-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogic.py
66 lines (52 loc) · 2.47 KB
/
logic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks import get_openai_callback
from langchain.prompts import PromptTemplate
import file_handling
from dotenv import load_dotenv
load_dotenv()
def initialize_llm(openai_api_key):
#if model == "gpt 3.5 turbo ($0.03)":
return ChatOpenAI(model="gpt-3.5-turbo", temperature=0,openai_api_key=openai_api_key)
#else:
# return OpenAI(model="text-davinci-003", temperature=0,openai_api_key=openai_api_key)
def split_text(essay, chunk_size, chunk_overlap):
text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n"], chunk_size=chunk_size, chunk_overlap=chunk_overlap)
return text_splitter.create_documents([essay])
def load_summary_chain( llm, basic_prompt, refine_prompt):
prompt_template = basic_prompt + """
{text}
SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
refine_template = (
"Your job is to produce a final summary\n"
"We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Return the original summary."
"Given the new context, " + refine_prompt +
"If the context isn't useful, return the original summary."
)
refine_prompt = PromptTemplate.from_template(refine_template)
return load_summarize_chain(
llm=llm,
chain_type="refine",
question_prompt=prompt,
refine_prompt=refine_prompt,
return_intermediate_steps=True,
input_key="input_documents",
output_key="output_text"
)
def run_logic(uploaded_file, input_text, chunk_size, chunk_overlap, basic_prompt, refine_prompt, openai_api_key):
essay = file_handling.read_uploaded_file(uploaded_file)
llm = initialize_llm(openai_api_key)
docs = split_text(essay, chunk_size, chunk_overlap)
summary_chain = load_summary_chain(llm, basic_prompt, refine_prompt)
with get_openai_callback() as cb:
result = summary_chain({"input_documents": docs}, return_only_outputs=False)
return "Method: refine" + " LLM: GPT-3.5-Turbo " + " Total cost: $" + str(cb.total_cost) + ". \n\n " + result["output_text"]