-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsetup.py
executable file
·303 lines (260 loc) · 13.9 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#! /usr/bin/python
# Copyright 2016, 2017, 2018, 2019, 2020 Joachim Wolff
# PhD Thesis
#
# Copyright 2015, 2016 Joachim Wolff
# Master Thesis
# Tutor: Fabrizio Costa
# Winter semester 2015/2016
#
# Chair of Bioinformatics
# Department of Computer Science
# Faculty of Engineering
# Albert-Ludwigs-University Freiburg im Breisgau
## CUDA extension based on the example by Robert McGibbon and Yutong Zhao
## https://github.com/rmcgibbo/npcuda-example
# Copyright (c) 2014, Robert T. McGibbon and the Authors
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import time
__author__ = "Joachim Wolff"
__contact__ = "[email protected]"
__copyright__ = "Copyright 2020, Joachim Wolff"
__credits__ = ["Milad Miladi", "Fabrizio Costa"]
__license__ = "MIT"
__date__ = time.strftime("%d/%m/%Y")
__version__ = "0.7"
from setuptools import setup, find_packages
import platform
import sys
import os
from os.path import join as pjoin
from setuptools import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import subprocess
import numpy
import distutils.sysconfig
import distutils.ccompiler
sources_list = ['sparse_neighbors_search/computation/interface/nearestNeighbors_PythonInterface.cpp', 'sparse_neighbors_search/computation/nearestNeighbors.cpp',
'sparse_neighbors_search/computation/inverseIndex.cpp', 'sparse_neighbors_search/computation/inverseIndexStorageUnorderedMap.cpp']
depends_list = ['sparse_neighbors_search/computation/nearestNeighbors.h', 'sparse_neighbors_search/computation/inverseIndex.h', 'sparse_neighbors_search/computation/kSizeSortedMap.h',
'sparse_neighbors_search/computation/typeDefinitions.h', 'sparse_neighbors_search/computation/parsePythonToCpp.h', 'sparse_neighbors_search/computation/sparseMatrix.h',
'sparse_neighbors_search/computation/inverseIndexStorage.h', 'sparse_neighbors_search/computation/inverseIndexStorageUnorderedMap.h','sparse_neighbors_search/computation/sseExtension.h', 'sparse_neighbors_search/computation/hash.h']
openmp = True
if "--openmp" in sys.argv:
module1 = Extension('_nearestNeighbors', sources = sources_list, depends = depends_list,
define_macros=[('OPENMP', None)], extra_link_args = ["-lm", "-lrt","-lgomp"],
extra_compile_args=["-fopenmp", "-O3", "-std=c++11", "-funroll-loops", "-msse4.1"]) # , "-msse4.1"
elif platform.system() == 'Darwin' or "--noopenmp" in sys.argv:
if platform.system() == 'Darwin':
print('WARNING: macOS is not official supported!')
module1 = Extension('_nearestNeighbors', sources = sources_list, depends = depends_list,
extra_compile_args=["-O3", "-std=c++11", "-funroll-loops", "-msse4.1"])
openmp = False
else:
module1 = Extension('_nearestNeighbors', sources = sources_list, depends = depends_list,
define_macros=[('OPENMP', None)], extra_link_args = ["-lm", "-lrt","-lgomp"],
extra_compile_args=["-fopenmp", "-O3", "-std=c++11", "-funroll-loops", "-msse4.1"])
cuda = False
if "--cuda" in sys.argv:
print('We do not support cuda anymore.')
exit(1)
cuda = True
sys.argv.remove("--cuda")
else:
cuda = False
if "--openmp" in sys.argv:
sys.argv.remove("--openmp")
if "--noopenmp" in sys.argv:
sys.argv.remove("--noopenmp")
cuda = False
def find_in_path(name, path):
"Find a file in a search path"
#adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
for dir in path.split(os.pathsep):
binpath = pjoin(dir, name)
if os.path.exists(binpath):
return os.path.abspath(binpath)
return None
def locate_cuda():
"""Locate the CUDA environment on the system
Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
and values giving the absolute path to each directory.
Starts by looking for the CUDAHOME env variable. If not found, everything
is based on finding 'nvcc' in the PATH.
"""
# first check if the CUDAHOME env variable is in use
if 'CUDAHOME' in os.environ:
home = os.environ['CUDAHOME']
nvcc = pjoin(home, 'bin', 'nvcc')
else:
# otherwise, search the PATH for NVCC
nvcc = find_in_path('nvcc', os.environ['PATH'])
if nvcc is None:
print ('The nvcc binary could not be '
'located in your $PATH. Either add it to your path, or set $CUDAHOME')
return None
home = os.path.dirname(os.path.dirname(nvcc))
cudaconfig = {'home':home, 'nvcc':nvcc,
'include': pjoin(home, 'include'),
'lib64': pjoin(home, 'lib64')}
for k, v in cudaconfig.items():
if not os.path.exists(cudaconfig[k]):
# raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v))
return None
return cudaconfig
CUDA = locate_cuda()
def customize_compiler_gcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
if os.path.splitext(src)[1] == '.cu' or os.path.splitext(src)[1] == '.cuh':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
if os.path.splitext(src)[1] == '.cpp' or os.path.splitext(src)[1] == '.h':
if '-O2' in self.compiler_so:
self.compiler_so.remove('-O2')
if '-g' in self.compiler_so:
self.compiler_so.remove('-g')
if '-DNDEBUG' in self.compiler_so:
self.compiler_so.remove('-DNDEBUG')
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
build_ext.build_extensions(self)
if (locate_cuda() == None or not cuda):
# print("No Cuda found or no cuda forced. Installation without GPU support.")
setup (name = 'sparse_neighbors_search',
author = 'Joachim Wolff',
author_email = '[email protected]',
url='https://github.com/joachimwolff/minHashNearestNeighbors',
license='MIT',
description='An approximate computation of nearest neighbors based on locality sensitive hash functions.',
long_description=open('README.md').read(),
install_requires=[
"numpy >= 1.17.0",
"scipy >= 1.3.0",
"scikit-learn >= 0.21.0",],
ext_modules = [module1],
packages=['sparse_neighbors_search',
'sparse_neighbors_search.neighbors',
'sparse_neighbors_search.cluster',
],
platforms = "Linux",
version = __version__
)
# if cuda:
# print ("CUDA found on system. Installing MinHash with CUDA-Support.")
# sources_list.extend(['sparse_neighbors_search/computation/kernel.cu', 'sparse_neighbors_search/computation/inverseIndexCuda.cu', 'sparse_neighbors_search/computation/nearestNeighborsCuda.cu'])
# depends_list.extend(['sparse_neighbors_search/computation/typeDefinitionsCuda.h', 'sparse_neighbors_search/computation/kernel.h', 'sparse_neighbors_search/computation/inverseIndexCuda.h', 'sparse_neighbors_search/computation/nearestNeighborsCuda.h', ])
# if openmp:
# ext = Extension('_nearestNeighbors',
# sources = sources_list, depends = depends_list,
# library_dirs=[CUDA['lib64']],
# libraries=['cudart'],
# language='c++',
# runtime_library_dirs=[CUDA['lib64']],
# # this syntax is specific to this build system
# # we're only going to use certain compiler args with nvcc and not with gcc
# # the implementation of this trick is in customize_compiler() below
# define_macros=[('OPENMP', None), ('CUDA', None)],
# extra_link_args=["-lm", "-lrt","-lgomp"],
# extra_compile_args={'gcc': ["-fopenmp", "-O3", "-std=c++11", "-funroll-loops", "-msse4.1"],
# 'nvcc': ['-arch=sm_60', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'", '-std=c++11' ]},
# include_dirs = [CUDA['include'], 'src'],
# platforms = "Linux, Mac OS X"
# )
# else:
# ext = Extension('_nearestNeighbors',
# sources = sources_list, depends = depends_list,
# library_dirs=[CUDA['lib64']],
# libraries=['cudart'],
# language='c++',
# runtime_library_dirs=[CUDA['lib64']],
# # this syntax is specific to this build system
# # we're only going to use certain compiler args with nvcc and not with gcc
# # the implementation of this trick is in customize_compiler() below
# define_macros=[('CUDA', None)],
# extra_link_args=["-lm", "-lrt","-lgomp"],
# extra_compile_args={'gcc': ["-O3", "-std=c++11", "-msse4.1"],
# 'nvcc': ['-arch=sm_60', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'", '-std=c++11' ]},
# include_dirs = [CUDA['include'], 'src'],
# platforms = "Linux, Mac OS X"
# )
# setup(name='sparse_neighbors_search',
# author='Joachim Wolff',
# ext_modules = [ext],
# # inject our custom trigger
# cmdclass={'build_ext': custom_build_ext},
# # since the package has c code, the egg cannot be zipped
# zip_safe=False,
# author_email = '[email protected]',
# url='https://github.com/joachimwolff/minHashNearestNeighbors',
# license='MIT',
# description='An approximate computation of nearest neighbors based on locality sensitive hash functions.',
# long_description=open('README.md').read(),
# install_requires=[
# "numpy >= 1.17.0",
# "scipy >= 1.3.0",
# "scikit-learn >= 0.21.0",],
# packages=['sparse_neighbors_search',
# 'sparse_neighbors_search.neighbors',
# 'sparse_neighbors_search.cluster',
# ],
# platforms = "Linux, Mac OS X",
# version = __version__)