-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmem_manager.cpp
517 lines (461 loc) · 11.4 KB
/
mem_manager.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#include <cstddef>
#include <iostream>
#include <array>
#include <cstdint>
#include <unistd.h>
#include <assert.h>
#include <time.h>
#include <bitset>
#ifndef POLICY
#define POLICY 0
#endif
#ifndef SPLITIING
#define SPLITTING 0
#endif
#ifndef COALESCING
#define COALESCING 0
#endif
using namespace std;
int policy = POLICY;
/**
* Machine word size. Depending on the architecture,
* can be 4 or 8 bytes.
*/
using word_t = intptr_t;
struct Block
{
size_t size;
bool used;
Block *next;
Block* nextfree;
word_t data[1];
};
struct Tuple
{
Block *block_size;
Block *block_remaining;
};
#define BLOCK_SIZE sizeof(Block)
#define DATA_SIZE sizeof(std::declval<Block>().data)
class MemoryManager
{
public:
Block *splitAllocate(Block *, size_t);
word_t *alloc(size_t);
size_t align(size_t);
static Block *heapStart;
static Block *freeStart;
static Block *top; // = heapStart;
static size_t total_requested_memory;
size_t getHeapSize();
size_t getfreeSize();
void printHeap();
size_t allocSize(size_t size);
Block *requestFromOS(size_t size);
bool canCoalesce(Block *);
Block *coalesce(Block *block);
Tuple split(Block *block, size_t size);
bool canSplit(Block *block, size_t size);
Block *firstFit(size_t size);
Block *bestFit(size_t size);
Block *findBlock(size_t size);
Block *getHeader(word_t *data);
void free(word_t *data);
void fl_add(Block *b);
int fl_remove(Block *b);
void printFreeList();
bool setUsed(Block*, bool);
bool getUsed(Block*);
static int total_fl_add_calls;
static int total_fl_remove_calls;
static double total_fl_operations_time;
MemoryManager()
{
cout << "calling mem manager constructor" << endl;
}
virtual ~MemoryManager();
};
/*
* Aligns the size by the machine word.
*/
inline size_t MemoryManager::align(size_t n)
{
return (n + sizeof(word_t) - 1) & ~(sizeof(word_t) - 1);
}
/* heap start. Initialized on first allocation */
Block *MemoryManager::heapStart = nullptr;
Block *MemoryManager::freeStart = nullptr;
/* current top, updated on each allocation */
Block *MemoryManager::top = heapStart;
size_t MemoryManager::total_requested_memory = 0;
int MemoryManager::total_fl_add_calls = 0;
int MemoryManager::total_fl_remove_calls = 0;
double MemoryManager::total_fl_operations_time = 0;
bool MemoryManager::setUsed(Block* block, bool value){
if (value){
cout << "tried to set to true" << endl;
block = (Block*)((uintptr_t)(void*)block | 0x03ULL);
return true;
}
else{
cout << "tried to set to false" << endl;
block = (Block*)((uintptr_t)(void*)block & ~0x03ULL);
return false;
}
}
bool MemoryManager::getUsed(Block* block){
auto value = 0x03ULL & (uintptr_t)(void*)block;
if (value) cout << "yes" << endl;
else cout << "no" << endl;
return value;
}
size_t MemoryManager::getHeapSize()
{
int i = 0;
auto block = heapStart;
while (block != nullptr)
{
block = block->next;
i++;
}
return (size_t)i;
}
size_t MemoryManager::getfreeSize(){
int i = 0;
auto block = freeStart;
while (block != nullptr)
{
block = block->nextfree;
i++;
}
return (size_t)i;
}
void MemoryManager::printFreeList()
{
auto block = freeStart;
while (block != nullptr)
{
cout << block << ": " << block->size << "," << block->used << " ";
block = block->nextfree;
}
cout << endl;
cout << "freeSize " << getfreeSize() << endl;
}
MemoryManager::~MemoryManager()
{
cout << "calling mem manager destructor" << endl;
cout << "heapsize - total_remove - total_add " << getHeapSize() <<
"-" << total_fl_remove_calls << "-" << total_fl_add_calls << endl;
if (sbrk(-total_requested_memory) == (void *)-1)
{
cout << "error occured during destructor operation" << endl;
}
}
void MemoryManager::printHeap()
{
auto block = heapStart;
while (block != nullptr)
{
cout << block << " : " << block->size << "," << block->used << " ";
block = block->next;
}
cout << endl;
cout << "heapSize " << getHeapSize() << " total_req_mem " << total_requested_memory << endl;
}
int MemoryManager::fl_remove(Block* block)
{
total_fl_remove_calls += 1;
if (freeStart == nullptr){
cout << "free list is null" << endl;
return 1;
}
if (freeStart == block){
Block* tmp = freeStart->nextfree;
freeStart->nextfree = nullptr;
freeStart = tmp;
return 0;
}
else {
Block* prev = freeStart;
Block* f = freeStart->nextfree;
while (prev->nextfree != block && f!= nullptr){
prev = prev->nextfree;
f = f->nextfree;
}
if (nullptr == f){
return 1;
}
else {
prev->nextfree = f->nextfree;
f->nextfree = nullptr;
}
}
return 0;
}
void MemoryManager::fl_add(Block* block){
total_fl_add_calls += 1;
if(!freeStart || (unsigned long)freeStart > (unsigned long)block){
block->nextfree = freeStart;
freeStart = block;
}
else{
Block* f = freeStart;
Block* pos = freeStart;
while (f->nextfree != nullptr && (unsigned long)f->nextfree < (unsigned long)block){
pos = f->nextfree;
f = f->nextfree;
}
block->nextfree = pos->nextfree;
pos->nextfree = block;
}
}
/*
* subtract data_size because it is already counted
* as part of block header and contributes to size
*/
inline size_t MemoryManager::allocSize(size_t size)
{
return size + BLOCK_SIZE - DATA_SIZE;
}
/**
* Requests (maps) memory from OS.
* Only called when no free block exists in our
* linked list of blocks.
*/
Block *MemoryManager::requestFromOS(size_t size)
{
// Current heap break.
auto block = (Block *)sbrk(0); // (1)
// Out of Memory.
if (sbrk(allocSize(size)) == (void *)-1)
{ // (2)
cout << "Out of Memory!" << endl;
return nullptr;
}
total_requested_memory += size;
return block;
}
bool MemoryManager::canCoalesce(Block *block)
{
bool retval = (block->next && !block->next->used);
return retval;
}
/**
* Coalesces two adjacent blocks.
*/
Block *MemoryManager::coalesce(Block *block)
{
fl_remove(block->next);
size_t new_size = block->size + block->next->size + BLOCK_SIZE - DATA_SIZE;
block->next = block->next->next;
block->size = new_size;
return block;
}
/**
* Splits the block in two, returns the pointer to the
* sub-block of size = size.
*/
Tuple MemoryManager::split(Block *block, size_t size)
{
size_t new_size = align(size);
size_t remaining_size = block->size - new_size - BLOCK_SIZE + DATA_SIZE;
if (align(remaining_size) + BLOCK_SIZE - DATA_SIZE + new_size == block->size)
{
remaining_size = align(remaining_size);
}
else
{
remaining_size = align(remaining_size) - sizeof(word_t);
}
Block *newblock = (Block*)((unsigned long)block + (unsigned long)new_size + (unsigned long)BLOCK_SIZE - (unsigned long)DATA_SIZE);
// fl_remove(block); this is done in splitAllocate
newblock->size = remaining_size;
newblock->next = block->next;
newblock->used = false;
block->next = newblock;
block->size = new_size;
newblock->nextfree = nullptr;
fl_remove(block);F
block->used = true;
fl_add(newblock);
return {block, newblock};
}
/**
* Whether this block can be split.
*/
inline bool MemoryManager::canSplit(Block *block, size_t size)
{
bool can = false;
size_t new_size = align(size);
int remaining_size = (int)block->size - (int)new_size - (int)BLOCK_SIZE + (int)DATA_SIZE;
if (remaining_size <= 0)
return false;
if (align(remaining_size) + BLOCK_SIZE - DATA_SIZE + new_size == block->size)
{
can = true;
}
else if ((size_t)(align(remaining_size) - sizeof(word_t)) >= sizeof(word_t))
{
can = true;
}
else
{
can = false;
}
return can;
}
Block *MemoryManager::splitAllocate(Block *block, size_t size)
{
if (canSplit(block, size))
{
auto tuple = split(block, size);
block = tuple.block_size;
}
if(!block->used){
fl_remove(block);
block->used = true;
}
return {block};
}
Block *MemoryManager::firstFit(size_t size)
{
Block* block = freeStart;
while (block != nullptr)
{
if (block->used || block->size < size)
{
block = block->nextfree;
continue;
}
// Found the block:
return block;
// fl_remove(block); splitAllocate will do that
}
return nullptr;
}
Block *MemoryManager::bestFit(size_t size)
{
Block *block = freeStart;
size_t lowest = SIZE_MAX;
int i = -1;
int best_i = -1;
while (block != nullptr)
{
i++;
// O(n) search.
if (block->used || block->size < size)
{
block = block->nextfree;
continue;
}
else
{
if (block->size < lowest)
{
lowest = block->size;
best_i = i;
block = block->nextfree;
if (lowest == size)
// exact fit
break;
}
continue;
}
}
if (best_i >= 0)
{
block = freeStart;
for (int j = 0; j < best_i; j++)
{
block = block->nextfree;
}
return block;
}
return nullptr;
}
Block *MemoryManager::findBlock(size_t size)
{
switch (policy)
{
case 0:
{
auto block = firstFit(size);
if (block)
return splitAllocate(block, size);
else
return nullptr;
break;
}
case 1:
{
auto block = bestFit(size);
if (block)
return splitAllocate(block, size);
else
return nullptr;
break;
}
default:
return firstFit(size);
break;
}
}
// return starting mem address of data
word_t *MemoryManager::alloc(size_t size)
{
size = align(size);
/*
* now search for an available block with
* the appropriate size in the free
* blocks list (heap)
*/
if (auto block = findBlock(size))
{
block->used = 1;
return block->data;
}
auto block = requestFromOS(size);
block->size = size;
block->used = true;
// initialize the heap if uninitialized
if (heapStart == nullptr)
{
heapStart = block;
}
// chain the blocks together
if (top != nullptr)
{
top->next = block;
}
top = block;
// user payload
return block->data;
}
/* get block metadata fron its data start address*/
Block *MemoryManager::getHeader(word_t *data)
{
return (Block *)((char *)data + DATA_SIZE - BLOCK_SIZE);
}
void MemoryManager::free(word_t *data)
{
auto block = getHeader(data);
if (canCoalesce(getHeader(data)))
{
block = coalesce(block);
}
fl_add(block);
block->used = false;
}
static MemoryManager gmm;
void* operator new(size_t size){
return gmm.alloc(size);
}
void* operator new[] (size_t size){
return gmm.alloc(size);
}
void operator delete(void * p){
return gmm.free((word_t*)p);
}
void operator delete[] (void *arr){
gmm.free((word_t*)arr);
}