-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcm.c
164 lines (129 loc) · 4.85 KB
/
dcm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include "vector.h"
#include <math.h>
#include "sensors.h"
#define abs(x) ((x)>0?(x):-(x))
#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
#define Kp_ROLLPITCH 0.02
#define Ki_ROLLPITCH 0.00002
#define CORRECT_DRIFT
float G_Dt;
float DCM_Matrix[3][3] = {
{ 1, 0, 0 },
{ 0, 1, 0 },
{ 0, 0, 1 }
};
float Update_Matrix[3][3] = { {0, 1, 2}, {3, 4, 5}, {6, 7, 8} };
float Temporary_Matrix[3][3] = {
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 0, 0, 0 }
};
float Gyro_Vector[3] = {0, 0, 0};
float Accel_Vector[3] = {0, 0, 0};
float Omega_Vector[3] = {0, 0, 0}; // Corrected Gyro_Vector data
float Omega_P[3] = {0, 0, 0}; // Omega Proportional correction
float Omega_I[3] = {0, 0, 0}; // Omega Integrator
float Omega[3] = {0, 0, 0};
float roll;
float pitch;
float errorRollPitch[3]= {0, 0, 0};
void Matrix_Multiply(float a[3][3], float b[3][3],float mat[3][3]);
void Normalize(void)
{
float error=0;
float temporary[3][3];
float renorm=0;
error= -Vector_Dot_Product(&DCM_Matrix[0][0],&DCM_Matrix[1][0])*.5; //eq.19
Vector_Scale(&temporary[0][0], &DCM_Matrix[1][0], error); //eq.19
Vector_Scale(&temporary[1][0], &DCM_Matrix[0][0], error); //eq.19
Vector_Add(&temporary[0][0], &temporary[0][0], &DCM_Matrix[0][0]);//eq.19
Vector_Add(&temporary[1][0], &temporary[1][0], &DCM_Matrix[1][0]);//eq.19
Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x b //eq.20
renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //eq.21
Vector_Scale(&DCM_Matrix[0][0], &temporary[0][0], renorm);
renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0],&temporary[1][0])); //eq.21
Vector_Scale(&DCM_Matrix[1][0], &temporary[1][0], renorm);
renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //eq.21
Vector_Scale(&DCM_Matrix[2][0], &temporary[2][0], renorm);
}
/**************************************************/
void Drift_correction(void)
{
//Compensation the Roll, Pitch and Yaw drift.
static float Scaled_Omega_I[3];
float Accel_magnitude;
float Accel_weight;
//*****Roll and Pitch***************
// Calculate the magnitude of the accelerometer vector
Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + Accel_Vector[1]*Accel_Vector[1] + Accel_Vector[2]*Accel_Vector[2]);
Accel_magnitude = Accel_magnitude / GRAVITY; // Scale to gravity.
// Dynamic weighting of accelerometer info (reliability filter)
// Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0)
Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude),0,1); //
Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&DCM_Matrix[2][0]); //adjust the ground of reference
Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH*Accel_weight);
Vector_Scale(&Scaled_Omega_I[0],&errorRollPitch[0],Ki_ROLLPITCH*Accel_weight);
Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);
}
void Matrix_update(void)
{
Gyro_Vector[0] = gyro_scale(g[X]); //gyro x roll
Gyro_Vector[1] = gyro_scale(g[Y]); //gyro y pitch
Gyro_Vector[2] = gyro_scale(g[Z]); //gyro Z yaw
Accel_Vector[0] = -a[X];
Accel_Vector[1] = -a[Y];
Accel_Vector[2] = -a[Z];
Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]); //adding proportional term
Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]); //adding Integrator term
//Accel_adjust(); //Remove centrifugal acceleration. We are not using this function in this version - we have no speed measurement
#ifdef CORRECT_DRIFT
Update_Matrix[0][0]=0;
Update_Matrix[0][1]=-G_Dt*Omega_Vector[2];//-z
Update_Matrix[0][2]=G_Dt*Omega_Vector[1];//y
Update_Matrix[1][0]=G_Dt*Omega_Vector[2];//z
Update_Matrix[1][1]=0;
Update_Matrix[1][2]=-G_Dt*Omega_Vector[0];//-x
Update_Matrix[2][0]=-G_Dt*Omega_Vector[1];//-y
Update_Matrix[2][1]=G_Dt*Omega_Vector[0];//x
Update_Matrix[2][2]=0;
#else // Uncorrected data (no drift correction)
Update_Matrix[0][0]=0;
Update_Matrix[0][1]=-G_Dt*Gyro_Vector[2];//-z
Update_Matrix[0][2]=G_Dt*Gyro_Vector[1];//y
Update_Matrix[1][0]=G_Dt*Gyro_Vector[2];//z
Update_Matrix[1][1]=0;
Update_Matrix[1][2]=-G_Dt*Gyro_Vector[0];
Update_Matrix[2][0]=-G_Dt*Gyro_Vector[1];
Update_Matrix[2][1]=G_Dt*Gyro_Vector[0];
Update_Matrix[2][2]=0;
#endif
Matrix_Multiply(DCM_Matrix,Update_Matrix,Temporary_Matrix); //a*b=c
for(int x=0; x<3; x++) //Matrix Addition (update)
{
for(int y=0; y<3; y++)
{
DCM_Matrix[x][y]+=Temporary_Matrix[x][y];
}
}
}
void Euler_angles(void)
{
pitch = -asin(DCM_Matrix[2][0]);
roll = atan2(DCM_Matrix[2][1],DCM_Matrix[2][2]);
}
void Matrix_Multiply(float a[3][3], float b[3][3],float mat[3][3])
{
float op[3];
for(int x=0; x<3; x++)
{
for(int y=0; y<3; y++)
{
for(int w=0; w<3; w++)
{
op[w]=a[x][w]*b[w][y];
}
mat[x][y]=0;
mat[x][y]=op[0]+op[1]+op[2];
}
}
}