Skip to content

Commit ffb8472

Browse files
committed
added a notebook on how to read an image
1 parent afaed76 commit ffb8472

File tree

4 files changed

+213
-6
lines changed

4 files changed

+213
-6
lines changed

.gitignore

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,9 @@
11
# emacs
22
.#*
33

4+
# Jupyter
5+
.ipynb_checkpoints
6+
47
# Byte-compiled / optimized / DLL files
58
__pycache__/
69
*.py[cod]

README.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -5,13 +5,12 @@ In this repository you will find a couple of examples on how to use SimpleITK wi
55
An open source viewer (and more) for medical images is [Slicer 3D](http://slicer.org).
66

77

8-
Current:
8+
Currently we have the Python examples:
99
- *dcm_to_nrrd.py*: reads a complete dicom series from a folder and converts this to a nrrd file. Reads the window and level tags, and crops the image to this.
1010
- *resample_isotropically.py*: An example to read in a image file, and resample the image to a new grid.
1111
- *resample_tests.py*: Several ways to downsample an image.
1212
- *apply_lut.py*: in some DICOM files there is a tag VOILUTFunction. This is an example on how to apply this.
13-
14-
TODO
15-
----
16-
- Juypter notebooks
17-
- More examples
13+
14+
15+
Jupyter notebooks:
16+
- *ReadImage.ipynb*: An example on how to read an image using SimpleITK.

data/dot.dcm

2.24 KB
Binary file not shown.

notebooks/ReadImage.ipynb

Lines changed: 205 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,205 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 1,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"import SimpleITK as sitk\n",
10+
"import matplotlib.pyplot as plt\n",
11+
"%matplotlib inline"
12+
]
13+
},
14+
{
15+
"cell_type": "markdown",
16+
"metadata": {},
17+
"source": [
18+
"The SimpleITK function ReadImage() can read single file images. Usually SimpleITK can correctly determine the file type from the extension and file itself."
19+
]
20+
},
21+
{
22+
"cell_type": "code",
23+
"execution_count": 2,
24+
"metadata": {},
25+
"outputs": [],
26+
"source": [
27+
"image = sitk.ReadImage('../data/dot.dcm')"
28+
]
29+
},
30+
{
31+
"cell_type": "markdown",
32+
"metadata": {},
33+
"source": [
34+
"The type of `image` is an instance of the SimpleITK image. We can request several of its properties. Try tab completion or `help(image)` for more examples."
35+
]
36+
},
37+
{
38+
"cell_type": "code",
39+
"execution_count": 5,
40+
"metadata": {},
41+
"outputs": [
42+
{
43+
"data": {
44+
"text/plain": [
45+
"(21, 21, 1)"
46+
]
47+
},
48+
"execution_count": 5,
49+
"metadata": {},
50+
"output_type": "execute_result"
51+
}
52+
],
53+
"source": [
54+
"image.GetSize()"
55+
]
56+
},
57+
{
58+
"cell_type": "markdown",
59+
"metadata": {},
60+
"source": [
61+
"SimpleITK is a 'simple' procedural wrapper around ITK which can be called from Python and other scripting languages. SimpleITK provides a convenient interface to numpy arrays."
62+
]
63+
},
64+
{
65+
"cell_type": "code",
66+
"execution_count": 8,
67+
"metadata": {},
68+
"outputs": [
69+
{
70+
"name": "stdout",
71+
"output_type": "stream",
72+
"text": [
73+
"`array` has type: <type 'numpy.ndarray'>\n",
74+
"(1, 21, 21, 3)\n"
75+
]
76+
}
77+
],
78+
"source": [
79+
"array = sitk.GetArrayFromImage(image)\n",
80+
"print('`array` has type: {}'.format(type(array)))"
81+
]
82+
},
83+
{
84+
"cell_type": "markdown",
85+
"metadata": {},
86+
"source": [
87+
"Let us check out the array size."
88+
]
89+
},
90+
{
91+
"cell_type": "code",
92+
"execution_count": 9,
93+
"metadata": {},
94+
"outputs": [
95+
{
96+
"data": {
97+
"text/plain": [
98+
"(1, 21, 21, 3)"
99+
]
100+
},
101+
"execution_count": 9,
102+
"metadata": {},
103+
"output_type": "execute_result"
104+
}
105+
],
106+
"source": [
107+
"array.shape"
108+
]
109+
},
110+
{
111+
"cell_type": "markdown",
112+
"metadata": {},
113+
"source": [
114+
"The first axis is the number of slices, in this case 1. Many medical image formats are 3D and would have the number of slices on the first axis. The last axis is the number of channels. The image `dot.dcm` is an artificial example of an RGB image saved in the DICOM standard."
115+
]
116+
},
117+
{
118+
"cell_type": "code",
119+
"execution_count": 14,
120+
"metadata": {},
121+
"outputs": [
122+
{
123+
"data": {
124+
"text/plain": [
125+
"array([[255, 255, 255, 255, 255, 255, 255, 255, 255, 255],\n",
126+
" [255, 255, 255, 255, 255, 255, 255, 255, 255, 0],\n",
127+
" [255, 255, 255, 255, 255, 255, 0, 0, 0, 0],\n",
128+
" [255, 255, 255, 255, 255, 0, 0, 0, 0, 0],\n",
129+
" [255, 255, 255, 255, 0, 0, 0, 0, 0, 0],\n",
130+
" [255, 255, 255, 0, 0, 0, 0, 0, 0, 0],\n",
131+
" [255, 255, 0, 0, 0, 0, 0, 0, 0, 0],\n",
132+
" [255, 255, 0, 0, 0, 0, 0, 0, 0, 0],\n",
133+
" [255, 255, 0, 0, 0, 0, 0, 0, 0, 0],\n",
134+
" [255, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)"
135+
]
136+
},
137+
"execution_count": 14,
138+
"metadata": {},
139+
"output_type": "execute_result"
140+
}
141+
],
142+
"source": [
143+
"array[0, 0:10, 0:10, 1]"
144+
]
145+
},
146+
{
147+
"cell_type": "markdown",
148+
"metadata": {},
149+
"source": [
150+
"As a `numpy` array we can easily plot the image."
151+
]
152+
},
153+
{
154+
"cell_type": "code",
155+
"execution_count": 18,
156+
"metadata": {},
157+
"outputs": [
158+
{
159+
"data": {
160+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAFpCAYAAABj6bgoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFWtJREFUeJzt3X+sHeV95/H3Z/nRlSgKEN8QAjhOugiJVAtFV06ypRUp\nCQULhbbKdm1VLWmo3HSD1EhdVexGgij9p9kqrdQSBbnBglQpQf1BirYmwUsr0UiBcEEGTEKKg1xh\nh2ATspBsuso6fPePO86eXJ9z7/GZc3899/2Sju7MM8+c+XrOuR/PnTPnmVQVkqQ2/JvVLkCSND2G\nuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNeTU1S5gmE2bNtWWLVtWuwxJ\nWjMOHjzISy+9lKX6rclQ37JlC3Nzc6tdhiStGbOzs2P18/SLJDWkV6gnuSbJ15McSHLzkOU/keSe\nbvkjSbb02Z4kaXETh3qSU4BPAtcClwA7klyyoNuNwHeq6t8BfwJ8fNLtSZKW1udIfStwoKqeq6of\nAJ8Drl/Q53rgrm76r4Grkix5ol+SNJk+oX4+8PzA/KGubWifqjoGvAK8vsc2JUmLWDMflCbZmWQu\nydzRo0dXuxxJWpf6hPph4MKB+Qu6tqF9kpwKvA749rAnq6pdVTVbVbMzMzM9ypKkjatPqD8KXJTk\nLUlOB7YD9y3ocx9wQzf9PuAfypuiStKymfjLR1V1LMlNwBeBU4DdVfV0ko8Bc1V1H3AH8BdJDgAv\nMx/8kqRl0usbpVW1B9izoO2Wgen/A/zHPtuQJI1vzXxQKknqz1CXpIYY6pLUkDU5SqN0Mtbzl5S9\nGEzT5pG6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENd\nkhpiqEtSQwx1SWqIQ+8KWN/D165n63m/O2zw2uSRuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqI\noS5JDTHUJakhhrokNcRQl6SGGOqS1JCJQz3JhUn+MclXkzyd5HeH9LkyyStJ9nWPW/qVK0laTJ8B\nvY4Bv1dVjyc5E3gsyd6q+uqCfv9UVdf12I4kaUwTH6lX1QtV9Xg3/V3ga8D50ypMknTypnJOPckW\n4GeAR4YsfmeSJ5Lcn+Rt09ieJGm43uOpJ/lJ4G+AD1fVqwsWPw68uaq+l2Qb8HngohHPsxPYCbB5\n8+a+ZW1I63lsbq0/fd5vG3Us9pX4d/c6Uk9yGvOB/tmq+tuFy6vq1ar6Xje9BzgtyaZhz1VVu6pq\ntqpmZ2Zm+pQlSRtWn6tfAtwBfK2q/nhEnzd2/UiytdvetyfdpiRpcX1Ov/ws8OvAU0n2dW3/DdgM\nUFW3A+8DfifJMeBfge21Uf/ukqQVMHGoV9WXgEVPqlXVbcBtk25DknRy/EapJDXEUJekhhjqktQQ\nQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIb0HnpX0+PQudoo+r7XHUJqNI/UJakhhrok\nNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JD\nDHVJaojjqU+ZY6JLy6/P71nrY7F7pC5JDTHUJakhhrokNaR3qCc5mOSpJPuSzA1ZniR/muRAkieT\nXN53m5Kk4ab1Qem7quqlEcuuBS7qHm8HPtX9lCRN2Uqcfrke+EzNexg4K8l5K7BdSdpwphHqBTyQ\n5LEkO4csPx94fmD+UNcmSZqyaZx+uaKqDid5A7A3yTNV9dDJPkn3H8JOgM2bN0+hLEnaeHofqVfV\n4e7nEeBeYOuCLoeBCwfmL+jaFj7PrqqararZmZmZvmVJ0obUK9STnJHkzOPTwNXA/gXd7gN+o7sK\n5h3AK1X1Qp/tSpKG63v65Vzg3u4ru6cCf1lVX0jyQYCquh3YA2wDDgDfB36z5zYlSSP0CvWqeg64\ndEj77QPTBXyoz3YkSePxG6WS1BBDXZIa4tC7Czh0rtS2vr/ja33oXo/UJakhhrokNcRQl6SGGOqS\n1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkN\nMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGTBzqSS5O\nsm/g8WqSDy/oc2WSVwb63NK/ZEnSKKdOumJVfR24DCDJKcBh4N4hXf+pqq6bdDuSpPFN6/TLVcA3\nqupfpvR8kqQJTCvUtwN3j1j2ziRPJLk/ydumtD1J0hC9Qz3J6cB7gb8asvhx4M1VdSnwZ8DnF3me\nnUnmkswdPXq0b1mStCFN40j9WuDxqnpx4YKqerWqvtdN7wFOS7Jp2JNU1a6qmq2q2ZmZmSmUJUkb\nzzRCfQcjTr0keWOSdNNbu+19ewrblCQNMfHVLwBJzgDeA/z2QNsHAarqduB9wO8kOQb8K7C9qqrP\nNiVJo/UK9ar638DrF7TdPjB9G3Bbn21IksbnN0olqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1\nSWqIoS5JDTHUJakhhrokNaTXMAFrVTeGmCRNXZ98ee2116ZYyXAeqUtSQwx1SWqIoS5JDTHUJakh\nhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktSQJsdTl05G\nVU28rmP3rz99Xu/1sG2P1CWpIYa6JDXEUJekhowV6kl2JzmSZP9A2zlJ9iZ5tvt59oh1b+j6PJvk\nhmkVLkk60bhH6ncC1yxouxl4sKouAh7s5n9MknOAW4G3A1uBW0eFvySpv7FCvaoeAl5e0Hw9cFc3\nfRfwS0NW/UVgb1W9XFXfAfZy4n8OkqQp6XNO/dyqeqGb/hZw7pA+5wPPD8wf6tokSctgKh+U1vzF\nl70uwEyyM8lckrmjR49OoyxJ2nD6hPqLSc4D6H4eGdLnMHDhwPwFXdsJqmpXVc1W1ezMzEyPsiRp\n4+oT6vcBx69muQH4uyF9vghcneTs7gPSq7s2SdIyGPeSxruBLwMXJzmU5EbgD4H3JHkWeHc3T5LZ\nJJ8GqKqXgT8AHu0eH+vaJEnLYKyxX6pqx4hFVw3pOwf81sD8bmD3RNVJkk6K3yiVpIYY6pLUEIfe\n1Ybn8Lkby2q+3g69K0k6KYa6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1\nxFCXpIYY6pLUEENdkhpiqEtSQwx1SWpIk+Op9xmz2LG1JS1mJcZE78MjdUlqiKEuSQ0x1CWpIYa6\nJDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSFLhnqS3UmOJNk/0PZHSZ5J8mSSe5Oc\nNWLdg0meSrIvydw0C5cknWicI/U7gWsWtO0Ffrqq/j3wz8B/XWT9d1XVZVU1O1mJkqRxLRnqVfUQ\n8PKCtgeq6lg3+zBwwTLUJkk6SdM4p/4B4P4Rywp4IMljSXZOYVuSpEX0Gk89yUeAY8BnR3S5oqoO\nJ3kDsDfJM92R/7Dn2gnsBNi8eXOfsiRpw5r4SD3J+4HrgF+rEaPGV9Xh7ucR4F5g66jnq6pdVTVb\nVbMzMzOTliVJG9pEoZ7kGuD3gfdW1fdH9DkjyZnHp4Grgf3D+kqSpmOcSxrvBr4MXJzkUJIbgduA\nM5k/pbIvye1d3zcl2dOtei7wpSRPAF8B/r6qvrAs/wpJEjDGOfWq2jGk+Y4Rfb8JbOumnwMu7VWd\nJOmk+I1SSWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6\nJDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtS\nQwx1SWqIoS5JDTl1tQtYa6qq1/pJplSJpOXQ93d8rfNIXZIaYqhLUkOWDPUku5McSbJ/oO2jSQ4n\n2dc9to1Y95okX09yIMnN0yxcknSicY7U7wSuGdL+J1V1WffYs3BhklOATwLXApcAO5Jc0qdYSdLi\nlgz1qnoIeHmC594KHKiq56rqB8DngOsneB5J0pj6nFO/KcmT3emZs4csPx94fmD+UNcmSVomk4b6\np4CfAi4DXgA+0beQJDuTzCWZO3r0aN+nk6QNaaJQr6oXq+qHVfUa8OfMn2pZ6DBw4cD8BV3bqOfc\nVVWzVTU7MzMzSVmStOFNFOpJzhuY/WVg/5BujwIXJXlLktOB7cB9k2xPkjSeJb9RmuRu4EpgU5JD\nwK3AlUkuAwo4CPx21/dNwKeraltVHUtyE/BF4BRgd1U9vSz/CkkSMEaoV9WOIc13jOj7TWDbwPwe\n4ITLHSVJy8NvlEpSQwx1SWqIoS5JDXHo3SnrM6ynw/ZK42l9+Nw+PFKXpIYY6pLUEENdkhpiqEtS\nQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIY6nvob0\nHSPa8di1Xjge+vLxSF2SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtS\nQ5YcJiDJbuA64EhV/XTXdg9wcdflLOB/VdVlQ9Y9CHwX+CFwrKpmp1S3JGmIccZ+uRO4DfjM8Yaq\n+k/Hp5N8AnhlkfXfVVUvTVqgJGl8S4Z6VT2UZMuwZZkfQepXgV+YblmSpEn0Paf+c8CLVfXsiOUF\nPJDksSQ7e25LkrSEvkPv7gDuXmT5FVV1OMkbgL1Jnqmqh4Z17EJ/J8DmzZt7lrUx9RnOdCMP2+t+\nm4zD565NEx+pJzkV+BXgnlF9qupw9/MIcC+wdZG+u6pqtqpmZ2ZmJi1Lkja0Pqdf3g08U1WHhi1M\nckaSM49PA1cD+3tsT5K0hCVDPcndwJeBi5McSnJjt2g7C069JHlTkj3d7LnAl5I8AXwF+Puq+sL0\nSpckLTTO1S87RrS/f0jbN4Ft3fRzwKU965MknQS/USpJDTHUJakhhrokNcRQl6SGGOqS1BBDXZIa\nYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDWk73jqasR6Hht7PY9pvp73u9Ymj9QlqSGGuiQ1xFCXpIYY\n6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMcelfr3moO\nX+vQuVprPFKXpIYY6pLUEENdkhqyZKgnuTDJPyb5apKnk/xu135Okr1Jnu1+nj1i/Ru6Ps8muWHa\n/wBJ0v83zpH6MeD3quoS4B3Ah5JcAtwMPFhVFwEPdvM/Jsk5wK3A24GtwK2jwl+S1N+SoV5VL1TV\n4930d4GvAecD1wN3dd3uAn5pyOq/COytqper6jvAXuCaaRQuSTrRSZ1TT7IF+BngEeDcqnqhW/Qt\n4Nwhq5wPPD8wf6hrkyQtg7FDPclPAn8DfLiqXh1cVvMX6/a6YDfJziRzSeaOHj3a56kkacMaK9ST\nnMZ8oH+2qv62a34xyXnd8vOAI0NWPQxcODB/Qdd2gqraVVWzVTU7MzMzbv2SpAHjXP0S4A7ga1X1\nxwOL7gOOX81yA/B3Q1b/InB1krO7D0iv7tokSctgnCP1nwV+HfiFJPu6xzbgD4H3JHkWeHc3T5LZ\nJJ8GqKqXgT8AHu0eH+vaJEnLYMmxX6rqS0BGLL5qSP854LcG5ncDuyctUJI0Pr9RKkkNMdQlqSGG\nuiQ1JGtxPOgkR4F/GbF4E/DSCpZzMqxtMtZ28tZqXWBtk1qqtjdX1ZLXe6/JUF9Mkrmqml3tOoax\ntslY28lbq3WBtU1qWrV5+kWSGmKoS1JD1mOo71rtAhZhbZOxtpO3VusCa5vUVGpbd+fUJUmjrccj\ndUnSCGs21JNck+TrSQ4kGXZXpZ9Ick+3/JFurPeVqGvo7f0W9LkyySsDY+XcshK1dds+mOSpbrtz\nQ5YnyZ92++3JJJevUF0XD+yPfUleTfLhBX1WbL8l2Z3kSJL9A22rfovGEXX9UZJnutfr3iRnjVh3\n0dd+mWr7aJLDC8aFGrbuor/Py1TbPQN1HUyyb8S6y73fVvaWoFW15h7AKcA3gLcCpwNPAJcs6POf\ngdu76e3APStU23nA5d30mcA/D6ntSuB/rNK+OwhsWmT5NuB+5sfzeQfwyCq9vt9i/rrbVdlvwM8D\nlwP7B9r+O3BzN30z8PEh650DPNf9PLubPnuZ67oaOLWb/viwusZ57Zepto8C/2WM13vR3+flqG3B\n8k8At6zSfhuaGcv1flurR+pbgQNV9VxV/QD4HPO3zxs0eDu9vwau6oYJXlY1+vZ+68X1wGdq3sPA\nWcfHxV9BVwHfqKpRXzBbdlX1ELBwxNBVv0XjsLqq6oGqOtbNPsz8fQlW3Ih9No5xfp+XrbYuF34V\nuHua2xzXIpmxLO+3tRrq49wG70d9ujf8K8DrV6S6Tn789n4LvTPJE0nuT/K2FSyrgAeSPJZk55Dl\na+EWg9sZ/Qu2WvsN1sctGj/A/F9awyz12i+Xm7pTQ7tHnEJY7X32c8CLVfXsiOUrtt+yArcEXauh\nvuZlkdv7AY8zf2rhUuDPgM+vYGlXVNXlwLXAh5L8/Apue0lJTgfeC/zVkMWrud9+TM3/7bumLg1L\n8hHgGPDZEV1W47X/FPBTwGXAC8yf5lhrdrD4UfqK7LfFMmOa77e1Gurj3AbvR32SnAq8Dvj2ShSX\n4bf3+5GqerWqvtdN7wFOS7JpJWqrqsPdzyPAvcz/6Tto7FsMLpNrgcer6sWFC1Zzv3WmeovGaUry\nfuA64Ne6ADjBGK/91FXVi1X1w6p6DfjzEdtctfdclw2/Atwzqs9K7LcRmbEs77e1GuqPAhcleUt3\nZLed+dvnDRq8nd77gH8Y9Wafpu783LDb+w32eePx8/tJtjK/n5f9P5wkZyQ58/g08x+w7V/Q7T7g\nNzLvHcArA38CroSRR02rtd8GrMlbNCa5Bvh94L1V9f0RfcZ57ZejtsHPY355xDbH+X1eLu8Gnqmq\nQ8MWrsR+WyQzluf9tlyf+E7hE+NtzH9K/A3gI13bx5h/YwP8W+b/hD8AfAV46wrVdQXzfyY9Cezr\nHtuADwIf7PrcBDzN/Kf8DwP/YYVqe2u3zSe67R/fb4O1Bfhkt1+fAmZX8DU9g/mQft1A26rsN+b/\nY3kB+L/Mn6e8kfnPZB4EngX+J3BO13cW+PTAuh/o3ncHgN9cgboOMH9e9fj77fhVX28C9iz22q9A\nbX/RvY+eZD6kzltYWzd/wu/zctfWtd95/P010Hel99uozFiW95vfKJWkhqzV0y+SpAkY6pLUEENd\nkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNeT/AfhckjWpklZcAAAAAElFTkSuQmCC\n",
161+
"text/plain": [
162+
"<matplotlib.figure.Figure at 0x7ff2a50f1c10>"
163+
]
164+
},
165+
"metadata": {},
166+
"output_type": "display_data"
167+
}
168+
],
169+
"source": [
170+
"fig = plt.figure(figsize=(6, 6))\n",
171+
"plt.imshow(array[0]);"
172+
]
173+
},
174+
{
175+
"cell_type": "code",
176+
"execution_count": null,
177+
"metadata": {
178+
"collapsed": true
179+
},
180+
"outputs": [],
181+
"source": []
182+
}
183+
],
184+
"metadata": {
185+
"kernelspec": {
186+
"display_name": "Python 2",
187+
"language": "python",
188+
"name": "python2"
189+
},
190+
"language_info": {
191+
"codemirror_mode": {
192+
"name": "ipython",
193+
"version": 2
194+
},
195+
"file_extension": ".py",
196+
"mimetype": "text/x-python",
197+
"name": "python",
198+
"nbconvert_exporter": "python",
199+
"pygments_lexer": "ipython2",
200+
"version": "2.7.12+"
201+
}
202+
},
203+
"nbformat": 4,
204+
"nbformat_minor": 2
205+
}

0 commit comments

Comments
 (0)