-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotatedBinarySearch.java
73 lines (56 loc) · 2.43 KB
/
rotatedBinarySearch.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
*/
public class rotatedBinarySearch {
public static void main(String[] args) {
int[] arr = {4, 5, 6, 7, 0, 1, 2};
System.out.println(findPivot(arr));
}
static int binarySearch(int[] arr, int target, int start, int end) {
while (start <= end) {
int mid = start + (end - start)/2;
if (target < arr[mid]) end = mid - 1;
else if (target > arr[mid]) start = mid + 1;
else return mid;
}
return -1;
}
static int search(int[] nums, int target) {
int pivot = findPivot(nums);
if (pivot == -1) {
return binarySearch(nums, target, 0, nums.length - 1);
}
// if pivot is found, you have found 2 asc sorted arrays
// if pivot element = target
if (nums[pivot] == target) return pivot;
// if the target is greater than start element than search in the left half because it contains numbers greater than start
if (target >= nums[0]) return binarySearch(nums, target, 0, pivot - 1);
// else search in the right half where the elements are lesser than start
return binarySearch(nums, target, pivot + 1, nums.length - 1);
}
static int findPivot(int[] arr) {
int start = 0;
int end = arr.length - 1;
while (start <= end) {
int mid = start + (end - start)/2;
// 4 cases over here
if (mid < end && arr[mid] > arr[mid + 1]) return mid;
if (mid < start && arr[mid] < arr[mid - 1]) return mid - 1;
if (arr[mid] <= arr[start]) end = mid - 1;
else start = mid + 1;
}
return -1;
}
}