|
1 | 1 | import keras_core |
2 | | -from keras_core.utils.model_visualization import plot_model |
| 2 | +from keras_core.utils import plot_model |
3 | 3 |
|
4 | 4 |
|
5 | 5 | def plot_sequential_model(): |
@@ -208,18 +208,18 @@ def plot_nested_functional_model(): |
208 | 208 | inputs = keras_core.Input((3,)) |
209 | 209 | x = keras_core.layers.Dense(4, activation="relu")(inputs) |
210 | 210 | x = keras_core.layers.Dense(4, activation="relu")(x) |
211 | | - outputs = keras_core.layers.Dense(4, activation="relu")(x) |
| 211 | + outputs = keras_core.layers.Dense(3, activation="relu")(x) |
212 | 212 | inner_model = keras_core.Model(inputs, outputs) |
213 | 213 |
|
214 | 214 | inputs = keras_core.Input((3,)) |
215 | | - x = keras_core.layers.Dense(4, activation="relu", trainable=False)(inputs) |
| 215 | + x = keras_core.layers.Dense(3, activation="relu", trainable=False)(inputs) |
216 | 216 | residual = x |
217 | 217 | x = inner_model(x) |
218 | 218 | x += residual |
219 | 219 | residual = x |
220 | 220 | x = keras_core.layers.Dense(4, activation="relu")(x) |
221 | 221 | x = keras_core.layers.Dense(4, activation="relu")(x) |
222 | | - x = keras_core.layers.Dense(4, activation="relu")(x) |
| 222 | + x = keras_core.layers.Dense(3, activation="relu")(x) |
223 | 223 | x += residual |
224 | 224 | x = keras_core.layers.Dropout(0.5)(x) |
225 | 225 | outputs = keras_core.layers.Dense(1, activation="sigmoid")(x) |
|
0 commit comments