-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathTransformer.v
170 lines (127 loc) · 5 KB
/
Transformer.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
Require Import Category.Lib.
Require Import Category.Theory.Category.
Require Import Category.Theory.Functor.
Require Import Category.Theory.Monad.
Generalizable All Variables.
Section Transformer.
Context {C : Category}.
Context {M : C ⟶ C}.
Context `{@Monad C M}.
Context {T : (C ⟶ C) → (C ⟶ C)}.
Context `{@Monad C (T M)}.
Class MonadTransformer := {
lift {a} : M a ~> T M a;
lift_return {a} : lift ∘ @ret C M _ a ≈ ret;
lift_bind {a b} (f : a ~> M b) :
lift ∘ join ∘ fmap f ≈ join ∘ fmap (lift ∘ f) ∘ lift
}.
End Transformer.
Arguments MonadTransformer {_ _ _} T {_}.
(******************************************************************************
* Species 1: Identity transformations.
******************************************************************************)
Program Definition IdentityT {C : Category} (M : C ⟶ C) : C ⟶ C := {|
fobj := fobj[M];
fmap := fun _ _ => fmap[M]
|}.
Next Obligation. apply fmap_comp. Qed.
Program Definition IdentityT_Monad {C : Category} (M : C ⟶ C) `{@Monad C M} :
@Monad C (@IdentityT C M) := {|
ret := fun _ => ret[M];
join := fun _ => join[M]
|}.
Next Obligation. destruct H; intuition. Qed.
Next Obligation. destruct H; intuition. Qed.
Next Obligation. destruct H; intuition. Qed.
Next Obligation. destruct H; intuition. Qed.
Next Obligation. destruct H; intuition. Qed.
#[export]
Program Instance IdentityT_MonadTransformer {C : Category} (M : C ⟶ C) `{@Monad C M} :
@MonadTransformer C M _ (@IdentityT C) (IdentityT_Monad M) := {
lift := fun _ => id
}.
(*
(******************************************************************************)
(* Free monad transformer *)
(******************************************************************************)
Inductive FreeF (F : Type → Type) (A B : Type) :=
| PureF : A → FreeF F A B
| JoinF : F B → FreeF F A B.
Inductive FreeT (F : Type → Type) (M : Type → Type) (A : Type) :=
| mkFreeT : ∀ x, (x → FreeT F M A) → M (FreeF F A x) → FreeT F M A.
Import MonadLaws.
Class MonadTransformerLaws `{MonadLaws M} `{FunctorLaws F} := {
_ : Monad (FreeT F M);
_ : MonadLaws (FreeT F M)
}.
(******************************************************************************)
(* Algebraic monad transformer *)
(******************************************************************************)
(* Q: Are they traversable? *)
Inductive Alg (c f g : Type → Type) a :=
| Const : c a → Alg c f g a
| Unit : f a → Alg c f g a
| Prod : f a * g a → Alg c f g a
| Sum : f a + g a → Alg c f g a.
(* Theorem: For all algebraic monads, we should be able to automatically
derive prod from MonadCompose. *)
(* Program Instance Alg_Distributes (c t : Type → Type) : *)
(* Monad_Distributes Alg c t. *)
(* Program Instance Alg_DistributesLaws (c t : Type → Type) : *)
(* Monad_DistributesLaws Alg c t. *)
(******************************************************************************)
(* Monad transformer of a certain subclass of exponential monads *)
(******************************************************************************)
(* Q: Are they distributive? *)
(* M : Monad *)
(* C : Contravariant *)
(* M t = 1 *)
(* M t = t *)
(* M t = C t → t *)
(* M t = A t * B t *)
(* M t = A t + t (??) *)
(* Theorem: Does M have a monad instance for any contravariant functor C? *)
(* For monads M and L: T M L t = M (L t) *)
(* M (r → a) *)
(* r → M a *)
(* c → t => c → L t *)
(* (t → c) → t => (L t → c) → L t *)
(******************************************************************************)
(* Monad transformers of monads from adjunctions *)
(******************************************************************************)
(* F ⊣ U *)
(* U ∘ F T L = U ∘ L ∘ F *)
(* ULFULF = id *)
(* ULLF → ULF : by join of L *)
(* MaybeT (State s) a = StateT s Maybe a *)
(* s → s * L t = s → L (s * t) *)
(* Q : Is MaybeT (State s) a incorrect? *)
(* (ReaderT $ StateT $ ...) *)
(* T (t1 ∘ t2 ∘ t3 (l)) m *)
(* t1 ∘ t2 ∘ t3 ∘ tl (m ) *)
*)
(******************************************************************************
* Species 2: Constant mapping transformations.
******************************************************************************)
Program Definition ConstT {C : Category} (K M : C ⟶ C) : C ⟶ C := {|
fobj := fobj[K];
fmap := fun _ _ => fmap[K]
|}.
Next Obligation. apply fmap_comp. Qed.
Program Definition ConstT_Monad {C : Category} (K M : C ⟶ C) `{@Monad C K} :
@Monad C (@ConstT C K M) := {|
ret := fun _ => ret[K];
join := fun _ => join[K]
|}.
Next Obligation. apply H. Qed.
Next Obligation. apply H. Qed.
Next Obligation. apply H. Qed.
Next Obligation. apply H. Qed.
Next Obligation. apply H. Qed.
(* This is not a valid monad transformer, since there cannot be a morphism
[M A ~> K A]. *)
Fail Definition ConstT_MonadTransformer {C : Category} (K M : C ⟶ C)
`{@Monad C K} `{@Monad C M} :
@MonadTransformer C M _ (@ConstT C K) (ConstT_Monad K M) := {|
lift := fun _ => _
|}.