-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
170 lines (141 loc) · 5.26 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#TODO: Import your dependencies.
#For instance, below are some dependencies you might need if you are using Pytorch
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
import boto3
import os
import logging
import sys
import smdebug.pytorch as smd
from smdebug import modes
from smdebug.profiler.utils import str2bool
from smdebug.pytorch import get_hook
import argparse
NUM_CLASSES = 133
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def test(model, valid_loader, criterion, device, hook):
'''
test the model
'''
print("START testing")
model.eval()
hook.set_mode(modes.EVAL)
correct_test = 0
val_loss = 0
with torch.no_grad():
for images, labels in valid_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss
pred=outputs.argmax(dim=1, keepdim=True)
correct_test += pred.eq(labels.view_as(pred)).sum().item()
info_str = f"Val Loss: {val_loss/len(valid_loader.dataset)}, \
Val Accuracy: {100*(correct_test/len(valid_loader.dataset))}%"
logger.info(info_str)
def train(model, train_loader, criterion, optimizer, device, hook):
'''
train the model
'''
print("START TRAINING")
model.train()
hook.set_mode(modes.TRAIN)
running_loss=0
correct_train=0
for data, target in train_loader:
data=data.to(device)
target=target.to(device)
optimizer.zero_grad()
pred = model(data) #No need to reshape data since CNNs take image inputs
loss = criterion(pred, target)
running_loss+=loss
loss.backward()
optimizer.step()
pred=pred.argmax(dim=1, keepdim=True)
correct_train += pred.eq(target.view_as(pred)).sum().item()
info_str = f"Train Loss: {running_loss/len(train_loader.dataset)}, \
Train Accuracy: {100*(correct_train/len(train_loader.dataset))}%"
logger.info(info_str
def net():
'''
get a pre-trained model to do transfer learning
'''
pretrained_model = models.resnet50(pretrained=True)
for param in pretrained_model.parameters():
param.requires_grad = False
pretrained_model.fc = nn.Linear(pretrained_model.fc.in_features, NUM_CLASSES)
return pretrained_model
def create_data_loaders(data, batch_size, shuffle):
return torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=shuffle)
def main(args):
logger.info(f'hyperparams: {args}')
'''
Initialize a model by calling the net function
'''
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Running on Device {device}")
model=net()
model=model.to(device)
print('Getting the model... DONE')
'''
Create loss and optimizer
'''
loss_criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.fc.parameters(), lr=args.lr, momentum=args.momentum)
print('Creating criterion and optimizer... DONE')
hook = smd.Hook.create_from_json_file()
hook.register_module(model)
hook.register_loss(loss_criterion)
'''
train the model
'''
transform_train = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = ImageFolder(root=f'{args.ds_path_s3}/train', transform=transform_train)
valid_dataset = ImageFolder(root=f'{args.ds_path_s3}/valid', transform=transform_test)
train_loader = create_data_loaders(train_dataset, args.batch_size, True)
valid_loader = create_data_loaders(valid_dataset, args.batch_size, False)
for e in range(args.epochs):
train(model, train_loader,loss_criterion, optimizer, device, hook)
test(model, valid_loader, loss_criterion, device, hook)
print('Training model... DONE')
'''
Save the trained model
'''
torch.save(
model.cpu().state_dict(),
os.path.join(
args.model_path,
"model.pth"
)
)
if __name__=='__main__':
parser=argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int,default=32)
parser.add_argument('--bucket_name',type=str,default='sagemaker-us-east-1-272259209864')
parser.add_argument('--ds_path_s3',type=str,default=os.environ["SM_CHANNEL_TRAIN"])
parser.add_argument('--epochs',type=int,default=10)
parser.add_argument('--lr',type=float)
parser.add_argument('--momentum',type=float,default=0.9)
parser.add_argument('--model_path',type=str,default=os.environ["SM_MODEL_DIR"])
args=parser.parse_args()
main(args)