Skip to content

Commit c2f2139

Browse files
committed
Created using Colaboratory
1 parent 3bc890c commit c2f2139

File tree

1 file changed

+181
-30
lines changed

1 file changed

+181
-30
lines changed

Running_R_on_Colab.ipynb

Lines changed: 181 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -29,80 +29,231 @@
2929
"metadata": {
3030
"id": "seG5y0ZZ7acg",
3131
"colab_type": "code",
32-
"colab": {}
32+
"colab": {
33+
"base_uri": "https://localhost:8080/",
34+
"height": 53
35+
},
36+
"outputId": "abd4a414-2212-4a6f-a4f3-2157fc0a07b4"
3337
},
3438
"source": [
3539
"%load_ext rpy2.ipython"
3640
],
37-
"execution_count": 0,
38-
"outputs": []
41+
"execution_count": 14,
42+
"outputs": [
43+
{
44+
"output_type": "stream",
45+
"text": [
46+
"The rpy2.ipython extension is already loaded. To reload it, use:\n",
47+
" %reload_ext rpy2.ipython\n"
48+
],
49+
"name": "stdout"
50+
}
51+
]
3952
},
4053
{
4154
"cell_type": "code",
4255
"metadata": {
4356
"id": "TkqA4mlK9bsx",
4457
"colab_type": "code",
45-
"colab": {}
58+
"colab": {
59+
"base_uri": "https://localhost:8080/",
60+
"height": 35
61+
},
62+
"outputId": "a932a6e1-cdf8-48dc-c32c-f88a36abd776"
4663
},
4764
"source": [
4865
"%%R\n",
49-
"install.packages(c(\"RJSONIO\", \"jsonlite\", \"plyr\", \"pROC\", \"dplyr\", \"httr\", \"logging\", \"digest\", \"moments\"), lib=\"/content/R\")"
66+
"install.packages(\"dplyr\", lib=\"/content/R\")"
5067
],
51-
"execution_count": 0,
52-
"outputs": []
68+
"execution_count": 12,
69+
"outputs": [
70+
{
71+
"output_type": "stream",
72+
"text": [
73+
"Would you like to use a personal library instead? (yes/No/cancel) yes\n"
74+
],
75+
"name": "stdout"
76+
}
77+
]
5378
},
5479
{
5580
"cell_type": "code",
5681
"metadata": {
5782
"id": "CKJWCl-jDkHD",
5883
"colab_type": "code",
59-
"colab": {}
84+
"colab": {
85+
"base_uri": "https://localhost:8080/",
86+
"height": 215
87+
},
88+
"outputId": "fd742f24-1880-43c9-99a3-530ab0ae8976"
89+
},
90+
"source": [
91+
"%%R\n",
92+
"\n",
93+
"# First read the data as a dataframe into your R memory \n",
94+
"decay <- read.csv(\"https://raw.githubusercontent.com/kiat/R-Examples/master/Datasets/decay.csv\" )\n",
95+
"\n",
96+
"#print the dataframe to check the content\n",
97+
"# Note, this is only possible if your data is small \n",
98+
"decay\n"
99+
],
100+
"execution_count": 7,
101+
"outputs": [
102+
{
103+
"output_type": "display_data",
104+
"data": {
105+
"text/plain": [
106+
" strength weeks\n",
107+
"1 118 2\n",
108+
"2 126 2\n",
109+
"3 126 2\n",
110+
"4 120 2\n",
111+
"5 129 2\n",
112+
"6 124 16\n",
113+
"7 98 16\n",
114+
"8 110 16\n",
115+
"9 140 16\n",
116+
"10 110 16\n"
117+
]
118+
},
119+
"metadata": {
120+
"tags": []
121+
}
122+
}
123+
]
124+
},
125+
{
126+
"cell_type": "code",
127+
"metadata": {
128+
"id": "2MzlwxWMixnh",
129+
"colab_type": "code",
130+
"colab": {
131+
"base_uri": "https://localhost:8080/",
132+
"height": 53
133+
},
134+
"outputId": "10bc9c0f-8271-45e1-e14d-7903a70def56"
60135
},
61136
"source": [
62137
"%%R\n",
63-
"install.packages(\"http://server1.teymourian.info/METCS555_Linux.tar.gz\", repos = NULL, type = .Platform$pkgType, lib=\"/content/R\")"
138+
"# Print out a summary of the data for the 2 weeks sample data \n",
139+
"summary(decay$strength[decay$weeks==2])"
64140
],
65-
"execution_count": 0,
66-
"outputs": []
141+
"execution_count": 9,
142+
"outputs": [
143+
{
144+
"output_type": "display_data",
145+
"data": {
146+
"text/plain": [
147+
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
148+
" 118.0 120.0 126.0 123.8 126.0 129.0 \n"
149+
]
150+
},
151+
"metadata": {
152+
"tags": []
153+
}
154+
}
155+
]
67156
},
68157
{
69158
"cell_type": "code",
70159
"metadata": {
71160
"id": "zEx-yT85DpCd",
72161
"colab_type": "code",
73-
"colab": {}
162+
"colab": {
163+
"base_uri": "https://localhost:8080/",
164+
"height": 53
165+
},
166+
"outputId": "1cd7d650-bc87-4c8f-eb9a-917a553e8173"
74167
},
75168
"source": [
76169
"%%R\n",
77-
"require(c(\"METCS555\", \"RJSONIO\", \"jsonlite\", \"plyr\", \"pROC\", \"dplyr\", \"httr\", \"logging\", \"digest\", \"moments\"), lib=\"/content/R\")\n",
78-
"\n",
79-
"dataset_1 <- GenerateData(studentEmail = \"[email protected]\", assignmentID = 1)\n",
80-
"dataset_2 <- GenerateData(studentEmail = \"[email protected]\", assignmentID = 2)\n",
81-
"dataset_3 <- GenerateData(studentEmail = \"[email protected]\", assignmentID = 3)\n",
82-
"dataset_4 <- GenerateData(studentEmail = \"[email protected]\", assignmentID = 4)\n",
83-
"dataset_5 <- GenerateData(studentEmail = \"[email protected]\", assignmentID = 5)\n",
84-
"dataset_6 <- GenerateData(studentEmail = \"[email protected]\", assignmentID = 6)\n",
85-
"\n",
86-
"print(\"A3\")\n",
87-
"print(dataset_3)"
170+
"# Print out a summary of the data for the 16 weeks sample data \n",
171+
"summary(decay$strength[decay$weeks==16])"
172+
],
173+
"execution_count": 10,
174+
"outputs": [
175+
{
176+
"output_type": "display_data",
177+
"data": {
178+
"text/plain": [
179+
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
180+
" 98.0 110.0 110.0 116.4 124.0 140.0 \n"
181+
]
182+
},
183+
"metadata": {
184+
"tags": []
185+
}
186+
}
187+
]
188+
},
189+
{
190+
"cell_type": "code",
191+
"metadata": {
192+
"id": "muUuiaMyisiz",
193+
"colab_type": "code",
194+
"colab": {
195+
"base_uri": "https://localhost:8080/",
196+
"height": 497
197+
},
198+
"outputId": "19570bbd-b4b2-4f29-9013-de4cd3bf5668"
199+
},
200+
"source": [
201+
"%%R \n",
202+
"boxplot(decay$strength ~ decay$weeks, main=\"Polyester Strenght after weeks under soil\", xlab=\"group\", ylab=\"strength\")"
88203
],
89-
"execution_count": 0,
90-
"outputs": []
204+
"execution_count": 11,
205+
"outputs": [
206+
{
207+
"output_type": "display_data",
208+
"data": {
209+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC8VBMVEUAAAABAQECAgIDAwMEBAQF\nBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcY\nGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKior\nKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+\nPj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBR\nUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2Nk\nZGRmZmZnZ2dpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5\neXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyN\njY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+g\noKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKz\ns7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbH\nx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna\n2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt\n7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////rlPfj\nAAAUIklEQVR4nO2dfXxU1ZnHT4gQ8kIAQ0iXtxCDBA0BEXxB1vIWbHWVoNR3VqhgWZrVLq8LVbHQ\naksrFtHiKihqLW9Cqw20cemmsLzUJS3YYgwuq9AIBDG8JSHJnL/2zp3MJbl35s7czJlz73nm9/18\nmAvnnDnnufebO/O7GWaGcUAa5nYBIL5AMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgm\nDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgonjumCW7O4qn/9j1zFCJzRTyUZGPWMcDoZUwfVM\no0vBkxfbFmCzT79hX4TrOvO9/K5dR7xiPyjEKpbRc9mkt6ObI/SEEYlW8JKnSAi+e+rt6WxW2wJs\n9mlm+OM+mo16/J9T2TrbQSFWsYyexjZGOUfoCSMSrWBns0Y/pfAZbdAE13N+gKU084b5/9B54JNN\n+j7dyd7ivIyN5Sce7ps68TDneyf06DZuPy/UzveFwcZGlrc2843gTCdYhnbfbVNfDQxq7WwdeokN\n/OCa9G9ozj65IeX637MibZWU/cMytJbAlH4OTOp55d2f87FaQ2HohXy9enP+HXYL5//EjgdLC261\nslvuZGuCpfo5xnIDOtusP6rL8HV+wdadCN6x7YEgIvhSEjvLJ7Pbfnw9m63v01b2Lc5L2astIzo9\n93qv/Jb67n1fXNWnx/ltvdnKD4ONnGUWPLE7ONOlDLbijP43fVCg8/LQ9DGvjGYzue9qNuUHeex6\nbZW06x7rzx5tHa1xsVfn1UvYeL59NJuzLcxCd7P/49f06HKR9x4U7Lw8KJkvZPN4sFT/cEPw5fUH\ns0eeH6i1WOc27tj2QNAQfOEZVsD/zPo385orutT796kpJ6OBD+pat5ONra//PttxlI2s5dUHG3m+\n9sgZbOSMfdBmqjfTWNK1j1Vof/MPCnS2Gfon/iEbwv+b9W/hq/RDzn7H/6CtGxitcX7nPs5TOzfx\nh9kmHmahlWzTKfZ99oejbFaw8/Kg5F+yu1u4USpvJ9hYP5/zNVqLde7gHdsdCAqC/aTu4OtZifbv\nXPZXfZ/ms/er2X38F4Hulb5bWKfCx48Ejnuwketn/2W+fOOxaxj7kSFY67w8NKmZf8m+xt9mdwUP\neVIjr9VaDMF8ZWFmOmPnLwu2LlTJ5m9in2X/4FfsrWBnmyVS2avaw3iwVN5OsLH+ZK79LI8MMXfw\nju0PBAHBDz78yL9/wrX90nad92cf6/v0MZv1AntPaxy/R+MYb1h7bw7reUw/7kajaed92p+tLDMo\n2N/ZbuhXLIe/6Re8Vz/krS2G4G1s2L7qtLaCrQu19BxXmsen3PZv7Hiw8/Igdn9KzllulMr9ggeY\nVtPX36O1hNiJ1ju2PxAEBLf+AB9kfZv58eSMS4F9uiXntuwmvk97VON/q/jq7B+PcV+plrzy2XGj\nsf3O/6pPiWb4OMto0QcFOtsN9R/g/2IDWvjPTYKP6xMsYot5VZszOORCd3UbOp2v6HbzIKOz7aB5\n7HvcKFXjLEttaH1CaF2tguX6+Atai3Xu4B3bHwg6gvkUNvn5EWxZ6z69xlipdlIOZ4+s6NPj+G42\n6rW1I5IP8lHs0e3BxvY7X5PDrnnkgd5sGtcHBTrbDfUf4OYBrGRpXjvB+miNl9nQt0YNZs9f1AWH\nWWgFY2u1c1K7rAt2th1U1+uKvxql+rmWPbyqqO1qLQPZfT+8Smuxzm3csd2BICS4fm5O5/yXeOs+\nnU9l/kuNk9O+ljleC7nvjEjrduM2zjf3Sl1iNLbf+U9nDeyaOnRpfeugQGfbobrOvxR2uekddlOb\nFn20RsP9GQPW/7Z7r1O64DAL/YmxI/xSmv8EDXa2HbSKTTRK1YcP73rLHjaszWoHC7vcuN1/mWad\nO3jHdgdCdcFhOZhUFI9pfcf2+Z9tH4rH3KrgBcFHFg30/zpJPL5BbOYrBWx7POZWBS8I3p2avSw+\nM39y55Xp170Tn7kVwQuCQRyBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQT\nB4KJA8HEgWDiQDBxIJg4MQiu3Qg8wOZL8RK84aE1wH3GHImb4NUdvy8QxszYBTdUVVY3WZsh2BPE\nLLhmakpOXnbajDPmDgj2BDELLl5Up92enF1i7oBgTxCz4J7N+qYxy9wBwZ4gZsFDKvRNueX9fxDs\nCWIWXJY1sXTBnAnZ5eYOCPYEsafoug3LFi/fcs7SDsGeQMBlkp/3rE0Q7AliFnxYp9fhw+YOCPYE\nMQtmOYUaVxQWmjsg2BPELHjndU/Vc57TpmXfszol/xJjacry/rORmfN0FIOqBBQT+3Nww9NDy9sJ\n/rxc554psVWmLn8rj8wDP49iUK2AYkSErKoJ03pZW5+4v0MFJQiL9khaSEyKfj3E2QrBdizaK2kh\nQZdJnJ8wN0CwHZ83SFpImOAUcwMEe4KYBde2AsGO2Gd5eTVOxCw4KTmAZSQE26FOyJq3NLDFGewI\ndQQ3lVTqWwh2hHop+rS5AYLtUC9FW4BgTwDB7qBOig4LBNuhTsgKCwTbAcHEUS9FW4BgO5CigRgg\n2B2QoomDkEUcCCYOUjRxkKKBGCDYHZCiiYOQRRwIJg5SNHGQooEYINgdkKKJg5BFHAgmDlI0cZCi\ngRgg2B2QoomDkEUcCCYOUjRxkKKBGCDYHZCiiYOQRRwIJg5SNHGQooEYINgdkKKJg5BFHAgmDlI0\ncZCigRgg2B2QoomDkEUcCCYOUjRxkKKBGCDYHZCiiYOQRRwIJg5SNHGQooEYINgdVErRDVWV1U3W\nZgi2Q52QVTM1JScvO22G5ScSgu1QR3Dxojrt9uTsEnMHBNuhToru2axvGrPMHRBshzopekiFvikv\nMndAsCeIWXBZ1sTSBXMmZJebOyDYDoVSdN2GZYuXbzlnaYdgO9QJWTq+L3yWNgi2Qx3BVcUDHj9d\n1Clnl7kDgu1QJ0WPm79n+q0/a3r9RnMHBNuhToru3szPsHru62m0bC7WGTAx5uJA7MQsOO8jzudx\nXn2VuQNnsB3qpOg3s3Zotx/0+Zm5A4LtUCdk8Y+PajeV2y3tEGyHQoJbOWFugGA71EnRQVLMDRBs\nhzopurYVCPYmMQtOSg5gGSlE8MkPI1OxO4pBskJrtKiTouctDWzjcwaXLYzMbVOiGPRHAcWIRJ2Q\n1VRSqW/de4h+caOkhUSijuAgp80NEGyHeinagjTB/1MlaSGRqJOiw4IU7QkICD53UdJCIlEnRYdF\nmuCXNktaSCTqhSwLCFl2QHD0qCkYKTpqkKLtICAY2EFAMFK0HQQEI0XbQUCwmiELgqNGTcFI0VGD\nFG0HAcHADgKCkaLtICAYKdoOAoLVDFkQHDVqCkaKjhqkaDtcFLwi02Os7/jOehcXBV/NPMbNHd9Z\nxyRCih5d7i223t7xnXVMIoSscR2fOy58NUXiYhAsH7mCEyBFJ7TgREjRCS1YGhBsIFVwIqTohBaM\nkCUfCHYGBNuBFC0fpGhnQLAngGADpGhnQLAdCFnygWBn0BT8zWIxFIwWM8/Xn41QMAQbRCXYa0Uf\nLI0wAIININgZECwDCI4eCHYGBMsAgqMHgp0BwTKA4OiBYGdAsAwgOHog2BkQLAMIjh4IdgYEywCC\noweCnQHBMoDg6IFgZ0CwDAQJLhs9oK+Go6UhWAaCBPd/5c+HNBwtDcEyECR4YAeWhmAZCBL8zJs2\nYxqqKqubrM0QLAMhgvv2HZjSLdxzcM3UlJy87LQZlv/IDcEyECL40KEy/zPwoddCjSheVKfdnpxd\nYu6AYBkIeogu9N+c7xFqRM9mfdOYZe6AYBkIEbwuJylFo9OkUCOGVOib8iJzBwTLQMwZ7Jvi/47v\nupAjyrImli6YMyG73NwBwTKQ8Jusug3LFi/fcs7SDsEyECQ4N9/PoFH/avmWYAPn3x/stWOVyIJf\nvn3L3q13rN75qCUr88Pj+z34d96RbwD32rFKZMHDG7Wbhpu4b4BlxJgnDzyXX91WcE3gox/vuSfC\n0l9396MpLWxNYMEDarSbU335R/mWEd1aON9e8EUbwRULdW74ZoSl31gohpIHBE20NULBfogKXtZ9\nyqz7sua2ZPyHZUTBLu3m7aKjzh+iRSH1E9+JCuaHXlq+ap92EltHvJu5yX/bL8ncAcEykHCZdOy4\n//bLteZ2aYK3VUhayA9Rwb+9OeIL/ifMDTS/GIuo4CGbIr7g795zsFSICg75W+gAta24J3jDB5IW\n8kNU8JLwxzApOYDl2RohSwaiftHRqXu45+B5SwNbXCa5giDBlfoL/iGfg5tKKvWte4KRou2I9jLp\nUk2EiZy/2KAkRAWfnNK5B//ubkdLQ7AMBAkev+J8Lt8/ytHSSNEyECT4Ks5zOR/kaGmELBkIEjzs\nL5rgw0MdLQ3BMhAk+L0rJ6WXZL/vaGkhgl8bGZn8gigG/UZAMX6ICubH1zy33vLbZnsQsmQgSPDE\nDiwNwTIQJPjBjS2Ol4ZgGQgSPCI9rY/w9wcrCVHBvw7/3qSwQLAM4v/epLBAsAzi/96ksECwDOL/\n3qSwQLAMBD1EX9zFL/z4J+cdLQ3BMhAk+KF5fHrxdGfGIFgGoj6EpaU+84zP+rYGOyBYBoIE5/ve\nH899/RwtDcEyECR42qS+W/iTdzpaGoJlIEhw46ZdnL8Q4o0rNkCwDLz8WZVKAsEGECwDCBYMBBtA\nsAwgWDAQbADBMoBgwUCwAQTLAIIFA8EGECwDCBYMBBtAsAwgWDAQbADBMoBgwUCwAQTLAIIFA8EG\nECwDCBYMBBtAsAwgWDAQbADBMoBgwUCwAQTLAIIFA8EGECwDCBYMBBtAsAwgWDAQbADBMoBgwUCw\nAQTLAIIFA8EGECwDCBYMBBtAsAxkCG6oqqxusjZDsAziL7hmakpOXnbajDPmDgiWQfwFFy/yf0jp\nydkl5g4IlkH8Bfds1jeNWeYOCJZB/AUPCXw1ZHmRuQOCZRB/wWVZE0sXzJmQXW7ugGAZSEjRdRuW\nLV6+5ZylHYJlIO862PK1WRAsA3mC3fuCaKkknuDaVhJE8Mg13uKpWREKjllwUnKAyyO3P6ZT5OxL\nWhShN/MYD0YoOGbB85YGtpfP4Auf6nz73oj3VZBn+oshM0fQRHsjFByz4KaSSn2bIA/RonjyQ0kL\nCQtZp80NEGxHiFdn4gMuk4iDyyR32PyZpIVwmeQOi/ZIWigOl0mtQLAd6gi2Xia1AsF2qJOicZnU\nIdRL0bhM8ib4X5XuoE6KDgsE26FOyAoLBNsBwcRRJ0WHBYLtUC9FW4BgTwDB7oAUTRyELOJAMHGQ\noomDFA3EAMHugBRNHIQs4kAwcZCiiYMUDcQAwe6AFE0chCziQDBxkKKJgxQNxADB7oAUTRyELOJA\nMHGQoomDFA3EAMHugBRNHIQs4kAwcZCiiYMUDcQAwe6AFE0chCziQDBxkKKJgxQNxADB7oAUTRyE\nLOJAMHGQoomDFA3EAMHugBRNHIQs4kAwcZCiiYMUDcQAwe6AFE0clUJWQ1VldYinFAi2Qx3BNVNT\ncvKy02acMXdAsB3qpOjiRXXa7cnZJeYOCLZDnRTds1nfNGaZOyDYE8QseEiFvikvMndAsB3qpOiy\nrImlC+ZMyC43d0CwHeqELF63Ydni5VvOWdoh2A6FBOMyqSOok6JxmdQh1EnRuEzyNnG4TNpcrJM/\nNbbKaKNOig57mbRhdQdLSgjUCVlhL5Mg2A51BIe9TIJgO9RJ0UFOmBsg2A51UnSQFHMDBHuCmAXX\ntgLBjlAnRSclB7CMhGA71AlZ85YGtjiDHaGO4KaSSn0LwY5QL0WfNjdAsB3qpWgLEOwJINgd1EnR\nYYFgO9QJWWGBYDsgWGFW3RuZa4ujGLRXQDEQLJ76M5E5FcWYM80CioFg4kAwcSCYOBBMHAgmDgQT\nB4KJA8HEgWDiQDBxIJg48RO8Y3ixHAZlXqke6TdIOjoFf4+XYGm8uNHtCjqAtJcLIwDBcQKCoweC\nYwCC4wQERw8ExwAExwkIjp6Xt7hdQQdYvM/tCgKoILj+ktsVdIALPrcrCKCCYBADEEwcCCYOBBMH\ngokDwcSBYOJAMHG8L/jXQ7qPrXK7CEc0zU+q1TafjUsfVul2Ld4XfKz7rpYl492uwhElTyf7Bd/6\nk0vrprtdiwKCN3J+oK/bVTiikvsF/2+/FrcL8eN5wX6eU+2jx/2Ct46flTvhsNuVKCF4R94xt0tw\niF/wutT/9P3U8iHb0lFA8NsF1W6X4BS/4Hev47y5i+XTxWTjfcHbir5wuwTH+AVX5mqCO9e5XYrn\nBZ/pd9TtEpyjp+hha30rR7ldifcFr01K0XD9kc4Bp1NSWErKCX7k+h5jPna7GO8LBrEBwcSBYOJA\nMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEycRBP8\nbO6INbn8wIhpxXxj4ZCxh/meAu7/s3/od8ePqHC7ujiQYII/6l7T8I18fij9Hf5ZZhV/8aag4EpW\nxssGu11eHEgwwS9N4XyLJji1hb96F+f1nc4GBffgvCnplNv1iSfBBC+fyfleTXAfzn/0be3fGdVB\nwbnav9LV+iSBqEgwwau+xflWTXBfztdO9p/B5/ZfzfnvNMEZPl7Pat2uTzwJJnhfr9rGOwKCj/Wo\n5s/fyo+lX+Df0QRfsZGvv9bt8uJAggnmc/vdvHqQLpi/W1RQ/CnnTxTd8dPBvHLQ3MEFu9yuLg4k\nmuAWzneGek9nZb70UuSQYIJPZXzkm1kaogOCifCLgQMmh4pSEAzUBIKJA8HEgWDiQDBxIJg4EEwc\nCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJs7/A3NdSJXpXSqlAAAAAElFTkSuQmCC\n"
210+
},
211+
"metadata": {
212+
"tags": []
213+
}
214+
}
215+
]
91216
},
92217
{
93218
"cell_type": "code",
94219
"metadata": {
95220
"id": "PdnNsERdF9PE",
96221
"colab_type": "code",
97-
"colab": {}
222+
"colab": {
223+
"base_uri": "https://localhost:8080/",
224+
"height": 233
225+
},
226+
"outputId": "55d11e9d-cf55-4318-e934-54528032e704"
98227
},
99228
"source": [
100229
"%%R\n",
101-
"print(\"A3\")\n",
102-
"plot(dataset_3$NumFishMeals, dataset_3$TotalMercury )"
230+
"t.test(decay$strength[decay$weeks==2], decay$strength[decay$weeks==16], alternative=\"two.sided\", conf.level=0.95)\n"
103231
],
104-
"execution_count": 0,
105-
"outputs": []
232+
"execution_count": 13,
233+
"outputs": [
234+
{
235+
"output_type": "display_data",
236+
"data": {
237+
"text/plain": [
238+
"\n",
239+
"\tWelch Two Sample t-test\n",
240+
"\n",
241+
"data: decay$strength[decay$weeks == 2] and decay$strength[decay$weeks == 16]\n",
242+
"t = 0.98887, df = 4.651, p-value = 0.3713\n",
243+
"alternative hypothesis: true difference in means is not equal to 0\n",
244+
"95 percent confidence interval:\n",
245+
" -12.2789 27.0789\n",
246+
"sample estimates:\n",
247+
"mean of x mean of y \n",
248+
" 123.8 116.4 \n",
249+
"\n"
250+
]
251+
},
252+
"metadata": {
253+
"tags": []
254+
}
255+
}
256+
]
106257
}
107258
]
108259
}

0 commit comments

Comments
 (0)