-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·96 lines (79 loc) · 4.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import signal
import sys
import argparse
from Algorithms import ddpg, REINFORCE, A2C, GAE, TD3
from Logger import Logger
from collections import deque
import numpy as np
class Handler:
def __init__(self, args):
args.det = False
self.args = args
signal.signal(signal.SIGINT, self.handler)
def handler(self, signal, frame):
key = input("Press 'q' to exit or 't' to toggle rendering or 'd' for deterministic or 's' to save models or 'm' to set new number of episodes: ")
if key == 't':
self.args.render = not self.args.render
elif key == 'q':
sys.exit()
elif key == 'd':
self.args.det = not self.args.det
elif key == 's':
for model in self.args.models:
file_name = input("Enter model %s weights file name: " %(type(model)))
model.save_weights(file_name)
elif key == 'g':
self.args.save_render = not self.args.save_render
elif key == 'm':
try:
self.args.num_episodes = int(input('New number of episodes: '))
except:
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('algorithm', type=str, help='Specify which algorithm to use {REINFORCE, A2C, GAE, DDPG, DQN}')
parser.add_argument('env_name', type=str, help='Discrete Action Space = {CartPole-v1, LunarLander-v2} Continuous Action Space = {Pendulum-v0, LunarLanderContinuous-v2, BipedalWalker-v2}')
parser.add_argument('--log_dir', help='Add logging at specified directory location')
parser.add_argument('--render', default=False, help='Enable rendering')
parser.add_argument('--gamma', default=0.99, type=float, help='Discounting factor')
parser.add_argument('--Lambda', default=1, type=float, help='Generalised Advantage Estimation lambda discounting factor')
parser.add_argument('--lr', '--learning_rate', default=1e-4, type=float, help='Main learning rate for algorithm or actor learning rate')
parser.add_argument('--lr_c', '--learning_rate_critic', default=1e-4, type=float, help='Learning rate for critic')
parser.add_argument('--baseline', action='store_const', const=True, help='Only used if algorithm==REINFORCE and enables a state-dependent baseline to reduce variance')
parser.add_argument('--batch_size', default=32, type=int, help='The size of the batches that the algorithm will train on')
parser.add_argument('--episode_batch_size', default=1, type=int, help='Only used in REINFORCE and determines the number of episodes to use for smoothing the gradient')
parser.add_argument('--replay_mem_size', default=1e6, type=float, help='Size of the replay memory')
parser.add_argument('--tau', default=1e-3, type=float, help='Polyak constant for blending the target and active models')
parser.add_argument('--hidden_layers', default=[20], nargs='*', type=int, help='Dimensions of each hidden layer')
parser.add_argument('--num_episodes', default=1000, type=int, help='Number of episodes to train algorithm')
args = parser.parse_args()
# For monitoring 100-episode reward average
args.mean_reward_deque = deque(maxlen=100)
args.save_render = False
handler = Handler(args)
if args.algorithm == 'DDPG':
if args.log_dir is not None:
args.reward_logger = Logger('%s_%s_%d_%f_lra-%f_lrc-%f_%f' %(args.algorithm, args.env_name, args.batch_size, args.gamma, args.lr, args.lr_c, args.replay_mem_size), log_dir=args.log_dir)
ddpg.DDPG(args)
elif args.algorithm == 'TD3':
if args.log_dir is not None:
args.reward_logger = Logger('%s_%s_%d_%f_lra-%f_lrc-%f_%f' %(args.algorithm, args.env_name, args.batch_size, args.gamma, args.lr, args.lr_c, args.replay_mem_size), log_dir=args.log_dir)
TD3.TD3(args)
elif args.algorithm == 'REINFORCE':
if args.log_dir is not None:
if args.baseline:
args.algorithm += '-baseline'
args.reward_logger = Logger('%s_%s_%f_lr_p-%f_lr_v-%f' %(args.algorithm, args.env_name, args.gamma, args.lr, args.lr_c), log_dir=args.log_dir)
else:
args.reward_logger = Logger('%s_%s_%f_lr_p-%f' %(args.algorithm, args.env_name, args.gamma, args.lr), log_dir=args.log_dir)
REINFORCE.REINFORCE(args)
elif args.algorithm == 'A2C':
if args.log_dir is not None:
args.reward_logger = Logger('%s_%s_%d_%f_lra-%f_lrc-%f' %(args.algorithm, args.env_name, args.batch_size, args.gamma, args.lr, args.lr_c), log_dir=args.log_dir)
A2C.A2C(args)
elif args.algorithm == 'GAE':
if args.log_dir is not None:
args.reward_logger = Logger('%s_%s_%d_%f_lra-%f_lrc-%f_lambda-%f' %(args.algorithm, args.env_name, args.batch_size, args.gamma, args.lr, args.lr_c, args.Lambda), log_dir=args.log_dir)
GAE.GAE(args)