-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataCollection.py
62 lines (48 loc) · 1.68 KB
/
dataCollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
from cvzone.HandTrackingModule import HandDetector
import numpy as np
import math
import time
cap = cv2.VideoCapture(0)
detector = HandDetector(maxHands=1)
offset = 20
imgSize = 300
folder = "Data/extra"
counter = 0
while True:
success, img = cap.read()
hands, img = detector.findHands(img)
if hands:
hand = hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8)*255
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
imgCropShape = imgCrop.shape
aspectRatio = h/w
imgH, imgW, imgC = imgCrop.shape
if imgH > 0 and imgW > 0 and imgC > 0:
if aspectRatio > 1:
k = imgSize/h
wCal = math.ceil(k*w)
imgResize = cv2.resize(imgCrop,(wCal, imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize-wCal)/2)
imgWhite[:, wGap:wCal+wGap] = imgResize
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize,hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap:hCal + hGap,:] = imgResize
cv2.imshow("ImageCrop", imgCrop)
cv2.imshow("ImageWhite", imgWhite)
cv2.imshow("Image",img)
key = cv2.waitKey(1)
if key == ord("s"):
counter += 1
cv2.imwrite(f'{folder}/Image_{time.time()}.jpg', imgWhite)
# raise Exception("Could not write image")
print(counter)
if cv2.waitKey(10) & 0xFF == ord('q'):
cv2.destroyAllWindows()