Here, we provide additional experimental results in "Edgeless-GNN :Unsupervised Inductive Edgeless Network Embedding".
Performance of Edgeless-SAGE on Cora with different number of layers.
AP | AUC | macro F1 | micro F1 | NMI | |
---|---|---|---|---|---|
Single layer | 0.8929 +/- 0.0140 | 0.8905 +/- 0.0127 | 0.6783 +/- 0.0335 | 0.7177 +/- 0.0343 | 0.5109 +/- 0.0212 |
Two layers | 0.8464 +/- 0.0142 | 0.8590 +/- 0.0137 | 0.6254 +/- 0.0290 | 0.6665 +/- 0.0267 | 0.4408 +/- 0.0540 |
Three layers | 0.7329 +/- 0.0221 | 0.7443 +/- 0.0310 | 0.4392 +/- 0.0549 | 0.5177 +/- 0.0422 | 0.3354 +/- 0.0415 |
Comparison of different architectures on Citeseer dataset.
Architecture | AP | AUC | macro F1 | micro F1 | NMI |
---|---|---|---|---|---|
Edgeless-SAGE | 0.9394 +/- 0.0006 | 0.9318 +/- 0.0072 | 0.5675 +/- 0.0378 | 0.6502 +/- 0.0299 | 0.4489 +/- 0.0506 |
Edgeless-GCN | 0.8921 +/- 0.0131 | 0.8892 +/- 0.0112 | 0.2554 +/- 0.0240 | 0.4943 +/- 0.0423 | 0.2695 +/- 0.0590 |
Edgeless-GIN | 0.8633 +/- 0.0146 | 0.8752 +/- 0.0124 | 0.5567 +/- 0.0370 | 0.6687 +/- 0.0362 | 0.2775 +/- 0.0395 |
Comparison of different choices of k on Citeseer dataset.
k | AP | AUC | macro F1 | micro F1 | NMI |
---|---|---|---|---|---|
2 | 0.9376 +/- 0.0077 | 0.9279 +/- 0.0072 | 0.5752 +/- 0.0398 | 0.6545 +/- 0.0250 | 0.4184 +/- 0.0326 |
3 | 0.9385 +/- 0.0062 | 0.9313 +/- 0.0072 | 0.5698 +/- 0.0463 | 0.6511 +/- 0.0487 | 0.4126 +/- 0.0377 |
4 | 0.9325 +/- 0.0103 | 0.9282 +/- 0.0095 | 0.5589 +/- 0.0564 | 0.6672 +/- 0.0388 | 0.4336 +/- 0.0351 |
5 | 0.9365 +/- 0.0082 | 0.9284 +/- 0.0081 | 0.5508 +/- 0.0494 | 0.6620 +/- 0.0377 | 0.4589 +/- 0.0453 |
6 | 0.9385 +/- 0.0063 | 0.9304 +/- 0.0078 | 0.5767 +/- 0.0456 | 0.6507 +/- 0.0407 | 0.4253 +/- 0.0269 |
Effect of alpha and beta on Citeseer dataset.
Comparison with [40] on node classification. We have used the author's implementation with modification to 1) Edge deletion mechanism (to generate edgeless nodes) 2) Train/val/test split to match our setting.
Dataset | Method | micro F1 |
---|---|---|
Cora | Edgeless-SAGE | 0.7177 +/- 0.0343 |
LDS-GNN | 0.2777 +/- 0.0693 | |
Citeseer | Edgeless-SAGE | 0.6697 +/- 0.0299 |
LDS-GNN | 0.4791 +/- 0.1367 |