-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
279 lines (255 loc) · 12.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python
# coding: utf-8
import argparse
import datetime
import multiprocessing as mp
import pickle
import pprint as pp
import sys
from collections import defaultdict
from functools import partial
from pathlib import Path
from tempfile import mkdtemp
from timeit import default_timer as timer
import cpuinfo
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
import datasets
from regressor import SplitSelectKNeighborsRegressor
from utils import str2bool, Logger
from validation import GridSearchForKNeighborsEstimator, GridSearchForSplitSelectKNeighborsEstimator
from validation import compute_error
# mpl.style.use( 'ggplot' )
markers = ['o', 's', '*', 'v', '^', 'D', 'h', 'x', '+', '8', 'p', '<', '>', 'd', 'H', 1, 2, 3, 4]
# Arguments
parser = argparse.ArgumentParser(description='Split knn rules')
parser.add_argument('--test-size', type=float, default=0.05, metavar='t',
help='test split ratio')
parser.add_argument('--max-test-size', type=int, default=1000)
parser.add_argument('--n-trials', type=int, default=1,
help='number of different train/test splits')
parser.add_argument('--algorithm', type=str, default='auto',
help='knn search algorithm (default: "auto")',
choices=['auto', 'ball_tree', 'kd_tree', 'brute'])
parser.add_argument('--n-neighbors', type=int, default=1)
parser.add_argument('--select-ratio', type=float, default=None)
parser.add_argument('--search-select-ratio', action='store_true')
parser.add_argument('--no-standard', action='store_false')
parser.add_argument('--parallel', type=str2bool, default=False, metavar='P',
help='use multiprocessors')
parser.add_argument('--dataset', type=str, default='MiniBooNE',
choices=['MiniBooNE',
'HTRU2',
'CREDIT',
'GISETTE',
'SUSY',
'HIGGS',
'NewsGroups20',
'BNGLetter',
'WineQuality',
'GasTurbine',
'YearPredictionMSD'])
parser.add_argument('--main-path', type=str, default='.',
help='main path where datasets live and loggings are saved')
parser.add_argument('--k-max', type=int, default=1024)
parser.add_argument('--fine-search', type=str2bool, default=False)
parser.add_argument('--n-folds', type=int, default=5)
parser.add_argument('--temp', action='store_true')
parser.add_argument('--verbose', type=bool, default=True)
if __name__ == '__main__':
mp.set_start_method("spawn")
args = parser.parse_args()
if args.parallel:
print("Parallel processing...")
timestamp = datetime.datetime.now().isoformat(timespec='seconds')
experiment_dir = Path(f'{args.main_path}/results/{args.dataset}/{timestamp}')
experiment_dir.mkdir(parents=True, exist_ok=True)
run_path = str(experiment_dir)
if args.temp:
run_path = mkdtemp(dir=run_path)
sys.stdout = Logger(f'{run_path}/run.log')
# load datasets
print("Loading data... ", end='')
start = timer()
dataset = getattr(datasets, args.dataset)(root=args.main_path)
print(f"done ({timer() - start:.2f}s)")
print(f'Path: {run_path}')
print(f'Time: {timestamp}')
print(f'Args: {args}')
info = cpuinfo.get_cpu_info()
del info['flags']
print('CPUInfo: ')
pp.pprint(info)
n_trials = args.n_trials
keys = ['standard_1NN',
'standard_kNN',
'split_select_1NN',
'split_1NN']
error_rates = defaultdict(partial(np.zeros, n_trials))
train_times = defaultdict(partial(np.zeros, n_trials))
test_times = defaultdict(partial(np.zeros, n_trials))
model_selection_times = defaultdict(partial(np.zeros, n_trials))
best_params = defaultdict(partial(np.zeros, n_trials))
validation_profiles = dict(
standard_kNN={n: None for n in range(n_trials)},
split_select_1NN={n: None for n in range(n_trials)},
split_1NN={n: None for n in range(n_trials)},
)
for n in range(n_trials):
# Split dataset at random
X_train, X_test, y_train, y_test = dataset.train_test_split(test_size=args.test_size, seed=n)
# Truncate test set to limit time complexity of experiments
X_test, y_test = X_test[:args.max_test_size], y_test[:args.max_test_size]
if n == 0:
print(f"Data size: train={X_train.shape[0]}, test={X_test.shape[0]}")
# set maximum k
k_max = np.min([args.k_max, X_train.shape[0] / 25])
print(f"Trial #{n + 1}/{n_trials}")
# Standard k-NN rules
if args.no_standard:
for key in ['standard_1NN', 'standard_kNN']:
k_opt = 1
model_selection_time = 0.
if key == 'standard_kNN':
start = timer()
k_opt, validation_profiles[key][n] = \
GridSearchForKNeighborsEstimator(
n_folds=args.n_folds,
n_repeat=1,
max_valid_size=args.max_test_size,
verbose=args.verbose,
classification=dataset.classification,
).grid_search(
X_train,
y_train,
fine_search=args.fine_search,
k_max=k_max)
model_selection_time = timer() - start
print(f'....{args.n_folds}-fold CV ({model_selection_time:.2f}s)')
best_params[key] = k_opt
model_selection_times[key][n] = model_selection_time
start = timer()
Predictor = KNeighborsClassifier if dataset.classification else KNeighborsRegressor
predictor = Predictor(n_neighbors=k_opt,
n_jobs=-1 if args.parallel else None,
algorithm=args.algorithm)
predictor.fit(X_train, y_train)
train_times[key][n] = timer() - start
start = timer()
print(f'\t{key} (k={k_opt}; {predictor._fit_method}): ', end='')
y_test_pred = predictor.predict(X_test)
test_times[key][n] = timer() - start
error_rates[key][n] = compute_error(y_test_pred, y_test, dataset.classification)
print(f"{error_rates[key][n]:.4f} (tr: {train_times[key][n]:.2f}s, te: {test_times[key][n]:.2f}s)")
# Split rules
split_keys = ['split_select_1NN', 'split_1NN']
select_ratios = [args.select_ratio, 1.0]
with mp.get_context("spawn").Pool() as pool:
for (split_key, select_ratio) in zip(split_keys, select_ratios):
validation_profiles[split_key][n] = dict(n_splits=None, select_ratio=None)
n_splits_opt, validation_profiles[split_key][n]['n_splits'], \
select_ratio_opt, validation_profiles[split_key][n]['select_ratio'] \
= GridSearchForSplitSelectKNeighborsEstimator(
n_folds=args.n_folds,
n_repeat=1,
max_valid_size=args.max_test_size,
parallel=args.parallel,
verbose=args.verbose,
classification=dataset.classification,
onehot_encoder=dataset.onehot_encoder,
n_neighbors=args.n_neighbors,
pool=pool,
).grid_search(
X_train,
y_train,
n_splits_max=k_max,
fine_search=args.fine_search,
select_ratio=select_ratio,
search_select_ratio=True if (args.search_select_ratio and select_ratio < 1) else False,
)
model_selection_time = timer() - start
print(f'....{args.n_folds}-fold CV ({model_selection_time:.2f}s)')
start = timer()
estimator = SplitSelectKNeighborsRegressor(
n_neighbors=1,
n_splits=n_splits_opt,
select_ratio=select_ratio_opt,
n_select=None,
algorithm=args.algorithm,
verbose=False,
classification=dataset.classification,
onehot_encoder=dataset.onehot_encoder,
pool=pool,
).fit(X_train, y_train)
train_times[split_key][n] = timer() - start
start = timer()
print(f'\t{split_key} (M={n_splits_opt}, kappa={select_ratio_opt if select_ratio_opt else -1:.2f}; {estimator._fit_method}): ', end='')
y_test_pred = estimator.predict(X_test, parallel=args.parallel)
test_times[split_key][n] = timer() - start
model_selection_times[split_key][n] = model_selection_time
best_params[split_key][n] = n_splits_opt
error_rates[split_key][n] = compute_error(y_test_pred, y_test, dataset.classification)
print(f"{error_rates[split_key][n]:.4f} (tr: {train_times[split_key][n]:.2f}s, te: {test_times[split_key][n]:.2f}s)")
# Store data (serialize)
data = dict(keys=keys,
train_times=train_times,
test_times=test_times,
error_rates=error_rates,
model_selection_times=model_selection_times,
validation_profiles=validation_profiles,
cpu_info=cpuinfo.get_cpu_info(),
args=args)
filename = f'{run_path}/{dataset.name}_test{args.test_size}_{args.n_trials}tr_{mp.cpu_count()}cores_alg{args.algorithm}.pickle'
with open(filename, 'wb') as handle:
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
# Plot validation profiles
colors = ['red', 'blue', 'green']
for i, key in enumerate(['standard_kNN', 'split_select_1NN', 'split_1NN']):
if key == 'standard_kNN':
param_set = validation_profiles[key][0][0]
else:
param_set = validation_profiles[key][0]['n_splits'][0]
errs = np.zeros((n_trials, len(param_set)))
for n in range(n_trials):
if key == 'standard_kNN':
errs[n] = validation_profiles[key][n][1]
else:
errs[n] = validation_profiles[key][n]['n_splits'][1]
plt.plot(param_set,
errs.mean(axis=0),
linewidth=1,
label=key,
color=colors[i],
marker=markers[i])
plt.fill_between(param_set,
(errs.mean(axis=0) - errs.std(axis=0)),
(errs.mean(axis=0) + errs.std(axis=0)),
linewidth=0.1,
alpha=0.3,
color=colors[i])
plt.xscale('log', nonposx='clip')
plt.title(f'{args.dataset} ({n_trials} runs)')
plt.legend()
plt.savefig(f'{run_path}/validation_profile.pdf')
plt.close()
if validation_profiles['split_select_1NN'][0]['select_ratio'] is not None:
param_set = validation_profiles['split_select_1NN'][0]['select_ratio'][0]
errs = np.zeros((n_trials, len(param_set)))
for n in range(n_trials):
errs[n] = validation_profiles['split_select_1NN'][n]['select_ratio'][1]
plt.plot(param_set,
errs.mean(axis=0),
linewidth=1,
label='select_ratio',
marker='x',
color='blue')
plt.fill_between(param_set,
(errs.mean(axis=0) - errs.std(axis=0)),
(errs.mean(axis=0) + errs.std(axis=0)),
linewidth=0.1,
alpha=0.3,
color='blue')
plt.title(f'{args.dataset} ({n_trials} runs)')
plt.legend()
plt.savefig(f'{run_path}/validation_profile_select_ratio.pdf')