-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApp.R
87 lines (58 loc) · 2.29 KB
/
App.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#install.packages("shiny")
library(shiny)
ui <- fluidPage(
headerPanel("HEALTH INSURANCE COST PREDICTOR"),
# Input values
sidebarPanel(
HTML("<h3>Input Parameters</h4>"),
sliderInput("age", label = "Age", value = 20,
min = min(Data_train$age),
max = max(Data_train$age)
),
selectInput("sex", label = "Sex",
choices = sort(unique(Data_train$sex)),
selected = 'TRUE'),
sliderInput("bmi", label = "BMI", value = 20,
min = min(Data_train$bmi),
max = max(Data_train$bmi)),
sliderInput("children", label = "Children", value = 0,
min = min(Data_train$children),
max = max(Data_train$children)),
selectInput("smoker", label = "Smoker",
choices = sort(unique(Data_train$smoker)),
selected = 'TRUE'),
selectInput("region", label = "Region",
choices = sort(unique(Data_train$region)),
selected = 'TRUE'),
actionButton('go',"Predict")
),
mainPanel(
sidebarPanel( width = 25,
headerPanel("THE PREDICTED COST IS:- "),
textOutput("value")
)
)
)
server <- function(input, output) {
data2 = reactiveValues()
observeEvent(input$go,{
Data_train$sex[Data_train$sex == 0]<- 'F'
Data_train$sex[Data_train$sex == 1]<- 'M'
inputdata = Data_train[,c("age","sex", "bmi", "children","smoker","region","charges")]
str(inputdata)
data2$myage <- as.numeric(input$age)
data2$mysex <- as.character(input$sex)
data2$mybmi <- as.numeric(input$bmi)
data2$mychildren <- as.numeric(input$children)
data2$mysmoker <- as.character(input$smoker)
data2$myregion <- as.character(input$region)
newPredict = data.frame(age =data2$myage, sex = data2$mysex,
bmi = data2$mybmi, children = data2$mychildren, smoker = data2$mysmoker,
region = data2$myregion)
model = lm(charges ~ age+sex+bmi+children+smoker+region,
data = inputdata)
data2$op = predict(model, newPredict)
})
output$value <- renderPrint({data2$op})
}
shinyApp(ui, server)