+qIEu78OC7Y8BonN/Gt1Gobh4HDMr0V/T/QLpf/Kzbgn5+LwsJLUN5B147pxrKd/vVcTxQ1qRNylIQT9cYyATSmoPMHe2J2YoaE4/Eo/7Rv5Bo77N3LN4rSiZX/2aEynFVF4+tV+OyGTGtClC2rFSuSKEVj6RCMXekM7qw7z/WRHHctDgoPgr3TYmF1aigEgwYGaGA+xCvXN8/WzD9WheXP4NldXf5bnsStkWx40b0ASGianNmZor8FgGlc1xFKO58rum4UU6AOEZ7qw9ZzavYDGJW4kN08bIOc3C0HdcDarHqrVTdYMpUi6IJCkCwLLHZKbkYvfTeu5aGNxheFvo7vR57M/sLrWvifQxAn06oXafxC++grmfwh/HgKbB+qmi2HiRJSvLzJ8CJbhm5GeXshAG7gp1NZcWJoB3t6o75fCOadQn7wbboDnnoNF6XBdBeHOv+2ojZnwzYS6m5vJaY2ZN9VwMI2rGtJYMstspJrtX5zMnhvSFMNae7UDhpFfyms19pxTvzw7+1A6rcZvpMsBXaLvsMDvD15N/5c/q+eZmZw0NhuMG4caN67Mt9Xvf8KSJTBzGmraX5DngJbNUa/cDjfeCAF13wezRrRsCaNGop5fipxrg7PKkBRJdKDuTkRat0ANH173czQxMalVTOOqhoQadp7nd76StmwlBJSiiaTTNmAXmwvGHDy7E41rcQ4JSZux5yQBcG7jQNoEVyLc2MBJ3xTP+RP+ptkx/RiW5g67ZzxLv1uerOeZmdQKrq4wahSqoclJ1AD1/gfIgH6oy3fAjT7Idb7QzBWS8+GrdNR76ZDvg/p1GbiYl2ETJ1FjhXYTZ2Ge1TUkOqQJoUH5vJa0mmzlQp6y4is5PBBcnDvk7lF7uUEiBoeOriz6+5rOLWttW3XBse8OMPThf/Ev6Ohy1N9K+tef0WPAmPqdmInJyeDvj1q1Fp56Cpn3Ppbp0UVviasLXHkl6sWXdH6WiYmTMMOCDQfTuKohKd5+3HzXZDpF76Xd0WisRj4x/sF8ctZmYBMANvegWtt+QtJWsnMSATgnLICzQ/1rbVu1Teq07Vz1dgyuBRWBO5t5ELBiLe3adq3fiZmYVAcfH3jrLdTzz8OKFZCYqHPIBgyARrXbDsvExKR+Oa2Mq6ioKFJSUoiLi8NutxMZGUnfvn1rdZsKCyhFVPO2RDVvW7Q8kxVF/7e5107OiEg+B48Wb+eaTqdmrpWRb5D34CauWZRatGx911DO/nkb3gGVN3o2MWnQeHnByJH1PQuTMwHTc9VgOG2Mq9WrV9OpUyc6ddK6R3a7nSVLljB9+nRuvfVWbLWk7qzKkf+zkwCAm5sfFkslYoLVJD5pK9l2vZ2zG/nTKewUS/wF8jJy8b55PcP+KlEROLILfb5cb1YEmpiYmJwEysy5ajCcFu1v9uzZQ7t27fD39y9aZrPZGD58ODk5OSxZsqTWtq04sUVLHlnkoasFPWopJKhzrX4u+vv6c1uh6lm/6mTJPpJBsxG/c3GBYZWvYNX9V9J/0RbTsDIxMTExOWU5LTxXsbGxtG3b9oTlNpuNTp06ERUVhd1urxXvlSrDPi30WgHY3GsnmT3p2D9FXqtzQv055xTzWqVtSaTXhG00T9JPWhlusGPqk/S7/dl6nplJtcjLg507ITsbQkPNRG2T+kME1q2Dfft0Jea550L79vU9q9pHAMMJ6zBxCqeF5yoqKoqFCxeW+V5oqM7ZiYuLq5VtlxUWzCK+6P8eNud7rkSEgyW8Vlee09zp26hNji2LZtC1W4sMqxhfC4eXfEpP07A69UhOhv/9D2nWBDp3hl69oEUL5MLz4YsvzNJwk7pDBD74ADm7HVxwAYwfD9deCx06IBf1hd9+q+8Z1jpKpEYvE+dxWhhXhQZUWdjtuqa/9nKuTgwLZpf0XNmc77lKTtlJZtZRANoE+dItvPaqEZ1NyswdjJmyl4ACqYXdETb480/aX3pN/U7M5OQ5eBA5rzvyxoswKBfjmwiMlc0w5oSB+geuvhq57TbdaNrEpDYRQe69F265BVrEYixsgrG/FcbeVhizwiB1E3LJxfDpp/U909pFavgycRqnRVhwzJjyNZBSU3UFWkUGWM040T7NLum5cnJYUERK5VqN7dT8lMi1EsPA/shmrl2YUrTsry4htF+xFZ/g8PqbmEn1yMtDhgyC3BhkZQRElijaOMsdGeGDfJGGuvd9HSJ8/PF6m6rJGcD8+ah33sF4KQRu9C/93kgfZLg36r545IbxqE6doGPHepmmyZnDaWFcVURUVFRRBWFFbNy4kU2bNlU6LjMzs9TfZYUFSxlXTvZcpaTuIT3zIADNA7w5r2mIU9dfGziycvG8dQND19mLlq0e2pHe3/yFi1vteBRNapnFi1Hbd2Esb1rasCrJWF/YnoO88Srqjjtg6VJYtUrnZTVuDNdfr0OJJiY1QQR5/RUY5H2iYVWIVSGvN0KtOQTTpsGcOXU6xTrDDO01GE5r42r16tX4+fnRp0+fSsfm5uaSkZFx0tsoKyxYmHPl5uqL1VpGX7FqIiJEH/mp6O9rOrXA0sC9VtkxmTS/fgPd9ukegQawZspI+r75NcpSTlQ6Lg4++wwOHQI3N+jdG4YMAeuJ37VJ/SCzZ8J5XtC5YuNYbvZDvReNNG+KSstEzvECb+BnB+qNN5C+F6A+/hSaNaubiZucfmzciPpnJ8bjlXjAXRUyzgtmaC8XtZQqUl8oaq7Q3rDvJqcWp61xFRcXR1RUFOPGjatSvpWbmxve3t6VjsvMzERKPB0cXy2oZRjSgdryWuk2GpH+XvSObNgqzxlRifS4ZRstEvX3lekK/7z1KP3ufLHsD6SnI3ffpfMiLAJN3SHbQL38MtKsCerl1+AaMzerQbD9b2RcFR4cVmahALnUgjElEloXSGzkCfJTJurZTcgFvVDrNkBERK1O2eQ05b//9L9dq2AsnWtDZSVDfLxp0JvUKqetcbVkyRLGjBlTSvuqIrp370737t0rHTdnzpxSHq7jw4KlQ4LOC9lpr9WPRX9f27llg/ZapSw/yOD79hCYrf+O87GQ/MWHnHfZ9WV/ICMDubg/7PobecwfrvYFf+2pkq121PRjuvInORnuvLNO9sGkhkTnoZ5KQG7zR54OhpLHq6uCod5INxtq2FHkzkmoxbWnR2dSC6SkwPz5sHo1Ys9GhTfRFXoXXFD6t65tChtf51bBbZNXMMa1doSd6x0zLNhgOC2qBY9n4cKFDBw4sBaT2Is5PiyYRWzR/51pXKWk/VuUa9XQvVYpc3Zy5V3FhtXecHccf6ylQ3mGFcBjj8GOKOTrMJgYUGRYAdDFhrwXhkzwRyZPhh07ancHTmXy8+H77+GZZ+CJJ2DuXEhLc/52OpyF+iO3wiFqfir4WJCHg8q/2Ya5IFP8YMkyOHDA+fM0cT4i8PrrSJPGyP33IrHLwbEKWbEA+vRBup8L//5bd/Pp2hVRClZkVjpU/ZiJRDQ+bXs7KqNmLxPncdoZVytWrKBnz55ERkbWyfaODwtmUayn5Uzj6lDMyqL/j22guVZiGGQ/uolrXz6Cm06xYtM5QYRu/ZcmHc8v/4Pp6ci8uXC7L5xTjmtfKeSJYAhygVmznD/504EFC5DWzWHoUGTGS8iHbyC3TUDCw+C++yAnp9JVVBV12yTUHxmwo4J1fpcOo33As5LLzCgfsFngm2+cNj8TJyKiDfSUFC2r8eyz8OCDcJ0N2RiJfBWOfBiO/N4E47NwSN2jdc7qylhu0QIGX4p6P71i71WsAxZlom6/w8zfNKl1Tquw4IYNG2jbtu0JhlVKSgqpqam1YnBVbFxV7+nImp/PBX/uYOAvmwg8ls7GsHxu7n8YgHAfDy6MbHjNjPOzHNgm/MnQP0pUBA7uQO9vN+Hi7lHxh5csQWVkYVxXyfflpmCsF/LJfNS0aU6YdT0TE6PDKnv2gMUCXbrAuHHg53fy63rzTbj/fhjmjTGzKXRx196io3moBWnIjHdg+9+oJct0kUBNGTUKadsKNeEI8mUYNCkjzJKYjzStQvjFywLBbpCYWPN5mTiP5GSYOxeZPR31n/aaS6AfKjkV43Y/ePq4h0eLgv5eyLfuqCExyN136uOtDlBPPY3064u6Mw6Z2gg8jjPoYxyo62IhMARuv71O5lQvmGHBBsNp47nas2cPoaGhZRpQ8fHx+FXnhlUlyjaulLJgcw886bW123OIT295medf+Ajf+FR2BQczs0NK0ft3xHlhbWBOq5y4LBqPXMPAAsPKAFbdMZQ+y/6p3LACiI1FvFwgvPIbsbR2Qx1Lg9yKQ1INmuxs5JZbkGZNkWceR7Z8gfz1GXLPZO1levLJkxPe3LgR7r8fuSsAeTcMzrUVh+HCXZGHgpBPGsOvv8DLLztnH9zcUN//CPnBqIuPoJ5OgK12+C8XVmSgro8Bh6CS8itfV55AigN8fJwzN5Oas3070rkj8sQj0DUFY2YYxrthcIVCvBRqQRr8Vk4YLtgFmeILy36oO+9Vr16oL76En3NQPQ6hXkiE5RmwNB11Txyq90FI90f9+DOENHz5mmpRUwFRU0jUqZwWnqu4uDi2bdtGu3btiIqKKlpeqM6+e/durr++gnyfGlAy50owyC7IubK5B2OxnJzrudV/R3n70dnsCW/ELXddz47IcHJyDhF7VOtvBeS48+AbiRzM2MeeB1s7bydqQMY/SXS7eSutEvRZmeUKUa8/SL/Jr1Z9JZ6eYM+HHAPcK7H30/IRqxV1qiak5uYiwy6DdWuRxwPgGl/wKzhOYh2oD1KQF56HI0dQc+dWKTFYpk+HZjbkkQpymy70hGt9kFnTUY8+6pyE3latUBs26fybue9imXOoeE7ndoJevrDoL3hEqPCJ4McMVHoeXHZZzedkUnPi45FBl4BvKrK4WamHHhnuA48EoSbGoG6KQZY0hY5lVI1e4QOPJ8HixTBlSt3Me+RI1N/bYcYMZN77WKYf03OOjED971GYMAGCTp1uFianNqeFcbVw4UJycnI4ePBgme/XnteqdLWgnSQMHAB4epx8SPDemd9wMDiA6x66lSybvmClHivOtVLhl/HWKDsPz1zO0ZFhZLSpXDqiNklZcYhB9+wmKEv/neCtiP9sLr2G3XRyKxowAJUvyNIMGO1b4VD1bTYM6F+31UjO5M03Yc0a5PPG0Nuz9HthLshjwdDGDcvkeTBsGIwaVfH68vLgi8+Qe3wqNmAAGe+H5aODsHIlDB5cwx0poFEjePVV1DPPQFQUZGVBWBiqfXvYvBm6d0c+Ti1f3DHLQL2TipzfE9Wli3PmZFIzZs6ElERkWVMILeMW4W1B3muMGngQ9U4y8l7jE8d4WiDAVYcW65LWreGtt1CvvQZJSeDiggoI0GH30x5n9AcUTLUr53BaGFd33XVXvW27ZM5VZolKQc+TzLdq9d9ROu04wO13jysyrHJyDpGdvQsAq9UPb5/uzB0EE35aQ7NPjrDj6XZO2IPqkfL+Lka/fBj3gqjPv2Hu2H78mbM7XXjyK2vbFrlkAGrmOuQy7/IToH/NRG3OhG/vrv7E65P8fGTWdBjtfaJhVZIxvsgnGTBjKqoy4yolBWXPRdpVIY+qbcGYo0erPueq4uEB551Xelm3bsikSajHZyPZAjf4lf5t9+WiHkiE/wS1eqbz52Ry8jgcyLuzYLRX2YZVIR4W5GZ/1FMJOlE87LixdgNS86qXP+gMXFygDqrFGxxmzlWD4Uww52uVkmHBLIpvWg9/9Ccrhz/M96Of4IVn5tFj825UBXk0F6zfQaqnjZ/P7VC0LOXYiqL/+/lfhFIu5Lq6sOi8LgStqJ/kXzEMMp/YzLUvFBtWm84OJGTLbiKqY1gVoF55DQ4I6oY4iHEct1GBHzJQE+KRQQO1R+dUZP161MEjyLUVe+cA5Fpv1C+rtNhhRXgU5LSlVyFHK8Mo/Zk6QE2bhpo8BfVcEqrbQdSUWNTj8agxMVgujIYDnqgVK6Fbtzqbk0kFHD6MiolHBnlVPnawFyof+KeMitHvMlDZ+TB8uNOnaFIBRg1fJk7jtPBc1ScljSu/5L+hIIc9K7c10zq2xCvPzsW7t/LG+vdY2/MsnnlkHDm2E70Mnll2jvl4kV9QIpyTcwR79h4AXFwC8fYpFjhN8PfBNd1xwjpqG0e2A/fb1zNmTXbRsjWXtKXXki242irwxFSFrl1RP/yIjByO6nEABnkjHd1Q2Qb8YEf9m40MvQz1+Zenbhl1QoL+t3kV8p0KxyQmVqzJ4+2NdO2M+m4fMqYSo21xOmKxoC6svhF80litOkxz110wZw7y28+QnQXhTeHjG1BXXnnatSE5pcnL0/+6VyE05FYwJlcgPR++Tkf9nAkpBuzKRc4+C9W0ae3N1cSkAWMaVzWkMCx4/u5trPTaq40rUXzTbCxW0UbUx20HcGHMdp7a9BlPvfIJjz914wk5Q+neHgSnZeCW5yDX1YW01FVF7/n69UWp4p8qPCmFXP+6Tei2x2cRMX4DPXcXG3W/TbyMfjOWlt8j8GTp2xd14BB8/DEy7z3UxkPg5g69L4G5d6H69Dl1c60ACtsrJedDSCWnXnJ+6c9UgLrjbmTCrbpar0s5hkqmgXovHUYMg/q44bVqpXOz6n7LJidDWBji5grbcuCCSh6YthV4rHbmoCbHQrbAhR76wcAKasMOpGm47h3prBw/kwqpec6VibMww4I1RGEBEW7/8St2BWmPilueX5FhpQcp1oZ35IWuY+mzfjud//nvhPWsvuAcvLNzGLzxH/Jy48nK/BsAi8UbL+/ikIktJ5eR67eScFndlRNn7EzmnOHrigwruwuse/0e+s/63nmGVSG+vnDnnaiNW1FxSahDMbrEum/fU9uwAujVC/H1Qn2dXulQ9XUGcla7qhlC110HPbqhro+Dddknvh/rQI2LhXgr6rkXqjFxkzMGHx+46irU/AzIr/hGrT5IQaxgeT0ZhngjfzVHvohApochi5tirI2EznnI8GHw008VrsvESYjU7GXiNEzjqoYorJy7fxdB6fGkemhvgy03oMyxq8LPIdo3hJFL/zjhvUMRjdjYuTX3fvsz2Yk/Uyg44uvXB4ul2Es1ZfFKfDLtHLq2ifN3pgxSfznCRWM20yZezyfBS/HvV+9y/v1v1cn2Tyu8vFA33gILMuBwXvnjttp1jtmku6pmUNpsqGXLoU0XLKMOo4YchbeTYdYx1G2xqB7RsNcVtfwn6NjReftjclqiptwDh3JRTyaAUc4Nd14K6pcssFiRsb7IO6En6tS1ckM+DIMLbMitN4Gj7lMZTOqX6OhoVq9eTVRUFBs2bGDDhg0nvY4lS5awYsUK4uK0hqTdbic6OpolS5YULWuImMZVDVFY6BS9l6hGxS509zz/cgYrfm3ciS5RJ3quAN68azQprpmkZWutLovFAx/fXoAOBb7w4SImLVvFrkfakBVZwxynKnDswz2MvH0nIQVagftC3bCv+ZWOl0+o9W2ftjz+OPiFoa6MhU3HeZkM0QKc18ZCj+5wyy1VX29wMGrNH/DddxB6Aer9fNTb2XCwGerNt1H7DkDv3k7dFZPTlO7dUbNnw4dpqDExWowzV7Qn689s1O2xWB5LQPr1AxHk0Qr01VwU8lgg6tBRWFY3au1nNA3Ic7Vnzx6ioqLo27cvnTp1omfPnoSGhrJw4cKTWo/dbicqKooFCxbwxhtvMGPGDJYsWUKnTp3qpH9wdTFzrmqIQuHmyOPfgOIka/dyPFcA2S7uuOWV/QR3uEkIV97VivzsfwC490+47OtP8cu2c+6/B8n3sPLPs+04eH3t5syIYZD17Dau+yipaNmWDv60+Hkz/uEtanXbpz2NGqF+XY0MH4Jl2E6kkyec56YNq19zUf9lIwP6ob5adPJVfVYr9OmD2r8fOZYEsTGQm6Pb6xw5Un9l8SanHhMmoJo0QZ79H5abNpZ6S9q0hHffgM8/gYs8K5ZsAOhkQzp4or79Fi6/vPbmfKYj1Lziz0n2ld1u56effuLWW28ttTwyMrLIk9WpU6cqrSs0NJSePXsWean8/f1p27atcyZai5jGVQ1RWEn0CUDlFreCcM8tv+1Ny7QYEoLKrurKyo7nv+ztAPhYrNwY4E9IThL5Nis7x7fjyMgw8r1q9yfLz3HgMnEDY37LKlq2dkBrei7dgptH/YqWnjY0b47a+jcsXw7vzYG1O8FihV5d4aM7UBdcUL38smXLkGvGQnY2XOoF57lAWibyxbuo6dORO+5ATZ166lZbmtQtQ4aghgyBLVtg2zbIz4fWrXVhicUCc2ZAhyoGP0IVpKbW7nxNGgx79uzBz88PWxmVwO3atWPbtm1VNq5AG2W10Ru4NjGNqxqisPJbx+602PZl0bLycq78cjK56EgU799YduXMwaMrKHx0uKJzcw5e34KyNedrh5wkO42v/5NeO0tUBE4YSL/Zy52fuH6mY7XC0KGooUOds75ff0VGXg4XeyKvRJb2JjwjyMepqP/NQkRQM03BTpMyyMiAgwe14dSsmW5LBXDuufp1PAFBcHRf5esVgRgDWpbv0TdxDg2lWnD37t1lGlagPU/x8fHY7fZyx5wOmHfMGqKwcszbl78iiy8cZYUFXQwHD29ZiMPNhR8G9jzhfXtOEglJ2wDwdXdlRIe6LZfP3H2Ms4f+XmRY2V3gj1fvpv+7P5mGVUNHBLn7DuhuQ94LPTFM46bgFn/kuWDUrFnaC2FiUsg//yA334w0Coazz4YOHZCwRnDXXfDvv+V+TI26UjdvPlpBcQbAlhzU7mwYPdrJEzc5gQaScxUXF4e/v3+Z7xW2o0s9zT2Z5l2zhhTqXG0L1yEzJXDj9q3452QAYBGDC2K2M23tbHol7OLpR8eR6nei+vGhmN8oDJgP79AUD9e6cyqm/HaEvlduom2cPrmSPBV7Pp9J7wen1tkcToq8PFi4EO68E269FZ58EnbvLn7/2DH45Rcddtu+vf7mWVesXo3avgu5zx9cKwgnjvNDwtx17zgTE4BFi5DuXeGnz5DJ3hjfRmB8EwG3uCNfvo+c21mfS2Uxbhx4eaKeSyq/qjDHQD2XjLRoBoMG1d5+mDQocnJycHcvo6F3CU7GuEpJSSEqKqrotXr1aux2e02nWauYYcEaYilQaM+y6OTvoFw3btv9C5O2/0yqzRMPRx6eeTnsaNOU+x+6jW3ntDphHbm5acQl6BJVDxcrw9vXndfq2Md7ueK5aDwLHj73N3LFsuwHOnW/uM7mcFJ88gnywL2o2ASknSd4KfgmD/X880if3tA4Ar77FmXPLfqIdD8Xdc/9cO21p75WVlmsWIE0ctcCjhXhqmCEB7Lie1PM0wQ2bkSuHguDbMi0RuBe/Kwt53vAXQGoW+KQy4ejNm+FNm1g/344dAjc3eHss1Fz5yFjx6LyQB4NhFYl9P2i7KhnkmFLHmrFAjPXry5wkvcpMzOTOXPmVDquW7dudO/evdJxJSk0uqpqHKWmphIfH18qRysuLo4FCxYwbty4BhtaNI2rGqKw4iCbPHRCe15wBKM/voG+f/xNYHI6ue6ubDmnFbvblm8wHY5dhYjWyBrSLgIf99pXXxfDIPOFKK75ILHIfbm1nR+RKzcR0OREA7BBMHs2TJoEl/tg3NMM2hc8GeUYyNIM1NPrYf06ZKI/MqYxeCjYnoP6aC+MG4esW4eaNu30M7AyM8HfWqX9En8rKjOr0nEmpz/yyssQ6YJMDy1uZVMSLwsyNxR1wWGYPBnJzkCtWlv8eR8v1PgbUTNnIk8+huXCaKS7JwQrOCKov7O0QvtPn0GfPnW4Z2cwTjKuRISMjIxKx+Xm5lY6pqYML6M/ZWhoKKGhoaxYsaLM9xsCpnFVQxQW7BQ3Uba5B5Lm68XSwb2q9PncvHRi4rWoqKvFwsizm9XKPEti5Dqw3LGBq1aWqAjs15Iey7bg7lV5U+F64b//kLvuhJv9kOdDShsS7hYY7Yv09EANO4T6Lw9pXfAE3cQVudQbmZ+K5eEZ0L69ziVp6OTnw5o1cPSo7r13/vnQuHHZY0NC4GguZBvgUXGkX+3Pg0bhtTBhk1OK2FgdEnw2qGzDqhBPBc2UDrGf54UxMww6ukO2gfohE/nkPfjCC7Xke/j3X9TSpUhaKqpzMDx3pS7YcDFvM3WGk5ovK6Xw8qq8ebeb24l9cisjJ0e3TaqpxykyMpIVK1bUaB21iXnU1xCFlSwSiv622YJP6vOHY37DMHRMbnDbJgR6VBynrim5yXYajV9P7+3FSai/3diffnNXNuzE9TlzwNuKPB5cvoemqStyT6BWlo5xQOMSh/d4P2SjHV57GTVpUsMNUeTnw9tvI9PeRkUfLlosLlYYORL1zLNw1lmlPzN2LOrxx5HvMmBsBcZxSj4syUQ9eX0tTd7klGHHDlS+gfSvRIz4szTUX3aM/wXDxNKFOtLJBhP8UdfF6obrO3bDuHFmyPk0wMvLi9tvv72+p1EhhcZZXFxcgxQTbcB301MDhZXsksaVe1CVP5ubm1bktXKzWhhzTnNnT68UWf+m0H7YH0WGVY4Vfn9hIv3n/eocwyonBw4c0K+CpxNnIZ8vgNGe4FnJPK/0ARcFy050acvNfqiDRxpunzOHAxkzGnn4QeiVhrGsKca+VhhRLZBnAmHTMuT8nvDHce2TWrVChgxGvZaijcqyMAT1ZCKI9eSU302cQ14eLFoEzz0Hzz4LX37p9HPkpDAKXBzWCkwhQ1DTjiEjvE8wrIoItCLzQuFYMsyb5/x5mpwEgpKavZylIurn51duwnphrpVfFUSNV6xYwerVq8t872Rzt+oa07iqIQoL2cQX/e1xEsbVoZhfi7xWl7VtQpBn7XmtUtfGcOGojbSP0RfVZE/Frk+ncsFjs2q+8n37YMoUJDQYWrSAFi2QsBC47z6dAOsMEpKQyCrkovlYIciKSso/8b0uNsTTWrqysCHxzDPw3XfIB2HI26HQ1aaNyRAXuNkf+akJnAUyYqiuiCyBevd9sAShRsTAV2lgL7h5isBmO+qGWPg6HTXvQ2iAT3mnLSIwfTrSvCmMGoVMewGZ/iKMHYs0awKvvlo/DXPbtNH/ri+j0Xcha7NRB/KQCf4VryvMBYZ5IXNmOG16JtWkgUgxhIaGlmv0FBpdVfE27d69u1wj7WTWUx+YxlUNsWAtZVxVNSyYm5dObPw6ANxdLFzZsXltTA+A4B/jufyW7YSl678PhLiS+ssPdL7q7pqvfMUKpPM5yKezYbwrxufhGJ+Hw3UuyEczkM7nwK+/1nw73p6oY1VIKHAIpBmIVxlP5CI6J6Ehhj+zspAZU2GCH1xajhK+twWZ3QjS0uCjj0q/16QJ6o/10OECLHfHoc49iLr0KOr8I1iGHoJ//VGLFsE119T+vpgU8+CDcPfd0C8bY2UzJEq/jFWRMMQBDz+M3HZb3RtYkZHIoIGoD9LLl1HYk4u4K+hWeW6MXOiB2rvfbM5sAuh8qPKMopSUFJo1q1pucadOncpNWI+Oji5XBb4h0ADvMqcWOudKG1cuLl64ulStofLRuLUYoi9EQ9pGEFhNr1X0ngwO7cskJrqMCjARms87SI9JUXgWFHVEtfbFZ+PftDjPCZoz27cjI0fAeVZkfVPksWDo5wX9vJAngpH1TeFckBHDau4tGjQEFmWVfyMo5KdMVIYB/ctIxlyXjbLnwznn1GwutcGiRahjacgNlbjKQ11gqBfy/uwT34uIQP30M+zciZr8KKr3ONSoibBkCerfA6dnX7fUVC10eeRI/XiAKmLxYnjjDYznQ5A3Q+GsEud4WzfkpUYY74Si3n8fFiyo8+mpBx+GqGzU04lln1eGVH6+FdLAvvozEqH4N6vuy0m/Y9u2bbHb7aSkpJzw3p49e+jcuXOpZXa7nejo6BPGhoWFFfUUPH78nj176Nu3r3MmXAuYxlUNMXCQSwoAnraQKn3GkW8nJk7nzbhYFCPPql6F4LZ1yfy9/hibViVx78i/WP9zAvkO7d1RDoOznt7NWc/uQRWcMMkjB9N2SzRBzdpVa3vHI6++AkFoVfCycqG8LcgHYeCTD2+8UaNtqTvuREXb4Yu08gdlG6h3kpHuNl3RVGqygnovFWnXCvr3r9FcaoV9+7RWVfPKq2+kqzvsqyDc2r69DjHOng1vvgnDhjXcBP7qsnIlMnIEEhioQ1wREUi71vDWW7qNSwNApr6F9PSCW/zLH3SVL3KRNzL1rTqbVxEXX4yaNg31XgpqeEE4+WgeHM6DT1JRc9NRecBflee0qLV2pG3L07cyMDVV52ouWqRzHg0nleU5mwYSFrTZbFx66aWsWbOm1PLCnoPHN15esmQJX331FVFRUaWWt23blqioqBMMrIULF9KpU6cG3cD5ND0T6o6cAsMKqh4SjIn7A0e+znXo1yKMYK+Td2uuWRZHoyY2hl2v9bNEhBcmRXHrY20YOiKU8x7cQaNfk4o/8OSTBD7zjPM0npKT4YvPkQd9K04y97Ig47xgxseo118H32pKPfTqhdx4I+qh+UiOwLV+pUvID+ah7onToYxvIkp/VgT1RjJqeQZ8PKth6ly5uEBewQWusvk5OH1vYpUhAk89Bc8/Dx08keeDkLZukGagvktAHn4A5r2P+mklhIXV3zyPHEH9sgpjWuX5IDLeB8tNW2DnTujQoQ4mV4I774S2beHVl7HcXazELkrB0MsQYwvq/VSkZwUCtTEOWJqBeuXp2p9vXXP4MDz/PLJgPiqzOD9NWjRD3TkZpkw5c8/FSmjbti3u7u6sXr0af3//ohysMWPGnDA2MjKy3Kq/gQMHsmHDBnbv3k1OTg52u53zzjuvQRtWYBpXNcZOctH/PW2NKh2fn5/D4dhVAFgUXFXNCsEDuzJofY4PoA2rK26JxHAIi+ZEEz77AIPiC+KALi7w/vtwww3V2k657NqFyslDLq5cC4WLvVCvJcPevdCtW/W2pxTq3XcRV1csj76HvJkKg23a97rLAeuzdOWTmwW1MA3JKtB8+icHNT8DtT0LXnxRt+xoiHTrhjqWi2yyQ/eKldbVimzoWkYj3dOVrVthxQrtkdq9G774AmO8L/QtqB49xx18rchl3rA7B3X1PmTYZag//6q/G19MjP63fRXC/e0LvJVHj9a9cQUwcCBq4ED47z/9/VosqLPOgqZNdQXgzTcj093gzoATDf9EB+rGOAgOhhtvrPlcHA5d1DF7JmzdrD1Erdugbr1d5wtWQXvJaezahQzoB45UZJIXMrIR+FngvzzUghTkkYfg15Wob76Faug91QoNLDQeGRlJZGRkpeN69uxJz54n9twt+f6phmlc1ZCSAqKeHpUbVzHxf+BwaDX3vs3DiCijz2BF5DsMcuwGibF2UpPyaNwMHLmCq7vipgsDaT59P29l5NMWuNrfH775Bi666KS2UbWJFFTjVVTKXYhLwZiaJru6uqLefRcmT0Y9+CDy7SpUeomnyZYtUC3bIMs2Ypl3RC+zWGDYEJh6LwwYULPt1yYDByItm6FmJSPv28r3Xm21o9ZlwudOKEZo6GzYgNw7GfXHesTLBXxcIMEOCtTHaaj5OkQsngpG+yD3BEI7d+T9ECzDtsKSJXDFFfUz98K+ahlVCB9lFNwQ6zsxt2VL/SrJTTfB/v1YnnsOWW5HbvDWxmy2oL7PgE8zwcUH9dNPEFCOXENViYnRRvHmbdDDC7nJBi4W1IZdyG0T4OknUcuWw3H5OrVCTg4ydDD4piMLw3XFbiHBLtqTd4U36sYfkYceQr39du3PqSo0MOPqTMbMuaohJTWuPCrxXDny7QUNmkEBYzu1qPJ2jILEUmVReHq70KSFJ0/dsIXkhBxc3S34L4+j11WbeDIjnyuBuy0WWLeudgwrgJYtdejgrwpKuQvZmK2NnObNa77d/HzktVe1YvTZFoypobrZ7NzG0DoBWfETtGoNGzbAtm2ouDjU4iUN27AC7S149kXU9xmol8pphLs7B3VzPNLlnPozGuqKVauQ/n0hIwrj/cbIzubIlqbI9pbIsyFaX6mZC8aSCOSOAFieiRpyCPbmQjcPpLsXMqsepQHatUNCg1FL0isdqr5LR3y96sZoqA7PPgtLl0LAeVgmx2G56CCWIYfg4zzU+DtQG7fUfO7p6cilF8PRXRhLI5DvwuHeQLg7EPm4MfJHJASmIZdc5Dx5l4r4+mvUf9HInJDShlVJLvJCpvjDu7OhjMRtkzMb07iqIVnoRDulrJUKiB6O+a3Ya9UilGb+VfNa5djzWfReNN/NO8jr9/4DwFV3tODcPoHcN3IDIe9Fc/6df+PI0t6kd88/n54DBvDkJ59Ud7cqp0kTuGwQ6sOMiiuKDEF9mAmXD3eKvpI89hgsWIAxMwxZFA5jfOE8DxjirfWhlkTAjs3IU4/rqsDgk1PMr1euuw5eew017RjqwiMw6xj8kglL01G3xaIuOQzBrVDf/9hwwhC1QUYGMnokdHdFvg2Hod666TSAnxVu9UeWNQW7oKYeg/uDkJ+bgZ8Vdf1RyBVkgE2HleoLNzcdyvoyUyeIl0eCAz7NRN1wM3iXI8HREBg6FLViJRw8qBO6N25EHY3TBQRNK2g0v3cv3H8/0ioSCfJHWkXC/ffrCs+SvPce7N6NfB4K3coIizd3Qz4LA5cs5NlnnbtvZSDvzUYu8IZ2lYR1x/lpgdhPP631OVWJmlYLmjgN07iqIYUaVx62YCyW8iuy8vNzOBqnm55aleL6LlVrjpyV4WDdjwn0GhjCxaPDSU9xMP78NWz9PZnr7m5BSwPGv7gXZYANyBo1Clau5JGnnqJ9+/Y13r+KUA88BP9ko55NLNsdbYhuRbPHjrrvgZpvMDkZpr4N9wbAFT5lj+lqQ94IRi1fAX/9VfNt1jUPPKA9jr2vQL2ciuW6o1gmxMK/Yag339ZaVuX1GDxd+PRTOJaKvBFcfq/ESFfksWDUikw4kAuNXJA5YajoPPg+Qyc8OMoQkq1LpkyBoDDU2FjYU0aD2wO5qKvjwNUPHnqo7udXHZo21X0uu3UDzwpkZ0TghReQdu2QedOgfyoy0UX/O28a0ratzoEUAcNAZk+HYZUYM0FW5EZv+PxTfS2oTfbugfOq8ADTyAVa2rQR2RAQo2YvE6dhGlc1RNAXcE+PiiuT4hL/Ij9fV0sMaBVGY9+q6WEt+egQ4c09aNLSCy9fF5776FxatPfm/Wd34/7QDmbE5uALdAPyHnoIz4ULwcODhISEKrUXqBEXXYSaOhU1JwU1MgYWp0OiQ78WpaNGHIV5aahZs+DCC2u+vfnzwXAgN1ayX4O9kGY2ZNbMmm+zPujVC7XgE1RKqvYUxMejtu/WYpQN2bvhJGT+PBjgBU0rUeQf4Y34WeDrgtBbe3ektwfqk1TUxlxo3br2J1sRISGolb+BNRxLv2jUNTEw+xjMPoa6IRbVOxoyAlA//woREZWu7pTizTfhiSfgngBkUzPkhUY6xPdCI2RTM5gSAI8/rj1fR4+i9u5HLq+CJ3+kD8qeC+vX1+78LUoLElcFBw1EmLiGMgxObH9jYia01xBF4cHo6VE65BVwLJ1hP67ngnXbcc/Kos+1KVBw7bi8Q9V1rVxcFI48vQ17dj42Dysvv3wWUy9dx7Q0B68AP1itXN6yJcO3bWPcp5/i7e1Nx44d66ZU9a67oFUrePkFLBN/L/WWXNQX9eMTMHCgc7a1dSt08oDgSg5bq4J+brBtk3O2W194eFQccmkoZGbCn3/qar7gYDjvvJpV6R09DEOr0OrIwwKRrqgYR/EtoYdNa6HFZaPmTKz+HJxFq1aobf/oXoKzZ6De2K5vYu3boubcCddeW7cVcHXBsWPIE4/BBH/koTJSJTwsyMNBkGnAE4+h+vXTy32qYKB4F4zJrkKuZ03o0k13lnikEmmU/bmo/7Iabr6cSb1hGlc1oti48vIoDtVcvuwPJs9ZjMNiYUX3DnzdxkaMl9acuuxf6Ls8lUPXlhPWOo60lDzmv/4vL3/eHZuHFbetqfS+I4qL0hz0BP5ntfLH8uWsueQSvvvuO2w2G6GhoXWrAXLZZajLLoNdu/QL4KyzUM6eg2EUVx5WhlU1XKG/04X4eB36+egDVGqxcKc0DUdNvFPn1rhXQYrgeGw2yKw8ERzQN2hbiWMiH0g1oHGoNlwaAh4ecMMNKGfLoTRUPvwQ8h3I3RVXD8pdAagP0+Cnn3TBy95c6F2JR39vQXi1uqHxQqmH+R/C4YNg80D16Q+3316q4EZNvAOGLkPWZVc4J/VeChLohypDu6nOKVRor+k6TJxCQ/BlnrIoii/qXp76ZB+2/E/un/ENnw7owfnTH2bKnWP4tG1xfkD3zA6c8/guIr48UuG6pSCH6aaH25Acn8uLk6II+S2R/uM2o2JysAC/Nm3Kbm9vXirILRoxYgSXXnrpCa0F6oz27WHkSP2qDeOuTRv42155ebsIbMiDNrWbc3ZGEx2N9OqBfFzQU/K3Zhh/t8BYGgF9MpBnnkQGD4SsMtoyVURiIso7AL7L0KKqFbE9B7UvD+lVkAAtAj9lguGiS/ZPN49QfbJvn+6DOHgQcuklcMcdsGVLmUPll5VwgUf5VXaFNHKB3h7In3/CsCGoBZmVSgmoj1N1Uvx55538PmzdirRpCaNHw+FfoP1+aLQdmfkG0rIlMmVKscTM4MHIed1RkxJhZ07Z6/swBTUvFfXI49qAbgg0EIV2E9O4qhGCvslbLK7Y3APxzLJz53vf8dlF3XnmhmGkeXuQkb4NR572Wtk8WrLgyutY2K8r7f+3B2tG+VVESiny8/XBfs+rZ/H3qkRm37QVl8x8bIC9e3d8/vqLH376qahBppzuJ8dNN4HdgIUVtMAB+NOO2pGFmnB77c0lKUkLLL76KsyceWL10+mMYSAjhkJ+PPJjuO4p2c5dh2u7eSBvhCJfhsOGP5A7J1V9vbt2IV07I1GbUEn58HkFv7OIbnUUZoXBBXlov2ej9uSiZr8LXbrUaBdNCrDbkRvHI23aIO++BZbfwbYeWfwBdO2KXDIAEhNLfyY7C3yr6GH2VZCVgbp7CuqfLJidUv7YFRmwOAN11z0nn+O0cydyUV/wTcJY0QxZGo68HorMDEO2NEOeDIIZ05BJBcerxYL6bhmEt0Vdehg1MRZ+zIA/s3VroMFHsDyaAPfco4tQTEyOwwwLOgFXF2+UsjBo5SbccxxMHT0AlELEQUriyqJx/kEXgVK8M2oAo1dvpuf1W1j3VY9yhTitVgX5wuXfx9Eu2+BqIBB4bdQobB9/DJ6eWA8fLuoKrhpiWxdnEhEB112LeuFz5Gx3KKslx8E81JRE5NxOqEsuOflt/PcfxMbqJ9Gzzz5R8iA5GXngAfjsE8jJBR9XyHKgHIIMGoh64y39udOZ5ctRUdsxvosoP+n8PA/kkQDUs5/ACy9BeHjF60xJQQZdAp7HkD+awWvJqMfjEZsWCMVS4tjOMlAvJKKWZGDMCNWh4u05qEkJSO/zUOPHO29fz2QcDuTKUbDyJ+SlYLjKt7h60yHI8gzUo78jF/dHrflDt7bKyUHZc5GN2ahJMbqKc5QPdC5DIFUE/jVQ3cLhkkvgscewPPsisicXuc0fOhSElA/noeanwqxUGD5cF3YcT26ubpS9dav2PrVuDWPHgk9BF4t7p0CwA1nYGHyPq+r2tMCkAMTHguXB97TSfO/e0KgRau06eP99ZOY0LIv36XUpBYMvhRcnw5AhTvmqncbp/oB9CmEaVzVCH8hWq75w9Ny0i3VntyQuUFezpaduxOE4BoCHZ2s8PLX68dGQADa0b8F5W/fT7o197H6oNfn5oo2pEliz8ul87z+E/ZRAC2AhMNbVlbyICO6OiSEgIIDk5GTuLutic5qiZs1Bog+gxvwBV3oj1/lBMxdIykctTIdPMiCoCWrx0qo/3YrAZ58hU99Crd9YvLhREGrCRLj3XggKgoQEpO8FEB+N3O8DV/tqb022gSzJQE1fg/Tuhfr5F+jRo5a+gfpH3psD53hC90oUxcf6wispOgfnsccqHjt3LsTGIL83g3BX5JVGKIdgmRyHvJ0MV/ggAVbU/jz4Mg0yDYzb/cHTgrotFn7IhE7noL5d0kAqt04DPvkEtewHjE/D4aLjQqwuCob5IGEuqCt3wi23QKdOyPR3UPFJ0M4N4vJhvR3LuylINxsyPbR0Y/JNdtTOLHiroCXV889r/bznnsby+UEk3Ka3c9gOXp6o+x/UY0o2IReBGTOQF55FxSYgER76rnbQDvdOQd1xl853+3EFxjuhJxpWJbnWF5mRBjNnoHr31su8vGDKFNTdd+s+g1lZqJAQfT1oiJjGVYPBvAo5ARerfsKy2XNJ8dbJjyL5pCSvLhoTEFy6Yi7Zx4ujYb5snXsQl7Q8rFZVpMIO4JaQw3nXbCLsp4SCbVgZMns223bt4lhKCl9//TVz587lwgsvJKihnui1gacn6sefUf97DtZ4Yxl6CMs5+7H0PwifOFA33YVat6HqVXaGgdxyixbwtO3CeC9M5w8tjoBhDuSdV5DzusOBA8gtN0FSNPJdY7grsLhq0cMCV/ki3zeBNoKMHA4FTUpPS/bugp5ulTeY9rVq70NlGkAiBTpHXhBR4AlzU0iB+j6dbfBBCur5RPgqDdINlAGWOSlYboqBvQUaYKt/h5AQ5+yjCTJzGtLf+0TDCrRG1w1HUSMPQ76BfPOVbqh9fg7Gqkjkt0jkmwjkr+YYHzWGY/moEYfhYEEqRFo+6rFkpG2r4mpipeCOO1AHj8D06ah256NCzkINvgz1yWdaF+v4KtTHH9eerItyMH5thvwVgayLQDZEws3uyJuvI2OvQtytMLwSGROLQq70hKXflfGeBZo103mlZ9L11qTamJ4rJ2AtMK5Sfb1odlTnV2Wm/0O+Q+dCeXi1w91WWscmMj6Jb4K9mRObRp/J/zD8w3OxWLSB5bs3kx43b8XjqL5Bi7c36quvyL/kElparbz77ru4u7uTl5eHq2sVStbrkowMOHZMu+P9/WtnG+7u8NhjqIce0hIASUng7Y06//yKhQ3L4oUX4MN5GFNDtdp7CaSnB9yeh7oqFhk4APXvfoy3Q6FVOeKC3hbknWAsF0bDV1813CbRNcVihfwqPiHnU7knKSMD9e8BjHuPU/BXSocXzysR/s0xsDTfB9Om6ZuypycqIqJyQ6++2bdPe/D279cGQo8e+viobS266hITg9qwCWN2Gfp9f2ajrj6CyhGkiYuWv/guA7neF3mlUenfwqrgUm+kqw017DDq/jhkvB/qjVSIc0Gt+qb08REbi9w+AZYsAy8XiHCDrdtRI75H2rZEvT0dLrtMj12xAl56CeOpYJh0XGViE1fk0WDo4YEavx0CXMsXpC1JsBXSChLrG/oxVRZmhXSDwfRcOYHCsOCvfbvQ+b8jtDtwlNRja4re9wsoLaB5zn+HOftADGs7hXNFIy/W/5PGwtkHAGi0NpleV24oMqxo1gy1bh0MGoS1wB1uKbgYNRjDSgR+/BEZMQzx9dVPeAEBSK8eWvgzr4L2HzXBxUWLk15+OVx88ckbVllZyJuvwQT/EwyrIpq5Iu+FoP7dj3haYUTB02+iQ4umfpqqE12zCy5qrdyQPt7Ih3OrvVsNni7d4Lfcysu+4x3wd3blGkCFDb1dq3AzK5TisNmgXTvtoazoJiii1byPHoWccqq+apOUFGT0FTohfPoryL7FyD9fIVPuRpo0hueea5ihnMJeeWHHPX8nOlBXHwY3hTG3MbK+ObR0Aw+FPBlc/m8R7II8EIham43ltlgI7Yr6/U/o1Kl4TGwsckEvWL8CeT0E2dYM+TUc2RihPZiN45Bhw2DhQgBk2jvI2Z4w0b/8/bjES3s+U/MgrXLFfnXYAUH+p6ZhBWa1YAPCNK6cgEuBcbW219nEBfsxbPlCcnNiAHBzb4LNo7hBs3tuHk9+vIyoYG/2dQpnpJ8HN7XxYu33cayd8jfdb96KW4ahs7m6d9eemY4dWbFiBQ8//DDQgIwq0CGdyZNh8GD471fkhWCMBeHaE2TbBTfcgFw2SHu0GhoLF0JqOnKzf8XjzrEhPTzAFUjIR90Rg+q6H8vEWCz3x2O5Uf+tnk2ALAPOdtEaOnVJSgpMnYr0vQA5uy3Sq7u+ccfEOH1TauIk1IFsLXtQ0bh5qeDqCpUlmPv5IcEBqL+qEErdVDCmVSXtozIzYeZM5JyzdBinSRPEzxe5YTxs3FjxZ51FejoyoB/8sgx5IwTZ3AxZ1FhXqm1sDjfadCjtnnsa3o2t0Osc4yi9/NF4cIB82QSGeGvP1JIMuNwHfCrIZwIY7o14W+Guu1Cr1sJZZ5V6WybdDhmxyJLGcK2fTjSHYg/mJ43hcm9k/PU61LzsB+R6r0oNIZkcAAbwVSXaaXkCX2ahxlxd8TgTkypgGldOoDAsmO9i5emHruPzVvFF7/kFXKir+ETo/c8+Pnv+fToeOMrcZ4bQvEMY5xw8Ro9eAdwY4Mry7+JYUBBuUSNHIr/+WiSW53A4OHLkCEZDc/s+/zxq+nSMl0OQFeFwkz9c7AVjfJHPG2N83QTWr0Guu6a+Z3oi27dDpAdEVm6sSj8PyMpHDTkEG+zI48Fa1+lIa4zfI/XN4KNU1OjDkGJUTzyzunz1FRIRjtx/L3hGwfkJ0Hg38vKzSLOm8MYbzr15n38+cskA1L2JsKUcg+jrNJh6DHXPfZWHhy0W1M0TdJPjzIqPbzUvFWndHApVvcsiJgbpfR4y+S6IPIIxKwzj43BdhPDbQqRnT3jnnYrn5Ayefhr27kS+bgzX+JUOS4W5IE8EY7wUAlOnwi+/1P58TobGjZGe3VCfl3goMgS1Mkv3AOxSopjhWD4SUYUHPncLhLuXTkgv5MABWLwEedCv/ApUq0JeCAYcMGcOyjCgTRX6/xWEldXbx+BoBV70acmo+ByYdBLyIQ0N03PVYDBzrpyAi7U4HLW2qYN/CnQT2yXC8pnLSfb7g0Yp6UQkpLC/eRAPvT2a3R3CGPPZRqz5Bi3+Tmfi6mR8gbcAn+HDueKrr1AlLkJ9+/Zl8ODBDUtuIS0NefVluCMAbvAve0xvT+T1YCwTl+pGys6ootu3T4d5bDbo2LFuBPwM0cWhIVbkqwgIKnGDaOmmQyKXe6OuPAK781A3VHDzdyaLFyNXXaX77D0dVjqMk5qPeidZ6/AoBffd55xtKoVa+DUyZBBq+F8wyBu50hsCrRCdh/o0A7U+E7nxBu09qwqTJsH0qag74pA5oWAr47nv41TUt+kw69Xy87hyc5GhgyH+X+TnptC+hJF7iRdyRwDqxSTtLQoNhatryUuRlYV88B7c4A1nVWBo3+CHfJgBM6ahLr64duZSTdSdk7Xn+ZdM3etxfx4qWzCOD6F7WVBJ+ZWLexsCyY4ieYRSfPkleFphVCWdKwKsMNwLWbpYSzinVeFhM8NACcgxB2roIeTFRjDQqzjEfDgPNfOY9rQ++yycc07l62yIiDhBod00sJyF6blyAi4u+ilORIg+vLxo+YN/ubK7aziJrbzZ0K85979zJRPnXcfuDmGcu/EgN3ywDoefK6ErEwkCxirF1SNH8uyhQ6z54w8A/vrrL/Ly8vDy8mpYhhXAJ59AdjZyq3/F44Z5IxE2ZNas6m9LBL74QudktG4NfftCz55IkzBtNBw9evLrPOssiM6GQ5XnhKklWSgHyMyw0oZVSTrZkMeDdP7VqFEnP5+TJS8PmXQbXOqFzAw9MT/Gz4o8FYLc7o888rBuV+Ms/P1Rv6xCvTMNosOx3ByDZeRhLFPiwLMbLFyI+mBe2V6KsmjeHLXwa1idixp8FOanQoIDUvNhVSbqplgsD8Ujd9yhW5WUx6JFqC1RyLxGpQ2rQqwKeSIIGeyNPPVY7SUA//wzKiUdua6cXL5ClEKu84LFSxpehel11yHDh6JujoN5KZBYkLMUfNxverGnzj/MreTG/GsWKjEXhg498b3YWGjsVhwKrABp6QrJSUiblqjvKg5NA/BtOmJTyI9NIdCK5eYY1Ln7UWOPoIYfRZ0XDV874O23dbPpUxgRo0YvE+dhGldOwGrVnpOkY/+QnqlzbVp4e3JljAt91u4j3dfGz4M6ENfYl85bD/PIcz/wwkOLsFjBPamgV5a3N42WLeO6adMYPXo09913H5MmTSIrK6th5ViVZNMmrXfUuAqNlAe4w+ZqdrIXQe6+W3sZLNsx3g3DWB2J8UNTuMaKzJuO9OgKO3ee3HrHjAFfb9QHKRWP254D+3J03lWHSsJ9owuEFjdsOLm5VIfFi1Ex8chDgaVFNo9DpgSCVbSWlDOx2eDOO1F/74SDB2HHDoiLQ/2yCq688uSTgocMQa35HdpdjHo0EUun/Vja/4fl6qNwqAl88AFq+vQK1yuzpiO9jwtbHY9SyER/1N79sHJl+eNqQpKuGi43xFWSZq46xFWYRN5QsFpRX34F14xDPZ6Iuj5WLz/uYUTG+6ES82FuSvnrshuoN1OQczuV3brG01Mb0lXwnKi0fPDwQE26C5ZmwO4KChWS8lEfpsIVPnCWDVkZibE8AkKssDoL1XgAauYs1JFYmDLl1E1kN2lwmMaVE5g0/xda/XuYA4eWFS27rkdrNizqQew1jRn64z/MnPAZC676gFfv/YYuOw6AqwWrveBJISIC1q6Fyy4jIiKCyy+/nAMHDtChQwf6VZRbUt84HFWr8AI9zuGofFxZvPMOasYMjFcbaYXl4T4616KLDXkyGFkVAZ7JSNdOOn+lvOT5w4d1OfyMGfDFF2AYqHvuh3dTYVE5ya6H8lAT4sHmCl2rkEflbYH2Hrrkvrb54QddLVVR2Al0KOUSD+T7Jfrvbdtg4kSkZVOkUSDSsX3Nkt+V0lV7HTpAo0bVW0ch3bujFi9B7d8PixbpcNH69ai/d+j2R5Xd/DZuQgZWIm4K0NOG+LvpB4TawLugqjSp8gq1Io9QWeGy+sZmQ837ELVvH+rOBxBvD9SC49oStXPX4dbnEuHt5BPz5vbnom6Igx0O1IzZZf+Gl1yCSsiBP7Irnk++wHd2uHgQTJgA7dujro6DjWV87kAu6uojkCvIPYHFyzvZkJcbgZdVH/OGcfI9MBsqhtTsZeI0zJwrJ3DunkTaTpvKh9fpi0rHUH96NQ0hTyl2PdaGPfe1xO/vdKxZDg6uOszlHyViLbz+nHsuLF1aqj3Itm3b+Pzzz7m4geVgnEDLlvBNjr6YelVip2/Og5ZtTn4beXnIKy/Ctb5wfTmaQI1ckPnhqAuidfPVF59DLfm+OL9rzx7kkYdg8RKUYSCuFlSegXh7om64Ca4ai+WOz5GFGcj1PtDaTQtVLkqHLzIhuDFEWCEvueztH08uukqutklPh8AqGrdBVjiYitx5J2rmTCTMHS73QPytqAMxyMvPwvPPoeZ+0DD0uZo106+TxZFfNYNfKXCrgcFfGQMGIO6uWvT0zsAKh6qvMpF+F6IacqPpFi3gpZdQrVrBhAnIjxkwqFiUUx4PQllBvZYEM5L1e74W2JePWp2hq0F/WALnn1/2+vv1Qzq0Rb11ROuauZTzG36ehjpih7vu0tp2P61EBg7AMnwn0sUdGegFVoXakA2/ZkFjF13Z2KzgfFyXjXo6ARWVg3gp5MAWmHIXTJkMV1+NemcqBASUve1TATNnqsFgeq6cQIoK44MuxU9rw9s3LZUfZdisJHX15fB3+7lyXiKuBUPzhl4Gq1eXMqwcDgfDhw9v+IYV6B5cmfn6BlIRW+2oLZmoWyac/DaWLNFtLSrL62rhBgM8waagSRZy6cWwaxds3Yqc3xM2/4i8GISxpyVysBXGxuYwwYbMfxd2/K2bL6e30blDfaOxDD0E3yrUnffrlji9+8LPOZWLZx7Mgx2ZddP+JjgYDlYtlEJ0PiSnwuxZGC+EIBuaIk+HwD2ByNuhyOZmcIUHMn689hidqrSMRG2uQu5SdB4k5OgHhNogKAiuvgb1fobW+yqPXzNRf2bqENepwE03IZcNQt0SA9OTIaXA62ZRyORA5L5AyBb4IQf+agxuPWHePK263r9/+etVCvXOdC1QOjFO68iVxCG6oOGRROSmm6BrV708LAw1cDDiZQVfC2pOCur1JEjNR95ohKyJLPbsrsxEjT0M7gpjfmNkdyvk75bI1ubIY/6w9AukT28tgnw8GRk6uvDzzyeffmByRmJ6rpzAy2ddxoYO7wMQpKz0ala6BUdeZi7eN69n2Ibi3IBVIzpz4VffgmvpUmIXFxf8nKHaLKINt+3b9d8dOujydWf2XWvWDK66EvXCIqSzrew8lzgH6u5EpF1rVMlE1pgYnaMjAm3b6nXt2QMffQSHDumGyb1767Yzga6V5zoB0tcT9WsWcrsv6sUU5InHYcOfEJGHfBkOfiUScZu4Ig8FwQhv1Kg9yC8/o/7arOcQG6uVvzt21HlFgJp0B3z4EbIsA0aUH75Rc46Bn0/tVaGV5KqrULNmIX9kwwUVCKgeyoPfMlBkYDwTDGXpevlZkTcboVIM5J67USNGVD0ZvSqI6GrRw4f1b9ujh67WczJq5JXIKy+httkhS8DPAkMLelCWyA1UH6WAvy+MHHniSvbt08egu7uuHPP2PnFMVeby3PPIih9Ro2ORqcFwbonzI09gUTrq0SRkyGDUlVdWaxtlkpysz6NNm7RnrlUruPnmyrXBqoLVilq8RHtAX54LryVDZ3f9mL4tB3JEh/gWf3fyVbwDB6K+/ga59mpUt2gY6oW0ckWlGbAkGxWTg9x8M2r27FIfkwUfwXU+yDMh8FkqlvviMRZGlJa+SM5H3R4DA7yQ9xqX9m4GWmFiAHKxF2rkf8idd6A+/Uy/d+gQvPwy8vFHqPTi5Hnp1gU15T7t5W1IeVoNTarnDMY0rmqIEkV0000YBefxpG1WXMYXn9T2oxk0v/4vuv6nn/DyFay9ZxT93vy69ia1YAHy/NOo3fuQAve6coiurnnsSe1xchLq3feRgf+hRm+Fa72Rcb7aBZ+cD1+loz7IABd/1G/fa0X1DRuQl1+E75ag8vWFQAAaBaPiE5FAN51PlS3wwVzwcAfJr1o7CgEUqB8ykAk+qKcWoQzB+LhZacOqJO3dkccCUA8t0lo7bdvq1/H06IFcPhx13w9IgBX6HGfMiMCcFNQHqfD66yevFl8d+vVDzm6PevoAssim872OxyGoxxO0ZyHAFW6owHC3KOTeACyDD8GyZTBiRM3nKALvvYe8/QZq557ixa4uMHo06smnThCTrPZ2Xn4Zefll8FTQywMauWhdo1nHUO8kI8+HaMmQnzPhvTTUw48W/04iWi/snTe1cnjhan28UONvhIceOvkwZdOmqN/WICOGYhmyF+nsCee66qq6lTmouBxkzGjUh/OdY8gaBjz5JPLm65DvgK4F4bUfc1AvvoiMGon64MOat9xxdUW9+67O05s7VxdvOBxwzzlwxx1V7+tZFpdfjjp4GObNQz75CLUuFjy9YMhoXTxx7rmlx+floRKSMToU5PoVtkpalgFXlqjU/DIN8kBeb1R+2LiNG3KfH+rphfD6G5CUhAwcAEYa3OKNMSJIn2M7c1Af/QvjxyNr1qDmzGk4BpYZFmwwmGHBGhKYJSSEbgHALxsmrypOYE3blkjXEeuLDKsMN9g068naNayefRauvx5axmN8E4EcbKXDYN9GQLsEnRT85JPO256Pjy7Jv+chWGzB0v8glpb7sHQ/gHonA4Zeq8NqbdrAwoXIhRfAjp+QF4Iw1kVi/NQUwqzgSMaYGopsaop82xj5MRz5szlcaUNlG/BoQqVTUWuztKciPh8u9wYEOd8T2lXi9RrlA94uulVPuStXqAWfwgX9sVx1BDU6Rre+WZ4Bs4+h+h7B8kwiPPKI8/SkKkMp1Gtvwk476vJDsCqzdFLqVjtq3FFYmQlWYIhNCzlWRGcb0tLDOVV0hoHcfLOWTmgZg/FlE4ztLTE2Nkee8Id1i5FePXW4paa8/jo89hhM9keiWiKvhyIPBSFvhyFbW8B4PyyPJKAuP4S6MUbLATz9tP6sCNx/P1x1FfCPrkZdG4mxohnc7IZ88R7S/VxdCHCytGmD+mcnLFkCLS6BLU1gdwvUFTfB1q26Gs8ZhrgIctttyMsvwSRvZHMk8m048lVjZHMzjDcbwcplyMX9ndctITRUf+fffqvzRl96qWaGVSFBQfDAA6gtf6NiElD7DqLef1/npx6PiwviYoWMguO+pZv2YM8+BvZiL45amAZDvYqbrZfHGB/dieHDD5EhgyAkC/mlCfJwkPaeN3XVvRI/aYzxViPUe+9pkV4Tk+MwPVc1JN3dFYdVlyZfv9kL31wtrZDyfTSDH9hLYEERS4yvhdSFC+h5aS0qlf/wA/zvfxgPB0HJ6hgoaoArM9ywPP+8Dss4wzMB+ubwwguop56CX3+FxESdbNqvX3Fy6LZtyLjrYJgn8k7x06O6Lw5yBFnaVPcoK0kzV+SVRkiYC5ZXkzCu9YVO5VSC/ZcLK7OgvZvOu/K1aoOicxUUnD0tOok9Orricd7eqGU/6LY5s6ZjuV9rkYmLVetazb1L62/VJb//Du4uYIDl6qNIhAtEuOoecP/mIREuyIJw1B2x5XvvjsfXAtmVVG1VhTffhI8+xJgWWtqLgBVuC0Cu80ONj0VGDEXt/hdCQspdVYUkJOgQ8ER/5JHgE9/3sWqvVaYBX2egnn5WG8EuBZe/WbPgrbcwXgg5IWQqHd1hQgDq2lgtmrp918k3JLdaYdgw1LBh1dq9KrFsGWruXIx3QuGq47S1PCxwjR9yjg018h/drPyll6q2XhFYtQqZNRM2/qn7hLZopRX1r7qqbgR8K0Ip6HMBaummorxMeTQIdcVh1M0xyIwwXS0bm4+MqEK1r69Vq8j/8gscjUW+iSzfILvaD9mSA6+/gpo8WYe76xMRpKZhQdPz5TRMz1UNyXXRhpV/tuLRtXZyItxJmbWDKycXG1a7ImzIunW0r03DCpC33kDO9YQpFVS73BGAnOeFvF0LT1vu7rrH4LhxOpelRNWNvPkGhFmRt0u45Y/lw6J0ZFLAiYZVSe4OQBpZdXirLGIdqJtiINwF/s1FLvSEf3N1mNBexYtFDlW7OLq4wDXXoFb/rvvXxcWhMrNQX3xZ94YVIB++D2O9kF+aae/kIG/9PfT21C1f/mwOF3npJ+49uZWvMMfQSfk1zYfKy9NNsa/1Pc6wKpy4QLaBPBUIWRk10+CaNw+UgdxVQVWeUsh9QbogoXHjYsMqPx95+QVkjG/ZuWgAQVYtShqfULF3sx6RGdOQLl4nGlYl6eiuQ/fvz6maYGlaGjL4UrjoIti8FAZnwKgcYBvceCPSpiVs3eqsXag26qZbUesz4Z5YeCcZMgxkXhj8Zdc9P++JBRFURhUMDxHIyEd2/K3PpUp0yuRmP1RcovZMNgTM9jcNBtNz5SQu+bcrodmbWB7i4NpXi9XC/+ocQvuft+ITHF7Bp2tIXJyuyFmxEmOgp843uMSr7BYiSiHjvbHcuVrnGDVv7rx5HDyoPSl2u66AHDBASxKkpsIXnyMP+ury90JWZKLsglxTiYq1i4JxfvB2Mmr0YWS8n/ZQZQrqu3T4PE17n/p5wLcZMNZXl4S72mCFHZ6T8ku7Qevw7MiEh3qd3P56etZNblV5GAbqSBzGWY2Km9ueV7YnQa7xRT2RoBvxViT6+n0mKjkXrrvuxPcOHYJ330VW/6o9W02aoq4frz2gLset84cfUDHxGDcdl6eUY8DCdNRHqah/dIGHKJDnn0F16QKDBp10/oqs+BH6e5SvnF9IM1fo4QUrVsAtt+hlP/6IOnQU4/2CcFZqPnyZhlqaoXtEeluQiz3hOj+dYD1nhvZSNCTS0lDLf8J4pXKNMbnOF8t7B5G2LcHFCuERqPE3wbXXlk7cz81FRgyFLesxPmqs28WU+F1kXy7qjgTk4v6oP//SYf+6JicHHnsMeXe2zrVckQn5mahUA2nlijwXrButf5qmf8tv0+HRoAoFd9lg17lwbseQ86uQm9bOHQl2R+3a5bz9MjktOO08V9HR0axevZqoqCg2bNjAhjpQynbPCyHR/TLWNYWhq4ufCFcPOZtzNxysPcNqyxakfz8kPAwefRQAy4os1O2xqI7/oV5J0lVJx3NOQWjt0CH9r4iu4vrnH/3vyRIVhVw+HGnRQl+kb74ZBg9GmjfVIYh//0Xl5MH5xxkiyfmIl6o8DwKQSFeUAUTnYpkYq3O7hh7SiapjfXVfv8/TkQcCYVcOfJqOun486kiOvqhWgJp1DAn0K8i5OYVQSieGZ1fhifwKH30Deii+7GMCIMaBeikFufgiaN++eLlhwMMPI82bI2+9DP7boM2/EL0CRo/WHowtW0qv699/ES8XOLtEKCY1HzXmCOrheGjigjEnDOOLJshLIdDMgMsuQ+655+SfoDPTwa+CG+bfdngzCfVMAiTnInFxxe/t3Il4u+hw8+J07el4NlFXkPX1hEgX1PRjqO77EYfArn8bXkVWoXRA0yo8Kxd6YlqmwLBM8PwHmTRRn6urVun3kpPh2WdRq9YirwXBpd4nGryt3JAvwsArR4dk65KkJF280DgEmfYW3GpD/mqObG+F7GyJ8U0ENHfFcm886qdMiDPA3Q112AGLK8g3MwQ1NUUfzy5WKm+WWEBVim3qClNEtMFwWnmu9uzZw+7duxk+fHjRsujoaBYuXMiYMWNqbbthaQE8v/p1LiiwSwxgzd0j6Pv2IpQzpA9ycvQFxc1NJ3sqBd9/j1xxOYSBPBOixfNcgI121LwU1Ho7MjUZFWVHPgwvXSFTItGTuXORmdNQm4uTdSW8MerKMfDKK0VSBOWyejUyZDCEg7wcjAz31oKiu3JQ81ORp5+CH5frJqvHn7zeFl0VmGVU3lMsKR+xWuBIPuJtgb4eSKgLKl9gYRrqmIExyV+32bguFvr0g2nTkGNJqIcXI/5W7c0rSb7A9GOoj9PgnXeqnj8ioiukduzQf599ts5hq+sLrFJwYW/U95uQCZUIH27IRuWD/GZHXRWD3OsPF3rop/hsA77LQL2WApYgXb1WknvvRaZN1Um9t/iXqkqUv+2oB5OQi/qi/lhfXPlntervt/DGI4K6LQb25iLfRUC3Et91X09kvB8yPxXLI1N12O6RR6r+PYSGw3/bT1z+tx31WAJqox3xt2iDKdaB+vc35JKLULPeLR77fTpqUiyM9EGeDtaVhoWk5qPeTsYyOwVRquHcSAspVHZPzK94XIkxcrO/NppAdyGYnIBccjF0OAt27UTlaZ0py+2xyIJU5PYAuPi488fTgozyQE3/WkuYlFVlW1VEtEq6q2vF4fkFC5DbbtXXRCvI502gd4mHNqXgfA+kVzg8ngAfpqLungyPPopMvgt137eICzDsOIMxw0A9EQ+/ZqC+no+8/AJq9W7ktkrmHWVHJeXqBvINAbM/YIPhtPFc2e12fvrpJwYOHFhqeWRkJHa7naioqFrZbusk+OmTvVxwWHusslzgr3Do59am5obV5s3ITTch/r7QpAmEhCBntdXl1qOvgH7uyKpIuNUfIl2hiStc7oMsikDuD9SenlVZqDdLK4urHzIRK8g1Y5Fbb4XUnYivnqsEWSEzDqZORYL9Yfr08j0JycnIyOFwrhVZHq4V1P2t2pA7x4a8ForMD4N1vyNuLrDquBYT/Tz102F5rWcKEUF9lQVDh6D27kVNvA822XQbjk/TIFchETbUe2moGVlwy0SdeO7mhnr/A2jfEcv1R1GDDsIHKdqT9VYy6vxDWF5Ogv/9D+6+u2q/yRdfIF3OgV69tIfu5pvhvPOQrp3hq6+qtg4nou64G/VnJqyvIAHdIagZqUiPrqifV0JGMyxjj6C6HEL1O4LqFI26Nx46X6QNpIiI4s9u3KiPhedDYErgiXIP59iQhWEQmo9MvrN4eZcuKHt+cTuT9XbU6mzkndDShlXRjii4wR+Z4I+8/ILO4e+ZnAAAF1lJREFUZ6vqd3DNtaiNWbCzRI+5LXbUFYch28D4oLEWi/y9ObKjJcaMUNj/J9L7PPDzQ2U4UA/GwyAvZHpoacMKtAbY/0KQCf6g0AUbDYnAQKRXD9TXVfjOFqYhhVIVoL2VryfBxkww8iFhB/KQH8ZvzTD+iMSYHgrZgmXcUZiWXPyZFxJR5+7H8s4xVL6BdDwLue5arWV2MuzfDw89hDQK0mFJd3d9fs2Zc+Ix8MUXuhJ6qJuuCr7Bv7RhVRKltO5ViLuWiQgLQ330MYQ3xXJbLKpPNLyZBO8dQz0cjzr3P/gqXX/uk49REybCLxmwt+I8RfVeCuLhBmlpkF8F47aWEUNq9DJxHqeNcbVnzx78/PywleFpadeuHduqU0ZdCRdGw5/vQ9tkfVDGecH+14PocUeILs/9+efqr3zWLKR7d1j5OXKPD8bH4RjvhkG7eOSF58HmQGaHlZ9XdX8g0sdDd7D/KKXYW3UsHxakwvkeqCMxcLabrrQb5YOxKhL5pyWyqxXG8qYwyE0bHeV1ip83DzIzkJkh5XueLvKCif56WgsytZeqkKaucIkXauYxnetSHksyUDuyUJPuhNat4bXXULGJqMwc1BdfoyY/hLrmbtTU6agjMbq5r7s7pKYilw9Dbd6KtLOBXVBPJGCZFKtvKIdy4N57dUl+VbwRL7ygxUFDojE+C8eIbq1fn4RDwH7dCPrVVytfjzO5/HKke1fUDUfLNrAyDdRdsbApG/XSq9CvHypqO6xZg7r9QdTQ21GPPauN1mU/lDasAJkxA4mwVayP5WNFJvuiVv4Gu3frZX37Iu3boOakauN4fgrSyvVE7+FxyAR/SMuAzz6r+ncwciTSJAz1WJL2wuUJ6tYY6OCOfNcULvMuzrlzt8AoX2RJOATZkWlvIyGBqGRDe+YqaoB9T6BezwcfVH1udYS6427UqgxYU0GPvKN5qHmpMNpHV8VF56GGHdJSHS4KLvBAfm8OdwVq+ZIWbjDaF/kuArkvEMuLSTAzGXXpQZifqq8ZXzbBWBSBPBoAfyxCevWqenHCt98iZ7VH3n0brhCM6aFaMiLsAHLHJN2M/eBBPdZuR+6ciFzugwzxQh0zdO5lRbgquMYT+fgjHcpdtgz13wGMO/3hLHfU+ymoF5Pg10y4NQBZ3xz5IAwWfavlKlq1QN0UB0fyyl7/nGOor9IhXMH11+tIQlUKBUzOCE6bsODu3bvLNKwA/P39iY+Px263lzvmZPHMg5/ng3uBTbAnEDzau9NhbKAuif00E2ZMQ11yycmv/JtvtBjfrf46RGEtkUh6qRfq53TtJaoolKYUcrM/lpt0M175ORPO89AaPw5B3giFsYdR23PLKJVH6x3NCEM6umN59kXo00dXApZA5s7R2jEhFR9GMt4PNf0YpFhQE+KQ90KL5i5PBaOGH0JddUR7NdqXyNHJFZ1c/HgictUY1KBBpVfs6qolEEaNOnGjhoFcOQq2/InxdYnQgUOQbAPcFerlJHjrLd1Ko7J+esuXwxNPYDwQCPcFljbGBnghF3nCq8mohx/W66vO714dcnIgLRVywTLyMNLThgzzBk8LakcOLEwvMGgt2uCEgnDihfpVGcsWw7UepY7BMhnmjTyUhFq6FNq10xpczzwPY8fCC0kQlQMDvCpOJgZtcHfwOjGHqyLc3FBffo1cMgA1Kgbp64466sD4OLz8cyTQijwbiGXsdujYEQnOKH3slfMZLvFEvl+if+eGxDXXIAvmo276DXk5CC73KU4FENGJ2lPiwEMhDwTp/KKbjoK7gkt94Jt0ZG7jsr8vpXQu42Y76tUkaOeGfBpRuoCglwdymz/q8QRkwgRU06Zw6aXlz3ftWuSqMTDYQ1cQl9iuXOMHu3NQ1x9EBg9EbdgEixahklIwHoyEtVk6tNe68v6d0t4dS/oxyMhApr8D53vBEyHlp1M1cYUh3si7s1Df/4gMHIDqfxjGeCHDfcBLwa5c1PxU1CY7clcA8lgQ8ksW6tblyO0TtIesvjDDgg2G08ZzFRcXh385+jOF7WRSU1Odtr3A7GLD6u9GVkIMRZMXC8rXlULGecF3S08qvAFow+zJx5CLvJBng0+8qSXmozIF6VWF/KDz9RhxQyfl9jgAB/OQT5vo5FcHyCWeZZfKFzIpAOnkgUx9+8T39kcj51ZBO6apKzRyR40ZC+vzUb0PF4QisiHNQEb7wK5cLBcdRF1+BPVEAur+OFT3g1gejIdrxqHmf3xyuS4rV6J+/gWZEVI6dOCiwMcKbhbkyWBkmDfy+COVuvTlzdeRrl4nGlaFKIU8FIh08kTeqkNRwfnzYd9/yNIIjPfCwEWhnkvE8kA8fJ8BN/np/mpn25D/leOBrIi0TKQS4xnQHiE/Fx0eKeSqq+DNN1EzjsFRR9UaKoN+5DvZhsq9e6NWrQFaoaYeQ7q4F/eUK48LPZDmHvocrco+AgRZIL2SXpr1gYsLatFiuGwElrvjUD0Poe6LQz0Yh+p/EMvIw+ClkG8idNhzdRZqZy7yWiP4TlfY4lNBtaVSyK3+qByQx4PLrsy0KuTFEOjhiTz/TIXTlaceh7PckBmhZRt07dyRBaGwZy98/DEsX4509YRWbuCmUA6qJrNSKL+QlKQT9MdV3spIxvnobgKZmai/NqNuuRM+TsUy6jCWQYewTIkDL4vuT/h4sL4eXOyFPBOEmr8A9u6tfF61gTghLGhGBp3GaWNc5eTk4O5e8cXUmcZVSTpYLPh9EVFaCby5K8owdOXNybBmDWrHbmSSf9k38cIn/6qcBIX2ggNtVD0QiPwWqXsA7sxFHXYgN/pXuhq50QeW/wTx8aXfcHWBcjzmpVcgukKtfXvUpi2okTfC7Gwsww9jGXoItSALxlyjE+gDL4Q/G8HOSNRVE2D7dtSHHxV7XaqIzJqBdPDUzZzLQynkzgDdVPb778sfd/AgasVK5IYyqqaOX9+N3vDDj3D0aPnjnIUIMnOa1uM5yx2G+SBfRyDRrTEOt0a2tEQeDYYWbsjtWkmfky0ZD/RDlRcWKUmmAcfyIPA4ral774U//oCARvBnFYRJU/Jhr716ffB69NCFGR07VO6FAn0utbLo4/NQFXV+ovMhuHLJg3rB0xO18Gut/D7yJvi3NexoDoctyCAvZEWzompB9Xka0sEN2rqikvOR86v+sEZCBQ8iFoXc6oNa80dxX9Pj2bUL9etq5Hbfig3utm5aDX3mNB2mCywYWyg3srRypXm1NAvp1QNSUvSCivT0CmlVMCYuTgvbBgWBqwVjaQTG8qYYW1sgXzSBgccZalf56BZTx/U+NDkzUSKnh3LYG2+8QY8ePehbhpBjSkoKc+fOZeDAgXTq1KnMz2/cuJFNmzZVup2MgtYRyjDwykoHH4tWBD+ebNE3ivDwk2uWnJGhdaHCKniKjMsHD6WVtCuicA6gc69KXshyRPf/a+SilcwrIk90lVFoqA7FFZKQAJJbub5Q4edDQoqNJJFi74TV6tyG0qAbQ3tK2f32jic+H7x8wLccD15Ojt7XEJfKA+kOIMEBjRrVvmKzCBw5oosIPKrQdzHWoY2fk9HmSkmB7ExoVMlvnCU6b65x47L75GVn64rXyr7DTAPSBcLCqt9vLyEBVB4EVOG3T8oH5aZ/4yBraR2248kH4h1aHNer4tyxBkVqKmRm6N+wcPeS8gu8uBaIc2gV87KuYyUpPIYqO94qO9aysvRDZ5hL8XzKo/Aa5ukJudkQUnBMJOfrsuwga/nrKLzuBAbqczE2tvLfGIrP4cLrVVISGHYdFq6MFAMM16JuA5mZmYgIFouFe++9t/LPV4M5c+aQkZGBGEJOWhWEgivA3dcNZVF4e3tz++23O2mGZyanTc5VTcnNzS0ynKqCWCxkePvpC0l5D+T+6AvJyeLnV/46AQptgKp0KPEv+NdR8Dr+vaqei/7oG1BOiYosDw/Ao+rzyMvTr7qgsDy9KnMrGFphzzV/f+2lq8r0/YHcXP2qbQpD4VX9DQzj5HrLubiATyXHI+gbnD8Vt82pyndoAfwqWU9lnMxxWXjv9/DQxlNln/GnQMXbSf356gKrFXz9oGSudeF+51CwT5zc9aQq31NFx5q/f+n5VGWbbm7F2y10tFW2jsJ52O16m1X5jQs/V3i9cncH3Kv2uUKH6XH7bdSBNpqyKGz+J+fhN6k9zgjjKqfAIKgomd3NzQ1v78rj8SUNsKqMNymm8ClOKYXXqfTk3wAwv7uaYX5/1cf87qrPyTywV5fa+E3M37nmnBHGVVXo3r073bt3r3RcoQvWdJuePIXfnZeXl/ndnSTmd1czzO+v+pjfXfUpeb+oLcZVVulsUi+cNgntfn5+5Sas2wu0RwqrBk1MTExMTExMaovTxrgKDQ0tMqKOp9DoCg0NrcspmZiYmJiYmJyBnDbGVWRkZLmeq5SUFJo1a1bHMzIxMTExMTE5EzltjKu2bdtit9tJKdQzKcGePXvo3Llz3U/KxMTExMTE5IzjtDGubDYbl156KWvWrCm1vLDnYNuadGw3MTExMTExMakip1W1YNu2bXF3d2f16tX4+/sX5WCNGTOmnmdmYmJiYmJicqZwWhlXoHOvIiMj63saJiYmJiYmJmcop01Y0MTExMTExMSkIXDaea5qm27dupGbm4tbbfeNOw0xv7vqY353NcP8/qqP+d1VH/O7O3M5bRo3m5iYmJiYmJg0BMywoImJiYmJiYmJEzGNKxMTExMTExMTJ2IaVyYmJiYmJiYmTsQ0rkxMTExMTExMnIhZLVhFoqOjiY6OLiVO2rNnz3qeVcMnKiqKlJQU4uLisNvtREZG0rdv3/qe1inNhg0bCA0NNfXcqkhKSkpR5wabzYa7u7t5DFaBPXv2EB0dXWpZnz59sNls9TSjhofdbmfNmjWVHlPm/ePMw6wWrAJ79uxh9+7dDB8+vGhZdHQ0GzZsMNXfK2D16tV06tQJf39/QF+IlixZQlxcHLfeeqt5ka4GdrudGTNmMHz4cLOlUxXYs2cP69evZ/jw4aWOww0bNpgGVgWsXr36BEHmlJQUlixZwpgxY874c3f16tWkpqYSGhpKVFQUkf9v7/590vr+OI6/PpMkaGCDSZJqcUOX0qSWbloXlxY3kw79sfg/dGgXXepSO3TCxKSD2sUFddM6SBe4m1CG68R1ggjJZep3MNyK/FTuV1Sej8TBC8LxBjgvznmfc0MhzczMNL0v/cdgYlqwA9u2tbe31/DGCYVCsm1bhmH0qWV3Wzab1cTEhNOhSRejBvPz86pWq9rZ2elf4+4xXm/dsyxLe3t7WlhYqHsd7u/vK5vN9q9hd5xlWZLUMDLq9/s1Ozur/f39fjTrTnnx4oXm5+cVjUY1NDTU8n70H4OLcNVB7cLPzb6pTUxMKJPJ9KFVd1+hUFAgEGg47vF4FIlEdHp66gyPozumaTIVeA0HBweKRqMN791QKKRIJNKnVt19pmkqGAw2vS0QCDjhC53RfwwuwlUHJycnLYfA/X6/zs7OCAlNGIahzc3NprfVQhcf0tdjWVbTwIpGlmXp9PS0aYiKRCLUu3TQqtMvFovy+Xy33Jr7i/5jcBGuOrAsq25K4bLah0ypVLrFFt0P7UJA7cNk0Os2rsMwDALBNRiG0XLEAO2Fw2Gdnp5qZ2enoeP//fs3r8NroP8YXKwW7KBarbadU5fkFDbin3aFmrUPE85Zd4rFIiHhmkzTdDqvVCol6SLMF4vFplOF+Mfv9ysWi+nw8FCmaWp+fl6hUMgp3GZqunv0H4OLcNWD2puGYd3rMQyDmpdryGazjBZcU63DSqVSdeeuWCxqY2NDi4uLBKw2otGo/H6/dnZ2tLW1JZ/Pp3g83nIUBtdH//GwMS2IW3VwcCCfz6dYLNbvptwL2WyWLRduyLKshnPn9/sVCoVY8daFoaEhPXnyRKOjoyqVStra2qJOEugS4aoH1WpVErVD3bIsS4ZhKB6Pc866YNu2bNtmtKAHzc5dIBBQNptlxKCNg4MDVatVvXjxQgsLC5qZmVGpVNLGxkbDxqK4GfqPh41whVtT24CQsNAdpk9702pVW+04ozDN1fZeujzqF4lE9PbtW/l8vqaF7gDqEa468Pl8LVdz1D5gWJrc2ebmpmZmZijc7BLbLvSmm5WCrNJqrtXu9X6/X4uLi5Kk09PT227WvUT/MbgoaO8gEAi0/JbGqrfu7O/vKxqNssroGkqlkk5OThp2cK69Fo+Pj509dFpddmOQBQIBFYvFjvdBPdu2265u83g8ikajHc8tLtB/DC7CVQehUMhZyn1VsVjU6OjoLbfofkmlUgqHww3BqlgsqlQqEbhaCIfDTQvZa9cWfPr0KYXubUxMTLS8xFKtU2PEoJHH43Fqgdphar879B+Di2nBDsLhsGzbbvpNLZvNanJy8vYbdU9ks1kFAoGmAers7IzODf834XBYQ0NDTa8heHJyokgkQiFxCz6fr23RummahIIu0X8MLsJVBx6PR7Ozszo8PKw7XrtmFKMHzVmWpUwmo1KpJMMwnJ9UKqVUKqXj42O+/d5AbdSFguLO5ufndXBwUHeuDMNQqVRiK5A2auftasCybduZ4ieY/lOtVlu+H+k/Btd/f//+/dvvRtwHpmnKNE35/X7njcTGjq19/fq17fSCz+fTu3fvbrFF95tlWUqlUioWizo7O9PQ0JCzWzYrClszTVOGYcjj8ci2bfl8vqbF2mhU247hslgsRrDSRbmDZVnO+1GSRkdH5fF4NDEx0RCa6D8GD+EKAADARUwLAgAAuIhwBQAA4CLCFQAAgIsIVwAAAC4iXAEAALiIHdoB9GR7e1uSVCgUVCgUtLS0pGAw2OdWAUD/EK4A3FgikVA8Htfw8LAk6ejoSB8+fND3798JWAAGFtOCAG4sk8moXC47v09PT8vr9SqZTPaxVQDQX4QrADdSLpedqcDLRkZGVKlU+tQqAOg/pgUB3Mjw8LB+/PjRcLxQKOjVq1d9aBEA3A2MXAFwTTKZVDAY1NzcXL+bAgB9w8gVAFeUy2Wtr69rdXW1300BgL7iws0AXLG8vKyFhQWNjY31uykA0FeEKwA9SyQSisViBCsAEDVXAHp0dHSkqampumDFVgwABhk1VwAkXazyW1lZUT6f73jfly9famlpSel0WrlcTrFYzPm7q1szXJXP57W5ualgMKhKpaK5uTl5vV4VCgVNTU258a8AQF8xLQhAhUJBHz9+1LNnz/T48WPlcjlVKhUn7CSTyboVgJOTk5Kk9+/fN93T6tOnT02D0tHRkdbX1/XlyxdnV/dEIqHd3V2Nj4/r8+fP7v9zAHDLGLkCoLW1tbrAUygUNDc351zCJp1Oa3p6uuHvmu1z1Uo6ndbKyopWV1ed55Gkqakp/fz5k1ErAA8GNVfAgKtdbPly4MnlcnXByo3rBH779k2Tk5MNRe+1aUTCFYCHgpErYMBdDU5Xa6by+XzP4Wp7e1uFQkFv3rxpuC2dTsvr9bLSEMCDwcgVgDrJZLJuFKlTgXo3fv36JelfrdZlmUxG4+PjPT8HANwVhCsAdXZ3d/X8+XPndzfCVW306/LUY+2xK5VK03ouALivCFcAHEdHRxoZGakLQeVyWblcrufHfvToUcOxdDot6V+91fb2ds/PAwD9RrgC4Nja2mqYuqtUKl3tfdXO2NhY0y0bdnd35fV6nZouN0bJAKDfCFcAJF1M3eXz+YYpukAgoEwm09Njx+Nx/fnzp+5YIpHQ+Pi4RkZGnOdnxSCAh4DVggAkXWy/MDY21hBw5ubmZFlWT489PT2t8/Nzra2tKRgM6vz8XPF4XMPDw1peXlYikdDIyIhev37d0/MAwF3ADu0AAAAuYloQAADARYQrAAAAFxGuAAAAXES4AgAAcBHhCgAAwEWEKwAAABcRrgAAAFxEuAIAAHAR4QoAAMBFhCsAAAAXEa4AAABcRLgCAABwEeEKAADARYQrAAAAF/0POPfnrCjeFgoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_points = 100\n", + "points = [eig.book_of_the_numbers(scale_c=2, scale_b=3) for _ in range(num_points)]\n", + "x_values = [np.pi**2 * point[\"a\"] for point in points]\n", + "y_values = [point[\"b\"] * point[\"c\"]**2 for point in points]\n", + "\n", + "# def compute_D(a, b, c):\n", + "# return (np.pi**2 * a / (b * c**2))**(1/3)\n", + "\n", + "def compute_D(a, bcsq):\n", + " return (np.pi**2 * a / (bcsq))**(1/3)\n", + "\n", + "# Create a scatter plot\n", + "\n", + "plt.contourf(X, Y, Z, cmap='viridis', levels=np.linspace(0, 1, 5), alpha=0.9)\n", + "\n", + "# Plot contour lines of the function D\n", + "a_values = np.linspace(0, 10, 100)\n", + "bc2_values = np.linspace(0, 10, 100)\n", + "A, BC2 = np.meshgrid(a_values, bc2_values)\n", + "# D_values = compute_D(A, BC2) # Assuming b = 1 for simplicity\n", + "\n", + "\n", + "contour_lines = plt.contour(X, Y, Z, levels=np.linspace(0, 1, 5), colors='green')\n", + "# contourf = plt.contourf(A, BC2, D_values, levels=np.linspace(0, 1, 5))\n", + "\n", + "\n", + "# cbar = plt.colorbar(contourf)\n", + "\n", + "plt.plot(np.linspace(0, 10), np.linspace(0, 10), color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "\n", + "\n", + "plt.xlabel(r'$\\pi^2 a$')\n", + "plt.ylabel(r'$b c^2$')\n", + "# plt.ylim([-3, 50])\n", + "plt.title('Phase Diagram')\n", + "plt.legend()\n", + "\n", + "\n", + "# plt.scatter(x_values, y_values, label='Random Points',edgecolors='black')\n", + "D_theory_values = [point['D_theory'] for point in data_for_plotting]\n", + "x_values, y_values = zip(*[(point['pisq_a'], point['bc_squared']) for point in data_for_plotting])\n", + "\n", + "error_values = [float(point['D_support']-point['D_theory']) for point in data_for_plotting]\n", + "\n", + "\n", + "# Create a scatter plot and color the points based on D_theory\n", + "scatter = plt.scatter(x_values, y_values, c=D_theory_values, cmap='viridis', edgecolors='red')\n", + "\n", + "plt.errorbar(x_values, y_values, xerr=error_values, yerr=error_values, fmt='none', ecolor='gray', alpha=0.5)\n", + "\n", + "# Add a colorbar to the plot\n", + "cbar = plt.colorbar(scatter)\n", + "cbar.set_label('D_theory')\n", + "\n", + "\n", + "\n", + "# Add contour labels\n", + "contour_labels = plt.clabel(contour_lines, inline=True, fontsize=12, colors='black')\n", + "\n", + "# Add annotations for iso-D values\n", + "# for i, txt in enumerate(contour_labels):\n", + " # plt.annotate(f'D={np.around(D_values[0, i], decimals=2)}', (txt.get_position()[0], txt.get_position()[1]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 165, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "D_support_values = [point['D_support'] for point in data_for_plotting]" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_91885/2951459962.py:3: RuntimeWarning: divide by zero encountered in divide\n", + " return (x / y)**(1/3)\n", + "/var/folders/ht/z8sb7wsd1bg0qpmyyfyq2rcm0000gr/T/ipykernel_91885/2951459962.py:3: RuntimeWarning: invalid value encountered in divide\n", + " return (x / y)**(1/3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHeCAYAAADAVpyCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdO0lEQVR4nO3dfVyb5b0/8A/QkrSBJrXVpFUbW1qYTwQtTS1P29kZhXN22NlKezZnlar1YW3d1E2rZ3ZuugfbczbdbLtTnTvg6eo2aHXiAw96nNCyI+pPyDnntx8poQ0+NEFtE0loApT8/rjzACWBhITcyZ3P+/Xy9bJXwn1/oZT7w/e67+tK83g8HhARERFRQkkXuwAiIiIimowhjYiIiCgBMaQRERERJSCGNCIiIqIExJBGRERElIAY0oiIiIgSEEMaERERUQJiSCMiIiJKQAxpRERERAmIIY2IKAYsFguOHTsmdhlEJCEMaUSUlBwOR9w/fqqPaWpqQnFxcTQlRVRTtJ8/ESW+OWIXQBRLtbW1AIDs7GwoFApkZ2ejuLgYtbW12LJli6i1Raurq8vfqSkoKAgaCCwWC5qamnDkyBFoNBpUVFT4xwcHB1FaWur/OJPJhNraWlitVjz11FPx+0SCCOdzGy8Wf591dXWoqalBVlZW2B/T3NyM4uJiaDSaCePHjh3DqlWroqon0ppC1UJE0sGQRpJgMpmwd+9e1NTUoKCgwD9usVjw2GOPoa+vL6YhrampCZWVlTE7Xjh+8IMf4NChQ+jt7Q35Ho1Ggy1btsBkMkGj0aC6unrC67fffjssFguqq6uRk5OD6upq7N+/P+JaYv35h/O5zca5IwloAFBdXY19+/Zh+/btE8a7uromjQFCt+vo0aM4duwYHn300Yhq8n0sIHwfWywW7Nixw/96qFqISDo43UmSsHv37kkBDRBCy2yEqa6urpgfcyq+0JWVlYWCgoJJn2e4KioqUFdX5/9zdnb2jI4Ty88/ks/NYrH43x+NY8eOzfhrWFxcjMOHD08YGxwcnPQ+k8mEo0ePwul0hjU1eX5NdXV1KCgoQGVlJbZs2YLs7Gzs3r172lqISDoY0ijp+aY4Q110CwoKoFarY3a+pqYmWK3WmB0vXAqFImbHiOZ+ptn4/MP93JqamiZ1B2eivb19xvePFRQU+DtcPk6nc9L7cnJyUFlZGXagPL+m8x9E0Gg0kzqNwWohIungdCclvY6ODuh0uinfc/6F/fDhw/6Lp2/6DxA6RL5O044dO/zTTIODg9iyZQu6urrQ1dUFi8Xi72CMP3ao4wa7/6u2thbNzc2oqalBZWWl/9xqtdr/ZwAoLS1FU1OT/5wajWbGAcNkMiEnJ2faab6pvj5Tff6RHs9kMkX0uXV3dwedtvaFma6uLlRXV/trDBaSHA7HpA5iV1cXnE4nBgcH/Z1Xh8OBXbt24fHHH590PrVa7f9axkKwms6fHj1+/HjQ7/NY10JEiYOdNEp6Fotl2m7F+C7bY489hpycHBQXF/v/27Vrl/99NTU1/gt2cXExqqur0dHRAZPJ5J9+8t3vNT6gTHVc3/1f423ZsgUrV66cUOPGjRv9XarS0lL/x1ZWViI7OxvV1dUzCmgOhwOHDx9Gb2/vtPdGTff1CfX5z+R4kXxuFoslaLhsamqCTqfzf2xtbS0qKythMplgMpkmvf/o0aMTpsAtFguys7ORk5ODI0eO+Me7u7tDhtmCgoIJU74ajQYWi2XqL8QUzq/pfMeOHYPT6cSOHTumrYWIpIMhjVKKyWRCd3f3hNCm0WjgcDj8F7rs7GxYLJYJ71Gr1VNehMM97vnOn+ZTKBT+MJiTkxPVww69vb1oampCU1MTjh49ioKCAjz++ONTdtHC+TwiEcvjOZ3OoGE8Ozvb/zlZLBZ/uH300UeDhr6urq4JXSeLxYKcnBwcO3ZsQqeqq6sr5BR6dnb2hPvQxnc+Z+L8mnwcDoe/01hcXBz07+78WohIOhjSKOmF08XwvX78+PGgF3q1Wj2pMzKeQqGY8kIY7nHDEaslFVauXInKykr/f+FMh8Xy84j18SwWS9B718YHsd7e3imnvoN1XX1B7OjRo5OOFeprdv73XE5Ozow7aVN1grOyslBZWenvWF5//fWT7ieMtotHRImLIY2SXlFREbq7u6d8jy8QBLvBO1oWi2XGxw32cbF4QGCmZvJ5TBUQZuPrPV0dU3UKQy3f4XA4/B1Mn/P/PN7g4OCkzujGjRvR1NQUcd3BanI4HKitrZ0QyAoKCuB0Oid9rwerhYikgSGNkp5vSjBUZ2b8TdkFBQVBQ4XVap3xYqS+i/lMjptoq8bP5PMIdt9XNMcLZbqOUVdX16TpyvOF6lpZrdYJ46GmH32CTb36ul6RClaT1WrFkSNHJnx/+ALv+SE+1DQwESU/hjSShJ07d6Kurm7ShdnhcPhXZgeEaSmdTjfhfb6QMdVN6+M7QuPDgu9+pnCOe/59bQ6HI6ou3GwI5/MI9vlHc7xwqdXqSUt/HDt2zP8QQldXlz+MOxyOSV/XqTpjCoViQvjxPYwQSqip12CmmiYPVVNOTg42bNgwIXy1t7cjJydn0vsjqYWIkkuax+PxiF0EUaycvy0UgKDdjdra2glLQvi6cSaTCfX19ejo6EBNTQ2qq6tx+PBhNDQ0QKPRYOPGjf5tpoDJi+WGOq6Pb9kK33va29vR19eHmpoaKBQK/xOYvvNoNJoJNW3YsAGlpaUhg5Fvba2GhgZkZ2ejoqICFRUVQacAzz/u+Fqn+zxCff6hhPP1nu5zA4Bdu3ZNeDrVZDKhq6sLGo0GOp3OvwAsMDkE7tu3b8otl/bt2+c/95EjR1BTUxMySD722GMTVv8Pxvd3cfToUZhMJmzYsAGrVq2acMypavL9gjH+eMHeG04tRJScEj6kuVwutLe3QyaToaysLOT7zGYzzGYzVCoVXC4XAECv18erTCKKg8OHDwftJoUjki2Urr/+ejz33HMhX3/sscfwwAMPRFxDNDXNdi1EsRTutXsqkVzXpZoBEna6s62tDY2NjTAYDDCbzXC73SHfazQaYTAYUFZWhvz8fOj1eqjVatTX18exYiKabdXV1TO6OX+6baDGPzXZ1NSEkpKSkO89fPhwTLYai2ZrqljXQhQrkVy7pxLJdV3KGSBhQ1pZWRmqqqqg1+shk8lCvs/lcqGlpQXl5eUTxrVaLVwuFwwGw2yXSkRxVFpaOmG7pHBMtQ2Uw+HAxo0bkZWV5Z9iDNXdcjgcGBwcjDpcTVdTOGJZC1GshHvtnkok13WpZ4CEDWnhMhqNUCqVkMvlk17Ly8ubdmkGIkouvmATydpgUz39mJWVBYVCgWPHjqG5uXnKHRmam5ujWmA43JrCEctaiBJJJNd1qWeApN+7s6enJ+hfDgCoVCoMDAzA5XKFfA8RJZ9IO1DThZlwpwxjsbm7T7QBK5a1ECWSSK7rUs8ASd9Js1qtUKlUQV9TKpUAALvdHseKiIiIaKYiua5LPQMkfUhzu93Tznsn818QERFRKonkui71DJD0IW0qvr843+O4RERElLwiua5LIQMk/T1psfLOO+/g3XffnfZ9vsf009PTMX/+/Nkui4iIktTQ0BA8Hg8yMjLwne98Z1bOcfDgwZjuWjI8PIzR0dGwrm+rV69GYWFhzM5Nk0k6pPnWZwnnhsHh4eGI9lEcGxtLuH0XiYgo8Zw7d27Wju10OmflWhTOMYeHh2N+3ulEcl2P5L2JStIhLRKZmZlhbavi+8b1jHngPhvYrOGcPIlmjjPHxK6AYmzB3LNil0BEHkBmO4d0t/Az1rlgATzp6UhLS4vDyceQIY/u58A51zwAQr3h7AebmZkZ1floekkf0pRKZcibAn3z0L4nPKZSWFgYVtv2wIEDcDgccJ/1oL0hcN4PyxeFWbH4RkvYAZSan+S/IHYJRCltrm0Uxbf24YLuIWFg/nwc+OlP4Qhz6jBaGfKzWFb5fFTH6G/6Gs65FFAoFLjjjjtiVFnkIrmuxyoDJKokav8Ep1arQ94U6PuLU6vV8SyJKK4Y0IjEJbeOoOz63kBAU6mA114DkniaTUyRXNelngGSPqRptdqQKdpms2HZsmVxroiIiFLF/H43Pv+N41Ae9wYFtRp4801g3TpxC0tikVzXpZ4Bkj6k5ebmwuVywWazTXrNaDRCp9PFvygiIpK8Bcaz+Pw3jkPxvvcG+ssuA44eBfLzRa0rWbhcLpjN5knjkVzXpZ4BkiKkud3ukO1MuVyO9evXo729fcK4bz+v3NzceJRIJApOdRKJY+F7TpRd34t5A6PCwBVXCAFt5UpxC0sgU127AaCxsRENDQ2TNkGP5Lou9QyQsA8OdHZ2wmq1wmazwW63w263o76+HnK5HHl5eRO+8Lm5uZDJZGhra4NKpfJ/U2zatEms8omISKIuPDaIdd86gTlD3ifl9XrglVeARcnzANlsieTardVqYbVag94zFsl1XcoZIGFDml6vj+j9Wq0WWq12lqqRjtGSz8QugWKEXTSi+FvabMOau83IGPEuwfTFLwIvvABkZ4taV6KI5Nqt1+unfH8k13WpZoCkmO4kIiISm7b+U6y962QgoH31q8DLLzOg0axhSCNKQuyiEcXXymcGsPrB95HmWwu8pgaor+cyGzSrGNKIiIhC8XhwxeOnkP+zjwJj3/kO8NvfAnMS9o4hkgh+hxElGXbRiOJkzAPdIx8i5+AngbFHHgEeegiIy1ZPlOoY0oiIiM6TNuLB6p39WPbimcDgr34F3HWXeEVRymFII0oi7KIRzb501xjW3nUSS97wPg2fkQH8+78DN94obmGUchjSUgiX3yAimtqcwXNYd3sfLnzbKQzIZMAf/wh85SviFkYpiSGNiIgIQOanoyi+xYSF/3tWGMjKAl58EfibvxG3MEpZDGlESYJTnUSzZ95HwyjZYkJ2n1sYWLQIaGoCCgvFLYxSGkMaERGltKwTLpTcZML8UyPCwMUXA62twOWXi1sYpTyGNKIkwC4a0exQ/u8Qim/ug/y0d6P0lSuB114DJLjFECUfhjQiIkpJi952oOi2Psx1eLcR0OmA5mYgyIbfRGLgjgNECY5dNKLYU//5MxTfbAoEtOJi4M9/ZkCjhMKQRkREKeWSl85g3Z19mOPybpReWQm0tAAqlah1EZ2PIS1FcI205MQuGlFsLT/0CdbcY0a69xY0/NM/AX/6EzB/vqh1EQXDkEZERNLn8SD311Zc84MPkOZtoOGOO4BDh4DMTFFLIwqFIY2IiKTN48FVe07hqp+fCow98ADw618LWz4RJSg+3UmUoDjVSRQD5zy49qH3cVn96cDY7t3A/feLVxNRmBjSiIhIktLdYyj8rhmXNNmFgbQ04MAB4LbbxC2MKEwMaUQJiF00ouhkDJ3DddtOQn10UBiYOxc4eFB4UIAoSTCkERGRpMy1j6Joax8WvTckDMybBxw5Iiy1QZREGNJSAJffSC7sohHNnOzjEZRsMUHZ4xIGlErg5ZeFxWqJkgxDGhERScL8990oqTEhq39YGFCrhW2edDpxCyOaIYY0ogTCLhrRzGQbz6Lk5j7Ms44IA1ot0NoKrFolbmFEUWBIIyKipLbQMISiW0yQ2c4JA5dfLmzzdMkl4hZGFCUuZkuUINhFI4rc4r8MouTG3kBAKywE2toY0EgSGNKIiCgpLWm1o/jWPsx1jgkDX/gC8PrrwOLFotZFFCsMaURElHSWPX8aa3ecQMawdyPOr3wFePVVYMECcQsjiiGGNInj8hvJgVOdROHLqf0Yhff1I907w4kbbwQOHwbkclHrIoo1PjhARETJwePB5b+y4PInrYGxHTuAX/4SSGfPgaSH39VEImMXjSgMYx7kP/rhxID28MPAr37FgEaSxU4aEREltLRRD659sB/a588EBp94AvjOd0SriSgeGNKIRMQuGtHU0t1j0H/7JJa+7r2/NiMDeOYZoKZG3MKI4oAhjYiIEtIcxzlcd+cJXPRfDmEgMxP4wx+Ar35V1LqI4oUhjUgk7KIRhZZ5ehTFt5qw8L/PCgMKBfDii8AXvyhuYURxxJBGREQJZd6pYRRvMWGByS0MXHCBsAaaXi9uYURxxpAmYVwjLXGxi0YUnOKkGyU1vVB86N0ofelSYR/OK68UtzAiETCkERFRQlD+9SyKbzZB/smoMJCTA7S2AsuXi1sYkUgY0oiISHQXvOtA0dY+ZA569+G8+mqguRlYskTcwohExBUAieKMU51EE6nf/AwlNaZAQFu3DnjzTQY0SnkMaUREJJqLXz6DdXeewByXd6P09euFKc6FC8UtjCgBMKQRxRG7aEQBl/3+U+jvNiN9xBvQNm4UltlQKMQtjChBMKQREVHcrXrKimsfeh9p3nyGW28Ffv97QCYTtS6iRMKQRhQn7KIRAfB4cOWej3D1nlOBse99D3j6aWHLJyLy49OdEsU10ogo4Zzz4JqHP8Dy338aGPvJT4AHHwTS0sSriyhBMaQRxQG7aJTq0obHsOZ7/bjkFZt3IA3Yvx+4805R6yJKZAxpMfBh+SKxSyAiSlgZZ8ewdvsJaNoGhYE5c4BnnwWuv17cwogSHEMa0SxjF41S2dzPRrHuthNY/K5TGJDLgYYG4MtfFrcwoiTAkEZERLNC9skIim82QfVXlzCwYAHw0ktAaam4hRElCYY0IiKKuXkfDqP0pl5kmYeFgQsvFLZ5uuYacQsjSiIMaUSziFOdlIqye10oqTFhnnVEGLj0UuC114DcXHELI0oyDGkSxOU3iEgsqv8eQvEtJsjOnBMG8vKEbZ4uvVTcwoiSEBezJZol7KJRqln8X4Mo3dwbCGjXXgu0tzOgEc0QQxoREUVN87odxbf0Ya5zTBgoKwP+8z+Fe9GIaEYY0ohmAbtolEoufeE0rtt2AhnD3o04v/xloKkJUCrFLYwoyTGkERHRjK149mOs+V4/0r0znPjmN4HnnwfmzRO1LiIpkNyDA0ajEWazecJYaWkp5HK5SBVRqmEXjVKCx4PP7bPiiicsgbFt24AnnwTS+fs/USxIKqS1tbVBq9WivLzcP2az2VBfX49NmzYxqBERxcKYB1f/9COsqv04MPbQQ8Ajj3CjdKIYksyvO1arFQCg1WonjKtUKqxfvx6tra1ilBV3XH5DXOyikdSljXqw+sH3Jwa0n/8cePRRBjSiGJNMJ81sNkOj0QR9Ta1W+0McERHNTLp7DGvuMePiFrt3IB14+mngllvELYxIoiTTSQOA7u7uoOM2mw1KPmVERDRjcxznUHRbXyCgZWYCf/wjAxrRLJJMSMvNzUV/fz8aGxvhcrkmvPb2229Dr9eLVBmlCk51klRlnhlFSY0JF3U4hAGFQtgovbpa3MKIJE4yIU2lUqG0tBRGoxG/+c1v/E94GgwGaLXaSfeqERHR9OTWEZR+sxcXdA8JAwsXCvtwjntAi4hmh2TuSQMAvV4PlUqFxsZGNDQ0QKlUYuPGjVCpVGKXRhLHLhpJkcLsRkmNCYoPhoUBjQZoaQGuvlrcwohShKRCGgDIZDKsWbMGVqsV/f39aGhoQFVVFdRq9ZQf98477+Ddd9+d9vhOpzNWpRIRJawFPWdRssUE+cejwsDy5cJG6Tk54hZGlEIkFdLa2tqg0WhQVlYGQJjqbG1txcGDB7Fx48YppzyHh4fhcDjiVSpJCLtoJDUL33OieGsfMu3ebQSuvFLooC1dKm5hRClGMvekGQwGAMIDBD75+fm49dZboVQqgz5QMF5mZiaysrKm/S8tgdcB4hppRBSti44OovQmUyCg6fXAm28yoBGJQDKdtM7OTmzdunXSuEqlwubNm/Gb3/wG/f39E0LceIWFhSgsLJz2PAcOHGDHjfzYRSMpWdpkg/4eM9JHvBul/+3fAi+8AGRliVoXUaqSRCfN5XJBJpOFfF0ul0Ov18Nms8WvKCKiJKKt/xRrv30yENC+9jXg5ZcZ0IhEJImQJpfL4Xa7p30fn/IkIpps5W8GsPrB95E25h3YskVYqHaKX36JaPZJIqQBgFKp9K+NFozZbMayZcviWBFJHac6Kel5PLji56eQ/9hHgbG77waeeQaYI5m7YYiSlmRCWlVVFdra2iYFNZfLhdbWVuj1esjlcpGqIyJKMGMe6H74IT7363H7Gj/6KPCLXwh7chKR6CTzq5JcLseNN96ItrY2GI3GCa+VlpYyoFFMsYtGySxtxIPVO/ux7MUzgcEnnwR27BCvKCKaRDIhzce3Rlqq4fIbRBSOjLNj0H/7JJa84f2ZkZEB1NUBN9wgbmFENInkQhrRbGMXjZLVnMFzKLq9D4vf9u6cIpMB9fVAVZW4hRFRUAxpREQpIPPTUZTcbILq/54VBrKzgRdfBL7wBVHrIukym80wm81QqVT+xeT1en3YH2+1WtHZ2YnS0tKwVmdobGyEXC5Hfn4+1Go1XC4XrFYrDAYD9Hr9tNtDJiKGNKIIsItGyWjeR8Mo2WJCdp93qaJFi4CmJiCMBbyJZsJoNKKnpwdV47q0ZrMZ9fX12LRpU1jHsNvtMBqNk+4zP9+tt97qD4JGo9G/AxEg7Ocdzv7diYohjYhIwrL6XCipMWH+qRFh4JJLhH04L79c3MJIslwuF1paWibtAqTVatHW1gaDwYD8/Pxpj2OxWJCfnw+lUhnyPEBgDVS1Wg29Xg+r1eofD7XLULJgSCMKE7tolGxU/zOEolv6ID89KgysWgW0tgJarbiFkaQZjUYolcqgqyrk5eWhu7s7rJAGAOXl5SFfa2trm/SwoFarhVZC399cDIeISIIWdTpQurk3ENAKCoD2dgY0mnU9PT0hl71SqVQYGBjwd8GmotFoQr4Wbjcu2TGkERFJjOYNO0puNmGuw7vPU3Ex8MYbQJLel0PJxWq1hrzR3zd1abfbpz1OqKlK3z7cqbDVI6c7JYBrpM0+TnVSsrik8QwK7zMj3dtAQ2UlcPgwMH++qHVR6nC73ZBNs++r3W6f8c38b7/9dshpUJvNhv7+/gl/TuYdhxjSiIgkYvnvPkHBDz9Amsc78PWvA88+C2RmiloXJRen04kDBw5M+77Vq1ejMMInhH3hLZzpzmCmmua02+0YGBiY8LrVasXBgwexefPmpAxqDGlE02AXjRKex4O8Xw/gyl+cCozdcQewb5+wowBJ3mcj8/B9w1ejOsb1I/OgAODxeOBwOKZ9//DwcFTnm4menp6QIa0qyKLMarUaarUara2tQV9PdAxpRETJzOPBVbs/Qu5vPg6M7dwJ/OxnQFqaeHVR0kpLS4NCoZj2fZkz6NC63cJafTPpahkMhhlNkWq1WrS2tkb8cYmAIY1oCuyiUUI758G1D72Py+pPB8Z27wbuv1+8mijpKRQK3HHHHWKXMUl3d/eM9uf2BUKr1Zp0i9oypBERJaF09xjW3GvGxc3ep+TS0oADB4DbbhO3MEp5SqUy5NObvnvRQi1QG4rNZsPAwEDIj2ttbYVMJgsa4qK9D05MXIKDKAR20ShRZQydw7rbTwQC2ty5wO9/z4BGCcG3b2YwvvAWaUfL98RmqGU3enp6QgbDmZ4zETCkJTkuv0GUWubaR1FSY4L62KAwMG+esFH6P/2TuIUReWm12pCByWazYdmyZREf07fVUyj5+fkhHwwwm80hd0BIdAxpREGwi0aJSD4wgrJv9mLRe0PCgFIpbPNUWSluYUTj5ObmwuVy+RedHc9oNEKn000Yc7lcMJvNUx7TZrNNufaaRqMJGuR8m67P5F62RMCQRkSUBOa/70bZN45D2eOdRlKrgTffFHYTIEogcrkc69evR3t7+4Rx356e5+8k0NjYiIaGBhgMhpDHnG6HgtzcXBgMhklBrb6+Hvn5+Um70TofHCAiSnDZxrMo2WLCvAHvNgJardBBW7VK3MKIQsjNzYVMJkNbWxtUKpX/HrVNmzZNeq9Wq532ycup7nPzKS8vR2dnJ3p6euB2u+FyubB27dqkDWgAQxrRJJzqpESysMuJoq19kNnOCQOXXw60tACXXCJuYUTT0Gq10Gq1075Pr9dDr9dP+Z5wF6Kd7jjJhtOdREQJ6sKOQZTeZAoEtMJCoK2NAY0oRTCkEY3DLholiiWtNhTd2oc5Q2PCwBe+ALz+OrB4sah1EVH8MKQRESWYZUdOY+2Ok8gY8e6U/pWvAK++CixYIG5hRBRXDGlJjGukxRa7aJQIcmo/RuH9/Uj3znDixhuBw4eBJFzjiYiiw5BGRJQIPB5c/sQp6H78YWDsrruA2lpgDp/xIkpFDGlR+rB8kdglUAywi0aiGvMg/9EPcfnecWs8Pfww8MtfAun8MU2UqvjrGRGRiNJGPLj2wX5oXzgTGHziCeA73xGtJiJKDAxplPLYRSOxpLvHoP/2SSx93Xt/aUYG8MwzQE2NuIURUUJgSCMiEsGcwXNYd+cJXPiWQxjIzAT+8Afgq18VtS4iShwMaUREcZZ5ehTFt5qw8L/PCgNZWcCf/gR88YviFkZECYUhLUlx+Y3Y4FQnxdu8U8Mo3mLCApNbGLjgAmENNIltZ0NE0WNIIyKKE8VJN0pqeqH4cEQYWLpU2IfzyivFLYyIEhJDGqUsdtEonpR/PYvim02QfzIqDOTkAK2twPLl4hZGRAmLIY2IaJZd8K4DRVv7kDno3Yfz6quB5mZgyRJxCyOihMZVEiklsYtG8aJ+8zOU1JgCAW3dOuDNNxnQiGhaDGlERLPk4pfPYN2dJzDH5d0off16YYpz4UJxCyOipMCQRimHXTSKh8t+/wn0d5uRPuINaJs2AS++CCgU4hZGREmDIY2IKMZWPWXFtQ99gDRvPsPWrcBzzwEymah1EVFyYUhLQlwjbebYRaNZ5fHgyj0f4eo9pwJj990HPPWUsOUTEVEE+HQnEVEsnPPgmoc/wPLffxoY++lPgQcfFK8mIkpqDGlERFFKGx7Dmu/145JXbN6BNODXvwbuuEPUuogouTGkUcrgVCfNhoyzY1i7/QQ0bYPCwJw5wH/8B/CNb4hbGBElPYY0IqIZmvvZKNbddgKL33UKA3I5cPgw8Pd/L25hRCQJDGmUEthFo1iTfTKC4ptNUP3VJQwsWAC89BJQWipuYUQkGQxpREQRmvfhMEpqTMg+6RYGLrxQ2ObpmmvELYyIJIUhLclw+Y3IsYtGsZTd60JJjQnzrCPCwLJlwi4CubniFkZEksOQRkQUJtV/D6H4FhNkZ84JA3l5QkC79FJxCyMiSeJitiRp7KJRrCz+r0GUbu4NBLRrrwXa2xnQiGjWMKQREU1D87odxbf0Ya5zTBgoKwPeeEO4F42IaJYwpBERTeHSF07jum0nkDHs3YjzH/4BaGoSnuYkIppFDGkkWZzqpGitePZjrPleP9K9M5y44QbgyBFg3jxR6yKi1MCQRkR0Po8Hn9trQcEjHwbGtm8Hnn0WmDtXvLqIKKUwpCURLr8RPnbRaMbGPLj6Jx/hiicsgbFdu4AnnwTS+SOTiOKHS3AQEXmljXpw7fffh/bw6cDgL34B3HOPeEURUcIZGhrC8ePHYbVa4XQ68dlnn2HBggVQq9VQKBTQaDRQq9VRn4chjSSHXTSaiXT3GPR3m7G01e4dSAeefhq45RZxCyOihDA0NISmpiY0NTVhYGAAK1as8Aex7OxsOJ1OGI1GOJ1OWCwWOJ1O6HQ6VFRUQKfTzeicDGlElPLmOM7hum+dwEV/cQgDmZnAc88BGzaIWxgRiW5oaAhPPvkkrFYrKisr8cgjj0Cj0YT1sd3d3Th27Bj279+PmpoaFBUVRXRuhjSSFHbRKFKZZ0ZRdGsfLjAMCQMKBfDCC8CXviRqXUQkvo6ODhw9ehQbN25ETk5OxB+v0+n8XbTm5mbs2bMHO3bswPz588P6eEmGNJvNhvb2dgCAXC6HTCZDWVmZyFURUaKRW4ZRsqUPC3pdwsDChcCrrwJr14pbGBGJ7siRI9BoNLj//vtjcryKigqUlJSgtrYW1dXVYd2zJrmQZjQa8dZbb6GqqgoqlQoA4HK50NbWxqAmceyiUSQUJ90o2WKC4oNhYWDJEqClBbjqKnELIyLRmUwm6HS6GXXPpqJQKLBt2zY0NzejoqJi2vdL6nlyq9WKlpYWbNq0yR/QAKC1tRVGo1G8wogooSz4f2fx+W8cDwS05cuBo0cZ0IgIAJCTkxPzgDZeOAENkFgnra2tDXq9HnK5fMK4VquNyaOwYuIaaUSxccH/caJoax8yP/NuI3DVVUBzM7B0qbiFEVHSGhoaQldXF6xWK9RqdcQPCIQimZBmtVrR39+PqqqqSa/l5+eLUBHFE6c6KRwXtX2G67afxJyz3o3S164FXnkFuOACcQsjooTV3d2Nuro6AMCqVatQXV2Niy66yP96S0sL9u/fDwDweDxIS0uDQqHAj3/8Yyxfvjyqc0smpBkMBiiVykldNCIiALj4FRvWfNeM9BHvRulf+hLw/PNAVpa4hRFRwjKZTPjBD34AhULh/3NzczN27tyJdevWoaOjA/v27UNRURFWrVoFhUIBi8WCrq4u3HPPPTh06FDYT3IGI5mQZjaboVQqAQCdnZ0AhCc7bTZb0ClQkg520Wg6l/3hU1yz632keRto2LABOHQIkMlErYuIEltDQwN27tw5Yfry8OHDqK2txYoVK9DU1IRDhw75Q5xPTU0NmpqaUFtbi23bts34/JIJaXa7HWq1Gp2dndDr9f5xm82GgwcPYvPmzVMGtXfeeQfvvvvutOdxOp0xqZeI4mPVbwZw9WMfBQZuvhl46ilgjmR+/BHRLMnOzp50f1l1dTUqKiqwf/9+VFdXTwpoPpWVldi9e3dU55fc0525ubkTxlQqFbRaLVpbW6f82OHhYTgcjmn/83g8s/kpUITYRaOQPB5c+a8fTQxo99wD/OY3DGhEFJZQASwrKwtZWVnTbveUnZ0d1fkl95Nq/NIbPmq1Gq2trXC5XCG7aZmZmcgK494Up9PJoEaU6M55UPCjD7Di0KeBsR//GPjnfwbS0sSri4gkI5ytoUKFvHBJKqT57kkLNW61WqHVaoO+p7CwEIWFhdOe48CBA3A4HDMvkmKGXTQKJm14DIX39+PSl2yBwb17ge3bRauJiJJTdnY2hoaGMDg4CKfTiRUrVvhfm26ts1jcHiWZkBbOk512uz1O1cQW10gjCk/G2TGs3XECmjcHvQMZQF0dcMMN4hZGREmpoqIC9fX1aG5uRlpaGn73u9/5XwvWJduzZw/S0tJw3333oa6uLqqHBgAJhTS1Wg2bzTbte0ga2EWj8839bBTrbj+Bxe94f3uVy4H6euAf/kHcwogoaSkUCmzcuBEajSas6c333nsPQ0NDUCgU2LBhQ9Tnl0xIy8vLQ2NjY9DXfB20UNOhRJTcZJ+MoPjmPqj+elYYyM4GGhuBz39e3MKIKOkpFIqwt3F67rnn4HQ6o74XzUcyT3fm5uZCJpMF3aOzp6cH+fn5XCuNSILmfTiMsm/0BgLa4sXAG28woBGRKGIV0AAJhTQAqKqqQltbG1wul3/MYDDAbrejtLRUxMooljjVST5ZJhc+//XjyD7pFgYuuQRobwdWrxa3MCJKat3d3dizZw8MBoOodUhmuhMQNlIvLy9Ha2sr5HI5XC4XlEoltm7dKnZpRBRjqv8ZQvHNJsjOeDdKX7UKaG0FQjzBTUQULp1OB6fTiYaGBuzevRvr169HaWnphKc740FSIQ0QglqoZTYo+bGLRgCw+C0H1t3eh7lO7z5PBQVAczMwbtNjIqJoFBUVoaioCE6nE0ePHsXevXvhdDpRWVmJioqKqPbkDJfkQprUcPkNook0/2nH2rtOIsPtXVS6pAR46SWADwYR0SzwPThQUVEBi8WC5uZm3H333ViyZAmKi4uxfv36WTs3QxolDXbR6NI/ncbq+/uR7p3hxN/9HdDQAMThN1oiIo1Gg5qaGtTU1MBkMqG5uRm1tbUoKChARUXFtNtERUpSDw4QkXSt+I+Psea74wLa178OvPACAxoRiSInJwfbtm3DoUOHUFJSgqamJtxwww3Yv38/+vr6YnIOdtIoKbCLlsI8HuTtt+LKxy2BsTvvFLZ6ysgQry4iIq+p7l8rKiqa8WL6DGlElLg8Hlz9s4+w6rcfB8YefBD4yU+4UToRJZzz71/r6OjArl27kJWVhcrKSpSUlET0wAFDGiU8dtFSU9qoB9c89D4uazgdGNyzB7jvPvGKIiIKk0ajwYYNG7Bhw4YZ37/Ge9KIKOGku8eg/87JQEBLSwOefpoBjYiS0vj71yoqKtDV1RXWx7GTlsC4/AalogznOVy37QTUxxzCwNy5wO9+B2zaJG5hREQxoNPpwn4KlCGNEhqnOlPLXNsoim/twwXdQ8LA/PnAkSNAmJsbExFJCac7iSghyAdGUPbN3kBAU6mEbZ4Y0IgoSXV0dET18QxplLDYRUsd8/vdKPv6cSiNLmFArQbefBMoKhK3MCKiKBw9ejSqj+d0JxGJaoHxLIq3mDBvYFQYuOwyoYO2cqWodRERRcvpdEb18QxplJDYRUsNC99zonhrHzLt3m0ELr9cCGgXXyxuYUREAOrq6mYctBwOB7q7u6M6P0MaEYniwmODWPetE5gzNCYMrFkDvPIKsHixuIUREXk5nU50dXUhKysr4o91OBxRn58hjRIOu2jSt7TZhjV3m5Ex4hEG/uZvgD/9CcjOFrcwIqJxampq/IvSzsS9994b1fn54ECC4hppJFXahk+x9q6TgYD2j/8odNAY0IgowSgUCvT29s7442e6Z6cPQxolFHbRpG3lbwew+oH3kead4cRNNwENDYBcLmpdREShRBO0Vq1aFdW5GdKIaPZ5PLji8VPI/+lHgbFvfxv4938H5vCuCyJKXDU1NTP+2JlOk/owpBHR7BrzQPejD/G5fdbA2A9/CDzxBJDOH0FERKHwV1hKGJzqlJ60EQ9W7+zHshfPBAafeAL4zndEq4mI4sNsNsNsNkOlUsHlEhaq1uv1ER2jsbERcrkc+fn5UKvVcLlcsFqtMBgM0Ov1k6YiY3HORMKQRkSzIt01hrV3ncSSN7wPwWRkAL/9rXAfGhFJmtFoRE9PD6qqqvxjZrMZ9fX12LRpU9jHcblcMBqNMBgM/jGZTIaqqqpJAS1W50wkUc811NXVxaIOSnHsoknLnMFzKL7FFAhoMhlw+DADGlEKcLlcaGlpQXl5+YRxrVYLl8s1IXBNR61WY+PGjSgtLUVpaSmqqqqwY8cOaLXamJ8z2oVnrVYrrFbr9G+MQNQhraWlBQMDA7Gohby4/AYls8xPR1F6Yy8u7PSu0p2VBbz6qrDUBhFJntFohFKphDzIU9t5eXkRhyGtVgu9Xg+9Xo/c3NxZO2dWVtaMG08dHR3o6OiIesmN80U93elwOLBv3z4UFBSgqKgo5gWS9LGLJh3zPhpGyRYTsvvcwsCiRUJAW7NG3MKIKG56enqChiUAUKlUGBgYgMvlCvkesc6Zk5MDhUKB3bt3Q6PRoLS0FCtWrAj5/qGhIbS3t6OjowMVFRX42te+FvXncb6oQ1pNTY3/EdPu7m4cO3YMGo0GRUVFURdHRMkj64QLJTeZMP/UiDCwdKmwD+cVV4hbGBHFldVqRV5eXtDXlEolAMBut8c0pMXqnBqNBjt37oTJZEJTU5N/S6js7GwoFAo4nU4MDg7C6XQiJycHJSUl+NGPfhSzz+N8UYe08WuA6HQ66HQ6OJ1OHDlyBGlpaeyu0ZTYRZMG5f8OofjmPshPjwoDOTnAa68Bl10mal1EFH9utxsymWzK99jt9rCzgc1mQ39//4Q/6/X6CYEr1ufMycnBtm3bAMAfzKxWK7KysqBQKKDRaMI6TrRm5elOhULhD2/PP/882tvbUVlZifXr18/G6YhIRIvecaBoax/mOrzbCOTnA83NQJx+iBFRbDmdThw4cGDa961evRqFhYURHdsXpHzLY0zHbrdjYGAA+fn5/jGr1YqDBw9i8+bNYXXjIj3n+RQKRVyD2XiztgRHS0sLmpqaYDKZkJOTA4/Hw+4akcSo//wZ1u44gTku7z6cRUXASy8BCxeKWxhRqhlOx5yjC6I7hnoMyAA8Hg8cDsf0pxweju58YRi/nIaPWq2GWq1Ga2tr0NelJOqQ1tHR4b//rK+vD01NTWhpaYHH40FFRQW2b9+OnJycCR/T3d2N7u5udtZSHKc6k9slL51B4ffMSPfOcKKiQlhmQ6EQtS4iik5aWhoUYfw7zszMjPjYbrfwUFG096NptVq0trbG9ZxiiDqk7du3D1arFe3t7ejr68OKFSvwrW99CxUVFSE/RqfTARCmQmfjaQgiml3LD32Cgoc/QJq3gYZNm4CDB4EZ/NAmosSiUChwxx13iF3GlHyBy2q1ijIzNzQ0hOPHj8NqtcLpdOKzzz7DggULoFar/VOjsagrJktw1NXVYf369UG7ZlOZP39+tKeXnFRZI41dtCTl8SD3wACu+tdTgbGtW4F/+zdhRwEiSnlKpRJ2uz3oa777wnxPXE6ltbUVMpkMZWVlk147/z6zWJ1zKkNDQ2hqakJTUxMGBgawYsUKfxDLzs6G0+mE0WiE0+mExWKB0+mETqdDRUWFvzkVqahDmlqtxuOPPx5Wa9Sno6MDDQ0NqKysjPb0RBQvHg+u2nMKuU+PW7z6vvuA3buBtDTx6iKihOLbYzMYX5AKp8vU09MzaWeBUMeJ1TmDGRoawpNPPgmr1YrKyko88sgjYT9E4FuabP/+/aipqYl4ebKoQ1pxcXFEAQ0QvlArV66ccbKk5MYuWhI658E1u97H8j+eDoz99KfAgw+KVxMRJSStVovOzs6gr9lsNixbtiys4+Tn5wftogHCnpzjdxiI1TnP19HRgaNHj2Ljxo0RzRT6+JYmA4Dm5mbs2bMHO3bsCHsmMeptoWpqaiL+GN/6I3zCkyjxpbvHoL/bHAhoaWnC9CYDGhEFkZubC5fLBZvNNuk1o9E4qUHjcrlgNpsnvVej0QTdC9O36fr4ABfpOcNx5MgRAMD9998/o4B2Pt/DlLW1tWHv8Rl1SCOKBLtoySVj6BzW3XECl7xqEwbmzAGeew5I8JuKiUg8crkc69evR3t7+4Rx3/6a5++/2djYiIaGhkmboOfm5sJgMEwKNPX19cjPz59wnEjPOR2TyQSdThfz3ZMUCgW2bduGrq6usN4/a+ukEVFym2sfRdHWPix6b0gYmDdPWGLj7/5O3MKIKOHl5uZCJpOhra0NKpXKf7/Ypk2bJr1Xq9WGfEqzvLwcnZ2d6Onpgdvthsvlwtq1a4OGrkjOOZ1YdM6mMtUKGOMxpFHcsIuWPGQfj6BkiwnKHu+NuAsWCIvUlpaKWxgRJQ2tVhvyxv/x9Ho99Hr9lK/H+pzRuvfee5GdnY2CggLodLopN2KPBkNaAkmV5Tcosc3/wI2Sm0zI6veuJn7hhcI2T9dcI25hREQJori4GIcPH0ZXVxfSvE+363S6mIc2hjQi8ss+7kLJFhPmWUeEgWXLgNZWIML7OYiIpKy6uhrV1dWwWCzo6upCV1cXDAZD0NBWUVEx43VhGdIoLjjVmfgWGoZQdIsJMts5YSAvTwhol14qbmFERAlKo9GgsrLSv+7r+ND2l7/8BV1dXairq0NFRQW+9a1vRXx8hjQiwuK/DGLdnScw1zkmDKxeDbz6qjDVSUREYRkf2pqbmwEIOzMdPnwY3d3deOSRR3DRRReFfTwuwUGzjl20xLak1Y7iW/sCAa2sDPjP/2RAIyKKQkVFBYaGhlBdXY1Dhw7h6quvxq5duyI6BjtpRCls2fOnce0D/Uj3znDiH/4B+OMfheU2iIgoqL6+PtTV1QEQHiIoKSkJet/ZZ58FHgjcvn07mpqaUFdXF/ZGAOyk0axiFy1x5dR9jML7xgW0G24AjhxhQCMimkZtbS3UajUGBwexb98+fPOb38TDDz+MlpYWdHd3Y2hoCN3d3ejr65vwcZHuWc5OGlGq8XjwuSetuOJXlsDY9u3Ar34FpPP3NiKi6eTk5Pi7YRaLBU1NTWhpaZnwdCcA/OhHPwKACYv1LliwIOzzMKQlCCmukcYuWgIa8yD/Jx9iZd0ngbFdu4Af/UjYk5OIiKal0WjQ3d0NnU4HjUaDLVu2YMuWLbBYLP7umU6ng0KhAADcc889WLJkCR599NEJU6DT4a/NRCkibdSD1Tv7Jwa0X/wCeOQRBjQioghUVFTA6XSirq4O3d3d/nGNRoOioiIUFRX5AxoA3HTTTfB4PKivr8fGjRvDPg87aTQr2EVLLOnuMei/fRJLX/f+BpeeDjz9NHDLLeIWRkSUpHxhzGQyTfve8WupRYIhjUji5jjO4bo7T+Ci/3IIA5mZwHPPARs2iFsYEZEEzOZm7JzuJJKwzDOjKLnJFAhoCgXw8ssMaEREU+ju7saePXtgMBhErYMhjWKOU52JQW4ZRtn1vbjAMCQMLFwIvP468KUviVsYEVGC0+l0KCkpQUNDA2644QbU1dVNWk4jHjjdSSRBipNulNT0QvGhd6P0JUuAlhbgqqvELYyIKEn47jlzOp04evQo9u7dC6fTicrKyqg2TY8EQ1oCkNLyG+yiiW/B/zuLki0myD8ZFQaWLwdeew1YsULcwoiIkpBCoUBFRQUqKipgsVjQ3NyMu+++G0uWLEFxcTHWr18/a+dmSCOSkAv+jxNFW/uQ+Zl3G4GrrgKam4GlS8UtjIhIAjQaDWpqalBTUwOTyYTm5mbU1taioKAAFRUV0Ol0MT0f70mjmGEXTVwXtX2Gkpt6AwFt7VrgzTcZ0IiIZkFOTg62bduGQ4cOoaSkBE1NTbjhhhuwf//+mN2/xk5aFD4sXyR2CUQAgItfsWHNd81IH/EIA1/6EvD880BWlriFERGlgKnuXysqKvJvCRUpyYe0zs5OqNVqaLVasUuRNHbRxHPZHz7FNbveR9qYd2DDBuDQIUAmE7UuIqJUc/79ax0dHdi1axeysrJQWVmJkpKSiB44kPR0p8vlQnt7O9xut9ilEM2KVU8P4NrvjwtoN98M/OEPDGhERCLTaDTYsGEDnnrqKWzfvh29vb3YunUr9uzZM2ErqalIOqSJvQhdqmAXTQQeD678l49w9e6PAmP33gs88wwwR/INciKipDL+/rWKigp0dXWF9XGSDWlmszkppjiltPwGxck5Dwp+8AHyDgwExn78Y+Bf/5UbpRMRJTidToeampqw3ivZkGa1Wmd8ox5RokobHsOa75qx4rlPvQNpwL59wPe/z4BGRCQxkgxpBoMBer1e7DJSAqc64yfj7BjWfesELn3JJgzMmQMcPAhs2yZqXUREqcZkMuHhhx/GX/7yl1k9j+RCms1mg1wuF7sMopia+9koim82QfPmoDAglwtLbHzzm+IWRkSUgpqbm3Hq1Cns3bt30mt1dXVoaWmJyXkkd4ex0WicURftnXfewbvvvjvt+5xO50zKkiR20eJD9skIim/ug+qvZ4WBBQuAxkagrEzcwoiIUpRGo8Hjjz+OwcHBSa/5diOoq6sL+96zUCQV0oxGI3Jzc2f0scPDw3A4HDGuiCg68z4cRkmNCdknvcvILF4sbPN07bXiFkZElMIGBweRlpYGjUYT9PWcnBxoNJqog5pkQprL5YLL5YJKpZrRx2dmZiIrjNXZnU4nPB7PjM4hJeyizb4skwslNSbMt4wIA5deCrS0AJ/7nLiFERGluJqaGuzfvx9LlixBRUVF0AVqFQpF1OeRTEiL9mGBwsJCFBYWTvu+AwcOsONGs071P0MovtkE2RnvPpy5uUBrK7BsmbiFERERhoaGMDg4iObmZtTV1WHFihUoKChASUkJVqxY4X+f1WqN6jySCGnJutxGsq6Rxi7a7Fr8lgPrbu/DXKd3G4FrrgGamoCLLhK3MCIiAgA8+eST0Gg02LlzJ4xGIwwGAw4fPowjR44AANRqNaxWK7ZF+fS9JEKa3W5HT0/PpB0GXC4XAOCtt95CT08P5HI5ysvLxSiRKCya/7Rj7V0nkeH2TqmXlgoPCSiV4hZGRER+Go3Gf69ZUVERAOF2qO7ubrz33ntoaWnB9u3bsX79+qjOI4mQlpubG/SBAZfLhX379mHt2rUzfqCAJmIXbfZc+qfTWH1/P9K9M5z4+78H6uuBCDbjJSKi2RdspQeFQoGioiIUFRVh+/btaG5uRnd3N3Q63YzPI7l10oiS0Yr/+BhrvjsuoF1/PfDCCwxoREQJqLi4GM8///yU74lkj85QJNFJC8VutwMITHsSJRyPB3n7rbjycUtg7M47gb17gYwM8eoiIqKQfN2x/fv3o7KycsLDAoCwoO2CBQuwYMGCqM4jyZBmtVrR2dkJm80GAGhra/NvuJ6fny9ucUmMU50x5vHg6p99hFW//Tgw9s//LGyWzn04iYgSmk6ng06nQ0dHx6SQ1tvbC4PBgA0bNkR1DkmGNLVajaqqKrHLIAopbdSDax56H5c1nA4M/su/AN/7nnhFERFRxHwPDoz36KOPwmQyIScnJ6pjSzKkUeyxixY76e4xrLnXjIub7d6BdOCpp4BbbxW3MCIiiploAxrABwdEk6xrpFF0MpznsO72vkBAmzsX+MMfGNCIiBKIxWLB0NDQrB2/u7s7rPcxpNG02EWLjbm2UZTeZIL6mHfHivnzgZdfBjZuFLcwIiKaQKPRoLa2NuodA4JpaWkJ+70MaURxILeOoOz6XlzQ7f3NTKUCXnsN4OLKREQJadu2bTh8+PC0S22Ey2KxYPfu3VCr1WGvncZ70mhK7KJFb36/GyU1JmS9PywMaDTCRulXXy1uYURENKVt27aho6MD9957L3Q6HSorKyPehrKjowNNTU3QaDTYsWNHRBuvM6QRzaIFxrMo3mLCvIFRYWD5cmGj9BjcUEpERLPPt4tAR0cH9u3bB5PJhJUrV2LFihVYsmQJACArKwsA4HA44HQ6cfz4cVgsFlitVqxfvx7btm2DRqOJ+NwMaUSzZOF7ThRv7UOm3buNwJVXCh20pUvFLYyIiCLmC2u+PTotFgt6e3sxODg4YZsojUYDnU6H6upqLsFBs4dTnTN34bFBrPvWCcwZGhMG9HrglVeARYvELYyIiKLi26MzHvjggAi4/Ia0LW22oWhrXyCgffGLwkMCDGhERBQBhjQKil20mdE2fIq1d51ExohHGPjqV4VlNrKzRa2LiIiSD0MaUYys/O0AVj/wPtK8DTTU1AD19YBcLmpdRESUnBjSaBJ20SLk8eCKx08h/6cfBcbuvhv47W+BObztk4iIZoZXEKJojHmge+RD5Bz8JDD26KPA978PpKWJVxcRESU9hjSagF208KWNeLB6Zz+WvXgmMPjkk8COHeIVRUREksGQRjQD6a4xrL3rJJa84X1SNyMDqK0FNm8WtS4iIpIOhrQ4S+TlN9hFC8+cwXNYd3sfLnzbu3ihTCY8IFBVJW5hREQkKQxpRBHI/HQUxbeYsPB/zwoD2dnAiy8CX/iCqHUREZH0MKQRhWneR8Mo2WJCdp9bGFi0CGhqAgoLxS2MiIgkiSGNAHCqczpZfS6U1Jgw/9SIMHDxxcJG6ZdfLm5hREQkWQxpRNNQ/c8Qim7pg/z0qDCwcqWwzZNWK25hREQkaQxpxC7aFBa97UDRbX2Y6/BuI6DTAc3NgFotbmFERCR53HGAKAT1nz9DyRZTIKAVFwN//jMDGhERxQVDWopjFy24SxrPYN2dfchwezdKr6wEWloAlUrUuoiIKHUwpMVRIq+RRgHLf/cJ1txrRrr3FjR8/evAn/4EzJ8val1ERJRaGNJSGLto5/F4kPtrK655+AOkeRtouP124He/AzIzRS2NiIhSD0MaEQB4PLhq90e46uenAmM7dwL/9m/Clk9ERERxxqc7UxS7aOOc8+Dah97HZfWnA2OPPSaENCIiIpEwpFFKS3ePofC7ZlzSZBcG0tKAAweA224TtzAiIkp5DGmUsjKGzuG6bSehPjooDMydCxw8CPzTP4lbGBERERjSUhKnOoG59lEUbe3DoveGhIF584AjR4SlNoiIiBIAQxqlHPnACIpvNkHZ4xIGlErg5ZeFxWqJiIgSBENanCTKGmmp3kWb/74bJTUmZPUPCwMXXSQsUqvTiVsYERHReRjSKGVkG8+iZIsJ8wa8q9RqtUBrK7BqlbiFERERBcGQlkJSuYu2sNuJolv7ILOdEwY+9zkhoF1yibiFERERhcDFbEnyLvzLIEpuMgUCWmEh0N7OgEZERAmNIS1FpGoXbUmrDUW39GGuc0wY+MIXgNdfBxYvFrUuIiKi6TCkkWQtO3Ia120/iYwR70acX/kK8OqrwIIF4hZGREQUBoa0FJCKXbSc2o9ReH8/0rwNNGzeDDQ0AHK5qHURERGFiw8OxEGiLL+REjweXP4rCy5/0hoYu+su4IkngHT+TkJEFC9msxlmsxkqlQoul7AupV6vj/g4BoMBNpsNVqsVLpcLWq0WZWVlk97X2NgIuVyO/Px8qNVquFwuWK1WGAwG6PV6qNXqqD+neGNII+kY8yD/xx9i5bOfBMYeflj4Ly1NvLqIiFKM0WhET08Pqqqq/GNmsxn19fXYtGlT2Mdpa2tDfn4+8vPzAQAulwuNjY3Yu3cvtm7dCvm42RGXywWj0QiDweAfk8lkqKqqSsqABnC6U/JSZaozbcSD1ff3TwxoTzwB/PCHDGhERHHkcrnQ0tKC8vLyCeNarRYul2tCiJqK0WhEXl4eVCqVf0wul6OqqgputxuNjY0T3q9Wq7Fx40aUlpaitLQUVVVV2LFjB7RabdSfk1jYSaOkl+4eg/7bJ7H0de+0ckYG8MwzQE2NuIUREaUgo9EIpVI5ocvlk5eXh+7ubn9nbCoWiwW5ubmTxn1TmgaDAS6Xa8J5tFptUoey87GTJmGp0EWbM3gOxbf0BQJaZqbwgAADGhGRKHp6eoIGNABQqVQYGBjw36M2FYPBgPr6+qCv+aYvrVZr0NelgiGNklbm6VGU3tSLC99yCAMKBfDKK8BXvypqXUREqcxqtU6YohxPqVQCAOx2+7THmeo+Ml/ICxUGpYLTnRIl9S7avFPDKN5iwgKTWxi44AJhDbQZPDlERESx43a7IZPJpnyP3W6f9mb+qR4w8IW8849hs9nQ398/4c96vT5pwxxD2izj8huxpzjpRklNLxQfjggDS5cCLS3AlVeKWxgRkQQ4nU4cOHBg2vetXr0ahYWFER3bF97Cme6cisFgmHRfm91ux8DAwIRxq9WKgwcPYvPmzUkZ1BjSJEjKXTTlX8+i+GYT5J+MCgM5OcJG6cuXi1sYEZGIMlxjuLj1THTH2KgEFOnweDxwOBzTvn94eDiq881UW1sblEolSktLJ4yPX+7DR61WQ61Wo7W1NejriY4hjZLGBe86ULS1D5mD3m0Err4aaG4GliwRtzAiIglJS0uDQqGY9n2ZmZkRH9vtFm5RmWlXy7c4bSSdMa1Wi9bW1hmdT2wMaRIj1S6a+s3PsHb7CcxxeffhvO464OWXhXvRiIgoZhQKBe644w6xywiqsbERmzZtCvlgQjC+MGe1WpNuUVs+3UkJ7+KXz2DdneMCWnk58NprDGhERAlIqVSGfHrTdy+a7ynPSNTX16O8vDxo0GptbUVbW1vQj4vVfXBiYEijhHbZ7z+F/m4z0ke8AW3jRqCxUVhug4iIEo5v38xgQj2VOZ3W1lbo9fqQC9X29PSEDIYzPWciYEiTEKlNda56yoprH3ofad58hltvBX7/e2CaR7uJiEg8Wq02ZGCy2WxYtmxZRMfr7OxEbm7upIBms9lgNpsBAPn5+SEfDDCbzSF3QEh0DGmUeDweXLnnI1y951Rg7HvfA55+WtjyiYiIElZubi5cLhdsNtuk14xGI3Q63YQxl8vlD1vB3q9Wq4N20AYGBvzTphqNJujuA75N18vKymbwmYiPIW0WxXONNMl00c55cM2uD5D31EBg7Kc/Bfbs4UbpRERJQC6XY/369Whvb58w7tvT8/z9OBsbG9HQ0DBp43Wr1Yru7m7Y7XYYDAb/f52dnejs7MRbb73lf4AgNzcXBoNhUlCrr69Hfn5+0D1AkwGf7qSEkTY8hsL7+nHpyzbvQBqwbx/wrW+JWhcREUUmNzcXMpkMbW1tUKlU/nvUgu0ioNVqgz55WV9fD7fbPWEHgfHOf/igvLwcnZ2d6Onpgdvthsvlwtq1a5M2oAEMaZIghS5axtkxrN1+Apq2QWFgzhzg2WeB668XtzAiIpoRrVYb8kb/8fR6PfRBtvTbsWNHxOcMdpxkJqmQZjAYYLPZYLVa4XK5oNVqk3YeOpXM/WwU6247gcXvOoUBuRxoaAC+/GVxCyMiIhKRZEJaW1sb8vPz/Xt2uVwuNDY2Yu/evdi6dWtSPtURjmTvosk+GUHxzSao/up9XHvBAuCll4DztvsgIiJKNZJ4cMBoNCIvL2/CCsRyuRxVVVVwu91obGwUrzgKad6Hw/j8148HAtqFFwJ//jMDGhERESQS0iwWS9BF6uRyOfLz89Hf35+UKw1LWXavC1/4p+PIMns36L30UqC9HbjmGnELIyIiShCSCGkGgwH19fVBX/OFt2DrpyS7ZJ3qVP33EMquP4551hFhIDcXOHoUyMsTtzAiIqIEIomQNtVWD74OWrzvSYvnGmnJZPF/DaJ0cy9kZ84JA9dcI3TQIlyBmoiISOok8eBAsHVXfJJ5z66pJGMXTfO6HWvvOomMYe8+T2VlwIsvAjPYaJeIiEjqJBHSpmIwGPxPfE7lnXfewbvvvjvt+5xOZyzKSjmXvnAaq3f2I93bQMOXvwzU1wPz5olaFxERUaKSdEhra2uDUqlEaRhPCw4PD8PhcMShquglWxdtxbMfo+CRDwMD3/wmUFsLzJ0rWk1ERESJTrIhzWq1wmAwYPPmzWHdj5aZmYmsrKxp3+d0OuHxeGJRovR5PPjcPiuueMISGNu2DXjySSBdErdDEhERzRrJhrTGxkZs2rRpwtppUyksLERhYeG07ztw4ICoHbek6aKNeXD1Tz/CqtqPA2Pf/z7w6KPcKJ2IiCgMkgxp9fX1KC8vl9zDAskibdSDa7//PrSHTwcG//Vfge9+V7yiiIiIkozkQlprayv0en1Ym7rOltlafiMZumjp7jGsuceMi1vs3oF04OmngVtuEbcwIiKiJCOpG4M6OzuRm5s7KaDZbDaYzWaRqkodcxznUHRbXyCgZWYCf/wjAxoREdEMSKaTZjQaoVarg3bQBgYGcNFFF4lQVerIPDOKoq19uKB7SBiYPx944QWgvFzUuoiIiJKVJEKa1WpFd3c38vLyYDAY/OO+3QZ6enpw4403ilVeTCTyVKfcOoLiLSYoj3v3R1WpgFdeAdatE7UuIiKiZCaJkFZfXw+3243+/v6gryu5ov2sUZjdKNliguJ970bpGg3Q0gJcfbW4hRERESU5SYS0HTt2iF3CrErULtqCnrMo2WKC/ONRYWD5cqC1FcjJEbcwIiIiCZBESKP4W/ieE8Vb+5Bp9+7zdOWVQgdt6VJxCyMiIpIIST3dmQhivfxGInbRLjo6iNKbTIGAptcDb77JgEZERBRDDGkUkaVNNhTd1oc5Z8eEgb/9W+D114FFi8QtjIiISGIY0hJYonXRtPWfYu23TyJ9xLt36de+Brz8MhDGnqdEREQUGYY0CsvKZwaw+sH3keZtoGHLFmGhWplMzLKIiIgkiyEtQSVMF83jwRW/OIX8n30UGLvnHuCZZ4A5fO6EiIhotvAqS6GNeaD70YfI+d0ngbEf/xj4538G0tLEq4uIiCgFMKTN0Dl5OmAXu4rZkzbiweqd/Vj24pnA4N69wPbt4hVFRESUQhjSEpDYU50ZZ8eg//ZJLHnDu5xIRgZQVwfccIOodREREaUShrQYivUaaWKYM3gORbf3YfHbTmFALhceEKiqErcwIiKiFMOQlmDE7KJlfjqK4ltMWPi/Z4WB7GygsRH4/OdFq4mIiChVMaQRAGDeR8Mo2WJCdp9bGFi8GGhqAlavFrcwIiKiFMWQlkDE6qJl9blQUmPC/FMjwsAllwj7cF5+uSj1EBEREUNaylP9zxCKbumD/PSoMLBqFdDaCmi14hZGRESU4hjSEoQYXbRFnQ4U3d6HuQ7vNgIFBUBzM3DRRXGvhYiIiCbijgMpSv3nz1BysykQ0EpKgDfeYEAjIiJKEAxpCSDeXbRLGs9g3Z19yHB7N0r/u78TOmgqVVzrICIiotAY0mIkWdZIW37oE6y514x07y1o+PrXgRdeAObPF7MsIiIiOg9DWqrweJC334prfvAB0rwNNNx5J/C73wGZmaKWRkRERJMxpIksLlOdHg+u2v0RrvzFqcDYAw8A+/cLWz4RERFRwuHTnVJ3zoNrH3ofl9WfDozt3g3cf794NREREdG0GNJENNtdtHT3GNbca8bFzXZhIC0NOHAAuO22WT0vERERRY8hTaIyhs7hum0noT46KAzMnSvcf7Zpk7iFERERUVgY0kQym120ufZRFG3tw6L3hoSB+fOBI0eAiopZOycRERHFFkOaxMgHRlB8swnKHpcwoFIBL78MFBWJWhcRERFFhiEtBiJdI222umjz33ejpMaErP5hYUCtFjZKz8+flfMRERHR7GFIk4hs41mUbDFh3oB3lVqtVtgofdUqcQsjIiKiGWFIi7PZ6KIt7Hai6NY+yGznhIHLLxcC2sUXx/xcREREFB9czDbJXfiXQZTcZAoEtDVrgLY2BjQiIqIkx5CWxJa02lB0Sx/mOseEgb/5G+D114HFi8UtjIiIiKLGkBZHsZzqXHbkNK7bfhIZI96NOP/xH4FXXgGys2N2DiIiIhIPQ1qUIn2yMxZyaj9G4f39SPM20HDTTUBDAyCXx70WIiIimh18cCBOYtJF83hw+S8tuHyvNTB2113AE08A6czbREREUsIre7IY8yD/0Q8nBrQf/hD45S8Z0IiIiCSInbQ4iLaLljbiwbUP9kP7wpnA4BNPAN/5TlTHJSIiosTFkJbg0t1j0H/7JJa+7r33LSMD+O1vhfvQiIiISLIY0mZZNF20OYPnsO7OE7jwLYcwkJkJ/PGPwpOcREREJGkMaQkq8/Qoim81YeF/nxUGsrKAP/0J+OIXxS2MiIiI4oIhLQHNOzWM4i0mLDC5hYELLgBefRXQ68UtjIiIiOKGIW0WzWSqU3HSjdKbejH/oxFhYOlSYR/OK66IbXFERESU0BjSEojy/w6h+OY+yD8dFQZycoDXXgMuu0zUuoiIiCj+uMDWLIm0i7boHQdKb+gNBLT8fODoUQY0IiKiFMWQlgDUb36G4i0mZA5693latw74858BjUbUuoiIiEg8DGmzIJIu2sUvn8G6O/owx+XdKH39euEetIULZ6c4IiIiSgoMaVGIdnP1y37/CfR3m5HuneHEpk3Aiy8CCkX0xREREVFSY0iLsXC7aLkHrLj2oQ+Q5m2gYetW4LnnAJls1mojIiKi5MGQFm8eD67c8xGu+pdTgbH77gOeekrY8omIiIgIXIIjpqbtop3z4JoffIDlf/g0MPaznwEPPDCrdREREVHyYUiLk7ThMaz5Xj8uecXmHUgD9u8H7rxT1LqIiIgoMTGkxUHG0Dlct/0k1O2DwsCcOcB//AfwjW+IWxgRERElLIa0GAk11Tn3s1Gsu+0EFr/rFAbkcuDwYeDv/z5+xREREVHSYUibRbJPRlB8swmqv7qEgQULgJdeAkpLxS2MiIiIEh5DWgwE66LN/8CNkhoTsszDwsCFFwLNzcA118S3OCIiIkpKDGmzIPu4CyVbTJhnHREGli0TdhHIzRW3MCIiIkoaDGlROr+LttAwhKJbTZCdOScM5OUJAe3SS+NfHBERESUtLmYbQ4v/axAlN/YGAtq11wLt7QxoREREFDHJddLMZjPMZjNUKhVcLuGGfb1eP+vnXfKaHfpvn0TGsHefp7IyoLFReFiAiIgoxcTqehzJccTKALNFUp00o9EIg8GAsrIy5OfnQ6/XQ61Wo76+PvYnyxzz/++lz5/G2u0nAgHty18GmpoY0IiIKCXF6nocyXHimgHiRDIhzeVyoaWlBeXl5RPGtVotXC4XDAZDzM/5k/wXsOLZj7Hmvn6ke2c4ccMNwPPPA/Pmxfx8REREiS5W1+NIjiNGBogHyYQ0o9EIpVIJuVw+6bW8vDx0d3fH/Jyfe9KCgkc+DAxs3w48+ywwd27Mz0VERJQMYnU9juQ4YmSAeJBMSOvp6Qn6lwMAKpUKAwMD/vnpWMh2unDFLy2BgYceAp58EkiXzJeUiIgoYrG6HkdynHhngHiRTKKwWq1QqVRBX1MqlQAAu90es/PNdw0H/vDznwOPPipsmk5ERJTCYnU9juQ48c4A8SKZkOZ2uyGTyaZ8T8z/gtLTgWeeAe69N7bHJSIiSlKxuh5HchxRMkAcSG4JjmB8f3FTtTrfeecdvPvuu9Mey+FwAACcCxbgwM9/DoyMAAcOxKZQIiKSDKfTCQAYGhqa9XPJ5qWhdKMy6mMAQt0HwriurV69GoWFhZGdI4zrcayPE6tziiElQlo4hoeH/QEsHJ70dDjOnQMi+BgiIko9Y2Nj078pSmnpaZArYnPLjcfjCet6ODw8PO17KDopEdLcbjcAhLypEAAyMzORlZU17bHGf+OG834KcDqd8Hg8SEtLg0KhELucpMKvXXT49Zs5fu1mLpJf/Gcq1n8nw8PDGB0dxfz586d9b2ZmZsTHD+d6HOvjxOqcYkiJkBaOwsLCsNq2Bw4cgMPhQFZWFu644444VCYdvq+dQqHg1y5C/NpFh1+/mePXbubGXy9my+bNm2ft2CQ+yTw4oFQqQ94U6JuH9j3hQURERLMjVtfjSI4j1QwgmZCmVqtD3hTo+4tTq9XxLImIiCjlxOp6HMlxpJoBJBPStFptyBRts9mwbNmyOFdERESUemJ1PY7kOFLNAJIJabm5uXC5XLDZbJNeMxqN0Ol08S+KiIgoxUR6PXa5XDCbzVEdR6oZQDIhTS6XY/369Whvb58w7tvPKzc3V6TKiIiIUkek1+PGxkY0NDRM2gQ9kuNINQNI6unO3NxcyGQytLW1QaVS+eenN23aJHJlREREqSOS67FWq4XVag16z1gkx5FiBpBUSAOEv2ytVit2GURERCkt3OuxXq+HXq+P+jiRvjcZSGa6k4iIiEhKJNdJm22rV6/G8PDwjFZaTnX82s0cv3bR4ddv5vi1mzl+7ShaaR6PxyN2EUREREQ0Eac7iYiIiBIQQxoRERFRAmJIIyIiIkpADGlERERECYhPd4bJbDbDbDZPWCBvqnVdSGAwGGCz2WC1WuFyuaDValFWViZ2WUmts7MTarVaUmsBzSabzeZfhVwul0Mmk/F7MAxGo3HSVj2lpaWQy+UiVZR4XC4X2tvbp/2e4vWDZopPd4bBaDSip6cHVVVV/jGz2YzOzs6kXsl4trW1tSE/Px8qlQqA8AOtsbERVqsVW7du5Q/7GXC5XNi3bx+qqqqSdpuTeDIajXjrrbdQVVU14fuws7OTQW0KbW1tkxYFtdlsaGxsxKZNm1L+325bWxvsdjvUajUMBgO0Wi3Ky8uDvpfXD4oGpzun4XK50NLSMukfoFarhcvlmrTXGAmMRiPy8vL8F0ZA6GJUVVXB7XajsbFRvOKSGL/fwme1WtHS0oJNmzZN+D5sbW2F0WgUr7AEZ7VaAWBSp1alUmH9+vVobW0Vo6yEUlZWhqqqKuj1eshkspDv4/WDosWQNg3f5qzBfnPMy8tDd3e3CFUlPovFEnQfNrlcjvz8fPT39/vb/hQes9nMKc4ItLW1Qa/XT/q3q9VqkZ+fL1JVic9sNkOj0QR9Ta1W+0McTY/XD4oWQ9o0enp6Qrb2VSoVBgYGGDaCMBgMqK+vD/qaL7zxh31kQm1ATJNZrVb09/cHDWP5+fm8H2gaocKDzWaDUqmMczXJi9cPihZD2jSsVuuEqZLxfD+s7HZ7HCtKDlOFCd8PpVS/ryUSBoOBwSICBoMhZAeDppabm4v+/n40NjZOChBvv/02vw8jwOsHRYtPd07D7XZPec8BAP8NpBQw1Q2xvh9K/JqFx2azMWxEyGw2+y+CnZ2dAIRfCmw2W9ApUApQqVQoLS1Fe3s7zGYzqqqqoNVq/TfIc8o9fLx+ULQY0qLg+8fHdnVkDAYD7wmKgNFoZPciQr4LX2dn54Svnc1mw8GDB7F582YGtSno9XqoVCo0NjaioaEBSqUSGzduDNkVosjx+kHh4HQnxVVbWxuUSiVKS0vFLiUpGI1GLrUxQ1arddLXTqVSQavV8gnFMMhkMqxZswbLli2D3W5HQ0MD7yMlijOGtCi43W4AvLcqXFarFQaDARs3buTXLAwulwsul4vdiygE+9qp1WoYjUZ2MKbQ1tYGt9uNsrIybNq0CeXl5bDb7Th48OCkBW5pZnj9oHAwpFHc+BbCZOgID6eFoxPqKUTfOLtCwfnW7hrfhczPz8ett94KpVIZ9IECIpodDGnTUCqVIZ++8f2g4iPp06uvr0d5eTlvkA0Tl9uITjhPdvKpuuBC7cagUqmwefNmAEB/f3+8y0pKvH5QtPjgwDTUanXI3xr5lGJ4Wltbodfr+VRYBOx2O3p6eiatSO77Xnzrrbf8azCF2o4mlanVathstmnfQxO5XK4pn0aUy+XQ6/XTfm1JwOsHRYshbRpardb/CP/5bDYbli1bFueKkktnZydyc3MnBTSbzQa73c7gFkJubm7QBwZ8e3euXbuWDxRMIS8vL+TWY76LIzsYk8nlcv+9UlPhLQvh4fWDosXpzmnk5ubC5XIF/c3RaDRCp9PFv6gkYTQaoVargwaxgYEBXiRp1uTm5kImkwXdo7Onpwf5+fm8YTsEpVI55cMBZrOZ4SJMvH5QtBjSpiGXy7F+/Xq0t7dPGPftycZuRnBWqxXd3d2w2+0wGAz+/zo7O9HZ2Ym33nqLv43PgK8LxBu3p1dVVYW2trYJXyuDwQC73c4lYKbg+7qdH9RcLpf/1gUG3AC32x3y3yOvHxStNI/H4xG7iGRgNpthNpuhUqn8/yC5wGhoe/funXLaRKlUYuvWrXGsKLlZrVZ0dnbCZrNhYGAAMpnMv/o7nwANzWw2w2AwQC6Xw+VyQalUBr0pnibzLcMxXmlpKQMahNs4rFar/98jACxbtgxyuRx5eXmTwhevHzRTDGlERERECYjTnUREREQJiCGNiIiIKAExpBERERElIIY0IiIiogTEkEZERESUgBjSiIiIiBIQQxoRERFRAmJIIyIiIkpADGlERERECYghjYiIiCgBMaQRERERJSCGNCIiIqIExJBGRERElIAY0oiIiIgSEEMaERERUQKaI3YBRJRc9u3bh97eXphMJgDAzp07UVxcDABwOBy47bbb4HQ6odFosGHDBlRWVopZLhFR0mJII6KIbN++HQDw2GOPobu72x/QACArKwsrV65EQUEBqqurxSqRiEgS0jwej0fsIogoOd1+++3Q6XT+4GYymXD8+HF2z4iIYoD3pBHRjO3cuRPNzc04duwYHA4H2tvbGdCIiGKEnTQiikpTUxPq6upQUlLi76gREVH02EkjoqhUVlZCo9Ggt7dX7FKIiCSFIY2IomIymVBRUQGn04na2lqxyyEikgyGNCKaMYfDga6uLlRWVmLnzp04cuQIurq6xC6LiEgSGNKIaMYaGhr8S23k5ORg27Zt2L17NxwOh8iVERElP4Y0IpqRxx57DKtWrZow5rs/bdeuXSJVRUQkHVzMlogismvXLvT29sLpdALAhMVsTSYTLBYLnE4nbr/9dqxYsQIPPPCAWKUSESU1LsFBRERElIA43UlERESUgBjSiIiIiBIQQxoRERFRAmJIIyIiIkpADGlERERECYghjYiIiCgBMaQRERERJSCGNCIiIqIExJBGRERElIAY0oiIiIgSEEMaERERUQJiSCMiIiJKQAxpRERERAmIIY2IiIgoAf1/I3F/es+TmHwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the function\n", + "def func(x, y):\n", + " return (x / y)**(1/3)\n", + "\n", + "# Create a meshgrid\n", + "x = np.linspace(0, 10, 100)\n", + "y = np.linspace(0, 10, 100)\n", + "X, Y = np.meshgrid(x, y)\n", + "\n", + "# Calculate the function values on the meshgrid\n", + "Z = func(X, Y)\n", + "\n", + "# Create a filled contour plot\n", + "plt.contourf(X, Y, Z, cmap='viridis', levels=np.linspace(0, 1, 5))\n", + "plt.plot(np.linspace(0, 10), np.linspace(0, 10), color='red', label=r'$bc^2 = \\pi^2 a$')\n", + "\n", + "# Add a colorbar to the plot\n", + "cbar = plt.colorbar()\n", + "cbar.set_label('$(x/y)^(1/3)$')\n", + "\n", + "# Customize the plot\n", + "plt.xlabel('x')\n", + "plt.ylabel('y')\n", + "plt.title('Contourf Plot of $(x/y)^(1/3)$')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cherry pick the profile" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1'" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dirroot == '/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1'\n" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/Users/kumiori3/Documents/WIP/Nature/mec647/test/output/rayleigh-benchmark-parametric/MPI-1/profile_comparison-2f6fb02e066c6e61b2680447a53b61df.pdf'" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "os.path.join(dirroot, f'profile_comparison-{signature}.pdf')" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "be93e3a1e3cd2893f62f838768340107\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "55aa665af4383cdfab486497a526b948\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "ae1a96698d6d1339b5ae36a9fc93a239\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "9cfef1c0d73313a1414d49bc38ddeccf\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "446276eafc7b7cb1df263d2d43575334\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "ae03a35d8fe5b10029fb688ae9f08611\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.0249981966475*sqrt(A**2/pi**2 + 0.475908872692863*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.139045048633087*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.139045048633087*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.556180194532348*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.139045048633087*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.278090097266174*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "c2e711ccd4e5b1706d05d5bd98ef5a8e\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "d323b3bd3f8ced38f7e5ed1370e95681\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "0aa3df8dcb703508b12d1c306410ba06\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "818deb373f5d6257aa085493e2a12fb6\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "39582b0fef781ef7dd59b969861740bb\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7021e9afc054e604d2e15dbc07a9db83\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "c3066ac9a8f4a735e144494a06586074\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "0bd67cc936b53d779e505e7860e8d3a0\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "5f009deebc7c75e793bc5c2a3881177d\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.16347268130367*sqrt(A**2/pi**2 + 0.369366601544115*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.231065424287268*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.231065424287268*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.924261697149072*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.231065424287268*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.462130848574536*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "f5987d8fb47e09c39afd3e4aba484450\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7d21decc9d7b00098894bc65c19ccd48\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "9f6e9f4b03f77f59fd59a719ce310950\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2)*sqrt(0.389876358479114*A**2/pi**2 + A**2)/2 True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.156269979037593*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.156269979037593*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.625079916150371*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.156269979037593*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.312539958075186*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "1da28d85e36e3d87bbd150884f1a6a4a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "47724b1983ad0ec6fb3a085868e6406c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "d42c5f930bc58a9b85355978626be7d8\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "046c79dade1d3ac0d860737fb091750e\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "9444e6515b8c6baac6410af233373084\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.14741297213846*sqrt(A**2/pi**2 + 0.379778603596825*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.172505400873148*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.172505400873148*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.690021603492591*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.172505400873148*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.345010801746296*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "3fa875212869f8bb87ecec023e3594ab\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "245a0619f72f8fa174e14ad18ed79ef8\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.28639219157913*sqrt(A**2/pi**2 + 0.302150428063509*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.186072847637724*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.186072847637724*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.744291390550896*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.186072847637724*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.372145695275448*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "81211387b53a1545755003f8b2a1fc18\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.12114641497632*sqrt(A**2/pi**2 + 0.397782194392812*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.115517635045689*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.115517635045689*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.462070540182758*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.115517635045689*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.231035270091379*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "00ffda65398984695ae5576fe383f02c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "ce9436b3ab369c9ab0d19d5fd85d64fe\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.37455388563356*sqrt(A**2/pi**2 + 0.264634501701232*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.214213885264008*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.214213885264008*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.856855541056033*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.214213885264008*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.428427770528016*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "bfb5281dbaf30b871676f44cc1395433\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "6e3e4283c6d55967a64bf8d1b588732a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "adc4418b5f4802de2918f2932e0ad1c6\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "961ec9441a2fa5a82bbed869080b8b3a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "c18632626e637957d7850f27ba8ed27e\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.16671987856582*sqrt(A**2/pi**2 + 0.367313431533773*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.191462954526186*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.191462954526186*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.765851818104746*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.191462954526186*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.382925909052373*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "5bb43003ce8ab88ea3e2b5835b018f9b\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "5e1b92e1c2392c4742c4b8caac239078\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "08c18d207e645c06bfbac1f997b0edad\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "04c979b82e2ec3add9a38959f42f52b1\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "c20e9b135c36e94f7498a133cc45e442\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "e0d28a7fc82849a64a0fbc6f584ea8e9\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "873a5a261a51d2c352cec13cbf8fdf0c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "bec3d3e00694ea0d182b04366cbf8cb0\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7f1430bcb0a6e3812cc44d0015cc2e19\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "bc4a60b8d7abfbcdec8bb45d864e38a8\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "d5612d1467c7b6d3624c53bc688289df\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "ec046ac8dc9f3843ba2d44fc1f32bf0d\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "fe1bd5e0aae1254c90a08b9fe2d4fcac\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "3e66ff5126900e8b3aacf615357995c8\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.22265093597691*sqrt(A**2/pi**2 + 0.334476057125797*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.0634705390029896*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.0634705390029896*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.253882156011958*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.0634705390029896*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.126941078005979*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "a6830e9ed97c7590c32e359c547bae37\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "55f85e04d355cf55f777c22037403b12\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "8498148bb21e28e65acd6e832dd392e5\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "e1690d753f1cfe4e6c8ed1999f242f70\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2)*sqrt(0.976972311860614*A**2/pi**2 + A**2)/2 True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.198315094885309*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.198315094885309*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.793260379541235*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.198315094885309*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.396630189770617*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "ebfe4b19968441962ec69b81048f5a40\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "787493f255c3e1fe0f7590724463af47\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "49dd09f415ed6893adec2902800ecfbb\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "dd6df4f37eb57a3022cd311c11ed40b8\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "14dffef10402801b89457241dc466ce3\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "02bd5bbda8beff8f5cc0fbd88b599173\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "1a9321268f43fe71c8ad7f9ab0ffe154\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "95e026c0be6029963131d95f104d98f9\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "bc600344f6d97e175bdff42d5a0d9660\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "99b28ae6fc8d44b1389a5fe6da60a557\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "68c28c98150c0491f40b510fe53d5150\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "3595514d555f90e66127a53c00ad6142\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "e5593a7c5757a917c4833284b849e8e4\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.3894603456363*sqrt(A**2/pi**2 + 0.258986836479791*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.218341110101021*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.218341110101021*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.873364440404083*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.218341110101021*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.436682220202041*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "154863f5eba04c9bd04c821204662c46\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7762cc6ecd7e5663aefbc1ac3d1d183a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "6d28de9a1db1dc3ad984dc0fed840b85\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "76162cca14bfb91a3e02d6e29627bc11\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "6ebe9390869deaeaae9fe15f64d1d60e\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.03013557424391*sqrt(A**2/pi**2 + 0.471173909420131*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.223748411074631*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.223748411074631*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.894993644298525*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.223748411074631*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.447496822149262*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "ba40fab16ef2ffaa80483f7a471cf2bb\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "a190267e13d71e0a2cefd795da6d16a2\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.864827147650205*sqrt(A**2/pi**2 + 0.668515338594289*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.209611900693968*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.209611900693968*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.838447602775871*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.209611900693968*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.419223801387935*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "390c1586d26f4ecb8965bb7caafd1a01\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "30b166d2e6f48e17020d5e5457e6e26a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "0709aa4181151c6be88b7bcafc3e014c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "9b0cc6ef9c3464d738b9e6c4be7917cf\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7ed36b8dcee86d9a4d55b31fdd6f7199\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "ef35e224f60f9f4f67a652b6b2bfabc3\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "5f728c69b35c2f0b870a23f20c1cf1bd\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2)*sqrt(0.0275813980055675*A**2/pi**2 + A**2)/2 True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.15933232897846*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.15933232897846*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.63732931591384*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.15933232897846*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.31866465795692*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "aa1c7bcfbf8bd723b77f5710a6a9f594\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "3834fb17dbfd82a9e6b6c78c159139b4\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "379c9f5ef533b7996ca5a6f6e2aebefb\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "19c6e4fb5e77a4485581566f5ac85e7c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "96e85c7780b0f7c34955ed4e9e8f6075\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "29a13ad515a4e0b380c0765b509f4bd8\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.928087772844877*sqrt(A**2/pi**2 + 0.580486203424807*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.215788680626446*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.215788680626446*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.863154722505782*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.215788680626446*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.431577361252891*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "70a947a5ab7ce7fea419f5942119a162\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "0e5f3c92253e55d958c60f6c4b3c3c94\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "fa49c46e19fa64edbd26b7a87ff6c06f\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.26762729219637*sqrt(A**2/pi**2 + 0.31116220633933*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.204618354232031*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.204618354232031*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.818473416928122*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.204618354232031*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.409236708464061*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "ff220f0b4c41c9194a0d56982ad9d9df\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "25739f21e5031ff02151d7be8da54f32\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "9b092eb12c6b86663f750cc82741a54d\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.32107616259455*sqrt(A**2/pi**2 + 0.286493182526239*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.142125512922437*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.142125512922437*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.568502051689748*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.142125512922437*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.284251025844874*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "197773ce0c3bd5db1389a4e328fc1127\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "384d216e638296c3f2e43c1bc10e6aa2\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "cc67da412eb68626108ce80d9973105b\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "2f31290d5784e79695d28a07513df7cc\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "90167d1609a729e7134e4a923351f671\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "36ba82b093b807f3d4156df5aef56265\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.29169200878477*sqrt(A**2/pi**2 + 0.299676065955124*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.144342162084983*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.144342162084984*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.577368648339934*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.144342162084984*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.288684324169967*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "6426c7b91e31a7164aa0ac3fe5ca7cc7\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.240726821646*sqrt(A**2/pi**2 + 0.324801228187032*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.19984995081053*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.19984995081053*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.799399803242118*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.19984995081053*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.399699901621059*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "b33a98e1400345111df1f4a5186d8830\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "0bd72656f57f527e5863ef191c372831\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "a3c39f11e5abdfdb1f68559d8d04e975\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "043ebb377c5c5699e4d0c39a6efff1bd\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "64765b11b3c0dfd58defa91fe80ef236\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "941d48ed62b7edc24a6b564a91b4d6c6\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.11437762606521*sqrt(A**2/pi**2 + 0.402629170585736*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.164505708441684*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.164505708441684*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.658022833766736*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.164505708441684*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.329011416883368*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "2f170fb0e88ec9e9ada917e40dfe9b56\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "4363c09f4f41e45ec5a021d2b68e8276\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "e8a1433809df201ba869c62c16c0870c\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2)*sqrt(0.813076119802649*A**2/pi**2 + A**2)/2 True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.189747008527704*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.189747008527704*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.758988034110815*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.189747008527704*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.379494017055408*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "12e557a7aa59790b9b017adcc2d61778\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.845563057157335*sqrt(A**2/pi**2 + 0.69932330883479*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.203702624336535*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.203702624336535*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.814810497346139*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.203702624336535*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.407405248673069*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "2ab9598ff854eb657a12d777d1374f74\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "a80319cc10e4c333d4b0bdd3b113526d\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.23373288255977*sqrt(A**2/pi**2 + 0.3284942137848*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.2011399233956*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.2011399233956*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.804559693582401*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.2011399233956*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.4022798467912*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "67450e668b5e0f33bd764955db697890\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.22833837228112*sqrt(A**2/pi**2 + 0.331385854483588*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.219429767069151*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.219429767069151*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.877719068276604*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.219429767069151*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.438859534138302*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "fab2c241b23cc097ef2a6c33ca7d1cb4\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "f44e21cb4fe6fab825843b049649c479\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "63664dec0d71acbc99c1bc0610834138\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.974685896582915*sqrt(A**2/pi**2 + 0.526308810620162*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.129437641546106*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.129437641546106*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.517750566184423*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.129437641546106*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.258875283092211*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "f582d6b1956c5d8756fcecd3ed31854c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "37c112d0c344dfbd6591d46e6aa4bf2b\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.937725208262756*sqrt(A**2/pi**2 + 0.568615667922903*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.218624644557606*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.218624644557606*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.874498578230423*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.218624644557606*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.437249289115212*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "d0b0b2ded7b4d07b0615afe8c5c3bd29\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "af46e6dbd26ef9975009e0f908a0703d\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "4dd050367ed3d746a44a8627a27c0d86\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.824053111462949*sqrt(A**2/pi**2 + 0.736308132500034*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.186151378196862*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.186151378196862*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.744605512787448*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.186151378196862*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.372302756393724*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "a26e29a64522fde13f1a0939a6436b09\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "b16a7008d41ce565818e053e6ef9451f\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "5e62740f1e3d26cfadf3f31606f04c93\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "c9874acaa4e7cea139377a1cc4aa96da\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "a07a340d8cd563655bef328ad2631adc\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "879c22c6dd6ba9258ed2b3977c02dd3f\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.20393130305273*sqrt(A**2/pi**2 + 0.344958293885304*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.0636117850615129*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.0636117850615129*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.254447140246052*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.0636117850615129*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.127223570123026*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "c4e8f9a815f3c85c2b3bc35ded8d4c55\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7fd56cac090b0910c9796189bb13f529\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "8c2849493a108685ea6d16538cee0ff5\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.28083068527927*sqrt(A**2/pi**2 + 0.304780064897491*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.13889432923305*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.13889432923305*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.555577316932201*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.13889432923305*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.2777886584661*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "704218ec1ab1084c07564e6f679b9f0b\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "e2f0baf33acd97c5fa0650b3ac188b33\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7a5fe95e68652560e04a4f04a6cc2ed0\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "28a07bc7bb355d05782734af39a111e9\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "3ced327f796a04949713bfbb43236c70\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "a68e8bf1ea79b67d5e12e0814b0e9b02\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "2afb851ba8413ce5291c1f7281b0b60a\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.807183621709452*sqrt(A**2/pi**2 + 0.76740623239409*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.161717167560375*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.161717167560375*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.646868670241501*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.161717167560375*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.323434335120751*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "ff554b36ebfb02ba497f4de21e7bfe39\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "89829464cf9d8abc402d2b289511db80\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "3957404c3a99817081032e3304cc2eb2\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.06051532680018*sqrt(A**2/pi**2 + 0.444565857008846*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.224795135026764*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.224795135026764*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.899180540107055*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.224795135026764*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.449590270053528*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "bdd49d4f44c93368e0813b6e75c2cff9\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "a07cb68a370231f37c708389c12628ea\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "034189f38c18e6c04e59770762ddf137\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "41a9fd1aaeefba3a8b4e181a3f57a26d\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "1b32af79ec982846c16e8da2dece9111\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "5971508ca172ee7705ba9867da5f2799\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "89d72ebf25cb6d5a889723f29e937e64\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "812f71e51faf4596904b7256abf7468f\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "64cb9ae1176525d58b69364473f71172\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "b6b45a5ed94214a2ab70c5631f8bd38c\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.40552929192986*sqrt(A**2/pi**2 + 0.253098867813504*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.177172376996749*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.177172376996749*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.708689507986997*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.177172376996749*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.354344753993498*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "de17f9e07113ce99eff6166bf2d5151e\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "1ed7e041da9cefb263f8e5283ed9eabe\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "da90dc28fb90db28270d1efd575cbf90\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "840d841d4f4ab073d4675980ae0c65e2\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "64beb86873a673b4b1d7d131a3b7cca1\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "4a42005d5d1db515c58f10fb2a977b4f\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "77b345b3ac23acd4b0c793607df72b86\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "8c959694f7c0083563629bbd7f6d26b9\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "40e1eb6b7c27798bd70c26bb89188010\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "e5cebd7454caec5911970426e4ebfa02\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "5e00139ccb323f8a614dbc86e4adee17\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "53326ce0c7e2e31e9e711749f6c9872f\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "9283ffcb15cf65f0be191c4877fa3f8c\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2)*sqrt(0.837574937414457*A**2/pi**2 + A**2)/2 True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.229091469664474*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.229091469664474*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.916365878657895*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.229091469664474*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.458182939328948*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "06fd589cfddf7421b0f422bd92c4f077\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "aea34470dff6023e11932e8f26ea8fae\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "b746fbbe0449671bc3fef0ba56043a91\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "4fb5053042bc75c426a6bbcccc364670\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "e3e24962746bbc142697dac71768e280\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "63ef09428da038d6a13c1db516b12cba\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7bf0064c79e577a339a3bdaa8b664053\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "186ab8e8139e59cdbddc72429ba378be\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "23a4e99376dd709c7a7926c1b512d89c\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.22116262449171*sqrt(A**2/pi**2 + 0.335291850044759*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.0776021926907775*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.0776021926907775*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.31040877076311*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.0776021926907775*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.155204385381555*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "a94574b4ab665c6845a57507127c7f19\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.37189872338322*sqrt(A**2/pi**2 + 0.265659836117528*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.177053970982077*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.177053970982077*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.708215883928309*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.177053970982077*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.354107941964155*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "ca10db54d8b535438ffcde1fd38529f8\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "0ce6d727b36b2329f0bbb7bbcdbedc32\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.20941481404067*sqrt(A**2/pi**2 + 0.34183728968343*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.225981389098093*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.225981389098093*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.903925556392373*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.225981389098093*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.451962778196186*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "d8eafafce323951597ee1a2ccd103a09\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "f8e44e6d6d9486ac535ec276bfb1b520\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "6ea3722739a32d235c59aae7015d2132\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "f2ad2e96cf1f087e6a016e4dfe16cc9a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "22c97e323c9093987f705e9112b3640a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "287b7dad39b1a76397aff28461a3ae8c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "26df8fc60531553c4539463d1c28dfec\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7d1d96b15a68e392abeffe502f84a042\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "55decbb21da6eccb8c64662f82e90e07\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "1e684c7c8d3b74ab8946e9d16a169644\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "eda0bed753c4b3d8ead98daa3fbaaa4f\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.17609497632587*sqrt(A**2/pi**2 + 0.361480783181255*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.0289185946618053*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.0289185946618053*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.115674378647221*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.0289185946618053*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.0578371893236105*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "cfacf6ef677c8603351e06e2bd728418\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.944677668237276*sqrt(A**2/pi**2 + 0.560276886321485*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.20513744547868*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.20513744547868*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.820549781914721*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.20513744547868*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.410274890957361*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "8683c8a249116de1e4a1f2efb7540756\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.09295581996723*sqrt(A**2/pi**2 + 0.418566811959751*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.204843639070687*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.204843639070687*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.81937455628275*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.204843639070687*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.409687278141375*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "35992c02ce19e70d4b7646206dc625fb\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "0044f692a05422bb98c4bd3c6d04770c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "133a813220736fd35ca5780e0704fc1f\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.32121192962224*sqrt(A**2/pi**2 + 0.286434305780594*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.204202523242716*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.204202523242716*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.816810092970865*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.204202523242716*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.408405046485432*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "e91e3e141d58633d9f065fe841e1d704\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "d13a4206c4dc9798f6918905bd964ef1\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "38ec6d9ed3750e2a349aab9393a444c1\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.29030321260027*sqrt(A**2/pi**2 + 0.300321515725262*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.164186875823625*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.164186875823625*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.6567475032945*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.164186875823625*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.32837375164725*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "80bf33f54ca3cc39d55895987d22db6a\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.01433926423351*sqrt(A**2/pi**2 + 0.485963364697932*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.226884503772196*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.226884503772196*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.907538015088783*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.226884503772196*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.453769007544392*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "43f6745ab4a8087d95d6dad67b61c455\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "6ca3ebf88d38ddd014eac49e0ef69663\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "ba6bde1c11d365939c1e66712a8a818b\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "08024b8d0f056a2e29555bbcff919b96\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "86ff1f0a410c7220fea17218daac0b51\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "1dc98a04e21fe62758b71ea2affc59ef\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "182ec8780648c9a9ab4b05e10b28263a\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.18489183324469*sqrt(A**2/pi**2 + 0.356133306601046*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.132757059176979*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.132757059176979*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.531028236707918*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.132757059176979*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.265514118353959*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "fcab5744d2c104f2879ab24a05eb5965\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "8d808fc699689924b60841e1e2164771\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.36371161930608*sqrt(A**2/pi**2 + 0.268859212739202*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.168232512161732*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.168232512161732*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.672930048646928*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.168232512161732*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.336465024323464*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "b98b104f64f2bda9eb8854ff4d53ecd3\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "45638e207aa96b4f92e27f59f0b544f5\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.895899920186144*sqrt(A**2/pi**2 + 0.622946870687278*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.129522555447145*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.129522555447145*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.518090221788579*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.129522555447145*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.25904511089429*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "699b629be39a2827f23a164b8bb30c1a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "154b1d59bc43f05c208cd7e9315d48c9\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.794406736799016*sqrt(A**2/pi**2 + 0.792289987215668*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.220678930883439*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.220678930883439*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.882715723533758*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.220678930883439*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.441357861766879*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "7d44e0b425e269c22219e93ee416e825\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "1d99dc57effa20f609a0cf624bd5e04a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "459c554af4f32b088b68a93b3a02f60a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "3768e99b08bf76083993540fa0e931b5\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2)*sqrt(0.988988953513421*A**2/pi**2 + A**2)/2 True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.2230723991807*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.2230723991807*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.892289596722799*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.2230723991807*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.446144798361399*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "b091b8fc793c49134b42139b7933be99\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "f0d2d1392eba4f49035c1ce0d431ec6a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "3f02e8edb6dc1f797b9be04d540e0b77\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "bb8fae8e118a003c63c47a3c93963786\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "5869943e0762f690d3334659af3af68d\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "802c675e74c573280a1fb772daaedf9c\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "303619e93fae27433a982bc1565704fd\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "0.802434872898332*sqrt(A**2/pi**2 + 0.776516012301451*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.181757025964449*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.181757025964449*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.727028103857795*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.181757025964449*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.363514051928897*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "a3c633c5b54b9f0cb5e4ed723d52b162\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.01847570094373*sqrt(A**2/pi**2 + 0.482023997906991*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.147583002292172*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.147583002292172*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.590332009168689*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.147583002292172*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.295166004584345*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "5240559833b5075c63c9ced7cf58d9dc\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "942438a56c8ffba16a34fefb4a9aca6a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "b48b6c1cae8f9873ac2b5fdd6bfca86a\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "cb8f68bfb97cc6dac3d6e3db3377c222\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "6e7f390a6ef123e2c2a6788f98edf934\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "fe65f734e95ed43aa28396952f76bc12\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "35b902ddb2944770f8fcc585b48334e2\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "1.21118861598054*sqrt(A**2/pi**2 + 0.340836772283391*A**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.222348536145379*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.222348536145379*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.889394144581516*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.222348536145379*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.444697072290758*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "9a0ebd16dc2c6873f51f15b6614b73e8\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "1bde21d6d9e399af2546e2f9010b9350\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "824d7bb2017e24e06fb6a4d7d87994f0\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "f81b240be91d490535164f911aada9ed\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n", + "7c63c15b4401024888916ca9b42b21c9\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(2)*sqrt(0.484148729912874*A**2/pi**2 + A**2)/2 True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.134957438245491*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.134957438245491*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.539829752981963*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.134957438245491*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.269914876490981*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n", + "4332c6bbfc3a256c63470ab9c3d7e8a9\n", + "case 1\n", + "[set(), {C}]\n", + "sqrt(C**2) False True\n", + "depends_on_C\n", + "case 1\n", + "sqrt(C**2)\n", + "depends_on_C\n" + ] + } + ], + "source": [ + "successful_points = []\n", + "unsuccessful_points = []\n", + "data_for_plotting = []\n", + "\n", + "\n", + "for subdir, _, _ in os.walk(dirroot):\n", + " parameters = load_parameters(subdir)\n", + " signature = load_signature(subdir)\n", + " \n", + " if signature is None:\n", + " continue\n", + " print(signature)\n", + "\n", + " if parameters is not None:\n", + " a = parameters.get('model', {}).get('a')\n", + " b = parameters.get('model', {}).get('b')\n", + " c = parameters.get('model', {}).get('c')\n", + "\n", + " success_file = os.path.join(subdir, 'mode_shapes_data.npz')\n", + " if os.path.exists(success_file):\n", + " successful_points.append((a, b*c**2))\n", + " modes_data = np.load(os.path.join(subdir, 'mode_shapes_data.npz'), allow_pickle=True)\n", + " mode = pp.read_mode_data_from_npz(modes_data, time_step=0, num_modes=1, num_points=10)\n", + " \n", + " parameters = {\"a\": a, \"b\": b, \"c\": c}\n", + " fig, ax = plot_profile_comparison(parameters, mode, idx=[1, 0], reverse=False)\n", + " fig.savefig(os.path.join(subdir, 'profile_comparison.pdf'), dpi=300)\n", + " fig.savefig(os.path.join(dirroot, f'profile_comparison-{signature}.pdf'), dpi=300)\n", + " plt.close(fig)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File 'time_data.json' not found. Handle this case accordingly.\n", + "case 2\n", + "[{x, A}, {x, A}]\n", + "sqrt(A**2/2 + 32*A**2/pi**2) True False\n", + "depends_on_A\n", + "case 2\n", + "sqrt(0.125*sin(1.0*pi**1.0)*cos(1.0*pi**1.0)/pi**0.333333333333333 + 0.125*pi**0.666666666666667*sin(1.0*pi**1.0)**2 + 0.5*sin(1.0*pi**1.0)/pi**0.333333333333333 + 0.125*pi**0.666666666666667*cos(1.0*pi**1.0)**2 + 0.25*pi**0.666666666666667)*sqrt(C**2)\n", + "depends_on_C\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAHtCAYAAACd/wbyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADya0lEQVR4nOzdeXhTVfoH8G+WbqQhLVuCLAECLaKWqliWUnABWtTqDLQ64zADiuhomXEbB5wBXNAfqOM6iKKixW3UtjpjVVKKCy1FqKBtFbGlAVq2pCxtSQJpm+T+/kjvbfatSbP0/TwPjzY5ufdmuzfvOe95D49hGAaEEEIIIYQQQkKKH+oDIIQQQgghhBBCwRkhhBBCCCGEhAUKzgghhBBCCCEkDFBwRgghhBBCCCFhgIIzQgghhBBCCAkDFJwRQgghhBBCSBig4IwQQgghhBBCwgAFZ4QQQgghhBASBoShPgBCop1arYZSqcQnn3wCmUyG7OxsAIBWq4Ver8fChQshk8kCtj+VSoXCwkJoNBq8/vrrAduus33odDq88MILQdlHpKupqcGWLVuQmJiItWvXOm3TF+9VKNDng4Q7b76fhBASChScERJkMpkMS5YsgUqlgkwmw8KFC7n71Go1HnjgATz55JNQKBQB2Z9CocDChQuxceNGrx9TWFgItVqNlStXBm0fwTiOcJaeng69Xo/i4mKXbYL1OgaLq/dHqVQiJyeH+zvSnlew2b8+/Y1Op8POnTtRVVXldSBUUlICkUgEAFwnli/3e+LN97MvhONrEw6USiX0ej1EIhHUajXy8vKQmJjo9jH94XUh/QOlNRISQjKZDOPHj8eGDRsCul2xWOxT+/T0dGRlZQV1H8E6jnDG/hBwJxivY7C4en9qamocbouk5xVszl6f/kKlUmHnzp3Q6/XQ6XRePaakpAQAkJOTg5ycHCgUCrzyyite3+8tb76fwRTOr00olZSUYObMmVi4cCFycnKQl5fn8RrZH14X0n9QcEZIiIlEIuj1+pAeQ3p6OjIzM0N6DOF0HMQ5Z++PUqmERqMJ0RGFv/7++igUCuTk5PiUul1cXMylfwOWz11ZWZnX90cKem2cq6mpsRklS0xM9HiN7A+vC+k/KK2RkBDS6XSora3F8uXLHW4vKyuDTCZDTU0N19NXVVWF4uJiqNVqrFixAunp6VCr1VizZg2kUikKCgrcXuhLSkogk8mgVqshk8mQmZnpct6TTqfDli1boFAouJRMhUIBpVJpk9amUqmgVquhVquh1WqxZMkSj8870MfhbHvsnBIAWL58udNjtJ53wgYder3eaRupVIqcnBxuFIS9n903YElTdZYqU1VVBcB2nqE/r5Gz56TVaqFSqVBQUAClUgmxWIzKykrk5+e7TZWtqqritnXvvfdCrVbjk08+gUgkwooVK5CYmIjVq1dDr9djxYoVAODw/tTU1KCmpgZqtZrrmbZ/br58Prx5PwDX3w/rbTh7v7x5nL+vrav3y93r4+49dnb8SqUSMpkMer0earUaIpHIY7qku+ccjtRqNfR6vdMUtpqaGu75u7o/PT3d53368/0Mhb5+bZRKpc3ffZWaKxKJsHr1au48xH4/XAnFZ4aQYKKRM0L6kFqtRlVVFaqqqlBSUoItW7bgySefdBiNKC4uRmZmJjIzM1FQUICnn34aOp0OmZmZWLx4McRiMXdBYYuMrF271u0FbP369dwPwIULF0KpVEKlUkGhUDj9wbxhwwakp6cjJycHixcvRllZGdLT020CM61WC61Wy21z165dUKlUbl+DQB+Hq+2lp6dj8eLF3I97Z8eYnp6OvLw81NbWcvtgf5ixKS9sG3b0wzqtb/369VAoFNx7lZmZidWrV9scv0qlwuTJk5GZmYmcnByIRCKP6TS+PKecnBzU1taisLAQOTk5yMzMRFZWlsc0oMzMTCxYsABSqZR77tnZ2Zg8eTJkMhkSExORl5eHJ554AgqFwun7wz6OnUtp/6PW18+HN+8H4Pr7Yb0NZ++Xp8f5+9q6e79cvT7uHuPs+NkAgh299HaE2d1zDkdqtdrp7WyGgaf7feXP9zNU+vK1KSkpgVqt5tIAxWIx9xkMtuXLl0Oj0eC2225DYWEhampqUFBQ4LJ9X39mCAk2GjkjpA+xP8YAy4+CDRs2QKvVOrRTq9VcLzcASKVS1NbWIjMzE+np6VyPPtsD7iktRq1WY9euXTaBVWZmJpRKpcuL3q5du7gf42zvpX0Ppl6vt+l1lEqlUKvVLnvmA30cnrYnFouhVqvdHqNIJIJCobB5Xnl5ebjtttu4SpoikYj74QyAG8Wrra212bdMJoNOp7PpjVUoFDY9tjk5ObjppptcVun09zlZUygULn+QWJs5c6ZD0Q7r11ur1faqkqivnw/Au/fD3feD3Yb9+wW4/14B8Ou19ecz7ekxzo6f7dSZOXMmEhMTIZPJMGHCBJevo/W+3D1nV7wNUNjUvGATi8XQarUu54mx9/vK1+8nEP2vDZut8MEHH3C3VVZWevy8Bep1SUxMxIIFC1BTU4NPPvkEkydP5j73vgjWZ4aQYKPgjJAQUSgUyMvLw9NPP43//Oc/NvexP9p0Oh00Gg10Op3NRSQ7OxuVlZVQKBSoqanB5MmT3e6rpqYGIpHIpjABG+S4Oz77XkX7Hyv2f4tEIrcXu0Afhzfb8/UYAcuPA/YHMvt4++0cPHjQ6Y83qVTqMVVGJpPZbNuav8/JnyAqMTGR++GfmZnJ/YjxlEbkLX9ee1fHaf1+ePp+ONs34Pl75eqY3b0W/nym/XmP2eDttttug0Kh4AomeOLNc3bG3UhFKHg65kD+yHb3/QSi/7VpbGyESCSyCYa8qaAbqNelsLCQy45Qq9V4+umn8eCDD/q83EhffmYICSQKzggJIev5I9Y/BFQqFYqKipCeno6ZM2c69N5nZWVh1apVWLJkiUNPvzN6vR4ymcymnafHZGdno6ioCMuXL0dZWRnuvfdeX59e0I/Dn+35y773tTfpMO5+FPTlcwIso2dsoD9hwgRkZ2ejqqoK6enpfu03UIGdO56+H4DzSnzePM5Xvr5f7PwYT49xdvxr166FSqVCTU0NV8zAU4AWjOccTK4+O+xr5un+QAjXH+199dqEMtWP/X5Yp+2/8MILeOCBB7hOJHvh8JkhJJAoOCMkDFj30up0Oqxatcpm7TP2Ysn+8FUoFNwcAG9KlisUCqfr+eh0OrepIsuXL+dSoAJxEQv0cfi7PU90Oh30er3b9Lv09HSn+9ZoNB6XA3C37WA9J1cyMzOxZcsWbn6USCTCmjVrvCo24Yy7EQd/Wb8f3nw/XG3Dn8d54uv7xaYj+/oes2ulsfP/srOzsXr1arfBWW+ec6hS99g0YmfHx/5g93R/b3n67kf7a+MsWwHwfA4KxOvCFrqxZ11p0V44fGYICSQKzgjpI87SiaRSKUQiEQ4ePMilLU2YMMHhxwE7gd/6h292djY2bNjgkBLpTHp6OsaPH+/Q87hz506XF0mVSsUVQfCWpx7XQB+HP9tzdowqlcrmhwdbdtndj1eFQoHJkyfbpDCyxS6sj0WtVttsW6lUut12oJ6Tt9hgn02pY4/L222yc8AAeJxP5u023b0fKpXKq++HPY1G49fjevuZdvb6sOsb+voe2y9m7WkUzN/nDAQ+dc/VaBRbJMk6yMzLy7OZJ1dVVWXz49zT/fbz7Nzx9fsJRP9rI5PJMGPGDJSUlHD7ZhfLdve4QLwu6enpKCkpcQgE2aqp7HMI9OtCSDjhMQzDhPogCIlmarUaSqWS+5HHVldkLzw1NTUoKSnhRi3S09NRWFgIoKdXTyaTobCwEFlZWdyPObVajcLCQoe5AGwa065du7BgwQKbCnuFhYWQyWTcaBtbwp5tv3jxYu6CV1VVhaeffhoikQhisRgikQjZ2dnIyclx+piSkhIUFxdDJpMhLy/PbVAXqOPwdXvOjpEtXZ6Xl8fNawJ60sXY96exsZF7jPUPN3bf7Hti/XqrVCquPDfgWKo7EO8V+5zGjx+PhQsXQiwW22wzLy/P44hbSUkJ0tPTuR/xJSUlDs/T1fvDHitg+Zz29vPh6f2w3p+z74dIJHL5frl7nEwm69Vr6+z9cvX6uHuPXX3e2LLmbFu1Wm1zHnHFm3NJMLE/pHfu3AmVSoUFCxZgwoQJ3L7ZJR3s5xNZL1Fx8OBBh0qh7u5XKpXYsmUL3njjDbevj6fvZ7CF82sDWD47YrEYMpkMWq22z0rp63Q6FBcXc+d7vV5v81kPxutCSDih4IyQCKXT6dDY2BiUtAydTocNGzZg+fLlSExM5IoJFBYWciWn+0JfHAcbDLzwwgsBOGLSW/R+kECwHwkmPei1ISS80TpnhEQQ6/WJdu7cGbR8+bKyMuTk5HA9lWxVvyVLlnhcxywaj4MQElmCMfcxWtBrQ0h4o+CMkAiyZcsWh/SmYGDLq9vzVCI+Wo+DEBJZwrXiYjig14aQ8EZpjYREEJVKhYMHDwJA0FMLa2pqbHpY2UpXfTFPpa+Og53fU1tb6zCPivQ9ej9IILDl2N0Vp+mv6LUhJPxRcEYIIYQQQgghYYDSGgkhhBBCCCEkDFBwRgghhBBCCCFhgIIzQgghhBBCCAkDFJwRQgghhBBCSBig4IwQQgghhBBCwgAFZ4QQQgghhBASBig4I4QQQgghhJAwQMEZIYQQQgghhIQBCs4IIYQQQgghJAxQcEYIIYQQQgghYYCCM0IIIYQQQggJAxScEUIIIYQQQkgYoOCMEEIIIYQQQsIABWeERCCdThfqQyARij47hJBQonNQ/0Lvt++EoT4AEjnUajWUSiXKysogFouRnZ1tc19tbS2kUinWrl0bwqOMfoWFhViyZAlqamqwZcsWJCYm+vWa19TUoKqqCgCQnp6OzMzMQB8qAbx6n1QqFQoLC6HRaPD6668H9XjKysqQmZkJmUwW1P0QEk7o+hUe2OtXMPh7TezL829foGtO5KORM+I1mUyGJUuWQCaTYfLkyVi4cCH3r6CgAM8//7xN+8LCQqxfvz5ERxtYSqUy1IcAwHIcOTk5ACwBVV5ensdeKVfvw5o1a7B48WJkZmZCJBIF5Xi95ez1jZbPjzfvk0KhwMKFC/vkeBYuXIiSkpI+2Rch4YKuX6Fnff3ypq2v/L0mujr/uvoMhMvr6QpdcyIfBWfEZ4mJiS5vT09P5/5OT09HVlZWHx1VcNXU1IT6EKBWq6FSqWx6n7wJqpy9D+x22PfM+n0LBWevbzR9frx5n8RicR8ciUVmZiZdLEm/RNev0HB2/XLH32P295ro7Pzr6jMQDq+nJ3TNiWyU1kh6TafTQafTQSaTQaFQQKfTOVzoIplSqYRGown1YUCpVPrV0+XqfQj1aBnL1esbLZ+fcJSeno4tW7b0Wc8pIeGKrl99dxzenm+CfczevrfO2oXL6xlp6JrjGwrOSK9Zn6jYk5mrfGadToctW7ZAoVBwvWgKhQJKpRIrV64EAJSUlEAmk0GtVkMmkyEzM5PLoQaA5cuXQ61WQ61WQ6vVYsmSJaiqqkJxcTHUajVWrFiB9PR0qNVqrFmzBlKpFAUFBZDJZE63zbJPVcjJyUFNTQ1qamqgVqu5Xh/rkwu7PcDSM8jexx6vVCrltgOAy7VXKpWQyWTQ6/VQq9UQiUQe0z1qa2td5uqzc8e0Wi30ej13HM7eB5VKBaVSyT0nmUwGmUzm0K6wsBBlZWVYvHgx9xw8PSf71w+wvOdlZWWQyWSoqalBTk4OFAoF9zo5e33d5cN7es0B558Rd6xz9NnPhF6vt3msp+fv6ri8eZ/c8fb7oNVqoVKpUFBQAKVSCbFYjMrKSuTn53OvtzWpVAqVSuX0PkL6C7p+he765Ww77HXC1TG7u55Y8+Wa6Iyzds5eT5lM5tV7Z4+uOcQthhAfrVq1irn//vuZ4uJi5u2332aWLVvGNDY2OrRrbGxkli1bZnPbunXrmJ07dzIMwzBardbt/ey+2G3/+OOPzLJly5gff/yRu9963+z91oqLi73aNvtcWDt37uTa/vjjj8z999/v8PzWrVtncywnT55kVq1aZbON+++/n/nxxx+ZxsZGbvs7d+5ktm7davM467+dsd8268cff2Ryc3MZrVbL3bZ161Zmw4YN3N/O3gdntzl7/VatWmVzbK6ek7vX7+2332ZOnjzJ3bds2TKb43X1+rr6/Lh7zT19RtzZuXMnk5uba3Osb7/9ts1r6er5e3Nc/rxP/nwf7N8HZ68tu3/r7wch/QFdv3q2F8rrl7vtuDpmhvHuehKoa6Kr66T9sXl671yhaw5xheacEb+MHz8eCxcuxJIlSzBjxgyvH7dr1y6u1yQxMZHrQQQsPT+7du2y6Q3MzMzkegTFYjHUarVNqoFUKuUen56ezvXksNjUPXfbZntD8/LyuPsqKyu57TqjUqlQW1trcywymQw6nY7r3RKJRFCpVEhPT4dCobDpNayqquIm68pkMkyYMMHt66bX613m6isUCpt5FDk5OSgrK3N7/M44yz+3T3109pw8vX5qtdomR18qlaK2ttanYwO8e809fUbcEYlEUCgUNq9zXl6ezWvp7Pl7c1yA7++Tv98HawqFwuX2xWIxtFqt+xeFkChE16/wuH75uh3Au+tJoK6J3nL23nkzt46uOcQVSmskvZaTkwO9Xs/97W7YWqFQ2LQFek5iNTU1EIlENicX64ufdVuWSCSy+bJnZ2dDqVSioKAANTU1mDlzpsdtNzY2QiQS2ZzE2BQVVw4ePOj05CuVSlFTU8OdvJy1YU92t912GxQKBWbOnOkx1YBN+fCWTCbzafK1L+y36en1Y/9fp9NBo9FAp9P5dYL29zW3/4z4IjExkbs4stu13763x+WMu/fJ3++Dt++5TCZDZWWlV20JiVZ0/erRl9cvf7YD+H89CeY1EbC8d5WVlVAoFKipqcHkyZP92g5dcwhAwRkJAGcnDlcXt+zsbBQVFWH58uUoKyvDvffey93H9q7ZV8zyRU5ODh544AEUFBTY9PC42zabk+0ttVrtcIF2xVVAtXbtWqhUKtTU1KCsrAwAAjpRNlC9U86ep/1z8vRaqFQqFBUVIT09HTNnznToabPH5rl7cyyh4Ovzd8fd+xSI74OnffdltS5CwhFdv1wL9vXL2+1YXxN8vZ6wgjViwx5bVlYWVq1ahSVLljiMLvUWXXP6H0prJAHlTc/U8uXLUVtbi8zMTJtJxK6Gw31ZXV4mk0EsFqOqqsrmJOBu2856Q93tl00xcLY9jUbjMTWDTRFg1xl5/vnnsXPnTo/Py5eUDL1eH5BJt9689u5eP51Oh1WrViE/Px85OTlITEzk2rp6PtapIdZ685r7S6fTeXwte3Nc7rYdiO+Dp33ToqCE9KDrV99dv3zZDntN8Od6wgrUNdHVsSkUCqfvna/omkMACs6IH9x9UQsLC91++VQqFVedyL5deno6xo8f79AT6O7E7+yilJ2djQ0bNtikFbjbtkwmw4wZM2zW4NDpdNx+rS8sarUaCoUCCoUCkydPthn+Z0/S1vnaro7ZvrKWp94/qVTqsnyvWq22eU+USiWys7N9Pgnaz83S6XRe9bK6e/00Go3DxYA9Vvb1cvb6OuPva+5LL6NKpbJ5LYuLiz2+lt4el6/vU6C+D674mipLSDSg61d4XL/cbcfVNcGb6wn7mEBcE51xd71i3ztPr6E1uuYQZ3gMwzChPggSGdRqNZRKJT755BPIZDJkZ2fb3FdbWwu1Wo3PPvuMSz3YtWsXFi9ezKUqVFVV4emnn4ZIJIJYLIZIJEJ2drZNDyR7gWR7nzIzM51ur6SkBMXFxZDJZMjLy+NOSuwE6YKCAofn4Gzb1veJxWLIZDJotVqHYwIsJ2Znx8q+BtYlcEtKStDY2MgdG9vOenIt+7js7GyXi6OyVq9ejbVr19rcplKpuBK5gPOywfavm/VtCxYsQFZWFneBsS4PDFgmlh86dAiLFy+GSCRy+ZzcvX7sa2c9j6GwsBBZWVnc62//+rr6/Lh7zX35jDjDlgrOy8vjcv4B2JSX9vT8nR2Xr+/TggULbB7r6/eBLXYgFotttpmXl2fzGVu/fj2WL1/u8XNHSDSg61d4Xb88bcfdMQOuryeBuCayRTfcXYOcHZtarUZhYaHHOX8suuYQVyg4I31Gp9Nhw4YN3JeTndBbWFjokCJCHJWUlEChUETN4qjhhr1QvvDCC6E+lD6xfv16r39EENLf0fWrd/rD9Uun06GxsdHr50jXHOIKpTWSPlNWVsbliQOWqkTWpWGJewsXLnRIAyHEHyUlJfRjkhAf0PWrd6L1+mWdNrhz586oDj57g645vgl5tcampiY0NTUhKSkJBoMBAJCRkeHzdurq6tDW1gaNRgODwQC5XI5Zs2YFdZ/ENwqFAlVVVQ4nL0+lX0mPrKwsVFVV+ZTTTog1tvQ0fecI8R5dv3ovGq9fW7ZsgUKhQE5ODlUidIGuOb4LaVpjQ0MD6uvrkZuby93W1NSE6upq5Ofne72diooKpKWlISkpCQBgMBhQWloKjUaDO++8E/Hx8QHfJ/FPTU2NTUUstgxtNJ2sg62qqsph4UrSO2xuf21trcP8gmhTUlIS1c+PkGCh61fvRdv1S6VS4eDBgwDg08gQXXOIOyELzgwGA958802H4AkA3n33XUyePBlpaWket9PQ0ACJROJQLchgMOCVV17B6NGjuaArUPskhBBCCCGEkEAL2ZwzNqiyD5IAIDU1FbW1tV5tR61WOy3jGh8fj7S0NDQ3N3Opi4HaJyGEEEIIIYQEWsiCs/r6eqdBEgAkJSWhpaWFC6rcqaurQ1FRkdP72KCNXV8jUPskhBBCCCGEkEALWUEQjUaD1NRUp/dJJBIAQHt7u8tgiuVu8UM20GK3Eah9evLSSy/BZDKBx+NhwIABvdoWIYQQ35w/fx4Mw0AgEOC+++4L9eGEDbo2EUJIaPhyXQpZcNbR0YG4uDi3bdrb2z2uPO+uiEd7ezuAngAuUPv0xGQygWEYMAxjU2aVEEJI3zGZTKE+hLBC1yZCCAktb65LIS+l7wwbQPU2xbCurs7rAh/e7HPv3r3Yt2+fx22xNVZ4PB5EIpFX+yeEEBIYer0eDMOAx+OF+lDCCo/H414XujYRQkjf8eW6FJbBWSBUVFRAIpEgKysrYNvs7Oz0qbdRJBLh7rvvDtj+CSGEeLZp0ybodDpK3bMzYMAA6HQ6ujYRQkgf8+W6FJbBWUdHBwD4PfdLo9Ggrq4OixYt8nob3uwzNjYWiYmJHrfFRseEEEIIIYQQ4q2wDM56q7S0FPn5+dyi1IEyZcoUTJkyxWM7NjomhBBCCCGEEG+FrJS+RCLhCnbYY+d9sRUUfVFUVIS5c+c6LeoRrH0SQgghhBBCSG+FLDiTSqUui2/YV1n0Vnl5OTIyMiCXy/tsn4QQQgghhBASCCELzuRyuctRrLa2NowePdqn7VVXVyMlJcUhMGtra0NTU1NQ9kkIIYQQQgghgRKy4CwlJQUGgwFtbW0O9zU0NGDy5Mk2txkMBi7IctZeKpU6HTFraWnhUhV93SchhBBCCCGE9JWQBWfx8fGYN28eKisrbW5vaGiARCJBSkqKze2lpaUoLi5GXV2dze0ajQa1tbVob29HXV0d96+6uhrV1dXYs2cPVxjE130SQgghhBBCSF8JabXGlJQUxMXFoaKiAklJSdx8sPz8fIe2crkcGo3GYU5YUVEROjo60Nzc7HQf9gU+fNknIYQQQgghhPSVkJfSl8vlLgt4WMvIyEBGRobD7cuXLw/aPgnpzxijATyhf2sNEkIIiT50XSAk+EIenBFCQsf6QssYDYD2GEz1RWCavgKMFwBhAnjy68AffxP4Qy5xeAwhhJDoY32eN5/eD3PjZ26vC/aPIYT4j4IzQvoBtxdanqC7kcnxgcYLYFSfw6T6HCbwAR7P0o6CNkIIiSpMa6Nt5xxPADBmAIxtQ+vrAk8IJA4HzrcApg7u2iBIzQcveXxIngchkY6CM0KilNcXWmdBmVPmnod6CNrowkwIIZHDfGQ7TN+tBczGnhu9uTYwRkB7tOfv7muD8dBWCGasAX/MnMAfLCFRjoIzQqKQ3xda//bmELQZDyvBz1gBgeL6IO2TEEJIb5lP74dp/3vAsYrAbpgxwVT1KMxNX4N/yR9s0h8JIe5RcEZIlGDnjBnrNgf+QusrsxHm3U/B/P2/wBsz12FuAiGEkNDgsioOlwHmruDu69gOmI7tgIkfC97YeZRVQYgXKDgjJII5pC6GG1NHT/ojXZwJISSkTIe+hHnP07ZZFX3B3EnpjoR4iYIzQiKU09TFcEYXZ0II6XNcJ96RckvRjpAeTE+6oyDtDuqoI8QJCs4IiTDBmiPAMAzOXTAhPoaPuBh+QLdtuyOai0AIIX0hXDvxmGM7YDy+kzrqCHGCgjNCIkCg5ggwDIP6kxew75Ae9ScvoP7EeTRqDDjV3oXTOiOMJgbFD0zETVcO4h7z01E9rl//C4YOjIFCGo/U4QlIvSgBV45LxMThCeDzef4dC81FIISQoGFaG8MyMOPQKBohTlFwRkiYC0TP58nWThS8rcJ3DVqc0fm2ndPnjNC0d0HT3oWfj563uS9ZJMT0CWJcPUmCG69IxnhZgu8HR+mOhBASUExrI4yVq8I3MLPCHNsB44kqCKavpvM/IaDgjJCwxbQ2+l150WhiIBT0jGgNHRiDXQ1anHUSmMUIeJAlxWBwYgwGi4WQSWJst2VmMGpwLDTtXeg02q6R1qo34suaVnxZ04oV/zmCY69chaEDbR/vNepFJYSQXgvXVEa3zEaYdj0BnmQseMmKUB8NISFFwRkhYcifi2un0YxPqs/g7W9bkJwoxId/TeXuEwp4uD49GV/WtGLaBDGmTxDj0lEDkDo8AWOGDoBQyLdaRHoOBKn5YEydMDf+D3OF26F6KQkmho8jLefRcPIC9h87j+8OarGr/hw3EpehSHQIzPYfOw/FsHjEx3o/h416UQkhxD8BT2Xk8QHGzF0beNIrwWj2gWnabqkQLIgD4pKB8+re74sxwbj1dvDGzac0d9KvUXBGSJjx9eJ67rwRm7/V4OWtJ3G8tROAZTTs1Lkum2Dp5SXj8GacEHwew11o+eNvBn/IxZb9GjvAE8Zx7XmA5b5pK8EYOxAjjMNEACmnD+D6xv+BadoOpus8DpzowJc/nsWIQbaBGcMwyH/hV+gMJizPHo67rpMhSeTlKcdshOm7tdSLSgghXgpoKiNPwKWZ218bMHYud11gbw/YaB1jojR30u9RcEZIGPHl4qq9YMILXx7Hv8tOov28yeY++ZA4HDll6AnOeAJIrnvc+YW2m7PbnN3HH3KxTdA2WRiHyQBMh7bCvGc9d+w768+hUWMAAKz6uBnrPzuGe+cOx99uHOFdkGY2wli5CsKstdSDSgghbgQsOOLHgjc2u3vkytIx5uraYHNdGDMHPMnY7sJVyt4vbk1p7qQfo+CMkDDh7eKgnUYz3vhag//771GcOmfbNvfKQfhr9nDMunggeDyeTZqipwutP6y3JRg3H/zkFO7iPEQcgwUZg/Hp92fAMIDOYMYzpcfx5jcarLhpBO6ZM9xzuqO2GUblUvAzVkCguD5gx00IIdGi16mMgjjwxsyzyaTwBy9ZAeG0lcC0lTCfPgDT/neBYzv83h5Aae6kf6LgjJAQ8nVxUIZhcO3an1Gt0nG3CQU8LJo5FA/ecBEmXjQAvFGzIbhsKSAeGdBAzBvWF+dLTx/Ah1PfReNeJV748gS2VLSg08jgrM6IFR804dVyNV7401jccPkg9xs1G2He/RTM3/8LvDFzaS4CIYR061UqI18IfsZKCBTzA35c/CEXgz/7/wIzokdp7qSfCeJKs4QQd8xHtsOoXApG9blXgRkA8Hg8LJk9jPs7f9pg1D2djteXjcfEEWIIMh+HcNb/gZes6PPAzB5/yMWImf1/SF34DF65MxU/P3s5/jBzKHjdRSSPnOrAb5/7Fas/bvJug6YOy1wE5VKYj2wP3oETQkgEYK8h0B71/cHi0RDmvBWUwMwaf8wcCHPeAkbO7t2GzEaY6osCc1CEhDkaOSMkBLxNQ2EYBkYTgxhhTz/KHVdL8fPR8/jTrGG4Ymyi0zkC4YSdizC2vghvS5V44Po2/P39I/h6fzv4POC3Vw32bYPUi0oI6ed6lcrIF0KY9WSfnT95yQrEBGAUjTn0JZjUPMqcIFGPgjNC+pi3aSia9k7cs1mFkYPi8PKScdztfD4PLy4eB96o2eBP+mOv5gj0Fet0x8tPH8DW6e/g4+JP0HDygiXA9BUVCyGE9GOm+iK/AzPB9NUh6diyKRpy6EvL8i2+YEwwKpfS/DMS9SitkZA+5G0aytaaVly+sgaf/9CK17arsa2utedOnoBLX4yEwMwef8jFiL16HW772ytYnTfW5j6TmcFvnjuA/35/xvOGuouFUIojIaS/YZq+8v1B3amMoQxs2I464fy3AL4f4wPdmRNMqyrwB0dImKDgjJA+4k0aitHEYNVHTbj5XwdwWmtpN3SgEGamu4F4NITz346KXkNuLoJ4NHfbc58fx5c/tuKWl+rx9/cPo8todr8RulATQvoZ8+n9lgWgfdHHqYye8JLHQzB9td8BmrFyFZjWxsAfGCFhgIIzQvqAN6mM6rZOzF+/H8+UHuduu/GKZPy4Lh05k5PD7uIaCLxkBYRZawG+EAzDYP+x89x9L249ieue2o+jZzwUS6ELNSGknzAf2Q5T+b2+PSiEqYzu9KpYCGVOkChGwRkhQeZNKuOPh3WYvroOOw6cAwAI+MDTt8lR8sBEDJPEhu3FNRDYHlSeIAaF90zAS4vHIkZgKem4+6AWM9bUYU+j1v1G6EJNCIlyfhUBCYNURnfYYiGCzMcBnsC3B1PmBIlSFJwREkTeXEw/qT6Dq9f+jOOtnQCAEcmx+GrVpXjg+hHgCePBU+SG9cU1ENgeVP74m3BPzhjsWHMp5EMsSwFo2rsw56mf8Z9dp9xvhC7UhJAo5nMRkAjKtuCPmQPh/Lf9C9CoxD6JMhScERIk3qQyGk0M1v/vGC50WuZWTZ8gxu4n0zBj4iDwp61CzO++hnDayoi4uPYWO1E85ndfI2PR09j91BWYffFAAEBHF4PFGw9iTVEzGIZxvRFKcSSERBmmtRHG3essa2J6KwKzLXjJCvDG+b7uGnPoSzrnk6hCwRkhQeBtVUahgIfiByZCKonBH2YORdkjl0A6cnyfLA4azgTj5kOa/y6+WJuNpddIudvX/+8YXlaedP9gSnEkhEQJ9lriU2AGQDD3tYjMthCk5vteJKS7xD6d80m0oOCMkADzdV7A6CFx2L02DW/dPR7x8bERk4YSbLxkBQZc+3/YeGcKnls0BjwecPkYEW6fPczzgynFkRAS4fxeaFqYEJHLrAC9qOJI53wSRSg4IyTA3M0L0F4w4eH3DkNvsF18c8SgOPAEMRGXhhJsvOTxEM5Yg79cPxolD0zEZw9fjIEDvLxo01wEQkgE83ehaZ488kbMrDlbZsUrdM4nUYKCM0ICiGltBHNoq9P72s8bccMzv+Al5Un8YUOD7RpeYV5RK5TYC/WNs9MhlcTa3HdW14Uz2i6Xj6W5CISQSOXXQtN8oSU1MMJZL7PiC0ZVapmfR+d9EsEoOCMkQMxHtsO49Q6AMTnc16o3Yv76X7D7oKUk/O5GLQ6f6l6/K4IqaoWKsws1+5rOW7cfp865CNBoLgIhJAL5u9B0NGVfcCmOPlZwZFSf03mfRDQKzggJAG5ugJPA7Iy2C9n/tx97D+kAAEPEQpQ9cglShidE3cU0mOznItz5eiN+PKLHT83nMff/foamvdP5A81GmHY9QXMRCCERwZ+FpqN1yZVeldinOWgkQlFwRkgvsCWOjVvvcDo3gE1lrGnSAwCGDYzBtn9cgslyEaUy+sF6LsK638kxItmS5vjLsQuYv/4XnNW5GUHbejuluxBCwpo/RUB4ityoXnLF3xL7NAeNRCoKzgjxk02JYycjZnqDCb/51wH8cNgSmMkkMdi+6hJcOkpEqYy9wKY4powQY/uqSzFqsCVA+/noedz4zAGcO+/iRw1jonQX4hWDwYDy8nJUVFT4vY26ujpUVFSgqKgI7777rsttlZaWory8HBqNhtt3U1MTSktLudtI/+HPQtPRMMfME79K7IPmHZPI5PsnnRDisXfT0GlG3ou/oqrBMsdscKIQWx+5BBMvGkCpjAHApjgqdj0B5SOX4Lq1P0Pd3oW9h3S4+V8H8PnfJ0EU7yINpjvdhScZS+8BsVFRUYH29nZIpVI0NTVBLpf7vZ20tDSkpaUBsARcpaWl2LBhA+68807Ex8dzbQ0GAxoaGlBXV8fdFhcXh9zcXEilUodtk+jmUxGQfnQtYc/5Pi8t0D3vWDB9NWWpkIhBI2eE+MFT7+bjnzTjq5/bAQCSAQJ8uWISLhk5AOAJKJUxQNi5CBOGJ+LLlZMwONHS11TVoMWtL9XbVsO0R+kuxIlZs2YhNzcXGRkZiIuL82sbDQ0NSE1NRVJSEndbfHw8cnNz0dHRgdLSUpv2UqkUeXl5yMrKQlZWFnJzc7F8+XK/A0MSuRijwaciIJG60LS/2LR2niLXtwfS/DMSYSg4I8RH7srlsx65aSSuvUQCURwfn/3tYlw+NhEAwBt3fb/o5ewr7FyES0eJ8MWKSRiYYBkt2/ZTG+5+UwWGYVw+ltJdSDCo1WqnI17x8fFIS0tDc3MzDAaDzX1yuRwZGRnIyMhASkpKXx0qCTfaY94XvojghaZ7g5essMyvU9zo2wOpQ45EEArOCPGBu3L51gYOEOKzhy/G16svxfSUgZYb+8ncgL7GzkW4YmwiPn1oIuJieACAs3ojOo2ugzMqs0+Coa6uDkVFzn8EskEbzSUj9tg5zJ6uLaxIX2i6t/yZg0YdciRSUHBGiJfclcsH4DBKEyvk4/IxlhGz/jQ3oK9Zl9jPmijBlntSsOxaKYrvn4i4GA+nOEp3IQHmbp4YO2JmPeeMEJ8rNFJHn39roFGHHIkQVBCEEC+5m2f2zf52PF7SjA//mgpZUmzPHTwBeOOuhyA1nwKzIOKPmQOeZCxM9UVYwPsSCzIGe//g7nQX4bSVwTtA0m/k57v+0dzebpmHah/AtbW1obm52ebvjIwMCuL6CZ8qNFJHH4c97xu33u71iCMVhCKRgIIzQrzkqopWw8kLuPWlX9F23oTMR+vwzerLMHpInKX4x/y36QLQR9i5CExqniU9yOrHzonWTrSdN2LSiAFOH8s0bQcoOCNBVldXx1VwZLW3t6OlpcXmdo1Gg/feew+LFi3yKkDbu3cv9u3b57GdXq/3/aBJ0HldobG7oBRdU3qw844Z1efeP4g65EiYo7RGQrxgPr3faRWtM9ou/OZfB9B23tJrd9koEUYMirX0bs5YQxfRELBPd/nxsA6Za+pw0zO/QNPe6fxBxgswn/6lD4+S9DcVFRWQSCTIysqyuT03N9ehCIhUKoVUKkV5eblX2+7s7IROp/P4z12BHBIaPlVoZEyAeGRwDygC+TX/rIlSG0n4ouCMEA/MR7bDVH6vw+1dRjN+93I9GjWWeSSXjhqAdwtSIBAIqVx+iLFl9hnw8fcPjuB4ayeaz3Ri4fO/wtDpvMS+qfwemotAgkKj0aCurg55eXlepyrK5XI0NDR41TY2NhaJiYke//F4vN48DRIMPlZo5An9W+Ihmvk1/4w65EgYo7RGQtxwN1H74fePYMeBcwAAqSQGnz40EeIEAZXLDxO8ZAX4iuvxzr0GZD5ah2NnO1Gt0mH52yq8cdd4xx+qNBeBBElpaSny8/Nt1j7zhA3iNBqNx8Wop0yZgilTpnjc5qZNm6DT6bw+BhJc5iPb3RaZstffKzS648/8M1P5PQAtTk3CEI2cEeKGq4na71S0YGO5GgAQK+Sh+IGJkA+JpypaYUaQmo/hgwfgk4cuRkKs5XT3TuUpbNqudv4AWguHBFhRURHmzp3rNMAqLy9HRUWF08exi2Dbr4lGogNVaAw8dv6Z16haLwlTFJwR4oKrxab3qrQoeLvnZP7vJeMwdbyYqmiFITbdJX2sBK8vG8/d/uB7R1BVf87pY2gtHBIo5eXlyMjIgFwud3p/fX09V8HRnqvKjiQ6UIXG4PB5/hl1yJEwRMEZIU64Wmz61Lku3PJSPTq6LBPr775Oituvtvx4Esx9jdIjwhB/zBwI5r6KW6cPwYPXXwQAMJoY/O7lehw/2+H4AFoLhwRAdXU1UlJSHAKztrY2NDU1AQDS0tKQm5vr9PFNTU2QSCRUTj9K+Vqhka4t3rFe99Jb1CFHwg0FZ4TYcbfYtDhegOsvTwYAzEgR47k/jrXcIUwAf8jFfXmYxAf8IZMAYQKevFWOay+RAAA07V34w4YGdBmdFAihdBfigcFg4IIsew0NDZBKpU5HzFpaWiCRWD6DMpkMGo3G6bYbGhowa9aswB40CQtUoTG42A45r1GHHAkzFJwRYsddukl8LB8bblfg/eUp+M9fUhErtHyFaKJ2+OPJr4NQwMN7y1MwerBlofBdDVp88v1Z5w+gdJd+raOjw+18r9LSUhQXF6Ours7mdo1Gg9raWrS3t6Ouro77V11djerqauzZs4crDJKSkoK6ujqHAK2oqAhpaWkOJfZJlKAKjUHHdsh5jTrkSBihao2EWHE1z8xe/rQhPX/QRO2IIEjNh/GwEkPEwAd/ScX1T/+CZ/8wBrdMG+zyMcyhL8Gk5oGXPN5lGxI9qqurodFo0NbWhvb2drS3t6OoqAjx8fFITU21CZbkcrnTSopFRUXo6OhAc3Oz032wo2asuXPnorq6GvX19VxAOHXqVArMohRVaOw7PPl1tDg1iUghD86amprQ1NSEpKQkrpcyIyPDr20ZDAZUVlYiLi7OZTpIaWkp4uPjkZaWBqlUCoPBwK1Bk5GRQZOv+zHzke0w7XrC4aJ5/GwHzl0w4eIRAxwfRBO1IwY7F8G06wlkjBej8cUrkSTycArsTncRULnlfsGXa09GRobT9suXLw/qfknkogqNfYvtkPP69Ub34tQUnJEQC2lw1tDQgPr6epsJ0U1NTSgqKkJ+vvcnpIqKCrS3t0MqlaKpqcllZSygJ5ffOhUlLi4Oubm5FJj1Y67mmZnMDBZvPIh9h3XYuFSB388Y2nNn90RtCswih/VaOEkiLx9E658RQgKAKjT2LesOOW9HKmG8AOOupyC4+FbKmCAhE7LgzGAwYNu2bbjzzjttbpfL5aioqEBdXR3S0tK82pb1KFl9fb3btlKpFBkZGVyOf1JSEqWPEJcXzac/O4aKXy0l11d91ISbrhgEUbxlrgAtNh2Z2LVw7NNdPv/hLH45dh5/v8nJ5HtKdyGE9JKvFRrp+tJ7/ixOzRz+EsambZQxQUImZAVBGhoaXJYJTk1NRW1tbdD2LZfLuZQUCswI4PyiufugFms/OQoA4POAd+5N4QIzSjeJbPZr4Tz83mEseP5XrC5qxjf7na87xTRRJS9CiH+oQmPo+Lw4NUAFQkhIhSw4q6+vd7l+S1JSElpaWtxWyiIkEJjWRnTtetLhotmmN+KPrzTA1F1l/R+/GYnM1IGWPyjdJOJxa+F0V0yTJlmqNzIMcPtrB3Fa2+X4oO50F1oPhxDiK54w3vvqgVShMeB8XpwaoIq9JGRCFpxpNBqunLA9tppVe7vzHmxCAsF8ZDuMyqXAYcfqjMvfPoSm05YFimekiPGP34yy3EELgkYN/pg5EM5/G+AJ8OD1F+G6Sy3nnROtnbjrjUYwDOPwGObwl7QeDiHELzz5dV62o+tLoPmzODVAGRMkNEIWnHV0dCAuzn3PULCCs7a2Npv1ZyoqKmiUrp9xVzXrw12n8PHu0wAAyQABttw7AUIBDwDNM4s2bLoLn8/DW3dPwBCx5cL9+Q+tKNzR4vxBlO5CCPEB09oI4+51YI6Ue25MKfNBwx8zB8Kct4CxPqQ4Gi/AfPqX4B0UIU6EvJS+M2zQFoyAqb29HS0tLTbFRjQaDd577z0sWrTIZaolAOzduxf79u3zuA+9Xh+QYyXB46oAyLEzHfhr4SHu7w23KyAf0v2ZoItmVGLLLQ9PBl5fNh4Lnv8VAPDQe4cxe5IE44Y5OSdQgRBCiBe4dc28qdJIKfNBx0tWIGbGKnQd/dbrOYCm8nsAKg5C+lDIRs5CJTc316EIiFQqhVQqRXm5+16tzs5O6HQ6j/+cpUOR8OKsAAjDMLj7TRXazlsqOt0ybQhund692DRdNKOWdbrLjVcMwu2zhwEAdAYz7njtIExm599nSnchhLjj9bpmgjjwFLmUMt+HvE0xBUDZEqTPhWVw1tFhmevjbhQr0ORyORoaGty2iY2NRWJiosd/PB6vj46a+MN8er/THjMej4f75g/H8KQYjEiOxctLxlpuH3c9XTSjnHW6y78WjcXYoZbR+10NWjz/xXHnD6J0F0KIG96ua8YbMw/CaSup868P+VwghIqDkD4UlmmNocAGghqNxuVi1FOmTMGUKVM8bmvTpk3Q6XQBPT4SGFyKiQvz0pLx4/p0NJ3qwKDEGECYAOH0f/bhEZJQYdNdxEe/xVt/noBrn/wZDAM898UJ/HnOcIgTBA6PoXQXQogr3q5rxjRtByhFuk9xC1R7m3IKep9I3wnZyJlEInFZ8IOda8ZWbQyU8vJyVFRUOL0vmPPcSHjwNsVkUGIMLh+bCICqZvVHPPl1yEwdiIduGIFrJkmwe22a08AMAKW7EEKc8mldM+MFMMaO4B4QccAfMweCua96/wDKliB9JGTBmVQqdRkIsUGbqxEsf9XX17sMCIO1TxI+XKWY1J+44HyeIBUA6ZfYdJfH80ZB+cgkjBnqIb2a0l0IIXZoXbPIwB8yyfv3CZZsCVpKhQRbyIIzuVzuMlBqa2vD6NGjA77PtLQ05ObmOr2vqakJEomkT+e5kb7lLMWkUX0BGatq8dvnfsXxs1Y9l1QApN9i011iYmO9nj9KxUEIIdaY1kYgYYhXbSlDI7SoOAgJNyELzlJSUmAwGNDW1uZwX0NDAyZPnmxzm8FgQFNTU6/2KZPJoNFoHG43GAxoaGjArFmzerV9Er6cFQExmxnc9YYKFzrN+LKmFS8rT3L3Cea+RvOI+jFn6S7aCyY889kxGE1ORlkp3YUQ0s18ZDuMyqWA9qjnxpShEXJUHISEm5AFZ/Hx8Zg3bx4qKyttbm9oaIBEInEod19aWori4mLU1dW53W5HR4fLdMmUlBTU1dU5BGhFRUVIS0tz2CeJDuYj22Eqv9fh9k1fqbGz/hwAYOzQOKxeMMpyhzAB/CEX9+UhkjBkne5SVX8OVzxSg1UfN+PFrSectqd0F0KI1+XzAcrQCBPWy6l4i7IlSDCFtFpjSkoK4uLiUFFRgaSkJC6oys937EWSy+UuKylWV1dDo9Ggra0N7e3taG9vR1FREeLj45GammoTdM2dOxfV1dWor6/nArmpU6dSYBalXF0oj57pwD8/6hmJ3bRsPBLjLUUfKMWEsHjy68CoPodQwEPzGUva6xMlR/HbqwZDIbVLge5Od+FJxtKPLUL6KW/L50M8GsKsJ+lcESb4Y+YAiRfBVLbMuwd0Z0vwh0wK7oGRfinkpfTlcjnkcrnHdhkZGcjIyHB5ny98bU8il7MLJcMw+GvhIegMZgDA0mukuHpSd2VQSjEhVgSp+TAeVmLqeDGWzxuOf5edhKHLjIK3VNi6cpLjnLTudBchlVsmpF/ytnw+LpyiwCzM8IdMgkmY4HWVTVpKhQRLWC5CTUigOLtQllSfwRc/tgIAZJIYrPtdd+cApZgQO9bpLo/nj8bowbEAgK/3t+PdylNOH0PpLoT0T1Q+P/JRcRASDig4I1HL2YWyVW/EA+8c5v5+YfFYJIksA8hUBIQ4wxYHSYwX4N+39wTuD79/BJr2TscH0I8uQvolKp8f+ag4CAkHFJyR6KU9BvBsFw/+x4dN0LR3AQByrxyEBVcNttxBRUCIG2xxkPnpybh1uqU8dqveiIffP+LYmCfwrkobISTqeDvyQnObwxMVByHhgIIzEpW4UsaMibvNZGZwVmcJzMTxArz0p7HcnCG6UBJP2B9dzy0ag0GJlgv3h7tO4+uf22wbMiYYlUupciMh/QzT2gim45znhjS3Oaw5W0rFLVpKhQQYBWck6riq0Cjg8/DRfRPx6UMT8dKSsRg5uDulhC6UxAtsusswSSz+79aeIkZ/KTyEji6zbWOai0BIv8J1CB6rcN+Q5jZHBOulVLxBS6mQQKLgjEQdT6WMb7h8EBbNHGb5gy6UxEvW6S5LZg/D9AliDIjj446rpeDznDyA5iIQ0i94u7YZb9RsCHPeornNEYKKg5BQoeCMRB2vSxnzBHShJD7hj5lj+cwIhHjz7vGoe/pyPHTjCMQInZ9KaS4CIdHP67XNYgdSR2AEoeIgJFQoOCNRxXx6v0OFxvu2HELR7tNgGMa2MWMCxCP78OhIVBCPABgTJsgSMHqIh2prNBeBkKjnbYcgddZEFioOQkKFgjMSNcxHtsNUfq/NbeU/teHVcjX+sKEBd2xqtH0AlTImfnBXLtvQaXa4jeYiEBK9aG2z6OZPcRB6j0lvUXBGooKznP9Oo9lmTbPrLpXYPIYqNBJ/2c9FaD9vxN/eO4wrHqnBhU6TbWOai0BI1KK1zaKfz8VB9j4PprXRc0NCXKDgjEQFZzn/LytPouGkpUdzRooYf8gc2nMnVWgkvWA/F6HgrUN4WXkSjRoDni097vgAmotASNSitc2iny/FQRjV57ScCukVCs5IVLDP+T9+tgNPfWpZCJjPA15cPI5b04wqNJLesp+L8M/fjoRQYPl8Pfv5cRxqMTg8huYiEBJ9aG2z/sGv4iCUMUH8RMEZiXjOcv5X/qcJ+g7L/J+7rpMhXS7i7hPMfY0qNJJes56LcPGIAfhr9nAAQEcXg4fePez4AJqLQEhUobXN+g9/ioNQxgTxFwVnJKIxrY0w7X3B5radv57DR9+dBgAMThTisbxRPXcKE8AfcnFfHiKJYtZzEf7521EYnhQDAPjix1Zsq2t1aE9zEQiJDrS2Wf/DLqXCU+R6/RjKmCD+oOCMRCy215JRfc7dZjIzeNBq1OKJ/NEYlBjD/U05/yTQ2LkI4gQB1v1+DHf73947gi6jbfVGmotASHSgtc36J16yAoIp93v/AFpOhfiBgjMSkVz1Wr5T0YKaJj0AIG30ANxxjbTnTsr5J0FgPRfh9zOGYOr4RADArycu4PWvNY4PoLkIhEQ8Wtus//KpQidoORXiOwrOSERy1Wt57aUS5E8bDAB4btFYCPhUBIQEl/VcBB6Ph+f/OJa774mSozij7XJ8EM1FICRi0dpmxJfqjdQhR3xFwRmJSK56LeVD4vH+8lTUPp2O2ZMs65rxFLmU80+CynouwlUKMRbNtCzb0Ko3YmO52uljqEedkMhEa5sRv6o3Uocc8RIFZyTieNNrefGIAdz/C6Y8QCNmJOis5yI8eascowbH4oU/jcXKm0Y4fwD1qBMSsWhts/7Nn+qN1CFHvEXBGYk82mMAT2BzU6dd4QUO9VqSPsT2qF+UHItfn7sCBfOGI0bo4jTLEwDao317gISQgPBq5ITmOUc16+VUvEIdcsRLFJyRiMKtK8OYuNuq6s8h9YEf8E5FC8xmxqY99VqSvsb2qLsMyliMiSo3EhKBmNZGS4oa46YRzXPuF6yXU/GIOuSIlyg4IxHDWYVGs5nB3z84guOtnbjz9UYUV5/peQD1WpIQcNWjfuD4eZjsOg9oojghkcVmCRfGSSl9fizNc+5nvC4OQh1yxEsUnJGI4axC48e7T+N7lQ4AcMnIAViYYanUSL2WJFTs5yKo2zpxz2YVLl9Zg3cqWhwfQBPFCYkI3i08bYYgNZ+uPf2IT8VBqEOOeIGCMxIx7Cs0GjrNWP1xM/f307fJLaXzeQLqtSQhxVZvBE+ARrUBm7/RwMwAjxY1Q2cwObSnieKEhD+vFp6mzpZ+x+fiIPQZIR5QcEYigrMKjRu2nUTTacvk2nmXJWFeWnJ3YxMgHtnXh0iILfEIgDFh5sSBuHnKIACAur0Lz31x3LEtTRQnJOzRwtPEFesOOW/QZ4S4Q8EZiQx2FRrPaLvw9GfHAAB8HrDuNnlPW6rQSMKA9VpI//c7OYQCy4LoL355Auq2TrvGNFGckHBGC08Tj7o75LxCnxHiBgVnJOw5q9D49GfH0H7e8vefZg3DZaNE3H1UoZGEC3ai+ARZAu66VgoA0HeY8eSndoEYTRQnJKzRwtPEE58+I9QhR9yg4IyENWcTsI+cMmBjuRoAEB/Dx5oFo3oeQBUaSRixnij+j9+MRGK85ZS7+RsN6k/Y9cLTRHFCwhotPE08ocqNJBAoOCNhzdkE7Kc+PYZOo6Uk+V9yhmPk4O4eSqrQSMKM9UTxYZJYPHTDCACAyQysLmpyfABNFA8LBoMB5eXlqKio8HsbTU1NqKioQF1dHaqrq1FdXR2QtiR0aOFp4glVbiSBQMEZCWvOJmA/ljcKt88ehmEDY/DwjZYfu1ShkYQr64ni98+/CDJJDADgv9+fxe6DWof2NFE8dCoqKlBaWoq6ujo0NTWho8O/OSENDQ2oq6vDrFmzkJaWhoyMDEilUhQVOQbevrQlocVLHg/euBtcN6AOwn6PKjeSQKDgjIQtVxOwRwyKw6Zl4/HLvy5Hkqj7BEgVGkk4654oLooXYLVVGu4bX6sd29JE8ZCZNWsWcnNzkZGRgbg4/+YMGQwGbNu2DXPnzrW5XS6Xw2AwoK6uzq+2JHSY1kYYd69D10dzwDT+r+cOvqWjBcIEWniacKhyI+ktL0N7QkKArdDoovrRwAFWH1+agE3CGDdR3HgBt18txX/3nsWt04fgDzOHOmncPVE8eXzfHyjptYaGBkgkEsTHxzvcl5qaitraWqSlpfncloSG+ch2NwtPM+BPWwWBYn6fHxcJcz5WbjSf/gX8IZOCe0wkYtDIGQlL9hUaGYaB3snivSyagE3CHTtRXCjg4YsVk/CnWcMsi6bbo4niEa2+vt5psAUASUlJaGlpgcFg8Lkt6XvOClLZMBthrl5Pc4aIA58qNwIwld9D53zCoeCMhB1nF8QvfmxF6oM/4JVtJ9HRZbZ9AE3AJhGAJor3DxqNBklJSU7vk0gkAID29naf25K+56wglQOaM0Rc8LpyI0DnfGKDgjMSduwviCYzg9UfN6PlXBceeOcwtv/c1tOYJmCTCOFuonhtkx5dRrtOB/rRF5E6Ojo8zldjAy5f2pK+56wglfN2NOJBHPnUIQfQOZ9waM4ZCTv2F8QPd53G/mPnAQAZikRcn55suaO7QiMFZiRS8MfMAU8yFsattwOMCYdbDFj1cROKdp/BK7ePw7LrZDbtmabtwLSVITpaEmhsIOZNqqIvbffu3Yt9+/Z5bKfX6z22IRauClI51V3Eh+Y9E2tsh5zb1Fg7dM4nAAVnJMzYXxA7jWY8UdLM/f3krXLweN3zdKhCI4lEVhPFW851oWj3GQDAU/89hkVZQ5EQa1Xhi370ES90dnZCp9OF+jCiinURH4+oIBVxgT9mDpB4EUxly7x7AJ3zCSitkYQbtkJjt8IdLTh8ylJWfM6lElw9SdLTli6IJAJZTxSfOl6Mm64cBAA40dqJTds1do27KzeSqMCum+aqCIi/bWNjY5GYmOjxH9exRbzi7ZwhKkhF3OEPmeR9cRD6XUNAI2ckjHAli7tHFS50mvB//z3G3f94/mib9nRBJJGKJ78OjOpzAMCjeaNQ+sNZMAzwTOkx3HmtFInx3R0U3ZUbBdNX0/pJxKUpU6ZgypQpHttt2rSJRth8IEjNh/Gw0n1KGhWkIl6wPue7ZeqEcfc6CFLzwaPlVPotGjkjYcFZhcY3vtbgRGsnAODGK5JxlULc8wC6IJIIZj1R/LJRItwybQgA4LTWiA1lJ20bUxWviCKRSFwW8WDnj7GVGH1pS/oW09rYXZzBzWgjFaQiXvK6OAhjAqP6nJZT6ecoOCNhwb5Co95gwjOfHef+fnSh1agZXRBJhLOv3Lh6wSiwS549/8VxtOnteuqpilfEkEqlLot4sIGYVCr1uS3pO+w6m4zqc8Dc5diAHwueIhfCnLdoRJt4xV21XqeoU65fo+CMhAX7Co2vblej5Zzlopg3dTAmy0WWO7orNNIFkUQ6/pg5EOa8BfAESBmegD9mDQMAtJ034cWtJxzaU7nuyCCXy12OhrW1tWH06NF+tSV9w+PC0wAAc3faGXUQEu+x53yeItdmbr1L1CnXb1FwRkLOWcniP2UNxX05wzEgjo/VC0ZZNaYKjSSKWFVu/MdvRkIosAyfvaw8gdNaux777ipeJDwYDAY0NTU53J6SkgKDwYC2tjaH+xoaGjB58mS/2pK+QQtPk2DiJSsgnLYSEMR61Z465fonCs5IyFlXr2MNk8Ti2UVj0fTvKbh4xICeO6iSEYki1p/9scPiccfVltEzncGMdypabBvTZ79PdXR0uF1jrLS0FMXFxairq7O5PT4+HvPmzUNlZaXN7Q0NDZBIJEhJSfGrLekbtPA0CTZ/1tAj/QtVayQhxU26NnU6vV8ywPYjShUaSbSxruK18qaR2HtIh7/dOAILrhps25CqeAVddXU1NBoN2tra0N7ejvb2dhQVFSE+Ph6pqak2wZJcLodGo3E6JywlJQVxcXGoqKhAUlISF+Tl5zsWMfKlLQkuWnia9AWf1tBjl1Ohc36/QsEZCRmudL5VConZzIDPd1Ediyo0kihkXa575OA47F7rIpWNreJ1WEml9YMkIyPDp7bu2svlcsjlcq+25UtbEjy08DTpK16X1qflVPolSmskIeFs0nWb3ohJf/sBT392DNoLJtsHUIVGEqWoihch4YMWniZ9wevS+gCd8/shCs5ISDibdP2S8gQOtXRg9cfNWFPUPdGeJ6CSxSTquavixa71Z4MKEhASFF79aKYsDtJLfnXK0Tm/36DgjISE/aTrVr0R/1ZaFt8VCni4b/5FljsEsRBOW0kjZiTq2Vfx+uGwDr/51wFM+tsPULc5BmhUkICQwON+NLtafJqyOEiAWC+n4g065/cfIZ9z1tTUhKamJpuJ0L7k/VszGAyorKxEXFwcZs2a1Sf7JL5zNun6pa0ncK47lXHxrGEYMzTecgdNuib9iPV344OqU/iyphUA8Nznx/HsorG2jem7QUhAsQWqLJ2HjO2dwgTw5HNofTMSWFbLqXhE5/x+I6QjZw0NDairq8OsWbOQlpaGjIwMSKVSFBX5NnRbUVGB0tJS1NXVoampCR0drsuOBmqfpBe0x2x6itr0Rmwo6xk1W3HTiJ62NOma9CPWpfX/duMIxMdYTtGvf61BS7vd6BlbxYsQ0mvmI9thVC61FGmwLwjCE0AwdSVlcZCAc7aUkOvGdM7vL0IWnBkMBmzbtg1z5861uV0ul8NgMDisHePOrFmzkJubi4yMDMTFuf4hH8h9Ev+wF0DrnqIN205yo2Z/yhraM2oGmnRN+h+2IIEsKRbLrrWUab/QacYLW0/YNuyu4mU+QqkuhPSGswJVtg1MVJCBBI23RWjonN9/hCw4YxfZjI+Pd7gvNTUVtbW1UbFP0sPZBfDceSNe7v7RKeADf79pZM8DaNI16YesCxI8dOMIxMVY5r68Vq7GaW2XbWOq4kVIrzkrUOWACjKQIKHKjcReyIKz+vp6p0ESACQlJaGlpYWbDxbJ+yQ9nF0AN5ar0XbeMmq2aOYwjBvW/f7QpGvST1lX8booORZ3XG0ZPdN3mPGS/egZQD8aCekl+wJVrtvRiAUJPKrcSOyFLDjTaDRISkpyep9EIgEAtLe3R/w+SQ/7C6D2ggkvdv/Y5PPQM9eMJ6DS+aRfs67i9fCNIxArtIyebdymxlldl0N7+tFIiH+cFahyqbsgAyGBRpUbibWQBWcdHR1u54cBgQ+UQrFPYuHsAsgwDJZdK4U4XoDfZw7FeFn3pFjGBIhHOtkKIf1IdxWvkYPjsGT2MACA1mDCy91LTtigH42E+MWnggxUoIoEkx+VG0l0CnkpfWfYAKovUwy92efevXuxb98+j9vS6/UBO65owV0ArQK0gQOEWHuLHA9cfxE6uqzKFtMFkBCb78zDuSPw1rctMJoYvLLtJB64/iJIBlidvuk7Q4jfePLrLFUaPbajbA4SPM5+J7lu3F25MXl88A+M9DlahNoHnZ2d0Ol0Hv8xDON5Y/0M09oIJAxxet+gxBgMT47l/qYLICEWbBUv+ZB4LJo5FBmKRLz95wkYmGCX+pIw1PIdI4T4zKuCDFSgivQBqtxIgDAdOWPXKXNVvCNU+4yNjUViYqLHben1egrQrJiPbHdfptgaXQAJ4QhS82E8rATMRry0eCziY/jg8XiODbXNMCqXQjB9Nc3VJMRHbEEGU9VjcFh8GqACVaTPWJ/zPequ3MiTjKXPZpQJy+AsXE2ZMgVTpkzx2G7Tpk3Q6XR9cEThz1n5/Pd3nkKj5gKWzxuOweKYnsZ0ASTEBvej8bu1SIj10Jgu1IT4jTdqFsCPAcxWi70LE8CTz4EgNZ++U6RPWJ/zvQ7Q6osgnLYy+AdH+kzI0holEonL4hvsvC+2gmIk77O/sy+f32U04/GSZjz16TFMeGAfTrR2XwjFo6lCIyFOcFW8xKMd7nMYoacSy4T4hGlthHH3OhiLsnsCM/FICLLfQMyt2yGctpICM9KnqHIjCVlwJpVKXRbfYAMoqVQa8fvs7+zL53/43WkcOWVJIZ0+YSAuYueaXThFF0BCXOAlK4ALpwBYArKKA+2Yv34/3vxa49CWLtSEeMd8ZDuMyqWWYiAmqxEz7TGYyu+h+TwkdKhyY78WsuBMLpe7HMVqa2vD6NGOvcSRuM/+zL58vtnM4JnS49zfj9xsVS6fTi6EuGT9XTpw4gLmPLUfX/3cjmc/P44uo9m2MX2XCPHIWcq9je40YaZV1bcHRghoiYf+LmTBWUpKCgwGA9ra2hzua2howOTJk21uMxgMaGpq6tN9kt6xP7n8d+9Z1J+w/MCcmToQMycO7GlMJxdCXLL+Lk0aMQDZaUkAgCOnOvDR7tO2jem7RIhH9in3TlGaMAkhrys3UrXeqBOy4Cw+Ph7z5s1DZWWlze0NDQ2QSCRISUmxub20tBTFxcWoq6tzu92Ojg6XqYu+7pP0jnX5fIZh8EzpMe6+FTeNsGlL5fMJcc/6Qr3ipp5R52dLj8Nstpp7RhdqQjyyT7l33Y5SG0loeLXEA8BV66U03OgR0mqNKSkpiIuLQ0VFBZKSkrigKj/fsZS6XC6HRqNxOiesuroaGo0GbW1taG9vR3t7O4qKihAfH4/U1FSboMuXfRL/2ZfP/+rndvxw2LI4d7pchHndPf8AqHw+IV6wLrE8c+JAzEgRY1eDFgeOX0DpD2dx85TBloZUVp8Qt+xT7t3qThOm0WjS13yq3EjVeqNKyEvpy+VyyOVyj+0yMjKQkZHh8r5g7JP4x1ku/9Of9Yya/f2mET1rNVH5fEK8Yn+h/nvuCPzmuV8BAM+UHsdNVw7q+V7RhZoQl7g0YW8CNEoTJiHEHzMHPMlYGCtXAdpm942prH7UCFlaI4le9rn8exq12HHgHABggiwev72qu4efyucT4hPrsvrz05Nx2egBAIDvVTp8+8s528Y0X4YQl7ydz0Mp9yTUrKv1ekJpuNGBgjMScPa5/EdOdSBpgGW9jr/dOAICfnfvPpXPJ8Rn7IWax+Ph77k9c8+sR6dZdKEmxDmv5vNQyj0JA/6k4ZLIRsEZCShnJ5Fbpw+B6qUpeOFPY/GHmUN77qCTCCE+s/6OLcwYDMWweADA1/vbsVeltW1M3zFCnOIljwd/2j9cN6CUexImfCqrD8C093kqChXhKDgjAeXqJCJOEKBg3nDECq0+cpTLT4jPrL9jQgEPD914EQAga+LAnjlnLPqOEeIST2RVYIxnye6AMAE8RS6l3JOw4nVZfQCM6nOq3hjhQl4QhEQXrny+9qjHtpTLT4h/ePLrwKg+BwD8MWsYLhstwtTxYseG3WX1ecnj+/gICQlfTGsjTPVFYA4pudt4Q9PAv/xe8IdMCuGREeKcdbVer1BRqIhGI2ckYMxHtsOoXMoFZltrWtHS3um8MeXyE+I36/kycTF854EZQOvfEGKHvU4xqs8BpueHLtPyI0zl99B3hYQltlqvV+uesagoVMSi4IwEhH35/LO6Ltz273qMv/8HrPjgiG1jyuUnpFd8ulB396AyrargHxghYczZMi826LtCwhhbrZenyPX6MVQUKjJRcEYCwr58/qvlaug7zDB0Wf5xqHw+IQFhXVafxTAMttW1onCHxrYx9aAS4nCdcoq+KySM8ZIVEEy53/sHUFGoiETBGQkI6/L55ztMeGXbSQCAgA/cP/+inoZUPp+QgLFe/8ZkZjDr8Z9w4zMH8Lf3jqD9vO2PUOpBJf2d/TIvrtvRd4WEL5+qN1JRqIhEwRnpNfvy+VsqWnBaa/lhmDd1CMZ2l/oGQL04hASQ9XdPwOfhkpGWRanPXTDhja/tRs/ou0f6MVorikQTr6s3dheFIpGFgjPSa9a9OEYTg5e2nuDue+jGEbaNqReHkICx70F98IYRYKvpbyg7iQ7rlGL67pF+jEYbSDTxahF1gIpCRSgKzkivMK2NMO5eB5gsVRk//f4MDrVYehznXCpBulxk057K5xMSWNY9qCnDE5B7xSAAwInWTny461RPQ1MnjLvXUS8q6be8HW2g6xQJd1QUKrpRcEb8ZluS2ASGYfD8F8e5+x1Gzah8PiEBZ9+D+tANPXM8n//yBMxmxvIHY6LFSUm/5tVoA12nSIRwVhTKJSp0E1EoOCN+cVaSuOLAOew7rAcATJaLcO0lkp4HUPl8QoLCvgd1espAzEixrHt24PgFKGtbbR9Avaikn+Iljwf/ir+4bkDXKRJhrItCeUKFbiIHBWfEL85KEm/6Ss39/4M3XAQejwfwBOApcql8PiFBZLP+DU+AB2/oGbV+/osTjg+gXlTSb/F6/pcdRRMm0HWKRCQqdBOdfFhqnJAezkoSv7FsPDJTB+K/359BXsZgy42CWAinrezjoyOk/+ElKyCcthJdTdtx4+XJSBmegIaTF1Dx6zl8r9LiKoXYpj3TtB2g7ybpB5jWRpjqiyzXLasfsvxp/wR/1Gwq/kEiFlfoxpsAjQrdRAwaOSM+c9VTI4oXoGDecJT/81LECLs/WtRTQ0ifYb+bfD4PD1zfM/dsa02rY2P6bpJ+wGZutN11y7z7KTDHKkN0ZIQEBpXVjz4UnBGfUUliQsKT9XfzD5lDsfQaKb57Ig1rFjqZME7fTRLlnM2NtkHzL0kUoLL60YeCM+IzprURSBjC/W2zlpIdKklMSN9ie1HjY/l4dakCV45LdN6QelFJlHM2N9oBzb8kEY7K6kcfCs6IT9gUEWiPAgB0BhNSHtiHP7/ZiAPHz9s2ppLEhPQ56kUlxMLZ3Gjn7SLvO9BhdN0pSoJHpVJh9erVuOuuu8JqP1RWP7pQcEa85ixFZEtFC062deGtb1vwr8971jijksSEhIarXlSGYdB02mDbmHpRSZSKxip2za0d2LxHg2UfN2LZxyos+7gRm/do0Nwa/sceSoWFhVi/fn1AtqVQKLBw4cKAbCvQ+6Gy+tGDqjUSr9mniJjMDF7e2lOm+362AIF4NIRZT1JgRkiI8MfMAU8yFsbKVYC2Ge9WtuD5L07grK4LB1+8ErFCq3657l5UqqpKokm0VbHbfUSLTbvVMFkNmHUYGexQncPOw+dw9zQZpo0Ru95AP5aeng69Xh+w7YnFffM6+7offzokwv1z31/RyBnxmn2KyH/3nsHhU5Yeu3mXJeGyUSLLHRdOUWBGSIhZ96KW/nAW+4+dx8m2Lny467RDW+pFJdHI2yp24T43urm1wyEws2YyA5t2q3G0jUbQnElPT0dmZmaoDyPoqFhb9KCRM+IVZz0yL37pZNQMoB4ZQsKA9Xf2gfkX4b/fnwUAvLj1BP6YNdSySDyLvrMkCglS82E8rHRfFCQC5kaXN7S5DMxYJjOwrb4NS6dKg3osNTU12LJlCwBg+fLlUKvVUKvV0Gq1WLJkCVQqFQoLC6HRaPD6668DsKQVlpWVYfHixcjJyXG6Da1WC5VKhYKCAiiVSojFYlRWViI/Px8KhW1nb0lJCWQyGdRqNWQyGTIzM7ltSqVSbh8AkJWV5XA8LKVSafN3Tk4OAECn06GsrAwymQw1NTXIyclxOAZPqqqqUFxcDLVajRUrViA9PR1qtRpr1qyBVCpFQUEBEhMTfdqPN68tT34dGNXn+O+BeEgTzdDo+JAmmjF9VKftxroLQvGSx/v0vEjfoOAsDP3www/g8/kQCoXcvwEDBkAkEkEkEkEo7Pu3zT5FZPdBLfY06gAAl40egOsulfQ0ph4ZQkLO+js7PWUgpo5PxJ5GHX4+eh5f72/HdZcm9TSm76yDpqYmNDU1ISkpCQaDZa5eRkaG14/XaDSorq5GVlYWkpKSPLYvLS1FfHw80tLSIJVKYTAYoNFoUFdXh4yMDEilwf3RHY3Y+ZemXU8AjMmxQQjmRq9RNqP9gpNjcaP1goeKk912qM6h7sR5zw2tSBIEeCLHiyIS3dLT0wEAGzduhFar5Uak7rrrLmRlZXFzpTZu3Mg9hg3avNlGYWEhlixZwrXdsGEDXnjhBe7v9evXIysri3vM6tWrIZPJuNTF4uJiAJagrLKyEgqFAkuWLMHTTz9t8zxKSkq4gBKwBFNVVVXIzMxEcXExcnJyuMDvrrvuwvPPP4/ERBeVb53IzMyESCTCxo0buecrk8mQnZ3NzSUrLCz0aT/evLaC1Hysf7cCmaMMXED2+LdiSEUmjBtk9bnrLgglmL4a/DHhPXLcH1FwFoamTp0Ko9H1yTgxMRGDBw/GkCFDMGzYMIwYMQIjRozAyJEjMW7cOCgUCowcORICgSBgx8SVz++u0vii1Vyz+3IusumFD/cUEUL6C7YXFbCMbv/+5QYAwEtbT9gGZ9SLaqOhoQH19fXIzc3lbmtqakJRURHy870bZWlvb0dDQwMaGhrctlu6dCkXADY0NKCuro67Ly4uDrm5uRSY9QJ/zByYz/wC5tePem4UJoAnnwNBan6fp+C3XzB5HWz5I5jbZonFYqjVai7oAACpVAq1Wg2FQuF0rpRIJPJqG9YUCgXUajX3t1qtxq5du7ByZc/82MzMTCiVShQUFEAkEkGlUnHbdDUKpdPpsGXLFnzwwQfcbZWVlZgwYQK3H3Ykiz2u2tpan1Mj09PTuRFB9lisXwd/9uPptdV0JOK7ozH428zzQPdo6/RRndimisefB9nNu+suCMWTjKWpKGGGgrMwwzCM28AMsJxYdDodmpqaXLaJiYlBSkoKJk2ahEsuuQRpaWm44oorMHr0aNt0Ji+Yj2y3qdJ4uMWA/35/BgAgk8Tg1uk9a55FQooIIf2FdVrXzVcOxpihcThyqgPK2jb8cvw8Jo0YYGlIvagcg8GAbdu24c4777S5XS6Xo6KiAnV1dUhLS/O4HbVajbS0NEgkEqf3s6Nx7KiaVCpFRkYGNBoNd3tKSkovnglhMa09AbLg+kLwkyeE7FgkCb53mvoScCUn+Pazzp/jASyjQNZEIhG0Wm2vt2F/m7WamhqIRCIuZREAl1bpapvONDY2QiQS2YxQWQd87P/rdDpoNBrodDqfnxsrOzubCx5ramowc+bMoOyHxb5GP4/6M0w/FQLnW6DRCaDRuygxQQWhwhIFZ2GGYRgUFBTAZDLBaDTCaDSiq6sL58+f54Ky1tZWnDlzBmfOnIHZ7DwRvaurC/v378f+/ftRVNSznsWgQYNw5ZVXYsaMGcjMzMTUqVMxcOBA18fjpHz+K9tOwsxY/v+eecMRF9P9pafy+YSEFS6t67u1EMKIgnnD8fD7RwAA/1aexKtLrb6r1IsKwDJqJpFIEB8f73BfamoqamtrvQrOAGDu3Lku76uoqMCsWbNsbpPL5ZDL5b4dMHGKaW2Eqb7IUuzG2L2EhDABYEJ7XL6kELI279Fgh+qcx3azFQODPufMX4GolqjX67kURpb1/wOOI3T+HItKpUJRURHS09Mxc+bMXo1c5+Tk4IEHHkBBQYHDSGGg9mP9fNjX6PKZ16Pr+PPAwC5MlnW5fTzTtB2g4CysUHAWZvh8PjZs2OBVW7PZjDNnzuD48eM4duwYmpubcejQIahUKhw8eBANDQ3o6rL9Up49exbl5eUoLy/n9nfFFVfgmmuuwTXXXINZs2bZnNzsy+cDwCUjB0AxLB7HWzux7NrukwmVzyckLFmX1b99thFPlByF1mDCeztb8ET+aAwdGNPTmHpRUV9f7zQwAyyjWS0tLTAYDC7bsNz14Hs7+kb8Y5/twTFegKnsTiDCRojnpiRh5+FzbouCCPjAvNSkPjsmX+l0ul5vQ6FQcHPK7Lfty3wwhULhNEBjj3HVqlV48sknuVREti1bgMQXMpkMYrEYVVVVNimJOp0uYPuxfm3Z18i+iJu+kwdRrIueCSoIFXaolH4E4/P5GDp0KNLT03HjjTfi3nvvxb/+9S98+umn+Pnnn3H+/HkcOHAARUVF+Oc//4n58+dj2LBhNtswm83Yu3cvnn32WVx//fUYNGgQ5s2bh+effx4NDQ0O5fMB4Parpfj5X5ej4rHLMETc/cOOyucTErbYsvoDBwix9BrLOaCji8HrX6kd2vb3svoajcZlAQ82RbG9vd3jdlylJLa1tQGAV0VCiO+cZXvYiMCF10cnx+HuaTIIXPxiE/CBu6fJMCopdD+urYMddv4ZS6fTQa1Wexyx8nR/eno6xo8fj6qqKpvbd+7c6dOxymQyzJgxAyUlJTbHuHPnTmg0Guj1epv5amzwY114wxfZ2dnYsGEDJk+ezN3m7348vbbsa7Rrzz6bsvpVR2NdHyAVhAo7NHIWxjqMZsR1LxZr/f/eEgqFmDhxIiZOnIi8vDwAlrTJpqYm7Nq1C7t27UJFRQV++ukn7jGdnZ3cyNpDDz2EiRcl4KYrB+E3UwbhynGJ3Hw1AZ+HdLlV+gD1vBAStqx7UQuyh+O17Rr85qpBuP7yZMfG/fy73NHRgbg498+9vb3d7xSk77//3mW6Y1tbG5qbm23+zsjI8DhKR3o4y/ZwEIEjxNPGiDEiKRbb6tuwu0mLDiODOCEP0+RizEtN6rPAjE3FU6vVKCkpwcKFC1FSUoLGxkbodDqIxWJkZmZi8eLFXMl7AJg8eTJXNl4mk7ncBtAz2lRUVAS9Xo/CwkLk5eUhMTERa9euRWFhIbRaLTcSxZbOLykp4baZmZkJmUzm9HgBy3yvwsJC7hi1Wi1XmGPBggUoLCzkUhBXrFiBwsJCZGVl2WzPvrKkK9nZ2VCr1TajewqFwq/9JCYmun1tMzMzudeo/cKlSGyvBQDMU7hZA48KQoUdHsMwIc7Ajj6bNm3ihtnvvvtunx7b3NqB8oaeky+/u3aHmQF3Ip6tGIjxQyw9IvZBmz9B3KlTp7Bjxw6Ul5dDqVTa/DiwNm5YHPKmDsEt04cgbbRdXrcwATG39u8ed0LCWddHc7gArVVvRLLIRd9cFHyXe3MOfu6553DVVVc5zAcDLMHS5s2bMXfuXL/SEuvq6iCVSp0GdqWlpUhNTbUZcdNoNCgtLcWiRYvcBmh79+7Fvn37PO5fr9eDYRi/XpdIYf05dyvCP+edRjNifbzWk/6FaW2EUbnUc2cFwNUMiKR030jjy3WJRs7CyO4jWmzarbbJKzdbhc4dRgY7VOewQ3UOPAA8nuX+GAEweEAMzp43otPEeBXEWRs6dCjy8vKQl5cHhmFw4MABfPHFF/jf//6HXbt2gY3fD7V04JnS43im9DguGz0Ai2YOxe9nDIUsKZbK5xMS5qzL6rsMzEBLYQRTfX29y6DOumw/iw3kysvLnd7P6uzsDMicnkhnP8/GrQgfIabAjHhiXRDKq9FkKggVNig4CxPNrR0OgZk7DAB2zLPLBKi1PYU/XAVx3gRtPB4PkyZNwqRJk/C3O3+L49++jM+/+BKbv1Fj76GefPCfms9jxQdN+MeHTZh/+WDc/fDtmH+VKaBrqxFCAse6rL5bHecoxcWFjg5LapA/aYbsqJmv5HI5V8DJldjYWK8KIrAjZ9HKeuF1j2ieDekHrAtCQes8K4oTgem+0YqCszBR3tDmdWDmC+sgzpegja12JTUbsfQaKb7Z384FZ2OHxeFwi+VHiskMfL7vDD7/3TKMGvUEli1bhmXLlvlc0YgQElzOelENnWZ89N0p/HL8Ap6+bQwAgDm2A8YTVZTiEmC1tbVOUyU9YQNBjUbjMribMmUKpkyZ4nFbbFpNNLMeIXbfjj7bpH9gC0J5g8rqhwcaFw8Tu5t6t/Cgrxj0pEyyQdsT247hjg8bUVKxB8ZdPT/gjp7pQEn1aQDA0IFC1K6/HD8/ezke+eMMjBje82Ph6NGjWLNmDUaPHo1FixZhz549ffqcCCHu8cfMgTDnLWDkbADA1Wt/wrI3VHhx6wk0qq1GGyKwol2gSCQSl9UY2YWjXS0s7UpbWxtaWlpcPq68vBwVFRVO72OLk7D7Ju4JUvMBvod+Z77Q0o6QfsCfdF8SWhSchYEOoxkdxvBINTGaGSQd/S94TE/q06vlPemWd10nQ3wsHynDE/DEvbk40nwMpaWluPHGG8HnWz5OXV1deP/99zFt2jRkZWXhf//7n8vFsgkhfYuXrAAvzlLlbGHGYACW0fVXtp20bdid4tLfSKVSl4EQG7T5mp7IFllyVT6/vr7eZUDo7z77K3aEGDwXP2+6Cx/QvBrSX3Dpvt6gdN+wQMFZGIgT8hEn5IX6MDgZ6Bnx0htM2PyNBgAQK+Th7ut60hWZpu0QCoW48cYbUVpaikOHDmHFihUYNGgQ12bnzp34zW9+g4svvhibN29GZ2dn3z0RQohT7PqFS6+RYkCc5TJQuKMFbXqjXbvIrWbnL7lc7jJQamtrw+jRo33epkajcXt/Wlqay4IfTU1NkEgkVE7fB/wxc4Ahl9neKEwAT5ELYc5blK5L+h2e/DrvGpo6Ydy9DkxrY3APiLhFwVmYmCYXe27UB2KZDsSjZ0j7vZ2n0Nr9g+3W6UMgS7JayNB4ASpNG/enXC7H+vXrcezYMWzevBmTJk3i7mtoaMCdd96J8ePH49///jcuXPByiJ0QElDWKS6DEmPwx5lDAQD6DjPe3mEXRPTDFJeUlBQYDAZusWhrDQ0NNgvJApZ0w6amJrfbbGtrc7t2mkwmcxrAGQwGNDQ0+DVXrT9jzEbgbL3lj/jBENzyFWJu3Q7htJVRM2LGGCnNNRRUKhVWr16Nu+66K6L241W6LwAwJjCqz2FULoX5SP/rnAsXFJyFibkpSRCEwbvRyYuDAZYfEWYzgw1WqU7Ls4fbtDUgDo9/dQp3fNiIzXs0aDxt+cGXkJCAO+64Az/99BO+/PJLXH311dxjjh49ir/+9a8YN24cXn75ZZpHQUgfs09xKbD6XltSmK1SrPthikt8fDzmzZuHyspKm9sbGhogkUhs1iEDLOuTFRcXo66uzuU2XY3EsVJSUlBXV+cQoBUVFSEtLc1hn8Q5prURxt3rYPx4HmDqvrYI48HTHQvtgQUI+/y6PpoD40fXWf5LoxweFRYWYv369QHZlkKh4BayDqZA74dL9/UmQAP69bzjcBAG4QABgNHJcbh7mizkAdpI5ihakQwA2P5zG+pPWAKumakDcfkY21LN1ZgKwDJPzbqgyOY9GjS3dqDLDMyfPx/ffPMNvvvuO9x4443cY9VqNe677z4oFAq88sorlO5ISB+yTnGZeNEAZKclAQCOnOpA6b6zPQ0ThvbLH34pKSlIS0tDRUUF6urqUF1djba2NuTnOxaRkMvliIuLczsnzNXC09bmzp2LpqYmVFRUoLy8HKWlpZg6dSrmzp3b6+fTH5iPbIdRudRSqdFkNdqrOx4VowA2z48t7mC8QKMcXkhPT0dWVlbAticW902mU6D3wxaE4ilyAZ4Xyx7103nH4YBK6YeRaWPEGJEUi231bdjdpEWHkQGfZ5ms3xflQjKY3ViKNyCECQBQtPsMd5/9qJkRAmyH448GNlDboToHwKpM//jJKC0tRW1tLdauXYuSkhIAwIkTJ7B8+XI899xzWLt2LX7/+99zhUUIIcFhv+bZ8uzhKKtrAwBsKDuJ31xlKRQCbTOMyqX9sqy+XC6HXC732C4jIwMZGRlu27hbQNp+W8R3TGuj+4V2I3yB3Wh/fsGWnp4e6kMIG7xkBYTTVqKrabtXFRyptH5oUHAWZkYlxWHpVCmWTpWi02hGbPcC0YdOX8A3qnM2QRtgKYcfIwAGD4jBKV0XTH5GcSOZozaBGQC8dqcCN16RjKLdZ3DTlT1FPowQYDOW4ThvlMftWq+tJuTzkDlWhuffeB+rV6/G448/jk8//RQAcPjwYSxatAjPPPMMnn32WcybN8+/J0II8ch+zbO5lyUhZXgCGk5eQMWv51DTpEe6XGRpTD/8SJgz1Rd5Xlw9ghfYDafnV1NTgy1btgAAli9fDrVaDbVaDa1WiyVLlkClUqGwsBAajQavv/46AEtaYVlZGRYvXoycnByn29BqtVCpVCgoKIBSqYRYLEZlZSXy8/OhUNied0pKSiCTyaBWqyGTyZCZmcltUyqVcvsAgKysLIfjYSmVSpu/c3JyAAA6nQ5lZWWQyWSoqalBTk6OwzF4UlVVheLiYqjVaqxYsQLp6elQq9VYs2YNpFIpCgoKkJiY6NN+vHlt3b1GLH9K6/e39PZQo+AsjLGBGQCMG5KAcUMSHII26/8HnAdx3oy8XYdym8AMAAR8Hm6eMhg3TxnM3XYSMryKAq8CM3vsqFrloXP48/Rx+OSTT7B371784x//QHl5OQCgrq4O2dnZyMnJwTPPPIPLLrvMw1YJIf7gj5kDnmQsjJWrwNc2Y/k8Gf665TAEfKC6UdsTnAER/cOWRD+2+qjndqEfBTBuvQPMhbOeG1rzdgFhVSm6Tuz2adO8hEEQzn/L6/bsKNTGjRuh1Wq5H/133XUXsrKyuLlSGzdu5B7DBm3ebKOwsBBLlizh2m7YsAEvvPAC9/f69euRlZXFPWb16tWQyWRIT0+HXq9HcXExAEtQVllZCYVCgSVLluDpp5+2eR4lJSVcQAlYgqmqqipkZmaiuLgYOTk5XFBz11134fnnn0diou3UDncyMzMhEomwceNG7vnKZDJkZ2dzc8kKCwt92o83r62714gN/Lh5x94EaP1w3nE4oPyxCGQdjFn/PwAugHvjlvF48xYFCn8/AVtum4DH5o3EbMVArmQ/nwdYF++3Lp/vTjJa/QrMrJkZYOMuNV6qOIGkMZdg27Zt+OqrrzBlyhSujVKpRHp6Ou655x6cPn26V/sjhDjHS1ZwP/wWZQ3DIzePRMMLV+IuqyUzWP2xrD4Jf5G2wC5z4azlO+fLP1/4uG2fA0VY5kKp1WqbdEGpVAq1Ws3db08kEtn87Wob1hQKBbdNwDJXfdeuXTajQJmZmdwImEgkgkqlQnp6OheUOaPT6bBlyxbk5eVxt1VWVnL7UqvV3Mgbe1y1tbVOt+VOeno6NyLIsn4d/NmPp9fW02vE8rq0fj+ddxxqNHIWxbwZeTt0+gIqDp5C/KGeC5beYIIo3vlk0Xh0IIbpRBcv1un9vth3TI99x/Td6Y6XoEhZgV1ln+KRRx5Bc3MzzGYzXnvtNXz44Yd4/PHHce+990IopI8sIYFi/cM2MV6Ax/PdrOFF6S0kDEXaKAAvYZDvc8h9CdAShvq0aV7CIM+NnJDJbDtwRCIRtFptr7dhf5u1mpoaiEQim4CGTat0tU1nGhsbIRKJbEaoVq5c6fD/Op0OGo0GOp3O5+fGys7OhlKpREFBAWpqajBz5syg7IflzWsEOM47dqkfzzsOJfql2w85Bm2j0dVsubiZzAyu/EcNUoYnYHn2cMxLS7Z5rAFxAQnMrNmkO87IRX39Arz44ot46qmnoNPp0NbWhvvuuw9vvvkmXnnllYBWXSKkP4u0H7aEOMOTX2epYuixXeh/XPqSQsgy7l7n3fNT5IZt6rFerw/INtgURpZ9sQ/7ETp/jkWlUqGoqAjp6emYOXOmx0qr7uTk5OCBBx5AQUGBw0hhoPZj/Xy8eY0Ax3nHbtG84z5HaY0EQM8Q95c/tuJQSweUtW14eetJh3Zs+fxgYNMdN1WfxW13P4C6/Qfwpz/9ibv/p59+wqxZs7B48WKnC7YSQnznKr2lo8uMptMGq3ah/2FLiDNeLbDLF1raRaBoeH46na7X27BPc/R32wqFwmmAptPpoNPpsGrVKuTn5yMnJweJiYlcW2f79kQmk0EsFqOqqsomJTGQ+7F+/r68RmxpfYjdZEywqKx+n6LgrJ9jF7VkjlgKcrxiteh0gV35fBOE+IYf/DV39h3TY9XWZjy68wJib1iNf7z5JS6dfDl3/zvvvIOJEyfijTfegNlsDvrxEBLN7H/4dRrNeLykGYr79uGPrxzkbmeObKMFb0lY4hbYtZlJbYUvhGD66ojt9fe4gHAYPD/rYMd6/hlgCQzUarXHEStP96enp2P8+PGoqqqyuX3nzp0+HatMJsOMGTO4JX3YY9y5cyc0Gg30er1N1UQ2sLEvvOGt7OxsbNiwAZMnT+Zu83c/nl5bX18j63nHntC8474T8uCMXXSTXeizuro6qNspLS1FeXk5N/JiMBjQ1NSE0tLSfjcaY79o5/5j5/H1/nYAwHhpPLcwLQCAL0Rs5mo8+ftrueIiwj749HQYGRxNGI/LH/4AD699HklJlmNqa2vDXXfdhdmzZ+OXX34J/oEQEqXsf/jFCHj4bN9ZtJzrwu6DWuxVdc+BMHXQgrckbPHHzAEShtjeKEywpPrlvBXx82VsFhAWJlhuDMHzY1Px1Go1F9yUlJSgsbERZWVlqKqqQmJiIhYvXoySkhJUVVWhtrYWkydP5u53t42qqirU1NRwZeP1ej0KCwu5wGXt2rU4ePAglEolV2GRLZ1fUlLCbZMNYJztC7DM99Jqtdwx7ty5kytlv2DBAhQWFqKmpgY1NTVYsWIFN4fLenuFhYVevWbZ2dmYOXOmzRw3f/fj6bV19xo5E2kFdfoLHsMwfbG+sVMNDQ2or6+3WaCzqakJ1dXVyM/3fnjel+0UFRWhubnZ5ra4uDjk5uZ6teCoNzZt2gSdTofExETcfffdAdlmoDGtjTAql9rkGhe8pcIbX1sC1Of/ONay8LQgDrwx8yBIzXfaK2dfuj/YUkQX8ON/nsYnH33A3RYTE4NVq1Zh5cqViI0N7Hw4QvoLplUFU30RmCPb8PZXzbj7TUvv7R9mDsXbf55g25gvtPxQDNORiEg4B4dCNL8ujO4EjP+zXO95wy6H4JrnonqOJBXnIYHS9dEcr+cdx9xKHXP+8uX8G7KRM4PBgG3btmHuXNs0OblcDoPBgLq6uqBsRyqVIi8vD1lZWcjKykJubi6WL18esMAsUtgvatmqN+K9nZah7cR4Pv6UZan4xBszD8JpK13+CLMv3f/U9aODOqrWoE+A+ObH8NK7/+PSAbq6uvDoo49iypQp+P7774OzY0KiHC9ZYfmuj5mL380YgkGJlpG0j787DXVbp21jmn9AwgSbmm8sva3ntq7zgPZoCI8q+CgwI4FCZfXDT8iCs4aGBkgkEsTHxzvcl5qa6vWaEv5sRy6XIyMjAxkZGUhJSfH94KOA/aKdb3+rwYVOy/ytxbOGYeAAYXc773tJYoV8jEqKw9KpUrz1O8vaaleO9Fw5yVdmBtjLvxh3v1qGu//6NwgElrL/P/30E6ZNm4ZHHnkEHR009E6IP5imr5AQK8DSayyVw7pMDN78xjHlm+YfkFCzSc03d/Xc0VpP6beEeMmrgjMAV1afvlfBF7LgrL6+3mlABQBJSUloaWmBwWBwen8wttOf2OcYm8wMXtveM8H0nrlWhUB6kWM8bkgC7pt1Ee6dIYMgCJ+0n06ZcX7qXbhhbQlGpVwKADCbzVi/fj2uvPJK7N27N/A7JSSKWZ8b7r6u53v7+nY1Oo12xXdo/gEJIaa10X0Z8O7y30yrf0UcCOkvPBacsUbfqz4RsuBMo9FwxR3sSSQSAEB7e3ufbac/4dY26vbFj604csryIys7LQkpw3vuC8TaRtPGiPFETvDSHSXySZj1z49w+S0PQBgTAwDYv38/pk2bhkcffRRdXV0etkAIAWzPDaOHxOGmKy0L1Krbu/BJ9RnbxrTuGQkh+9R8pyj9lhCvUFn98BKy4KyjowNxce4v7N4EVf5sp62tDXV1ddy/ioqKfjW6xrQ22lS1ShogwMzUgQCAe+fZls8P1NpGwU535AtjcOnN9yDniU8wcoJlFM1kMuGJJ57AjBkz8OuvvwZ0f4REK+v5BwVW54ON5XZr59D8AxJC9qn5rttRChYh3qCy+uHDizHMvscGW70NmJxtp729HS0tLUhLS+Nu02g0eO+997Bo0SKXKZIAsHfvXuzbt8/jfj2t1RFK5iPbHVJBZl0swderJfjpqB6XjBjQ0zhIi1pa0h0TsPuIFpt2q2EK4FJlyaNTMXvVR9j/2Wv46b8bYTKZsHfvXlx++eV49tlnUVBQAB7PxVo4hBAIUvNhPKwEzEZkTRyIS0cNwM9Hz2P3QS1+OKzDFWO7y0F3zz8QTF8d8WXKSWTxp/w3jfIS4h59r8JHyNc562u5ubkORUCkUimkUinKy8vdPrazs5NbQd7dvxCuTuCWpxz9y0aJwOd3By59sKildbpjnDBwARNfGIPLFvwF8x79CJKLxgGwBOh/+ctfcOONN6KlpSVg+yIk2ljPP+DxeLh3rgzJIiEevOEiSCUxto1p/gEJAfvUfLco/TZssGuVBbotCQz6XoWPsAzO2Ep77kaxAr0duVyOhoYGt21iY2ORmJjo8V+4jsx4laMPAOLRfbaoJZvuaF2KP1Apj0MUabj+yU+ROu+P3G1ffvklLrvsMmzdujUg+yAkGlnPP1g0cxgOv3wl1v9+DEYMcnIxpvkHJAS8Lf8dqNR84hq7cHRVVZXNQs/WCgsLbRZh9qSsrIxbSJr0HfpehYewTGsMBTaA02g0kEqlTttMmTIFU6ZM8bgtdqG5cGOfo//Fj2cRH8PHtZdIbAPKC6dCsrgsW4r/vlkXBSzlURiXgIzFqzFi8izsev0RGNpPo6WlBddffz0efPBBrFu3jhauJsQJdv5BfKznPjymaTswbWUfHBUhFtbpty4FKTWf9FAqlcjJyeH+LiwsRE1NDdLT01228cbChQvxyiuvoKCgIFCHSrzg1fcKADrOgWltBC95fN8cWD8TspEziUTisuAHO0eMrbYYqO2Ul5ejoqLCadtAzXMLV/a5xGYzg4ffO4L5639B+soa6AymnsZhUCKbTXkM1CjaiPTZuHFdKUakX83d9vzzzyMzMxMqFaVkEWLPn/kHhPQVLv0WLjJV+iA1v7+rqanBzJkzbW6zv56q1WqoVCrIZDKft5+ZmelyJI4Eh7dl9ZljO2jNsyAKWXAmlUpdBkJssOVqBMvf7dTX17sM5HzZZySyzyUu/6kNjRrL6zY8KRaJ8YKexmGSS8yOogVqnbQEyWBc87dNmPLHVeALLXNn2GIhH3/8ce93QEgUcTb/QNPeiXX/O4ay2lbbxmFyziD9C2/01YDQbtqCMAE8RW6fpeb3Z2q12iZVsaamBgAcRs0WLlzo1/bT09Oxc+fO3hwi8QOX1j5ytvuGNOc4aEKW1iiXy1FdXe30vra2Nowe7cVaCz5uJy0tDbNmzXLatqmpCRKJpNfz3MIZT34dGNXnAIBXrcpiB6t8fqBMGyPGiKRYbKtvQ9Xhc7BfC9cXPB4PF+f8CcNSr0TlhgegVR+BVqvFrbfeih07duC5556L6s8AIb6wPmf8fFSPqavq0GViMPvigcienGzVLrzOGSR4OoxmxFktWGn9t/19wca0HuRGd3mjr4Vg+irqJOhDYrEYNTU1UCqVXJXqtWvX2rSpra3FkiVLHB5bVVUFwBLQLVy4EDU1NVCr1cjJybEZZZNKpVCpVFAoaAS0L/GSFeDFieGxvF33nGMhpbUHVMiCs5SUFFRUVKCtrc1hEemGhgaHIMpgMECj0UAul/u9HZlM5nROmcFgQENDA3Jzc3v/xMIU09oIpuMcAEClMWBrd8/36MGxuOHynh9Z4ZqjzxYOWTpVikOnL6D0l1bsO+b/kgWDx16CG578BHvefgyHqz4DAGzcuBG7d+9GUVERxo0bF6hDJyRiWc8/mDRiAMYOi0fDyQvYceAcfj6qx6WjutOOaf5BVGtu7UBR1a8o+vgjICYBcQkJSBYnokOQgLjk4RAPHQFBTCzMDBAn5GGaXIzZioEYP8TLym9+YjQ/cP/Pk14REYHZlClTwqrQhUwmw969e31+XE1NDSZPnozExETo9XrIZDIUFRVBp9Nxo2n2I2sspVKJmTNnIjExETU1NSgsLMTKlSuxevVqhxTI9PR01NTUUHAWAj6tJUjBWUCFLDiLj4/HvHnzUFlZaRMUNTQ0QCKROJS7Ly0tRXNzM+bOnWuzRpkv20lJSUF5eTnS0tJsArSioiKkpaU57DNa2K9ttmn7SbDV/u+eI4OgD8vnB0Kg1kmLSUhE5j3PQjrxKlS/sxbmrk788MMPuOKKK/DOO+/gpptuCuyBExJh2PkHpu/Wgg8j7pkrwwPvHAYAvLZdjQ23W84VzLEdMJ6oojXPohB7nj2x/2fseXedy3YJycOQPHoihijScEiRhm0TLodInITMsYEP1JjWRpjqi8Ac+rLnNvVeMEMvC/sOArVajePHj4f6MHpNrVZz6YuZmZkAgKysLBQXF3MjZWzQZk8sFtsEcGyxEPtRN7ZtOAWz/QWteRZaIa3WmJKSgri4OFRUVCApKYmbO5af7zhyI5fLXVZS9GU7c+fORXV1Nerr69HR0QGDwYCpU6dGbWBmv7aZ3mBC4Q7LOl9xMTzcfrXl9eSNmg3BZUvDPjCzZp3uuOvIOXSZPD/GHo/Hw4Rrb8VgRRoqXr4PWvURtLe34+abb8bKlSuxdu1aCIVU1JT0X/wxc8CTjIWxbjP+OPMrrP64CTqDGe/tPIUnb5EjSdT9/eief8CTjI2o8whxrbm1g+sAM3acd9v2QmsLLrS24EStpegWjy/A0AmXo+byq/HZFddi8KgJAQnU7DsbWczRb2E8vjPsOwj8KYwRTIE+HutASq1WQyRyLOrFBnMA0NjYiMmTJ7s9vsrKyoAeI/GMm3PsTYBGc44DLuS/OuVyuUOqojMZGRnIyMjo9XbYbfUX9mubffjdabSdt0Qxt04bgiHi7kVlYwdG5A8q63THnYfasbm6xa+RtEHyi3H92k/w3euPoPn7MgDA+vXrUV1djQ8//BBDhw4N8JETEjnY+QcDBwixaOYwvLZdjfMdZrxb2YK/5FzU05DmH0SV8oY27nyaLL8YWctfgLHTAGPHeRg7LqBT3w796RPQtRzDOU0TOnVt3GMZswkt9XvRUr8XP374Lwwedyn2z1qIbdNvgGhgMjLHijE3JQlScYzX89TsOxsdREAHgT8phJHi4MGDmDBhgtft2UDO3fpnWq0WYrG418dGfGc959ithKGU1h5gIQ/OSHBZ5wwzDION5Se5v60LgURDzvDMcRLIB8Xjk7ozfs1Hix2QiFn3vYwDykL88MEzYMwmfP3117jyyitRUlKCq666KghHTUhkYM8lf54rw2vbLT+qXt2uRsG84eDzeVbtIv9cQix2N2m5/x+QLMWY6Te4bMswDHSnjuGMqg6nDv6IE3WVOHfyMHf/mUM/48yhn7H3/XUYl3kTztywFDtUlgCKnac2NyUJo5Nd98DbdzY6RR0EQadWq50GTLt27cITTzzB/e1p1Iudt2b9t3WlR8B1aiQJPq/XPNM2w6hcGvaj1pEkZKX0SfDZ5wz/cFiPn5otqSlTxyfiirFWvVVRsk5Rb8vv83g8TJp/O+atehcJSZbRsqNHj2LmzJnYvHlzgI+WkMhgfS6ZNGIArr3EsnZko9qA8p/abBtHybmkv+swmtFh9FirjcPj8SAeNgpjpt+Aq/60Cjf/qww3P7cNV/5hJQaNuYRrZ+7qROO3xfjs4fn45rk/47SqFh1GBjtU57BG2YzdR7Qu9+FTgQISNGq12mEe2CuvvIIFCxY4VFrUaDQ27aqqqrB69WoAlmCMDfJ0Oh1X8dF+X85SI0nwebvmGQAqqx9gFJxFMft1iq4cl4hdj1+GP2YNxV+tU5GAqMsZ7u0i1sNSp+D6Jz/F0JQrAACdnZ248847UVBQgM7OzkAeKiFhz/5c8uc5PT/AXt1uN1k/ys4l/VWckI84oYsFnr00UDYGk66/Azc89SluXPcZJuYsQUxCT6fgsR++xtY1+djx4l/QfuIQzAywcZcaL1WcQHOrbYBPi6KHD71ej/T0dFRVVXGl9HNycrjCHqzExESHlEWZTMY9dvny5QAsAVttba3NXDTWwYMHHRa6Jn2HW/NM7MXyVt2j1qT3KK0xytnnDE9RiLFZ4ZiOEI3rFLGjaP5WdRyQPAxz//kO9r2/HvXb3gNgKbe/98dalP73EwwbNiwIR01IeLI+l9x4xSCMGhyLo2c6sav+HNrPGyEZIOxuF33nkv5qmlyMHapzAdlW8uiJuOqP/8DkhX9F4zcf4YByC86ftQT2zd+X4ei+7ZhwzS1Iv+UB7DsG/Hhcjz9Pl2HaGMv1igoUhBeFQuFVeXu2FD6brmj/uIKCAo/bcDcnjQQfL1kBXDjlVVtKaw8MGjmLYtZrm7kVpmubBUpvRtEEwlhkLF6D6XetA19oKZ5S/V0VLku/Aj/88IOHRxMSPQSp+Vx6i1DAw6MLR2PD7eNw6OUpXGAGgFvzjES+uSlJfqWHuxM7IBGTbliK37ywHRm3P4Z4yRAAlgIiDV/9B/97OAeqyk9hMjMOo2g8+XVe7YM6CMLHwoULoVQq/XpsSUmJw2gc6Xs0at33KDiLUuYj22FULgWOVcBsZsAwLuYORMjaZr3V27lo42cvxLzVHyAh2TJa1nLyOKbNyMTGt94P8JESEp7s5x/8adYw3HWdDInxApt2zLEdMCqXwnyE5v1EutHJcbh7mn/nTE8EwlikzrkNv3m+HJPz7ocw3tJ51nHuLHa9tgLlT/0J2pZm7Dum5+aiWXcQuBTlnY2hplKpfF4QOisrC1VVVT49RqfTQavVOhQIIX3PPq3dLRq1DggKzqKQfbnhT74/gyn/rMXmbzTQG3oWA+ONmg1hzlv9qrpOb0bRho6fjBue/BRDJ1wOAOjqMKBg6SLc/pe/w2z2cyVsQiIIN/9g5Gz3DWlyeNRgz5mzFQO5OWgxAkAmjkGswPI3nwf4OzstJl6EtN/ei5uf3YrRGT2jJJoDe/D5yptw8OuPuFG0l38agNbLHna9sX7S2RhKarXa5+qJ7FwyXxaTLisr4xazJqHn7ag1TJ0w7l5H2RO9RHPOopB9ueFXy9X4qfk87tmswtihcbj20iTLHRG6tllv9WYuWkLSUMz957vY89YaqCo+AQAUbngWP9Ttx0fvv4uJIwcF6agJCQ/smmf2Y/FteiMkAwTg8bp/plNJ86hhvZ5kp9GMWKt1yaz/PnT6Ar5RnUPV4XMw+jrHd5AMs+97GcdrK7Dn7cegP3UMxo7z2L15NY7u+wrT71qHfQDajwnwCPsgngBgTJbeevkcCFLz++U1rS85K9oRjMctXLjQr/2Q4PC6rD5jAqP6HMbDSiqt3ws0chaFrMsN/3RUj8pfLfPOUi9KwDXdJbAt7fp32pF1jzDfh25fQUwspt+1DlcuegQ8nuUrVFfxJTKzsvDZd78G6WgJCR/W55ifj+qx7PVGjF6+F9+rdHbt+vc5JhrF2i0Ybf33uCEJWDpVird+NwGPzRuJ2YqB8HJ9ac6IybOQu+4zjL/mFu624zXf4ot/3oyW+r1IYXrOsW2X3g/hrV8j5tbtEE5bSYEZIUHiU1l9gLIneomCsyhjP3Fzk1WZ63vmyHp6tQGauImeHuEnckb7NK+CXQ/tmodf50pDnz3yC353/SyUfrUzSEdLSOjZn2P2HdJhS0ULDF1mx7L6dI7pt5wFat6W5o9JSMT0O5/ENQ9t4gqGXGhtwbYn/4g9n3/IzaF+dv8w7GyizxchfYFNa+cpci2j1p5QaX2/UXAWZawnbrafN+L9nZbyp4nxfCyaOdS2MU3c5Pg78X3E5FnIeexjJA4bBQC40HYKC66fg1cL/xOEoyQk9Ownh98yfQiSRZbe1KLdp3Fa29XTmM4xBD2B2hu3jMebtyjw1PXezfsdecU1uPH//gf5pHQAloqOL35YjVtfrscZgwBCcwfe2KPBnR81YvMejcPaaISQwOIlKyyp6oJYr9pT9oR/KDiLQuzEzfd3noK+w5L4/4fMoRg4QGjXjnKBrflbLCRp5HjMf6IIwyZeBQAwdnbg3ttvw90PP+a6SiYhEcx6cnhCrABLZluqmHYaGbz9rcaqHZ1jiK1YId+n6rmzJSr8vDIRK28eyd323+/PImftD7j9zD+QwexGp4nBDtU5PFpmqepICAkeKq0ffBScRRl2bTOGYfCaVYrR3XPsqitRuWGn/C25Hy8ehDkr38a4rN9yt73+r8eRem0+NlUdox5dElXsS5rfdZ0MbMb0619pYDJ3d0rQmmfEDU8dYiOZo1iKNxDHN+OJ/NH4398uxsAESzpVbZMeWWt+xGWNz2EEcxQAYDIDm3arcbSNzreEBAuV1g8+Cs6iiPXaZjsOnMOvJyw9G1kTB+LSUVYXPyo37JE/o2iCmFjMuHs90m95gLvt4LcleOzuW7Dyk5+pR5dEDfvJ4QppPLLTkgAATac7oKxtBUBrnhHP3HWIXYdyCNGz/Mv89GRUPnYZxg2z/NjTtHch56mfMGDfRq6NyQz8u/IkdYgREkS0IHxwUXAWJezXNnu1/CR335+tRs3649pm/vJnFI3H4+Gym+9B1l9eBD/GkpOt3v8dvnzs93iudB/16JKoYb/mmfXo/GvlVoVBqGoX8YKzDrEM7HFod/GIAah6PA2zLx4IADB0mfHYiyU4+PVHXBu1totSHAkJIq8WhAcoe8JPFJxFCeu1zcxmBgmxAggFPMgkMbh5itXaW/10bbPe8GcUbcy06zH3H+8gLjEJANB+7CA+X52Pf769jXp0SdRg1zwDgJzJyRgz1DKiUVbXBpXG0NOQqnYRL1h3iCXwOhAP5+fKweIYfLFiEn43w1LJ0cwAuzevRt0nG7h5vpTiSEjweFtan7In/EPBWZSwXneIz+eh8J4JOPTSlXhveYrNOjRUOcc//oyiDUu5AjmPF0EsGwMAMLSfxn8e+R3uWPcO9eiSqMGeewR8Hu66rmf07PWv1Hbt6NxDvDNtjBir5k9AF8/1XJVYIR+Ff56A++cP526rLXkZ+95fZxOgUYojIcFhnz3hEmVP+IyCsyjgqnKOLCkWsy6W2N5IlXN6hR1Fk4ljvGo/UCbH/Mc+wrDUKwEAxo7z+Ppff8b9T76IlypO0I8GEtHszz1LZg9DXAwP42XxSB1uN2Gczj3EB6OS4hA7bq7bNnw+D8/8YSzuvu0a7rYDWwtRXfg4GLOlUrFa24U1SkpxJCQYrLMn3KLsCZ9QcBYFqHJO3xqVFIflM4d7PYIWJ07GnJWFkE+dDwBgGDP2bF6DN59/EmuUTfSjgUQs+3PPEHEMvnsiDT8/cznuuEZq25jOPcRH3sxrMUKA5OtXYdqyp8CWDG3Y/gG+e/OfMJstxUTMDLBxl5o6xAgJAuvMLfftKHvCWxScRQGmtRFIsOTeK2tbYeg0u2xLlXMCw9dFqwWxccha/gIm3bCUu+3n/72KyldX4tWdR2leBIlY9lW7Lh0lAp/Pc2xo6oRx9zqaHE68xs1r4Qmc3m+EAJuxDMd5ozDh6nxk3vMseHxLW9WOEnz3+iPcCBoA7Dump0IhhAQQrXkWHF6UWiHhzHxkO1elcf+x87jp2QMYnCjEP387Csuzh9s2prXNAmraGDFGJMViW30bdh05hy6T+/Y8Ph9X3rYCosHD8f27TwEMg0OVn8LQfhrJMRvx4LwJGJ1MIwsksghS82E8rOQKErnEmMCoPofxsBKC6avDvmJsU1MTmpqakJSUBIPBUtwkIyPDp22UlpYiPj4eaWlpkEqlMBgM0Gg0qKurQ0ZGBqRS29HFQOwz2vDHzIG59SCYX97jbjML4rGPPw2lXdfhOG8Ud/u4zJsgiInDzg0PwmzqwqHK/4IviMG0pWvB41t60thCISOSYjEqic63hPQGlz3hTYBG2RNeo+AsgtmXz2cn4J/RGbkFYTm0tllQjEqKw9KpUiydKsXOQ+3YXN0Ck+uBSwDAxOw/ISFZip0bH4K5qxMn6irx7iO/x8nWN/BAziWYNsaL/G1CwgQ7umF9LmLtP3YePx7RYdHMYT03dk8O50nGhu35qKGhAfX19cjNzeVua2pqQlFREfLzve/gMhgMaGhoQF1dHXdbXFwccnNzHQKzQO0zKmmPcf8rmLcJMUMvxcjWDqjLmgG78608Ixu8v7yAipfvA2M2ofHbIvCFMchY8ih43RdGkxnYVt+GpVPtUm8JIT7jya8Do/rcc8OEoWBaG8FLHh/8g4pwlNYYwazL52svmPBe5SkAwIA4PhbNHNrTUDya1jbrAzPHSbwuFiLPyMaclW8jdoBlrZ6zh3/G1sduxdOfVtO8CBJx2KpdPEUul4KW98KvuHxlDe7dfAhntF22DwjjyeEGgwHbtm3D3Lm2xSjkcjkMBoNNoOWJVCpFXl4esrKykJWVhdzcXCxfvhxyuTxo+4w2DMOA0fxo+SMmEbzBFwNwn1o++qp5mFnwHHg8y50N2z+wqeIIAJWHztF5lpAA8HrNM20zldX3EgVnEcx6EuZ/dp2C1mDJq7ttxlBIBlh9US6cCtse6mjjS7EQ6cSrkP3ofzBgkKX8uFbTDOVjt2Jb5R6aF0EiDi9ZAeG0lYDAsvg6u+aZocuMdypbHNqH6+TwhoYGSCQSxMfHO9yXmpqK2tpan7Ynl8uRkZGBjIwMpKSk9Mk+owHT2gjj7nUwfnQd0NluuTFmANB+mGvjrnrumGnXY8Y9z3BFQg5sLcTPn73G3W9mQOdZQgLA2zXPAFBZfS9RcBahrCdhMgyD17b3rCl01xyZbWOahNmnfCkWkjRyAnIe+wiSEZZhfsO5M9j25B9xrK4Kr31HC6iSyGJ9Xlp2rdWaZ9s1MJsZ28Zhel6qr693GiQBQFJSElpaWrj5YJG8z3BmPrIdRuVSS6qUyeozcr7FoefdXYfYuMybMG3pWu7vmo9fQMP2/3B/m8yg8ywhAcCteSYe7blxGGdOhAsKziKUdQnrXQ1a/Hz0PABg2gQx0uUi28Y0CbPPsT26V44UeWwrGjwc2Y/+p2ctNIMeXz9zFw599yVWb23G5j0aSr8hEcH6vJR6UQKuu9SyzqKqxYDtP7fZNg7T85JGo0FSUpLT+yQSy/Npb2+P+H2GK/u51A6c9Ly76xCbcM0tuOJ3D3N/7yl8DEe++6JncwzoPEtIAPCSFcCFU161DdfMiXBBwVkEY0tYW4+a3X2dzEk7mmsWCqOS4nDfrItw7wzPo2hxIgmuW/k2Rl5heU/Npi5UbngAB8reww7VOUq/IRHDurS+9fnI+jxlaRee56WOjg7ExbkPGn0JlNra2lBXV8f9q6iocBgFC/Q+I5n1XGqXnPS8u+sQuyR3GS65cZnlD4ZB1at/h/qXPT2bY0DnWUJ6icrqBw5Va4xATGsjTPVFYI6UQ9PeiU+qzwAAhoiFWJgx2LYxlc8PObbk/r8rT0JtXxjBijA2HrPv/zd2b14D1Y5igGFQveUJGLRnkbbgL1T+mUQE69L6N14xCCOSY3G8tRNf/tiK5tMdGD2k+/PbcS7iKnexAZS3KYbt7e1oaWlBWload5tGo8F7772HRYsWuUxl9HWfe/fuxb59+zxuS6/Xe3HUoeXTgrbTVtrcxnaI7T6ixWvfqWGdSXv57/6GDl0rGr8thtnUhW9fuBc5j36IpJETuDZUZp8Q/1FZ/cChkbMIY5+LX7ijBV0myxVo8exhiI+1ekupfH7Y8LZQCF8gxPRlT+HSm+7mbqv7ZAOqCx9Hl9GEf1eepNQbEtasJ4cLBTwsvdZSrtzMAG9+o+HaMcd2RH3lrtzcXIciIFKpFFKpFOXl5QHbT2dnJ3Q6ncd/1tUKw1Gget6njRFj7fzRsF4LncfjYeodT2BE+tUAgK7zWnz1zJ0436qxeazJDDrPEuIn68wJ9+3CM3MiXFBwFkGc5eL/bsYQrLhpBGSSmJ4J+II48BS5VD4/zHhbKITH4+HyWx/ClEX/4G5r2P4Bdr7yEI636rFGSak3JLxxk8NHzsYdV0shFFh+Jb/1jQadRquFqSKscldHh+UHuzcjXu7I5XI0NDQEbJ+xsbFITEz0+I/nsABmeLGes+iRh573UUlxyBo30OY2vkCIrL+8gEFjLwUAnD9zEl8/swxdF3Q27dTaLkpxJMQPXpfV786cIM5RWmMEcZaLLx8Sj7W3yPFY3mgIursJeWPmWUpak7DDpjh+UncG+465TzG6eP4SxCUmYdfrj4Axm9C0+0t0nddi1n3/xsZdauxp1uK3lw3G6GRKDSDhh5esAC9OjIuSY3HzlYNQUn0GLee68PkPrVhgnX7dPX+oP52z2EBLo9E4LEbtjylTpmDKlCke223atAk6nc5ju1DydkFbb3re56YkYefhczBZ9QfExItw7cOvQ/noLdCdOobW5l9RueFBXP3Qq+DzBVw7SnEkxHds5oTboj7ozpw4UQXB9NU0iOAEjZxFEHe5+AKr/A2qghPefCkUMi7rN7j6wY0QxFp+zJ2oq8RX629Hh74d+47pqXeXhDX2nPXnOTLMuywJJQ9MxM1TBjlpFz7nLIlE4rL4Bjvvi62g6E55eTkqKiqc3mc/jyxQ+4wGXvW8ezmX2lW2QoJkCK79+5uIHWAZWTte8y1++OBph8ebzMC2+jZvD50QAtvMCbciLHOiL1FwFiGoCk70YauLzVYMtJkbYW/k5ddgzsq3EDNADAA4dfBHbHviDzjf2sL17tI6PSTcWJ+zZk+S4PMVk5B75SCbjiROGJ2zpFKpy+IbbADlzWhXfX29y4DLfjuB2mc04OYs8gTOG/g4l9rVeVZy0TjMuu9l8ASWQPDA1kI0fPWhw+MrD52j+WeE+IjNnPCI1jxzioKzCGGfi//c58ex9pOjONHa6diYquBEjFFJcVg6VYoncka7HUUbljoF81a9h3jJEABA27EGlD3xe2hbjtIEdhKWAjl/qC/J5XKXQVVbWxtGj/ZikVUAaWlpyM3NdXpfU1MTJBIJl94YqH1GC/6YOeCNvsb2RmGC33OpXZ1nh186A1OXPMr9XV34OE7u/87msWYGlKFAiB98qrxKbFBwFkHYKjiGTjP+1R2cTfrbD9BeMNm1o/zdSONNsZBB8ouRveY/EA0dCQDQtRxF2eO/R9uxg1Bru6hQCAk7kVi5KyUlBQaDAW1tbQ73NTQ0YPLkyTa3GQwGNDU1ObSVyWTQaDQOtxsMBjQ0NGDWrFl+77M/YNqPWP6Hx4dgwWeIuXU7hNNW9qr6sLPz7IRrb8XF82+37NNsQsXL90HbctTmcZShQIhvKNurdyg4ixBMayOYjnMAgJLqMzijs0y0zL1iEMQJVukftK5ZxGLTb2TiGJdtBsrkyFnzASQXWX6gXGhrQdnaP+C0qhZmBti4S42XKk7QKBoJC/bzh0xmBqX7ziL3mV+w2aqsfjhV7oqPj8e8efNQWVlpc3tDQwMkEolDafzS0lIUFxejrq7O5vaUlBTU1dU5BGhFRUVIS0uz2Y6v+4x2TMc5oK3785A8AfyEwe4f4ANn59krbvs7RqRb5sd06trw7fP3ostgW7CJMhQI8V6kZk6ECwrOIgC7thmOWSaXb/pKzd335zmynoa0rlnE82Y9tAGDZJi35n0MHmcpB92pa0P5/y2B+pc9AECFQkjYsF7zDAB+OnoeC1/4FWV1bdhYfpJbdyvc1jxLSUlBWloaKioqUFdXh+rqarS1tSE/37HjSy6XIy4uzumcsLlz56KpqQkVFRUoLy9HaWkppk6dirlz5/Zqn9GKaW2Ecfc6GD+5uedGU2fAA3f78yyfL8DMgucxcPhYAEDb0Xrsem0lGLPZ5nFUYp8Q70Vi5kS4oFL6Yc5+bbOaJj12H7RcGC4ZOQAzUiwTLnmjZkNw2VIKzKIAm3qzabfapgS0tXjxIMx55B18+/w90BzYA6NBj6+eWYrZf/03Rl5xDUxm4LXvqAw0CT3+mDngScbCWLcZ6diBDEUiqlU6/NR8HrsPajE9pXstqu7KXTzJ2LA4j8nlcsjlco/tMjIykJGR4fb+QO8zGpmPbHdefrv9MIzKpQEvuc2eZ1/7Tg0zA8QOEOPqB1/F1jV56LqgQ/P3Zfjpf68i7bcFNo+jEvuEeEeQmg/jYaXbkvoAuMwJXvL4vjmwCEAjZ2HOfm2z17fbjppxi4rGDgyLHzQkMNjUmytHily2iR2QiGv//gZGXG6ZOG/u6sS3Lxbg8C7LGkFmBli9tRmb92goFYeElHXlrruu6xnt3/SV3ZwsqtzVL9l3QjoIUsntaWPEWDt/NFfFUXLROGQtfx7ovq7WlryM4zU7HB5HJfYJ8cw+c8KVcMucCAcUnIU562o3584b8Z9dpwAAifF83JY51KodfaijjTfroQlj43H1/RswZvoNAADGZMTOjQ+h4WtLSWgzA+xQnaNUHBJy7Lksf9pgJIssF+viPadxWttl147OZf2NfSekU0EK3EclxSFr3EDu7xHpVyM9/wHLHwyDna88BG1Ls8PjqMQ+IZ7Rmmf+oeAsjNlXu3m/6hT0HZY8tz9kDrUtBELVbqKWp0IhfGEMMu/9FyZce6vlBobBns1r8MsXm7k2VG2MhJL1uSwhVoAls4cBADqNDAp3tNg2pnNZvxPqkttzU5JsOsAuvelujJpiSaHsPH8OO15YDmOHbeU5KrFPiHdozTPfUXAWxqyr3TAMY1MIZJlVahAAqnYT5TwVCuHzBZh6xxOYdMNS7rZ9HzyN2uKXuKILVG2MhIp95a5l1/YUz3jzazXMZqanMZ3L+pVwKLltX2Kfx+Nhxt3PcAVCWpt/xZ631nDnUhZ1ehHinVB3wEQaCs7CHFvtpul0B46ftSw4PSNFjLTRIrt2VO0m2nlaC43H4+GK3/8dk/Pu526r+/QV7Ht/HfejgqqNkVCxrtw1XpaAOZdKAACHWjpQ/lObVTs6l/Un4VJy2z5DIXZAImbf/wqEcQMAAId2/g8Hv/nI4XE0/4wQ98KhAybSUHAWxqzXNhszNB5HXp6CTXcq8I/fjLRtSGub9Rv/3969xzdV3n8A/6RJm5a2JOWWcGlTDLTTYamCpVAKUynUzW5TQOdEQFFwgDpvAx0FBRWct+kARYWViTotVWd1lptI20CpxV8bHdrQAsUCSbn0lpS0TXJ+f4RzSJqkSdrc832/Xn2ZnjznOachnuR7nuf5fp0lCuHxeEi7bSkm3vNXbtuPXxWgYms+TCZzsXK620v8oWfNM+vEIFdmBQRSzTPiG4GScrvnDAXxqDGYvPgF7vlvt6/DhRM/2Ox3oL6NEi8R4kCg3IAJJhScBaietc0AIDaaj3t/JcHMtIQrDam2WdhxJVHI1bkLMPmBF7isY3X7P4bizb/AZDAnX6ApjsTXembuuvX6QRiZEAUAaL9kRLfBvJ6WMneFn56Bu10+ugnJzlBgMzgmZ/4aqTPvAQCYDN0off1hdOpabfajxEuEOBYoN2CCBQVnAchpWuHLeInTIcjd5tHaLyR4sKNo0+UDuS8Slsb8ag6mLnsFPL75S8/Jg8U48MbDMHabp8eq27uxuoS+TBDfsczcJeDz8Ob9cny3fjz2/HUcIgUWH0eUuSuscIE7z9GiWt/ehOyZYn/C3SswRD4eAKA914iDb62wWX8G0KwEQhxx6QYMAObkbhgq1of97AkKzgKQZVpho4mxSTXNodpmYS9RLMSiSRKszU2yO4o2evKtmP7njYiINI9QNB7Zh/2vPMhlHjMxwOaDarxeeoZG0YhPWGbuyh2fgHGJDmr5UeausBKRPAMYdp31RkEMePI8v9yEtEyxzxdEYdrDryMqTgwAaPzua/z4321296M1aITYcrXmGYydYOq/CPvZExScBSDLrDa7apox+uEqLHzzGL7/WdejXfi+cYm13pKFJF5/E256Ygv4QvOc77Pfl2Pfi4vQ1aHl2hxp1NGUHOIzlLmL9MQwDNByeaQ0Mg78O/Yi8s69EGSu9NtNSMsU+7FDRmDq0pe557776BWcO1Ztdz+qgUaILXbmBE+eB/CdrCsL89kTFJwFmJ5Zbd7ep0FnN4MPFOdwsqnHxZ6y2hALvdVDGz4uCzNWbENkTBwAoKm2CnvXz0entoVrQ1NyiC84ytzFMAyOHNdab6RrXPho/xnobAEA8IZei4hIFxMIeFHPm14jx0/DL/MWAwAYowFlGx+1u/6MaqARYh8vQW6+4ZKc47xxGM+e8Htw1tDQgNLSUiiVSlRWVqKystLr/XjqmN5gmdXm5Dk9vqppBgAkDo7Cr69LsG5MWW1ID73VQxuWOgE5f/0XhJen5lw4/gN2P3cPLrWe59pQohDibfYyd32gOIdxT/4fJq9W4qczHVeeoGtc2GCaarjHvKFpfjwTa5ZrewEgfe6fMTTlegCA7vxpHNyyktafEeImmj3RO78GZyqVCkqlEtOmTUNaWhoyMjIgkUhQWOhepOxOP546pjexWW3e/VoD9pp//01S8HtkfaCsNsSe3qY4Dh49DjPz30eMeCgAoOXnWuxedzd0F66kMqdaaMTbembuOt/ejWNqPQDgnX0ai3Z0jQt1THMdDBXrYax86cq2c98HVEIAdm3vdPlARPAFyF7+2pX1Z0f24add79ndj9afEWKL6p4557fgTK/XY/fu3cjJsR7alMlk0Ov1UCqVHu/HU8f0Jra2WZfBhIIDTQAAAZ+He6cPs25Itc1IL3qb4igeNRYz89/HgMHDAQBtZ09g17o/or3pFNfGaALeOkR3fYl39MzcdU/2MMREmT+O3itrQkenuSYf1TwLbWzJGKb+C4AxctuZMwcDMiEAuwYtdvBwZD34Irf9uw9fxMWTR+3uQ+vPCLFGdc+c81twplKpIBKJEB0dbfNcamoqampq7OzVv348dUxvsaxt9um3F9HUZs7S+PuJgyAVR11pSLXNiAt6m+I4UJqMWfkfIF6SBADQnWvE7rV3o/XMlcW3JgbI/+oUFVclHtczc1dCrAB3ZA4BALR0GPFxhXmqLdU8C11OS8YEYEIAyxpoo667EVffshCAuf5Z2cZH0a3X2exD688IseVq3TPEDA3LG3R+C85qa2vtBkkAIBaL0dTUBL1e79F+PHVMb+j5QfX2vivTzJbcLOUeU20z4o7epjjGDR2JmfnvQzTCHOR3NGuwa93daD71E9fGxFBxVeIdljXPAGDJzRLuuS17r1z/AvFLOuk/y5IxDgVgQgDLGmjX3fkEBo0eB8A8A6GyYK3dfWj9GSHWXK17hvZTYXmDzm/BmUajgVgstvucSCQCALS22mZB6k8/njqmN1h+UP3wsw5lP7UBAH4xIgbTrh54pSHVNiNuYqc4ThhlW09qQIIEM/PfR4LsagBAZ9tF7H7uHpyvtx5Fpi8XxBssa55NlMfj+tHm9+iREzpU1VvcDAjAL+mkf4I5IQBbA40fGYXs5a9BEG1+3x4v+xTHFZ/b3YfWnxFyhct1z4CwvEHnt+Css7MTQmHv80hdCZTc6cdTx/QGyw+qd76+siB+8c1S8Hg8i3aB90FFAl+iWIhHpo3A0im2o2jRAwdh5l/fw5Ax6QCALl0r9r6wEJqfvrVqR5kciTdYXvssZwlssUgMYm5H175QEQoJAdj1ZwOlMky69xlue+W2NVbrdy1VNNDsA0JY3OyJ+CTnjcPsBp0LIavvsQFUf6cYutOPK22rqqpw5MgRp33pdOZ552fPnsWoUaNcOFMG6LiSzlzXaYQgwvxl+KXPG/HKF6etmz/uSp+E2GdkAG2nESaTdfpnhjEhQhAJk6Eb3Xoddq+7G8I4MfiR1jc0NvGA2Cg+ovjW2UMJcZ/1tc/EMODxAD4P+KzqAvZ+32Ld3MVr3/3334/4+HgPnifxJC4hgCsBWoAmBGCnjL91SI2rpv4OZ39Q4HjZZ+jW61C+8XHMWv0BIgTWCZk6DQzqz1+CfIj/a7gREgh4CXLg0jmX2jINe4HMlV4+o8AQkMFZoOrq6oJWq3Xe8DKj0YjTp087b9iLs63dthub+9cnIa6yLFJtqcPuVkI8w8AArR1GtHYYrZ9w8dpnNBqdNyJ+xZPdbM7S6LRd4K6vzkyOx0hxFPK/OoWMBavRVHsE2qafcb6+BspPNyF97p9t9nlubyOWZEqRmUw3Dwjpyyh6IN6s8bSADM46O81TGBwl7/BGP660jYqKQlxcnNO+dDodGIYBn8/HyJEjXTvZrnbA4MJIoSAaiKKLOum/LiMDXZcR6FE/lWEYdOlaYey+MpUoKlYEQZSd/zdoFI30lxeufXw+v58nRbyNnzoXhhMlvScFCYKSMez6swP1QPbyV1Hy7F1gjAZ8/583MXzcFEiuzrBqz67fHSmOQqI49L9kEtKbUBhF94aADM4C1cSJEzFx4kSn7bZs2QKtVovhw4ejsbHRpb6Z5jpzGn0nH1SC3G2UEIR4zM8tndhd24Ky422wnOVoMnRD8dYKnDxkvrPd3dGOifOegnza7TZ98COAtblJ9EWD9Ik3rn3sNZgELjYhgFHxDGzuEAFBVTImJ0WM8hNtGCIfj/Q5j+D/PnoFYBiUb34Ct24ohjBWZNWeTQ6yaJLEQY+EhI9QGEX3NL8lBBGJRA6Tb7DrvtgMip7qx1PH9AanmWuC6IOKBI9EsRCLJkmwNjfJKlFIhCASWUtfwphfzQFgXo92cMtK1O5536YPShRC+oOufeGLl/QrgM/W8Lw8+i6IAU+eF1QlYyxLllxz6/2QXJMJAOi4qMbhravBMLbBJxWnJsTM5bT6nW1hU/PMb8GZRCJxmHyDDaAkEud3ldzpx1PH9BY2cw1PnnelenoQflCR4GOvHlpEBB+Zi55D6sx7uG2VBc/if19utdlf3d5NtdBIn9G1LzwxzccAozlA4cluhuDOrxF5514IMlcGXTCemRyPVTmjEBHBR9aDLyLq8mhZw+GvcLz8M5v2VJyaEDNX0+ozjQfCpuaZ36Y1ymQyVFZW2n2upaUFSUkupNZ0sx9PHdObeAlyCDJXApkrw2bhIwkM7OL2f5SdhbrdnIiGFxGBG+avgkAYg/8Vvw0A+O6DF2HQ65B2+0NWZR5oLQXpD7r2hR/mnJJ7zBuaFvT/5vLBMRAKeMDg4chctBalbzwCAKgsWIthKRMQL7H+jkHXTELMIpJngCcaDYNyK9B4wHHDyzXPeKLRQXcDxx1+GzlLSUmBXq9HS0uLzXMqlQrjx4+32qbX69HQ0NCvftw9pr8F+wcVCT6JYiGWTx1uNYLG4/Fw/R+eQPodj3LblJ9sxHcf/s1mug5NcSSeQNe+0MY018FQsR6m7zZe2aauCokpS5kyc9Ia2aRbIJ8+GwBg0OtQvvkJmIy26yqpODUhZrwEOXhCF5I+hUHNM78FZ9HR0Zg5cybKysqstqtUKohEIqSkpFhtLy4uxs6dO6FUKq22u9OPu8ckJBzZm+IIANf+7k+YOO9p7vejX25F5T+fAWMyWbVjpziW1bf54nQJIUHEdHIvDCWLzAkAmCvXDqaxNCSmLLHFqQHghnv+yo2Wna+rxvefvWl3nwP1bdh6WEM3tUjYYxr2udguuK8Tzvg1W2NKSgqEQiFKS0shFou59WBz59qmzpXJZNBoNHbXhLnTjzttCQlX7BTHT5QXcKRRx22/+paFEAhjULFtNcAwUO37EIbODkxevB4R/CuXE6MJeOewBturmjA5OR45KWIkJdBoCCHhjGmug/HQOseZOUNgypJlcerImDhkLX0Fu579AxiTEd9/thkj0rIxdGy6zX4H6ttQfqKNaqCRsEU1z67weyp9mUwGmUzmtF1GRgYyMjIcPu9qP+62JSRcJYqFeGTaCFScbMeWCjWMl29yj73pTgiEA6B46y9gTEYcL/8PDF2dmLrsZfAFUVZ9dBkZ+tJBCAEA81Sk3komANyUJUHmSt+clBdYFqceOmY80m5bhpqiN8CYjFC8+QR+8/xniIyxrZlKa9BIOKOaZ1f4bVojISQ4ZCbHY21uEqTxkdy20Vl5mPbIG4gQmLedqizBN68uhaHLfjZU9kvHzy00bYeQcBVOU5bY4tQAMO53D2LImHQAQLvmFKp2vOBwP1qDRsIZT3azi+1CO4MvBWeEEKfsJQpJmpiDGx9/C/yoaADAmZpSfP23+9F9yX7xX0oWQkj46suUpWDHrj+L4AswdenLEAgHAADqvtmJU9/udrgf1UAj4YpqnplRcEYIcYm9RCEj0rJx81+2IjI6FgCg+bESe9YvRKe2xW4fVA+NkPDETVlyRYhMWbK8ZsZLknDD/FXccxXvrkJHc5Pd/agGGglXVPPMjIIzQojL7E1xlFx9A2Y8vZ0runqhXok9z9+DS63n7fZBUxwJCU/hOGWJvWZOlw+EfPpsJE7MAQB0altw6J2nbcqRsOg6ScJVRPIMCHK3AaOm997wcgIhprneNyfmQxScEULcYm+K4xB5Gmau2oFo0RAAQPOpWuxa+0fozp+x2wdNcSQk/Lg0ZSlCYG4XQhLFQiyaJMGvxoiQef86xIiHAjBPBVft/cDhfrT+jISrcK95RsEZIcRt9qY4JiSlYtbqDxA7eAQAoF19EiVr70Kb+qTdPtTt3VhdQlN3CAkX3JQl8Ow3iBCAPzk/aNPoO5OTIkasaBAmP3AlIciR9zeg9YzjO/8VDXR9JOEpnBII9UTBGSGkTyyn60TyzdsGSpMxa/UHiJcmAwA6LpzFrrV/RPOpn+z2YWKAzQfVeL30DI2iERIGeInTAR6f/c38H0EMePI8CHK3ISI5dKY09sTe1Eq8bjpSc+4GABi7O1G++UkYDV129+k0MKg/72IiFUJCRDgmELJEwRkhpM/Y6Tpb7xyLxZnDwI8AYoeMwKzVHyAhKRUAoG89j93r5uHcsWqH/Rxp1NECeELCANNcCzDmWme80bMguPNrRN65F4LMlSE7YmYpMzke625JwsQ//gUDR1wFALh44gcoP9nkcJ/n9jbStZGElXBMIGSJgjNCiEdMvUrEJQuJEQ1BzqodXG2fro427F2/EGd/UDjcnxbAExL6mHPfc495Q8aF3JcqVySKhbjxagmmLn0ZPL55Dd7/Pt+CJtV3dtvTtZGEo3BMIMSi4IwQ4jGWyUKEsSLMeOqfkP4yEwBg6OzA1y8t7rW+DyUKISS0mTT/xz2OGJrmxzPxr5wUMYbJx2H87Q8BABjGBMWbT/ZaJ5KSg5BwEs41zyg4I4R4lGWykMjoWNz0xDsYdb35DpjJ0I3S1x9GfeknDvenWmiEhBamuQ6GivXo/mgGcPry6DlPAIYx+vfE/Ii9Tqb97gEMHXs9AEDb9DOqdrzgcB8qTk3CSTjXPKPgjBDicZb10PhRQkx/5A2MzvotAPMd4oNbVuLHku0O96dpPISEBtPJvTCULAJT/4X1An/GAOOuB0LqC5W7MpPjsTo3GVlL/wZBdCwAoO6bnThVtcdueypOTcJNuNY8o+CMEOIVllMcIwSRyHrwb0idOY97vuq951Gz8/Vei7DSFEdCghfTXAfjoXWAyWC/QYh9oeoL+eAYDBkhww33/JXbVvHuKlxqOWe3Pd24IuEmHGueUXBGCPEayymOvIgI3DA/H9fetox7XvnpJnz7r3VgTCa7+7NTHMvq23x1yoQQDzHWFjoOzFgh9IWqrzJl8ZBPn43EiebEBp3tzTj49lO93rii9WcknIRbzTMKzkJUp8H+l13iXfX19cjPz8fixYtD4jiewE5xnDAqFjweD+lzHsHEeU9zz9fu3oHyN5+EydBtd3+jCXjnsAb3f1SHrYc1NJJGSJAIty9UfZWTIoaAz0PmoucQLRoCADhTUwrVvg8d7kPFqUm4CMeaZxSchZBTzZ3YeliDBz6uwwMf1+OBj+nLrCsKCgqwYcMGj/Qll8sxe/Zsj/QVCMfxlESxEI9MG4GlU8yjaFffshBTHnwRvAhzMdqTB4ux/9U/wdDp+ALcZWRwoL6N1lwQEgTC8QtVX7EzDAaIBmHK4vXc9iPvb0DrmeN296Hi1CRchGPNMxdyVJJgUHGyHVsq1DBaDJh1GsxfZstPtGFJphSZyS7M2Q1D6enp0Ol0HusvPt43r7OvjuNJmcnxGCmOwj/KzgLZtyFqwECU/uMRmLq7cKamFHvX34sbn3gLwjixwz7YNRcjxVFIFAf/RZgEpoaGBjQ0NEAsFkOv1wMAMjIy3O5HqVSipaUFGo0Ger0eMpkM06ZNs2lXXFyM6OhopKWlQSKRQK/XQ6PRQKlUIiMjAxKJpN9/ky9xX6hcCdBC5AtVf7DXxnxMR8qMP0K19wMYu/Qo3/wEbnnmI0QIIm32eW5vI322k7DAk91sTirktF1o1DyjkbMQcKq50yYws0QLiHuXnp6OrKwsf59G2LBMFJI44WbMWLENkTFxAIBzx77D7nXz0NGs6bUPShZCvEmlUkGpVGLatGlIS0vjgqPCQvfWRpWWliIpKQnTpk3D3LlzMXfuXGg0GmzcuJEL+Fh6vR5KpRI7duzAK6+8gk2bNqG4uJgL1oJROBeR7YtEsRDZVw3EhD+uwMDhowEAF0/8gJpP/mG3PX22k3ARbjXPKDgLAXtULQ4DM5avFhBXV1fj0UcfxaOPPor6+nooFAoUFRWhoKAAgP21UgUFBbjrrrtQUlLisI+SkhJs2rQJAFBSUgKFQoENGzagvt42y1dRURF3XIVCYdXnhg0bUF1djYKCAhQUFPS6dqukpMTqh6XVarm+N23aZPccnFEoFHj00Udx1113obq6GgCgVquxePFi5OfnQ61Wu30cV17b3l4jX7JMFCK5OgMzV+1A9MDBAICWRhVKnvkD2s6e6LUPdXs3VpfQFEfiWXq9Hrt370ZOTo7VdplMxgVQrlCpVEhNTYVYLOa2RUdHIy8vD52dnSguLrZqL5FIMGfOHGRnZyM7Oxt5eXlYvnw5ZDJZv/8mf3HpC1WEwNyOADCvPxPGxGDqslfA45tfux8+3wLNT9/abU/JQUg4CLeaZzStMcCsLjmF1kvuFeZsvuQkG9ZlB+rboDzT4Vbfohg+1uYmudw+PT0dALB582a0t7dzI1KLFy9GdnY2t1Zq8+bN3D4LFy60Cjx666OgoAALFy7k2m7cuBGvvfYa9/uGDRuQnZ3N7ZOfnw+pVMpNXdy5cycAIDs7G2VlZZDL5Vi4cCFefPFFq7+jqKgI7e3t3LEUCgUUCgWysrKwc+dO5ObmQiqVIisrC4sXL8arr76KuLg4l1+nrKwsxMbGYvPmzdzfK5VKMWvWLG4tWUFBgVvHceW17e01ksvlLp+/J1hNcUy+BrPW/Bv7NtwL7blG6M6fRsmzf8BNT76DIfI0h32YGGDzQTUOn2rHbdcORlJCeE+NIv2nUqkgEokQHR1t81xqaipqamqQlub4PclSq9VISUmx2c5OXVQqldDr9VbHkclkQR2M9cR+oXKYTj9CAP7kfPASfHvtCWTsjastAMbPfhjVH78KMAwUb/4Ft67/HFEDbKcwHriczTYnRUzXQBKyIpJngCcaDYNyK9B4wHHDyyU6eKLRQXttoZGzANN6yYjmSwa3ftzhbt/uBoqAeS2UWq3mgg7AfFdYrVZzz/cUGxvrUh+W5HI51ydg/jJ08OBBqymKWVlZ3KhRbGws6uvrkZ6ezgVl9mi1Wmzfvh1z5szhtpWVlXHHUqvV3GgXe141NTV2++pNeno62tvbrYIny9ehL8dx9to6e418zXKK40CpDLPW/BsJSakAzOmk9zw/H2e+dz6yd6RRR4lCiEfU1tbaDcwAQCwWo6mpyWZKoj1KpdLhNEj2WqbR9D59NxREJM9AxORV1hsFMeDJ8yDI3YaIZJrS2FNmcjxW5YzCL/MewLDUiQAA3fnT+Hb7Wof7ULIkEg7CpeYZjZwFGFEM3+193AnQEmLc+yfvy/kA5lEgS7GxsWhvd+9Dw14fPbdZqq6uRmxsrFVAo1arrQK43vZn1dXVITY21mqEauXKlTaPtVotNBoNtFqt238ba9asWSgpKcGyZctQXV2NqVOneuU4LFdeI1/j7hRXqDEgYRhmrnof+1/9E5p++haGzg58/dIDmLJkA67K+m2v/VCiEOIJGo0Gqampdp8TiUQAgNbWVocBHKu3dWJscOesj5Chb+Ye8q5/CIKr/+DHkwkO8sExiIkSIOtPf8MXT/0W3Ze0OF7+H4wYPx2jp9xqdx+6BpJw4FaJjsyVzhsGIArOAow7UwhZWw9ruGkNvZkuH4hFkwJzYbknsiXqdDpuCiPL8jFgO0LXl3Opr69HYWEh0tPTMXXq1H4t1s/NzcWjjz6KZcuW2YwUeuo4ln+PK6+RP7BTHHfXtuDgSWDGim0o2/QYfq7aA8ZogGLzE9C3nsc1v76v137YRCHLpw6n6T2kTzo7OyEU9v7eaW1tdfr/49y5jtdRtba2ArAN4FpaWnDq1Cmr3zMyMoI+iGPOfc895kuu9+OZBJdMWTwOGEZh0r3Ponzz4wCAw/9cg6Fjr0Pc0JF292HXoAXqZz0h/dGXEh3BmAmWgrMQkJMiRvmJtl6TgvAjgJmpYp+dk7u0Wm2/+5DL5dyasp59u7MeTC6X2w3Q2HNctWoVnnvuOW6NFttWrVa7NDJnSSqVIj4+HgqFwmpKolar9dhxLF9bT71G3pAoFmLRJAkWTZKg/HgrBFFv4NDWZ3Hs638DMNf8udTchOvv+gt4EY5nZLOJQh6cTCmmiWexQZsr0xp7o1Qqbdattba2oqmpyWq7RqPBjh07MG/evF4DtKqqKhw5csTpcT1ZMsRVDMOAabo8HVsQA4iv8vk5BCv2s310Vh4aq7/ByYPF6O5oh+LNJ5Gz6j1ERNif2VJ2vI3Wn5GQFC4lOmjNWQiwzHxnDz8CWJIp9es0B8svBZbrzwBzYKBWq51+cXD2fHp6OsaMGWOTfbC8vNytc5VKpZgyZQqKioqszrG8vBwajQY6nc4qeQYb/PQlayNgntq4ceNGjB8/ntvW1+M4e2099Rp529SrRHju16Pxu0dewPjZD3Pbj/53G8o3Pw5jd1ev+7OJQl4vPUPp9klAKS0thUgkQnZ2ttX2vLw8mwQiEokEEokEe/bs6bXPrq4uaLVapz8Mw3j873GEaa6DoWI9DB/NAPQXzBsjY4HWkz47h2Bn+dk+aeEaxA4xj5Y11Vbhf5+/7XA/EwNaf0ZCVjiU6KDgLERkJsdjbW4SpssHQijgAQCEAh6mywdibW6Sz0YQ2Kl4arWaC26KiopQV1eHXbt2QaFQIC4uDgsWLODSuNfU1GD8+PHc8731oVAoUF1djfr6ehQUFECn06GgoIALXNatW4djx45x6fYVCgVyc3NRXV2NoqIirk82gLF3LMC83qu9vZ07x/LycuTm5kIul+P2229HQUEBqqurUV1djRUrVnBruCz7Y8sHODNr1ixMnTrVauSqr8dx9tr29hoFmkSxEA9lj8B1c5Zj0qK14PHMl6uTh77Evr/djy6d86m8lCiEeFJnpznQ7+s0Q7ao9Jw5c1zuQyaTQaVS9domKioKcXFxTn94PF6fzttdppN7YShZZC4aa7QYZbx0PiTSXPsS+9mekzYKU5e+xF0Ha4rewLk6xwmiqAYaCVWu1jxjTu6GoWJ9UNY94zG+vJUWJrZs2cJNE1uyZIlfzqHLYEKUgGJvEvwqTrZjS4UaJ6u+Rtk//gxjl/nLnnhUCm76y7uIHex8imcED1h3SxItkg8T/bkGv/LKK7jhhhswbdo0m+fYaYb2Rrlc8e677yIvL8+t9aMqlQrFxcWYN29ev4tR++KziWmug6Fkkf3U+awIAQS524I2zbW/bD2swesvrsP3n5prfsYNS8Rvnv8PogY4npIeyGvNCekr08m9jkt09HS5ZIe/M8O6c/2lb+8higIzEirYO8e//20ecv76HoTxCQAuF6teMxfNp35y2oeJAfK/OoWthzU0zZH0SiQScQk7emLXmrFZG91RWFiInJwcuwHWnj17UFpaanc/T61z8xVjbaHzL0xBnubaX3JSxLhu9jIMHXsdAEDb9DO+3f5sr/tUNNCsARJ6IpJnmG/wyPMAvpObrpfrnjHNfVt64g/0DZ4QEvASxUI8Mm0E1syfhd88+xHihiUCADqaNdj17F04+4PzWmgmxlwLaHUJTXMkjkkkEoeBkKMsi87s2bMHGRkZDgtM19bWOgwI+3pMf3ErzTVxS1KCEH/KGoXsZS8jMtqcefh4+X9wXPG5w306DQzqz7uY3Y6QIMJLkEOQuRK85BznjYPshhAFZ4SQoJGZHI+/3zsN81/+BIPl5qx23Xod9v3tAdQf+MSlPihZCOmNTCZzGCi1tLQgKcm9cieVlZVISUmxCcxaWlrQ0NAAAEhLS0NeXp7d/RsaGiASiYIinX5f0lwT92Qmx+PvC7KQuehKQerKbWvQrjnlcJ/n9jbSDSkSskLxhhAFZ4SQoJIoFmLFrdfilvz3MGqCOWsTYzTg4NsrUb3zdZcz0h1p1NEoGrGRkpICvV6PlpYWm+dUKpVVVlXAPN2QDbLstZdIJHZHzJqamrjpkVKpFBqNxqaNXq+HSqWyu/4tEHFprl0RxGmu/S1RLMSCe+7GVdm/B2C+QVW28c8wGuxnsaXkICRUheoNIQrOCCFBJylBiGXTR+OmxzYideY8bvv3n26C4s0nnabaZ9EoGukpOjoaM2fORFlZmdV2lUoFkUhkkwikuLgYO3fuhFKptNqu0WhQU1OD1tZWKJVK7qeyshKVlZU4fPgwxGIxAHNAqFQqbQK0wsJCpKWl9Sn5iL+EQ5rrQJCTIsbke1cjXmIO/C8c/wHVH//dYXu2ODUhoSRUbwhREWpCSFDKTI7HSPFoFI3cgPeHJaHq/fUAw+CE4nPozp/Brx7dxCUPceZIow7VZ3RYkkmFq4k5WBIKhSgtLYVYLObWoM2dO9emrUwmg0ajsVkTVlhYiM7OTpw6ZX+6Wc+kIjk5OaisrERtbS06Ozuh1+sxadKkoArMAHOaa8OJEqfZGvmptq8lcV1SghDLbxyD1odfw39X3wmTsRtHv3wXw8dNxoi0bLv7UHFqEop4spvNZTuctgueG0IUnIUoxqA331EgPsXWX9NoNHj7bcdFQoPlOIEuUSzEn6ePRKZsJZ4eNgKlG5+AsUuPptoqfLXmDtz4xBaIRlzlUl/s1J+R4ihKuU8gk8kcJvCwlJGRgYyMDJvty5cvd/uY9voJNryEMeBPzofx4FqAMdo2uJzWmtLo919mcjz+viQXZ398Akd2rAcAKN78C37zwn8wIGGYTXu2ODXdhCKhxKUbQgDQ2QamuQ68hDG+ObF+oGmNIYRproOhYj26P5oBw0c3m/8bpAX4fKmgoAAbNmzwSF9yuRyzZ8/2SF+BcJxgkZkcj+3592PlW58iWjQEANCuaUDJM3dCffSwy/0YTcA/ys7SFEdC+iEieQYifjnfeqMgBjx5HgS52/xebyiUyAfHIP3WezEyfToAQN92AeWbn4DJZCcwBq0/I6GHvSHkrDA103gAhpJFMJ0M/MQgFJyFCNPJvTCULDIP7bKLIw2XwNR/ETRvRn9JT09Hdrb9aSB9ER/vmzuSvjpOsEgUC/Hcvbn4uuwgEhJTAQBdulbs3XAvju3/2OV+1O3dlCiEkH5iOtTc44ib30DknXvNaa9pxMzjJicPxJQHX0TM5dEyzdEKfP/pZoftaf0ZCTVs3TOMmt57wyCpeUbBWQhgmut6r5QeJG9Gf0lPT0dWVpa/T4N4yORrx6Lwy30YdflOMmM0oOLdVaja8YLDu8k9UaIQQvqHOfeD+UFEJCKGjvPvyYS4nBQxYkWDkL3sNfB45q91yk83Qv2/Cof7lB1vo2sbCSm8BDl4QhduWgdBzTNacxYCjLWFzufaXn4zCjJXevVcqqursX37dgDmNRdqtRpqtRrt7e1YuHCh3bVSBQUF2LVrFxYsWIDc3Fy7fbS3t6O+vh7Lli1DSUkJ4uPjUVZWhrlz50Iut74TW1RUBKlUCrVaDalUiqysLK5PiUTCHQMAsrOzHa7dKikpsfo9NzcXAKDVarFr1y5IpVJUV1cjNzfX5hycUSgU2LlzJ9RqNVasWIH09HSo1WqsXr0aEokEy5YtQ1xcnFvHceW17e01CiU3XzsSpXu+xL1L/4wDhe8CAH78qgCtZ44je/lriBrg2qgjmyjkvhskyJYP9OYpExIyGH0z0P4zAIA3KBU8Pq3h9KakBCGWZErxFnMDxs95BNWFrwEMg/LNj+M3L/wHMZenelui9WckFLlV88zL34f7g4KzAGP46j4wly66t9Olcy41Y+qL0X3G8Z00e3gxgyC4ZZvL7dPT0wEAmzdvRnt7O/elf/HixcjOzubWSm3efGXKBRu0udJHQUEBFi5cyLXduHEjXnvtNe73DRs2IDs7m9snPz8fUqkU6enp0Ol02LlzJwBzUFZWVga5XI6FCxfixRdftPo7ioqKuIASMAdTCoUCWVlZ2LlzJ3Jzc7mgZvHixXj11VcRFxfn8uuUlZWF2NhYbN68mft7pVIpZs2axa0lKygocOs4rry2vb1G7gaYgW70kFh88/E7WPHCOLy0+gkwRgPO1JSiZM0d+NXjb2Gg1HmyB8A8Beidwxpsr2rC5OR4ynZGiANMcx2MtYVgTuy+sq27I2gW4Qczc/baKKwyLYHmx0qc/UGBSy3nUL7pMdy88p+IiODb7ENJkEgo6UvNs0BNrU/TGgMMc+miOdhy58cdbvbtdqAI81ootVrNBR0AIJFIoFarued7io2NdakPS3K5nOsTANRqNQ4ePGg1CpSVlcWNgMXGxqK+vh7p6elcUGaPVqvF9u3bMWfOHG5bWVkZdyy1Ws2NvLHnVVNTY7ev3qSnp3MjgizL16Evx3H22jp7jULRi08/gg8//QID4sUAgNYz9fhq9Ryc/eGgW/10GRkcqG+j9WiE2GG17tlkUWew9Tite/aRRLEQ08aIkbX0ZcSIzevP1P+rgLLoHw73ofVnJFSEUs0zGjkLMLyYQWDc3cmdAC1mqFtd82IGuXkyZlKp1Or32NhYtLe794XWXh89t1mqrq5GbGysVUDDTqt01Kc9dXV1iI2NtRqhWrlypc1jrVYLjUYDrVbr9t/GmjVrFkpKSrBs2TJUV1dj6tSpXjkOy5XXKBTdmTcLE/+vCjm33IoTx35Cl64V+15chAl3r8QvZs0Hj8dzuS92PdrhU+247drBNIpGwp6r6555otGUEMTLclLEKD8xGNkPvYY9z88HYzLi+882Y2jK9Rg5fprdfQ7Ut3H70vWMBLNQqXlGwVmAcWcKIctQsd61N6M8z+trzvpKp9N5pA92CiPL8jFgO0LXl3Opr69HYWEh0tPTMXXqVJsRPXfk5ubi0UcfxbJly2xGCj11HMu/x5XXKFTJ5XJUVx3G7XfchX27/gvGZETVe8/j4sn/YdJ9ayGIcq8u4JFGHf7vtA4PTqY1GyS8BdK653Bnuf7sujsew3f/fgkAUL75Cdz6/GeIHTLC7n4H6ttQfqKN1qCRoBYqNc9oWmMI4KfOdVrfARECc7sApdVq+91Hz2mOfe1bLpfbDdC0Wi20Wi1WrVqFuXPnIjc3F3FxcVzbvow+SaVSxMfHQ6FQWE1J9ORxLP9+T71GwWrgwIHY9eXnWPbok9y242WfYdfaP0J34azb/VFWR0LcXIRPvC4zOR7rbknCuFsXYdT1NwEAurQtOPD6QzB2Ob5OUQ00EuxCpeYZBWchwOmbMUIA/uR8v04nsQx2LNefAebAQK1WOx2xcvZ8eno6xowZA4VCYbW9vLzcrXOVSqWYMmUKioqKrM6xvLwcGo0GOp3OKnkGG9j0TLzhqlmzZmHjxo0YP348t62vx3H22nrqNQpmfD4fG1/9G9b9owACoXl++sUTP+DLVbf1mnq6N0cadbQWjYSlvizCJ97Hrj+b8uCLiBs6CgBw4fj3qPzXul73ozVoJNiFQs0zCs5CBPtm5MnzriyIFMSYpzLmbkNEsm/m17JT8dRqNRfcFBUVoa6uDrt27YJCoUBcXBwWLFiAoqIiKBQK1NTUYPz48dzzvfWhUChQXV3NpY3X6XQoKCjgApd169bh2LFjKCkp4TIssqnzi4qKuD7ZAMbesQDzeq/29nbuHMvLy7lU9rfffjsKCgpQXV2N6upqrFixglvDZdlfQUGBS6/ZrFmzMHXqVKs1bn09jrPXtrfXKNysWr4AX+4txeDhSQCAzraL2LvhXhz97zYwjNsrP2kUjYSlUFqEH2pyUsQYEC/C9D9vBD/S/LrX7f8Yx77pvcYT1UAjwS7Ya57xmL58CyG92rJlC7RaLeLi4rBkyRK/nEMgpwglJJBcvHgRv77tDhwuvTI1SzbpFkx+4HlExrheHsFSBA+0Fs2PAuEaHIi89bqEwrrnUFVxsh1bKtQ4duAzKN76CwAgIjIKuas/xOCrrnW4Hz8CtP6MBLXuj2a4NqoviEHknd6f3ujO9ZdGzkIUBWaEuGbQoEFQfL0LDz2+gtvWcPgr/Hf1HLQ01vWpTxpFI+EkFNY9h6rM5HiszU3CvQvnIzXnbgCAqbsL37y2DJdazzvcj9afkWAW7NOtKTgjhIQ9Pp+PN17egE8//RQDBw4EALSdOY6vVs/BiYPORwQcOdKow5pdp1B2OVU1IaGIW/fMsy10DCAg1j2Hs0SxEIsmSfDo6vUYOvZ6AEDHRTVKX38IRkOXw/1o/RkJVsE+3dpvwVlDQwNKS0uhVCpRWVmJyspKr/ZTXFyMPXv2QKPRAAD0ej0aGhpQXFzMbSOEhLff//73qKqqQlpaGgDA0NmB8k2P4fC2Nb1mOeuN0QS8c1iD+z+qw9bDGhpJIyEpInkGeLKbrTf6Yd0zceyWXw7DjY++gQEJ5rIsTbVHUPWv53vdh9afkWBlcz1y2C7wrk1+qXOmUqlQW1uLvLw8bltDQwMKCwsxd67r0x7c6Uev10OlUkGpVHLbhEIh8vLy+lWnihASWsaOHYtDhw5h6dKl2L59OwBAte9DnKurxrSH38BAqaxP/XYZGRyob0PZ8TZaj0ZCU/vP3EP+bZ8hYsBQP54M6SkpQYhHb0mD7sImfLX2jzB1d0G170MkJP0CKTPusruPiQHW7DpF689I0Anmmmc+HznT6/XYvXs3cnJyrLbLZDLo9Xqr4MmT/UgkEsyZMwfZ2dnIzs5GXl4eli9fDpmsb1+0CCGha8CAAfjnP/+JrVu3IjraXJy6ueFH/Pevv+/XNEeA1qOR0MQY9GAuqsy/iJIpMAtQmcnxeHP5rZiy6EpK/cp/reu1jAitPyPBKJhrnvk8OFOpVBCJRNwXHkupqamoqanxWj8ymQwZGRnIyMhASkqK+ydPCAkbPB4P9913HyorK5GamgoA6NbrUL7pMRx8+2l06zv61T/VRiOhhLnwE8AYAQC8IY6zABL/SxQLsXDhAlx9y0IAAGM04MDrD6Ht7AmH+9D6MxKMgrXmmc+Ds9raWrsBFQCIxWI0NTVBr9f7rB8SONhaZZ5uS0h/XHvttaiqqsK8efO4bfUHduK/+bfjYsOP/eqbRtFIsGOa62CoWA/j149c2dh2Ckxz3zKdEt/ISRHjhnkrMDL9VwCALl0r9r/yIDp1rQ73ofVnJBgFY80znwdnGo0GYrHY7nMikQgA0Nrq+OLg6X6I97GFoxUKhVWhZ0sFBQVWRZid2bVrF1dImhBvi4uLw3vvvYft27cjNjYWwJVsjke/+icYk6lf/dMoGglGppN7YShZZK5xZrGugzlXE3DThIi1pAQh/jRlJKYtfxXiUeaZRG1nT/SawZFdf0bXKRJsmIZ9zhsBYBoC45rl8+Css7MTQmHvKStdCar60k9LSwuUSiX3U1paSqNrXlZSUoKsrCykp6cjKysL7e3tqK6utmmTm5vrVr+zZ892GOgR4i3z58/HkSNHkJ6eDgAwGbpxZMd67Pvb/ehobupX35ajaHXnXazPQoifMM11MB5a53ixfYBNEyK2MpPj8eLsa3Dzk29BOHAQAED9vwpUvLsKDMPY3YfWn5FgE4w1zwKqzhkbbPU3YLLXT2trK5qampCWlsb9pKamYseOHRSgeUl1dTWmTp1qta2+3vqDWq1Wo76+HlKp1O3+s7KyKEAjPpeamoqKigo8/vjj3Laz35fji5W3oqFyV7/7P9Kow9rdjbjv35R6nwQuY22h8yxoATRNiNiXKBbilknX4MbH3gQ/0vzd6XjZZ1AWveFwH6MJ+EfZWbo2kaAQjDXP/JJK3x8s0+2zJBIJJBIJ9uzZY/f5nqqqqnDkyBGn7XQ6XZ/OMdSo1WpuhAEAN2Jmua2kpASzZ8/uU//p6enYvn17n/cnpK+EQiFefvllzJo1CwsWLMDZs2fRqW1B6esPYcy032PCPfmIGtC/tNMGkzn1fvmJNtx3gwTZ8oEeOntC+s+taUKZK718NqQ/clLEKD9xHbKWvozSNx4GGAbKTzdhwJARGPsr++WN1O3dlGKfBA2e7Gbz9Gun7QKj5llAjZx1dprvwjhK9OGNfmQyGVQqlUv9dnV1QavVOv1xNB0g3MTHx6O6uhobNmxAfn4+ioqKsG7dOqs2NTU1dkfNFAoFFAoFNm3aBLVajZKSEhQUFNisM5NIJDajcYT4Sk5ODpRKJW6//XZuW13pZ9i/+nfQ/KDwyDF6FrGmKY/E34JxmhBxLClBiCWZUoyeNAsT736K235462qcrv7G4X40xZEEC37qXKcp9QFwNc/8zeWRs8LCQpw6dapPB1m2bFm/Ay5vYc9Lo9E4LUYdFRXlUtIKnU7X5wBt4sSJAZXoQiqVoqqqyu39qqurMX78eMTFxUGn00EqlaKwsBBarZZ7DdVqtd3Xs6SkBFOnTkVcXByqq6tRUFCAlStXIj8/32YKZHp6OqqrqyGXy/v+RxLSD0OGDMHOnTvx3nvvYfny5Whvb0fT2UbsXn8vpvx2HpJ++xgiY1xPduMIW8T6QH0bBBE8ZI2OR06KGEkJ/p+CQcILN03IlQAtQKYJkd5lJsdjpDgK+VgI7fnT+KlkOxiTEQdefxgzVv4Tw1In2N2PTbG/aFLv358I8Se25lmv62RxuebZGQX4k/MRkey/UTSXg7O5c+0PbbtLJBI5TPjBrv1isy16qp89e/ZAKBRi2rRpNm3dWec2ceJETJw40Wm7LVu29DnVu1qtxunTp/u0byCxnNKYlZUFAMjOzsbOnTuxcOFCAOCCtp7i4+OtAjg2WUjPUTe2bSAFsyQ88Xg8zJ8/H9OnT8e9996L/fv3AwAOfr4Dx4+UIm3+s5CMy/LY8dgpj2XH2/DgZJpWRHwv2KYJEecSxUJkXzUQhrtX4lJzExoOfwVjlx77X16CmfnvIyEp1e5+Zcfb6EYRCXgRyTPAE42GQbkVaDzguOHlZEY80WjwEvxz49/na84kEonDQIgNtpyNYLnbT21tLWQyWb+P6Qt9SYzhTZ4+H8tASq1Wc2nJLbHBHADU1dVh/PjxvZ5fWVmZR8+RkL6SyWTYu3cv3nrrLTz55JPo6OiA+vQpqNffi4xb7kTybU9AGOv85pOr2AyPh0+14zfXJGDMEBcXPRPST/zUuTCcKOk9KUiEwDydiAQN8/qzNmT96SV06dpw9gcFujrasO/FRZi15gPED0uy2YdNsU/rz0igY2ueOZ3bdjmZkcBP62V9HpzJZDJUVlbafa6lpQVJSbb/4/e3n7S0NLujZgDQ0NAAkUgUMNMu+zKFMFgcO3YMY8eOdbk9G8j1NpW0vb0d8fH0YUACR0REBJYuXYrc3FwsWrQI33zzDQCg8quPUF/1Da69+68YNXEWeDyex455pFGHI406brrjdPlACtSIV3HThA4+CzB26vxFCMCfnO+3O8+kb9j1Z1sq1Jj+6EbseWEBLtQrcamlCXteWIhZ+e8jdvBwm/2MJuCtQ2qMFEchUUwjaCRwBUMyI58nBElJSYFer0dLS4vNcyqVymaURK/Xo6GhoV/9SKVSaDQam3Z6vR4qlcph4Eb6Rq1W2w2YDh48aDUqJpVKe52SyK5bs/y9J0dTIwnxt6uuugr79u3Dli1buP8fLpzT4Ju/P4zvNi2F9pznpy+z0x0pFT/xhYjkGcDgX1pvFMSAJ8+DIHebX9dskL7LTI7H2twkJA4V46Yn34ZohDnA1p1rxJ7n56Oj2fb7FGAeQcv/6hRdd0jACpZkRj4PzqKjozFz5kybqWgqlQoikQgpKSlW24uLi7Fz504olco+95OSkgKlUmkToBUWFiItLc3mmKR/1Gq1TdC1adMm3H777VaBlEQisfk3USgUyM/PB2AOxtgvtVqt1m6JAkdTIwkJBBEREVi8eDGOHj2KW2+9ldt+9NA+fPXUb/Djl+/CZOj2yrHZQG3NrlMoq2/zyjFIeGMYE9B6wvxL9GDw79iHyDv3QpC5kkbMglyiWIjlU4cjVjQIM54uQLzEvDSkXdOAPS8swKXWC3b3MzHgrjsVJ9t9ecqEOBUsNc/8UucsJSUFQqEQpaWlEIvF3Noxe0lHZDKZw0yK7vSTk5ODyspK1NbWorOzE3q9HpMmTaLAzAt0Oh3S09OhUCgQGxvLJfXomVExLi7OZsqiVCrl9l2+fDm2b98OhcKcktxy1I117NgxLF++3Ht/DCEeMGrUKHz++ef45JNP8NBDD+Hs2bPQX+pA1Qd/w5lDnyFtXj6G/mKSV47NpuLfXtWEyck05ZF4UOtJoNuc/Io39JeIiAyM5QHEM9gpjm8dAnL++i/sWnc3dOca0XbmOPa8MB85TxUgRjzU7r5smn2a5kgCTTAkM/JbEWqZTOYwSYeljIwMZGRk9Lsfti/iG3K53KX09mwqfDazY8/9li1b5rQPV8obEOJvPB4Ps2fPxowZM/D000/jzTffBMMwOHNChTPr7kHe7Xcge+FK/NQRh26j549vLxU/BWqkP5jzP3CPeUPG+fFMiLdwKfa/AnKe3o7dz81Dx4WzaG08ht3PzUPO09sxYJD9pQVGE/CPsrNYPnU4ZXIkAcOlZEYAmJO7YQADfupc8BLG+OjszAKqCDUJP7Nnz0ZJSUmf9i0qKuLS7BMSLEQiETZt2oTKykrccMMN3PbiTz7GM3+YitHHPsKC9HjwvXh1trc2jYpbE3eZzlkGZ9f68UyIN7Ep9uOHJWLmX99D7OARAIC2syewa93dva6fVbd30xRHElDYZEZOi1IbO8HUfwFDySKYTu71zcldRsEZ8aj6+nq3C0JnZ2dzUxddpdVq0d7ezo24ERJsJk6ciIqKCrz99tsYPHgwAKCjowP5+flY9OtMTNAeQvboOAi8fJWmQI24i2mug6FiPZjj/+W2meqLwTTX+fGsiDflpIjBjwDiJUmYmf8+4oYlAgC0TT9j17o/ovW04397dorjzy2UJIQEhojkGRDkbgNPngfwnYzqXq57xjTX++bkQMEZ8TC1Wu129kR2LZk7xaR37drFFbMmJFhFRETggQcegEqlwsMPPww+nw/AXOLjoQcW4J1HfoeFI87imZmjMGGU9xPfOMr22Gm4kird8jEJP6aTe2EoWXR5zcaVakHM8f/65Q4z8Q12/Rk/AogbOhKz8t/HwOGjAQAdF86iZO0fca6uxuH+7BRHyuJIAgUvQW5OXpSc47zx5bpnvkLBGfEoe0k7XN3PnaBu9uzZfToOIYFo0KBBeP3116FUKjFr1ixu+7fffovp06fjkXvvwI3i81g6RerV6Y6W2EBt1Ven8MDH9Vj44TEs/PAYHvi4Hg98TCNs4YhproPx0DrHazX8cIeZ+A6bYn+6fCDiBksxM/99DEq+BgDQpW3Bnhfm43T1AYf7q9u7sbqEpjiSwOJW3TMfoeCMEEICxDXXXIOSkhKUlJTg2muvrOH54osvkJ6ejk35S3Ffajemywd6fbpjTybG/AMAnYbep0L2HF2j0bbQYKwtdLqI3td3mIlvJYqFWDRJgrW5SYhLGIKcv+6A9JeZAABj5yXsf+VBqPb92+H+JgbYfFCN10vP0Cga8btArXvmt2yNhBBC7Js1axZmzJiB7du3Y82aNWhsbATDMNixYwc+/PBDLFiwAPmrVoGJl2J/fRsUJ9rgr/iHHWE7UN8GHgAez/wFLJIPDB4QiYsdBnQZGQgFPGTKrDNEdhpMEF6OMh09JoHDrTvMmSu9fDbEn9hpjlsq1LjpyXdRvvkJnKosAWMy4vC21Wg9U48Jf1yBCL79r5lHGnWoPqPDkkwpMpPjfXz2hJhxdc9cCdB8WPeMgjNCCAlAfD4f9913H+666y5s3rwZL7zwAi5evAij0Yht27bhX//6FxYsWICVK1di0aSxOH7+EvbXt+HgyTavpOJ3BQOAuTy61m00T2NisaNtPYO4CJ75+Z6P2WAuJ0VMabgDQF/uMPurgCvxDTbN/j/KziL7odfw3QfD8eNX/wQA/FSyHW1njiP7ob8jaoD94ItqoZFAEIh1z+jWJPE7rVbrlbaEhIKYmBg8/vjjOH78OJ599lmIRCIAgMFgwNatW5Gamoq77roL7adVWDRJgq13jsXizGE+W5vWFwyuTJG0nC5pb+okpeEODNwdZlf48A4z8a9EsRDLpw5HpICPifOeQub9z4F3ebTsjLIM/111Gy42/Ohwf0oUQvyNnzrXeVp9AOhs81lG2gD++CbhoKCgwK0i0rt27XIrqyMhoUIkEmH16tU4efIk1qxZwwVpJpMJ//73v5Geno5Zs2Zhz549yBo9kFu4H+yzAykNd+DgyW52sZ3v7jAT/7PM5Dj2xjswY+U/ERUnBgC0a06hZM0dqD/wicP92VpoZfVtPjpjQq5wte4Z03jAZxlpg/xjmwSzkpISt4tIz549G0VFRV46I0ICn1gsxjPPPIOGhga88MILGDp0KPfc7t27MXPmTIwfPx67dr6Hu66Nx7Y/jMUzM0cFdaBmNAG7a1v8fRphz6U7zBECczsSVthMjtL4SEivmYTfPPcJBo0eBwAwdnfi4NsroXhrBbo67M9+MZqAdw5rcP9HV0p4EOIrbN0zjJree0MfZaQN0o9qEuzUajXq6+vdrokGmNPuU4BGwp1IJMJTTz2FkydP4o033sDo0aO5577//ns88MADSExMxF/+8hcwrWewaJIkqAO1igaa2uhv3B1mRyIE4E/OBy9B7ruTIgGDneJoroU2CrmrP0TKzXdxzx8v+xRfPJUHzY/fOuyjy2iezkwp94mv8RLk4AldSE7jg4y0QfbxTEJFSUlJn2uVpaeno7y83MNnREhwGjBgAB566CEcO3YMhYWFyMzM5J67ePEiXnrpJYwZMwY5OTn4+OOPMWogPygDtU4Dgy5Kye93POkEi98uv3EEMeDJ8yDI3YaIZJrSGM4spzjyo4SYdN+zyPrTS4iMjgUA6M6fxu7n5+HI+xvQre9w2A+l3Cf+ECg1z4LgI5kEm+rqaigUCpSUlHDbNmzYYPV7TU2N3VEzhUIBhUKBTZs2Qa1Wo6SkBAUFBTbrzCQSCerrqdApISw+n485c+bg0KFDqKysxD333IOoqCju+b179+LOO+/E8OHDsXz5clRWVmL04GibQE0o4Pnxr3BMKOAhKhiiyBDHnPuBexxx9R8guPNrRN65F4LMlTRiRgBcmeI4YZQ5ILtq6u9w64ZiDEudaG7AMDj6320oXvEbNH63v9e+jjTqaBSN+EQg1TyjT7oA9Oqrr2LUqFFOf37729/a7Pvb3/7WpX1fffVVq/3a29udtnGFWq1GfHw85HI5PvnkygLgsWPHcgGWWq22mwSkpKQE48ePR1ZWFgBzspDc3FzU19fbBGLp6emorq52+/wICQc33HAD/vWvf+Hnn3/Ghg0bIJdf+dJ88eJFbNq0CZMmTcIvfvELrFmzBkePHsVVQ2KwaJIE79wxBu/eIcfzv06yCtYieIA/w7ZMmW9rITU0NKC0tBRKpRKVlZWorKz0ej+eOqY3Mee/5x7zho6jrIzErkSxEI9MG4GlU6TcNMecVe/h+j88iYhI800j3fnT2P/KEnzz2lK0qU867MtyFM2y2D0hnhRIGWmpzlkAamtrw+nTp522S0xMtNl27tw5l/Zta7POisQwjM1+Pdu4Qq1WIz09HUVFRRg/fjy3PSsriwumdDqd3VGz+Ph4LmhTq9VcspB169bZbUtZGwnp3bBhw7BixQo8+eST+Oabb7B161Z8+umnuHTJ/AVHpVJh7dq1WLt2LcaNG4fbbrsNv//973HdddchUSzEokkSLJokQZfBxI1asfXUfFn4mh8BzEwV++ZgML8utbW1yMvL47Y1NDSgsLAQc+e6nuzCnX48dUxvMzUpuce8IeP8eCYkGFjWQlO3A7/MewCJN+Tg8LY1UP/vEADg56q9aPy/bzD2xjuQdvtyxIiG2O3rSKMORxp1EETwkDXauqA9IZ4QKDXPaOQsAA0cOBAjR450+mOZpY01dOhQl/YdOHCg1X48Hs9pG1ekp6cDAMrLy7kRsJ7PqdVqxMbG2uxr2b6urs4quOtJKpVScEaIiyIiInDTTTfh/fffh1qtxtatWzF9+nTweFfGwn744QesW7cOEyZMQHJyMv70pz/h888/h1artZpOyI6w2ZsKGcG7Ukg6kg9I4yPB7+dwGz8CWJIp9VmRWr1ej927dyMnJ8dqu0wmg16vh1KpdLBn3/vx1DG9hWmug6FiPbo/uhlgR84EAwB9s1/PiwQHy0QhADBQmowZTxVg6tJXEH05EGOMBqj2foDPHp2Bqh3robvg+PPdYDInDVm7uxH3/ftKdsdOi7tF7j7uyz60f+Ds76m+AiUjLY2cBaDHHnsMjz32WJ/2/fzzz/u0X3x8PBobG/u0b09arRb19fVcMAYA9fX1NsGaI2zQ1Vv9s/b2dsTH+3aaEyGhYODAgbjvvvtw33334cyZMygsLMRHH32EQ4cOcW1OnTqFt956C2+99RYiIyMxefJk3HjjjbjxxhsxadIkREdHAzAHamywZjm6ZvkYuDLaVtHQjk4DwwVwJgYOHwsFPGTK4jEzVeyzwAwwj2CJRCLub7SUmpqKmpoapKWlebQfTx3TG0wn98J4aB1gMlg/YeiAoWQR+JPzKQkIcYpNFLKlQg2jyXxDeHRWHkZNuAlHv9yGo19uhaGzA4bODvz41T9Ru3sHRmflITXnbgwaPc7qRpIlNlA7cLlGmivXFsvHkXxg8IBIXOwwoMvo2rWJ9g+c/b1xLlfhASzA2xDACHu6TcCx8u0Qp/0BI2TX2G3TXxScEY/TaDS9psiXSqUoKytz+Hx1dbXVqFl1dbVVoAc4nhpJCHHdiBEj8Mgjj+CRRx7BmTNnUFxcjE8//RT79+9HV1cXAKC7uxulpaUoLS3Fs88+i6ioKFx//fWYMmUKJk2ahAkTJuCqq66yCsZ6Ju5wJYjrLbjzpdraWrtBEmCuMdfU1AS9Xu+wTV/68dQxPY1prrMfmLEu1/zhiUZTMhDiFDvFcXdtCw6ebEO3EYiMjsX42Q8hZcZd+P6zzajbXwhjdydMxm7Ul36C+tJPkJCUCvn0OUie/BuHUx5ZJsa9x91GcxFs2j849/fGuagxCQ0YgRnYg0wcRBSsr3+RMGBs2z4Yyr9BbdOTSL0hD55G0xqJx/WcsqhQKKxGzSQSCTQajU2b/Hxz/Zzq6mpuVEyr1UKn09kcw9HUSEJI34wYMQJLlixBSUkJLly4gOLiYixdutQqmQgAdHV1oaKiAq+++iruvPNOjBkzBgkJCbjxxhuxfPlyvPnmmzhw4ADOnDkDk8l2UZqjIK634M6XNBoNxGKx3edEIhEAoLW11aP9eOqYnmasLXQcmLF8UPOHhA52LevWO8diceYwbqpjjGgIMhasxm2v78e43z2IqAFXllU0n6pF1XvPY+eyLHy1ei6+/+xNXDj+PUyGbgdHIaR/TvMSsQ85iADjsI0ARiSpXsLZUz96/Pg0ckY8TiqVYsqUKSgpKeEyN1qKi4uzmbIolUqRnp4OhUKB5cuXY/v27VAoFABgdzrksWPHsHz5cu/9EYSEsbi4ONx666249dZbAQA///wz9u/fj/379+PgwYNQqVRW7VtbW/HNN9/gm2++sdoeExOD0aNHIykpCSNHjsSoUaMglUoxePBgDB48GIMGDUJcXBxiY2MRGxuLyMhI8Pl8CAQCRET4J0Dr7OyEUNj7NMrW1lZIJBKP9eOpY3qaWzV/Mld6+WxIqJl6lQiyQdH4RHkBRxrNN2FjRENw3R2PYVzeYpw89CXqDhThfF21eQeGwfn6Gpyvr0F14WvgRwoxaPQvMXj0OMRLkhA3LBGxQ0YiakA8IqNjIYgeAF4Enzueo6mRhNhzM/Y4nNrIEsCI5pp/Y3jSsx49NgVnxCsWLlzY6/NsKnx2uqJcLrcK4pYtW+b0GL2tSSOEeE5iYiLmz5+P+fPnAwDOnz+PiooKVFVV4bvvvsORI0dw5swZm/0uXbqEo0eP4ujRo24fk8fjoa2tLaD+P2cDKL1e77N+XGlbVVWFI0eOOO2LnYVw9uxZjBo1yklrBug477RPzuPO+iPEsS4jA12XEfYGKqIHDoahSw9jdycY45WRXGN3J86pvsM51Xc+PFMSLt5zsD1KwMPQ+EjudwZHwBuw1Wl/999/v8u5Eig4I34xe/ZsbNiwwWYtmSuKioq4NPuEEN8bMmSI1cgaAFy4cAH/+9//cPToUfz4449cfcITJ06gs9P9Yp0Mw0AgoI8oV3R1dUGr1brc3mg0ulRyxS3NHu6PEEICUJeBwenmLuuNLlz/jMbeR+Es0Scf8Zvs7Gyb9WjOaLVatLe39ymoI4R4z+DBgzFt2jRMmzbNajvDMDh//jxOnz6N06dPo6mpCefPn8eFCxfQ3NwMnU4HrVaLjo4OGAwGq59AC87YILO/iTnc6ceVtlFRUS6NMOp0OjAMAz6fj5EjRzo/0a52wODCKKEgGoii7LnEM3obReuJMZlgMhrAmIwwmYxgTEaAYcAwDMC40AEhDvBhf71tJJ+HhNgrn00MeOAN6D1RDQDw+XynbViB9clHwkpWVhYUCgXUarXLmRd37drldMokISRw8Hg8DB06FEOHDqWbKl4yceJETJw40Wm7LVu2QKvVYvjw4S6VTmGa62AoWdR7UpAIAQS52yhbI/Gon1s6sbu2xafF7gmxtIDZhmkoddru2MAZuCbP+Zoz9vrrCsrWSPwqKyvLrZT4s2fP9uLZEELCnUgkcpgZkV33xWZQ9FQ/njqmp/ESxoA/Od9xUdYIAfiT8ykwIx7HZnW0LHbvxySuJAztQw4M6H20ywA+Esb/wePHppEzQggh5DKJROIw+QYbQLmSNdGdfjx1TG+ISJ4Bnmg0jLWF5qyMhkuAIAY82QzwU+dSYEa8zrJOYs+C9oR4SyMvEVuZB7AI79jN2mgAH6dSnkRq0tUePzYFZ4QQQshlMpkMlZWVdp9raWlBUlKSx/vx1DG9hZcghyBzJZC5EoyhEzxB72n/CfGWngXtNdpu7K5t4YK1iMvZ8k0MXHocyQcGD4jExQ4Duoy0f7Dt7+1zqeJl4rRpJGZgDzJwGNHohB5C/DwwGwnj/+CVwAyg4IwQQgjhpKSkoLS0FC0tLTaFoVUqlU3CE71eD41GA5lM1ud+3D2mP1FgRgJFlCCCm/7IBmtsAXt3H/dlH9o/cPb37rnIESW4yfxYfwnx0TG4Bt5FM3gJIYSQy6KjozFz5kyUlZVZbVepVBCJREhJSbHaXlxcjJ07d0KpVPa5H3ePSQixZfnl2t3HtH9w7++zc4mOgS/QyBkhhBBiISUlBUKhEKWlpRCLxdx6sLlz59q0lclk0Gg0dteEudOPO20JIYSELgrOCCGEkB5kMpnNVEV7MjIykJGR0e9+3G1LCCEkNNG0RkIIIYQQQggJABScEUIIIYQQQkgAoOCMEEIIIYQQQgIABWeEEEIIIYQQEgAoOCOEEEIIIYSQAEDBGSGEEEIIIYQEAArOCCGEEEIIISQAUJ0zL+jo6AAA6HQ6bNmyxc9nQwgh4UWn0wG4ci0mZvTZRAgh/uHO5xIFZ17AMAz3X61W6+ezIYSQ8MRei4kZfTYRQoh/ufK5RMGZF/D5fBiNRvB4PAwYMMDt/XU6HRiGAY/HQ2xsrBfOkJDe0XuQ+FN/338dHR1gGAZ8Pt8LZxe86LOJhBN6v5JA4s7nEo+hW4sBZ8uWLdBqtYiLi8OSJUv8fTokDNF7kPgTvf8CE/27kGBC71cSrCghCCGEEEIIIYQEAArOCCGEEEIIISQAUHBGCCGEEEIIIQGAgjNCCCGEEEIICQAUnBFCCCGEEEJIAKDgjBBCCCGEEEICAAVnhBBCCCGEEBIAKDgjhBBCCCGEkAAg8PcJEFsTJkxAV1cXoqKi/H0qJEzRe5D4E73/AhP9u5BgQu9XEqx4DMMw/j4JQgghhBBCCAl3NK2REEIIIYQQQgIABWeEEEIIIYQQEgAoOCOEEEIIIYSQAEAJQXyooaEBDQ0NEIvF0Ov1AICMjAy/9UPCiyfeN8XFxYiOjkZaWhokEgn0ej00Gg2USiUyMjIgkUi8ceokyOn1epSVlUEoFGLatGl96oOue/5Drz0JdJWVlaitrUVTUxMAQCgUWn0e6fV6dHZ2QiKRIDU1FSkpKf46VUKcooQgPqJSqVBbW4u8vDxuW0NDAyorKzF37lyf90PCi6feN4WFhTh16pTVNqFQiLy8PMhkMo+dLwkNpaWlaG1thUQigVKphEwmQ05Ojtv90HXPf+i1J8GE/YyaN2+e3ZuFKpUKu3fvhkwms3pPExJIaFqjD+j1euzevdvmS4lMJoNer4dSqfRpPyS8ePJ9I5FIMGfOHGRnZyM7Oxt5eXlYvnw5BWbErmnTpiEvLw8ZGRkQCoV96oOue/5Drz0JNhqNBgAczuJISUnB3LlzoVKpUFpa6stTI8RlFJz5gEqlgkgkQnR0tM1zqampqKmp8Wk/JLx4+n0jk8mQkZGBjIwMmhpCvI6ue/5Drz0JJi0tLejs7ERSUlKv7SQSCVJSUvDtt99y03QJCSQUnPlAbW2t3Q83ABCLxWhqanLpAuGpfkh4ofcNCWb0/vUfeu1JMGGn3Lsyk4MdWes5TZ+QQEDBmQ9oNBqIxWK7z4lEIgBAa2urz/oh4YXeNySY0fvXf+i1J8GkoaEBgGvBGfu+VqvV3jwlQvqEgjMf6OzsdLrewpUPOE/1Q8KLp983LS0tUCqV3E9paSndPSdeQ9c9/6HXngQTNjhzJWsw+5nV2dnp1XMipC8olb6fsR98/f1y66l+SHhx933T2tqKpqYmpKWlcds0Gg127NiBefPmOZwCRYg30HXPf+i1J4HE1fVmLDZxSF8TFRHiTTRyRghxWV5enk0SEIlEAolEgj179vjprAghhIQzd9abAVemM0qlUq+dEyF9RcGZn7FD6v0dcfBUPyS8eOp9I5PJoFKpPHFKhLiMrnv+Q689CSTurDfT6/VcsWpXR9oI8SUKzggh/cZ+QWOnihBCCCG+4s56M/ZGYkpKCt1cIAGJgjMfEIlEDhdNs/P12cxXvuiHhBdPvW/27NnjsGgnrT8h3kLXPf+h154EA3fXm7H1+bKzs715WoT0GQVnPiCRSBx+aWU/+Fy52+Opfkh48dT7pra21uEXNXr/EW+h657/0GtPgoE7682USiWamppwww03OCwTQYi/UXDmAzKZzOGX2paWFpfv9niqHxJePPW+SUtLQ15ent3nGhoaIBKJaIoI8Ti67vkPvfYkGLi63qylpQV79uxBUlISpk2b5otTI6RPKDjzgZSUFOj1erS0tNg8p1KpMH78eKtter2eu9j0px9CAM+9/6RSqd01ZXq9HiqVij7sSL/QdS/w0GtPgoEr681aWlqwc+dOpKSkYO7cub46NUL6hIIzH4iOjsbMmTNRVlZmtV2lUkEkEtmkJi8uLsbOnTuhVCr71Q8hgOfefykpKVAqlTYBWmFhIdLS0uj9R3rV2dnZ65pEuu4FHnrtSaBraGjodb2ZXq9HaWkpduzYgYyMDIezPwgJJDyGYRh/n0S4aGhoQENDA8RiMfclJSMjw6ZdZWUlKisrMXfuXLt3glzthxBLnnr/VVZWQq/Xc1+2U1NT6UsasauyshIajQYtLS1Wqaujo6Nt3jd03Qtc9NqTQFNaWgqNRsOtNxMKhTbXDfa9On78eMrMSIIKBWeEEEIIIYQQEgBoWiMhhBBCCCGEBAAKzgghhBBCCCEkAFBwRgghhBBCCCEBgIIzQgghhBBCCAkAFJwRQgghhBBCSACg4IwQQgghhBBCAgAFZ4QQQgghhBASACg4I4QQQgghhJAAQMEZIYQQQgghhAQACs4IIYQQQgghJABQcEYIIYQQQgghAYCCM0IIIYQQQggJABScEUIIIYQQQkgAoOCMEEIIIYQQQgLA/wNVdJhNJnhB1AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "experiment = '../../test/output/rayleigh-benchmark/MPI-1/bef047fb68f6bc3b5feb6b2f634b15fc'\n", + "# experiment = '../../test/output/rayleigh-benchmark/MPI-1/93666c80ed3523e3c2f7140d2788f85c'\n", + "\n", + "modes_data = np.load(os.path.join(experiment, 'mode_shapes_data.npz'), allow_pickle=True)\n", + "mode = pp.read_mode_data_from_npz(modes_data, time_step=0, num_modes=1, num_points=10)\n", + "\n", + "params, data, signature = pp.load_data(experiment)\n", + "\n", + "a = params['model']['a']\n", + "b = params['model']['b']\n", + "c = params['model']['c']\n", + "\n", + "parameters = {\"a\": a, \"b\": b, \"c\": c}\n", + "\n", + "plot_profile_comparison(parameters, mode, idx=[1, 0], reverse=False)\n", + "\n", + "plt.savefig(os.path.join('../../test/output/rayleigh-benchmark/MPI-1', 'profile_comparison.pdf'), dpi=300)\n", + "plt.savefig(os.path.join('../../test/output/rayleigh-benchmark/MPI-1', 'profile_comparison.png'), dpi=300)\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.5" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/playground/nb/postprocess.py b/playground/nb/postprocess.py index a520b889..5a7966cf 100644 --- a/playground/nb/postprocess.py +++ b/playground/nb/postprocess.py @@ -1,5 +1,4 @@ import hashlib - # import xmltodict # import pickle import json @@ -9,7 +8,6 @@ import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np - # import pandas import pandas as pd import yaml @@ -111,7 +109,7 @@ def plot_fills(ax, ell, tc): def plot_spectrum(params, data, tc, ax=None, tol=1e-12): E0 = params["model"]["E"] - w1 = params["model"]["sigma_D0"] ** 2 / E0 + params["model"]["sigma_D0"] ** 2 / E0 ell = params["model"]["ell"] fig = plt.figure() for i, d in enumerate(data["eigs"]): @@ -137,8 +135,8 @@ def plot_spectrum(params, data, tc, ax=None, tol=1e-12): ax2 = plt.twinx() ax2.plot(data["load"].values, data["alpha_max"].values, label="$$max(\\alpha)$$") ax2.legend() - tbif = t_bif(ell) - tstab = t_stab(ell) + t_bif(ell) + t_stab(ell) ax2.set_ylabel("max $\\alpha$") ax2.set_ylim(0, 1.03) @@ -168,14 +166,14 @@ def plot_spectrum(params, data, tc, ax=None, tol=1e-12): def plot_sigmaeps(params, dataf, tc): E0 = params["material"]["E"] - w1 = params["material"]["sigma_D0"] ** 2 / E0 + params["material"]["sigma_D0"] ** 2 / E0 ell = params["material"]["ell"] - Lx = params["geometry"]["Lx"] - Ly = params["geometry"]["Ly"] + params["geometry"]["Lx"] + params["geometry"]["Ly"] fig = plt.figure() - t = np.linspace(0.0, params["loading"]["load_max"], 100) + np.linspace(0.0, params["loading"]["load_max"], 100) fig = plt.figure() plt.ylabel("$$\\sigma$$") plt.xlabel("$$t$$") @@ -204,7 +202,7 @@ def plot_sigmaeps(params, dataf, tc): ax.set_xticklabels(["0", "$t_c$", "$t_b$", "$t_s$"]) plt.ylim([0, sigmaC * 1.1]) - stable = dataf["stable"].values + dataf["stable"].values # ax.axvline(tc, c='k', lw=.5, label='$t^{cr}$') # ax.axvline(t_stab(ell), c='k', ls='-', lw=2, label='$t^{cr}_s$') @@ -227,7 +225,7 @@ def plot_energy(params, dataf, tc): Lx = params["geometry"]["Lx"] Ly = params["geometry"]["Ly"] En0 = w1 * Lx * Ly - t = np.linspace(0.0, 3.0, 100) + np.linspace(0.0, 3.0, 100) fig = plt.figure() plt.xlabel("$$t$$") @@ -290,8 +288,6 @@ def plot_energy(params, dataf, tc): def plot_stability(prefix, tol=1e-5): # dirtree = os.path.join(dirroot, signature) fig = plt.figure() - stab_diag = [] - global_dfs = [] debug = False for subdir, dirs, files in os.walk(prefix): @@ -425,7 +421,7 @@ def format_params(params): def _plot_spectrum(data): def _stab_cnd(data): - return [0 if data["cone-stable"][i] == True else 1 for i in range(len(data))] + return [0 if data["cone-stable"][i] is True else 1 for i in range(len(data))] # _uniq_cnd = [.3 if d[0]>0 else .7 for d in data['eigs']] """docstring for plotSpaceVsCone""" @@ -505,7 +501,7 @@ def read_mode_data_from_npz(npz_file, time_step, num_points=-1, num_modes=1): if num_points == -1: num_points = len(npz_file["mesh"]) # Replace with actual x_values - x_values = np.linspace(0, 1, num_points) + np.linspace(0, 1, num_points) mode_data["fields"] = { "bifurcation_β": field_β_bif_values, diff --git a/playground/pizza-notch/pizza-notch.py b/playground/pizza-notch/pizza-notch.py index 2e1da815..66f8f7bc 100644 --- a/playground/pizza-notch/pizza-notch.py +++ b/playground/pizza-notch/pizza-notch.py @@ -15,33 +15,22 @@ import pyvista import ufl import yaml -from dolfinx.fem import ( - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_topological, - set_bc, -) +from dolfinx.fem import (Function, FunctionSpace, assemble_scalar, dirichletbc, + form, locate_dofs_topological, set_bc) from dolfinx.io import XDMFFile, gmshio from dolfinx.mesh import locate_entities_boundary +from mpi4py import MPI +from petsc4py import PETSc +from pyvista.utilities import xvfb + from irrevolutions.algorithms.am import HybridSolver from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver from irrevolutions.meshes.pacman import mesh_pacman from irrevolutions.models import DamageElasticityModel as Brittle -from irrevolutions.utils import ( - ColorPrint, - _logger, - _write_history_data, - history_data, - set_vector_to_constant, -) +from irrevolutions.utils import (ColorPrint, _logger, _write_history_data, + history_data, set_vector_to_constant) from irrevolutions.utils.lib import _local_notch_asymptotic from irrevolutions.utils.viz import plot_mesh, plot_scalar, plot_vector -from mpi4py import MPI -from petsc4py import PETSc -from pyvista.utilities import xvfb description = """We solve here a basic 2d of a notched specimen. Imagine a dinner a pizza which is missing a slice, and lots of hungry friends @@ -105,7 +94,7 @@ def run_computation(parameters, storage): # Define the state u = Function(V_u, name="Displacement") alpha = Function(V_alpha, name="Damage") - alphadot = Function(V_alpha, name="Damage rate") + Function(V_alpha, name="Damage rate") # upper/lower bound for the damage field alpha_lb = Function(V_alpha, name="Lower bound") @@ -119,7 +108,7 @@ def run_computation(parameters, storage): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Set Bcs Function @@ -205,12 +194,6 @@ def run_computation(parameters, storage): total_energy, state, bcs, cone_parameters=parameters.get("stability") ) - mode_shapes_data = { - "time_steps": [], - "point_values": { - "x_values": [], - }, - } _logger.setLevel(level=logging.CRITICAL) @@ -237,7 +220,7 @@ def run_computation(parameters, storage): stable = stability.solve(alpha_lb, eig0=bifurcation._spectrum, inertia=inertia) - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): fracture_energy = comm.allreduce( assemble_scalar(form(model.damage_energy_density(state) * dx)), op=MPI.SUM, @@ -362,7 +345,7 @@ def test_2d(): ) ColorPrint.print_bold(f"===================-{_storage}-=================") - with dolfinx.common.Timer("~Computation Experiment") as timer: + with dolfinx.common.Timer("~Computation Experiment"): history_data, stability_data, state = run_computation(parameters, _storage) ColorPrint.print_bold(history_data["eigs-cone"]) diff --git a/pyproject.toml b/pyproject.toml index 2ada7543..bf8f42f7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,36 +1,28 @@ -[project] +[build-system] +requires = ["setuptools>=42", "wheel"] +build-backend = "setuptools.build_meta" + +[tool.poetry] name = "irrevolutions" -authors = [ - {name = "Andrés A León Baldelli", email = "leon.baldelli@cnrs.fr"}, - ] version = "0.1.0" -requires-python = ">=3.8" - -# Short description -description = "Three solvers for irreversible evolutionary processes with a general energetic notion of stability." - -# Path to README.md -readme = "README.md" - -# Path to license file -license = {file = "LICENSE"} +description = "A Python package for solving nonlinear and nonconvex evolutionary problems using a general energetic notion of stability and dolfinx." +authors = ["Your Name "] -# Direct dependencies -dependencies = [ - "fenics-dolfinx==0.7.*", - "pandas>=2.2", - "sympy", - "pytest", - "matplotlib", - "gmsh>=4.11.0", - "PyYAML>=6.0.1", - "scipy>=1.12.0", - "pyvista>=0.43", - "numba>=0.60.0", -] +# Optional dependencies are specified in this section +[tool.poetry.dependencies] +python = "^3.8" +pandas = "^1.2" +sympy = "^1.8" +pytest = "^6.0" +matplotlib = "^3.4" +gmsh = "^4.11.0" +PyYAML = "^6.0.1" +scipy = "^1.12.0" +pyvista = "^0.43" +numba = "^0.60.0" -[project.optional-dependencies] -test = ["pytest"] +[tool.poetry.extras] +dolfinx_support = [] -[tool.ruff.lint.isort.sections] -"mpi" = ["mpi4py", "petsc4py"] \ No newline at end of file +[tool.poetry.scripts] +irrevolutions = 'irrevolutions:main' diff --git a/src/irrevolutions/algorithms/am.py b/src/irrevolutions/algorithms/am.py index 44de69ca..f3357053 100644 --- a/src/irrevolutions/algorithms/am.py +++ b/src/irrevolutions/algorithms/am.py @@ -1,13 +1,10 @@ +from dolfinx.fem.petsc import assemble_vector, set_bc import logging import dolfinx import numpy as np import ufl -from dolfinx.fem import ( - Function, - assemble_scalar, - form, -) +from dolfinx.fem import Function, assemble_scalar, form from dolfinx.io import XDMFFile from mpi4py import MPI from petsc4py import PETSc @@ -15,14 +12,11 @@ from irrevolutions.solvers import SNESSolver from irrevolutions.solvers.function import functions_to_vec from irrevolutions.solvers.snesblockproblem import SNESBlockProblem -from irrevolutions.utils import ColorPrint, norm_H1, norm_L2, set_vector_to_constant +from irrevolutions.utils import (ColorPrint, norm_H1, norm_L2, + set_vector_to_constant) comm = MPI.COMM_WORLD -from dolfinx.fem.petsc import ( - assemble_vector, - set_bc, -) logging.basicConfig() diff --git a/src/irrevolutions/algorithms/ls.py b/src/irrevolutions/algorithms/ls.py index a291d30d..d5a25c70 100644 --- a/src/irrevolutions/algorithms/ls.py +++ b/src/irrevolutions/algorithms/ls.py @@ -4,11 +4,7 @@ import mpi4py import numpy as np from dolfinx.cpp.log import LogLevel, log -from dolfinx.fem import ( - Function, - assemble_scalar, - form, -) +from dolfinx.fem import Function, assemble_scalar, form from petsc4py import PETSc from irrevolutions.utils import norm_H1 @@ -147,8 +143,6 @@ def admissible_interval(self, state, perturbation, alpha_lb, bifurcation): beta = bifurcation[1] one = max(1.0, max(alpha.vector[:])) - upperbound = one - lowerbound = alpha_lb # positive mask = np.int32(np.where(beta.vector[:] > 0)[0]) diff --git a/src/irrevolutions/algorithms/so.py b/src/irrevolutions/algorithms/so.py index 11e5c997..45b14d02 100644 --- a/src/irrevolutions/algorithms/so.py +++ b/src/irrevolutions/algorithms/so.py @@ -324,7 +324,7 @@ def normalise_eigen(self, u, mode="max-beta"): float: Coefficient used for normalization. """ if mode == "max-beta": - v, beta = u[0], u[1] + _v, beta = u[0], u[1] coeff_glob = beta.vector.norm(3) logging.debug(f"{rank}, |β|_infty {beta.vector.norm(3):.3f}") @@ -345,7 +345,7 @@ def normalise_eigen(self, u, mode="max-beta"): addv=PETSc.InsertMode.INSERT_VALUES, mode=PETSc.ScatterMode.FORWARD ) - _norm = np.sqrt(sum(n**2 for n in [v_i.vector.norm(2) for v_i in u])) + np.sqrt(sum(n**2 for n in [v_i.vector.norm(2) for v_i in u])) return coeff_glob @@ -381,7 +381,7 @@ def solve(self, alpha_old: dolfinx.fem.function.Function): # Check if the system is damage-critical and log it self.log_critical_state() - with dolfinx.common.Timer("~Second Order: Bifurcation") as timer: + with dolfinx.common.Timer("~Second Order: Bifurcation"): # Set up constraints constraints = self.setup_constraints(alpha_old) self.inertia_setup(constraints) @@ -677,7 +677,6 @@ def __init__( "1": "converged atol", "2": "converged residual", } - _reason = None def solve(self, alpha_old: dolfinx.fem.function.Function, eig0=None, inertia=None): """ @@ -836,7 +835,7 @@ def update_xk(self, xk, y, s): _cone_restricted = self._cone_project_restricted(xk) _logger.debug(f"xk view after cone-project at iteration {self.iterations}") - n2 = _cone_restricted.normalize() + _cone_restricted.normalize() # _logger.info(f"Cone project update: normalisation {n2}") @@ -995,7 +994,7 @@ def _convergenceTest(self, x, errors): # self.data["error_x_L2"].append(error_x_L2) _acrit = self._aerror < self.parameters.get("cone").get("cone_atol") - _rnorm = self._residual_norm < self.parameters.get("cone").get("cone_rtol") + self._residual_norm < self.parameters.get("cone").get("cone_rtol") _crits = (_acrit, False) diff --git a/src/irrevolutions/meshes/__init__.py b/src/irrevolutions/meshes/__init__.py index 00eebe2c..68b9a82b 100644 --- a/src/irrevolutions/meshes/__init__.py +++ b/src/irrevolutions/meshes/__init__.py @@ -19,7 +19,7 @@ def mesh_bounding_box(mesh, i): def get_tag(kwargs): return ( "" - if (kwargs.get("tag") == None or kwargs.get("tag") == -1) + if (kwargs.get("tag") is None or kwargs.get("tag") == -1) else f"({kwargs.get('tag')})" ) diff --git a/src/irrevolutions/meshes/boolean.py b/src/irrevolutions/meshes/boolean.py index c0b1a227..056c44af 100644 --- a/src/irrevolutions/meshes/boolean.py +++ b/src/irrevolutions/meshes/boolean.py @@ -27,7 +27,7 @@ def mesh_bar_gmshapi(name, msh_file=None, comm=MPI.COMM_WORLD): L, H, r = 1.0, 1.0, 0.1 hole = gmsh.model.occ.addCircle(L / 2, L / 2, 0.0, r, tag=1) domain = gmsh.model.occ.addRectangle(0, 0, 0.0, L, H, tag=2, roundedRadius=0.1) - boolean = gmsh.model.occ.cut([(2, hole)], [(2, domain)], tag=3) + gmsh.model.occ.cut([(2, hole)], [(2, domain)], tag=3) def mesh_moonslice_gmshapi( diff --git a/src/irrevolutions/meshes/extended_pacman.py b/src/irrevolutions/meshes/extended_pacman.py index 02340b0a..a3eea205 100644 --- a/src/irrevolutions/meshes/extended_pacman.py +++ b/src/irrevolutions/meshes/extended_pacman.py @@ -1,3 +1,10 @@ +from meshes import _addPoint as addPoint +from meshes import _addPlaneSurface as _addPlaneSurface +from meshes import _addPhysicalSurface as _addPhysicalSurface +from meshes import _addLine as addLine +from meshes import _addCurveLoop as addCurveLoop +from meshes import _addCircleArc as addCircleArc +from pathlib import Path import os import sys @@ -5,26 +12,7 @@ from mpi4py import MPI sys.path.append("../") -from pathlib import Path -from meshes import ( - _addCircleArc as addCircleArc, -) -from meshes import ( - _addCurveLoop as addCurveLoop, -) -from meshes import ( - _addLine as addLine, -) -from meshes import ( - _addPhysicalSurface as _addPhysicalSurface, -) -from meshes import ( - _addPlaneSurface as _addPlaneSurface, -) -from meshes import ( - _addPoint as addPoint, -) def mesh_extended_pacman( @@ -65,7 +53,7 @@ def mesh_extended_pacman( p2 = addPoint( -radius * np.cos(omega / 2), -radius * np.sin(omega / 2), 0.0, lc, tag=2 ) - p3 = addPoint(radius, 0, 0.0, lc / refinement, tag=12) + addPoint(radius, 0, 0.0, lc / refinement, tag=12) p10 = addPoint( -rho * radius * np.cos(omega / 2), @@ -81,7 +69,7 @@ def mesh_extended_pacman( lc, tag=20, ) - p30 = addPoint(rho * radius, 0, 0.0, lc, tag=120) + addPoint(rho * radius, 0, 0.0, lc, tag=120) top = addLine(p1, p0, tag=3) bot = addLine(p0, p2, tag=4) @@ -128,7 +116,6 @@ def mesh_extended_pacman( import sys import yaml - # , merge_meshtags, locate_dofs_topological from mpi4py import MPI diff --git a/src/irrevolutions/meshes/pacman.py b/src/irrevolutions/meshes/pacman.py index 53c3f4ba..c0065a55 100644 --- a/src/irrevolutions/meshes/pacman.py +++ b/src/irrevolutions/meshes/pacman.py @@ -33,7 +33,7 @@ def mesh_pacman( omega = np.deg2rad(geom_parameters.get("omega")) radius = geom_parameters.get("r") lc = geom_parameters.get("meshsize") - elltomesh = geom_parameters.get("elltomesh") + geom_parameters.get("elltomesh") refinement = geom_parameters.get("refinement") @@ -45,7 +45,7 @@ def mesh_pacman( # print("Model name: " + gmsh.model.getCurrent()) # get all elementary entities in the model - entities = gmsh.model.occ.getEntities() + gmsh.model.occ.getEntities() # for e in entities: # print("Entity " + str(e) + " of type " + gmsh.model.getType(e[0], e[1])) @@ -69,7 +69,7 @@ def mesh_pacman( p2 = model.geo.addPoint( -radius * np.cos(omega / 2), -radius * np.sin(omega / 2), 0.0, lc, tag=2 ) - p3 = model.geo.addPoint(radius, 0, 0.0, lc / refinement, tag=12) + model.geo.addPoint(radius, 0, 0.0, lc / refinement, tag=12) top = model.geo.addLine(p1, p0, tag=3) bot = model.geo.addLine(p0, p2, tag=4) diff --git a/src/irrevolutions/meshes/primitives.py b/src/irrevolutions/meshes/primitives.py index 8a4519fa..56d63cb6 100644 --- a/src/irrevolutions/meshes/primitives.py +++ b/src/irrevolutions/meshes/primitives.py @@ -143,12 +143,12 @@ def mesh_rightCrack_gmshapi( p2 = model.geo.addPoint(Lx, Ly, 0.0, lc, tag=2) p3 = model.geo.addPoint(0, Ly, 0, lc, tag=3) # pLa= model.geo.addPoint(0, Ly/2-s/2, 0, lc, tag=4) - pRa = model.geo.addPoint(Lx, Ly / 2 + s / 2 - sep, 0, lc, tag=6) - pRb = model.geo.addPoint(Lx, Ly / 2 + s / 2 + sep, 0, lc, tag=7) + model.geo.addPoint(Lx, Ly / 2 + s / 2 - sep, 0, lc, tag=6) + model.geo.addPoint(Lx, Ly / 2 + s / 2 + sep, 0, lc, tag=7) pLa = model.geo.addPoint(0, Ly / 2 - s / 2 - sep, 0, lc, tag=8) pLb = model.geo.addPoint(0, Ly / 2 - s / 2 + sep, 0, lc, tag=5) plM = model.geo.addPoint(L0, Ly / 2 - s / 2, 0, lc, tag=9) - prM = model.geo.addPoint(Lx - L0, Ly / 2 + s / 2, 0, lc, tag=10) + model.geo.addPoint(Lx - L0, Ly / 2 + s / 2, 0, lc, tag=10) # points = [p0, p1, p2, p3] bottom = model.geo.addLine(p0, p1, tag=0) right = model.geo.addLine(p1, p2, tag=1) @@ -366,7 +366,6 @@ def mesh_circle_gmshapi(name, R, lc, tdim, order=1, msh_file=None, comm=MPI.COMM import dolfinx.plot from mesh import gmsh_to_dolfin - # , merge_meshtags, locate_dofs_topological from mpi4py import MPI from xdmf import XDMFFile diff --git a/src/irrevolutions/meshes/tdcb_2D.py b/src/irrevolutions/meshes/tdcb_2D.py index 90e0969e..0cf5e06d 100644 --- a/src/irrevolutions/meshes/tdcb_2D.py +++ b/src/irrevolutions/meshes/tdcb_2D.py @@ -46,16 +46,16 @@ def mesh_tdcb( p4 = model.geo.addPoint(a0, eta, 0, lc, tag=4) p400 = model.geo.addPoint(a0, -eta, 0, lc, tag=400) - p5 = model.geo.addPoint(cx, cy, 0.0, lc, tag=5) - p500 = model.geo.addPoint(cx, cy - rad, 0.0, lc, tag=500) - p501 = model.geo.addPoint(cx, cy + rad, 0.0, lc, tag=501) - p502 = model.geo.addPoint(cx - rad, cy, 0.0, lc, tag=502) - p503 = model.geo.addPoint(cx + rad, cy, 0.0, lc, tag=503) - p6 = model.geo.addPoint(cx, -cy, 0.0, lc, tag=6) - p600 = model.geo.addPoint(cx, -cy + rad, 0.0, lc, tag=600) - p601 = model.geo.addPoint(cx, -cy - rad, 0.0, lc, tag=601) - p602 = model.geo.addPoint(cx - rad, -cy, 0.0, lc, tag=602) - p603 = model.geo.addPoint(cx + rad, -cy, 0.0, lc, tag=603) + model.geo.addPoint(cx, cy, 0.0, lc, tag=5) + model.geo.addPoint(cx, cy - rad, 0.0, lc, tag=500) + model.geo.addPoint(cx, cy + rad, 0.0, lc, tag=501) + model.geo.addPoint(cx - rad, cy, 0.0, lc, tag=502) + model.geo.addPoint(cx + rad, cy, 0.0, lc, tag=503) + model.geo.addPoint(cx, -cy, 0.0, lc, tag=6) + model.geo.addPoint(cx, -cy + rad, 0.0, lc, tag=600) + model.geo.addPoint(cx, -cy - rad, 0.0, lc, tag=601) + model.geo.addPoint(cx - rad, -cy, 0.0, lc, tag=602) + model.geo.addPoint(cx + rad, -cy, 0.0, lc, tag=603) # left = model.geo.addLine(p200, p2, tag=5) left_top = model.geo.addLine(p1, p2, tag=5) diff --git a/src/irrevolutions/models/__init__.py b/src/irrevolutions/models/__init__.py index 97e062e7..091e3605 100644 --- a/src/irrevolutions/models/__init__.py +++ b/src/irrevolutions/models/__init__.py @@ -1,3 +1,4 @@ +from dolfinx.fem.function import Function import os import ufl @@ -251,7 +252,6 @@ def stress(self, strain, alpha): return ufl.as_tensor(sigma) -from dolfinx.fem.function import Function class VariableThickness: diff --git a/src/irrevolutions/practice/default.py b/src/irrevolutions/practice/default.py index b3aa1daa..1759edd3 100644 --- a/src/irrevolutions/practice/default.py +++ b/src/irrevolutions/practice/default.py @@ -21,6 +21,8 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint +from meshes.primitives import mesh_bar_gmshapi import json import logging import pdb @@ -33,25 +35,16 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio from mpi4py import MPI from petsc4py import PETSc sys.path.append("../") + # from algorithms.am import AlternateMinimisation, HybridSolver -from irrevolutions.utils import ColorPrint -from meshes.primitives import mesh_bar_gmshapi # Configuration handling (load parameters from YAML) @@ -88,12 +81,12 @@ def load_parameters(file_path): parameters["geometry"]["geom_type"] = "traction-bar" parameters["geometry"]["ell_lc"] = 5 # Get mesh parameters - Lx = parameters["geometry"]["Lx"] - Ly = parameters["geometry"]["Ly"] - tdim = parameters["geometry"]["geometric_dimension"] + parameters["geometry"]["Lx"] + parameters["geometry"]["Ly"] + parameters["geometry"]["geometric_dimension"] - _nameExp = parameters["geometry"]["geom_type"] - ell_ = parameters["model"]["ell"] + parameters["geometry"]["geom_type"] + parameters["model"]["ell"] signature = hashlib.md5(str(parameters).encode("utf-8")).hexdigest() @@ -190,8 +183,8 @@ def setup_boundary_conditions(V_u, V_alpha, Lx): Returns: list of dolfinx.DirichletBC: List of boundary conditions. """ - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -199,7 +192,7 @@ def setup_boundary_conditions(V_u, V_alpha, Lx): zero_u = Function(V_u) u_ = Function(V_u, name="Boundary Displacement") - zero_alpha = Function(V_alpha) + Function(V_alpha) bc_u_left = dirichletbc(zero_u, dofs_u_left) bc_u_right = dirichletbc(u_, dofs_u_right) @@ -266,7 +259,7 @@ def define_energy_functional(state, model): """ u = state["u"] dx = ufl.Measure("dx", domain=u.function_space.mesh) - ds = ufl.Measure("ds", domain=u.function_space.mesh) + ufl.Measure("ds", domain=u.function_space.mesh) # state = {"u": u, "alpha": alpha} # Define the external load @@ -467,12 +460,14 @@ def run_time_loop(parameters, solver, model, bcs): _x = _cpp.fem.interpolation_coords(V_u.element, mesh, cells) alpha = state["alpha"] - u = state["u"] + state["u"] # Main time loop for i_t, t in enumerate(loads): # Update boundary conditions or external loads if necessary - datum = lambda x: (t * np.ones_like(x[0]), np.zeros_like(x[1])) + def datum(x): + return t * np.ones_like(x[0]), np.zeros_like(x[1]) + bcs["bcs_u"][1].g.interpolate(datum(_x), cells) bcs["bcs_u"][1].g.x.scatter_forward() diff --git a/src/irrevolutions/practice/discrete_atk.py b/src/irrevolutions/practice/discrete_atk.py index 6ab99bcf..66e56479 100644 --- a/src/irrevolutions/practice/discrete_atk.py +++ b/src/irrevolutions/practice/discrete_atk.py @@ -1,4 +1,7 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint, norm_H1, norm_L2 +from solvers import SNESSolver +from algorithms.so import BifurcationSolver, StabilitySolver import json import logging import os @@ -14,26 +17,13 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, assemble_scalar, dirichletbc, + form, locate_dofs_geometrical, set_bc) from dolfinx.fem.petsc import assemble_vector from dolfinx.io import XDMFFile from mpi4py import MPI from petsc4py import PETSc - -sys.path.append("../") -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint, norm_H1, norm_L2 -from solvers import SNESSolver - -sys.path.append("../") +from utils.plots import plot_energies """Discrete endommageable springs in series @@ -210,7 +200,7 @@ def solve(self, outdir=None): def discrete_atk(arg_N=2): # Mesh on node model_rank and then distribute - model_rank = 0 + pass with open("./parameters.yml") as f: parameters = yaml.load(f, Loader=yaml.FullLoader) @@ -232,15 +222,15 @@ def discrete_atk(arg_N=2): parameters["geometry"]["geom_type"] = "discrete-damageable" # Get mesh parameters Lx = parameters["geometry"]["Lx"] - Ly = parameters["geometry"]["Ly"] - tdim = parameters["geometry"]["geometric_dimension"] + parameters["geometry"]["Ly"] + parameters["geometry"]["geometric_dimension"] _nameExp = parameters["geometry"]["geom_type"] - ell_ = parameters["model"]["ell"] + parameters["model"]["ell"] # lc = ell_ / 5.0 # Get geometry model - geom_type = parameters["geometry"]["geom_type"] + parameters["geometry"]["geom_type"] _N = parameters["model"]["N"] # Create the mesh of the specimen with given dimensions @@ -303,7 +293,7 @@ def discrete_atk(arg_N=2): alpha_lb = dolfinx.fem.Function(V_alpha, name="LowerBoundDamage") dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Useful references Lx = parameters.get("geometry").get("Lx") @@ -315,12 +305,12 @@ def discrete_atk(arg_N=2): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Boundary sets - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -362,7 +352,7 @@ def a(alpha): return (1 - alpha) ** 2 + k_res def a_atk(alpha): - k_res = parameters["model"]["k_res"] + parameters["model"]["k_res"] _k = parameters["model"]["k"] return (1 - alpha) / ((_k - 1) * alpha + 1) @@ -381,7 +371,7 @@ def elastic_energy_density_atk(state): """ # Parameters _mu = parameters["model"]["mu"] - _N = parameters["model"]["N"] + parameters["model"]["N"] alpha = state["alpha"] u = state["u"] @@ -395,7 +385,7 @@ def damage_energy_density(state): Return the damage dissipation density from the state. """ # Get the material parameters - _mu = parameters["model"]["mu"] + parameters["model"]["mu"] _w1 = parameters["model"]["w1"] _ell = parameters["model"]["ell"] # Get the damage @@ -423,7 +413,7 @@ def stress(state): # f = Constant(mesh, 0) f = Constant(mesh, np.array(0, dtype=PETSc.ScalarType)) - external_work = f * state["u"] * dx + f * state["u"] * dx load_par = parameters["loading"] loads = np.linspace(load_par["min"], load_par["max"], load_par["steps"]) diff --git a/src/irrevolutions/practice/discrete_atk_homogeneous.py b/src/irrevolutions/practice/discrete_atk_homogeneous.py index 94b519d0..f277673b 100644 --- a/src/irrevolutions/practice/discrete_atk_homogeneous.py +++ b/src/irrevolutions/practice/discrete_atk_homogeneous.py @@ -1,4 +1,9 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint, norm_H1, norm_L2 +from utils.viz import plot_matrix +from utils.plots import plot_energies +from solvers import SNESSolver +from algorithms.so import BifurcationSolver, StabilitySolver import json import logging import os @@ -14,27 +19,13 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, assemble_scalar, dirichletbc, + form, locate_dofs_geometrical, set_bc) from dolfinx.fem.petsc import assemble_vector from dolfinx.io import XDMFFile from mpi4py import MPI from petsc4py import PETSc -sys.path.append("../") -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint, norm_H1, norm_L2 -from solvers import SNESSolver -from utils.viz import plot_matrix - -sys.path.append("../") """Discrete endommageable springs in series @@ -211,7 +202,7 @@ def solve(self, outdir=None): def discrete_atk(arg_N=2): # Mesh on node model_rank and then distribute - model_rank = 0 + pass with open("./parameters.yml") as f: parameters = yaml.load(f, Loader=yaml.FullLoader) @@ -233,15 +224,15 @@ def discrete_atk(arg_N=2): parameters["geometry"]["geom_type"] = "discrete-damageable" # Get mesh parameters Lx = parameters["geometry"]["Lx"] - Ly = parameters["geometry"]["Ly"] - tdim = parameters["geometry"]["geometric_dimension"] + parameters["geometry"]["Ly"] + parameters["geometry"]["geometric_dimension"] _nameExp = parameters["geometry"]["geom_type"] - ell_ = parameters["model"]["ell"] + parameters["model"]["ell"] # lc = ell_ / 5.0 # Get geometry model - geom_type = parameters["geometry"]["geom_type"] + parameters["geometry"]["geom_type"] _N = parameters["model"]["N"] # Create the mesh of the specimen with given dimensions @@ -299,7 +290,7 @@ def discrete_atk(arg_N=2): alpha_lb = dolfinx.fem.Function(V_alpha, name="LowerBoundDamage") dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Useful references Lx = parameters.get("geometry").get("Lx") @@ -311,12 +302,12 @@ def discrete_atk(arg_N=2): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Boundary sets - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -358,7 +349,7 @@ def a(alpha): return (1 - alpha) ** 2 + k_res def a_atk(alpha): - k_res = parameters["model"]["k_res"] + parameters["model"]["k_res"] _k = parameters["model"]["k"] return (1 - alpha) / ((_k - 1) * alpha + 1) @@ -377,7 +368,7 @@ def elastic_energy_density_atk(state): """ # Parameters _mu = parameters["model"]["mu"] - _N = parameters["model"]["N"] + parameters["model"]["N"] alpha = state["alpha"] u = state["u"] @@ -391,7 +382,7 @@ def damage_energy_density(state): Return the damage dissipation density from the state. """ # Get the material parameters - _mu = parameters["model"]["mu"] + parameters["model"]["mu"] _w1 = parameters["model"]["w1"] _ell = parameters["model"]["ell"] # Get the damage @@ -419,12 +410,12 @@ def stress(state): # f = Constant(mesh, 0) f = Constant(mesh, np.array(0, dtype=PETSc.ScalarType)) - external_work = f * state["u"] * dx + f * state["u"] * dx load_par = parameters["loading"] loads = np.linspace(load_par["min"], load_par["max"], load_par["steps"]) - solver = _AlternateMinimisation( + _AlternateMinimisation( total_energy, state, bcs, parameters.get("solvers"), bounds=(alpha_lb, alpha_ub) ) diff --git a/src/irrevolutions/practice/enpassant.py b/src/irrevolutions/practice/enpassant.py index 579ff496..788f4fb3 100644 --- a/src/irrevolutions/practice/enpassant.py +++ b/src/irrevolutions/practice/enpassant.py @@ -10,29 +10,25 @@ To change the data, change the geometry files according to presentation """ +from utils.viz import plot_mesh, plot_scalar, plot_vector +from pyvista.utilities import xvfb +from petsc4py import PETSc +from models import DamageElasticityModel as Brittle +from meshes import primitives +from dolfinx.fem import assemble_scalar, dirichletbc, locate_dofs_geometrical +from algorithms import am +import ufl +import pyvista +import numpy as np +import meshes +import matplotlib.pyplot as plt +import dolfinx.plot +import dolfinx.io +import dolfinx import logging import sys sys.path.append("../") -import dolfinx -import dolfinx.io -import dolfinx.plot -import matplotlib.pyplot as plt -import meshes -import numpy as np -import pyvista -import ufl -from algorithms import am -from dolfinx.fem import ( - assemble_scalar, - dirichletbc, - locate_dofs_geometrical, -) -from meshes import primitives -from models import DamageElasticityModel as Brittle -from petsc4py import PETSc -from pyvista.utilities import xvfb -from utils.viz import plot_mesh, plot_scalar, plot_vector logging.basicConfig() # logging.getLogger().setLevel(logging.DEBUG) diff --git a/src/irrevolutions/practice/multiaxial-disc.py b/src/irrevolutions/practice/multiaxial-disc.py index cada246c..bf650202 100644 --- a/src/irrevolutions/practice/multiaxial-disc.py +++ b/src/irrevolutions/practice/multiaxial-disc.py @@ -10,7 +10,6 @@ import pandas as pd import yaml from dolfinx.common import list_timings - # from mpi4py import MPI from petsc4py import PETSc @@ -81,10 +80,9 @@ def multiaxial_disc(nest): thanks to: Camilla Zolesi""" # parameters: INPUT - model_rank = 0 with open("../test/parameters.yml") as f: - parameters = yaml.load(f, Loader=yaml.FullLoader) + yaml.load(f, Loader=yaml.FullLoader) # history_data: OUTPUT diff --git a/src/irrevolutions/practice/pacman-cone.py b/src/irrevolutions/practice/pacman-cone.py index 0cb6131b..31a25642 100644 --- a/src/irrevolutions/practice/pacman-cone.py +++ b/src/irrevolutions/practice/pacman-cone.py @@ -1,4 +1,11 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint +from utils.viz import plot_mesh, plot_scalar, plot_vector +from utils.lib import _local_notch_asymptotic +from models import DamageElasticityModel as Brittle +from meshes.pacman import mesh_pacman +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import AlternateMinimisation, HybridSolver import hashlib import json import logging @@ -16,32 +23,17 @@ import ufl import yaml from dolfinx.common import list_timings, timing -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_topological, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_topological, set_bc) from dolfinx.io import XDMFFile, gmshio from dolfinx.mesh import locate_entities_boundary - # from mpi4py import MPI from petsc4py import PETSc from pyvista.utilities import xvfb sys.path.append("../") -from algorithms.am import AlternateMinimisation, HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint -from meshes.pacman import mesh_pacman -from models import DamageElasticityModel as Brittle -from utils.lib import _local_notch_asymptotic -from utils.viz import plot_mesh, plot_scalar, plot_vector + logging.basicConfig(level=logging.DEBUG) @@ -95,9 +87,7 @@ def check_snes_convergence(snes): def pacman_cone(resolution=2, slug="pacman"): - Lx = 1.0 - Ly = 0.1 - _nel = 30 + pass outdir = os.path.join(os.path.dirname(__file__), "output") prefix = os.path.join(outdir, "pacman-cone") @@ -192,7 +182,7 @@ def pacman_cone(resolution=2, slug="pacman"): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Set Bcs Function @@ -239,7 +229,7 @@ def pacman_cone(resolution=2, slug="pacman"): ) bcs = {"bcs_u": bcs_u, "bcs_alpha": bcs_alpha} - bcs_z = bcs_u + bcs_alpha + bcs_u + bcs_alpha # Mechanical model @@ -256,7 +246,7 @@ def pacman_cone(resolution=2, slug="pacman"): # Solvers - solver = AlternateMinimisation( + AlternateMinimisation( total_energy, state, bcs, parameters.get("solvers"), bounds=(alpha_lb, alpha_ub) ) @@ -328,7 +318,7 @@ def pacman_cone(resolution=2, slug="pacman"): ColorPrint.print_bold(" Solving second order: Rate Pb. ") ColorPrint.print_bold("===================-=================") - is_stable = bifurcation.solve(alpha_lb) + bifurcation.solve(alpha_lb) is_elastic = bifurcation.is_elastic() inertia = bifurcation.get_inertia() @@ -385,10 +375,7 @@ def pacman_cone(resolution=2, slug="pacman"): # Viz if "SINGULARITY_CONTAINER" not in os.environ: - from utils.plots import ( - plot_AMit_load, - plot_energies, - ) + from utils.plots import plot_AMit_load, plot_energies if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") @@ -421,7 +408,7 @@ def pacman_cone(resolution=2, slug="pacman"): # shape=(1, 2), # ) - _timings = list_timings(MPI.COMM_WORLD, [dolfinx.common.TimingType.wall]) + list_timings(MPI.COMM_WORLD, [dolfinx.common.TimingType.wall]) performance = { "N": [], diff --git a/src/irrevolutions/practice/pacman_hybrid.py b/src/irrevolutions/practice/pacman_hybrid.py index c07c0e9a..63db732c 100644 --- a/src/irrevolutions/practice/pacman_hybrid.py +++ b/src/irrevolutions/practice/pacman_hybrid.py @@ -1,3 +1,19 @@ +from irrevolutions.utils import ColorPrint, set_vector_to_constant +from utils.viz import plot_mesh, plot_scalar, plot_vector +from utils.lib import _local_notch_asymptotic +from solvers.function import functions_to_vec +from petsc4py import PETSc +from mpi4py import MPI +from models import DamageElasticityModel as Brittle +from meshes.pacman import mesh_pacman +from algorithms.am import HybridSolver +import ufl +import petsc4py +import numpy as np +import dolfinx +from datetime import date +import logging +import json import os import sys from pathlib import Path @@ -6,35 +22,15 @@ import matplotlib.pyplot as plt import pyvista import yaml -from dolfinx.fem import ( - Function, - FunctionSpace, - dirichletbc, - locate_dofs_topological, - set_bc, -) +from dolfinx.fem import (Function, FunctionSpace, dirichletbc, + locate_dofs_topological, set_bc) from dolfinx.io import XDMFFile, gmshio from dolfinx.mesh import locate_entities_boundary from pyvista.utilities import xvfb sys.path.append("../") -import json -import logging -from datetime import date -import dolfinx -import numpy as np -import petsc4py -import ufl -from algorithms.am import HybridSolver -from irrevolutions.utils import ColorPrint, set_vector_to_constant -from meshes.pacman import mesh_pacman -from models import DamageElasticityModel as Brittle -from mpi4py import MPI -from petsc4py import PETSc -from solvers.function import functions_to_vec -from utils.lib import _local_notch_asymptotic -from utils.viz import plot_mesh, plot_scalar, plot_vector + logging.basicConfig(level=logging.INFO) @@ -104,11 +100,9 @@ def check_snes_convergence(snes): def pacman_hybrid(nest): # Parameters - Lx = 1.0 - Ly = 0.1 + pass # tdim = 2 # _ell = 0.3 - _nel = 30 with open(f"{prefix}/parameters.yaml") as f: parameters = yaml.load(f, Loader=yaml.FullLoader) @@ -174,7 +168,7 @@ def pacman_hybrid(nest): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Set Bcs Function @@ -221,7 +215,7 @@ def pacman_hybrid(nest): ) bcs = {"bcs_u": bcs_u, "bcs_alpha": bcs_alpha} - bcs_z = bcs_u + bcs_alpha + bcs_u + bcs_alpha # Bounds for Newton solver @@ -250,8 +244,8 @@ def pacman_hybrid(nest): Eu = ufl.derivative(total_energy, u, ufl.TestFunction(V_u)) Ealpha = ufl.derivative(total_energy, alpha, ufl.TestFunction(V_alpha)) - F = [Eu, Ealpha] - z = [u, alpha] + [Eu, Ealpha] + [u, alpha] hybrid = HybridSolver( total_energy, @@ -271,7 +265,7 @@ def pacman_hybrid(nest): with open(f"{prefix}/parameters.yaml", "w") as file: yaml.dump(parameters, file) - snes = hybrid.newton.snes + hybrid.newton.snes lb = dolfinx.fem.petsc.create_vector_nest(hybrid.newton.F_form) ub = dolfinx.fem.petsc.create_vector_nest(hybrid.newton.F_form) diff --git a/src/irrevolutions/practice/thinfilm-bar.py b/src/irrevolutions/practice/thinfilm-bar.py index fbea3503..01d179b6 100644 --- a/src/irrevolutions/practice/thinfilm-bar.py +++ b/src/irrevolutions/practice/thinfilm-bar.py @@ -1,4 +1,14 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint, setup_logger_mpi, table_timing_data +from utils.viz import plot_profile, plot_scalar, plot_vector +from utils.plots import plot_AMit_load, plot_energies, plot_force_displacement +from utils.parametric import parameters_vs_elle +from solvers.function import vec_to_functions +from models import BrittleMembraneOverElasticFoundation as ThinFilm +from meshes.primitives import mesh_bar_gmshapi +from default import ResultsStorage, Visualization +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import HybridSolver import json import logging import os @@ -14,38 +24,18 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio - # from mpi4py import MPI from petsc4py import PETSc from pyvista.utilities import xvfb sys.path.append("../") -from algorithms.am import HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from default import ResultsStorage, Visualization +# from meshes.pacman import mesh_pacman # logging.basicConfig(level=logging.DEBUG) -from irrevolutions.utils import ColorPrint, setup_logger_mpi, table_timing_data -from meshes.primitives import mesh_bar_gmshapi -from models import BrittleMembraneOverElasticFoundation as ThinFilm -from solvers.function import vec_to_functions -from utils.parametric import parameters_vs_elle -from utils.plots import plot_AMit_load, plot_energies, plot_force_displacement - -# from meshes.pacman import mesh_pacman -from utils.viz import plot_profile, plot_scalar, plot_vector # ------------------------------------------------------------------ @@ -150,7 +140,7 @@ def main(parameters, storage=None): u = Function(V_u, name="Displacement") zero_u = Function(V_u, name="Boundary Displacement") alpha = Function(V_alpha, name="Damage") - zero_alpha = Function(V_alpha, name="Damage Boundary Field") + Function(V_alpha, name="Damage Boundary Field") alphadot = dolfinx.fem.Function(V_alpha, name="Damage_rate") state = {"u": u, "alpha": alpha} @@ -158,16 +148,15 @@ def main(parameters, storage=None): # Perturbation β = Function(V_alpha, name="DamagePerturbation") v = Function(V_u, name="DisplacementPerturbation") - perturbation = {"v": v, "beta": β} - z = [u, alpha] + [u, alpha] # need upper/lower bound for the damage field alpha_lb = Function(V_alpha, name="Lower bound") alpha_ub = Function(V_alpha, name="Upper bound") # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -175,7 +164,7 @@ def main(parameters, storage=None): zero_u = Function(V_u) u_ = Function(V_u, name="Boundary Displacement") - zero_alpha = Function(V_alpha) + Function(V_alpha) bc_u_left = dirichletbc(zero_u, dofs_u_left) bc_u_right = dirichletbc(u_, dofs_u_right) @@ -291,8 +280,8 @@ def main(parameters, storage=None): ColorPrint.print_bold(" Solving second order: Rate Pb. ") ColorPrint.print_bold("===================-=================") - is_stable = bifurcation.solve(alpha_lb) - is_elastic = bifurcation.is_elastic() + bifurcation.solve(alpha_lb) + bifurcation.is_elastic() inertia = bifurcation.get_inertia() ColorPrint.print_bold(" Solving second order: Stability Pb. ") @@ -322,7 +311,7 @@ def main(parameters, storage=None): subplot=(0, 0), lineproperties={"c": "k", "label": "$\\beta$"}, ) - ax = _plt.gca() + _plt.gca() _plt.legend() _plt.fill_between(data[0], data[1].reshape(len(data[1]))) _plt.title("Perurbation") @@ -342,7 +331,7 @@ def main(parameters, storage=None): subplot=(0, 0), lineproperties={"c": "k", "label": "$\\beta$"}, ) - ax = _plt.gca() + _plt.gca() _plt.legend() _plt.fill_between(data[0], data[1].reshape(len(data[1]))) _plt.title("Perurbation from the Cone") @@ -385,7 +374,7 @@ def main(parameters, storage=None): history_data["inertia"].append(inertia) # postprocessing - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") plot_AMit_load(history_data, file=f"{prefix}/{_nameExp}_it_load.pdf") @@ -400,7 +389,7 @@ def main(parameters, storage=None): file.write_function(alpha, t) # postprocessing - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): if comm.Get_rank == 1: xvfb.start_xvfb(wait=0.05) pyvista.OFF_SCREEN = True diff --git a/src/irrevolutions/practice/traction-AT1_cone.py b/src/irrevolutions/practice/traction-AT1_cone.py index e7076ecd..d4f3d98d 100644 --- a/src/irrevolutions/practice/traction-AT1_cone.py +++ b/src/irrevolutions/practice/traction-AT1_cone.py @@ -1,4 +1,15 @@ #!/usr/bin/env python3 +from utils.viz import plot_scalar, plot_vector +from pyvista.utilities import xvfb +import pyvista +from utils.plots import plot_AMit_load, plot_force_displacement +import hashlib +from irrevolutions.utils import ColorPrint +from utils.plots import plot_energies +from models import DamageElasticityModel as Brittle +from meshes.primitives import mesh_bar_gmshapi +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import AlternateMinimisation, HybridSolver import json import logging import os @@ -14,27 +25,14 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio from mpi4py import MPI from petsc4py import PETSc sys.path.append("../") -from algorithms.am import AlternateMinimisation, HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint -from meshes.primitives import mesh_bar_gmshapi -from models import DamageElasticityModel as Brittle -from utils.plots import plot_energies + """Traction endommageable bar @@ -102,7 +100,6 @@ mesh, mts, fts = gmshio.model_to_mesh(gmsh_model, comm, model_rank, tdim) -import hashlib signature = hashlib.md5(str(parameters).encode("utf-8")).hexdigest() @@ -363,7 +360,6 @@ # Viz -from utils.plots import plot_AMit_load, plot_force_displacement if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") @@ -371,11 +367,7 @@ plot_force_displacement(history_data, file=f"{prefix}/{_nameExp}_stress-load.pdf") -import sys -import pyvista -from pyvista.utilities import xvfb -from utils.viz import plot_scalar, plot_vector # xvfb.start_xvfb(wait=0.05) diff --git a/src/irrevolutions/practice/traction-AT1_first_order.py b/src/irrevolutions/practice/traction-AT1_first_order.py index 02d5efe0..b5e193f9 100644 --- a/src/irrevolutions/practice/traction-AT1_first_order.py +++ b/src/irrevolutions/practice/traction-AT1_first_order.py @@ -1,4 +1,15 @@ #!/usr/bin/env python3 +from utils.viz import plot_scalar, plot_vector +from pyvista.utilities import xvfb +import pyvista +from utils.plots import plot_AMit_load, plot_force_displacement +import hashlib +from irrevolutions.utils import ColorPrint +from utils.plots import plot_energies +from models import DamageElasticityModel as Brittle +from meshes.primitives import mesh_bar_gmshapi +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import AlternateMinimisation, HybridSolver import json import logging import os @@ -14,27 +25,14 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio from mpi4py import MPI from petsc4py import PETSc sys.path.append("../") -from algorithms.am import AlternateMinimisation, HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint -from meshes.primitives import mesh_bar_gmshapi -from models import DamageElasticityModel as Brittle -from utils.plots import plot_energies + sys.path.append("../") @@ -105,7 +103,6 @@ mesh, mts, fts = gmshio.model_to_mesh(gmsh_model, comm, model_rank, tdim) -import hashlib signature = hashlib.md5(str(parameters).encode("utf-8")).hexdigest() @@ -358,7 +355,6 @@ # Viz -from utils.plots import plot_AMit_load, plot_force_displacement if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") @@ -366,11 +362,7 @@ plot_force_displacement(history_data, file=f"{prefix}/{_nameExp}_stress-load.pdf") -import sys -import pyvista -from pyvista.utilities import xvfb -from utils.viz import plot_scalar, plot_vector # xvfb.start_xvfb(wait=0.05) diff --git a/src/irrevolutions/practice/traction-AT2_cone.py b/src/irrevolutions/practice/traction-AT2_cone.py index 53867297..133ebf27 100644 --- a/src/irrevolutions/practice/traction-AT2_cone.py +++ b/src/irrevolutions/practice/traction-AT2_cone.py @@ -1,4 +1,15 @@ #!/usr/bin/env python3 +from utils.viz import plot_scalar, plot_vector +from pyvista.utilities import xvfb +import pyvista +from utils.plots import plot_AMit_load, plot_force_displacement +import hashlib +from irrevolutions.utils import ColorPrint +from utils.plots import plot_energies +from models import DamageElasticityModel as Brittle +from meshes.primitives import mesh_bar_gmshapi +from algorithms.so_merged import BifurcationSolver, StabilitySolver +from algorithms.am import AlternateMinimisation, HybridSolver import json import logging import os @@ -12,27 +23,14 @@ import petsc4py import ufl import yaml -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio from mpi4py import MPI from petsc4py import PETSc sys.path.append("../") -from algorithms.am import AlternateMinimisation, HybridSolver -from algorithms.so_merged import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint -from meshes.primitives import mesh_bar_gmshapi -from models import DamageElasticityModel as Brittle -from utils.plots import plot_energies + sys.path.append("../") @@ -85,7 +83,6 @@ def w(self, alpha): gmsh_model, tdim = mesh_bar_gmshapi(geom_type, Lx, Ly, _lc, tdim) mesh, mts, fts = gmshio.model_to_mesh(gmsh_model, comm, model_rank, tdim) -import hashlib signature = hashlib.md5(str(parameters).encode("utf-8")).hexdigest() outdir = os.path.join(os.path.dirname(__file__), "output") @@ -309,18 +306,13 @@ def w(self, alpha): df = pd.DataFrame(history_data) print(df.drop(["solver_data", "cone_data"], axis=1)) -from utils.plots import plot_AMit_load, plot_force_displacement if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") plot_AMit_load(history_data, file=f"{prefix}/{_nameExp}_it_load.pdf") plot_force_displacement(history_data, file=f"{prefix}/{_nameExp}_stress-load.pdf") -import sys -import pyvista -from pyvista.utilities import xvfb -from utils.viz import plot_scalar, plot_vector xvfb.start_xvfb(wait=0.05) pyvista.OFF_SCREEN = True diff --git a/src/irrevolutions/practice/traction-ATJJ.py b/src/irrevolutions/practice/traction-ATJJ.py index 81a61afb..d4d86af3 100644 --- a/src/irrevolutions/practice/traction-ATJJ.py +++ b/src/irrevolutions/practice/traction-ATJJ.py @@ -1,10 +1,16 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint +from models import DamageElasticityModel +from meshes.primitives import mesh_bar_gmshapi +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import HybridSolver +from utils.plots import plot_energies import json import logging import os import sys from pathlib import Path - +import hashlib import dolfinx import dolfinx.mesh import dolfinx.plot @@ -14,27 +20,15 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio from mpi4py import MPI from petsc4py import PETSc sys.path.append("../") -from algorithms.am import HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint -from meshes.primitives import mesh_bar_gmshapi -from models import DamageElasticityModel + logging.getLogger().setLevel(logging.ERROR) @@ -205,10 +199,10 @@ def traction_with_parameters(parameters, slug=""): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -507,7 +501,7 @@ def traction_with_parameters(parameters, slug=""): "label": f"$\\alpha$ with $\ell$ = {parameters['model']['ell']:.2f}", }, ) - ax = _plt.gca() + _plt.gca() _plt.legend() _plt.fill_between(data[0], data[1].reshape(len(data[1]))) _plt.title("Damage profile") @@ -523,8 +517,8 @@ def _plot_bif_spectrum_profile( import matplotlib.pyplot as plt from utils.viz import plot_profile - # __import__('pdb').set_trace() + # __import__('pdb').set_trace() # fields = spectrum["perturbations_beta"] # fields = spectrum["perturbations_beta"] fields = [item.get("beta") for item in spectrum] @@ -532,8 +526,9 @@ def _plot_bif_spectrum_profile( num_cols = 1 num_rows = (n + num_cols - 1) // num_cols - if plotter == None: + if plotter is None: import pyvista + # from pyvista.utilities import xvfb plotter = pyvista.Plotter( @@ -604,8 +599,9 @@ def _plot_bif_spectrum_profile_fullvec( num_cols = 1 num_rows = (n + num_cols - 1) // num_cols - if plotter == None: + if plotter is None: import pyvista + # from pyvista.utilities import xvfb plotter = pyvista.Plotter( @@ -681,8 +677,9 @@ def _plot_perturbations_profile( figure = plt.figure() - if plotter == None: + if plotter is None: import pyvista + # from pyvista.utilities import xvfb plotter = pyvista.Plotter( @@ -742,8 +739,6 @@ def _plot_perturbations_profile( return plotter, _plt - pass - def param_ell(): # for ell in [0.1, 0.2, 0.3]: diff --git a/src/irrevolutions/practice/traction-bar-clean.py b/src/irrevolutions/practice/traction-bar-clean.py index 52300ce0..410fe56d 100644 --- a/src/irrevolutions/practice/traction-bar-clean.py +++ b/src/irrevolutions/practice/traction-bar-clean.py @@ -1,4 +1,15 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint, _logger, simulation_info +from utils.viz import plot_profile, plot_scalar, plot_vector +from utils.plots import plot_AMit_load, plot_energies, plot_force_displacement +from solvers.function import vec_to_functions +from pyvista.utilities import xvfb +from models import DamageElasticityModel as Brittle +from meshes.primitives import mesh_bar_gmshapi +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import AlternateMinimisation, HybridSolver +import pyvista +import hashlib import json import logging import os @@ -12,33 +23,15 @@ import petsc4py import ufl import yaml -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio from mpi4py import MPI from petsc4py import PETSc sys.path.append("../") -import hashlib -import pyvista -from algorithms.am import AlternateMinimisation, HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint, _logger, simulation_info -from meshes.primitives import mesh_bar_gmshapi -from models import DamageElasticityModel as Brittle -from pyvista.utilities import xvfb -from solvers.function import vec_to_functions -from utils.plots import plot_AMit_load, plot_energies, plot_force_displacement -from utils.viz import plot_profile, plot_scalar, plot_vector + class BrittleAT2(Brittle): @@ -140,7 +133,7 @@ def main(parameters, model="at2", storage=None): Ly = parameters["geometry"]["Ly"] tdim = parameters["geometry"]["geometric_dimension"] _nameExp = parameters["geometry"]["geom_type"] - ell_ = parameters["model"]["ell"] + parameters["model"]["ell"] lc = parameters["model"]["ell"] / parameters["geometry"]["mesh_size_factor"] geom_type = parameters["geometry"]["geom_type"] @@ -190,7 +183,7 @@ def main(parameters, model="at2", storage=None): alpha_ub = Function(V_alpha, name="Upper bound") dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) @@ -207,7 +200,6 @@ def main(parameters, model="at2", storage=None): # Perturbation β = Function(V_alpha, name="DamagePerturbation") v = Function(V_u, name="DisplacementPerturbation") - perturbation = {"v": v, "beta": β} for f in [zero_u, zero_alpha, u_, alpha_lb, alpha_ub]: f.vector.ghostUpdate( @@ -397,9 +389,9 @@ def main(parameters, model="at2", storage=None): ColorPrint.print_bold(" Written timely data. ") - df = pd.DataFrame(history_data) + pd.DataFrame(history_data) - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): if comm.Get_size() == 1: # if comm.rank == 0 and comm.Get_size() == 1: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") @@ -446,7 +438,7 @@ def plot_perturbations(comm, Lx, prefix, β, v, bifurcation, stability, i_t): subplot=(0, 0), lineproperties={"c": "k", "label": "$\\beta$"}, ) - ax = _plt.gca() + _plt.gca() _plt.legend() _plt.fill_between(data[0], data[1].reshape(len(data[1]))) _plt.title("Perurbation") @@ -466,7 +458,7 @@ def plot_perturbations(comm, Lx, prefix, β, v, bifurcation, stability, i_t): subplot=(0, 0), lineproperties={"c": "k", "label": "$\\beta$"}, ) - ax = _plt.gca() + _plt.gca() _plt.legend() _plt.fill_between(data[0], data[1].reshape(len(data[1]))) _plt.title("Perurbation from the Cone") diff --git a/src/irrevolutions/practice/traction-cone.py b/src/irrevolutions/practice/traction-cone.py index e135b55b..c3c1c02b 100644 --- a/src/irrevolutions/practice/traction-cone.py +++ b/src/irrevolutions/practice/traction-cone.py @@ -1,10 +1,15 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint +from models import DamageElasticityModel as Brittle +from meshes.primitives import mesh_bar_gmshapi +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import HybridSolver import json import logging import os import sys from pathlib import Path - +import hashlib import dolfinx import dolfinx.mesh import dolfinx.plot @@ -14,26 +19,14 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio from mpi4py import MPI from petsc4py import PETSc - +from irrevolutions.utils.parametric import (parameters_vs_ell, parameters_vs_SPA_scaling) sys.path.append("../") -from algorithms.am import HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint -from meshes.primitives import mesh_bar_gmshapi -from models import DamageElasticityModel as Brittle + logging.getLogger().setLevel(logging.ERROR) @@ -137,10 +130,10 @@ def traction_with_parameters(parameters, slug=""): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -359,7 +352,8 @@ def traction_with_parameters(parameters, slug=""): # Viz - from utils.plots import plot_AMit_load, plot_energies, plot_force_displacement + from utils.plots import (plot_AMit_load, plot_energies, + plot_force_displacement) if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") diff --git a/src/irrevolutions/practice/traction-parametric.py b/src/irrevolutions/practice/traction-parametric.py index 3bafd81a..f0971287 100644 --- a/src/irrevolutions/practice/traction-parametric.py +++ b/src/irrevolutions/practice/traction-parametric.py @@ -1,4 +1,14 @@ #!/usr/bin/env python3 +from irrevolutions.utils import ColorPrint +from utils.viz import plot_scalar, plot_vector +from utils.plots import plot_energies, plot_force_displacement +from pyvista.utilities import xvfb +from models import DamageElasticityModel as Brittle +from meshes.primitives import mesh_bar_gmshapi +from algorithms.so import BifurcationSolver, StabilitySolver +from algorithms.am import AlternateMinimisation, HybridSolver +import pyvista +import hashlib import json import logging import os @@ -13,32 +23,15 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import gmshio from mpi4py import MPI from petsc4py import PETSc sys.path.append("../") -import hashlib -import pyvista -from algorithms.am import AlternateMinimisation, HybridSolver -from algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint -from meshes.primitives import mesh_bar_gmshapi -from models import DamageElasticityModel as Brittle -from pyvista.utilities import xvfb -from utils.plots import plot_energies, plot_force_displacement -from utils.viz import plot_scalar, plot_vector + class BrittleAT2(Brittle): @@ -69,10 +62,10 @@ def store_results(self, parameters, history_data, state): Args: history_data (dict): Dictionary containing simulation data. """ - t = history_data["load"][-1] + history_data["load"][-1] - u = state["u"] - alpha = state["alpha"] + state["u"] + state["alpha"] if self.comm.rank == 0: with open(f"{self.prefix}/parameters.yaml", "w") as file: @@ -197,10 +190,10 @@ def main(parameters, model="at2", storage=None): alpha_ub = Function(V_alpha, name="Upper bound") dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) @@ -243,7 +236,7 @@ def main(parameters, model="at2", storage=None): load_par = parameters["loading"] loads = np.linspace(load_par["min"], load_par["max"], load_par["steps"]) - solver = AlternateMinimisation( + AlternateMinimisation( total_energy, state, bcs, parameters.get("solvers"), bounds=(alpha_lb, alpha_ub) ) @@ -389,7 +382,7 @@ def main(parameters, model="at2", storage=None): # print(df.drop(['solver_data', 'cone_data'], axis=1)) print(df.drop(["cone_data"], axis=1)) - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): if comm.rank == 0: plot_energies(history_data, file=f"{prefix}/{_nameExp}_energies.pdf") # plot_AMit_load(history_data, file=f"{prefix}/{_nameExp}_it_load.pdf") @@ -495,7 +488,7 @@ def param_vs_s(base_parameters, base_signature): ) ColorPrint.print_bold(f"===================-{signature}-=================") - with dolfinx.common.Timer("~Computation Experiment") as timer: + with dolfinx.common.Timer("~Computation Experiment"): history_data, performance, state = main(parameters, _storage) _timings = table_timing_data() @@ -546,7 +539,7 @@ def param_vs_dry(base_parameters, base_signature): ) ColorPrint.print_bold(f"===================-{signature}-=================") - with dolfinx.common.Timer("~Computation Experiment") as timer: + with dolfinx.common.Timer("~Computation Experiment"): history_data, performance, state = main(parameters, _storage) _timings = table_timing_data() @@ -574,11 +567,9 @@ def param_vs_dry(base_parameters, base_signature): if __name__ == "__main__": import argparse - from utils.parametric import ( - parameters_vs_ell, - parameters_vs_n_refinement, - parameters_vs_SPA_scaling, - ) + from utils.parametric import (parameters_vs_ell, + parameters_vs_n_refinement, + parameters_vs_SPA_scaling) admissible_models = {"at1", "at2", "thinfilm"} diff --git a/src/irrevolutions/practice/unstabinst.py b/src/irrevolutions/practice/unstabinst.py index eef2bea1..778cf3e2 100644 --- a/src/irrevolutions/practice/unstabinst.py +++ b/src/irrevolutions/practice/unstabinst.py @@ -1,30 +1,25 @@ # library include +from utils.viz import plot_mesh, plot_scalar, plot_vector +from pyvista.utilities import xvfb +from petsc4py import PETSc +from models import DamageElasticityModel as Brittle +from dolfinx.fem import (assemble_scalar, dirichletbc, locate_dofs_geometrical, + set_bc) +from algorithms import am +import ufl +import pyvista +import numpy as np +import meshes +import matplotlib.pyplot as plt +import gmsh +import dolfinx.plot +import dolfinx.io +import dolfinx +import logging import sys sys.path.append("../") -import logging -import sys -import dolfinx -import dolfinx.io -import dolfinx.plot -import gmsh -import matplotlib.pyplot as plt -import meshes -import numpy as np -import pyvista -import ufl -from algorithms import am -from dolfinx.fem import ( - assemble_scalar, - dirichletbc, - locate_dofs_geometrical, - set_bc, -) -from models import DamageElasticityModel as Brittle -from petsc4py import PETSc -from pyvista.utilities import xvfb -from utils.viz import plot_mesh, plot_scalar, plot_vector logging.basicConfig(level=logging.INFO) @@ -104,7 +99,7 @@ def mesh_V( gmsh.option.setNumber("General.Terminal", 1) gmsh.option.setNumber("Mesh.Algorithm", 5) hopen = a * np.tan((gamma / 2.0) * np.pi / 180) - c0 = h / 40 + h / 40 load_len = min(h / 40, L / 80) tdim = 2 diff --git a/src/irrevolutions/solvers/__init__.py b/src/irrevolutions/solvers/__init__.py index c9180050..969ad05c 100644 --- a/src/irrevolutions/solvers/__init__.py +++ b/src/irrevolutions/solvers/__init__.py @@ -1,3 +1,6 @@ +from dolfinx.fem.petsc import (apply_lifting, assemble_matrix, assemble_vector, + create_matrix, create_vector, set_bc) +from dolfinx.cpp.log import LogLevel, log import sys import dolfinx @@ -8,17 +11,7 @@ petsc4py.init(sys.argv) -from dolfinx.cpp.log import LogLevel, log - # from damage.utils import ColorPrint -from dolfinx.fem.petsc import ( - apply_lifting, - assemble_matrix, - assemble_vector, - create_matrix, - create_vector, - set_bc, -) # import pdb; # pdb.set_trace() diff --git a/src/irrevolutions/solvers/slepcblockproblem.py b/src/irrevolutions/solvers/slepcblockproblem.py index 1b197626..6a1240ad 100644 --- a/src/irrevolutions/solvers/slepcblockproblem.py +++ b/src/irrevolutions/solvers/slepcblockproblem.py @@ -4,7 +4,6 @@ # from yaml.tokens import BlockSequenceStartToken import dolfinx import ufl - # plot_matrix from petsc4py import PETSc from slepc4py import SLEPc diff --git a/src/irrevolutions/solvers/snesblockproblem.py b/src/irrevolutions/solvers/snesblockproblem.py index 39aaa165..18ebacb0 100644 --- a/src/irrevolutions/solvers/snesblockproblem.py +++ b/src/irrevolutions/solvers/snesblockproblem.py @@ -284,7 +284,6 @@ def _plot_solution(self, it): f"./output/test_hybrid/test_newtonblock_MPI{self.comm.size}-{it}-.png" ) _plt.close() - pass def _monitor_nest(self, snes, it, norm): self.compute_norms_nest(snes) diff --git a/src/irrevolutions/utils/__init__.py b/src/irrevolutions/utils/__init__.py index 10a87658..4bfb03dd 100644 --- a/src/irrevolutions/utils/__init__.py +++ b/src/irrevolutions/utils/__init__.py @@ -1,3 +1,7 @@ +from dolfinx.io import XDMFFile +from slepc4py import __version__ as slepc_version +from petsc4py import __version__ as petsc_version +from dolfinx import __version__ as dolfinx_version import json import logging import os @@ -16,6 +20,64 @@ comm = MPI.COMM_WORLD +error_codes = { + "PETSC_SUCCESS": 0, + "PETSC_ERR_BOOLEAN_MACRO_FAILURE": 1, + "PETSC_ERR_MIN_VALUE": 54, + "PETSC_ERR_MEM": 55, + "PETSC_ERR_SUP": 56, + "PETSC_ERR_SUP_SYS": 57, + "PETSC_ERR_ORDER": 58, + "PETSC_ERR_SIG": 59, + "PETSC_ERR_FP": 72, + "PETSC_ERR_COR": 74, + "PETSC_ERR_LIB": 76, + "PETSC_ERR_PLIB": 77, + "PETSC_ERR_MEMC": 78, + "PETSC_ERR_CONV_FAILED": 82, + "PETSC_ERR_USER": 83, + "PETSC_ERR_SYS": 88, + "PETSC_ERR_POINTER": 70, + "PETSC_ERR_MPI_LIB_INCOMP": 87, + "PETSC_ERR_ARG_SIZ": 60, + "PETSC_ERR_ARG_IDN": 61, + "PETSC_ERR_ARG_WRONG": 62, + "PETSC_ERR_ARG_CORRUPT": 64, + "PETSC_ERR_ARG_OUTOFRANGE": 63, + "PETSC_ERR_ARG_BADPTR": 68, + "PETSC_ERR_ARG_NOTSAMETYPE": 69, + "PETSC_ERR_ARG_NOTSAMECOMM": 80, + "PETSC_ERR_ARG_WRONGSTATE": 73, + "PETSC_ERR_ARG_TYPENOTSET": 89, + "PETSC_ERR_ARG_INCOMP": 75, + "PETSC_ERR_ARG_NULL": 85, + "PETSC_ERR_ARG_UNKNOWN_TYPE": 86, + "PETSC_ERR_FILE_OPEN": 65, + "PETSC_ERR_FILE_READ": 66, + "PETSC_ERR_FILE_WRITE": 67, + "PETSC_ERR_FILE_UNEXPECTED": 79, + "PETSC_ERR_MAT_LU_ZRPVT": 71, + "PETSC_ERR_MAT_CH_ZRPVT": 81, + "PETSC_ERR_INT_OVERFLOW": 84, + "PETSC_ERR_FLOP_COUNT": 90, + "PETSC_ERR_NOT_CONVERGED": 91, + "PETSC_ERR_MISSING_FACTOR": 92, + "PETSC_ERR_OPT_OVERWRITE": 93, + "PETSC_ERR_WRONG_MPI_SIZE": 94, + "PETSC_ERR_USER_INPUT": 95, + "PETSC_ERR_GPU_RESOURCE": 96, + "PETSC_ERR_GPU": 97, + "PETSC_ERR_MPI": 98, + "PETSC_ERR_RETURN": 99, + "PETSC_ERR_MEM_LEAK": 100, + "PETSC_ERR_MAX_VALUE": 101, + "PETSC_ERR_MIN_SIGNED_BOUND_DO_NOT_USE": "INT_MIN", + "PETSC_ERR_MAX_SIGNED_BOUND_DO_NOT_USE": "INT_MAX", +} + + +# Reverse the dictionary to create an inverse mapping +translatePETScERROR = {v: k for k, v in error_codes.items()} class ColorPrint: """ @@ -84,7 +146,7 @@ def format(self, record): comm = MPI.COMM_WORLD rank = comm.Get_rank() - size = comm.Get_size() + comm.Get_size() # Desired log level for the root process (rank 0) root_process_log_level = logging.INFO # Adjust as needed @@ -193,9 +255,6 @@ def get_branch_details(): "commit_hash": commit_hash, } -from dolfinx import __version__ as dolfinx_version -from petsc4py import __version__ as petsc_version -from slepc4py import __version__ as slepc_version library_info = { "dolfinx_version": dolfinx_version, @@ -285,7 +344,6 @@ def find_offending_columns_lengths(data): return lengths -from dolfinx.io import XDMFFile class ResultsStorage: @@ -432,7 +490,7 @@ def save_binary_data(filename, data): item.view(viewer) elif isinstance(data, PETSc.Mat): data.view(viewer) - elif isinstance(data, PEtest_binarydataioTSc.Vec): + elif isinstance(data, PETSc.Vec): data.view(viewer) else: raise ValueError("Unsupported data type for saving") diff --git a/src/irrevolutions/utils/eigenspace.py b/src/irrevolutions/utils/eigenspace.py index bccb282a..d606e186 100644 --- a/src/irrevolutions/utils/eigenspace.py +++ b/src/irrevolutions/utils/eigenspace.py @@ -103,7 +103,7 @@ def solve_eigenspace_cone(parameters, idx=0): dict: A dictionary containing 'v', 'β', and 'D'. """ x = sp.symbols("x", real=True) - v = sp.Function("v", real=True)(x) + sp.Function("v", real=True)(x) β = sp.Function("β", real=True)(x) C, A = sp.symbols("C A") @@ -124,11 +124,11 @@ def solve_eigenspace_cone(parameters, idx=0): (C * (1 + sp.cos(sp.pi * x / D)), (0 <= x) & (x <= D)), (0, True) ) - _min = (np.pi**2 * a) ** (1 / 3) * (b * c**2) ** (2 / 3) + (np.pi**2 * a) ** (1 / 3) * (b * c**2) ** (2 / 3) elif b * c**2 == sp.pi**2 * a: print("case eq") - _min = b * c**2 + b * c**2 _subs = {C: 0} C = 0 β = C + A * sp.cos(sp.pi * x) @@ -187,3 +187,32 @@ def book_of_the_numbers(scale_b=3, scale_c=3): break return {"a": a, "b": b, "c": c} + + +def l2_norm(components): + """ + Compute the L2 norm of a vector field defined by components on their respective domains. + + Parameters: + components (list): List of tuples (x, f) where x is the mesh coordinates and f is the field values. + + Returns: + float: L2 norm of the vector field. + """ + norms = [] + + for x, f in components: + # Compute the square of the field values + squared_values = f**2 + + # Compute the integral using the trapezoidal rule + integral = np.trapz(squared_values, x) + + # Take the square root to get the L2 norm + component_norm = np.sqrt(integral) + norms.append(component_norm) + + # Compute the vector norm by summing the squared norms and taking the square root + vector_norm = np.sqrt(np.sum(np.array(norms)**2)) + + return vector_norm \ No newline at end of file diff --git a/src/irrevolutions/utils/mesh_bar_gmshapi.py b/src/irrevolutions/utils/mesh_bar_gmshapi.py index 8ad21142..953b09c8 100644 --- a/src/irrevolutions/utils/mesh_bar_gmshapi.py +++ b/src/irrevolutions/utils/mesh_bar_gmshapi.py @@ -72,7 +72,6 @@ def mesh_bar_gmshapi( import dolfinx.plot from dolfinx.io import XDMFFile from gmsh_mesh import gmsh_model_to_mesh - # from mesh import gmsh_to_dolfin # , merge_meshtags, locate_dofs_topological from mpi4py import MPI diff --git a/src/irrevolutions/utils/viz.py b/src/irrevolutions/utils/viz.py index 64ede825..4fcb1391 100644 --- a/src/irrevolutions/utils/viz.py +++ b/src/irrevolutions/utils/viz.py @@ -1,3 +1,11 @@ +import scipy +from dolfinx.plot import vtk_mesh as compute_topology +import matplotlib.tri as tri +import matplotlib.pyplot as plt +from pyvista.utilities import xvfb +import pyvista +from mpi4py import MPI +import logging import sys from datetime import date @@ -7,22 +15,15 @@ sys.path.append("../") -import logging logging.basicConfig(level=logging.INFO) -from mpi4py import MPI comm = MPI.COMM_WORLD # import pdb -import pyvista -from pyvista.utilities import xvfb xvfb.start_xvfb(wait=0.05) -import matplotlib.pyplot as plt -import matplotlib.tri as tri -from dolfinx.plot import vtk_mesh as compute_topology # try: # from dolfinx.plot import create_vtk_mesh as compute_topology @@ -206,7 +207,7 @@ def plot_perturbations(comm, Lx, prefix, β, v, bifurcation, stability, i_t): subplot=(0, 0), lineproperties={"c": "k", "label": "$\\beta$"}, ) - ax = _plt.gca() + _plt.gca() _plt.legend() _plt.fill_between(data[0], data[1].reshape(len(data[1]))) _plt.title("Perurbation") @@ -226,7 +227,7 @@ def plot_perturbations(comm, Lx, prefix, β, v, bifurcation, stability, i_t): subplot=(0, 0), lineproperties={"c": "k", "label": "$\\beta$"}, ) - ax = _plt.gca() + _plt.gca() _plt.legend() _plt.fill_between(data[0], data[1].reshape(len(data[1]))) _plt.title("Perurbation from the Cone") @@ -236,7 +237,6 @@ def plot_perturbations(comm, Lx, prefix, β, v, bifurcation, stability, i_t): return plotter -import scipy def plot_matrix(M): diff --git a/test/test_1d.py b/test/test_1d.py index 9385115c..f97fff5c 100644 --- a/test/test_1d.py +++ b/test/test_1d.py @@ -15,38 +15,22 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, assemble_scalar, dirichletbc, + form, locate_dofs_geometrical, set_bc) from dolfinx.fem.petsc import assemble_vector from dolfinx.io import XDMFFile +from mpi4py import MPI +from petsc4py import PETSc + from irrevolutions.algorithms.am import HybridSolver from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver from irrevolutions.solvers import SNESSolver from irrevolutions.solvers.function import vec_to_functions -from irrevolutions.utils import ( - ColorPrint, - _logger, - _write_history_data, - history_data, - norm_H1, - norm_L2, -) -from irrevolutions.utils.plots import ( - plot_AMit_load, - plot_energies, -) - +from irrevolutions.utils import (ColorPrint, _logger, _write_history_data, + history_data, norm_H1, norm_L2) +from irrevolutions.utils.plots import plot_AMit_load, plot_energies # from irrevolutions.utils.viz import plot_profile -from mpi4py import MPI -from petsc4py import PETSc """The fundamental problem of a 1d bar in traction. 0|(WWWWWWWWWWWWWWWWWWWWWW)|========> t @@ -285,7 +269,7 @@ def run_computation(parameters, storage=None): alpha_lb = dolfinx.fem.Function(V_alpha, name="LowerBoundDamage") dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) # Useful references Lx = parameters.get("geometry").get("Lx") @@ -482,7 +466,7 @@ def stress(state): stable = stability.solve(alpha_lb, eig0=z0, inertia=inertia) - with dolfinx.common.Timer("~Postprocessing and Vis") as timer: + with dolfinx.common.Timer("~Postprocessing and Vis"): if comm.Get_size() == 1: if bifurcation._spectrum: vec_to_functions(bifurcation._spectrum[0]["xk"], [v, β]) @@ -695,7 +679,7 @@ def test_1d(): parameters, signature = load_parameters( os.path.join(os.path.dirname(__file__), "parameters.yml"), ndofs=_N ) - pretty_parameters = json.dumps(parameters, indent=2) + json.dumps(parameters, indent=2) # print(pretty_parameters) # _storage = f"output/one-dimensional-bar/MPI-{MPI.COMM_WORLD.Get_size()}/{args.N}/{signature}" _storage = ( @@ -703,7 +687,7 @@ def test_1d(): ) ColorPrint.print_bold(f"===================-{_storage}-=================") - with dolfinx.common.Timer("~Computation Experiment") as timer: + with dolfinx.common.Timer("~Computation Experiment"): history_data, stability_data, state = run_computation(parameters, _storage) from irrevolutions.utils import ResultsStorage, Visualization diff --git a/test/test_binarydataio.py b/test/test_binarydataio.py index 598f9541..39d5abaf 100644 --- a/test/test_binarydataio.py +++ b/test/test_binarydataio.py @@ -3,6 +3,7 @@ from petsc4py import PETSc from .test_errorcodes import translatePETScERROR +import irrevolutions.solvers.restriction as restriction def save_binary_data(filename, data): @@ -13,7 +14,7 @@ def save_binary_data(filename, data): item.view(viewer) elif isinstance(data, PETSc.Mat): data.view(viewer) - elif isinstance(data, PEtest_binarydataioTSc.Vec): + elif isinstance(data, PETSc.Vec): data.view(viewer) else: raise ValueError("Unsupported data type for saving") @@ -117,7 +118,7 @@ def load_minimal_constraints(filename): # Assuming you have a constructor for your class # Modify this accordingly based on your actual class structure - reconstructed_obj = Restriction() + reconstructed_obj = restriction.Restriction() for key, value in minimal_constraints.items(): setattr(reconstructed_obj, key, value) @@ -138,22 +139,22 @@ def load_minimal_constraints(filename): matrix.setUp() Istart, Iend = matrix.getOwnershipRange() - for I in range(Istart, Iend): - matrix[I, I] = 4 - i = I // n + for i in range(Istart, Iend): + matrix[i, i] = 4 + i = i // n if i > 0: - J = I - n - matrix[I, J] = -1 + j = i - n + matrix[i, j] = -1 if i < m - 1: - J = I + n - matrix[I, J] = -1 - j = I - i * n + j = i + n + matrix[i, j] = -1 + j = i - i * n if j > 0: - J = I - 1 - matrix[I, J] = -1 + j = i - 1 + matrix[i, j] = -1 if j < n - 1: - J = I + 1 - matrix[I, J] = -1 + j = i + 1 + matrix[i, j] = -1 matrix.assemblyBegin() matrix.assemblyEnd() diff --git a/test/test_cone_convergence.py b/test/test_cone_convergence.py index 1bfa338a..9a25013e 100644 --- a/test/test_cone_convergence.py +++ b/test/test_cone_convergence.py @@ -3,14 +3,15 @@ import pickle import dolfinx -import irrevolutions.solvers.restriction as restriction import numpy as np import ufl from dolfinx.io import XDMFFile +from mpi4py import MPI + +import irrevolutions.solvers.restriction as restriction from irrevolutions import utils from irrevolutions.algorithms.so import StabilitySolver from irrevolutions.utils import _logger -from mpi4py import MPI _logger.setLevel(logging.CRITICAL) @@ -125,5 +126,5 @@ def load_minimal_constraints(filename, spaces): atol = tester.parameters["cone"]["cone_atol"] -assert tester._isin_cone(_xk) == True -assert np.isclose(_lmbda_k, -0.044659195907104675, atol=1e-4) == True +assert tester._isin_cone(_xk) +assert np.isclose(_lmbda_k, -0.044659195907104675, atol=1e-4) diff --git a/test/test_cone_project.py b/test/test_cone_project.py index cdd07bfe..d9d55557 100644 --- a/test/test_cone_project.py +++ b/test/test_cone_project.py @@ -1,19 +1,14 @@ import sys import dolfinx -import irrevolutions.solvers.restriction as restriction import numpy as np -from irrevolutions.utils import ( - _logger, - load_binary_matrix, - load_binary_vector, - sample_data, -) from mpi4py import MPI from petsc4py import PETSc -from test_restriction import ( - get_inactive_dofset, -) +from test_restriction import get_inactive_dofset + +import irrevolutions.solvers.restriction as restriction +from irrevolutions.utils import (_logger, load_binary_matrix, + load_binary_vector, sample_data) sys.path.append("../") @@ -88,9 +83,9 @@ def _cone_project_restricted(v, _x, constraints): def test_cone_project(): - full_matrix = load_binary_matrix("data/solver/A.mat") - matrix = load_binary_matrix("data/solver/Ar.mat") - guess = load_binary_vector("data/solver/x0r.vec") + load_binary_matrix("data/solver/A.mat") + load_binary_matrix("data/solver/Ar.mat") + load_binary_vector("data/solver/x0r.vec") F, v = sample_data(10, positive=False) V_u, V_alpha = F[0].function_spaces[0], F[1].function_spaces[0] diff --git a/test/test_extend.py b/test/test_extend.py index 29f9f4d6..9b0207cb 100644 --- a/test/test_extend.py +++ b/test/test_extend.py @@ -1,14 +1,12 @@ from logging import getLevelName import dolfinx -import irrevolutions.solvers.restriction as restriction from dolfinx.cpp.la.petsc import get_local_vectors -from irrevolutions.utils import _logger, sample_data from mpi4py import MPI -from test_restriction import ( - __log_incipit, - get_inactive_dofset, -) +from test_restriction import __log_incipit, get_inactive_dofset + +import irrevolutions.solvers.restriction as restriction +from irrevolutions.utils import _logger, sample_data comm = MPI.COMM_WORLD rank = comm.Get_rank() diff --git a/test/test_linsearch.py b/test/test_linsearch.py index 3285bb1e..446d5a92 100644 --- a/test/test_linsearch.py +++ b/test/test_linsearch.py @@ -17,40 +17,23 @@ import ufl import yaml from dolfinx.common import list_timings -from dolfinx.fem import ( - Constant, - Function, - FunctionSpace, - assemble_scalar, - dirichletbc, - form, - locate_dofs_geometrical, - set_bc, -) +from dolfinx.fem import (Constant, Function, FunctionSpace, assemble_scalar, + dirichletbc, form, locate_dofs_geometrical, set_bc) from dolfinx.io import XDMFFile, gmshio +from mpi4py import MPI +from petsc4py import PETSc +from pyvista.utilities import xvfb + from irrevolutions.algorithms.am import AlternateMinimisation, HybridSolver from irrevolutions.algorithms.ls import LineSearch from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver from irrevolutions.meshes.primitives import mesh_bar_gmshapi from irrevolutions.models import DamageElasticityModel as Brittle from irrevolutions.solvers.function import vec_to_functions -from irrevolutions.utils import ( - ColorPrint, - _write_history_data, - history_data, - norm_H1, -) -from irrevolutions.utils.plots import ( - plot_energies, -) -from irrevolutions.utils.viz import ( - plot_profile, - plot_scalar, - plot_vector, -) -from mpi4py import MPI -from petsc4py import PETSc -from pyvista.utilities import xvfb +from irrevolutions.utils import (ColorPrint, _write_history_data, history_data, + norm_H1) +from irrevolutions.utils.plots import plot_energies +from irrevolutions.utils.viz import plot_profile, plot_scalar, plot_vector logging.basicConfig(level=logging.INFO) @@ -128,7 +111,7 @@ def test_linsearch(): # Measures dx = ufl.Measure("dx", domain=mesh) - ds = ufl.Measure("ds", domain=mesh) + ufl.Measure("ds", domain=mesh) dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], Lx)) @@ -385,7 +368,7 @@ def test_linsearch(): ) _stress = model.stress(model.eps(u), alpha) - stress = comm.allreduce( + comm.allreduce( assemble_scalar(form(_stress[0, 0] * dx)), op=MPI.SUM, ) diff --git a/test/test_rayleigh.py b/test/test_rayleigh.py index 3b763e75..9d040bcf 100644 --- a/test/test_rayleigh.py +++ b/test/test_rayleigh.py @@ -12,12 +12,13 @@ import ufl import yaml from dolfinx.fem import dirichletbc, locate_dofs_geometrical +from mpi4py import MPI +from petsc4py import PETSc + from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver from irrevolutions.solvers.function import vec_to_functions from irrevolutions.utils import ColorPrint, _logger, indicator_function from irrevolutions.utils.viz import get_datapoints, plot_profile -from mpi4py import MPI -from petsc4py import PETSc test_dir = os.path.dirname(__file__) @@ -57,7 +58,7 @@ def test_rayleigh(parameters=None, storage=None): parameters, signature = load_parameters( os.path.join(test_dir, "parameters.yml"), ndofs=50 ) - pretty_parameters = json.dumps(parameters, indent=2) + json.dumps(parameters, indent=2) storage = ( f"output/rayleigh-benchmark/MPI-{MPI.COMM_WORLD.Get_size()}/{signature}" ) @@ -142,8 +143,8 @@ def test_rayleigh(parameters=None, storage=None): ] dolfinx.fem.form(F_) - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 1)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 1)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 1)) @@ -159,7 +160,6 @@ def test_rayleigh(parameters=None, storage=None): # Perturbations β = dolfinx.fem.Function(V_alpha, name="DamagePerturbation") v = dolfinx.fem.Function(V_u, name="DisplacementPerturbation") - perturbation = {"v": v, "β": β} # Pack state state = {"u": u, "alpha": alpha} @@ -189,9 +189,7 @@ def test_rayleigh(parameters=None, storage=None): ) bifurcation.solve(zero_alpha) bifurcation.get_inertia() - stable = stability.solve( - zero_alpha, eig0=bifurcation.spectrum[0]["xk"], inertia=(1, 0, 10) - ) + stability.solve(zero_alpha, eig0=bifurcation.spectrum[0]["xk"], inertia=(1, 0, 10)) _logger.setLevel(level=logging.INFO) diff --git a/test/test_rayleigh_parametric.py b/test/test_rayleigh_parametric.py index 28857889..6b5f302d 100644 --- a/test/test_rayleigh_parametric.py +++ b/test/test_rayleigh_parametric.py @@ -8,13 +8,16 @@ import numpy as np import ufl import yaml -from dolfinx.fem import assemble_scalar, dirichletbc, form, locate_dofs_geometrical +from dolfinx.fem import (assemble_scalar, dirichletbc, form, + locate_dofs_geometrical) +from mpi4py import MPI +from petsc4py import PETSc + from irrevolutions.algorithms.so import BifurcationSolver, StabilitySolver -from irrevolutions.utils import ColorPrint, _logger, indicator_function +from irrevolutions.utils import ColorPrint, _logger from irrevolutions.utils import eigenspace as eig +from irrevolutions.utils import indicator_function from irrevolutions.utils.viz import get_datapoints -from mpi4py import MPI -from petsc4py import PETSc sys.path.append("../") sys.path.append("../playground/nb") @@ -140,8 +143,8 @@ def rayleigh(parameters, storage=None): G = 1 / 2 * (a * alpha.dx(0) ** 2 + b * (u.dx(0) - c * alpha) ** 2) * dx - dofs_alpha_left = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) - dofs_alpha_right = locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 1)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 0.0)) + locate_dofs_geometrical(V_alpha, lambda x: np.isclose(x[0], 1)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 1)) @@ -155,8 +158,8 @@ def rayleigh(parameters, storage=None): bcs = {"bcs_u": bcs_u, "bcs_alpha": []} # Perturbations - β = dolfinx.fem.Function(V_alpha, name="DamagePerturbation") - v = dolfinx.fem.Function(V_u, name="DisplacementPerturbation") + dolfinx.fem.Function(V_alpha, name="DamagePerturbation") + dolfinx.fem.Function(V_u, name="DisplacementPerturbation") # Pack state state = {"u": u, "alpha": alpha} @@ -187,7 +190,7 @@ def rayleigh(parameters, storage=None): bifurcation.solve(zero_alpha) bifurcation.get_inertia() - stable = stability.solve(zero_alpha, eig0=bifurcation.spectrum, inertia=(1, 0, 10)) + stability.solve(zero_alpha, eig0=bifurcation.spectrum, inertia=(1, 0, 10)) # (size of the) support of the cone-eigenfunction - if any. # diff --git a/test/test_restriction.py b/test/test_restriction.py index b45b7fc6..7018a1db 100644 --- a/test/test_restriction.py +++ b/test/test_restriction.py @@ -1,12 +1,13 @@ import sys import dolfinx -import irrevolutions.solvers.restriction as restriction import numpy as np from dolfinx.cpp.la.petsc import get_local_vectors -from irrevolutions.utils import _logger, sample_data from mpi4py import MPI +import irrevolutions.solvers.restriction as restriction +from irrevolutions.utils import _logger, sample_data + sys.path.append("../") diff --git a/test/test_sample_data.py b/test/test_sample_data.py index 162d0cc8..1c3a7239 100644 --- a/test/test_sample_data.py +++ b/test/test_sample_data.py @@ -5,10 +5,11 @@ import numpy as np import ufl from dolfinx.cpp.la.petsc import get_local_vectors, scatter_local_vectors -from irrevolutions.utils import _logger from mpi4py import MPI from petsc4py import PETSc +from irrevolutions.utils import _logger + sys.path.append("../") diff --git a/test/test_scatter.py b/test/test_scatter.py index 2d2a7c1a..333769cb 100644 --- a/test/test_scatter.py +++ b/test/test_scatter.py @@ -3,7 +3,6 @@ import sys import dolfinx -import irrevolutions.solvers.restriction as restriction import numpy as np import petsc4py import ufl @@ -12,6 +11,8 @@ from mpi4py import MPI from petsc4py import PETSc +import irrevolutions.solvers.restriction as restriction + petsc4py.init(sys.argv) sys.path.append("../") diff --git a/test/test_spa.py b/test/test_spa.py index 68bf9728..b8f16b15 100644 --- a/test/test_spa.py +++ b/test/test_spa.py @@ -4,14 +4,15 @@ import sys import dolfinx -import irrevolutions.solvers.restriction as restriction import numpy as np import ufl from dolfinx.io import XDMFFile -from irrevolutions.utils import _logger from mpi4py import MPI from test_cone_project import _cone_project_restricted +import irrevolutions.solvers.restriction as restriction +from irrevolutions.utils import _logger + from . import test_binarydataio as bio sys.path.append("../") @@ -166,7 +167,7 @@ def _convergenceTest(x, xold, y=None): V_u = dolfinx.fem.FunctionSpace(mesh, element_u) V_alpha = dolfinx.fem.FunctionSpace(mesh, element_alpha) - u = dolfinx.fem.Function(V_u, name="Displacement") + # u = dolfinx.fem.Function(V_u, name="Displacement") alpha = dolfinx.fem.Function(V_alpha, name="Damage") ufl.Measure("dx", alpha.function_space.mesh) @@ -212,7 +213,7 @@ def _convergenceTest(x, xold, y=None): f"lambda_0 = {lmbda_t:.4e}, residual norm = {y.norm(): .4e}, error = {errors[-1]: .4e}" ) - assert np.isclose(lmbda_t, -0.044659195907104675, atol=1e-4) == True + assert np.isclose(lmbda_t, -0.044659195907104675, atol=1e-4) if __name__ == "__main__":