-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhidden_markov_model.py
418 lines (389 loc) · 16.5 KB
/
hidden_markov_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#!/usr/bin/env python3
"""
Author: Junda Huang 910203370050
Description: this is a script to implement Hidden Markov Model
"""
# Import statements
from sys import argv
import random
# Function definitions
# Background amino acid probabilities
pa = { 'A':0.074, 'C':0.025, 'D':0.054, 'E':0.054, 'F':0.047, 'G':0.074,\
'H':0.026, 'I':0.068, 'L':0.099, 'K':0.058, 'M':0.025, 'N':0.045,\
'P':0.039, 'Q':0.034, 'R':0.052, 'S':0.057, 'T':0.051, 'V':0.073,\
'W':0.013, 'Y':0.034 }
def parse_fasta(filename):
"""
Parse sequences from fasta file into dictionary
input:
filename: (string) filename of the fast file
output:
seqdict: (dictionary) dictionary with sequences as value
title as key. e.g. seqdict = {>HBA_HUMAN: VFA--HAGEY}
"""
seqdict = {}
with open(filename, 'r') as fasta:
for line in fasta:
a = str(line).strip()
if a[0] == '>':
seq = ''
key = a
seqdict[key] = []
else:
seq += a
seqdict[key] = seq
return seqdict
def match_state_info(seqdict, threshold):
"""
find out the number of match states and their positions
with give set of sequences
input:
seqdict: (dictionary) dictionary with sequences as value
title as key. e.g. seqdict = {>HBA_HUMAN: VFA--HAGEY}
threshould: (float) a number where how many percentage of amindacid
present count as a match state
output:
nmatcches: (int) match states number
match_pos: (list) of int of match states positions in the sequneces
"""
nmatches = 0
match_pos = []
seqlist = [seq for key, seq in seqdict.items()]
for i in range(len(seqlist[0])):
count = 0
for j in range(len(seqlist)):
if seqlist[j][i] != '-':
count +=1
if count/len(seqlist) >= threshold:
nmatches += 1
match_pos.append(i)
return nmatches, match_pos
def hmm_state_check(seqdict, nmatches, match_pos, pa):
"""
check each position of sequences for their state
input:
seqdict: (dictionary) dictionary with sequences as value
title as key. e.g. seqdict = {>HBA_HUMAN: VFA--HAGEY}
nmatches: (int) match states number
match_pos: (list) of int of match states positions in the sequneces
pa: (dictionary) Background amino acid probabilities
output:
states_dict: (dictionary) of states and pos in dictionary as value,
sequences title as key, position as subkey
e.g. states_dict = {>HBA_HUMAN: {'begin': M, 1: I, 2: D...}
"""
states_dict = {}
for key, seq in seqdict.items():
states_dict[key] = {}
if seq[0] in pa.keys() and 0 not in match_pos:
states_dict[key]['begin'] = 'I'
else:
states_dict[key]['begin'] = 'M'
for i in range(1, len(seq)+1):
if i < len(seq):
if seq[i] in pa.keys() and i in match_pos:
states_dict[key][i-1] = 'M'
elif seq[i] in pa.keys() and i not in match_pos:
states_dict[key][i-1] = 'I'
elif seq[i] not in pa.keys() and i in match_pos:
states_dict[key][i-1] = 'D'
elif i == len(seq):
states_dict[key]['end'] = states_dict[key][i-2]
return states_dict
def transitions(states_dict):
"""
count the number of trainsitions between states for all sequences
and for each sequences
input:
states_dict: (dictionary) of states and pos in dictionary as value,
sequences title as key, position as subkey
e.g. states_dict = {>HBA_HUMAN: {'begin': M, 1: I, 2: D...}
output:
n_transitions: (int) total number of transitions
transition_list: (list) of int of transitions in sequences
"""
n_transitions = 0
transition_list = []
for states in states_dict:
tr = 0
value = list(states_dict[states].values())
for i, pos in enumerate(value):
if i == 0 :
continue
elif pos != value[i-1]:
n_transitions += 1
tr += 1
transition_list.append(tr)
return n_transitions, transition_list
def transition_probabilities(match_pos, states_dict):
"""
calculate transitions probabilities at each position
input:
match_pos: (list) of int of match states positions in the sequneces
states_dict: (dictionary) of states and pos in dictionary as value,
sequences title as key, position as subkey
e.g. states_dict = {>HBA_HUMAN: {'begin': M, 1: I, 2: D...}
output:
tran_p_dict: (dictionary) state as key of dictionaries
position as subkey probabilities and posistions in tuple as value,
e.g. tran_p_dict = {I: {0: [(I, 0.5), (M, 0.5), (D, 0)]},
{1: [(M, 0), (D, 0), (M, 0)]}...}
"""
tran_p_dict = {} # construting HMM dictionary of dictionaries
tran_p_dict['M'] = {}; tran_p_dict['I'] = {}; tran_p_dict['D'] = {}
for key in tran_p_dict:
for i in range(len(match_pos)+1):
if i == 0:
tran_p_dict[key]['begin'] = []
else:
tran_p_dict[key][i-1] = []
values = list(states_dict.values())
keyset = []
for value in values:
keyset += [list(value.keys())]
match_pos_new = [x-1 for x in match_pos]
for j in range(len(match_pos)+1):
dict_trans = {'MM': 0, 'MI': 0, 'MD': 0, 'IM': 0, \
'II': 0, 'ID': 0, 'DM': 0, 'DI': 0, 'DD': 0}
# initiallise probabilities dataset in another dictionary for calculation
for k, l in enumerate(keyset):
if j == 0: # check begin-0 states change
key = 'M' + values[k][l[j]]
if values[k][l[j]] == 'I':
dict_trans['I'+values[k][l[j+1]]] += 1
else:
if j+1 < len(l):
key = values[k][l[j]] + values[k][l[j+1]]
# convert states into dataset key
dict_trans[key] += 1
sum_m = dict_trans['MM']+dict_trans['MI']+dict_trans['MD']
sum_i = dict_trans['IM']+dict_trans['II']+dict_trans['ID']
sum_d = dict_trans['DM']+dict_trans['DI']+dict_trans['DD']
# sum up for M, I and D
sumlist = [sum_m, sum_i, sum_d]
for m, state in enumerate(tran_p_dict):
# calculation and store data accordingly
if j == 0:
subkey = 'begin'
else:
subkey = j - 1
if sumlist[m] == 0:
tran_p_dict[state][subkey] += [('M', 0), ('I', 0), ('D', 0)]
else:
keyone = ''.join(map(str, state))
tran_p_dict[state][subkey] += \
[('M', dict_trans[keyone+'M']/sumlist[m]), \
('I', dict_trans[keyone+'I']/sumlist[m]), \
('D', dict_trans[keyone+'D']/sumlist[m])]
return tran_p_dict
def match_emissions(seqdict, match_pos):
"""
find all residues that are emitted in match states
input:
seqdict: (dictionary) dictionary with sequences as value
title as key. e.g. seqdict = {>HBA_HUMAN: VFA--HAGEY}
match_pos: (list) of int of match states positions in the sequneces
outpus:
emissions_m: (list) of list of emitted residues in position order
"""
emissions_m = []
for i, seq in enumerate(seqdict.values()):
for j, pos in enumerate(match_pos):
if i == 0 :
emissions_m.append([])
if seq[pos] in pa.keys():
emissions_m[j].append(seq[pos])
return emissions_m
def emission_probabilities_m(emissions_m, pa, pseudocounts = False):
"""
calculate all emission probabilities in match states
input:
emissions_m: (list) of list of emitted residues in position order
pseudocounts: (boolean) set critereia if pseudocounts required = True
pa: (dictionary) Background amino acid probabilities
output:
emission_p_m: (dictionary) with match state positions as key,
AAs and probabilities in tuple as value; e.g.
emission_p_m = {0: (A, 0.75), (N, 0.125), (M, 0.125)}
"""
emission_p_m = {}
for i, aalist in enumerate(emissions_m):
l = len(aalist)
aas = set(aalist) # find unique amino acids present in values
emission_p_m[i] = []
if pseudocounts == True:
for aa in pa.keys:
emission_p_m[i] += [(aa, (aalist.count(aa)+1)/(l+20))]
elif pseudocounts == False:
for aa in aas:
emission_p_m[i] += [(aa, aalist.count(aa)/l)]
return emission_p_m
def pssm_format(emission_p_m):
"""
print a matrix of emission probabilities in PSSM format
input:
emission_p_m: (dictionary) with match state positions as key,
AAs and probabilities in tuple as value; e.g.
emission_p_m = {0: (A, 0.75), (N, 0.125), (M, 0.125)}
output:
print out e.g.
A R N D C
1 A 2.507 -1.007 -1.001 -1.526 -0.387
2 A -1.379 -2.418 -3.295 -3.531 -0.261
3 A 1.286 -1.389 3.736 -0.498 -0.573
"""
header = ' \t \t' + '\t'.join(aa for aa in pa.keys())
matrix_main = [header]
for key, value in emission_p_m.items():
linestart = str(key) + ' A\t'
line = linestart
for aa in pa.keys():
for i in range(len(value)):
prob = 0
if value[i][0] == aa:
prob = value[i][1]
break
line = line + '\t' + '{:.3f}'.format(prob)
matrix_main.append(line)
for matrix_line in matrix_main:
print(matrix_line)
return
def sequence_generator(emission_p_m, tran_p_dict, pa, rep):
"""
generating possible sequences based on hmm profile
input:
emission_p_m: (dictionary) with match state positions as key,
AAs and probabilities in tuple as value; e.g.
emission_p_m = {0: (A, 0.75), (N, 0.125), (M, 0.125)}
tran_p_dict: (dictionary) state as key of dictionaries
position as subkey probabilities and posistions in tuple as value,
e.g. tran_p_dict = {I: {0: [(I, 0.5), (M, 0.5), (D, 0)]},
{1: [(M, 0), (D, 0), (M, 0)]}...}
pa: (dictionary) Background amino acid probabilities
rep: (int) amount of sequences required
output:
sequences_gen: (list) of generated sequences
sequences_states: (list) of states of sequences of their postions
"""
sequences_gen = []
sequences_states = []
for h in range(rep):
seq_len_count = 0
sequence = ''
sequence_state = ''
m = 0
state_next = ''.join(map(str, random.choices(['I', 'M'], \
[tran_p_dict['M']['begin'][1][1], \
tran_p_dict['M']['begin'][0][1]], cum_weights = None, k = 1)))
# find first residue of the sequences
if state_next == 'I':
aa = random.choices(list(pa.keys()), weights = \
[k for k in pa.values()], cum_weights = None, \
k = 1)
sequence = sequence+ ' '.join(map(str, aa))
elif state_next == 'M' and tran_p_dict['M']['begin'][0][1] > 0:
sequence = sequence + '-'
else:
aa = random.choices(emission_p_m[m], \
weights = [l[1] for l in emission_p_m[m]], \
cum_weights = None, k = 1)[0][0]
sequence = sequence + (' '.join(map(str, aa)))
m += 1
sequence_state = sequence_state + state_next
while state_next != 'end':
weights = []
for n in range(len(tran_p_dict)):
weights += [tran_p_dict[state_next][m][n][1]]
# assign probabilities from dictionary for choices
state_next = ''.join(map(str, random.choices(list(\
tran_p_dict.keys()), weights, cum_weights = None, k = 1)))
# choose next state
if state_next == 'D':
sequence = sequence + '-'
m += 1
elif state_next == 'I':
aa = random.choices(list(pa.keys()), weights = \
[k for k in pa.values()], cum_weights = None, k = 1)
sequence = sequence + ' '.join(map(str, aa))
elif state_next == 'M':
aa = random.choices(emission_p_m[m], \
weights = [l[1] for l in emission_p_m[m]], \
cum_weights = None, k = 1)[0][0]
sequence = sequence + (' '.join(map(str, aa)))
m += 1
sequence_state = sequence_state + state_next
if m == len(tran_p_dict['M'])-1:
sequences_gen.append(sequence)
sequences_states.append(sequence_state)
state_next = 'end'
return sequences_gen, sequences_states
if __name__ == "__main__":
# implement main code here
#infile = 'test.fasta'
infile = 'test.fasta'
# Put function calls, print statements etc. to answer the questions here
# When we run your script we should see the answers on screen (or file)
# Question 1:
seqdict = parse_fasta(infile)
# Parse sequences data
nmatches, match_pos = match_state_info(seqdict, threshold = 0.5)
# Get match states information
print('Answer to question 1:\n{} match states needed.'.format(nmatches))
# Question 2:
states_dict = hmm_state_check(seqdict, nmatches, match_pos, pa)
# check the states of each residues in each sequences
tran_p_dict = transition_probabilities(match_pos, states_dict)
# calculate each state transition probabilities in each position
print('\nAnswer to question 2:\nTransition probability are as follow:')
for i, v in tran_p_dict.items():
for j in v.items():
print(i, j)
emissions_m = match_emissions(seqdict, match_pos)
# find out all match state emissions
emission_p_m = \
emission_probabilities_m(emissions_m, pa, pseudocounts = False)
# calculate match state emission probabilities per position
print('\nThe emission probabilities are as follow:\n')
for k, v in emission_p_m.items():
print(k, v)
# Question 3:
print('\nAsnwer to question 3:')
pssm_format(emission_p_m)
# convert emission probabilities into PSSM format and print
# Question 4:
sequences_gen, sequences_states = \
sequence_generator(emission_p_m, tran_p_dict, pa, rep = 10)
print('\nAnswer to question 4:\nThe generated sequences are as follow:')
for i in sequences_gen:
print(i)
# Question 5:
infile_large = 'test_large.fasta'
# 1:
seqdict_large = parse_fasta(infile_large)
nmatches_large, match_pos_large = \
match_state_info(seqdict_large, threshold = 0.5)
print('Answer to question 1:\n{} match states needed.'\
.format(nmatches_large))
# 2:
states_dict_large = hmm_state_check\
(seqdict_large, nmatches_large, match_pos_large, pa)
tran_p_dict_large = transition_probabilities\
(match_pos_large, states_dict_large)
print('\nAnswer to question 2:\nTransition probability are as follow:')
for i_large, v_large in tran_p_dict_large.items():
for j_large in v_large.items():
print(i_large, j_large)
emissions_m_large = match_emissions(seqdict_large, match_pos_large)
emission_p_m_large = \
emission_probabilities_m(emissions_m_large, pa, pseudocounts = False)
print('\nThe emission probabilities are as follow:\n', emission_p_m_large)
# 3:
print('\nAsnwer to question 3:')
pssm_format(emission_p_m_large)
# 4:
sequences_gen_large, sequences_states_large = \
sequence_generator(emission_p_m_large,\
tran_p_dict_large, pa, rep = 10)
print('\nAnswer to question 4:\nThe generated sequences are as follow:')
for i_large in sequences_gen_large:
print(i_large)