forked from thisisshub/HacktoberFest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImage_classifier_in_cnn.py
167 lines (127 loc) · 4.88 KB
/
Image_classifier_in_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Python program to create
# Image Classifier using CNN
# Importing the required libraries
import cv2
import os
import numpy as np
from random import shuffle
from tqdm import tqdm
'''Setting up the env'''
TRAIN_DIR = 'E:/dataset / Cats_vs_Dogs / train'
TEST_DIR = 'E:/dataset / Cats_vs_Dogs / test1'
IMG_SIZE = 50
LR = 1e-3
'''Setting up the model which will help with tensorflow models'''
MODEL_NAME = 'dogsvscats-{}-{}.model'.format(LR, '6conv-basic')
'''Labelling the dataset'''
def label_img(img):
word_label = img.split('.')[-3]
# DIY One hot encoder
if word_label == 'cat': return [1, 0]
elif word_label == 'dog': return [0, 1]
'''Creating the training data'''
def create_train_data():
# Creating an empty list where we should store the training data
# after a little preprocessing of the data
training_data = []
# tqdm is only used for interactive loading
# loading the training data
for img in tqdm(os.listdir(TRAIN_DIR)):
# labeling the images
label = label_img(img)
path = os.path.join(TRAIN_DIR, img)
# loading the image from the path and then converting them into
# greyscale for easier covnet prob
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# resizing the image for processing them in the covnet
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
# final step-forming the training data list with numpy array of the images
training_data.append([np.array(img), np.array(label)])
# shuffling of the training data to preserve the random state of our data
shuffle(training_data)
# saving our trained data for further uses if required
np.save('train_data.npy', training_data)
return training_data
'''Processing the given test data'''
# Almost same as processing the training data but
# we dont have to label it.
def process_test_data():
testing_data = []
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR, img)
img_num = img.split('.')[0]
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
testing_data.append([np.array(img), img_num])
shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data
'''Running the training and the testing in the dataset for our model'''
train_data = create_train_data()
test_data = process_test_data()
# train_data = np.load('train_data.npy')
# test_data = np.load('test_data.npy')
'''Creating the neural network using tensorflow'''
# Importing the required libraries
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
import tensorflow as tf
tf.reset_default_graph()
convnet = input_data(shape =[None, IMG_SIZE, IMG_SIZE, 1], name ='input')
convnet = conv_2d(convnet, 32, 5, activation ='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation ='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation ='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation ='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation ='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation ='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation ='softmax')
convnet = regression(convnet, optimizer ='adam', learning_rate = LR,
loss ='categorical_crossentropy', name ='targets')
model = tflearn.DNN(convnet, tensorboard_dir ='log')
# Splitting the testing data and training data
train = train_data[:-500]
test = train_data[-500:]
'''Setting up the features and lables'''
# X-Features & Y-Labels
X = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
Y = [i[1] for i in train]
test_x = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
test_y = [i[1] for i in test]
'''Fitting the data into our model'''
# epoch = 5 taken
model.fit({'input': X}, {'targets': Y}, n_epoch = 5,
validation_set =({'input': test_x}, {'targets': test_y}),
snapshot_step = 500, show_metric = True, run_id = MODEL_NAME)
model.save(MODEL_NAME)
'''Testing the data'''
import matplotlib.pyplot as plt
# if you need to create the data:
# test_data = process_test_data()
# if you already have some saved:
test_data = np.load('test_data.npy')
fig = plt.figure()
for num, data in enumerate(test_data[:20]):
# cat: [1, 0]
# dog: [0, 1]
img_num = data[1]
img_data = data[0]
y = fig.add_subplot(4, 5, num + 1)
orig = img_data
data = img_data.reshape(IMG_SIZE, IMG_SIZE, 1)
# model_out = model.predict([data])[0]
model_out = model.predict([data])[0]
if np.argmax(model_out) == 1: str_label ='Dog'
else: str_label ='Cat'
y.imshow(orig, cmap ='gray')
plt.title(str_label)
y.axes.get_xaxis().set_visible(False)
y.axes.get_yaxis().set_visible(False)
plt.show()