-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolver.py
676 lines (509 loc) · 26.2 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import os
import numpy as np
import time
import datetime
from PIL import Image
import torch
import torch.nn as nn
from torchvision.utils import save_image
import torchvision.models as models
from tensorboardX import SummaryWriter
from model import Generator
from model import Ecoder
from model import Discriminator
from model import Discriminator_z
from model import Identity_Classifier
from model import AU_Classifier
from model import perceptural_loss
import utils
import pytorch_msssim
class LambdaLR():
def __init__(self, n_epochs, offset, decay_start_epoch):
assert ((n_epochs - decay_start_epoch) > 0), "Decay must start before the training session ends!"
self.n_epochs = n_epochs
self.offset = offset
self.decay_start_epoch = decay_start_epoch
def step(self, epoch):
return 1.0 - max(0, epoch + self.offset - self.decay_start_epoch)/(self.n_epochs - self.decay_start_epoch)
def gradient_penalty(y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).cuda()
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def msssim_loss(img1, img2):
value = pytorch_msssim.msssim(img1, img2, normalize=True)
return 1.0 - (torch.sum(value))
def make_model(cuda):
model = models.vgg16(pretrained=True).features[:28]
model = model.eval()
if cuda:
model.cuda()
return model
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def denorm(x):
out = (x + 1) / 2
return out.clamp_(0, 1)
def au_softmax_loss(input, target, weight=None, size_average=True, reduce=True):
classify_loss = nn.CrossEntropyLoss(weight=weight, size_average=size_average, reduce=reduce)
for i in range(input.size(1)):
t_input = input[:, i, :]
t_input = t_input.view(t_input.size(0), -1)
t_target = target[:, i]
t_loss = classify_loss(t_input, t_target)
t_loss = torch.unsqueeze(t_loss, 0)
if i == 0:
loss = t_loss
else:
loss = torch.cat((loss, t_loss), 0)
if size_average:
return loss.mean()
else:
return loss.sum()
class Solver(object):
def build_tensorboard(self):
"""Build a tensorboard logger."""
from logger import Logger
self.logger = Logger(self.log_dir)
self.writer = SummaryWriter(logdir=self.log_dir)
def __init__(self, train_loader, test_loader, config):
"""Initialize configurations."""
# Data loader.
self.train_loader = train_loader
self.test_loader = test_loader
# Model configurations.
self.version = config.version
self.latent_dim = config.latent_dim
self.au_dim = config.au_dim
self.id_classes = config.id_classes
self.img_size = config.img_size
self.mode = config.mode
self.paral = config.paral
# Training configuration
self.n_epochs = config.n_epochs
self.decay_epoch = config.decay_epoch
self.batch_size = config.batch_size
self.lr = config.lr
self.b1 = config.b1
self.b2 = config.b2
self.lambda_au = config.lambda_au
self.lambda_gp = config.lambda_gp
self.lambda_rec = config.lambda_rec
self.lambda_id = config.lambda_id
self.lambda_pe = config.lambda_pe
self.lambda_ms = config.lambda_ms
# Director
self.save_dir = config.save_dir
self.data_dir = config.data_dir
self.attr_dir = config.attr_dir
self.log_dir = config.log_dir
self.au_array = utils.get_au_array(self.attr_dir)
self.adversarial_loss = torch.nn.MSELoss()
self.id_class_loss = torch.nn.CrossEntropyLoss()
self.id_fe_loss = torch.nn.L1Loss()
self.au_loss = torch.nn.MSELoss()
self.pixel_loss = torch.nn.L1Loss()
self.FloatTensor = torch.cuda.FloatTensor
self.LongTensor = torch.cuda.LongTensor
self.valid = self.FloatTensor(self.batch_size, 1).fill_(1.0)
self.fake = self.FloatTensor(self.batch_size, 1).fill_(0.0)
# Build the model
self.build_model()
self.build_tensorboard()
self.vggmodel = make_model(True)
# Test config\
self.save_freq = config.save_freq
self.test_exc_path = config.test_exc_path
self.test_interp_path = config.test_interp_path
self.test_epoch = config.test_epoch
self.test_src_num = config.test_src_num
self.test_tgt_num = config.test_tgt_num
self.loss_visualization={}
# Loss functions
self.adversarial_loss = torch.nn.MSELoss()
self.id_class_loss = torch.nn.CrossEntropyLoss()
self.au_loss = torch.nn.MSELoss()
self.pixel_loss = torch.nn.L1Loss()
self.perceptural_loss = perceptural_loss(self.vggmodel, self.mode)
# Optimizer
self.optimizer_G = torch.optim.Adam([{'params': self.g_enc.parameters()},
{'params': self.g_dec.parameters()}], lr=self.lr, betas=(self.b1, self.b2))
self.scheduler_G = torch.optim.lr_scheduler.LambdaLR(self.optimizer_G,
lr_lambda=LambdaLR(self.n_epochs, 0, self.decay_epoch).step)
self.optimizer_D_img = torch.optim.Adam([{'params': self.dis_img.parameters()}], lr=self.lr,
betas=(self.b1, self.b2))
self.scheduler_D_img = torch.optim.lr_scheduler.LambdaLR(self.optimizer_D_img,
lr_lambda=LambdaLR(self.n_epochs, 0, self.decay_epoch).step)
self.optimizer_D_z = torch.optim.Adam([{'params': self.dis_z.parameters()}], lr=self.lr, betas=(self.b1, self.b2))
self.scheduler_D_z = torch.optim.lr_scheduler.LambdaLR(self.optimizer_D_z,
lr_lambda=LambdaLR(self.n_epochs, 0, self.decay_epoch).step)
self.optimizer_task = torch.optim.Adam(self.au_classifier.parameters(), lr=self.lr * 2, betas=(0.95, 0.999))
self.scheduler_task = torch.optim.lr_scheduler.LambdaLR(self.optimizer_task,
lr_lambda=LambdaLR(self.n_epochs, 0, self.decay_epoch).step)
def build_model(self):
# Initialize generator and discriminator
self.g_enc = Ecoder().cuda()
self.g_dec = Generator().cuda()
self.dis_img = Discriminator().cuda()
self.dis_z = Discriminator_z().cuda()
self.classifier = Identity_Classifier().cuda()
self.au_classifier = AU_Classifier().cuda()
self.g_enc.apply(weights_init_normal)
self.g_dec.apply(weights_init_normal)
self.dis_img.apply(weights_init_normal)
self.dis_z.apply(weights_init_normal)
self.au_classifier.apply(weights_init_normal)
classify_model = torch.load("pretrain_checkpoints/end_weight.pth")
self.classifier.load_state_dict(classify_model, strict=False)
for param in self.classifier.parameters():
param.requires_grad = False
def train_discriminator_img(self):
self.optimizer_D_img.zero_grad()
self.optimizer_task.zero_grad()
######## Compute loss with real images
real_pred, _ = self.dis_img(self.real_imgs)
d_adv_real_loss = self.adversarial_loss(real_pred, self.valid)
real_au = self.au_classifier(self.real_imgs)
d_real_au_loss = au_softmax_loss(real_au, self.labels.long())
####### Compute loss for gradient penalty.
z = self.FloatTensor(np.random.normal(0,1,(self.batch_size, self.latent_dim)))
label_random = self.FloatTensor(
utils.get_random_au(np.random.randint(0, self.au_dim, self.batch_size), self.au_array, num_columns=self.au_dim)
)
fake_imgs = self.g_dec(z, label_random)
fake_pred, _ = self.dis_img(fake_imgs.detach())
d_adv_gen_loss = self.adversarial_loss(fake_pred, self.fake)
####### Compute loss for gradient penalty.
alpha = torch.rand(self.real_imgs.size(0), 1, 1, 1).cuda()
x_hat = (alpha * self.real_imgs.data + (1 - alpha)
* fake_imgs.data).requires_grad_(True)
critic_output, _ = self.dis_img(x_hat)
d_loss_gp = gradient_penalty(critic_output, x_hat)
####### Backward and optimize
d_img_loss = d_adv_real_loss + d_adv_gen_loss + \
self.lambda_au * d_real_au_loss + self.lambda_gp * d_loss_gp
d_img_loss.backward()
self.optimizer_D_img.step()
self.optimizer_task.step()
####### Logging
self.loss_visualization['D_img/loss'] = d_img_loss.item()
self.loss_visualization['D_img/loss_real'] = d_adv_real_loss.item()
self.loss_visualization['D_img/loss_fake'] = d_adv_gen_loss.item()
self.loss_visualization['D_img/loss_cls'] = self.lambda_au * d_real_au_loss.item()
self.loss_visualization['D_img/loss_gp'] = self.lambda_gp * d_loss_gp.item()
# 使用rec
# real_enc = self.g_enc(self.real_imgs, self.batch_size)
# rec_imgs = self.g_dec(real_enc, self.labels)
# rec_pred, _ = self.dis_img(rec_imgs.detach())
def train_discriminator_z(self):
self.optimizer_D_z.zero_grad()
real_enc = self.g_enc(self.real_imgs, self.batch_size)
z = self.FloatTensor(np.random.normal(0, 1, (self.batch_size, self.latent_dim)))
z_pred = self.dis_z(z)
face_pred = self.dis_z(real_enc.detach())
z_loss = (self.adversarial_loss(z_pred, self.valid) + self.adversarial_loss(face_pred, self.fake)) * 0.5
z_loss.backward()
self.optimizer_D_z.step()
self.loss_visualization['D_z/loss'] = z_loss.item()
def train_generator(self):
self.optimizer_G.zero_grad()
# self.optimizer_task.zero_grad()
z = self.FloatTensor(np.random.normal(0, 1, (self.batch_size, self.latent_dim)))
######## Ori-Trg
# Adv loss
real_enc = self.g_enc(self.real_imgs, self.batch_size)
label_random = self.FloatTensor(
utils.get_random_au(np.random.randint(0, self.au_dim, self.batch_size), self.au_array, num_columns=self.au_dim)
)
fake_rand_imgs = self.g_dec(real_enc, label_random)
fake_rand_pred, _ = self.dis_img(fake_rand_imgs)
g_adv_fake_loss = self.adversarial_loss(fake_rand_pred, self.valid)
# Label loss
fake_rand_au = self.au_classifier(fake_rand_imgs)
fake_rand_au_loss = au_softmax_loss(fake_rand_au, label_random.long())
# Id loss
_, fake_rand_ids = self.classifier(fake_rand_imgs)
fake_rand_id_loss = self.id_class_loss(fake_rand_ids, self.id_labels)
# Perceptual loss
fake_rand_pe_loss = self.perceptural_loss(fake_rand_imgs, self.real_imgs)
######## Reconstruction
# Adv loss
real_enc = self.g_enc(self.real_imgs, self.batch_size)
fake_rec_imgs = self.g_dec(real_enc, self.labels)
fake_rec_pred, _ = self.dis_img(fake_rec_imgs)
g_adv_rec_loss = self.adversarial_loss(fake_rec_pred, self.valid)
# Label loss
fake_rec_au = self.au_classifier(fake_rec_imgs)
fake_rec_au_loss = au_softmax_loss(fake_rec_au, self.labels.long())
# Pixel loss
fake_rec_loss = self.pixel_loss(fake_rec_imgs, self.real_imgs)
# Id loss
_, fake_rec_ids = self.classifier(fake_rec_imgs)
fake_rec_id_loss = self.id_class_loss(fake_rec_ids, self.id_labels)
# Perceptual loss & Ms-ssim loss
fake_rec_pe_loss = self.perceptural_loss(fake_rec_imgs, self.real_imgs)
fake_rec_ssim_loss = msssim_loss(fake_rec_imgs, self.real_imgs)
####### Backward and optimize
g_loss = g_adv_fake_loss + g_adv_rec_loss + self.lambda_rec * fake_rec_loss + \
self.lambda_au * fake_rand_au_loss + self.lambda_au * fake_rec_au_loss + \
self.lambda_id * fake_rand_id_loss + self.lambda_id * fake_rec_id_loss + \
self.lambda_pe * fake_rand_pe_loss + self.lambda_pe * fake_rec_pe_loss + \
self.lambda_ms * fake_rec_ssim_loss
g_loss.backward()
self.optimizer_G.step()
# self.optimizer_task.step()
####### Logging
self.loss_visualization['G/loss'] = g_loss.item()
self.loss_visualization['G/loss_adv_fake'] = g_adv_fake_loss.item()
self.loss_visualization['G/loss_adv_rec'] = g_adv_rec_loss.item()
self.loss_visualization['G/loss_rec'] = self.lambda_rec * fake_rec_loss.item()
self.loss_visualization['G/loss_rand_au'] = self.lambda_au * fake_rand_au_loss.item()
self.loss_visualization['G/loss_rec_au'] = self.lambda_au * fake_rec_au_loss.item()
self.loss_visualization['G/loss_rand_id'] = self.lambda_id * fake_rand_id_loss.item()
self.loss_visualization['G/loss_rec_id'] = self.lambda_id * fake_rec_id_loss.item()
self.loss_visualization['G/loss_rand_pe'] = self.lambda_pe * fake_rand_pe_loss.item()
self.loss_visualization['G/loss_rec_pe'] = self.lambda_pe * fake_rec_pe_loss.item()
self.loss_visualization['G/loss_rec_ssim'] = self.lambda_ms * fake_rec_ssim_loss.item()
def update_tensorboard(self, iteration):
# Print out training information.
et = time.time() - self.start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Version [{}], Epoch [{}/{}], Batch [{}/{}]".format(
et, self.version, self.epoch+1, self.n_epochs, iteration, len(self.train_loader))
for tag, value in self.loss_visualization.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
for tag, value in self.loss_visualization.items():
self.writer.add_scalar(
tag, value, global_step=self.global_counter)
def test_exc_generation(self, epoch, test_mode='train', src=0, tgt=1):
os.makedirs(self.test_exc_path + '/' + self.version + '/', exist_ok=True)
if test_mode == 'train':
data_loader = self.train_loader
elif test_mode == 'test':
data_loader = self.test_loader
for i, (imgs, labels, filename) in enumerate(data_loader):
batch_size = imgs.shape[0]
imgs = imgs
labels = labels.float()
id_labels = utils.get_id_label(filename)
id_labels = torch.LongTensor(id_labels)
# imgs = imgs.cuda()
# labels = labels.float().cuda()
# id_labels = utils.get_id_label(filename)
# id_labels = torch.LongTensor(id_labels).cuda()
if (i == src):
test_real_src = imgs
src_au = labels
src_id = id_labels
print(filename)
print(labels)
if (i == tgt):
test_real_tgt = imgs
tgt_au = labels
tgt_id = id_labels
print(filename)
print(labels)
break
face_code_src = self.g_enc(test_real_src, batch_size)
face_code_tgt = self.g_enc(test_real_tgt, batch_size)
exc_img_tgt_src = self.g_dec(face_code_tgt, src_au)
exc_img_src_tgt = self.g_dec(face_code_src, tgt_au)
rec_img_tgt = self.g_dec(face_code_tgt, tgt_au)
rec_img_src = self.g_dec(face_code_src, src_au)
save_image(denorm(test_real_src.data),
self.test_exc_path + '/' + self.version + '/' + str(epoch) + '_' + 'src.jpg')
save_image(denorm(test_real_tgt.data),
self.test_exc_path + '/' + self.version + '/' + str(epoch) + '_' + 'tgt.jpg')
save_image(denorm(exc_img_tgt_src.data),
self.test_exc_path + '/' + self.version + '/' + str(epoch) + '_' + 'tgt_src.jpg')
save_image(denorm(exc_img_src_tgt.data),
self.test_exc_path + '/' + self.version + '/' + str(epoch) + '_' + 'src_tgt.jpg')
save_image(denorm(rec_img_src.data),
self.test_exc_path + '/' + self.version + '/' + str(epoch) + '_' + 'src_rec.jpg')
save_image(denorm(rec_img_tgt.data),
self.test_exc_path + '/' + self.version + '/' + str(epoch) + '_' + 'tgt_rec.jpg')
def test_exc(self, idx, src_name, tgt_name, au_dict):
os.makedirs(self.test_exc_path + '/' + self.version + '/exc/', exist_ok=True)
exc_path = self.test_exc_path + '/' + self.version + '/exc/'
src_img = Image.open(os.path.join(self.data_dir, src_name))
tgt_img = Image.open(os.path.join(self.data_dir, tgt_name))
transform = utils.get_transform()
src_img = transform(src_img)
tgt_img = transform(tgt_img)
# print(au_dict[src_name])
src_label = self.FloatTensor(np.array(au_dict[src_name]).reshape(1, self.au_dim))
tgt_label = self.FloatTensor(np.array(au_dict[tgt_name]).reshape(1, self.au_dim))
face_code_src = self.g_enc(src_img, 1)
face_code_tgt = self.g_enc(tgt_img, 1)
exc_img_tgt_src = self.g_dec(face_code_tgt, src_label)
exc_img_src_tgt = self.g_dec(face_code_src, tgt_label)
rec_img_tgt = self.g_dec(face_code_tgt, tgt_label)
rec_img_src = self.g_dec(face_code_src, src_label)
save_image(denorm(src_img.data),
exc_path + str(idx) + '_' + 'src.jpg')
save_image(denorm(tgt_img.data),
exc_path + str(idx) + '_' + 'tgt.jpg')
save_image(denorm(exc_img_tgt_src.data),
exc_path + str(idx) + '_' + 'tgt_src.jpg')
save_image(denorm(exc_img_src_tgt.data),
exc_path + str(idx) + '_' + 'src_tgt.jpg')
save_image(denorm(rec_img_src.data),
exc_path + str(idx) + '_' + 'src_rec.jpg')
save_image(denorm(rec_img_tgt.data),
exc_path + str(idx) + '_' + 'tgt_rec.jpg')
def test_au_interp(self, src_img_name):
src_img = Image.open(os.path.join(self.data_dir, src_img_name))
transform = utils.get_transform()
src_img = transform(src_img)
print(src_img.shape)
os.makedirs(self.test_interp_path + '/' + self.version + '/', exist_ok=True)
au_interp = self.FloatTensor(np.linspace(0,5,6))
base_cond = self.FloatTensor(np.zeros(self.au_dim))
for d in range(self.au_dim):
for i in range(len(au_interp)):
test_cond = base_cond
test_cond[d] = au_interp[i]
test_cond = test_cond.reshape(1, self.au_dim)
# print(test_cond.shape, self.g_enc(src_img, 1).shape)
img_tgt = self.g_dec(self.g_enc(src_img, 1), test_cond)
save_image(denorm(img_tgt.data),
self.test_interp_path + '/' + self.version + '/' + str(d) + '_' + str(i) +
'_' + src_img_name + '.jpg')
def test_random_au(self, src_img_name):
src_img = Image.open(os.path.join(self.data_dir, src_img_name))
transform = utils.get_transform()
src_img = transform(src_img)
os.makedirs('test_random_2/' + self.version + '/', exist_ok=True)
f = open('random.txt','a')
for i in range(1000):
test_random = self.FloatTensor(
utils.get_random_au(np.random.randint(0, self.au_dim, 1), self.au_array,
num_columns=self.au_dim)
)
f.write(str(i) + ' ' + str(test_random.data))
f.write('\n')
img_tgt = self.g_dec(self.g_enc(src_img, 1), test_random)
save_image(denorm(img_tgt.data),
'test_random_2/' + self.version + '/' + str(i) + '.jpg')
f.close()
def test_rec(self):
print("Start Loading from Version {} Epoch {}".format(self.version, self.test_epoch))
self.load_model(self.test_epoch)
os.makedirs('test_rec/' + self.version + '/', exist_ok=True)
data_loader = self.test_loader
for i, (imgs, labels, filename) in enumerate(data_loader):
if i<100:
batch_size = imgs.shape[0]
src_imgs = imgs
src_labels = labels.float()
id_labels = utils.get_id_label(filename)
id_labels = torch.LongTensor(id_labels)
face_code_src = self.g_enc(src_imgs, 1)
rec_src_img = self.g_dec(face_code_src, src_labels)
save_image(denorm(src_imgs.data),
'test_rec/' + self.version + '/' + str(i) + '_' + 'src.jpg')
save_image(denorm(rec_src_img.data),
'test_rec/' + self.version + '/' + str(i) + '_' + 'src_rec.jpg')
else:
break
def save_model(self, epoch):
os.makedirs(self.save_dir + '/' + self.version, exist_ok=True)
save_path = self.save_dir + '/' + self.version + '/'
torch.save(self.dis_img.state_dict(),
os.path.join(
save_path + str(epoch) + "_dis_img.pth"))
torch.save(self.g_dec.state_dict(),
os.path.join(
save_path + str(epoch) + "_g_dec.pth"))
torch.save(self.au_classifier.state_dict(),
os.path.join(
save_path + str(epoch) + "_au_classifier.pth"))
torch.save(self.dis_z.state_dict(),
os.path.join(
save_path + str(epoch) + "_dis_z.pth"))
torch.save(self.g_enc.state_dict(),
os.path.join(
save_path + str(epoch) + "_g_enc.pth"))
def load_model(self, load_epoch):
# self.g_enc = Ecoder().cuda()
# self.g_dec = Generator().cuda()
# self.dis_img = Discriminator().cuda()
# self.dis_z = Discriminator_z().cuda()
# self.classifier = Identity_Classifier().cuda()
# self.au_classifier = AU_Classifier().cuda()
self.g_enc = Ecoder()
self.g_dec = Generator()
self.dis_img = Discriminator()
self.dis_z = Discriminator_z()
self.classifier = Identity_Classifier()
self.au_classifier = AU_Classifier()
load_path = self.save_dir + '/' + self.version + '/' + str(load_epoch)
# g_enc_model = torch.load(load_path + "_g_enc.pth")
# g_dec_model = torch.load(load_path + "_g_dec.pth")
# dis_img_model = torch.load(load_path + "_dis_img.pth")
# dis_z_model = torch.load(load_path + "_dis_z.pth")
# au_classifier_model = torch.load(load_path + "_au_classifier.pth")
g_enc_model = utils.load_on_cpu(load_path + "_g_enc.pth")
g_dec_model = utils.load_on_cpu(load_path + "_g_dec.pth")
dis_img_model = utils.load_on_cpu(load_path + "_dis_img.pth")
dis_z_model = utils.load_on_cpu(load_path + "_dis_z.pth")
au_classifier_model = utils.load_on_cpu(load_path + "_au_classifier.pth")
self.g_enc.load_state_dict(g_enc_model, strict=False)
self.g_dec.load_state_dict(g_dec_model, strict=False)
self.dis_img.load_state_dict(dis_img_model,strict=False)
self.dis_z.load_state_dict(dis_z_model,strict=False)
self.au_classifier.load_state_dict(au_classifier_model,strict=False)
for param in self.classifier.parameters():
param.requires_grad = False
def train(self):
print("Start Training......")
self.global_counter = 0
self.start_time = time.time()
for epoch in range(self.n_epochs):
self.epoch = epoch
self.scheduler_D_img.step()
self.scheduler_D_z.step()
self.scheduler_G.step()
self.scheduler_task.step()
for i, (imgs, labels, filename) in enumerate(self.train_loader):
self.real_imgs = imgs.cuda()
self.labels = labels.float().cuda()
id_labels = utils.get_id_label(filename)
self.id_labels = torch.LongTensor(id_labels).cuda()
self.train_discriminator_img()
self.train_discriminator_z()
self.train_generator()
self.global_counter += 1
self.update_tensorboard(i)
self.test_exc_generation(self.epoch, 'train', self.test_src_num, self.test_tgt_num)
if epoch % self.save_freq == 0 and epoch != 0:
self.save_model(self.epoch)
def load(self):
print("Start Loading from Version {} Epoch {}".format(self.version, self.test_epoch))
self.load_model(self.test_epoch)
# self.test_rec()
au_dict = utils.get_au_dict(self.attr_dir)
#
src_img_name_list = ['SN023_3421.jpg']
tgt_img_name_list = ['SN032_2963.jpg']
for i in range(len(src_img_name_list)):
src_img_name = src_img_name_list[i]
tgt_img_name = tgt_img_name_list[i]
self.test_exc(i, src_img_name, tgt_img_name, au_dict)
self.test_exc_generation(self.test_epoch, 'test', self.test_src_num, self.test_tgt_num)
src_img_name = 'SN011_40.jpg'
# self.test_random_au(src_img_name)
# self.test_au_interp(src_img_name)