+abstract = {The optimization performed by compilers when generating executable programs is critical for software performance yet tuning this process to maximize efficiency is difficult due to the large number of possible modifications and the almost limitless number of potential input programs. To promote the application of artificial intelligence and machine learning to this challenge, Facebook Research released Compiler Gym[1], a reinforcement learning environment to allow the training of agents to perform compiler optimization control on real C/C++ programs. Whereas previously published approaches use techniques such as Proximal Policy Optimization or Deep Q Networks, this work utilizes neuroevolution and achieves competitive performance on the cBench-v1[2] program set while demonstrating the highly adaptive properties of the neuroevolution approach.},
0 commit comments