-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.sh
27 lines (16 loc) · 1.62 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
python3 plot_figure_1.py # no regularization as in Sahin Lale
# Tried fine-tuning learning rate and regularization parameter but did not get good results.
# Learning rate as per Sahin Lale is 1e-2.
python3 main.py --q_norm 10.0 --batch_size 128 --lr 0.0001 --num_epochs 20 --reg 1e-4 --algorithm=smd
python3 main.py --q_norm 10.0 --batch_size 128 --lr 0.0001 --num_epochs 20 --reg 1e-4 --algorithm=prox_smd
python3 main.py --q_norm 10.0 --batch_size 128 --lr 0.0001 --num_epochs 20 --reg 1e-4 --algorithm=accelerated_prox_smd
# For MAGIC datasets, lr=0.001, lambda=1e-3 and num_epochs=1000 as per https://dl.acm.org/doi/pdf/10.1145/1553374.1553493
# I got above from their code
python3 main.py --dataset magic04s --model linear --lr 0.0001 --num_epochs 200 --q_norm 10.0 --reg 1e-3
python3 main.py --dataset magic04s --model linear --lr 0.000001 --num_epochs 200 --q_norm 10.0 --reg 1e-3 --algorithm=smd
python3 main.py --dataset magic04s --model linear --lr 0.0001 --num_epochs 200 --q_norm 10.0 --reg 1e-3 --algorithm=prox_smd
python3 main.py --dataset magic04s --model linear --lr 0.0001 --num_epochs 200 --q_norm 10.0 --reg 1e-3 --algorithm=accelerated_prox_smd
python3 main.py --dataset magic04d --model linear --lr 0.0001 --num_epochs 200 --q_norm 10.0 --reg 1e-3
python3 main.py --dataset magic04d --model linear --lr 0.0001 --num_epochs 200 --q_norm 10.0 --reg 1e-3 --algorithm=smd
python3 main.py --dataset magic04d --model linear --lr 0.0001 --num_epochs 200 --q_norm 10.0 --reg 1e-3 --algorithm=prox_smd
python3 main.py --dataset magic04d --model linear --lr 0.0001 --num_epochs 200 --q_norm 10.0 --reg 1e-3 --algorithm=accelerated_prox_smd