|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import SimpleITK as sitk\n", |
| 10 | + "import matplotlib.pyplot as plt\n", |
| 11 | + "%matplotlib inline" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "The SimpleITK function ReadImage() can read single file images. Usually SimpleITK can correctly determine the file type from the extension and file itself." |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 2, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "image = sitk.ReadImage('../data/dot.dcm')" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "markdown", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "The type of `image` is an instance of the SimpleITK image. We can request several of its properties. Try tab completion or `help(image)` for more examples." |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 5, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [ |
| 42 | + { |
| 43 | + "data": { |
| 44 | + "text/plain": [ |
| 45 | + "(21, 21, 1)" |
| 46 | + ] |
| 47 | + }, |
| 48 | + "execution_count": 5, |
| 49 | + "metadata": {}, |
| 50 | + "output_type": "execute_result" |
| 51 | + } |
| 52 | + ], |
| 53 | + "source": [ |
| 54 | + "image.GetSize()" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "markdown", |
| 59 | + "metadata": {}, |
| 60 | + "source": [ |
| 61 | + "SimpleITK is a 'simple' procedural wrapper around ITK which can be called from Python and other scripting languages. SimpleITK provides a convenient interface to numpy arrays." |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 8, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [ |
| 69 | + { |
| 70 | + "name": "stdout", |
| 71 | + "output_type": "stream", |
| 72 | + "text": [ |
| 73 | + "`array` has type: <type 'numpy.ndarray'>\n", |
| 74 | + "(1, 21, 21, 3)\n" |
| 75 | + ] |
| 76 | + } |
| 77 | + ], |
| 78 | + "source": [ |
| 79 | + "array = sitk.GetArrayFromImage(image)\n", |
| 80 | + "print('`array` has type: {}'.format(type(array)))" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "Let us check out the array size." |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": 9, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [ |
| 95 | + { |
| 96 | + "data": { |
| 97 | + "text/plain": [ |
| 98 | + "(1, 21, 21, 3)" |
| 99 | + ] |
| 100 | + }, |
| 101 | + "execution_count": 9, |
| 102 | + "metadata": {}, |
| 103 | + "output_type": "execute_result" |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "array.shape" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "The first axis is the number of slices, in this case 1. Many medical image formats are 3D and would have the number of slices on the first axis. The last axis is the number of channels. The image `dot.dcm` is an artificial example of an RGB image saved in the DICOM standard." |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": 14, |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [ |
| 122 | + { |
| 123 | + "data": { |
| 124 | + "text/plain": [ |
| 125 | + "array([[255, 255, 255, 255, 255, 255, 255, 255, 255, 255],\n", |
| 126 | + " [255, 255, 255, 255, 255, 255, 255, 255, 255, 0],\n", |
| 127 | + " [255, 255, 255, 255, 255, 255, 0, 0, 0, 0],\n", |
| 128 | + " [255, 255, 255, 255, 255, 0, 0, 0, 0, 0],\n", |
| 129 | + " [255, 255, 255, 255, 0, 0, 0, 0, 0, 0],\n", |
| 130 | + " [255, 255, 255, 0, 0, 0, 0, 0, 0, 0],\n", |
| 131 | + " [255, 255, 0, 0, 0, 0, 0, 0, 0, 0],\n", |
| 132 | + " [255, 255, 0, 0, 0, 0, 0, 0, 0, 0],\n", |
| 133 | + " [255, 255, 0, 0, 0, 0, 0, 0, 0, 0],\n", |
| 134 | + " [255, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)" |
| 135 | + ] |
| 136 | + }, |
| 137 | + "execution_count": 14, |
| 138 | + "metadata": {}, |
| 139 | + "output_type": "execute_result" |
| 140 | + } |
| 141 | + ], |
| 142 | + "source": [ |
| 143 | + "array[0, 0:10, 0:10, 1]" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "markdown", |
| 148 | + "metadata": {}, |
| 149 | + "source": [ |
| 150 | + "As a `numpy` array we can easily plot the image." |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": 18, |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [ |
| 158 | + { |
| 159 | + "data": { |
| 160 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAFpCAYAAABj6bgoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFWtJREFUeJzt3X+sHeV95/H3Z/nRlSgKEN8QAjhOugiJVAtFV06ypRUp\nCQULhbbKdm1VLWmo3HSD1EhdVexGgij9p9kqrdQSBbnBglQpQf1BirYmwUsr0UiBcEEGTEKKg1xh\nh2ATspBsuso6fPePO86eXJ9z7/GZc3899/2Sju7MM8+c+XrOuR/PnTPnmVQVkqQ2/JvVLkCSND2G\nuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNeTU1S5gmE2bNtWWLVtWuwxJ\nWjMOHjzISy+9lKX6rclQ37JlC3Nzc6tdhiStGbOzs2P18/SLJDWkV6gnuSbJ15McSHLzkOU/keSe\nbvkjSbb02Z4kaXETh3qSU4BPAtcClwA7klyyoNuNwHeq6t8BfwJ8fNLtSZKW1udIfStwoKqeq6of\nAJ8Drl/Q53rgrm76r4Grkix5ol+SNJk+oX4+8PzA/KGubWifqjoGvAK8vsc2JUmLWDMflCbZmWQu\nydzRo0dXuxxJWpf6hPph4MKB+Qu6tqF9kpwKvA749rAnq6pdVTVbVbMzMzM9ypKkjatPqD8KXJTk\nLUlOB7YD9y3ocx9wQzf9PuAfypuiStKymfjLR1V1LMlNwBeBU4DdVfV0ko8Bc1V1H3AH8BdJDgAv\nMx/8kqRl0usbpVW1B9izoO2Wgen/A/zHPtuQJI1vzXxQKknqz1CXpIYY6pLUkDU5SqN0Mtbzl5S9\nGEzT5pG6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENd\nkhpiqEtSQwx1SWqIQ+8KWN/D165n63m/O2zw2uSRuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqI\noS5JDTHUJakhhrokNcRQl6SGGOqS1JCJQz3JhUn+MclXkzyd5HeH9LkyyStJ9nWPW/qVK0laTJ8B\nvY4Bv1dVjyc5E3gsyd6q+uqCfv9UVdf12I4kaUwTH6lX1QtV9Xg3/V3ga8D50ypMknTypnJOPckW\n4GeAR4YsfmeSJ5Lcn+Rt09ieJGm43uOpJ/lJ4G+AD1fVqwsWPw68uaq+l2Qb8HngohHPsxPYCbB5\n8+a+ZW1I63lsbq0/fd5vG3Us9pX4d/c6Uk9yGvOB/tmq+tuFy6vq1ar6Xje9BzgtyaZhz1VVu6pq\ntqpmZ2Zm+pQlSRtWn6tfAtwBfK2q/nhEnzd2/UiytdvetyfdpiRpcX1Ov/ws8OvAU0n2dW3/DdgM\nUFW3A+8DfifJMeBfge21Uf/ukqQVMHGoV9WXgEVPqlXVbcBtk25DknRy/EapJDXEUJekhhjqktQQ\nQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIb0HnpX0+PQudoo+r7XHUJqNI/UJakhhrok\nNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JD\nDHVJaojjqU+ZY6JLy6/P71nrY7F7pC5JDTHUJakhhrokNaR3qCc5mOSpJPuSzA1ZniR/muRAkieT\nXN53m5Kk4ab1Qem7quqlEcuuBS7qHm8HPtX9lCRN2Uqcfrke+EzNexg4K8l5K7BdSdpwphHqBTyQ\n5LEkO4csPx94fmD+UNcmSZqyaZx+uaKqDid5A7A3yTNV9dDJPkn3H8JOgM2bN0+hLEnaeHofqVfV\n4e7nEeBeYOuCLoeBCwfmL+jaFj7PrqqararZmZmZvmVJ0obUK9STnJHkzOPTwNXA/gXd7gN+o7sK\n5h3AK1X1Qp/tSpKG63v65Vzg3u4ru6cCf1lVX0jyQYCquh3YA2wDDgDfB36z5zYlSSP0CvWqeg64\ndEj77QPTBXyoz3YkSePxG6WS1BBDXZIa4tC7Czh0rtS2vr/ja33oXo/UJakhhrokNcRQl6SGGOqS\n1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkN\nMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGTBzqSS5O\nsm/g8WqSDy/oc2WSVwb63NK/ZEnSKKdOumJVfR24DCDJKcBh4N4hXf+pqq6bdDuSpPFN6/TLVcA3\nqupfpvR8kqQJTCvUtwN3j1j2ziRPJLk/ydumtD1J0hC9Qz3J6cB7gb8asvhx4M1VdSnwZ8DnF3me\nnUnmkswdPXq0b1mStCFN40j9WuDxqnpx4YKqerWqvtdN7wFOS7Jp2JNU1a6qmq2q2ZmZmSmUJUkb\nzzRCfQcjTr0keWOSdNNbu+19ewrblCQNMfHVLwBJzgDeA/z2QNsHAarqduB9wO8kOQb8K7C9qqrP\nNiVJo/UK9ar638DrF7TdPjB9G3Bbn21IksbnN0olqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1\nSWqIoS5JDTHUJakhhrokNaTXMAFrVTeGmCRNXZ98ee2116ZYyXAeqUtSQwx1SWqIoS5JDTHUJakh\nhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktSQJsdTl05G\nVU28rmP3rz99Xu/1sG2P1CWpIYa6JDXEUJekhowV6kl2JzmSZP9A2zlJ9iZ5tvt59oh1b+j6PJvk\nhmkVLkk60bhH6ncC1yxouxl4sKouAh7s5n9MknOAW4G3A1uBW0eFvySpv7FCvaoeAl5e0Hw9cFc3\nfRfwS0NW/UVgb1W9XFXfAfZy4n8OkqQp6XNO/dyqeqGb/hZw7pA+5wPPD8wf6tokSctgKh+U1vzF\nl70uwEyyM8lckrmjR49OoyxJ2nD6hPqLSc4D6H4eGdLnMHDhwPwFXdsJqmpXVc1W1ezMzEyPsiRp\n4+oT6vcBx69muQH4uyF9vghcneTs7gPSq7s2SdIyGPeSxruBLwMXJzmU5EbgD4H3JHkWeHc3T5LZ\nJJ8GqKqXgT8AHu0eH+vaJEnLYKyxX6pqx4hFVw3pOwf81sD8bmD3RNVJkk6K3yiVpIYY6pLUEIfe\n1Ybn8Lkby2q+3g69K0k6KYa6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1\nxFCXpIYY6pLUEENdkhpiqEtSQwx1SWpIk+Op9xmz2LG1JS1mJcZE78MjdUlqiKEuSQ0x1CWpIYa6\nJDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSFLhnqS3UmOJNk/0PZHSZ5J8mSSe5Oc\nNWLdg0meSrIvydw0C5cknWicI/U7gWsWtO0Ffrqq/j3wz8B/XWT9d1XVZVU1O1mJkqRxLRnqVfUQ\n8PKCtgeq6lg3+zBwwTLUJkk6SdM4p/4B4P4Rywp4IMljSXZOYVuSpEX0Gk89yUeAY8BnR3S5oqoO\nJ3kDsDfJM92R/7Dn2gnsBNi8eXOfsiRpw5r4SD3J+4HrgF+rEaPGV9Xh7ucR4F5g66jnq6pdVTVb\nVbMzMzOTliVJG9pEoZ7kGuD3gfdW1fdH9DkjyZnHp4Grgf3D+kqSpmOcSxrvBr4MXJzkUJIbgduA\nM5k/pbIvye1d3zcl2dOtei7wpSRPAF8B/r6qvrAs/wpJEjDGOfWq2jGk+Y4Rfb8JbOumnwMu7VWd\nJOmk+I1SSWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6\nJDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtS\nQwx1SWqIoS5JDTl1tQtYa6qq1/pJplSJpOXQ93d8rfNIXZIaYqhLUkOWDPUku5McSbJ/oO2jSQ4n\n2dc9to1Y95okX09yIMnN0yxcknSicY7U7wSuGdL+J1V1WffYs3BhklOATwLXApcAO5Jc0qdYSdLi\nlgz1qnoIeHmC594KHKiq56rqB8DngOsneB5J0pj6nFO/KcmT3emZs4csPx94fmD+UNcmSVomk4b6\np4CfAi4DXgA+0beQJDuTzCWZO3r0aN+nk6QNaaJQr6oXq+qHVfUa8OfMn2pZ6DBw4cD8BV3bqOfc\nVVWzVTU7MzMzSVmStOFNFOpJzhuY/WVg/5BujwIXJXlLktOB7cB9k2xPkjSeJb9RmuRu4EpgU5JD\nwK3AlUkuAwo4CPx21/dNwKeraltVHUtyE/BF4BRgd1U9vSz/CkkSMEaoV9WOIc13jOj7TWDbwPwe\n4ITLHSVJy8NvlEpSQwx1SWqIoS5JDXHo3SnrM6ynw/ZK42l9+Nw+PFKXpIYY6pLUEENdkhpiqEtS\nQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIY6nvob0\nHSPa8di1Xjge+vLxSF2SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtS\nQ5YcJiDJbuA64EhV/XTXdg9wcdflLOB/VdVlQ9Y9CHwX+CFwrKpmp1S3JGmIccZ+uRO4DfjM8Yaq\n+k/Hp5N8AnhlkfXfVVUvTVqgJGl8S4Z6VT2UZMuwZZkfQepXgV+YblmSpEn0Paf+c8CLVfXsiOUF\nPJDksSQ7e25LkrSEvkPv7gDuXmT5FVV1OMkbgL1Jnqmqh4Z17EJ/J8DmzZt7lrUx9RnOdCMP2+t+\nm4zD565NEx+pJzkV+BXgnlF9qupw9/MIcC+wdZG+u6pqtqpmZ2ZmJi1Lkja0Pqdf3g08U1WHhi1M\nckaSM49PA1cD+3tsT5K0hCVDPcndwJeBi5McSnJjt2g7C069JHlTkj3d7LnAl5I8AXwF+Puq+sL0\nSpckLTTO1S87RrS/f0jbN4Ft3fRzwKU965MknQS/USpJDTHUJakhhrokNcRQl6SGGOqS1BBDXZIa\nYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDWk73jqasR6Hht7PY9pvp73u9Ymj9QlqSGGuiQ1xFCXpIYY\n6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMcelfr3moO\nX+vQuVprPFKXpIYY6pLUEENdkhqyZKgnuTDJPyb5apKnk/xu135Okr1Jnu1+nj1i/Ru6Ps8muWHa\n/wBJ0v83zpH6MeD3quoS4B3Ah5JcAtwMPFhVFwEPdvM/Jsk5wK3A24GtwK2jwl+S1N+SoV5VL1TV\n4930d4GvAecD1wN3dd3uAn5pyOq/COytqper6jvAXuCaaRQuSTrRSZ1TT7IF+BngEeDcqnqhW/Qt\n4Nwhq5wPPD8wf6hrkyQtg7FDPclPAn8DfLiqXh1cVvMX6/a6YDfJziRzSeaOHj3a56kkacMaK9ST\nnMZ8oH+2qv62a34xyXnd8vOAI0NWPQxcODB/Qdd2gqraVVWzVTU7MzMzbv2SpAHjXP0S4A7ga1X1\nxwOL7gOOX81yA/B3Q1b/InB1krO7D0iv7tokSctgnCP1nwV+HfiFJPu6xzbgD4H3JHkWeHc3T5LZ\nJJ8GqKqXgT8AHu0eH+vaJEnLYMmxX6rqS0BGLL5qSP854LcG5ncDuyctUJI0Pr9RKkkNMdQlqSGG\nuiQ1JGtxPOgkR4F/GbF4E/DSCpZzMqxtMtZ28tZqXWBtk1qqtjdX1ZLXe6/JUF9Mkrmqml3tOoax\ntslY28lbq3WBtU1qWrV5+kWSGmKoS1JD1mOo71rtAhZhbZOxtpO3VusCa5vUVGpbd+fUJUmjrccj\ndUnSCGs21JNck+TrSQ4kGXZXpZ9Ick+3/JFurPeVqGvo7f0W9LkyySsDY+XcshK1dds+mOSpbrtz\nQ5YnyZ92++3JJJevUF0XD+yPfUleTfLhBX1WbL8l2Z3kSJL9A22rfovGEXX9UZJnutfr3iRnjVh3\n0dd+mWr7aJLDC8aFGrbuor/Py1TbPQN1HUyyb8S6y73fVvaWoFW15h7AKcA3gLcCpwNPAJcs6POf\ngdu76e3APStU23nA5d30mcA/D6ntSuB/rNK+OwhsWmT5NuB+5sfzeQfwyCq9vt9i/rrbVdlvwM8D\nlwP7B9r+O3BzN30z8PEh650DPNf9PLubPnuZ67oaOLWb/viwusZ57Zepto8C/2WM13vR3+flqG3B\n8k8At6zSfhuaGcv1flurR+pbgQNV9VxV/QD4HPO3zxs0eDu9vwau6oYJXlY1+vZ+68X1wGdq3sPA\nWcfHxV9BVwHfqKpRXzBbdlX1ELBwxNBVv0XjsLqq6oGqOtbNPsz8fQlW3Ih9No5xfp+XrbYuF34V\nuHua2xzXIpmxLO+3tRrq49wG70d9ujf8K8DrV6S6Tn789n4LvTPJE0nuT/K2FSyrgAeSPJZk55Dl\na+EWg9sZ/Qu2WvsN1sctGj/A/F9awyz12i+Xm7pTQ7tHnEJY7X32c8CLVfXsiOUrtt+yArcEXauh\nvuZlkdv7AY8zf2rhUuDPgM+vYGlXVNXlwLXAh5L8/Apue0lJTgfeC/zVkMWrud9+TM3/7bumLg1L\n8hHgGPDZEV1W47X/FPBTwGXAC8yf5lhrdrD4UfqK7LfFMmOa77e1Gurj3AbvR32SnAq8Dvj2ShSX\n4bf3+5GqerWqvtdN7wFOS7JpJWqrqsPdzyPAvcz/6Tto7FsMLpNrgcer6sWFC1Zzv3WmeovGaUry\nfuA64Ne6ADjBGK/91FXVi1X1w6p6DfjzEdtctfdclw2/Atwzqs9K7LcRmbEs77e1GuqPAhcleUt3\nZLed+dvnDRq8nd77gH8Y9Wafpu783LDb+w32eePx8/tJtjK/n5f9P5wkZyQ58/g08x+w7V/Q7T7g\nNzLvHcArA38CroSRR02rtd8GrMlbNCa5Bvh94L1V9f0RfcZ57ZejtsHPY355xDbH+X1eLu8Gnqmq\nQ8MWrsR+WyQzluf9tlyf+E7hE+NtzH9K/A3gI13bx5h/YwP8W+b/hD8AfAV46wrVdQXzfyY9Cezr\nHtuADwIf7PrcBDzN/Kf8DwP/YYVqe2u3zSe67R/fb4O1Bfhkt1+fAmZX8DU9g/mQft1A26rsN+b/\nY3kB+L/Mn6e8kfnPZB4EngX+J3BO13cW+PTAuh/o3ncHgN9cgboOMH9e9fj77fhVX28C9iz22q9A\nbX/RvY+eZD6kzltYWzd/wu/zctfWtd95/P010Hel99uozFiW95vfKJWkhqzV0y+SpAkY6pLUEENd\nkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNeT/AfhckjWpklZcAAAAAElFTkSuQmCC\n", |
| 161 | + "text/plain": [ |
| 162 | + "<matplotlib.figure.Figure at 0x7ff2a50f1c10>" |
| 163 | + ] |
| 164 | + }, |
| 165 | + "metadata": {}, |
| 166 | + "output_type": "display_data" |
| 167 | + } |
| 168 | + ], |
| 169 | + "source": [ |
| 170 | + "fig = plt.figure(figsize=(6, 6))\n", |
| 171 | + "plt.imshow(array[0]);" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "code", |
| 176 | + "execution_count": null, |
| 177 | + "metadata": { |
| 178 | + "collapsed": true |
| 179 | + }, |
| 180 | + "outputs": [], |
| 181 | + "source": [] |
| 182 | + } |
| 183 | + ], |
| 184 | + "metadata": { |
| 185 | + "kernelspec": { |
| 186 | + "display_name": "Python 2", |
| 187 | + "language": "python", |
| 188 | + "name": "python2" |
| 189 | + }, |
| 190 | + "language_info": { |
| 191 | + "codemirror_mode": { |
| 192 | + "name": "ipython", |
| 193 | + "version": 2 |
| 194 | + }, |
| 195 | + "file_extension": ".py", |
| 196 | + "mimetype": "text/x-python", |
| 197 | + "name": "python", |
| 198 | + "nbconvert_exporter": "python", |
| 199 | + "pygments_lexer": "ipython2", |
| 200 | + "version": "2.7.12+" |
| 201 | + } |
| 202 | + }, |
| 203 | + "nbformat": 4, |
| 204 | + "nbformat_minor": 2 |
| 205 | +} |
0 commit comments