-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
211 lines (198 loc) · 10 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from keras.layers import ReLU,BatchNormalization
from keras.layers import Conv2D,MaxPool2D,GlobalMaxPooling2D,GlobalAveragePooling2D
from keras.layers import Input, Dense, Reshape, Multiply, Lambda, concatenate, Dropout
from keras.models import Model
from keras.optimizers import Adam
from keras.models import model_from_json
import helper_functions as hf
import numpy as np
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as pl
import gc
from time import time
def stacked_layer(x,ksize=3,fsize=128,psize=(8,8),weights=None,trainable=True):
if weights == None:
x_1 = Conv2D(filters=fsize,kernel_size=ksize,padding='same',strides=1,trainable=trainable)(x)
x_2 = MaxPool2D(pool_size=psize)(x_1)
x_3 = BatchNormalization()(x_2)
x_4 = ReLU()(x_3)
else:
x_1 = Conv2D(filters=fsize,kernel_size=ksize,padding='same',strides=1,weights=weights[:2],trainable=trainable)(x)
x_2 = MaxPool2D(pool_size=psize)(x_1)
x_3 = BatchNormalization(weights=weights[2:])(x_2)
x_4 = ReLU()(x_3)
return x_4
class FCN21CM():
def __init__(self,lr=0.003,model_name='Null'):
optimizer = Adam(lr=lr)
self.model_name = model_name
self.X_size = None
self.Y_size = None
self.Z_size = 30
self.cube_size = (self.X_size,self.Y_size,self.Z_size)
def FCN(self):
inputs = Input(shape=self.cube_size)
self.s1 = stacked_layer(inputs,ksize=3,fsize=128,psize=4) # 64,64,10,64
self.s2 = Dropout(rate=0.)(stacked_layer(self.s1,ksize=3,fsize=256,psize=2)) # 16,16,10,128
self.s3 = Dropout(rate=0.)(stacked_layer(self.s2,ksize=3,fsize=512,psize=2)) # 4,4,5,256
self.fc1 = Dropout(rate=0.)(stacked_layer(self.s3,ksize=3,fsize=1024,psize=2)) # 1,1,1,2048
self.out = Dropout(rate=0.0)(Conv2D(filters=3,kernel_size=1,padding='same',activation='relu')(self.fc1))
self.max_out = GlobalAveragePooling2D()(self.out)
model = Model(inputs=inputs,outputs=self.max_out)
model.compile(optimizer='adam',
loss='mean_absolute_error',
metrics=['accuracy'])
return model
def probe_FCN(self,layer2output=None,weights=None):
inputs = Input(shape=self.cube_size)
print('w1',np.shape(weights))
if layer2output == '0':
model = Model(inputs=inputs,outputs=inputs)
self.s1_ = stacked_layer(inputs,ksize=3,fsize=128,psize=4,weights=weights[:6])
if layer2output == '1':
model = Model(inputs=inputs,outputs=self.s1_)
return model
# print('w2',np.shape(weights[1]))
self.s2_ = stacked_layer(self.s1_,ksize=3,fsize=256,psize=2,weights=weights[6:12])
if layer2output == '2':
model = Model(inputs=inputs,outputs=self.s2_)
return model
# print('w3',np.shape(weights[2]))
self.s3_ = stacked_layer(self.s2_,ksize=3,fsize=512,psize=2,weights=weights[12:18])
if layer2output == '3':
model = Model(inputs=inputs,outputs=self.s3_)
return model
self.fc1_ = stacked_layer(self.s3_,ksize=3,fsize=1024,psize=2,weights=weights[18:24])
if layer2output == '4':
model = Model(inputs=inputs,outputs=self.fc1_)
return model
self.out_ = Conv2D(filters=3,kernel_size=1,padding='same',weights=weights[24:26],activation='relu')(self.fc1_)
self.max_out = GlobalAveragePooling2D(weights=weights[26:30])(self.out_)
if layer2output == '5':
model = Model(inputs=inputs,outputs=self.max_out)
return model
#0,1,6,7,12,13,18,19,24,25
def get_probes(self):
layers = [str(i) for i in range(1,6)]
weight_layers = self.get_weights()
pred_layers = [self.probe_FCN(layer,weights=weight_layers) for layer in layers]
return pred_layers, weight_layers
def get_weights(self):
#print([weight.name for layer in self.fcn_model.layers for weight in layer.weights])
#print([weight for layer in self.fcn_model.layers for weight in layer.get_weights()])
# for w in self.fcn_model.get_weights():
# print(np.shape(w))
#weights_ = np.reshape(self.fcn_model.get_weights()[:16],(-1,4)) #[np.array((self.fcn_model.get_weights()[i],self.fcn_model.get_weights()[i+1])) for i,w in enumerate(self.fcn_model.get_weights()) if i in range(0,40,6)]
#weights = [weights_,self.fcn_model.get_weights()[16:18],self.fcn_model.get_weights()[18:]] #5x4 and 6
weights = [weight for layer in self.fcn_model.layers for weight in layer.get_weights()]
print(np.shape(weights))
print('Got weights')
# weights = [model_layer.get_weights()[0] for model_layer in self.fcn_model]
return weights
def train(self,data_dict,epochs=10000,batch_size=12,scalar_=1e5,fgcube=None):
loss_arr_t = []
loss_arr_v = []
resizing=True
if 'self.fcn_model' in globals():
print('Model valid.')
else:
print('No model found, starting from scratch.')
self.fcn_model = self.FCN()
print(self.fcn_model.summary())
print('Doing a 80/20 Dataset Split.')
# print('Building several realizations of point source foregrounds...')
if fgcube:
fgs = hf.load_FGCubes(fgcube)
data_dict['foregrounds'] = fgs
del(fgs)
elif fgcube == 'Generate':
fgs = [hf.build_fg_z_cube(data_dict['redshifts'],eor_amp=data_dict['eor_amp'],scalar=scalar_) for i in range(50)]
data_dict['foregrounds'] = fgs
del(fgs)
else:
print('No foregrounds included.')
print('Scaling down cubes...')
# data_dict_ = hf.scale_sample(data_dict)
print('Normalizing scaled data cubes...')
t0 = time()
data_dict = hf.normalize(data_dict) # normalize all data once and first
print('Normalizing dataset took {0} secs.'.format(time()-t0))
t0 = time()
data_dict_ = hf.scale_sample(data_dict)
print('Scaling dataset took {0} secs.'.format(time()-t0))
data = np.copy(data_dict_['data'])
labels = np.copy(data_dict_['labels'])
redshifts = np.copy(data_dict_['redshifts'])
length = len(labels)
train_data = np.array(data[:int(length*0.8)])
train_labels = np.array(labels[:int(length*0.8)])
val_data = np.array(data[int(length*0.8):])
val_labels = np.array(labels[int(length*0.8):])
epoch_inds_t = np.array(range(len(train_labels))).reshape(-1,batch_size)
#fcn_model.fit(self.data,self.labels)
gc.enable() #attempt garbage collection to release resources
epoch_loss_t = []
epoch_loss_v = []
for e in range(epochs):
print('Training Completed : {0}%'.format(100.*e/(1.*epochs)))
#print(e)
#rnd_ind_t = np.random.choice(range(len(train_labels)),size=batch_size)
epoch_inds_t = np.random.permutation(epoch_inds_t)
for i in range(len(train_labels)/batch_size):
rnd_ind_v = np.random.choice(range(len(val_labels)),size=batch_size)
#train_scale = train_data[rnd_ind_t]
#val_scale = val_data[rnd_ind_v]
# train_dict = {'data':train_scale,'labels':train_labels[rnd_ind_t],'redshifts':[]}
# val_dict = {'data':val_scale,'labels':val_labels[rnd_ind_v],'redshifts':[]}
# train_dict = hf.scale_sample(train_dict)
# val_dict = hf.scale_sample(val_dict)
# print('Train data shape: ',np.shape(train_dict['data']))
fcn_loss = self.fcn_model.train_on_batch(np.array(train_data[epoch_inds_t[i,:]]),train_labels[epoch_inds_t[i,:]])
val_loss = self.fcn_model.test_on_batch(np.array(val_data[rnd_ind_v]),val_labels[rnd_ind_v])
loss_arr_t.append(fcn_loss[0])
loss_arr_v.append(val_loss[0])
# del(val_dict)
# del(train_dict)
print('Epoch: {0} Train Loss: {1} Validation Loss: {2}'.format(e,np.mean(loss_arr_t),np.mean(loss_arr_v)))
epoch_loss_t.append(np.mean(loss_arr_t))
epoch_loss_v.append(np.mean(loss_arr_v))
#if e % 100==0 and e!=0:
if resizing:
del(train_data)
del(val_data)
#print('Rescaling down new cubes...')
#data_dict_ = hf.normalize(data_dict)
data_dict_ = hf.scale_sample(data_dict)
print('Expanding data volume...')
data,labels = hf.expand_cubes(data_dict_)
print('Dataset size now contains {0} samples.'.format(len(data)))
#print('Normalizing new scaled data cubes...')
train_labels = np.array(labels[:int(length*0.8)])
val_labels = np.array(labels[int(length*0.8):])
del(data_dict_)
train_data = np.array(data[:int(length*0.8)])
val_data = np.array(data[int(length*0.8):])
plot_loss(self.model_name,range(epochs),epoch_loss_t,epoch_loss_v)
return self.fcn_model
def save(self):
print('Saving trained model...')
self.fcn_model.save_weights(self.model_name+'.h5')
model_json = self.fcn_model.to_json()
with open(self.model_name+'.json', "w") as json_file:
json_file.write(model_json)
print('Model saved.')
def load(self):
json_file = open(self.model_name+'.json','r')
loaded_model_json = json_file.read()
json_file.close()
self.fcn_model = model_from_json(loaded_model_json)
self.fcn_model.load_weights(self.model_name+'.h5')
print('Model loaded.')
def plot_loss(model_name,iters,train_loss,val_loss):
pl.plot(iters,np.log10(train_loss),label='Training loss')
pl.plot(iters,np.log10(val_loss),label='Evaluation loss')
pl.xlabel('Number of Iterations')
pl.ylabel('Log MSE Loss')
pl.legend()
pl.savefig(model_name+'_loss.pdf',dpi=300)