|
1 | 1 | {
|
2 |
| - "cells": [ |
3 |
| - { |
4 |
| - "attachments": {}, |
5 |
| - "cell_type": "markdown", |
6 |
| - "metadata": {}, |
7 |
| - "source": [ |
8 |
| - "# pyobsplot - jupyter interactivity\n", |
9 |
| - "\n", |
10 |
| - "**Note :** this notebook is designed to be used on [Google Colab](https://colab.research.google.com/github/juba/pyobsplot/blob/main/examples/introduction.ipynb).\n", |
11 |
| - "\n", |
12 |
| - "[pyobsplot](https://github.com/juba/pyobsplot) is a Python package which allows to use Observable Plot in Jupyter notebooks with a syntax as close as possible to the JavaScript one. For more information, see the [documentation website](https://juba.github.io/pyobsplot).\n", |
13 |
| - "\n", |
14 |
| - "When using the `widget` renderer, the fact that plots are generated as Jupyter widgets allow for basic interactivity. More specifically, you can set the spec attribute of an existing `pyobsplot` plot to another plot specification and it will update it.\n", |
15 |
| - "\n", |
16 |
| - "First we install the `pyobsplot` package in the Colab environment:\n" |
17 |
| - ] |
18 |
| - }, |
19 |
| - { |
20 |
| - "cell_type": "code", |
21 |
| - "execution_count": null, |
22 |
| - "metadata": {}, |
23 |
| - "outputs": [], |
24 |
| - "source": [ |
25 |
| - "# Only needed in Colab, cleanup environment\n", |
26 |
| - "! pip uninstall -y pandas-gbq\n", |
27 |
| - "# Install pyobsplot\n", |
28 |
| - "! pip install pyobsplot" |
29 |
| - ] |
30 |
| - }, |
31 |
| - { |
32 |
| - "attachments": {}, |
33 |
| - "cell_type": "markdown", |
34 |
| - "metadata": {}, |
35 |
| - "source": [ |
36 |
| - "Then we load the needed modules and data:\n" |
37 |
| - ] |
38 |
| - }, |
39 |
| - { |
40 |
| - "cell_type": "code", |
41 |
| - "execution_count": 1, |
42 |
| - "metadata": {}, |
43 |
| - "outputs": [], |
44 |
| - "source": [ |
45 |
| - "import polars as pl\n", |
46 |
| - "from IPython.display import display\n", |
47 |
| - "from ipywidgets import IntSlider\n", |
48 |
| - "\n", |
49 |
| - "from pyobsplot import Plot\n", |
50 |
| - "\n", |
51 |
| - "penguins = pl.read_csv(\n", |
52 |
| - " \"https://github.com/juba/pyobsplot/raw/main/doc/data/penguins.csv\"\n", |
53 |
| - ")" |
54 |
| - ] |
55 |
| - }, |
56 |
| - { |
57 |
| - "attachments": {}, |
58 |
| - "cell_type": "markdown", |
59 |
| - "metadata": {}, |
60 |
| - "source": [ |
61 |
| - "The next step is to create a `generate_plot` function which takes an opacity value as input and returns a plot specification. We create our starting plot with an opacity value of 1.\n" |
62 |
| - ] |
63 |
| - }, |
64 |
| - { |
65 |
| - "cell_type": "code", |
66 |
| - "execution_count": 2, |
67 |
| - "metadata": {}, |
68 |
| - "outputs": [], |
69 |
| - "source": [ |
70 |
| - "def generate_plot_spec(opacity):\n", |
71 |
| - " return {\n", |
72 |
| - " \"grid\": True,\n", |
73 |
| - " \"marks\": [\n", |
74 |
| - " Plot.rectY(\n", |
75 |
| - " penguins,\n", |
76 |
| - " Plot.binX(\n", |
77 |
| - " {\"y\": \"count\"},\n", |
78 |
| - " {\"x\": \"body_mass_g\", \"fill\": \"steelblue\", \"fillOpacity\": opacity},\n", |
79 |
| - " ),\n", |
80 |
| - " ),\n", |
81 |
| - " Plot.ruleY([0]),\n", |
82 |
| - " ],\n", |
83 |
| - " }\n", |
84 |
| - "\n", |
85 |
| - "\n", |
86 |
| - "plot = Plot.plot(generate_plot_spec(1))" |
87 |
| - ] |
88 |
| - }, |
89 |
| - { |
90 |
| - "attachments": {}, |
91 |
| - "cell_type": "markdown", |
92 |
| - "metadata": {}, |
93 |
| - "source": [ |
94 |
| - "Now we create an `IntSlider` input widget and observe its value with a new `update_plot` function which generates a new specification with the updated opacity value, and stores it as the `spec` plot attribute.\n" |
95 |
| - ] |
96 |
| - }, |
97 |
| - { |
98 |
| - "cell_type": "code", |
99 |
| - "execution_count": 3, |
100 |
| - "metadata": {}, |
101 |
| - "outputs": [], |
102 |
| - "source": [ |
103 |
| - "def update_plot(change):\n", |
104 |
| - " new = change[\"new\"]\n", |
105 |
| - " plot.spec = generate_plot_spec(new / 100) # type: ignore\n", |
106 |
| - "\n", |
107 |
| - "\n", |
108 |
| - "w = IntSlider(value=100, min=0, max=100)\n", |
109 |
| - "w.observe(update_plot, names=\"value\")" |
110 |
| - ] |
111 |
| - }, |
112 |
| - { |
113 |
| - "attachments": {}, |
114 |
| - "cell_type": "markdown", |
115 |
| - "metadata": {}, |
116 |
| - "source": [ |
117 |
| - "Finally we can display both our input widget and our plot.\n" |
118 |
| - ] |
119 |
| - }, |
120 |
| - { |
121 |
| - "cell_type": "code", |
122 |
| - "execution_count": null, |
123 |
| - "metadata": {}, |
124 |
| - "outputs": [], |
125 |
| - "source": [ |
126 |
| - "display(w)\n", |
127 |
| - "display(plot)" |
128 |
| - ] |
129 |
| - } |
130 |
| - ], |
131 |
| - "metadata": { |
132 |
| - "kernelspec": { |
133 |
| - "display_name": "Python 3", |
134 |
| - "language": "python", |
135 |
| - "name": "python3" |
136 |
| - }, |
137 |
| - "language_info": { |
138 |
| - "codemirror_mode": { |
139 |
| - "name": "ipython", |
140 |
| - "version": 3 |
141 |
| - }, |
142 |
| - "file_extension": ".py", |
143 |
| - "mimetype": "text/x-python", |
144 |
| - "name": "python", |
145 |
| - "nbconvert_exporter": "python", |
146 |
| - "pygments_lexer": "ipython3", |
147 |
| - "version": "3.11.9" |
148 |
| - }, |
149 |
| - "orig_nbformat": 4 |
150 |
| - }, |
151 |
| - "nbformat": 4, |
152 |
| - "nbformat_minor": 2 |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# pyobsplot - jupyter interactivity\n", |
| 9 | + "\n", |
| 10 | + "**Note :** this notebook is designed to be used on [Google Colab](https://colab.research.google.com/github/juba/pyobsplot/blob/main/examples/introduction.ipynb).\n", |
| 11 | + "\n", |
| 12 | + "[pyobsplot](https://github.com/juba/pyobsplot) is a Python package which allows to use Observable Plot in Jupyter notebooks with a syntax as close as possible to the JavaScript one. For more information, see the [documentation website](https://juba.github.io/pyobsplot).\n", |
| 13 | + "\n", |
| 14 | + "When using the `widget` renderer, the fact that plots are generated as Jupyter widgets allow for basic interactivity. More specifically, you can set the spec attribute of an existing `pyobsplot` plot to another plot specification and it will update it.\n", |
| 15 | + "\n", |
| 16 | + "First we install the `pyobsplot` package in the Colab environment:\n" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "# Install pyobsplot\n", |
| 26 | + "! pip install pyobsplot[typst]" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "attachments": {}, |
| 31 | + "cell_type": "markdown", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "Then we load the needed modules and data:\n" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 1, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "import polars as pl\n", |
| 44 | + "from IPython.display import display\n", |
| 45 | + "from ipywidgets import IntSlider\n", |
| 46 | + "\n", |
| 47 | + "from pyobsplot import Plot\n", |
| 48 | + "\n", |
| 49 | + "penguins = pl.read_csv(\n", |
| 50 | + " \"https://github.com/juba/pyobsplot/raw/main/doc/data/penguins.csv\"\n", |
| 51 | + ")" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "attachments": {}, |
| 56 | + "cell_type": "markdown", |
| 57 | + "metadata": {}, |
| 58 | + "source": [ |
| 59 | + "The next step is to create a `generate_plot` function which takes an opacity value as input and returns a plot specification. We create our starting plot with an opacity value of 1.\n" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "code", |
| 64 | + "execution_count": 2, |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [], |
| 67 | + "source": [ |
| 68 | + "def generate_plot_spec(opacity):\n", |
| 69 | + " return {\n", |
| 70 | + " \"grid\": True,\n", |
| 71 | + " \"marks\": [\n", |
| 72 | + " Plot.rectY(\n", |
| 73 | + " penguins,\n", |
| 74 | + " Plot.binX(\n", |
| 75 | + " {\"y\": \"count\"},\n", |
| 76 | + " {\"x\": \"body_mass_g\", \"fill\": \"steelblue\", \"fillOpacity\": opacity},\n", |
| 77 | + " ),\n", |
| 78 | + " ),\n", |
| 79 | + " Plot.ruleY([0]),\n", |
| 80 | + " ],\n", |
| 81 | + " }\n", |
| 82 | + "\n", |
| 83 | + "\n", |
| 84 | + "plot = Plot.plot(generate_plot_spec(1))" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "attachments": {}, |
| 89 | + "cell_type": "markdown", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "Now we create an `IntSlider` input widget and observe its value with a new `update_plot` function which generates a new specification with the updated opacity value, and stores it as the `spec` plot attribute.\n" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 3, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "def update_plot(change):\n", |
| 102 | + " new = change[\"new\"]\n", |
| 103 | + " plot.spec = generate_plot_spec(new / 100) # type: ignore\n", |
| 104 | + "\n", |
| 105 | + "\n", |
| 106 | + "w = IntSlider(value=100, min=0, max=100)\n", |
| 107 | + "w.observe(update_plot, names=\"value\")" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "attachments": {}, |
| 112 | + "cell_type": "markdown", |
| 113 | + "metadata": {}, |
| 114 | + "source": [ |
| 115 | + "Finally we can display both our input widget and our plot.\n" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "display(w)\n", |
| 125 | + "display(plot)" |
| 126 | + ] |
| 127 | + } |
| 128 | + ], |
| 129 | + "metadata": { |
| 130 | + "kernelspec": { |
| 131 | + "display_name": "Python 3 (ipykernel)", |
| 132 | + "language": "python", |
| 133 | + "name": "python3" |
| 134 | + }, |
| 135 | + "language_info": { |
| 136 | + "codemirror_mode": { |
| 137 | + "name": "ipython", |
| 138 | + "version": 3 |
| 139 | + }, |
| 140 | + "file_extension": ".py", |
| 141 | + "mimetype": "text/x-python", |
| 142 | + "name": "python", |
| 143 | + "nbconvert_exporter": "python", |
| 144 | + "pygments_lexer": "ipython3", |
| 145 | + "version": "3.12.9" |
| 146 | + }, |
| 147 | + "widgets": { |
| 148 | + "application/vnd.jupyter.widget-state+json": { |
| 149 | + "state": {}, |
| 150 | + "version_major": 2, |
| 151 | + "version_minor": 0 |
| 152 | + } |
| 153 | + } |
| 154 | + }, |
| 155 | + "nbformat": 4, |
| 156 | + "nbformat_minor": 4 |
153 | 157 | }
|
0 commit comments