-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding_transformers.py
51 lines (38 loc) · 1.66 KB
/
embedding_transformers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/env python
# coding: utf-8
# 主要负责生成句子嵌入
# 对比 bert-base-chinese
from transformers import AutoModel, AutoTokenizer
import torch
import numpy as np
class MyDataset(torch.utils.data.Dataset):
def __init__(self,datas):
self.data = datas
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
class Embedding:
# uer/sbert-base-chinese-nli 和 shibing624/text2vec-base-chinese
def __init__(self, device, model_name = 'bert-base-chinese'):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.device = device if device else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
def encode(self, inputs):
self.model.eval()
dataset = MyDataset(inputs)
data_loader = torch.utils.data.DataLoader(dataset, 30)
vectors = np.ndarray((0, 768), dtype='float32')
for batch in data_loader:
inputs = self.tokenizer.batch_encode_plus(batch, truncation=True, return_tensors='pt', padding=True)
inputs = inputs.to(self.device)
with torch.no_grad():
rfet = self.model(**inputs)
vectors = np.concatenate([vectors, rfet[1].cpu().detach().numpy()], axis = 0)
return vectors
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
embedding = Embedding(device=device)
vectors = embedding.encode(['我的家在东北','我家大门常打开','我家就在,山上住'])
print(vectors.shape)