-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
205 lines (149 loc) · 5.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Implementar a inversão de matriz 2x2 e 3x3 - OK
# Implementar metodo para multiplicação de matriz - OK
def matmul(mat1, mat2):
"""
This function make a matrix multiplication
or return an feedback if the multiplication
isn't valid.
"""
if len(mat1[0]) == len(mat2):
n = len(mat1)
p = len(mat2[0])
m = len(mat1[0])
mat3 = [[0 for i in range(p)] for j in range(n)]
for i in range(n):
for j in range(p):
sum = 0
for k in range(m):
sum = sum + mat1[i][k] * mat2[k][j]
mat3[i][j] = sum
return mat3
else:
print("Invalid multiplication")
return -1
def find_determinant(mat):
if len(mat) == 2:
return (mat[0][0]*mat[1][1]) - (mat[0][1]*mat[1][0])
elif len(mat) == 3:
return ((mat[0][0]*mat[1][1]*mat[2][2])
+ (mat[0][1]*mat[1][2]*mat[2][0])
+ (mat[0][2]*mat[1][0]*mat[2][1])
- (mat[0][2]*mat[1][1]*mat[2][0])
- (mat[0][1]*mat[1][0]*mat[2][2])
- (mat[0][0]*mat[1][2]*mat[2][1])
)
else:
print("Not possible to calculate")
return -1
def transpose(mat):
n_row = len(mat)
n_col = len(mat[0])
new_mat = [[0 for i in range(n_row)] for j in range(n_col)]
for i in range(n_row):
for j in range(n_col):
new_mat[j][i] = mat[i][j]
return new_mat
def invert_mat(mat):
"""
This function invert a 2x2 or 3x3 matrix
if high scaled matrix is passed it will return
a feedback message
"""
if len(mat) == len(mat[0]):
if len(mat) == 2:
new_mat = [[0 for i in range(2)] for j in range(2)]
determinant = find_determinant(mat)
new_mat[0][0] = mat[1][1]
new_mat[1][1] = mat[0][0]
new_mat[0][1] = (-mat[0][1])
new_mat[1][0] = (-mat[1][0])
for i in range(2):
for j in range(2):
new_mat[i][j] = (1/determinant) * new_mat[i][j]
return new_mat
elif len(mat) == 3:
new_mat = [[0 for i in range(3)] for j in range(3)]
determinant = find_determinant(mat)
new_mat[0][0] = +((mat[1][1] * mat[2][2]) - (mat[1][2] * mat[2][1]))
new_mat[0][1] = -((mat[1][0] * mat[2][2]) - (mat[1][2] * mat[2][0]))
new_mat[0][2] = +((mat[1][0] * mat[2][1]) - (mat[1][1] * mat[2][0]))
new_mat[1][0] = -((mat[0][1] * mat[2][2]) - (mat[0][2] * mat[2][1]))
new_mat[1][1] = +((mat[0][0] * mat[2][2]) - (mat[0][2] * mat[2][0]))
new_mat[1][2] = -((mat[0][0] * mat[2][1]) - (mat[0][1] * mat[2][0]))
new_mat[2][0] = +((mat[0][1] * mat[1][2]) - (mat[0][2] * mat[1][1]))
new_mat[2][1] = -((mat[0][0] * mat[1][2]) - (mat[0][2] * mat[1][0]))
new_mat[2][2] = +((mat[0][0] * mat[1][1]) - (mat[0][1] * mat[1][0]))
for i in range(3):
for j in range(3):
new_mat[i][j] = (1/determinant) * new_mat[i][j]
return transpose(new_mat)
else:
print("Not possible to invert")
return -1
else:
print("Not possible to invert")
return -1
def multiply_arr(arr, betha):
new_arr = [v for v in arr]
for i in range(len(arr)):
new_arr[i] = float(new_arr[i]*betha)
return new_arr
def sum_arr(arr, val_to_sum):
new_arr = [v for v in arr]
for i in range(len(arr)):
new_arr[i] = float(new_arr[i] + val_to_sum)
return new_arr
def buildData(data_frame):
x = [[1] for i in range(data_frame.shape[0])]
y = [[] for i in range(data_frame.shape[0])]
for i in range(data_frame.shape[1]):
for j in range(data_frame.shape[0]):
if i < (data_frame.shape[1] - 1):
# Getting features
x[j].append(data_frame.iloc[j,i])
else:
y[j].append(data_frame.iloc[j,i])
return [x,y]
def findBeta(features, target):
xt_x = matmul(transpose(features),features)
xt_y = matmul(transpose(features),target)
beta = matmul(invert_mat(xt_x),xt_y)
return beta
def linear(dataset):
beta = findBeta(dataset[0], dataset[1])
print("Beta Gerado: ", beta)
n = len(beta)
x = [i for i in range(3000)]
y = [0 for i in range(len(x))]
for j in range(len(x)):
for i in range(n-1):
y[j] = y[j] + x[j]*beta[i+1][0]
y[j] = y[j] + beta[0][0]
return [x,y]
def quadratic(dataset):
for v in dataset[0]:
v.append(v[1]*v[1])
beta = findBeta(dataset[0], dataset[1])
print("Beta Gerado: ", beta)
n = len(beta)
x = [i for i in range(3000)]
y = [0 for i in range(len(x))]
for j in range(len(x)):
y[j] = y[j] + x[j]*beta[1][0] + x[j]*x[j]*beta[2][0] + beta[0][0]
return [x,y]
def buildPoints(data_frame):
x = [[] for i in range(data_frame.shape[0])]
y = [[] for i in range(data_frame.shape[0])]
for i in range(data_frame.shape[1]):
for j in range(data_frame.shape[0]):
if i < (data_frame.shape[1] - 1):
# Getting features
x[j].append(data_frame.iloc[j,i])
else:
y[j].append(data_frame.iloc[j,i])
return [x,y]
if __name__ == "__main__":
mat1 = [[5,6,1],
[3,7,1]]
mat2 = [[1,2],[3,4]]
print(transpose(mat1))