29
29
"metadata" : {
30
30
"id" : " seG5y0ZZ7acg" ,
31
31
"colab_type" : " code" ,
32
- "colab" : {}
32
+ "colab" : {
33
+ "base_uri" : " https://localhost:8080/" ,
34
+ "height" : 53
35
+ },
36
+ "outputId" : " abd4a414-2212-4a6f-a4f3-2157fc0a07b4"
33
37
},
34
38
"source" : [
35
39
" %load_ext rpy2.ipython"
36
40
],
37
- "execution_count" : 0 ,
38
- "outputs" : []
41
+ "execution_count" : 14 ,
42
+ "outputs" : [
43
+ {
44
+ "output_type" : " stream" ,
45
+ "text" : [
46
+ " The rpy2.ipython extension is already loaded. To reload it, use:\n " ,
47
+ " %reload_ext rpy2.ipython\n "
48
+ ],
49
+ "name" : " stdout"
50
+ }
51
+ ]
39
52
},
40
53
{
41
54
"cell_type" : " code" ,
42
55
"metadata" : {
43
56
"id" : " TkqA4mlK9bsx" ,
44
57
"colab_type" : " code" ,
45
- "colab" : {}
58
+ "colab" : {
59
+ "base_uri" : " https://localhost:8080/" ,
60
+ "height" : 35
61
+ },
62
+ "outputId" : " a932a6e1-cdf8-48dc-c32c-f88a36abd776"
46
63
},
47
64
"source" : [
48
65
" %%R\n " ,
49
- " install.packages(c( \" RJSONIO \" , \" jsonlite \" , \" plyr \" , \" pROC \" , \" dplyr\" , \" httr \" , \" logging \" , \" digest \" , \" moments \" ) , lib=\" /content/R\" )"
66
+ " install.packages(\" dplyr\" , lib=\" /content/R\" )"
50
67
],
51
- "execution_count" : 0 ,
52
- "outputs" : []
68
+ "execution_count" : 12 ,
69
+ "outputs" : [
70
+ {
71
+ "output_type" : " stream" ,
72
+ "text" : [
73
+ " Would you like to use a personal library instead? (yes/No/cancel) yes\n "
74
+ ],
75
+ "name" : " stdout"
76
+ }
77
+ ]
53
78
},
54
79
{
55
80
"cell_type" : " code" ,
56
81
"metadata" : {
57
82
"id" : " CKJWCl-jDkHD" ,
58
83
"colab_type" : " code" ,
59
- "colab" : {}
84
+ "colab" : {
85
+ "base_uri" : " https://localhost:8080/" ,
86
+ "height" : 215
87
+ },
88
+ "outputId" : " fd742f24-1880-43c9-99a3-530ab0ae8976"
89
+ },
90
+ "source" : [
91
+ " %%R\n " ,
92
+ " \n " ,
93
+ " # First read the data as a dataframe into your R memory \n " ,
94
+ " decay <- read.csv(\" https://raw.githubusercontent.com/kiat/R-Examples/master/Datasets/decay.csv\" )\n " ,
95
+ " \n " ,
96
+ " #print the dataframe to check the content\n " ,
97
+ " # Note, this is only possible if your data is small \n " ,
98
+ " decay\n "
99
+ ],
100
+ "execution_count" : 7 ,
101
+ "outputs" : [
102
+ {
103
+ "output_type" : " display_data" ,
104
+ "data" : {
105
+ "text/plain" : [
106
+ " strength weeks\n " ,
107
+ " 1 118 2\n " ,
108
+ " 2 126 2\n " ,
109
+ " 3 126 2\n " ,
110
+ " 4 120 2\n " ,
111
+ " 5 129 2\n " ,
112
+ " 6 124 16\n " ,
113
+ " 7 98 16\n " ,
114
+ " 8 110 16\n " ,
115
+ " 9 140 16\n " ,
116
+ " 10 110 16\n "
117
+ ]
118
+ },
119
+ "metadata" : {
120
+ "tags" : []
121
+ }
122
+ }
123
+ ]
124
+ },
125
+ {
126
+ "cell_type" : " code" ,
127
+ "metadata" : {
128
+ "id" : " 2MzlwxWMixnh" ,
129
+ "colab_type" : " code" ,
130
+ "colab" : {
131
+ "base_uri" : " https://localhost:8080/" ,
132
+ "height" : 53
133
+ },
134
+ "outputId" : " 10bc9c0f-8271-45e1-e14d-7903a70def56"
60
135
},
61
136
"source" : [
62
137
" %%R\n " ,
63
- " install.packages(\" http://server1.teymourian.info/METCS555_Linux.tar.gz\" , repos = NULL, type = .Platform$pkgType, lib=\" /content/R\" )"
138
+ " # Print out a summary of the data for the 2 weeks sample data \n " ,
139
+ " summary(decay$strength[decay$weeks==2])"
64
140
],
65
- "execution_count" : 0 ,
66
- "outputs" : []
141
+ "execution_count" : 9 ,
142
+ "outputs" : [
143
+ {
144
+ "output_type" : " display_data" ,
145
+ "data" : {
146
+ "text/plain" : [
147
+ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n " ,
148
+ " 118.0 120.0 126.0 123.8 126.0 129.0 \n "
149
+ ]
150
+ },
151
+ "metadata" : {
152
+ "tags" : []
153
+ }
154
+ }
155
+ ]
67
156
},
68
157
{
69
158
"cell_type" : " code" ,
70
159
"metadata" : {
71
160
"id" : " zEx-yT85DpCd" ,
72
161
"colab_type" : " code" ,
73
- "colab" : {}
162
+ "colab" : {
163
+ "base_uri" : " https://localhost:8080/" ,
164
+ "height" : 53
165
+ },
166
+ "outputId" : " 1cd7d650-bc87-4c8f-eb9a-917a553e8173"
74
167
},
75
168
"source" : [
76
169
" %%R\n " ,
77
- " require(c(\" METCS555\" , \" RJSONIO\" , \" jsonlite\" , \" plyr\" , \" pROC\" , \" dplyr\" , \" httr\" , \" logging\" , \" digest\" , \" moments\" ), lib=\" /content/R\" )\n " ,
78
- " \n " ,
79
- " dataset_1 <- GenerateData(studentEmail = \" [email protected] \" , assignmentID = 1)\n " ,
80
- " dataset_2 <- GenerateData(studentEmail = \" [email protected] \" , assignmentID = 2)\n " ,
81
- " dataset_3 <- GenerateData(studentEmail = \" [email protected] \" , assignmentID = 3)\n " ,
82
- " dataset_4 <- GenerateData(studentEmail = \" [email protected] \" , assignmentID = 4)\n " ,
83
- " dataset_5 <- GenerateData(studentEmail = \" [email protected] \" , assignmentID = 5)\n " ,
84
- " dataset_6 <- GenerateData(studentEmail = \" [email protected] \" , assignmentID = 6)\n " ,
85
- " \n " ,
86
- " print(\" A3\" )\n " ,
87
- " print(dataset_3)"
170
+ " # Print out a summary of the data for the 16 weeks sample data \n " ,
171
+ " summary(decay$strength[decay$weeks==16])"
172
+ ],
173
+ "execution_count" : 10 ,
174
+ "outputs" : [
175
+ {
176
+ "output_type" : " display_data" ,
177
+ "data" : {
178
+ "text/plain" : [
179
+ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n " ,
180
+ " 98.0 110.0 110.0 116.4 124.0 140.0 \n "
181
+ ]
182
+ },
183
+ "metadata" : {
184
+ "tags" : []
185
+ }
186
+ }
187
+ ]
188
+ },
189
+ {
190
+ "cell_type" : " code" ,
191
+ "metadata" : {
192
+ "id" : " muUuiaMyisiz" ,
193
+ "colab_type" : " code" ,
194
+ "colab" : {
195
+ "base_uri" : " https://localhost:8080/" ,
196
+ "height" : 497
197
+ },
198
+ "outputId" : " 19570bbd-b4b2-4f29-9013-de4cd3bf5668"
199
+ },
200
+ "source" : [
201
+ " %%R \n " ,
202
+ " boxplot(decay$strength ~ decay$weeks, main=\" Polyester Strenght after weeks under soil\" , xlab=\" group\" , ylab=\" strength\" )"
88
203
],
89
- "execution_count" : 0 ,
90
- "outputs" : []
204
+ "execution_count" : 11 ,
205
+ "outputs" : [
206
+ {
207
+ "output_type" : " display_data" ,
208
+ "data" : {
209
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC8VBMVEUAAAABAQECAgIDAwMEBAQF\nBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcY\nGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKior\nKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+\nPj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBR\nUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2Nk\nZGRmZmZnZ2dpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5\neXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyN\njY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+g\noKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKz\ns7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbH\nx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna\n2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt\n7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////rlPfj\nAAAUIklEQVR4nO2dfXxU1ZnHT4gQ8kIAQ0iXtxCDBA0BEXxB1vIWbHWVoNR3VqhgWZrVLq8LVbHQ\naksrFtHiKihqLW9Cqw20cemmsLzUJS3YYgwuq9AIBDG8JSHJnL/2zp3MJbl35s7czJlz73nm9/18\nmAvnnDnnufebO/O7GWaGcUAa5nYBIL5AMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgm\nDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgonjumCW7O4qn/9j1zFCJzRTyUZGPWMcDoZUwfVM\no0vBkxfbFmCzT79hX4TrOvO9/K5dR7xiPyjEKpbRc9mkt6ObI/SEEYlW8JKnSAi+e+rt6WxW2wJs\n9mlm+OM+mo16/J9T2TrbQSFWsYyexjZGOUfoCSMSrWBns0Y/pfAZbdAE13N+gKU084b5/9B54JNN\n+j7dyd7ivIyN5Sce7ps68TDneyf06DZuPy/UzveFwcZGlrc2843gTCdYhnbfbVNfDQxq7WwdeokN\n/OCa9G9ozj65IeX637MibZWU/cMytJbAlH4OTOp55d2f87FaQ2HohXy9enP+HXYL5//EjgdLC261\nslvuZGuCpfo5xnIDOtusP6rL8HV+wdadCN6x7YEgIvhSEjvLJ7Pbfnw9m63v01b2Lc5L2astIzo9\n93qv/Jb67n1fXNWnx/ltvdnKD4ONnGUWPLE7ONOlDLbijP43fVCg8/LQ9DGvjGYzue9qNuUHeex6\nbZW06x7rzx5tHa1xsVfn1UvYeL59NJuzLcxCd7P/49f06HKR9x4U7Lw8KJkvZPN4sFT/cEPw5fUH\ns0eeH6i1WOc27tj2QNAQfOEZVsD/zPo385orutT796kpJ6OBD+pat5ONra//PttxlI2s5dUHG3m+\n9sgZbOSMfdBmqjfTWNK1j1Vof/MPCnS2Gfon/iEbwv+b9W/hq/RDzn7H/6CtGxitcX7nPs5TOzfx\nh9kmHmahlWzTKfZ99oejbFaw8/Kg5F+yu1u4USpvJ9hYP5/zNVqLde7gHdsdCAqC/aTu4OtZifbv\nXPZXfZ/ms/er2X38F4Hulb5bWKfCx48Ejnuwketn/2W+fOOxaxj7kSFY67w8NKmZf8m+xt9mdwUP\neVIjr9VaDMF8ZWFmOmPnLwu2LlTJ5m9in2X/4FfsrWBnmyVS2avaw3iwVN5OsLH+ZK79LI8MMXfw\nju0PBAHBDz78yL9/wrX90nad92cf6/v0MZv1AntPaxy/R+MYb1h7bw7reUw/7kajaed92p+tLDMo\n2N/ZbuhXLIe/6Re8Vz/krS2G4G1s2L7qtLaCrQu19BxXmsen3PZv7Hiw8/Igdn9KzllulMr9ggeY\nVtPX36O1hNiJ1ju2PxAEBLf+AB9kfZv58eSMS4F9uiXntuwmvk97VON/q/jq7B+PcV+plrzy2XGj\nsf3O/6pPiWb4OMto0QcFOtsN9R/g/2IDWvjPTYKP6xMsYot5VZszOORCd3UbOp2v6HbzIKOz7aB5\n7HvcKFXjLEttaH1CaF2tguX6+Atai3Xu4B3bHwg6gvkUNvn5EWxZ6z69xlipdlIOZ4+s6NPj+G42\n6rW1I5IP8lHs0e3BxvY7X5PDrnnkgd5sGtcHBTrbDfUf4OYBrGRpXjvB+miNl9nQt0YNZs9f1AWH\nWWgFY2u1c1K7rAt2th1U1+uKvxql+rmWPbyqqO1qLQPZfT+8Smuxzm3csd2BICS4fm5O5/yXeOs+\nnU9l/kuNk9O+ljleC7nvjEjrduM2zjf3Sl1iNLbf+U9nDeyaOnRpfeugQGfbobrOvxR2uekddlOb\nFn20RsP9GQPW/7Z7r1O64DAL/YmxI/xSmv8EDXa2HbSKTTRK1YcP73rLHjaszWoHC7vcuN1/mWad\nO3jHdgdCdcFhOZhUFI9pfcf2+Z9tH4rH3KrgBcFHFg30/zpJPL5BbOYrBWx7POZWBS8I3p2avSw+\nM39y55Xp170Tn7kVwQuCQRyBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQT\nB4KJA8HEgWDiQDBxIJg4MQiu3Qg8wOZL8RK84aE1wH3GHImb4NUdvy8QxszYBTdUVVY3WZsh2BPE\nLLhmakpOXnbajDPmDgj2BDELLl5Up92enF1i7oBgTxCz4J7N+qYxy9wBwZ4gZsFDKvRNueX9fxDs\nCWIWXJY1sXTBnAnZ5eYOCPYEsafoug3LFi/fcs7SDsGeQMBlkp/3rE0Q7AliFnxYp9fhw+YOCPYE\nMQtmOYUaVxQWmjsg2BPELHjndU/Vc57TpmXfszol/xJjacry/rORmfN0FIOqBBQT+3Nww9NDy9sJ\n/rxc554psVWmLn8rj8wDP49iUK2AYkSErKoJ03pZW5+4v0MFJQiL9khaSEyKfj3E2QrBdizaK2kh\nQZdJnJ8wN0CwHZ83SFpImOAUcwMEe4KYBde2AsGO2Gd5eTVOxCw4KTmAZSQE26FOyJq3NLDFGewI\ndQQ3lVTqWwh2hHop+rS5AYLtUC9FW4BgTwDB7qBOig4LBNuhTsgKCwTbAcHEUS9FW4BgO5CigRgg\n2B2QoomDkEUcCCYOUjRxkKKBGCDYHZCiiYOQRRwIJg5SNHGQooEYINgdkKKJg5BFHAgmDlI0cZCi\ngRgg2B2QoomDkEUcCCYOUjRxkKKBGCDYHZCiiYOQRRwIJg5SNHGQooEYINgdkKKJg5BFHAgmDlI0\ncZCigRgg2B2QoomDkEUcCCYOUjRxkKKBGCDYHZCiiYOQRRwIJg5SNHGQooEYINgdVErRDVWV1U3W\nZgi2Q52QVTM1JScvO22G5ScSgu1QR3Dxojrt9uTsEnMHBNuhToru2axvGrPMHRBshzopekiFvikv\nMndAsCeIWXBZ1sTSBXMmZJebOyDYDoVSdN2GZYuXbzlnaYdgO9QJWTq+L3yWNgi2Qx3BVcUDHj9d\n1Clnl7kDgu1QJ0WPm79n+q0/a3r9RnMHBNuhToru3szPsHru62m0bC7WGTAx5uJA7MQsOO8jzudx\nXn2VuQNnsB3qpOg3s3Zotx/0+Zm5A4LtUCdk8Y+PajeV2y3tEGyHQoJbOWFugGA71EnRQVLMDRBs\nhzopurYVCPYmMQtOSg5gGSlE8MkPI1OxO4pBskJrtKiTouctDWzjcwaXLYzMbVOiGPRHAcWIRJ2Q\n1VRSqW/de4h+caOkhUSijuAgp80NEGyHeinagjTB/1MlaSGRqJOiw4IU7QkICD53UdJCIlEnRYdF\nmuCXNktaSCTqhSwLCFl2QHD0qCkYKTpqkKLtICAY2EFAMFK0HQQEI0XbQUCwmiELgqNGTcFI0VGD\nFG0HAcHADgKCkaLtICAYKdoOAoLVDFkQHDVqCkaKjhqkaDtcFLwi02Os7/jOehcXBV/NPMbNHd9Z\nxyRCih5d7i223t7xnXVMIoSscR2fOy58NUXiYhAsH7mCEyBFJ7TgREjRCS1YGhBsIFVwIqTohBaM\nkCUfCHYGBNuBFC0fpGhnQLAngGADpGhnQLAdCFnygWBn0BT8zWIxFIwWM8/Xn41QMAQbRCXYa0Uf\nLI0wAIININgZECwDCI4eCHYGBMsAgqMHgp0BwTKA4OiBYGdAsAwgOHog2BkQLAMIjh4IdgYEywCC\noweCnQHBMoDg6IFgZ0CwDAQJLhs9oK+Go6UhWAaCBPd/5c+HNBwtDcEyECR4YAeWhmAZCBL8zJs2\nYxqqKqubrM0QLAMhgvv2HZjSLdxzcM3UlJy87LQZlv/IDcEyECL40KEy/zPwoddCjSheVKfdnpxd\nYu6AYBkIeogu9N+c7xFqRM9mfdOYZe6AYBkIEbwuJylFo9OkUCOGVOib8iJzBwTLQMwZ7Jvi/47v\nupAjyrImli6YMyG73NwBwTKQ8Jusug3LFi/fcs7SDsEyECQ4N9/PoFH/avmWYAPn3x/stWOVyIJf\nvn3L3q13rN75qCUr88Pj+z34d96RbwD32rFKZMHDG7Wbhpu4b4BlxJgnDzyXX91WcE3gox/vuSfC\n0l9396MpLWxNYMEDarSbU335R/mWEd1aON9e8EUbwRULdW74ZoSl31gohpIHBE20NULBfogKXtZ9\nyqz7sua2ZPyHZUTBLu3m7aKjzh+iRSH1E9+JCuaHXlq+ap92EltHvJu5yX/bL8ncAcEykHCZdOy4\n//bLteZ2aYK3VUhayA9Rwb+9OeIL/ifMDTS/GIuo4CGbIr7g795zsFSICg75W+gAta24J3jDB5IW\n8kNU8JLwxzApOYDl2RohSwaiftHRqXu45+B5SwNbXCa5giDBlfoL/iGfg5tKKvWte4KRou2I9jLp\nUk2EiZy/2KAkRAWfnNK5B//ubkdLQ7AMBAkev+J8Lt8/ytHSSNEyECT4Ks5zOR/kaGmELBkIEjzs\nL5rgw0MdLQ3BMhAk+L0rJ6WXZL/vaGkhgl8bGZn8gigG/UZAMX6ICubH1zy33vLbZnsQsmQgSPDE\nDiwNwTIQJPjBjS2Ol4ZgGQgSPCI9rY/w9wcrCVHBvw7/3qSwQLAM4v/epLBAsAzi/96ksECwDOL/\n3qSwQLAMBD1EX9zFL/z4J+cdLQ3BMhAk+KF5fHrxdGfGIFgGoj6EpaU+84zP+rYGOyBYBoIE5/ve\nH899/RwtDcEyECR42qS+W/iTdzpaGoJlIEhw46ZdnL8Q4o0rNkCwDLz8WZVKAsEGECwDCBYMBBtA\nsAwgWDAQbADBMoBgwUCwAQTLAIIFA8EGECwDCBYMBBtAsAwgWDAQbADBMoBgwUCwAQTLAIIFA8EG\nECwDCBYMBBtAsAwgWDAQbADBMoBgwUCwAQTLAIIFA8EGECwDCBYMBBtAsAwgWDAQbADBMoBgwUCw\nAQTLAIIFA8EGECwDCBYMBBtAsAxkCG6oqqxusjZDsAziL7hmakpOXnbajDPmDgiWQfwFFy/yf0jp\nydkl5g4IlkH8Bfds1jeNWeYOCJZB/AUPCXw1ZHmRuQOCZRB/wWVZE0sXzJmQXW7ugGAZSEjRdRuW\nLV6+5ZylHYJlIO862PK1WRAsA3mC3fuCaKkknuDaVhJE8Mg13uKpWREKjllwUnKAyyO3P6ZT5OxL\nWhShN/MYD0YoOGbB85YGtpfP4Auf6nz73oj3VZBn+oshM0fQRHsjFByz4KaSSn2bIA/RonjyQ0kL\nCQtZp80NEGxHiFdn4gMuk4iDyyR32PyZpIVwmeQOi/ZIWigOl0mtQLAd6gi2Xia1AsF2qJOicZnU\nIdRL0bhM8ib4X5XuoE6KDgsE26FOyAoLBNsBwcRRJ0WHBYLtUC9FW4BgTwDB7oAUTRyELOJAMHGQ\noomDFA3EAMHugBRNHIQs4kAwcZCiiYMUDcQAwe6AFE0chCziQDBxkKKJgxQNxADB7oAUTRyELOJA\nMHGQoomDFA3EAMHugBRNHIQs4kAwcZCiiYMUDcQAwe6AFE0chCziQDBxkKKJgxQNxADB7oAUTRyE\nLOJAMHGQoomDFA3EAMHugBRNHIQs4kAwcZCiiYMUDcQAwe6AFE0clUJWQ1VldYinFAi2Qx3BNVNT\ncvKy02acMXdAsB3qpOjiRXXa7cnZJeYOCLZDnRTds1nfNGaZOyDYE8QseEiFvikvMndAsB3qpOiy\nrImlC+ZMyC43d0CwHeqELF63Ydni5VvOWdoh2A6FBOMyqSOok6JxmdQh1EnRuEzyNnG4TNpcrJM/\nNbbKaKNOig57mbRhdQdLSgjUCVlhL5Mg2A51BIe9TIJgO9RJ0UFOmBsg2A51UnSQFHMDBHuCmAXX\ntgLBjlAnRSclB7CMhGA71AlZ85YGtjiDHaGO4KaSSn0LwY5QL0WfNjdAsB3qpWgLEOwJINgd1EnR\nYYFgO9QJWWGBYDsgWGFW3RuZa4ujGLRXQDEQLJ76M5E5FcWYM80CioFg4kAwcSCYOBBMHAgmDgQT\nB4KJA8HEgWDiQDBxIJg48RO8Y3ixHAZlXqke6TdIOjoFf4+XYGm8uNHtCjqAtJcLIwDBcQKCoweC\nYwCC4wQERw8ExwAExwkIjp6Xt7hdQQdYvM/tCgKoILj+ktsVdIALPrcrCKCCYBADEEwcCCYOBBMH\ngokDwcSBYOJAMHG8L/jXQ7qPrXK7CEc0zU+q1TafjUsfVul2Ld4XfKz7rpYl492uwhElTyf7Bd/6\nk0vrprtdiwKCN3J+oK/bVTiikvsF/2+/FrcL8eN5wX6eU+2jx/2Ct46flTvhsNuVKCF4R94xt0tw\niF/wutT/9P3U8iHb0lFA8NsF1W6X4BS/4Hev47y5i+XTxWTjfcHbir5wuwTH+AVX5mqCO9e5XYrn\nBZ/pd9TtEpyjp+hha30rR7ldifcFr01K0XD9kc4Bp1NSWErKCX7k+h5jPna7GO8LBrEBwcSBYOJA\nMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEycRBP8\nbO6INbn8wIhpxXxj4ZCxh/meAu7/s3/od8ePqHC7ujiQYII/6l7T8I18fij9Hf5ZZhV/8aag4EpW\nxssGu11eHEgwwS9N4XyLJji1hb96F+f1nc4GBffgvCnplNv1iSfBBC+fyfleTXAfzn/0be3fGdVB\nwbnav9LV+iSBqEgwwau+xflWTXBfztdO9p/B5/ZfzfnvNMEZPl7Pat2uTzwJJnhfr9rGOwKCj/Wo\n5s/fyo+lX+Df0QRfsZGvv9bt8uJAggnmc/vdvHqQLpi/W1RQ/CnnTxTd8dPBvHLQ3MEFu9yuLg4k\nmuAWzneGek9nZb70UuSQYIJPZXzkm1kaogOCifCLgQMmh4pSEAzUBIKJA8HEgWDiQDBxIJg4EEwc\nCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJs7/A3NdSJXpXSqlAAAAAElFTkSuQmCC\n"
210
+ },
211
+ "metadata" : {
212
+ "tags" : []
213
+ }
214
+ }
215
+ ]
91
216
},
92
217
{
93
218
"cell_type" : " code" ,
94
219
"metadata" : {
95
220
"id" : " PdnNsERdF9PE" ,
96
221
"colab_type" : " code" ,
97
- "colab" : {}
222
+ "colab" : {
223
+ "base_uri" : " https://localhost:8080/" ,
224
+ "height" : 233
225
+ },
226
+ "outputId" : " 55d11e9d-cf55-4318-e934-54528032e704"
98
227
},
99
228
"source" : [
100
229
" %%R\n " ,
101
- " print(\" A3\" )\n " ,
102
- " plot(dataset_3$NumFishMeals, dataset_3$TotalMercury )"
230
+ " t.test(decay$strength[decay$weeks==2], decay$strength[decay$weeks==16], alternative=\" two.sided\" , conf.level=0.95)\n "
103
231
],
104
- "execution_count" : 0 ,
105
- "outputs" : []
232
+ "execution_count" : 13 ,
233
+ "outputs" : [
234
+ {
235
+ "output_type" : " display_data" ,
236
+ "data" : {
237
+ "text/plain" : [
238
+ " \n " ,
239
+ " \t Welch Two Sample t-test\n " ,
240
+ " \n " ,
241
+ " data: decay$strength[decay$weeks == 2] and decay$strength[decay$weeks == 16]\n " ,
242
+ " t = 0.98887, df = 4.651, p-value = 0.3713\n " ,
243
+ " alternative hypothesis: true difference in means is not equal to 0\n " ,
244
+ " 95 percent confidence interval:\n " ,
245
+ " -12.2789 27.0789\n " ,
246
+ " sample estimates:\n " ,
247
+ " mean of x mean of y \n " ,
248
+ " 123.8 116.4 \n " ,
249
+ " \n "
250
+ ]
251
+ },
252
+ "metadata" : {
253
+ "tags" : []
254
+ }
255
+ }
256
+ ]
106
257
}
107
258
]
108
259
}
0 commit comments