-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbilstm.py
55 lines (40 loc) · 1.52 KB
/
bilstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from __future__ import print_function
import numpy as np
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional
# from keras.datasets import imdb
max_features = 20000
# cut texts after this number of words
# (among top max_features most common words)
maxlen = 100
batch_size = 32
# print('Loading data...')
train = list(DictReader(open("data/filtered_train.csv", 'r')))
# test = list(DictReader(open("data/sci_test.csv", 'r')))
# sample = list(DictReader(open("data/sci_sample.csv", 'r')))
train = shuffle(train)
print("Total length: ", len(train))
test = train[-int(len(train) * (1.0 - n)):]
train = train[:int(len(train) * n)]
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')
print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
y_train = np.array(y_train)
y_test = np.array(y_test)
model = Sequential()
model.add(Embedding(max_features, 128, input_length=maxlen))
model.add(Bidirectional(LSTM(64)))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
# try using different optimizers and different optimizer configs
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])
print('Train...')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=4,
validation_data=[x_test, y_test])