-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathnote_image.py
194 lines (159 loc) · 7.58 KB
/
note_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import hashlib
import numpy as np
from nodes import SaveImage
import random
from PIL import Image, ImageOps, ImageSequence
import torch
import folder_paths
import node_helpers
from aiohttp import web
class ImageNote(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5))
self.compress_level = 1
self.note_dir = os.path.join("ComfyUI", "Bjornulf", "imageNote")
os.makedirs(self.note_dir, exist_ok=True)
# Store last image path and hash to prevent unnecessary reloading
self.last_image_path = None
self.last_image_hash = None
self.last_output_images = None
@classmethod
def INPUT_TYPES(cls):
return {
"optional": {
"images": ("IMAGE", ),
"image_path": ("STRING", {"default": ""}),
"note_text": ("STRING", {"default": "", "multiline": True})
},
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO"
},
}
FUNCTION = "process_image"
OUTPUT_NODE = True
CATEGORY = "Bjornulf"
def compute_md5(self, image):
image_bytes = image.tobytes() if isinstance(image, Image.Image) else image
return hashlib.md5(image_bytes).hexdigest()
def process_image(self, images=None, image_path="", note_text="", prompt=None, extra_pnginfo=None):
output_images = None
output_note_text = ""
# If images are given, process them
if images is not None and len(images) > 0:
output_images = images
image_np = (images[0].numpy() * 255).astype(np.uint8)
image = Image.fromarray(image_np)
image_hash = self.compute_md5(image)
note_path = os.path.join(self.note_dir, f"{image_hash}.txt")
if os.path.exists(note_path):
with open(note_path, "r", encoding="utf-8") as f:
output_note_text = f.read()
elif note_text:
with open(note_path, "w", encoding="utf-8") as f:
f.write(note_text)
output_note_text = note_text
# If image_path is empty, do nothing
elif not image_path:
# logger.debug("No image path provided, skipping processing.")
return None, ""
# Process image from path only if it has changed
elif os.path.isfile(image_path):
if image_path == self.last_image_path:
# logger.debug("Image path has not changed, skipping reload.")
return super().save_images(images=self.last_output_images, prompt=prompt, extra_pnginfo=extra_pnginfo)
image = Image.open(image_path).convert("RGB")
image_hash = self.compute_md5(image)
if image_hash == self.last_image_hash:
# logger.debug("Image content has not changed, skipping reload.")
return super().save_images(images=self.last_output_images, prompt=prompt, extra_pnginfo=extra_pnginfo)
note_path = os.path.join(self.note_dir, f"{image_hash}.txt")
if os.path.exists(note_path):
with open(note_path, "r", encoding="utf-8") as f:
output_note_text = f.read()
elif note_text:
with open(note_path, "w", encoding="utf-8") as f:
f.write(note_text)
output_note_text = note_text
image_np = np.array(image).astype(np.float32) / 255.0
output_images = torch.from_numpy(image_np).unsqueeze(0)
# Update stored values
self.last_image_path = image_path
self.last_image_hash = image_hash
self.last_output_images = output_images
return super().save_images(images=output_images, prompt=prompt, extra_pnginfo=extra_pnginfo)
class ImageNoteLoadImage:
@classmethod
def INPUT_TYPES(s):
base_input_dir = folder_paths.get_input_directory() # Get base input directory
input_dir = os.path.join(base_input_dir, "Bjornulf", "imagenote_images") # Specify subdirectory
# Create the directory if it doesn't exist
if not os.path.exists(input_dir):
os.makedirs(input_dir, exist_ok=True) # Create directory and parents if needed
# Filter for image files only
valid_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp')
files = [f for f in os.listdir(input_dir) if
os.path.isfile(os.path.join(input_dir, f)) and
f.lower().endswith(valid_extensions)]
if not files:
# Provide a default option if no files are found
files = ["none"]
return {"required":
{
"image": (sorted(files), {"image_upload": True}),
# "note": ("STRING", {"default": ""}), # Added multiline option FAILURE
"note": ("STRING", {"multiline": True, "lines": 10})
}
}
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "STRING") # Added note to return types
RETURN_NAMES = ("image", "mask", "image_path", "note") # Added note to return names
FUNCTION = "load_image_alpha"
CATEGORY = "Bjornulf"
def load_image_alpha(self, image, note): # Added note parameter
image_path = folder_paths.get_annotated_filepath(image)
img = node_helpers.pillow(Image.open, image_path)
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image_converted = i.convert("RGBA") # Renamed to avoid shadowing
if len(output_images) == 0:
w = image_converted.size[0]
h = image_converted.size[1]
if image_converted.size[0] != w or image_converted.size[1] != h:
continue
image_np = np.array(image_converted).astype(np.float32) / 255.0 # Renamed to avoid shadowing
image_tensor = torch.from_numpy(image_np)[None,] # Renamed to avoid shadowing
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image_tensor) # Renamed to avoid shadowing
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask, image_path, note) # Added note to return tuple
@classmethod
def IS_CHANGED(s, image, note): # Added note to IS_CHANGED
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex() + str(note) # Include note in hash
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True