-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathhackrf.c
588 lines (520 loc) · 18.1 KB
/
hackrf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// ka9q-radio driver for Great Scott Gadgets Hack RF
#define _GNU_SOURCE 1 // allow bind/connect/recvfrom without casting sockaddr_in6
#include <assert.h>
#include <pthread.h>
#include <string.h>
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdarg.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <signal.h>
#include <locale.h>
#include <sys/time.h>
#include <libhackrf/hackrf.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <errno.h>
#include <syslog.h>
#include <sys/stat.h>
#include "radio.h"
#include "misc.h"
#include "config.h"
// Configurable parameters
#define INPUT_PRIORITY 95
// decibel limits for power
static float const Upper_limit = -15;
static float const Lower_limit = -25;
static int Default_samprate = 5000000;
static float const DC_alpha = 1.0e-7; // high pass filter coefficient for DC offset estimates, per sample
static float const Power_alpha= 1.0; // time constant (seconds) for smoothing power and I/Q imbalance estimates
struct sdrstate {
struct frontend *frontend; // Avoid references to external globals
hackrf_device *device;
int clips; // Sample clips since last reset
// Smoothed error estimates
complex float DC; // DC offset
float sinphi; // I/Q phase error
float imbalance; // Ratio of I power to Q power
// Gain and phase corrections. These will be updated every block
float gain_q;
float gain_i;
float secphi;
float tanphi;
double frequency;
bool software_agc;
int lna_gain;
int mixer_gain;
int if_gain;
pthread_t agc_thread;
float scale;
};
static char const *HackRF_keys[] = {
"library",
"device",
"serial",
"lna-gain",
"mixer-gain",
"vga-gain",
"reference",
"calibrate",
"samprate",
"description",
"frequency",
NULL
};
static int rx_callback(hackrf_transfer *transfer);
static void *hackrf_agc(void *arg);
#if 0
static double rffc5071_freq(uint16_t lo);
static uint32_t max2837_freq(uint32_t freq);
#endif
int hackrf_setup(struct frontend * const frontend,dictionary const * const dictionary,char const * const section){
assert(dictionary != NULL);
// Hardware-dependent setup
{
char const *device = config_getstring(dictionary,section,"device",section);
if(strcasecmp(device,"hackrf") != 0)
return -1; // Not for us
}
config_validate_section(stdout,dictionary,section,HackRF_keys,NULL);
struct sdrstate * const sdr = calloc(1,sizeof(struct sdrstate));
assert(sdr != NULL);
// Cross-link generic and hardware-specific control structures
sdr->frontend = frontend;
frontend->context = sdr;
frontend->isreal = false; // Make sure the right kind of filter gets created!
frontend->bitspersample = 8; // For gain scaling
frontend->rf_agc = true; // On by default unless gain or atten is specified
int ret;
if((ret = hackrf_init()) != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_init() failed: %s\n",hackrf_error_name(ret));
hackrf_exit(); // Necessary?
return -1;
}
// Enumerate devices
hackrf_device_list_t *dlist = hackrf_device_list();
fprintf(stdout,"Found %d HackRF device(s): ",dlist->devicecount);
for(int i=0; i < dlist->devicecount; i++){
fprintf(stdout,"%d %s\n",i,dlist->serial_numbers[i]);
}
int index = config_getint(dictionary, section, "index", 0);
#if 0 // add ability to select by serial #
char const *p = config_getstring(dictionary,section,"serial",NULL); // is serial specified?
if(p != NULL){
sdr->serial = strtoll(p,NULL,16);
}
#endif
if((ret = hackrf_device_list_open(dlist,index,&sdr->device)) != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_open(%d) failed: %s\n",index,hackrf_error_name(ret));
hackrf_exit();
return -1;
}
hackrf_device_list_free(dlist); dlist = NULL;
if(sdr->device == NULL){
fprintf(stdout,"hackrf_open(%d) returned NULL\n",index);
hackrf_exit();
return -1;
}
double samprate = Default_samprate;
{
char const *p = config_getstring(dictionary, section, "samprate", NULL);
if(p != NULL)
samprate = parse_frequency(p,false);
}
frontend->samprate = samprate;
ret = hackrf_set_sample_rate(sdr->device,(uint32_t)samprate);
if(ret != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_set_sample_rate(%lf): %s\n",samprate,hackrf_error_name(ret));
hackrf_exit();
return -1;
}
uint32_t bw = hackrf_compute_baseband_filter_bw_round_down_lt(samprate);
ret = hackrf_set_baseband_filter_bandwidth(sdr->device,bw);
if(ret != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_set_baseband_filter_bandwidth(%ud): %s\n",bw,hackrf_error_name(ret));
hackrf_exit();
return -1;
}
// Are these right?
frontend->max_IF = min((int)bw,frontend->samprate/2);
frontend->min_IF = -min((int)bw,frontend->samprate/2);
// NOTE: what we call mixer gain, they call lna gain
// What we call lna gain, they call antenna enable
sdr->software_agc = true;
sdr->lna_gain = config_getint(dictionary, section, "lna-gain", -1);
if(sdr->lna_gain != -1)
sdr->software_agc = false;
else
sdr->lna_gain = 14;
frontend->lna_gain = sdr->lna_gain;
ret = hackrf_set_antenna_enable(sdr->device,sdr->lna_gain ? true : false);
if(ret != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_set_antenna_enable(%d): %s\n",sdr->lna_gain,hackrf_error_name(ret));
hackrf_exit();
return -1;
}
sdr->mixer_gain = config_getint(dictionary, section, "mixer-gain", -1);
if(sdr->mixer_gain != -1)
sdr->software_agc = false;
else
sdr->mixer_gain = 24;
frontend->mixer_gain = sdr->mixer_gain;
fprintf(stdout,"set mixer gain %d\n",frontend->mixer_gain);
ret = hackrf_set_lna_gain(sdr->device,sdr->mixer_gain);
if(ret != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_set_lna_gain(%d): %s\n",sdr->mixer_gain,hackrf_error_name(ret));
hackrf_exit();
return -1;
}
sdr->if_gain = config_getint(dictionary, section, "if-gain", -1);
if(sdr->if_gain != -1)
sdr->software_agc = false;
else
sdr->if_gain = 20;
frontend->if_gain = sdr->if_gain;
fprintf(stdout,"set if gain %d\n",frontend->if_gain);
ret = hackrf_set_vga_gain(sdr->device,sdr->if_gain);
if(ret != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_set_vga_gain(%d): %s\n",sdr->if_gain,hackrf_error_name(ret));
hackrf_exit();
return -1;
}
frontend->rf_gain = sdr->lna_gain + sdr->mixer_gain + sdr->if_gain;
frontend->rf_atten = 0;
frontend->rf_level_cal = 0; // To be measured
sdr->scale = scale_AD(frontend);
double frequency = config_getdouble(dictionary, section, "frequency", 0);
if(frequency != 0){
frontend->lock = true;
frontend->frequency = frequency;
uint64_t intfreq = frequency;
ret = hackrf_set_freq(sdr->device,intfreq);
if(ret != HACKRF_SUCCESS){
fprintf(stdout,"hackrf_set_freq(%llu): %s\n",(long long unsigned)intfreq,hackrf_error_name(ret));
hackrf_exit();
return -1;
}
}
sdr->sinphi = 0;
sdr->tanphi = 0;
sdr->secphi = 1;
sdr->gain_i = 1;
sdr->gain_q = 1;
fprintf(stdout,"device %d; A/D sample rate %'lf Hz freq %'.1f Hz lna gain %d mix gain %d if gain %d agc %s\n",
index,samprate,frequency,
frontend->lna_gain,
frontend->mixer_gain,
frontend->if_gain,
sdr->software_agc ? "on" : "off");
return 0;
}
int hackrf_startup(struct frontend * const frontend){
assert(frontend != NULL);
struct sdrstate *sdr = frontend->context;
// pthread_create(&Process_thread,NULL,hackrf_proc,sdr);
sdr->scale = scale_AD(frontend);
int ret = hackrf_start_rx(sdr->device,rx_callback,sdr);
assert(ret == HACKRF_SUCCESS);
(void)ret;
if(sdr->software_agc)
pthread_create(&sdr->agc_thread,NULL,hackrf_agc,sdr);
return 0;
}
static bool Name_set = false;
// Callback called with incoming receiver data from A/D
static int rx_callback(hackrf_transfer *transfer){
struct sdrstate *sdr = transfer->rx_ctx;
assert(sdr != NULL);
struct frontend *frontend = sdr->frontend;
if(!Name_set){
pthread_setname("hackrf-cb");
Name_set = true;
realtime(INPUT_PRIORITY);
stick_core();
}
int remain = transfer->valid_length; // Count of individual samples; divide by 2 to get complex samples
int sampcount = remain / 2; // Complex samples
uint8_t *dp = transfer->buffer;
complex float samp_sum = 0;
float i_energy=0,q_energy=0;
float dotprod = 0; // sum of I*Q, for phase balance
float rate_factor = 1./(frontend->samprate * Power_alpha);
complex float * const wptr = frontend->in.input_write_pointer.c;
for(int i=0; i < sampcount; i++){
int isamp_i = (int8_t)*dp++;
int isamp_q = (int8_t)*dp++;
if(isamp_q == -128){
sdr->clips++;
isamp_q = -127;
}
if(isamp_i == -128){
sdr->clips++;
isamp_i = -127;
}
complex float samp = CMPLXF(isamp_i,isamp_q);
samp_sum += samp;
// remove DC offset (which can be fractional)
samp -= sdr->DC;
// Must correct gain and phase before frequency shift
// accumulate I and Q energies before gain correction
i_energy += crealf(samp) * crealf(samp);
q_energy += cimagf(samp) * cimagf(samp);
// Balance gains, keeping constant total energy
__real__ samp *= sdr->gain_i;
__imag__ samp *= sdr->gain_q;
// Accumulate phase error
dotprod += crealf(samp) * cimagf(samp);
// Correct phase
__imag__ samp = sdr->secphi * cimagf(samp) - sdr->tanphi * crealf(samp);
wptr[i] = sdr->scale * samp;
}
write_cfilter(&frontend->in,NULL,sampcount); // Update write pointer, invoke FFT if block is complete
frontend->timestamp = gps_time_ns();
// Update every block
// estimates of DC offset, signal powers and phase error
sdr->DC += DC_alpha * (samp_sum - sampcount*sdr->DC);
float block_energy = 0.5 * (i_energy + q_energy); // Normalize for complex pairs
// These blocks are kinda small, so exponentially smooth the power readings
frontend->if_power += sampcount * rate_factor * (block_energy/sampcount - frontend->if_power);
frontend->samples += sampcount; // Count original samples
if(block_energy > 0){ // Avoid divisions by 0, etc
sdr->imbalance += rate_factor * sampcount * ((i_energy / q_energy) - sdr->imbalance);
float dpn = dotprod / block_energy;
sdr->sinphi += rate_factor * sampcount * (dpn - sdr->sinphi);
sdr->gain_q = sqrtf(0.5 * (1 + sdr->imbalance));
sdr->gain_i = sqrtf(0.5 * (1 + 1./sdr->imbalance));
sdr->secphi = 1/sqrtf(1 - sdr->sinphi * sdr->sinphi); // sec(phi) = 1/cos(phi)
sdr->tanphi = sdr->sinphi * sdr->secphi; // tan(phi) = sin(phi) * sec(phi) = sin(phi)/cos(phi)
}
return 0;
}
static void *hackrf_agc(void *arg){
struct sdrstate *sdr = (struct sdrstate *)arg;
struct frontend *frontend = sdr->frontend;
while(true){
usleep(100000);
float powerdB = power2dB(frontend->if_power*scale_ADpower2FS(frontend));
int change;
if(powerdB > Upper_limit)
change = Upper_limit - powerdB;
else if(powerdB < Lower_limit)
change = Lower_limit - powerdB;
else
continue;
#if 0
printf("if_power %.0f scale %g, DC (%f+j%f) sinphi %f gain_i %f gain_q %f agc change %d dB\n",
powerdB,sdr->scale,crealf(sdr->DC),cimagf(sdr->DC),
sdr->sinphi,
sdr->gain_i,sdr->gain_q,
change);
#endif
if(change > 0){
// Increase gain, LNA first, then mixer, and finally IF
if(change >= 14 && sdr->lna_gain < 14){
sdr->lna_gain = 14;
change -= 14;
int ret = hackrf_set_antenna_enable(sdr->device,sdr->lna_gain ? true : false);
assert(ret == HACKRF_SUCCESS);
(void)ret;
}
int old_mixer_gain = sdr->mixer_gain;
int new_mixer_gain = min(40,old_mixer_gain + 8*(change/8));
if(new_mixer_gain != old_mixer_gain){
sdr->mixer_gain = new_mixer_gain;
change -= new_mixer_gain - old_mixer_gain;
int ret = hackrf_set_lna_gain(sdr->device,sdr->mixer_gain);
assert(ret == HACKRF_SUCCESS);
(void)ret;
}
int old_if_gain = sdr->if_gain;
int new_if_gain = min(62,old_if_gain + 2*(change/2));
if(new_if_gain != old_if_gain){
sdr->if_gain = new_if_gain;
change -= new_if_gain - old_if_gain;
int ret = hackrf_set_vga_gain(sdr->device,sdr->if_gain);
assert(ret == HACKRF_SUCCESS);
(void)ret;
}
} else if(change < 0){
// Reduce gain (IF first), start counter
int old_if_gain = sdr->if_gain;
int new_if_gain = max(0,old_if_gain + 2*(change/2));
if(new_if_gain != old_if_gain){
sdr->if_gain = new_if_gain;
change -= new_if_gain - old_if_gain;
int ret = hackrf_set_vga_gain(sdr->device,sdr->if_gain);
assert(ret == HACKRF_SUCCESS);
(void)ret;
}
int old_mixer_gain = sdr->mixer_gain;
int new_mixer_gain = max(0,old_mixer_gain + 8*(change/8));
if(new_mixer_gain != old_mixer_gain){
sdr->mixer_gain = new_mixer_gain;
change -= new_mixer_gain - old_mixer_gain;
int ret = hackrf_set_lna_gain(sdr->device,sdr->mixer_gain);
assert(ret == HACKRF_SUCCESS);
(void)ret;
}
int old_lna_gain = sdr->lna_gain;
int new_lna_gain = max(0,old_lna_gain + 14*(change/14));
if(new_lna_gain != old_lna_gain){
sdr->lna_gain = new_lna_gain;
change -= new_lna_gain - old_lna_gain;
int ret = hackrf_set_antenna_enable(sdr->device,sdr->lna_gain ? true : false);
assert(ret == HACKRF_SUCCESS);
(void)ret;
}
}
frontend->lna_gain = sdr->lna_gain;
frontend->mixer_gain = sdr->mixer_gain;
frontend->if_gain = sdr->if_gain;
frontend->rf_gain = sdr->lna_gain + sdr->mixer_gain + sdr->if_gain;
frontend->rf_atten = 0;
sdr->scale = scale_AD(frontend);
#if 0
fprintf(stdout,"hackrf agc gains: %d %d %d %lf\n",frontend->lna_gain,frontend->mixer_gain,frontend->if_gain,
frontend->rf_gain);
#endif
}
return NULL;
}
double hackrf_tune(struct frontend * const frontend,double const frequency){
// replace this with precise tuning?
struct sdrstate *sdr = (struct sdrstate *)frontend->context;
if(frontend->lock)
return frontend->frequency;
uint64_t intfreq = frequency;
int ret = hackrf_set_freq(sdr->device,intfreq);
assert(ret == HACKRF_SUCCESS);
(void)ret;
frontend->frequency = frequency;
return frequency;
}
#if 0
// extracted from hackRF firmware/common/rffc5071.c
// Used to set RFFC5071 upconverter to multiples of 1 MHz
// for future use in determining exact tuning frequency
#define LO_MAX 5400.0
#define REF_FREQ 50.0
#define FREQ_ONE_MHZ (1000.0*1000.0)
static double rffc5071_freq(uint16_t lo) {
uint8_t lodiv;
uint16_t fvco;
uint8_t fbkdiv;
/* Calculate n_lo */
uint8_t n_lo = 0;
uint16_t x = LO_MAX / lo;
while ((x > 1) && (n_lo < 5)) {
n_lo++;
x >>= 1;
}
lodiv = 1 << n_lo;
fvco = lodiv * lo;
if (fvco > 3200) {
fbkdiv = 4;
} else {
fbkdiv = 2;
}
uint64_t tmp_n = ((uint64_t)fvco << 29ULL) / (fbkdiv*REF_FREQ) ;
return (REF_FREQ * (tmp_n >> 5ULL) * fbkdiv * FREQ_ONE_MHZ)
/ (lodiv * (1 << 24ULL));
}
static uint32_t max2837_freq(uint32_t freq){
// uint32_t div_frac;
// uint32_t div_int;
uint32_t div_rem;
uint32_t div_cmp;
int i;
/* ASSUME 40MHz PLL. Ratio = F*(4/3)/40,000,000 = F/30,000,000 */
// div_int = freq / 30000000;
div_rem = freq % 30000000;
// div_frac = 0;
div_cmp = 30000000;
for( i = 0; i < 20; i++) {
// div_frac <<= 1;
div_cmp >>= 1;
if (div_rem > div_cmp) {
// div_frac |= 0x1;
div_rem -= div_cmp;
}
}
return div_rem;
}
#define MIN_LP_FREQ_MHZ (0)
#define MAX_LP_FREQ_MHZ (2150)
#define MIN_BYPASS_FREQ_MHZ (2150)
#define MAX_BYPASS_FREQ_MHZ (2750)
#define MIN_HP_FREQ_MHZ (2750)
#define MID1_HP_FREQ_MHZ (3600)
#define MID2_HP_FREQ_MHZ (5100)
#define MAX_HP_FREQ_MHZ (7250)
#define MIN_LO_FREQ_HZ (84375000)
#define MAX_LO_FREQ_HZ (5400000000ULL)
static uint32_t max2837_freq_nominal_hz=2560000000;
static uint64_t freq_cache = 100000000;
/*
* Set freq/tuning between 0MHz to 7250 MHz (less than 16bits really used)
* hz between 0 to 999999 Hz (not checked)
* return false on error or true if success.
*/
static bool set_freq(const uint64_t freq)
{
bool success;
uint32_t RFFC5071_freq_mhz;
uint32_t MAX2837_freq_hz;
uint64_t real_RFFC5071_freq_hz;
const uint32_t freq_mhz = freq / 1000000;
const uint32_t freq_hz = freq % 1000000;
success = true;
const max2837_mode_t prior_max2837_mode = max2837_mode(&max2837);
max2837_set_mode(&max2837, MAX2837_MODE_STANDBY);
if(freq_mhz < MAX_LP_FREQ_MHZ)
{
rf_path_set_filter(&rf_path, RF_PATH_FILTER_LOW_PASS);
/* IF is graduated from 2650 MHz to 2343 MHz */
max2837_freq_nominal_hz = 2650000000 - (freq / 7);
RFFC5071_freq_mhz = (max2837_freq_nominal_hz / FREQ_ONE_MHZ) + freq_mhz;
/* Set Freq and read real freq */
real_RFFC5071_freq_hz = rffc5071_set_frequency(&rffc5072, RFFC5071_freq_mhz);
max2837_set_frequency(&max2837, real_RFFC5071_freq_hz - freq);
sgpio_cpld_stream_rx_set_q_invert(&sgpio_config, 1);
}else if( (freq_mhz >= MIN_BYPASS_FREQ_MHZ) && (freq_mhz < MAX_BYPASS_FREQ_MHZ) )
{
rf_path_set_filter(&rf_path, RF_PATH_FILTER_BYPASS);
MAX2837_freq_hz = (freq_mhz * FREQ_ONE_MHZ) + freq_hz;
/* RFFC5071_freq_mhz <= not used in Bypass mode */
max2837_set_frequency(&max2837, MAX2837_freq_hz);
sgpio_cpld_stream_rx_set_q_invert(&sgpio_config, 0);
}else if( (freq_mhz >= MIN_HP_FREQ_MHZ) && (freq_mhz <= MAX_HP_FREQ_MHZ) )
{
if (freq_mhz < MID1_HP_FREQ_MHZ) {
/* IF is graduated from 2150 MHz to 2750 MHz */
max2837_freq_nominal_hz = 2150000000 + (((freq - 2750000000) * 60) / 85);
} else if (freq_mhz < MID2_HP_FREQ_MHZ) {
/* IF is graduated from 2350 MHz to 2650 MHz */
max2837_freq_nominal_hz = 2350000000 + ((freq - 3600000000) / 5);
} else {
/* IF is graduated from 2500 MHz to 2738 MHz */
max2837_freq_nominal_hz = 2500000000 + ((freq - 5100000000) / 9);
}
rf_path_set_filter(&rf_path, RF_PATH_FILTER_HIGH_PASS);
RFFC5071_freq_mhz = freq_mhz - (max2837_freq_nominal_hz / FREQ_ONE_MHZ);
/* Set Freq and read real freq */
real_RFFC5071_freq_hz = rffc5071_set_frequency(&rffc5072, RFFC5071_freq_mhz);
max2837_set_frequency(&max2837, freq - real_RFFC5071_freq_hz);
sgpio_cpld_stream_rx_set_q_invert(&sgpio_config, 0);
}else
{
/* Error freq_mhz too high */
success = false;
}
max2837_set_mode(&max2837, prior_max2837_mode);
if( success ) {
freq_cache = freq;
}
return success;
}
#endif