-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeanNaOrdPlots.R
232 lines (196 loc) · 7.18 KB
/
meanNaOrdPlots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
setwd('/Users/johnjamescolgan/Library/CloudStorage/Box-Box/b. breve/b. breve wt transplants/firstCohortRerunAndSecondCohortSnvData')
library(ggplot2)
library(ggpubr)
library(tidyverse)
library(dplyr)
library(FactoMineR)
library(ggExtra)
library(vegan)
'Read in data and filter, remove samples with a min coverage less than 45, this removes the problematic samples and
results in serpation via PCA. '
genesInfo<-read_csv('/Users/johnjamescolgan/Library/CloudStorage/Box-Box/b. breve/b. breve wt transplants/firstCohortRerunAndSecondCohortSnvData/bothCohortsGenesInfo.csv')
genomeInfo<- read_csv('/Users/johnjamescolgan/Library/CloudStorage/Box-Box/b. breve/b. breve wt transplants/firstCohortRerunAndSecondCohortSnvData/bothCohortsGenomeInfo.csv')
passedFiltered<-genomeInfo %>%
filter(coverage_median > 45) %>%
.$sample
genesFiltered<- filteredGenesInfo<-genesInfo %>%
filter(sample %in% passedFiltered) %>%
filter(breadth_minCov >.9)
metadata<-filteredGenesInfo %>%
dplyr::select(sample, cohort) %>%
distinct()
metadata$tissue <- 'colon'
metadata$tissue[grepl(metadata$sample, pattern = 'dj', ignore.case = TRUE)]<- 'dj'
genesFiltered$tissue <- 'colon'
genesFiltered$tissue[grepl(genesFiltered$sample, pattern = 'dj', ignore.case = TRUE)]<- 'dj'
'Only consider genes which are present in at least 50% of samples with 3 or more snvs'
nDj<-genesFiltered %>%
filter(tissue == 'dj')%>%
dplyr::select(sample)%>%
distinct()%>%
nrow()
cutoffDj<-nDj*.7
passedDj<-genesFiltered %>%
filter(SNV_count > 2,
tissue == 'dj') %>%
group_by(gene) %>%
summarise(n()) %>%
filter(`n()`>= cutoffDj) %>%
.$gene
view(genesFiltered)
nColon<-genesFiltered %>%
filter(tissue == 'colon')%>%
dplyr::select(sample)%>%
distinct()%>%
nrow()
cutoffColon<-nColon*.7
passedColon<-genesFiltered %>%
filter(SNV_count > 2,
tissue == 'colon') %>%
group_by(gene) %>%
summarise(n()) %>%
filter(`n()`>= cutoffColon) %>%
.$gene
passedBoth<-intersect(passedColon,
passedDj)
genesPassedPrevelanceFilter<-genesFiltered%>%
filter(gene %in% passedBoth)
kofams<-read_tsv('/Users/johnjamescolgan/Library/CloudStorage/Box-Box/b. breve/b. breve wt transplants/firstCohortRerunAndSecondCohortSnvData/kofams.tsv')
functions<-kofams %>%
group_by(gene) %>%
filter(e_value == min(e_value))
genesmeanNA<-genesPassedPrevelanceFilter %>%
filter(SNV_count > 2) %>%
group_by(sample) %>%
mutate(pNpS_variants = ifelse(is.na(pNpS_variants) & SNV_count > 2, mean(pNpS_variants, na.rm = TRUE), pNpS_variants)) %>%
ungroup()
'Changed to just a binary, looks a lot better'
genesmeanNA$selection <- 'none'
genesmeanNA$selection[genesmeanNA$pNpS_variants > 1 ] <- 'weak adaptive'
genesmeanNA$selection[genesmeanNA$pNpS_variants < 1 ] <- 'weak purifying'
#genesmeanNA$selection[genesmeanNA$pNpS_variants > 1.25 ] <- 'adaptive'
#genesmeanNA$selection[genesmeanNA$pNpS_variants < .8 ] <- 'purifying'
#genesmeanNA$selection[genesmeanNA$pNpS_variants > 2.5] <- 'Strong adaptive'
#genesmeanNA$selection[genesmeanNA$pNpS_variants < .364] <- 'Strong purifying'
genesmeanNA %>%
filter(selection == 'none')
genesmeanNAMca<-genesmeanNA %>%
filter()%>%
pivot_wider(id_cols = sample,
names_from = gene,
values_from = selection)
genesmeanNAMca[is.na(genesmeanNAMca)]<- 'no evidence'
mcaOut<-genesmeanNAMca %>%
column_to_rownames('sample') %>%
mutate_if(is.character, as.factor) %>%
MCA(graph = FALSE)
mcaOut$eig
plotData<- mcaOut$ind[1] %>%
as.data.frame() %>%
rownames_to_column('sample') %>%
merge(metadata, by = 'sample')
'Both of these look good, need to figure out what pc1 is capturing, but PC2 does a good job of
seperating groups'
ggplot(data = plotData,
aes(x = coord.Dim.1,
y = coord.Dim.2,
col = tissue,
label = sample))+
geom_point()+
labs(title = 'MCA mean')
ggplot(data = plotData,
aes(x = coord.Dim.2,
y = coord.Dim.3,
col = tissue,
label = sample))+
geom_point()+
labs(title = 'MCA mean')
genesMeanPCa<-genesmeanNA %>%
filter()%>%
pivot_wider(id_cols = sample,
names_from = gene,
values_from = pNpS_variants)
genesMeanPCa[is.na(genesMeanPCa)]<- -1
genesMeanPCaScores<-genesMeanPCa %>%
column_to_rownames('sample')%>%
prcomp(center=TRUE,
scale =TRUE)
summary(genesMeanPCaScores)
genesMeanPCaScores$x %>%
as.data.frame()%>%
rownames_to_column('sample') %>%
merge(metadata,
by = 'sample') %>%
ggplot(aes(x = PC1,
y = PC2,
col = tissue))+
geom_point()+labs('PCA meanNA')
"Best, pca I think"
genesMeanPCaScores$x %>%
as.data.frame()%>%
rownames_to_column('sample') %>%
merge(metadata,
by = 'sample') %>%
ggplot(aes(x = PC2,
y = PC3,
col = tissue))+
geom_point()+labs(title = 'best pca')
metafull <- read.csv('snvMeta.csv')
metafull<-metafull %>%
select(-1)%>%
select(sample,cage,Mouse,Cohort)
metadata<-metadata %>%
rename('run' = cohort)
adonisData <- genesMeanPCa %>%
column_to_rownames('sample')
'Some of these are not going to work with the current imputation scheme due to the negatives. '
adonis2(adonisData~tissue+cage+Mouse+Cohort+run, data = merge(metadata,
metafull, by = 'sample'), method = 'bray')
bray<- vegdist(adonisData)
adonis2(adonisData~tissue+cage+Mouse, data = merge(metadata, metafull, by = 'sample'), method = 'man')
adonis2(adonisData~tissue+cage+Mouse+run+Cohort, data = merge(metadata,metafull, by = 'sample'), method = 'canberra')
adonis2(adonisData~tissue+cage+Mouse+run+Cohort, data = merge(metadata,metafull, by = 'sample'), method = 'jac')
'Going to try jaccard distance as a binary purifying yes or no'
genesmeanNA$purifying <-0
genesmeanNA$purifying[genesmeanNA$pNpS_variants < 1] <-1
jaccardIn<-genesmeanNA %>%
pivot_wider(id_cols = sample,
names_from = gene,
values_from = purifying)
jaccardIn[is.na(jaccardIn)]<-0
jaccardIn <- column_to_rownames(jaccardIn, 'sample')
adonis2(jaccardIn~tissue.y+cage+Mouse+run.y+Cohort, data = merge(metadata, metafull, by = 'sample'), method = 'jac', binary = TRUE)
jaccardOut<-jaccardIn %>%
vegdist(method = 'jaccard',
binary = TRUE)
jaccardPCoA<-wcmdscale(jaccardOut,eig = TRUE)
jaccardPCoA$points %>%
as.data.frame() %>%
rownames_to_column('sample') %>%
merge(metadata, by = 'sample') %>%
ggplot(aes(x = Dim1,
y = Dim2,
col = tissue))+
geom_point()
'jaccard adaptive'
genesmeanNA$adpative <-0
genesmeanNA$adaptive[genesmeanNA$pNpS_variants > 1] <- 1
jaccardIn<-genesmeanNA %>%
pivot_wider(id_cols = sample,
names_from = gene,
values_from = adaptive)
jaccardIn[is.na(jaccardIn)]<-0
jaccardIn <- column_to_rownames(jaccardIn, 'sample')
adonis2(jaccardIn~tissue.y+cage+Mouse+run.y+Cohort, data = merge(metadata, metafull, by = 'sample'), method = 'jac', binary = TRUE)
jaccardOut<-jaccardIn %>%
vegdist(method = 'jaccard',
binary = TRUE)
jaccardPCoA<-wcmdscale(jaccardOut,eig = TRUE)
jaccardPCoA$points %>%
as.data.frame() %>%
rownames_to_column('sample') %>%
merge(metadata, by = 'sample') %>%
ggplot(aes(x = Dim1,
y = Dim2,
col = tissue))+
geom_point()