Skip to content
This repository was archived by the owner on Nov 19, 2017. It is now read-only.

Commit 52a5d85

Browse files
committed
small maintenance
1 parent 977ebd5 commit 52a5d85

File tree

4 files changed

+22
-31
lines changed

4 files changed

+22
-31
lines changed

Teuwen-GaussianMF.bbl

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -12,11 +12,9 @@ E.~Pineda, W.~R. Urbina,
1212
Matem\'{a}ticas 13~(2) (2008) 1--19.
1313
\newline\urlprefix\url{http://www.emis.ams.org/journals/DM/v16-1/art7.pdf}
1414

15-
\bibitem{Portal2012}
16-
P.~Portal, \href{http://arxiv.org/abs/1203.1998}{{Maximal and quadratic
17-
Gaussian Hardy spaces}}\href {http://arxiv.org/abs/1203.1998}
18-
{\path{arXiv:1203.1998}}.
19-
\newline\urlprefix\url{http://arxiv.org/abs/1203.1998}
15+
\bibitem{Portal2014}
16+
P.~Portal, {Maximal and quadratic Gaussian Hardy spaces}, Revista
17+
Matem\'{a}ticas Iberoamericana 30~(1), to appear (2014).
2018

2119
\bibitem{Sjogren1997}
2220
P.~Sj\"{o}gren, \href{http://link.springer.com/10.1007/BF02656487}{{Operators

Teuwen-GaussianMF.bib

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -27,17 +27,17 @@ @article{Pineda2008
2727
year = {2008}
2828
}
2929

30-
@article{Portal2012,
30+
@article{Portal2014,
3131
abstract = {Building on the author's recent work with Jan Maas and Jan van Neerven, this paper establishes the equivalence of two norms (one using a maximal function, the other a square function) used to define a Hardy space on $\R^{n}$ with the gaussian measure, that is adapted to the Ornstein-Uhlenbeck semigroup. In contrast to the atomic Gaussian Hardy space introduced earlier by Mauceri and Meda, the $h^{1}(\R^{n};d\gamma)$ space studied here is such that the Riesz transforms are bounded from $h^{1}(\R^{n};d\gamma)$ to $L^{1}(\R^{n};d\gamma)$. This gives a gaussian analogue of the seminal work of Fefferman and Stein in the case of the Lebesgue measure and the usual Laplacian.},
32-
archivePrefix = {arXiv},
33-
arxivId = {1203.1998},
3432
author = {Portal, Pierre},
35-
eprint = {1203.1998},
33+
journal = {Revista Matem\'{a}ticas Iberoamericana},
34+
title = {{Maximal and quadratic Gaussian Hardy spaces}},
35+
number = {1},
36+
volume = {30},
3637
keywords = {Hardy,gaussian,ornstein,uhlenbeck},
3738
month = mar,
38-
title = {{Maximal and quadratic Gaussian Hardy spaces}},
39-
url = {http://arxiv.org/abs/1203.1998},
40-
year = {2012}
39+
year = {2014},
40+
note = {To appear (2014)}
4141
}
4242

4343
@article{Sjogren1997,

Teuwen-GaussianMF.pdf

-1.31 KB
Binary file not shown.

Teuwen-GaussianMF.tex

Lines changed: 12 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,12 @@
11
\documentclass[preprint,12pt]{elsarticle}
22

3+
\makeatletter
4+
\def\ps@pprintTitle{%
5+
\let\@oddhead\@empty
6+
\let\@evenhead\@empty
7+
\def\@oddfoot{\centerline{\thepage}}%
8+
\let\@evenfoot\@oddfoot}
9+
\makeatother
310
\usepackage{amsmath, amssymb, color, verbatim}
411
\usepackage[active]{srcltx}
512
\usepackage{amsthm}
@@ -41,21 +48,7 @@
4148
\newcommand{\la}{\langle}
4249
\newcommand{\ra}{\rangle}
4350
\newcommand{\LHG}{{L^2(\R^d,\gamma)}}
44-
45-
%% Bar int
46-
% \def\Xint#1{\mathchoice
47-
% {\XXint\displaystyle\textstyle{#1}}%
48-
% {\XXint\textstyle\scriptstyle{#1}}%
49-
% {\XXint\scriptstyle\scriptscriptstyle{#1}}%
50-
% {\XXint\scriptscriptstyle\scriptscriptstyle{#1}}%
51-
% \!\int}
52-
% \def\XXint#1#2#3{{\setbox0=\hbox{$#1{#2#3}{\int}$ }
53-
% \vcenter{\hbox{$#2#3$ }}\kern-.535\wd0}}
54-
% \def\ddashint{\Xint=}
55-
% \def\dashint{\Xint-}
56-
57-
\def\LI{{L^1_\gamma}}
58-
51+
\newcommand{\CcR}{{C_{\text{c}}(\R^d)}}
5952

6053
%% Symbols
6154
\renewcommand{\leq}{\leqslant}
@@ -163,7 +156,7 @@ \section{Introduction}
163156
maximal function,
164157
\begin{equation}\label{eq:classical}
165158
\sup_{\substack{(y, t) \in \R^{d + 1}_+\\ |x - y| < t}} |\e^{-t \Delta} u(y)| \lesssim \sup_{r
166-
> 0} \frac1{|B_r(x)|}\int_{B_r(x)} |u| \D\lambda.
159+
> 0} \frac1{|B_r(x)|}\int_{B_r(x)} |u| \D\lambda, \:\text{with}\: u \in \CcR.
167160
\end{equation}
168161
Here the action of \emph{heat semigroup} $\e^{-t \Delta} u = \rho_t \ast u$ is
169162
given by a convolution of $u$ with the \emph{heat kernel}
@@ -203,7 +196,7 @@ \section{Introduction}
203196
m(x) := \min\biggl\{1, \frac1{|x|} \biggr\}.
204197
\end{equation}
205198

206-
A slighly weaker version of the inequality \eqref{eq:main} has been proved by
199+
A slightly weaker version of the inequality \eqref{eq:main} has been proved by
207200
Pineda and Urbina \cite{Pineda2008} who showed that
208201
\begin{equation*}
209202
\sup_{(y, t) \in \widetilde{\Gamma}_x} |\e^{-t^2 L} u(y)|
@@ -223,7 +216,7 @@ \section{Introduction}
223216
allowing the extension to cones with arbitrary aperture $A > 0$ and cut-off
224217
parameter $a > 0$ without any additional technicalities. This additional
225218
generality is very important and has already been used by Portal (cf. the claim
226-
made in \cite[discussion preceding Lemma 2.3]{Portal2012}) to prove the
219+
made in \cite[discussion preceding Lemma 2.3]{Portal2014}) to prove the
227220
$H^1$-boundedness of the Riesz transform associated with $L$.
228221

229222
\section{The Mehler kernel}
@@ -391,7 +384,7 @@ \section{The main result}
391384
In this section we will prove our main theorem for which we have already made
392385
the necessary preparations in the previous sections.
393386
\begin{theorem}\label{thm:Gaussian-maximal-function}
394-
Let $A, a > 0$. For all $x \in \R^d$ and all $u \in \LHG$ we have
387+
Let $A, a > 0$. For all $x \in \R^d$ and all $u \in \CcR$ we have
395388
\begin{equation}
396389
\label{eq:Maximal-function-cone}
397390
\sup_{(y, t) \in \Gamma_x^{(A, a)}} |\e^{-t^2 L} u(y)| \lesssim

0 commit comments

Comments
 (0)