-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeil-v2.py
419 lines (332 loc) · 16.2 KB
/
meil-v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# MEIL - Maximum Entropy Imitation Learning (Proximal Policy Optimization based implementation)
# Author: John Hallman
import numpy as np
import tensorflow as tf
import gym
import argparse
import time
import joblib
import sys
import os
import os.path as osp
from scipy import stats # kernel density estimation in high dimensions
import spinup.algos.ppo.core as core
from spinup.utils.run_utils import setup_logger_kwargs
from spinup.utils.logx import EpochLogger, restore_tf_graph # restore_tf_graph necessary to load models from directories
from spinup.utils.mpi_tf import MpiAdamOptimizer, sync_all_params
from spinup.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs
from spinup_ppo_copy import PPOBuffer # no need to copy code if there is no change
OPTIMIZATION_METHODS = [
"sac", # Soft Actor-Critic
"ppo", # Proximal Policy Optimization
"td3", # TD3
"ddpg", # Deep Deterministic Policy Gradients
"trpo" # Trust Region Policy Optimization
]
DENSITY_ESTIMATORS = [
"gaussian_kde", # Kernel Density Estimator with Gaussian Kernel
"discrete_pca" # Randomly project onto low-dimensional subspace, then discretize
]
# load tf model from filepath
def load_policy(sess, fpath):
model = restore_tf_graph(sess, osp.join(fpath, 'simple_save'))
get_action = lambda x : sess.run(model['pi'], feed_dict={model['x']: x[None,:]})[0]
return get_action
# evaluate a given policy on env over n rounds
def evaluate_reward(env, policy, n):
cum = 0.0
for i in range(n):
o = env.reset()
s = 0.0
for t in range(args.steps):
a = policy(o)
o, r, d, _ = env.step(a)
s += r
if d or t+1 == args.steps:
cum += s / (t+1)
break
return cum / n
# evaluate a given policy on env over n rounds
def evaluate_distribution(env, expert, reward, n, gamma):
cum = 0.0
for i in range(n):
o = env.reset()
s = 0.0
for t in range(args.steps):
a = expert(o)
o, _, d, _ = env.step(a)
s += reward(o, t) # time discounted state value
if d or t+1 == args.steps:
cum += s / (t+1)
break
return cum / n
# iterates over all subdirectories in given directory, loads models
# and returns the subdirectory of the model with the lowest RE distance
# from the given target distribution
def distribution_validation(WORKING_DIR, expert, expert_distribution, args):
scores = []
with tf.Session() as sess:
env = gym.make(args.env)
for sub_dir in os.listdir(WORKING_DIR):
policy = load_policy(sess, os.path.join(WORKING_DIR, sub_dir))
score = evaluate_distribution(env, policy, args.validate_rounds)
scores.append(score)
opt_ind = np.argmax(scores)
print("Reward validation results, optimal index: {}".format(opt_ind))
print(scores)
return WORKING_DIR + os.listdir(WORKING_DIR)[opt_ind]
# returns policy with highest reward
def reward_validation(WORKING_DIR, args):
scores = []
with tf.Session() as sess:
env = gym.make(args.env)
for sub_dir in os.listdir(WORKING_DIR):
policy = load_policy(sess, os.path.join(WORKING_DIR, sub_dir))
score = evaluate_reward(env, policy, args.validate_rounds)
scores.append(score)
opt_ind = np.argmax(scores)
print("Reward validation results, optimal index: {}".format(opt_ind))
print(scores)
return WORKING_DIR + os.listdir(WORKING_DIR)[opt_ind]
# class for a Gaussian KDE distribution
class Gaussian_Density:
def __init__(self):
self.trajects = None
self.weights = None
self.kernel = None
def train(self, env, policy, N, gamma, iter_length, weighted=True):
trajects, weights = [], []
eps = lambda g, k: max(g ** k / (1 - g), 1e-6)
for i in range(N):
obs = env.reset()
for t in range(iter_length):
trajects.append(obs)
action = policy(obs)
obs, reward, done, info = env.step(action)
if done:
weights += [eps(gamma, k) for k in range(t+1)]
break
self.trajects = trajects
self.weights = weights
self.kernel = stats.gaussian_kde(np.array(trajects).T, weights=weights) if weighted \
else stats.gaussian_kde(np.array(trajects).T)
def merge(self, distributions, alphas, weighted=True): # merges distributions in p according to weights
all_t, all_w = [], []
for d, a in zip(distributions, alphas):
all_t += d.trajects
all_w += a * d.weights
self.trajects = all_t
self.weights = all_w
self.kernel = stats.gaussian_kde(np.array(all_t).T, weights=all_w) if weighted \
else stats.gaussian_kde(np.array(all_t).T)
def kernel(self, s):
assert self.kernel != None
return self.kernel.pdf(s)[0]
def density(self):
assert self.kernel != None
return lambda s: self.kernel.pdf(s)[0]
# runs customized, removed: save_freq, seed
def ppo(logger, reuse, message, env_fn, reward, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(),
steps_per_epoch=1000, epochs=10, gamma=0.99, clip_ratio=0.2, pi_lr=3e-4,
vf_lr=1e-3, train_pi_iters=50, train_v_iters=50, lam=0.97, max_ep_len=1000,
target_kl=0.01, logger_kwargs=dict()):
#tf.reset_default_graph() # allows us to call ppo multiple rounds
with tf.variable_scope("main", reuse=reuse):
#reward = lambda s, r: r if custom_reward == None else custom_reward(s)
#logger = EpochLogger(**logger_kwargs)
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
# Share information about action space with policy architecture
ac_kwargs['action_space'] = env.action_space
# Inputs to computation graph
x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space)
adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)
# Main outputs from computation graph
pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)
# Need all placeholders in *this* order later (to zip with data from buffer)
all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]
# Every step, get: action, value, and logprob
get_action_ops = [pi, v, logp_pi]
# Experience buffer
local_steps_per_epoch = int(steps_per_epoch / num_procs())
buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
# Count variables
var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
# PPO objectives
ratio = tf.exp(logp - logp_old_ph) # pi(a|s) / pi_old(a|s)
min_adv = tf.where(adv_ph>0, (1+clip_ratio)*adv_ph, (1-clip_ratio)*adv_ph)
pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
v_loss = tf.reduce_mean((ret_ph - v)**2)
# Info (useful to watch during learning)
approx_kl = tf.reduce_mean(logp_old_ph - logp) # a sample estimate for KL-divergence, easy to compute
approx_ent = tf.reduce_mean(-logp) # a sample estimate for entropy, also easy to compute
clipped = tf.logical_or(ratio > (1+clip_ratio), ratio < (1-clip_ratio))
clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))
# Optimizers
train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Sync params across processes
sess.run(sync_all_params())
# Setup model saving
logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})
def update():
inputs = {k:v for k,v in zip(all_phs, buf.get())}
pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent], feed_dict=inputs)
# Training
for i in range(train_pi_iters):
_, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
kl = mpi_avg(kl)
if kl > 1.5 * target_kl:
logger.log('Early stopping at step %d due to reaching max kl.'%i)
break
logger.store(StopIter=i)
for _ in range(train_v_iters):
sess.run(train_v, feed_dict=inputs)
# Log changes from update
pi_l_new, v_l_new, kl, cf = sess.run([pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
logger.store(LossPi=pi_l_old, LossV=v_l_old,
KL=kl, Entropy=ent, ClipFrac=cf,
DeltaLossPi=(pi_l_new - pi_l_old),
DeltaLossV=(v_l_new - v_l_old))
start_time = time.time()
o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
r = reward(o) # custom reward
# Main loop: collect experience in env and update/log each epoch
for epoch in range(epochs):
for t in range(local_steps_per_epoch):
a, v_t, logp_t = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1,-1)})
# save and log
buf.store(o, a, r, v_t, logp_t)
logger.store(VVals=v_t)
o, r, d, _ = env.step(a[0])
r = reward(o)
ep_ret += r
ep_len += 1
terminal = d or (ep_len == max_ep_len)
if terminal or (t==local_steps_per_epoch-1):
if not(terminal):
print('Warning: trajectory cut off by epoch at %d steps.'%ep_len)
# if trajectory didn't reach terminal state, bootstrap value target
last_val = r if d else sess.run(v, feed_dict={x_ph: o.reshape(1,-1)})
buf.finish_path(last_val)
if terminal:
# only save EpRet / EpLen if trajectory finished
logger.store(EpRet=ep_ret, EpLen=ep_len)
o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
r = reward(o)
# Perform PPO update!
update()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('VVals', with_min_and_max=True)
logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossV', average_only=True)
logger.log_tabular('DeltaLossPi', average_only=True)
logger.log_tabular('DeltaLossV', average_only=True)
logger.log_tabular('Entropy', average_only=True)
logger.log_tabular('KL', average_only=True)
logger.log_tabular('ClipFrac', average_only=True)
logger.log_tabular('StopIter', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
print(message)
logger.save_state({'env':env}, None) # save final model
env.close()
# takes optimization method, density estimator, other arguments, and runs Maximum
# Entropy Imitation Learning algorithm, then returns best directory after validation
def meil(WORKING_DIR, EXPERT_DIR, args):
expert_distribution = Gaussian_Density()
with tf.Session() as sess:
env = gym.make(args.env)
expert = load_policy(sess, EXPERT_DIR)
expert_distribution.train(env, expert, args.trajects, args.distr_gamma, args.iter_length)
env.close()
expert_density = expert_distribution.density()
env = gym.make(args.env)
policy_distr = Gaussian_Density()
policy = lambda s: np.random.uniform(-2.0, 2.0, size=env.action_space.shape) # random policy
policy_distr.train(env, policy, args.trajects, args.distr_gamma, args.iter_length)
density = policy_distr.density()
logger_kwargs = setup_logger_kwargs("result", data_dir=WORKING_DIR)
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
for i in range(args.rounds):
reward = lambda s: expert_density(s) / (density(s) + args.eps)
message = "\nRound {} out of {}\n".format(i + 1, args.rounds)
reuse = (i > 0)
ppo(logger, reuse, message, lambda : gym.make(args.env), reward,
actor_critic=core.mlp_actor_critic, ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
steps_per_epoch=args.steps, epochs=args.epochs, logger_kwargs=logger_kwargs)
with tf.Session() as sess:
policy = load_policy(sess, os.path.join(WORKING_DIR, str(i)))
policy_distr.train(env, policy, args.trajects, args.distr_gamma, args.iter_length)
density = policy_distr.density()
env.close()
opt_dir = reward_validation(WORKING_DIR, args)
return opt_dir
# run Hazan distribution imitation learning algorithm
if __name__ == "__main__":
# load and visualize policy
def run_policy_from_dir(policy_dir, env_name, n=1):
if policy_dir==None or not os.path.isdir(policy_dir):
raise Exception("Given policy directory doesn't exist!")
with tf.Session() as sess:
env = gym.make(env_name)
policy = load_policy(sess, policy_dir)
for i in range(n):
o = env.reset()
for t in range(1000):
env.render()
time.sleep(1e-3)
a = policy(o)
o, _, d, _ = env.step(a)
env.close()
# parses arguments
parser = argparse.ArgumentParser()
# main arguments
parser.add_argument('--env', type=str, default='Pendulum-v0')
parser.add_argument('--load_model', action='store_true') # if enabled, only runs pretrained model without training
parser.add_argument('--dir_name', type=str, default='') # location to store trained models in
parser.add_argument('--expert_dir_name', type=str, default='')
parser.add_argument('--rounds', type=int, default=3) # number of rounds of Frank-Wolfe algorithm
parser.add_argument('--validate_rounds', type=int, default=20) # number of rounds to run validation
# density estimator arguments
parser.add_argument('--distr_gamma', type=float, default=0.99)
parser.add_argument('--trajects', type=int, default=10) # number of trajectories to compute
parser.add_argument('--iter_length', type=int, default=1000)
# policy trainer arguments
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--hid', type=int, default=32) # dimension of hidden layers in Actor-Critic neural networks
parser.add_argument('--l', type=int, default=4)
parser.add_argument('--gamma', type=float, default=0.99) # training PPO gamma
parser.add_argument('--steps', type=int, default=3000)
parser.add_argument('--eps', type=float, default=1e-5) # epsilon added to reward d*(s)/(d_t(s) + eps)
args = parser.parse_args()
WORKING_DIR = os.getcwd() + "/models/" + args.dir_name + "/"
EXPERT_DIR = os.getcwd() + "/models/" + args.expert_dir_name + "/"
# visualize pretrained model and exit
if args.load_model:
assert os.path.isdir(WORKING_DIR)
print("\nRunning model in directory " + WORKING_DIR)
run_policy_from_dir(WORKING_DIR, args.env)
sys.exit(0)
print("\nMEIL, store results in directory " + WORKING_DIR)
if os.path.isdir(WORKING_DIR):
raise Exception("Data directory alread exists! (--dir_name)")
if args.expert_dir_name == None or not os.path.isdir(EXPERT_DIR):
raise Exception("Invalid expert directory! (--expert_dir_name)")
# train policy and store model
print("\n----- Run MEIL algorithm -----\n")
pi_opt_dir = meil(WORKING_DIR, EXPERT_DIR, args)
print("\n\nTraining complete!!!")
print("Best policy stored in: " + pi_opt_dir)
print("Visualizing...\n")
# visualize policy
run_policy_from_dir(pi_opt_dir, args.env)