|
| 1 | +@article{MaasNeervenPortal2011, |
| 2 | +abstract = {We introduce a technique for handling Whitney decompositions in Gaussian harmonic analysis and apply it to the study of Gaussian analogues of the classical tent spaces $T^{1, q}$ of Coifman–Meyer–Stein.}, |
| 3 | +author = {Maas, Jan and van Neerven, Jan and Portal, Pierre}, |
| 4 | +doi = {10.1007/s11512-010-0143-z}, |
| 5 | +issn = {0004-2080}, |
| 6 | +journal = {Arkiv f\"{o}r Matematik}, |
| 7 | +keywords = {Gaussian,Mathematics and Statistics,Whitney,measure,tent}, |
| 8 | +month = apr, |
| 9 | +number = {2}, |
| 10 | +pages = {379--395}, |
| 11 | +publisher = {Springer Netherlands}, |
| 12 | +title = {{Whitney coverings and the tent spaces $T^{1,q}(\gamma)$ for the Gaussian measure}}, |
| 13 | +volume = {50}, |
| 14 | +year = {2011} |
| 15 | +} |
| 16 | + |
| 17 | +@article{MaasNeervenPortal2011b, |
| 18 | +abstract = {We study, in \$L\^{}\{1\}(\backslash R\^{}n;\backslash gamma)\$ with respect to the gaussian measure, non-tangential maximal functions and conical square functions associated with the Ornstein-Uhlenbeck operator by developing a set of techniques which allow us, to some extent, to compensate for the non-doubling character of the gaussian measure. The main result asserts that conical square functions can be controlled in \$L\^{}1\$-norm by non-tangential maximal functions. Along the way we prove a change of aperture result for the latter. This complements recent results on gaussian Hardy spaces due to Mauceri and Meda.}, |
| 19 | +archivePrefix = {arXiv}, |
| 20 | +arxivId = {1003.4092}, |
| 21 | +author = {Maas, Jan and van Neerven, Jan and Portal, Pierre}, |
| 22 | +eprint = {1003.4092}, |
| 23 | +journal = {Publicacions Matem\`{a}tiques}, |
| 24 | +keywords = {and phrases,ganisation for scientific research,gaussian measure,hardy spaces,is supported by rubicon,is supported by vici,maximal function,netherlands or-,nwo,ornstein-uhlenbeck operator,square function,subsidy,subsidy 680-50-0901 of the,the first named author,the second named author}, |
| 25 | +month = mar, |
| 26 | +number = {2}, |
| 27 | +pages = {21}, |
| 28 | +publisher = {Universitat Aut\`{o}noma de Barcelona, Departament de Matem\`{a}tiques}, |
| 29 | +title = {{Non-tangential maximal functions and conical square functions with respect to the Gaussian measure}}, |
| 30 | +url = {http://projecteuclid.org/euclid.pm/1308748950}, |
| 31 | +volume = {55}, |
| 32 | +year = {2010} |
| 33 | +} |
| 34 | + |
| 35 | +@article{Pineda2008, |
| 36 | +author = {Pineda, Ebner and Urbina, Wilfredo R.}, |
| 37 | +issn = {1315-2068}, |
| 38 | +journal = {Divulgaciones Matem\'{a}ticas}, |
| 39 | +keywords = {hermite expansions,non tangential convergence,ornstein-uhlenbeck,poisson-hermite semigroup,uhlenbeck semigroup}, |
| 40 | +number = {2}, |
| 41 | +pages = {1--19}, |
| 42 | +title = {{Non Tangential Convergence for the Ornstein-Uhlenbeck Semigroup}}, |
| 43 | +url = {http://www.emis.ams.org/journals/DM/v16-1/art7.pdf}, |
| 44 | +volume = {13}, |
| 45 | +year = {2008} |
| 46 | +} |
| 47 | + |
| 48 | +@article{Portal2014, |
| 49 | +abstract = {Building on the author's recent work with Jan Maas and Jan van Neerven, this paper establishes the equivalence of two norms (one using a maximal function, the other a square function) used to define a Hardy space on $\R^{n}$ with the gaussian measure, that is adapted to the Ornstein-Uhlenbeck semigroup. In contrast to the atomic Gaussian Hardy space introduced earlier by Mauceri and Meda, the $h^{1}(\R^{n};d\gamma)$ space studied here is such that the Riesz transforms are bounded from $h^{1}(\R^{n};d\gamma)$ to $L^{1}(\R^{n};d\gamma)$. This gives a gaussian analogue of the seminal work of Fefferman and Stein in the case of the Lebesgue measure and the usual Laplacian.}, |
| 50 | +author = {Portal, Pierre}, |
| 51 | +journal = {Revista Matem\'{a}tica Iberoamericana}, |
| 52 | +title = {{Maximal and quadratic Gaussian Hardy spaces}}, |
| 53 | +number = {1}, |
| 54 | +volume = {30}, |
| 55 | +keywords = {Hardy,gaussian,ornstein,uhlenbeck}, |
| 56 | +month = mar, |
| 57 | +year = {2014}, |
| 58 | +note = {To appear (2014)} |
| 59 | +} |
| 60 | + |
| 61 | +@article{Sjogren1983, |
| 62 | +author = {Sj\"{o}gren, Peter}, |
| 63 | +doi = {10.2307/2374340}, |
| 64 | +issn = {00029327}, |
| 65 | +journal = {American Journal of Mathematics}, |
| 66 | +month = oct, |
| 67 | +number = {5}, |
| 68 | +pages = {1231--1233}, |
| 69 | +title = {{A Remark on the Maximal Function for Measures in $\mathbf{R}^n$}}, |
| 70 | +volume = {105}, |
| 71 | +year = {1983} |
| 72 | +} |
| 73 | + |
| 74 | + |
| 75 | +@article{Sjogren1997, |
| 76 | +author = {Sj\"{o}gren, Peter}, |
| 77 | +doi = {10.1007/BF02656487}, |
| 78 | +issn = {1069-5869}, |
| 79 | +journal = {The Journal of Fourier Analysis and Applications}, |
| 80 | +keywords = {hermite,ornstein-uhlenbeck}, |
| 81 | +month = jan, |
| 82 | +number = {S1}, |
| 83 | +pages = {813--823}, |
| 84 | +publisher = {Birkh\"{a}user Boston}, |
| 85 | +title = {{Operators associated with the Hermite semigroup -- a survey}}, |
| 86 | +url = {http://link.springer.com/10.1007/BF02656487}, |
| 87 | +volume = {3}, |
| 88 | +year = {1997} |
| 89 | +} |
| 90 | + |
| 91 | +@article{Mauceri2007, |
| 92 | +author = {Mauceri, Giancarlo and Meda, Stefano}, |
| 93 | +doi = {10.1016/j.jfa.2007.06.017}, |
| 94 | +issn = {00221236}, |
| 95 | +journal = {Journal of Functional Analysis}, |
| 96 | +keywords = {a,analisi armonica,analisi tempo-frequenza e,and the progetto cofinanziato,atomic hardy space,bmo,corresponding author,gauss measure,imaginary powers,laplaciani generalizzati,m,n,p,prin2005,project,riesz transform,singular integrals,teoria delle rappresentazioni,the italian g,work partially supported by}, |
| 97 | +month = nov, |
| 98 | +number = {1}, |
| 99 | +pages = {278--313}, |
| 100 | +title = {{BMO and $H^1$ for the Ornstein–Uhlenbeck operator}}, |
| 101 | +url = {http://linkinghub.elsevier.com/retrieve/pii/S0022123607002613}, |
| 102 | +volume = {252}, |
| 103 | +year = {2007} |
| 104 | +} |
| 105 | + |
| 106 | +@book {Stein1993, |
| 107 | + AUTHOR = {Stein, Elias M.}, |
| 108 | + TITLE = {Harmonic analysis: real-variable methods, orthogonality, and |
| 109 | + oscillatory integrals}, |
| 110 | + SERIES = {Princeton Mathematical Series}, |
| 111 | + VOLUME = {43}, |
| 112 | + NOTE = {With the assistance of Timothy S. Murphy, |
| 113 | + Monographs in Harmonic Analysis, III}, |
| 114 | + PUBLISHER = {Princeton University Press}, |
| 115 | + ADDRESS = {Princeton, NJ}, |
| 116 | + YEAR = {1993}, |
| 117 | + PAGES = {xiv+695}, |
| 118 | + ISBN = {0-691-03216-5}, |
| 119 | + MRCLASS = {42-02 (35Sxx 43-02 47G30)}, |
| 120 | + MRNUMBER = {1232192 (95c:42002)}, |
| 121 | +MRREVIEWER = {Michael Cowling}, |
| 122 | +} |
| 123 | + |
| 124 | + |
| 125 | +@book{Mattila1995, |
| 126 | +address = {Cambridge}, |
| 127 | +author = {Mattila, Pertti}, |
| 128 | +doi = {10.1017/CBO9780511623813}, |
| 129 | +isbn = {9780511623813}, |
| 130 | +pmid = {3487781}, |
| 131 | +publisher = {Cambridge University Press}, |
| 132 | +title = {{Geometry of Sets and Measures in Euclidean Spaces}}, |
| 133 | +year = {1995} |
| 134 | +} |
| 135 | + |
| 136 | + |
| 137 | +@article{Liliana2002, |
| 138 | +author = {L. Forzani and R. Scotto and P. Sj\"{o}gren and W. Urbina}, |
| 139 | +doi = {10.1090/S0002-9939-01-06156-1}, |
| 140 | +journal = {Proceedings of the American Mathematical Society}, |
| 141 | +mendeley-groups = {Mathematics}, |
| 142 | +number = {1}, |
| 143 | +pages = {73--79}, |
| 144 | +title = {{On the $L^p$ boundedness of the non-centered Gaussian Hardy-Littlewood maximal function}}, |
| 145 | +volume = {130}, |
| 146 | +year = {2002} |
| 147 | +} |
0 commit comments