-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlanczos.cu
873 lines (716 loc) · 29.4 KB
/
lanczos.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/*!
\file lanczos.cu
\brief Controller code for general Lanczos diagonalization
*/
// Katharine Hyatt
// A set of functions to implement the Lanczos method for a generic Hamiltonian
// Based on the codes Lanczos_07.cpp and Lanczos07.h by Roger Melko
//-------------------------------------------------------------------------------
#include"lanczos.h"
/*Function lanczos: takes a hermitian matrix H, tridiagonalizes it, and finds the n smallest eigenvalues - this version only returns eigenvalues, not
eigenvectors.
---------------------------------------------------------------------------------------------------------------------------------------------------
Input: howMany, the number of Hamiltonians to process
numElem - the number of nonzero elements per matrix
Hamiltonian - an array of Hamiltonians, each element being a custom struct containing the rows, cols, and vals in COO format as well as the dimensions
maxIter, the starting number of iterations we'll try
numEig, the number of eigenvalues we're interested in seeing
convReq, the convergence we'd like to see
---------------------------------------------------------------------------------------------------------------------------------------------------
Output: h_ordered, the array of the numEig smallest eigenvalues, ordered from smallest to largest
---------------------------------------------------------------------------------------------------------------------------------------------------
*/
__host__ void lanczos(const int howMany, const int* numElem, d_hamiltonian*& Hamiltonian, double**& groundstates, double**& eigenvalues, int maxIter, const int numEig, const double convReq)
{
//----------Initializing CUBLAS and CUSPARSE libraries as well as storage on GPU----------------
int* dim = (int*)malloc(howMany*sizeof(int));
for(int i = 0; i < howMany; i++)
{
dim[i] = Hamiltonian[i].sectorDim;
}
/*!
First it is necessary to create handles, streams, and to initialize the two CUDA libraries which will be used:
\verbatim
*/
cudaStream_t stream[howMany];
cublasStatus_t cublasStatus[howMany];
cublasHandle_t linAlgHandle;
cublasStatus[0] = cublasCreate(&linAlgHandle);
if (cublasStatus[0] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Initializing CUBLAS failed! Error: "<<cublasStatus[0]<<std::endl;
}
cusparseHandle_t sparseHandle;
cusparseStatus_t cusparseStatus[howMany];
cusparseStatus[0] = cusparseCreate(&sparseHandle);
if (cusparseStatus[0] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Failed to initialize CUSPARSE! Error: "<<cusparseStatus[0]<<std::endl;
}
/*!
\endverbatim
The function also transforms the Hamiltonian into CSR format so that CUSPARSE can use it for matrix-vector multiplications.
\verbatim
*/
cusparseMatDescr_t H_descr[howMany];
for(int i = 0; i<howMany; i++)
{
cusparseStatus[i] = cusparseCreateMatDescr(&H_descr[i]);
if (cusparseStatus[i] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Error creating matrix description: "<<cusparseStatus[i]<<std::endl;
}
cusparseStatus[i] = cusparseSetMatType(H_descr[i], CUSPARSE_MATRIX_TYPE_GENERAL);
if (cusparseStatus[i] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Error setting matrix type: "<<cusparseStatus[i]<<std::endl;
}
cusparseStatus[i] = cusparseSetMatIndexBase(H_descr[i], CUSPARSE_INDEX_BASE_ZERO);
if (cusparseStatus[i] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Error setting matrix index base: "<<cusparseStatus[i]<<std::endl;
}
}
cudaError_t status[howMany];
int** d_H_rowPtrs;
d_H_rowPtrs = (int**)malloc(howMany*sizeof(int*));
for(int i = 0; i < howMany; i++)
{
status[i] = cudaStreamCreate(&stream[i]);
if (status[i] != cudaSuccess)
{
std::cout<<"Error creating streams: "<<cudaGetErrorString(status[i])<<std::endl;
}
status[i] = cudaMalloc(&d_H_rowPtrs[i], (dim[i] + 1)*sizeof(int));
if (status[i] != cudaSuccess)
{
std::cout<<"Error allocating d_H_rowPtrs: "<<cudaGetErrorString(status[i])<<std::endl;
}
}
//---------------Converting from COO to CSR format for Hamiltonians----------------
//cusparseHybMat_t hyb_Ham[howMany];
for(int i = 0; i < howMany; i++)
{
/*cusparseStatus[i] = cusparseCreateHybMat(&hyb_Ham[i]);
if (cusparseStatus[i] != cusparseStatus_SUCCESS)
{
std::cout<<"Error creating HYB matrix: "<<cusparseStatus[i]<<std::endl;
}
cout<<"Done creating HYB matrices"<<endl;*/
cusparseStatus[i] = cusparseSetStream(sparseHandle, stream[i]);
if (cusparseStatus[i] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Error switching streams: "<<cusparseStatus[i]<<std::endl;
}
status[i] = cudaPeekAtLastError();
if (status[i] != cudaSuccess)
{
std::cout<<"Error synchronizing stream: "<<cudaGetErrorString(status[i])<<std::endl;
}
cusparseStatus[i] = cusparseXcoo2csr(sparseHandle, Hamiltonian[i].rows, numElem[i], dim[i], d_H_rowPtrs[i], CUSPARSE_INDEX_BASE_ZERO);
if (cusparseStatus[i] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Error converting to CSR: "<<cusparseStatus[i]<<std::endl;
}
status[i] = cudaPeekAtLastError();
if (status[i] != cudaSuccess)
{
std::cout<<"Error synchronizing stream: "<<cudaGetErrorString(status[i])<<std::endl;
}
/*cusparseStatus[i] = cusparseDcsr2hyb(sparseHandle, dim[i], dim[i], H_descr[i], Hamiltonian[i].vals, d_H_rowPtrs[i], Hamiltonian[i].cols, hyb_Ham[i], 0, CUSPARSE_HYB_PARTITION_AUTO);
if (cusparseStatus[i] != cusparseStatus_SUCCESS)
{
std::cout<<"Error converting to HYB: "<<cusparseStatus[i]<<std::endl;
}*/
}
/*!
\endverbatim
status[0] = cudaPeekAtLastError();
if (status[0] != cudaSuccess)
{
std::cout<<"Error before thread sync: "<<cudaGetErrorString(status[0])<<std::endl;
}
*/
//----------------Create arrays to hold current Lanczos vectors----------
vector< vector<double> > h_a(howMany);
vector< vector<double> > h_b(howMany);
//Making the "random" starting vector
/*!
The function then sets up Lanczos diagonalization by initializing a random starting vector on the CPU, creating storage for the Lanczos vectors on the GPU, and copying this starting vector across.
\verbatim
*/
double** v0 = (double**)malloc(howMany*sizeof(double*));
double** v1 = (double**)malloc(howMany*sizeof(double*));
double** v2 = (double**)malloc(howMany*sizeof(double*));
double*** lanczosStore = (double***)malloc(howMany*sizeof(double**));
double** host_v0 = (double**)malloc(howMany*sizeof(double*));
for(int i = 0; i < howMany; i++)
{
status[i] = cudaMalloc(&v0[i], dim[i]*sizeof(double));
if (status[i] != cudaSuccess)
{
std::cout<<"Error creating storage for v0 on GPU: "<<cudaGetErrorString(status[i])<<std::endl;
}
status[i] = cudaMalloc(&v1[i], dim[i]*sizeof(double));
if (status[i] != cudaSuccess)
{
std::cout<<"Error creating storage for v1 on GPU: "<<cudaGetErrorString(status[i])<<std::endl;
}
status[i] = cudaMalloc(&v2[i], dim[i]*sizeof(double));
if (status[i] != cudaSuccess)
{
std::cout<<"Error creating storage for v2 on GPU: "<<cudaGetErrorString(status[i])<<std::endl;
}
lanczosStore[i] = (double**)malloc(maxIter*sizeof(double*));
host_v0[i] = (double*)malloc(dim[i]*sizeof(double));
for(int j = 0; j<dim[i]; j++)
{
host_v0[i][j] = 0.;
if (j%4 == 0) host_v0[i][j] = 1. ;
else if (j%5 == 0) host_v0[i][j] = -2.;
else if (j%7 == 0) host_v0[i][j] = 3.;
else if (j%9 == 0) host_v0[i][j] = -4.;
}
status[i] = cudaMalloc(&lanczosStore[i][0], dim[i]*sizeof(double));
if (status[i] != cudaSuccess)
{
std::cout<<"Error creating storage for v0 in lanczosStore: "<<cudaGetErrorString(status[i])<<std::endl;
}
status[i] = cudaMemcpyAsync(v0[i], host_v0[i], dim[i]*sizeof(double), cudaMemcpyHostToDevice, stream[i]);
if (status[i] != cudaSuccess)
{
std::cout<<"Error copying v0 to the device: "<<cudaGetErrorString(status[i])<<std::endl;
}
}
/*!
\endverbatim
First, storage variables are created to hold the results of the CUBLAS functions.
\verbatim
*/
//--------------Create dummy variables for CUBLAS functions----------------
double* normTemp = (double*)malloc(howMany*sizeof(double));
double* alpha = (double*)malloc(howMany*sizeof(double));
double* beta = (double*)malloc(howMany*sizeof(double));
double* dotTemp = (double*)malloc(howMany*sizeof(double));
double* axpyTemp = (double*)malloc(howMany*sizeof(double));
double** y = (double**)malloc(howMany*sizeof(double*));
/*!
\endverbatim
*/
//--------------Generate first Lanczos vector--------------------------
for(int i = 0; i < howMany; i++)
{
cublasSetStream(linAlgHandle, stream[i]);
cusparseSetStream(sparseHandle, stream[i]);
/*!
Then the initial multiplication to generate the first Lanczos vector is performed.
\verbatim
*/
cublasStatus[i] = cublasDnrm2(linAlgHandle, dim[i], v0[i], 1, &normTemp[i]);
normTemp[i] = 1./normTemp[i];
cublasStatus[i] = cublasDscal(linAlgHandle, dim[i], &normTemp[i], v0[i], 1);
alpha[i] = 1.;
beta[i] = 0.;
cudaMemcpyAsync(lanczosStore[i][0], v0[i], dim[i]*sizeof(double), cudaMemcpyDeviceToDevice, stream[i]);
//-----------Apply Hamiltonian to V0--------------------
cusparseStatus[i] = cusparseDcsrmv(sparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, dim[i], dim[i], numElem[i], &alpha[i], H_descr[i], Hamiltonian[i].vals, d_H_rowPtrs[i], Hamiltonian[i].cols, v0[i], &beta[i], v1[i]); // the Hamiltonian is applied here
/*!
\endverbatim
*/
if (cusparseStatus[i] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Getting V1 = H*V0 failed! Error: ";
std::cout<<cusparseStatus[i]<<std::endl;
}
//cudaStreamSynchronize(stream[i]);
if (cudaPeekAtLastError() != 0 )
{
std::cout<<"Getting V1 = H*V0 failed! Error: ";
std::cout<<cudaGetErrorString(cudaPeekAtLastError())<<std::endl;
}
}
for(int i = 0; i < howMany; i++)
{
cublasSetStream(linAlgHandle, stream[i]);
dotTemp[i] = 0.;
cublasStatus[i] = cublasDdot(linAlgHandle, dim[i], v1[i], 1, v0[i], 1, &dotTemp[i]);
h_a[i].push_back(dotTemp[i]);
h_b[i].push_back(0.);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Getting d_a[0] failed! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
//cudaStreamSynchronize(stream[i]);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Getting h_a[0] failed! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
if (status[i] != cudaSuccess)
{
std::cout<<"Memory allocation of y dummy vector failed! Error:";
std::cout<<cudaGetErrorString( status[i] )<<std::endl;
}
status[i] = cudaMalloc(&y[i], dim[i]*sizeof(double));
/*!
The new vector must be rescaled and stored before Lanczos iteration can begin.
\verbatim
*/
cublasStatus[i] = cublasDscal(linAlgHandle, dim[i], &beta[i], y[i], 1);
//cudaStreamSynchronize(stream[i]);
axpyTemp[i] = -1*h_a[i][0];
cublasStatus[i] = cublasDaxpy(linAlgHandle, 0, &axpyTemp[i], v0[i], 1, v1[i], 1);
//cudaStreamSynchronize(stream[i]);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"V1 = V1 - alpha*V0 failed! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
if (cudaPeekAtLastError() != 0 )
{
std::cout<<"Getting V1 = V1 - a*V0 failed! Error: ";
std::cout<<cudaGetErrorString(cudaPeekAtLastError())<<std::endl;
}
//---------Normalize V1 and copy it to Lanczos storage-----------
normTemp[i] = 0.;
cublasStatus[i] = cublasDnrm2(linAlgHandle, dim[i], v1[i], 1, &normTemp[i]); //this is slow for some reason
//cudaStreamSynchronize(stream[i]);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Getting the norm of v1 failed! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
if (cudaPeekAtLastError() != 0 )
{
std::cout<<"Getting nrm(V1) failed! Error: ";
std::cout<<cudaGetErrorString(cudaPeekAtLastError())<<std::endl;
}
}
double* gamma = (double*)malloc(howMany*sizeof(double));
for(int i = 0; i < howMany; i++)
{
cublasSetStream(linAlgHandle, stream[i]);
h_b[i].push_back(normTemp[i]);
normTemp[i] = 1./normTemp[i];
gamma[i] = 1./h_b[i][1]; //alpha = 1/beta in v1 = v1 - alpha*v0
cublasStatus[i] = cublasDscal(linAlgHandle, dim[i], &normTemp[i], v1[i], 1);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Normalizing v1 failed! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
if (cudaPeekAtLastError() != 0 )
{
std::cout<<"Normalizing V1 failed! Error: ";
std::cout<<cudaGetErrorString(cudaPeekAtLastError())<<std::endl;
}
cudaMalloc(&lanczosStore[i][1], dim[i]*sizeof(double));
cudaMemcpyAsync(lanczosStore[i][1], v1[i], dim[i]*sizeof(double), cudaMemcpyDeviceToDevice, stream[i]);
}
/*!
\endverbatim
*/
/*!
Storage space for the tridiagonal matrix is created and flags are initialized to track progress:
\verbatim
*/
double* gsEnergy = (double*)malloc(howMany*sizeof(double));
double* eigTemp = (double*)malloc(howMany*sizeof(double));
int* returned = (int*)malloc(howMany*sizeof(int));
int* iter = (int*)malloc(howMany*sizeof(int));
bool* doneFlag = (bool*)malloc(howMany*sizeof(bool));
double** h_H_eigen = (double**)malloc(howMany*sizeof(double*));
double** d_H_eigen = (double**)malloc(howMany*sizeof(double*));
double** h_diag = (double**)malloc(howMany*sizeof(double*));
double** h_offdia = (double**)malloc(howMany*sizeof(double*));
vector< vector < double > > h_ordered(howMany);
/*!
\endverbatim
*/
/*!
The flags and storage are initialized for the interations
\verbatim
*/
for(int i = 0; i<howMany; i++)
{
gsEnergy[i] = 1.;
eigTemp[i] = 0.;
iter[i] = 0;
doneFlag[i] = false;
h_ordered[i].resize(numEig, 0);
h_H_eigen[i] = (double*)malloc(maxIter*maxIter*sizeof(double));
cudaMalloc(&d_H_eigen[i], maxIter*maxIter*sizeof(double));
h_diag[i] = (double*)malloc(h_a[i].size()*sizeof(double));
h_offdia[i] = (double*)malloc(h_b[i].size()*sizeof(double));
}
/*!
\endverbatim
*/
//---------Begin Lanczos iteration-----------------------------
bool allDone = false;
while( !allDone )
{
allDone = true;
for(int i = 0; i < howMany; i++)
{
cublasSetStream(linAlgHandle, stream[i]);
cusparseSetStream(sparseHandle, stream[i]);
cudaStreamSynchronize(stream[i]);
/*!
If the current diagonalization is not complete, multiply H*V1 to get a new V2
\verbatim
*/
if (!doneFlag[i])
{
iter[i]++;
cusparseStatus[i] = cusparseDcsrmv(sparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, dim[i], dim[i], numElem[i], &alpha[i], H_descr[i], Hamiltonian[i].vals, d_H_rowPtrs[i], Hamiltonian[i].cols, v1[i], &beta[i], v2[i]);
if( cusparseStatus[i] != 0)
{
cout<<"Error applying H to V1 in "<<iter[i]<<"th iteration"<<endl;
}
//cusparseStatus[i] = cusparseDhybmv(sparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha[i], H_descr[i], hyb_Ham[i], v1[i], &beta[i], v2[i]); // the Hamiltonian is applied here, in this gross expression
}
/*!
\endverbatim
*/
}
for(int i = 0; i < howMany; i++)
{
cublasSetStream(linAlgHandle, stream[i]);
if (!doneFlag[i])
{
if (cusparseStatus[i] != CUSPARSE_STATUS_SUCCESS)
{
std::cout<<"Error applying the Hamiltonian in "<<iter[i]<<"th iteration!";
std::cout<<"Error: "<<cusparseStatus[i]<<std::endl;
}
cublasStatus[i] = cublasDdot(linAlgHandle, dim[i], v1[i], 1, v2[i], 1, &dotTemp[i]);
//cudaStreamSynchronize(stream[i]);
h_a[i].push_back(dotTemp[i]);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Error getting v1 * v2 in "<<iter[i]<<"th iteration! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
axpyTemp[i] = -1.*h_b[i][iter[i]];
cublasStatus[i] = cublasDaxpy( linAlgHandle, dim[i], &axpyTemp[i], v0[i], 1, v2[i], 1);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Error getting (d_b/d_a)*v0 + v1 in "<<iter[i]<<"th iteration!";
std::cout<<"Error: "<<cublasStatus[i]<<std::endl;
}
}
}
//--------Find next set of elements in Lanczos Hamiltonian----
for(int i = 0; i < howMany; i++)
{
cublasSetStream(linAlgHandle, stream[i]);
//cudaStreamSynchronize(stream[i]);
if (!doneFlag[i])
{
/*!
Similarly to setting up V1, V2 must be rescaled
\verbatim
*/
axpyTemp[i] = -1.*h_a[i][iter[i]];
cublasStatus[i] = cublasDaxpy( linAlgHandle, dim[i], &axpyTemp[i], v1[i], 1, v2[i], 1);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Error getting v2 + d_a*v1 in "<<iter[i]<<"th iteration! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
cublasStatus[i] = cublasDnrm2( linAlgHandle, dim[i], v2[i], 1, &normTemp[i]);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Error getting norm of v2 in "<<iter[i]<<"th iteration! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
h_b[i].push_back(normTemp[i]);
gamma[i] = 1./normTemp[i];
/*!
\endverbatim
*/
cublasStatus[i] = cublasDscal(linAlgHandle, dim[i], &gamma[i], v2[i], 1);
if (cublasStatus[i] != CUBLAS_STATUS_SUCCESS)
{
std::cout<<"Error getting 1/d_b * v2 in "<<iter[i]<<"th iteration! Error: ";
std::cout<<cublasStatus[i]<<std::endl;
}
}
}
for(int i = 0; i < howMany; i++)
{
cublasSetStream(linAlgHandle, stream[i]);
//status[i] = cudaStreamSynchronize(stream[i]);
if (status[i] != cudaSuccess)
{
std::cout<<"Error syncing before copying v1 to v0: "<<cudaGetErrorString(status[i])<<std::endl;
}
if (!doneFlag[i])
{
/*!
Reorthogonalization is performed on v2 to ensure that the excited states do not collapse into the groundstate
\verbatim
*/
for(int j = 0; j < iter[i] + 1; j++)
{
cublasDdot(linAlgHandle, dim[i], v2[i], 1, lanczosStore[i][j], 1, &dotTemp[i]);
dotTemp[i] *= -1.;
cublasDaxpy(linAlgHandle, dim[i], &dotTemp[i], lanczosStore[i][j], 1, v2[i], 1);
dotTemp[i] = 1. - dotTemp[i]*dotTemp[i];
cublasDscal(linAlgHandle, dim[i], &dotTemp[i], v2[i], 1);
}
/*!
\endverbatim
The vectors are copied down one and stored to prepare for the next iteration
\verbatim
*/
status[i] = cudaMemcpyAsync(v0[i], v1[i], dim[i]*sizeof(double), cudaMemcpyDeviceToDevice, stream[i]);
if (status[i] != cudaSuccess)
{
std::cout<<"Error copying v1 to v0: "<<cudaGetErrorString(status[i])<<std::endl;
}
status[i] = cudaMemcpyAsync(v1[i], v2[i], dim[i]*sizeof(double), cudaMemcpyDeviceToDevice, stream[i]);
if (status[i] != cudaSuccess)
{
std::cout<<"Error copying v2 to v1: "<<cudaGetErrorString(status[i])<<std::endl;
}
status[i] = cudaMalloc(&lanczosStore[i][iter[i] + 1], dim[i]*sizeof(double));
status[i] = cudaMemcpyAsync(lanczosStore[i][iter[i] + 1], v2[i], dim[i]*sizeof(double), cudaMemcpyDeviceToDevice, stream[i]);
/*!
\endverbatim
*/
}
}
for(int i = 0; i < howMany; i++)
{
if (!doneFlag[i] && iter[i] > 5)
{
//---Copy Lanczos matrix information for diagonalization-----
free(h_diag[i]);
free(h_offdia[i]);
h_diag[i] = (double*)malloc(h_a[i].size()*sizeof(double));
h_offdia[i] = (double*)malloc(h_b[i].size()*sizeof(double));
h_diag[i][0] = h_a[i][0];
for (int ii=1; ii<=iter[i]; ii++)
{
h_diag[i][ii] = h_a[i][ii];
h_offdia[i][ii] = h_b[i][ii];
h_offdia[i][ii-1] = h_offdia[i][ii];
}
h_offdia[i][iter[i]] = 0;
//cudaStreamSynchronize(stream[i]);
//---------Diagonalize Lanczos matrix and check for convergence------------------
returned[i] = tqli(h_diag[i], h_offdia[i], iter[i] + 1, maxIter, h_H_eigen[i]);
status[i] = cudaPeekAtLastError();
if( status[i] != cudaSuccess)
{
cout<<"Error in identity! Error: "<<cudaGetErrorString(status[i])<<endl;
}
//cout<<"Done tqli in "<<iter[i]<<"th iteration"<<endl;
cudaMemcpyAsync(d_H_eigen[i], h_H_eigen[i], maxIter*maxIter*sizeof(double), cudaMemcpyHostToDevice, stream[i]);
std::sort(h_diag[i], h_diag[i] + h_a[i].size());
for (int j = 0; j < numEig; j++)
{
h_ordered[i][j] = h_diag[i][j];
//cout<<h_ordered[i][j]<<" ";
}
//cout<<endl;
gsEnergy[i] = h_ordered[i][numEig - 1];
doneFlag[i] = (fabs(gsEnergy[i] - eigTemp[i]) < convReq);// && iter[i] > 10;// ? (iter[i] > 10) : false;
//doneFlag[i] = iter[i] == maxIter - 2;
eigTemp[i] = h_ordered[i][numEig - 1];
if (iter[i] == maxIter - 2) // have to use this or d_b will overflow
{
//this stuff here is used to resize the main arrays in the case that we aren't converging quickly enough
h_a[i].resize(2*maxIter);
h_b[i].resize(2*maxIter);
maxIter *= 2;
}
}
}
allDone = true;
for(int i = 0; i< howMany; i++)
{
allDone = (allDone && doneFlag[i]);
}
}
//-------------Get groundstates------------------------------------------
for( int i = 0; i < howMany; i++)
{
//cudaStreamSynchronize(stream[i]);
//GetGroundstate<<<dim[i]/512 + 1, 512, 0, stream[i]>>>(groundstates[i], lanczosStore[i], d_H_eigen[i], iter[i], dim[i]);
}
//--------------Free arrays to prevent memory leaks------------------------
for(int i = 0; i < howMany; i++)
{
for(int j = 0; j < numEig; j++)
{
std::cout<<std::setprecision(12)<<h_ordered[i][j]<<" ";
}
std::cout<<std::endl;
for(int j = 0; j < iter[i]; j++)
{
cudaFree(lanczosStore[i][j]);
}
free(lanczosStore[i]);
cudaFree(d_H_rowPtrs[i]);
cudaFree(v0[i]);
cudaFree(v1[i]);
cudaFree(v2[i]);
cudaFree(y[i]);
free(h_H_eigen[i]);
cudaFree(d_H_eigen[i]);
free(host_v0[i]);
free(h_diag[i]);
free(h_offdia[i]);
//cusparseDestroyHybMat(hyb_Ham[i]);
}
free(gsEnergy);
free(eigTemp);
free(alpha);
free(beta);
free(returned);
free(iter);
free(doneFlag);
free(h_H_eigen);
free(d_H_eigen);
free(gamma);
free(y);
free(normTemp);
free(axpyTemp);
free(dotTemp);
free(host_v0);
free(v0);
free(v1);
free(v2);
free(h_diag);
free(h_offdia);
free(lanczosStore);
//free(dim);
free(d_H_rowPtrs);
cublasStatus[0] = cublasDestroy(linAlgHandle);
//----------Output groundstate to file to check for correctness------
double* host_groundstate = (double*)malloc(dim[0]*sizeof(double));
/*std::ofstream fout;
fout.open("lanczos.log");
cudaMemcpy(host_groundstate, groundstates[0], dim[0]*sizeof(double), cudaMemcpyDeviceToHost);
for(int i = 0; i < dim[0] ; i++)
{
fout<<host_groundstate[i]<<std::endl;
}
fout.close();*/
free(host_groundstate);
free(dim);
if (cublasStatus[0] != CUBLAS_STATUS_SUCCESS)
{
printf("CUBLAS failed to shut down properly! \n");
}
cusparseStatus[0] = cusparseDestroy(sparseHandle);
if (cusparseStatus[0] != CUSPARSE_STATUS_SUCCESS)
{
printf("CUSPARSE failed to release handle! \n");
}
/*if (iter == 1) {
std::ofstream fout;
fout.open("lanczos.log");
//fout<<normTemp<<std::endl;
fout<<std::endl;
//int* h_H_vals = (int*)malloc((dim+1)*sizeof(int));
cudaMemcpy(host_v0, v2, dim*sizeof(cuDoubleComplex), cudaMemcpyDeviceToHost);
for(int i = 0; i < dim ; i++){
fout<<host_v0[i].x<<std::endl;
}
fout.close();
}*/
}
// things left to do:
// write a thing (separate file) to call routines to find expectation values, should be faster on GPU
// make the tqli thing better!
int tqli(double* d, double* e, int n, int maxIter, double *z)
{
int m,l,iter,i,k;
double s,r,p,g,f,dd,c,b;
for (l=0; l<n; l++)
{
iter=0;
do
{
for (m=l; m<n-1; m++)
{
dd=fabs(d[m])+fabs(d[m+1]);
if (fabs(e[m])+dd == dd) break;
}
if (m!=l)
{
if (iter++ == 60)
{
std::cout <<"Too many iterations in tqli() \n";
return 0;
}
g=(d[l+1]-d[l])/(2.0*e[l]);
r=sqrt((g*g)+1.0);
g=d[m]-d[l]+e[l]/(g+SIGN(r,g));
s=c=1.0;
p=0.0;
for (i=m-1; i>=l; i--)
{
f=s*e[i];
b=c*e[i];
if (fabs(f) >= fabs(g))
{
c=g/f;
r=sqrt((c*c)+1.0);
e[i + 1]=f*r;
c *= (s=1.0/r);
}
else
{
s=f/g;
r=sqrt((s*s)+1.0);
e[i+1]=g*r;
s *= (c=1.0/r);
}
g=d[i+1]-p;
r=(d[i]-g)*s+2.0*c*b;
p=s*r;
d[i+1]=g+p;
g=c*r-b;
/*EVECTS*/
for (k=0; k<n; k++)
{
f=z[k * n + i+1];
z[k*n + i+1]=s*z[k*n + i]+c*f;
z[k*n + i ]=c*z[k*n+i]-s*f;
}
}
d[l]=d[l]-p;
e[l]=g;
e[m]=0.0;
}
}
while (m!=l);
}
return 1;
}
double pythag(double a, double b)
{
double absa, absb;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+(absb/absa)*(absb/absa));
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+(absa/absb)*(absa/absb)));
}
__global__ void GetGroundstate(double* groundstates, double** lanczosStore, double* H_eigen, int mat_dim, int vec_dim)
{
int element = blockIdx.x*blockDim.x + threadIdx.x;
if ( element < vec_dim )
{
groundstates[element] = H_eigen[0]*lanczosStore[0][element];
for (int lancIter = 1; lancIter < mat_dim; lancIter++)
{
groundstates[element] += H_eigen[lancIter]*lanczosStore[lancIter][element];
}
}
};