@@ -4,8 +4,8 @@ program example_eigh
4
4
implicit none
5
5
6
6
integer :: i
7
- real , allocatable :: A(:,:),lambda(:),v (:,:)
8
- complex , allocatable :: cA(:,:),cv (:,:)
7
+ real , allocatable :: A(:,:),lambda(:),vectors (:,:)
8
+ complex , allocatable :: cA(:,:),cvectors (:,:)
9
9
10
10
! Decomposition of this symmetric matrix
11
11
! NB Fortran is column-major -> transpose input
@@ -15,24 +15,24 @@ program example_eigh
15
15
16
16
! Note: real symmetric matrices have real (orthogonal) eigenvalues and eigenvectors
17
17
allocate (lambda(3 ),v(3 ,3 ))
18
- call eigh(A, lambda, vectors= v )
18
+ call eigh(A, lambda, vectors= vectors )
19
19
20
20
print * , ' Real matrix'
21
21
do i= 1 ,3
22
22
print * , ' eigenvalue ' ,i,' : ' ,lambda(i)
23
- print * , ' eigenvector ' ,i,' : ' ,v (:,i)
23
+ print * , ' eigenvector ' ,i,' : ' ,vectors (:,i)
24
24
end do
25
25
26
26
! Complex hermitian matrices have real (orthogonal) eigenvalues and complex eigenvectors
27
27
cA = A
28
28
29
29
allocate (cv(3 ,3 ))
30
- call eigh(cA, lambda, vectors= cv )
30
+ call eigh(cA, lambda, vectors= cvectors )
31
31
32
32
print * , ' Complex matrix'
33
33
do i= 1 ,3
34
34
print * , ' eigenvalue ' ,i,' : ' ,lambda(i)
35
- print * , ' eigenvector ' ,i,' : ' ,cv (:,i)
35
+ print * , ' eigenvector ' ,i,' : ' ,cvectors (:,i)
36
36
end do
37
37
38
38
end program example_eigh
0 commit comments