Skip to content

Commit 8fde2b4

Browse files
ziqi-jinjiangjiajunrootDefTruthfelixhjh
authored
[Doc] Fix the version statement for all example docs (PaddlePaddle#654)
* first commit for yolov7 * pybind for yolov7 * CPP README.md * CPP README.md * modified yolov7.cc * README.md * python file modify * delete license in fastdeploy/ * repush the conflict part * README.md modified * README.md modified * file path modified * file path modified * file path modified * file path modified * file path modified * README modified * README modified * move some helpers to private * add examples for yolov7 * api.md modified * api.md modified * api.md modified * YOLOv7 * yolov7 release link * yolov7 release link * yolov7 release link * copyright * change some helpers to private * change variables to const and fix documents. * gitignore * Transfer some funtions to private member of class * Transfer some funtions to private member of class * Merge from develop (PaddlePaddle#9) * Fix compile problem in different python version (PaddlePaddle#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <[email protected]> * Add PaddleDetetion/PPYOLOE model support (PaddlePaddle#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (PaddlePaddle#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (PaddlePaddle#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> * first commit for yolor * for merge * Develop (PaddlePaddle#11) * Fix compile problem in different python version (PaddlePaddle#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <[email protected]> * Add PaddleDetetion/PPYOLOE model support (PaddlePaddle#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (PaddlePaddle#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (PaddlePaddle#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> * Yolor (PaddlePaddle#16) * Develop (PaddlePaddle#11) (PaddlePaddle#12) * Fix compile problem in different python version (PaddlePaddle#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <[email protected]> * Add PaddleDetetion/PPYOLOE model support (PaddlePaddle#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (PaddlePaddle#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (PaddlePaddle#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> Co-authored-by: Jason <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> * Develop (PaddlePaddle#13) * Fix compile problem in different python version (PaddlePaddle#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <[email protected]> * Add PaddleDetetion/PPYOLOE model support (PaddlePaddle#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (PaddlePaddle#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (PaddlePaddle#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * Develop (PaddlePaddle#14) * Fix compile problem in different python version (PaddlePaddle#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <[email protected]> * Add PaddleDetetion/PPYOLOE model support (PaddlePaddle#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (PaddlePaddle#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (PaddlePaddle#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> Co-authored-by: Jason <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> Co-authored-by: Jason <[email protected]> * add is_dynamic for YOLO series (PaddlePaddle#22) * modify ppmatting backend and docs * modify ppmatting docs * fix the PPMatting size problem * fix LimitShort's log * retrigger ci * modify PPMatting docs * modify the way for dealing with LimitShort * add python comments for external models * modify resnet c++ comments * modify C++ comments for external models * modify python comments and add result class comments * fix comments compile error * modify result.h comments * modify examples' cpp docs for all models Co-authored-by: Jason <[email protected]> Co-authored-by: root <[email protected]> Co-authored-by: DefTruth <[email protected]> Co-authored-by: huangjianhui <[email protected]> Co-authored-by: Jason <[email protected]>
1 parent 2c90610 commit 8fde2b4

File tree

44 files changed

+225
-208
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+225
-208
lines changed

examples/text/ernie-3.0/cpp/README.md

Lines changed: 6 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -12,18 +12,16 @@
1212

1313
### 快速开始
1414

15-
以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的[AFQMC数据集](https://bj.bcebos.com/paddlenlp/datasets/afqmc_public.zip)上进行文本分类任务的C++预测部署。
15+
以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的[AFQMC数据集](https://bj.bcebos.com/paddlenlp/datasets/afqmc_public.zip)上进行文本分类任务的C++预测部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1616

17-
```bash
18-
# 下载SDK,编译模型examples代码(SDK中包含了examples代码)
19-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
20-
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
2117

22-
cd fastdeploy-linux-x64-gpu-0.7.0/examples/text/ernie-3.0/cpp
18+
```bash
2319
mkdir build
2420
cd build
25-
# 执行cmake,需要指定FASTDEPLOY_INSTALL_DIR为FastDeploy SDK的目录。
26-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../fastdeploy-linux-x64-gpu-0.7.0
21+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
22+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
23+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
24+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2725
make -j
2826

2927
# 下载AFQMC数据集的微调后的ERNIE 3.0模型以及词表

examples/text/uie/cpp/README.md

Lines changed: 5 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -8,17 +8,15 @@
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

1010
## 快速开始
11-
以Linux上uie-base模型推理为例,在本目录执行如下命令即可完成编译测试。
11+
以Linux上uie-base模型推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1212

1313
```
14-
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
17-
18-
cd fastdeploy-linux-x64-gpu-0.7.0/examples/text/uie/cpp
1914
mkdir build
2015
cd build
21-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../fastdeploy-linux-x64-gpu-0.7.0
16+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
17+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
18+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
19+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2220
make -j
2321
2422
# 下载uie-base模型以及词表

examples/vision/classification/paddleclas/cpp/README.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -7,16 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
13-
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
14-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
15-
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
16-
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/classification/paddleclas/cpp
1713
mkdir build
1814
cd build
19-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2019
make -j
2120

2221
# 下载ResNet50_vd模型文件和测试图片

examples/vision/classification/paddleclas/quantize/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -10,14 +10,15 @@
1010
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
1111
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
1212

13-
## 以量化后的ResNet50_Vd模型为例, 进行部署
13+
## 以量化后的ResNet50_Vd模型为例, 进行部署,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1414
在本目录执行如下命令即可完成编译,以及量化模型部署.
1515
```bash
1616
mkdir build
1717
cd build
18-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
19-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
20-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
18+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
19+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
20+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
21+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2122
make -j
2223

2324
#下载FastDeloy提供的ResNet50_Vd量化模型文件和测试图片

examples/vision/classification/resnet/cpp/README.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -7,16 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
13-
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
14-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz
15-
tar xvf fastdeploy-linux-x64-gpu-0.2.1.tgz
16-
cd fastdeploy-linux-x64-gpu-0.2.1/examples/vision/classification/resnet/cpp
1713
mkdir build
1814
cd build
19-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.1
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2019
make -j
2120

2221
# 下载ResNet模型文件和测试图片

examples/vision/classification/yolov5cls/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,14 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
mkdir build
1414
cd build
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
17-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
1819
make -j
1920

2021
#下载官方转换好的yolov5模型文件和测试图片

examples/vision/detection/nanodet_plus/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,14 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
mkdir build
1414
cd build
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
17-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
1819
make -j
1920

2021
#下载官方转换好的NanoDetPlus模型文件和测试图片

examples/vision/detection/paddledetection/cpp/README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,17 +7,17 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
以ppyoloe为例进行推理部署
1414

15-
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
16-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
17-
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
18-
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/detection/paddledetection/cpp
19-
mkdir build && cd build
20-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
15+
mkdir build
16+
cd build
17+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
18+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
19+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
20+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2121
make -j
2222

2323
# 下载PPYOLOE模型文件和测试图片

examples/vision/detection/paddledetection/quantize/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -11,14 +11,15 @@
1111
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
1212
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
1313

14-
## 以量化后的PP-YOLOE-l模型为例, 进行部署
14+
## 以量化后的PP-YOLOE-l模型为例, 进行部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1515
在本目录执行如下命令即可完成编译,以及量化模型部署.
1616
```bash
1717
mkdir build
1818
cd build
19-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
20-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
21-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
19+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
20+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
21+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
22+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2223
make -j
2324

2425
#下载FastDeloy提供的ppyoloe_crn_l_300e_coco量化模型文件和测试图片

examples/vision/detection/scaledyolov4/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,14 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
mkdir build
1414
cd build
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
17-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
1819
make -j
1920

2021
#下载官方转换好的ScaledYOLOv4模型文件和测试图片

examples/vision/detection/yolor/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,14 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
mkdir build
1414
cd build
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
17-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
1819
make -j
1920

2021
#下载官方转换好的YOLOR模型文件和测试图片

examples/vision/detection/yolov5/cpp/README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -7,16 +7,16 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
mkdir build
1414
cd build
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
17-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
1819
make -j
19-
2020
#下载官方转换好的yolov5模型文件和测试图片
2121
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
2222
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

examples/vision/detection/yolov5/quantize/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -12,13 +12,14 @@
1212
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
1313

1414
## 以量化后的YOLOv5s模型为例, 进行部署
15-
在本目录执行如下命令即可完成编译,以及量化模型部署.
15+
在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1616
```bash
1717
mkdir build
1818
cd build
19-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
20-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
21-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
19+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
20+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
21+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
22+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2223
make -j
2324

2425
#下载FastDeloy提供的yolov5s量化模型文件和测试图片

examples/vision/detection/yolov5lite/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,14 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
mkdir build
1414
cd build
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
17-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
1819
make -j
1920

2021
#下载官方转换好的YOLOv5Lite模型文件和测试图片

examples/vision/detection/yolov6/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,14 +7,15 @@
77
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
88
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
99

10-
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
10+
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1111

1212
```bash
1313
mkdir build
1414
cd build
15-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
16-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
17-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
15+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
16+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
17+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
18+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
1819
make -j
1920

2021
#下载官方转换好的YOLOv6模型文件和测试图片

examples/vision/detection/yolov6/quantize/cpp/README.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -12,13 +12,14 @@
1212
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
1313

1414
## 以量化后的YOLOv6s模型为例, 进行部署
15-
在本目录执行如下命令即可完成编译,以及量化模型部署.
15+
在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
1616
```bash
1717
mkdir build
1818
cd build
19-
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
20-
tar xvf fastdeploy-linux-x64-0.7.0.tgz
21-
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
19+
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
20+
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
21+
tar xvf fastdeploy-linux-x64-x.x.x.tgz
22+
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
2223
make -j
2324

2425
#下载FastDeloy提供的yolov6s量化模型文件和测试图片

0 commit comments

Comments
 (0)