-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_ppo_acc.py
223 lines (191 loc) · 7.59 KB
/
run_ppo_acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import random
import numpy as np
import pandas as pd
import ray
import tensorflow as tf
from matplotlib import pyplot as plt
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.models.catalog import ModelCatalog
from nadas.environments.acc_env import ACCEnvironment
from nadas.models.lstm_actor_critic import LSTMActorCritic
import time
import os
def main(
server_ip: str,
port: int,
num_iterations: int,
sensor_data_corrupt_prob: float,
segmentation_corrupt_portion_size: tuple,
depth_error_rate: float,
use_state_prediction: bool,
max_steps: int,
iterations_per_reload: int,
action_repeats: int,
debug: bool,
store_sensor_directory: str or None
):
# Set the path to the Carla server executable
CARLA_SERVER_PATH = '../CarlaUE4.exe'
# Set the arguments for launching the Carla server
CARLA_SERVER_ARGS = [
'-quality-level=Low',
'-carla-server',
'-RenderOffscreen',
'-ResX=800',
'-ResY=600'
# '-carla-host=155.207.113.68'
]
print("Launching Carla server...")
# Launch the Carla server process
# carla_server_process = subprocess.Popen([CARLA_SERVER_PATH] + CARLA_SERVER_ARGS)
checkpoint_dir = 'nadas/experiments/checkpoints/ppo'
env_config = {
'server_ip': server_ip,
'port': port,
'sensor_data_corrupt_prob': sensor_data_corrupt_prob,
'segmentation_corrupt_portion_size': segmentation_corrupt_portion_size,
'depth_error_rate': depth_error_rate,
'use_state_prediction': use_state_prediction,
'max_steps': max_steps,
'iterations_per_reload': iterations_per_reload,
'action_repeats': action_repeats,
'debug': debug,
'store_sensor_directory': store_sensor_directory
}
ModelCatalog.register_custom_model('ppo_lstm_model', LSTMActorCritic)
agent_config = PPOConfig()
agent_config.model.update({
'vf_share_layers': True,
'custom_model': 'ppo_lstm_model',
'custom_model_config': {},
'use_lstm': True,
'lstm_cell_size': 64,
'max_seq_len': 10
})
agent_config.rollouts(num_rollout_workers=1, rollout_fragment_length=1024)
# agent_config.framework(framework='tf2', eager_tracing=True)
agent_config.batch_mode = 'complete_episodes'
agent_config.use_critic = True
agent_config.use_gae = True
agent_config.clip_param = 0.2
agent_config.entropy_coeff = 0.01
agent_config.kl_coeff = 0.1
agent_config.vf_loss_coeff = 0.5
agent_config.shuffle_sequences = True
agent_config.num_sgd_iter = 30
agent_config.sgd_minibatch_size = 32
agent_config.train_batch_size = 1024
agent_config.seed = 0
agent_config.gamma = 0.99
agent_config.lr = 0.0005
agent_config.num_gpus = 0
agent_config.normalize_actions = True
agent_config.disable_env_checking = True
agent = agent_config.environment(env=ACCEnvironment, env_config=env_config).build()
agent.save(checkpoint_dir=checkpoint_dir)
if summary:
agent.get_policy().model.base_model.summary(expand_nested=True)
# agent.get_policy().model.rnn_model.summary(expand_nested=True)
average_returns = []
episode_steps = []
checkpoints = []
# logs = pd.read_csv('nadas/experiments/logs/ppo_train.csv')
# average_returns = logs['Average Returns'].to_list()
# episode_steps = logs['Episode Steps'].to_list()
# checkpoints = logs['Checkpoint'].to_list()
i = 0
current_checkpoint = 0
last_checkpoint = 0
# agent = Algorithm.from_checkpoint('nadas/experiments/checkpoints/ppo/checkpoint_000000')
while i < num_iterations:
try:
print(f'Training Iteration {i + 1}')
result = agent.train()
i += 1
current_checkpoint += 1
agent.save(checkpoint_dir=checkpoint_dir)
returns = result['episode_reward_mean']
average_returns.append(returns)
steps = result['num_env_steps_trained_this_iter']
episode_steps.append(steps)
checkpoints.append(current_checkpoint)
print(
"# -----\n"
f"Iter = {i}\n"
f"Iter time = {result['time_this_iter_s']}\n"
f"Average Returns = {returns}\n"
f"Episode Steps = {steps}\n\n"
)
df = pd.DataFrame({
'Average Returns': average_returns,
'Episode Steps': episode_steps,
'Checkpoint': checkpoints
})
df.to_csv('nadas/experiments/logs/ppo_train.csv', index=False)
fig, axes = plt.subplots(1, 1, figsize=(20, 10))
fig.tight_layout()
axes.plot(average_returns)
axes.set_title('PPO - Average Returns')
axes.set_ylabel('Returns')
axes.set_xlabel('Iteration')
fig.savefig(f'nadas/experiments/plots/ppo_average_returns.png')
plt.close()
fig, axes = plt.subplots(1, 1, figsize=(20, 10))
fig.tight_layout()
axes.plot(episode_steps)
axes.set_title('PPO - Episode Steps')
axes.set_ylabel('Steps')
axes.set_xlabel('Iteration')
fig.savefig(f'nadas/experiments/plots/ppo_episode_steps.png')
plt.close()
except Exception as e:
print(f'Exception raised: {e}')
while True:
try:
print("Carla server has crashed! Or TimeoutError Occurred!")
# winsound.PlaySound("SystemAsterisk", winsound.SND_ALIAS)
os.system("taskkill /f /im CarlaUE4.exe")
os.system("taskkill /f /im CarlaUE4-Win64-Shipping.exe")
time.sleep(10)
ray.shutdown()
ray.init()
ModelCatalog.register_custom_model('ppo_lstm_model', LSTMActorCritic)
if current_checkpoint != 0:
ckp_id = str(current_checkpoint).zfill(6)
else:
ckp_id = str(last_checkpoint).zfill(6)
agent = Algorithm.from_checkpoint(f'nadas/experiments/checkpoints/ppo/checkpoint_{ckp_id}')
last_checkpoint = current_checkpoint
current_checkpoint = 0
break
except Exception as ex:
print(ex)
continue
if __name__ == '__main__':
with tf.device('/gpu:0'):
server_ip = 'localhost'
port = 2000
train_iterations = 1000
summary = True
# scenario_dict = {'Town02_Opt': Town02(), 'Town03_Opt': Town03(), 'Town04_Opt': Town04(), 'Town10HD_Opt': Town10()}
ray.shutdown()
ray.init()
tf.random.set_seed(seed=0)
np.random.seed(0)
random.seed(0)
main(
server_ip='localhost',
port=2000,
num_iterations=500,
sensor_data_corrupt_prob=0.3,
segmentation_corrupt_portion_size=(12, 16),
depth_error_rate=0.05,
max_steps=1024,
use_state_prediction=True,
iterations_per_reload=10,
action_repeats=10,
debug=False,
store_sensor_directory=None
)
ray.shutdown()