-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrandsamp.py
69 lines (56 loc) · 1.85 KB
/
randsamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Find optimal alpha by random sampling."""
import argparse
import yaml
import dill
import functools
import pandas as pd
import numpy as np
import stn.deg as deg # noqa
from stn import stnModel, stnModelRobust # noqa
def target(y, x):
"""Target function to minimize."""
q = x[0]
TIMEp = range(0, y["Tp"], y["dTp"])
with open(y["stn"], "rb") as dill_file:
stn = dill.load(dill_file)
if y["robust"]:
model = stnModelRobust(stn)
else:
model = stnModel(stn)
for i, t in enumerate(TIMEp):
for p in stn.products:
model.demand(p, t, y[p][i])
model.solve([y["Ts"], y["dTs"], y["Tp"], y["dTp"]],
solver="cplex",
objective="terminal",
periods=1,
prefix=y["prfx"],
rdir=y["rdir"],
save=True,
alpha=q,
trace=True,
solverparams=y["solverparams"],
tindexed=False)
df = model.eval(periods=y["periods"], TP=y["TP"])
obj = df["Cost"]
for j in stn.units:
obj += df[j]/100*y["ccm"][j]
return float(obj)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("file", help=".yaml file with run parameters")
parser.add_argument("prefix", help="prefix for file names")
args = parser.parse_args()
with open(args.file, "r") as f:
y = yaml.load(f)
y["prfx"] = args.prefix + y["prfx"]
N = 40
x0 = np.random.uniform(low=0.02, high=0.5, size=N)
wrap = functools.partial(target, y)
y0 = [wrap([x]) for x in x0]
df = pd.DataFrame([list(i) for i in zip(x0, y0)],
columns=["alpha", "cost"])
df.to_pickle(y["rdir"] + "/" + y["prfx"] + "obj.pkl")
df.to_csv(y["rdir"] + "/" + y["prfx"] + "obj.csv")