|
| 1 | +今天来盘一盘 **二叉搜索树 ** 这类题目 |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | +使用**python**刷题分类整理的笔记,请参考: [https://github.com/lxztju/leetcode-algorithm/tree/v1](https://github.com/lxztju/leetcode-algorithm/tree/v1) |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | +## 二叉搜索树 |
| 10 | +二叉搜索树是指 **左子树的节点值均小于根节点的值, 右子树的节点值大于根节点的值(递归的概念,对于每个节点都成立)** |
| 11 | + |
| 12 | +二叉搜索树的**中序遍历是排序数组** |
| 13 | + |
| 14 | + |
| 15 | +* 235 二叉搜索树的最近公共祖先 (Easy) |
| 16 | +* 108 将有序数组转换为二叉搜索树 (Easy) |
| 17 | +* 653 两数之和 IV - 输入 BST (Easy) |
| 18 | +* 530 二叉搜索树的最小绝对差 (Easy) |
| 19 | +* 501 二叉搜索树中的众数 (Easy) |
| 20 | +* 669 修剪二叉搜索树 (medium) |
| 21 | +* 230 二叉搜索树中第K小的元素 (Medium) |
| 22 | +* 538 把二叉搜索树转换为累加树 (medium) |
| 23 | +* 109 有序链表转换二叉搜索树 (Medium) |
| 24 | +* 236 二叉树的最近公共祖先 (Medium) |
| 25 | + |
| 26 | + |
| 27 | + |
| 28 | +#### 235 二叉搜索树的最近公共祖先 (Easy) |
| 29 | + |
| 30 | +* 如果当前节点值大于pq,那么说明分叉点存在于当前节点的左子树中 |
| 31 | +* 如果当前节点值小于pq, 那么说明分叉点存在当前节点的右子树中 |
| 32 | +* 否则,说明找到分叉点。 |
| 33 | + |
| 34 | +```c++ |
| 35 | +class Solution { |
| 36 | +public: |
| 37 | + TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { |
| 38 | + if (root == nullptr) return nullptr; |
| 39 | + // 大于pq,搜索左子树 |
| 40 | + if(root->val > p->val && root->val > q->val) |
| 41 | + return lowestCommonAncestor(root->left, p, q); |
| 42 | + // 小于pq,搜索右子树 |
| 43 | + else if (root->val < p->val && root->val < q->val) |
| 44 | + return lowestCommonAncestor(root->right, p, q); |
| 45 | + // 找到分叉点。 |
| 46 | + else |
| 47 | + return root; |
| 48 | + } |
| 49 | +}; |
| 50 | +``` |
| 51 | +
|
| 52 | +
|
| 53 | +#### 108 将有序数组转换为二叉搜索树 (Easy) |
| 54 | +* 二叉搜索树的**中序遍历是有序数组** |
| 55 | +* 根据这个性质,排序数组的中间元素是根节点,左半部分是左子树,右半部分是右子树,递归构建 |
| 56 | +
|
| 57 | +```c++ |
| 58 | +class Solution { |
| 59 | +public: |
| 60 | + TreeNode* sortedArrayToBST(vector<int>& nums) { |
| 61 | + return sortedArray2BST(nums, 0, nums.size()-1); |
| 62 | + } |
| 63 | + TreeNode* sortedArray2BST(vector<int>& nums, int left, int right){ |
| 64 | + if (left > right) return nullptr; |
| 65 | + int middle = left + (right - left) / 2; |
| 66 | + TreeNode* root = new TreeNode(nums[middle]); |
| 67 | + root->left = sortedArray2BST(nums, left, middle-1); |
| 68 | + root->right = sortedArray2BST(nums, middle+1, right); |
| 69 | + return root; |
| 70 | + } |
| 71 | +}; |
| 72 | +``` |
| 73 | + |
| 74 | + |
| 75 | + |
| 76 | +#### 653 两数之和 IV - 输入 BST (Easy) |
| 77 | +* 中序遍历得到排序数组 |
| 78 | +* 然后双指针 |
| 79 | + |
| 80 | +```c++ |
| 81 | +class Solution { |
| 82 | +public: |
| 83 | + bool findTarget(TreeNode* root, int k) { |
| 84 | + vector<int> nums; |
| 85 | + inorder(root, nums); |
| 86 | + int l = 0, r = nums.size() -1; |
| 87 | + while (l < r){ |
| 88 | + int lrSum = nums[l] + nums[r]; |
| 89 | + if (lrSum == k) |
| 90 | + return true; |
| 91 | + else if (lrSum > k) |
| 92 | + r--; |
| 93 | + else |
| 94 | + l++; |
| 95 | + } |
| 96 | + return false; |
| 97 | + } |
| 98 | + //中序遍历 |
| 99 | + void inorder(TreeNode* root, vector<int>& nums){ |
| 100 | + if (root == nullptr) return; |
| 101 | + inorder(root->left, nums); |
| 102 | + nums.push_back(root->val); |
| 103 | + inorder(root->right, nums); |
| 104 | + } |
| 105 | +}; |
| 106 | +``` |
| 107 | +
|
| 108 | +
|
| 109 | +
|
| 110 | +#### 530 二叉搜索树的最小绝对差 (Easy) |
| 111 | +* 依然利用中序遍历为有序数组的特点。 |
| 112 | +
|
| 113 | +```c++ |
| 114 | +class Solution { |
| 115 | +public: |
| 116 | + int getMinimumDifference(TreeNode* root) { |
| 117 | + vector<int> nums; |
| 118 | + inorder(root, nums); |
| 119 | + int res = nums[1] - nums[0]; |
| 120 | + for (int i = 1; i < nums.size(); i++){ |
| 121 | + res = min(res, nums[i] - nums[i-1]); |
| 122 | + } |
| 123 | + return res; |
| 124 | + } |
| 125 | + //中序遍历 |
| 126 | + void inorder(TreeNode* root, vector<int>& nums){ |
| 127 | + if (root == nullptr) return; |
| 128 | + inorder(root->left, nums); |
| 129 | + nums.push_back(root->val); |
| 130 | + inorder(root->right, nums); |
| 131 | + } |
| 132 | +}; |
| 133 | +``` |
| 134 | + |
| 135 | +#### 501 二叉搜索树中的众数 (Easy) |
| 136 | +```c++ |
| 137 | +class Solution { |
| 138 | +public: |
| 139 | + vector<int> findMode(TreeNode* root) { |
| 140 | + // 直接使用unordered_map,没有用到二叉搜索树的特定 |
| 141 | + unordered_map<int, int> nodeFreq; |
| 142 | + vector<int> res; |
| 143 | + traversal(root, nodeFreq); |
| 144 | + int freq = 0; |
| 145 | + for (auto e = nodeFreq.begin(); e != nodeFreq.end(); e++){ |
| 146 | + freq = max(freq, e->second); |
| 147 | + } |
| 148 | + for (auto e = nodeFreq.begin(); e != nodeFreq.end(); e++){ |
| 149 | + if (e->second == freq) |
| 150 | + res.push_back(e->first); |
| 151 | + } |
| 152 | + return res; |
| 153 | + } |
| 154 | + void traversal(TreeNode* root, unordered_map<int, int>& nodeFreq){ |
| 155 | + if (root == nullptr) return; |
| 156 | + nodeFreq[root->val]++; |
| 157 | + traversal(root->left, nodeFreq); |
| 158 | + traversal(root->right, nodeFreq); |
| 159 | + } |
| 160 | +}; |
| 161 | +``` |
| 162 | +
|
| 163 | +如果不使用额外的空间。 |
| 164 | +* 针对二叉搜索树而言,其中序遍历是一个有序数组, 所有相等的元素均在一起出现 |
| 165 | +* 利用cnt变量来统计当前元素出现的次数, maxcnt为最大频率的元素出现的次数,res保存众数 |
| 166 | +
|
| 167 | +```c++ |
| 168 | +class Solution { |
| 169 | +public: |
| 170 | + vector<int> findMode(TreeNode* root) { |
| 171 | + vector<int> res; |
| 172 | + int cnt = 1; |
| 173 | + int maxcnt = 1; |
| 174 | + int base; |
| 175 | + inorder(root, cnt, maxcnt, res, base); |
| 176 | + return res; |
| 177 | + } |
| 178 | + void inorder(TreeNode* root, int& cnt, int& maxcnt, vector<int>& res, int& base){ |
| 179 | + if (root == nullptr) return; |
| 180 | + |
| 181 | + inorder(root->left, cnt, maxcnt, res, base); |
| 182 | +
|
| 183 | + if (root->val == base){ |
| 184 | + cnt++; |
| 185 | + } |
| 186 | + else{ |
| 187 | + cnt = 1; |
| 188 | + base = root->val; |
| 189 | + } |
| 190 | + if (cnt > maxcnt){ |
| 191 | + res.clear(); |
| 192 | + res.push_back(base); |
| 193 | + maxcnt = cnt; |
| 194 | + } |
| 195 | + else if (cnt == maxcnt){ |
| 196 | + res.push_back(base); |
| 197 | + } |
| 198 | +
|
| 199 | + inorder(root->right, cnt, maxcnt, res, base); |
| 200 | + } |
| 201 | +}; |
| 202 | +``` |
| 203 | + |
| 204 | +#### 669 修剪二叉搜索树 (medium) |
| 205 | + |
| 206 | +```c++ |
| 207 | +class Solution { |
| 208 | +public: |
| 209 | + TreeNode* trimBST(TreeNode* root, int low, int high) { |
| 210 | + if(root == nullptr) return nullptr; |
| 211 | + if (root->val < low) |
| 212 | + return trimBST(root->right, low, high); |
| 213 | + else if (root->val > high) |
| 214 | + return trimBST(root->left, low, high); |
| 215 | + else{ |
| 216 | + root->left = trimBST(root->left, low, high); |
| 217 | + root->right = trimBST(root->right, low, high); |
| 218 | + } |
| 219 | + return root; |
| 220 | + } |
| 221 | +}; |
| 222 | +``` |
| 223 | +
|
| 224 | +#### 230 二叉搜索树中第K小的元素 (Medium) |
| 225 | +
|
| 226 | +* 最直观的想法,二叉搜索树的中序遍历为排序数组 |
| 227 | +```c++ |
| 228 | +class Solution { |
| 229 | +public: |
| 230 | + int kthSmallest(TreeNode* root, int k) { |
| 231 | + vector<int> nums; |
| 232 | + inorder(root, nums); |
| 233 | + return nums[k-1]; |
| 234 | + } |
| 235 | +
|
| 236 | + //中序遍历 |
| 237 | + void inorder(TreeNode* root, vector<int>& nums){ |
| 238 | + if (root == nullptr) return; |
| 239 | + inorder(root->left, nums); |
| 240 | + nums.push_back(root->val); |
| 241 | + inorder(root->right, nums); |
| 242 | + } |
| 243 | +}; |
| 244 | +``` |
| 245 | + |
| 246 | +#### 538 把二叉搜索树转换为累加树 (medium) |
| 247 | +* 反中序遍历 |
| 248 | +* 从最右侧看,根节点的值为根+=右子树的值 |
| 249 | +* 左子树的值为左子树的值+=根的值 |
| 250 | + |
| 251 | +```c++ |
| 252 | +class Solution { |
| 253 | +public: |
| 254 | + TreeNode* convertBST(TreeNode* root) { |
| 255 | + int val = 0; |
| 256 | + inverseInorder(root, val); |
| 257 | + return root; |
| 258 | + } |
| 259 | + // 反中序遍历 |
| 260 | + void inverseInorder(TreeNode* root, int& val){ |
| 261 | + if (root == nullptr) return; |
| 262 | + inverseInorder(root->right, val); |
| 263 | + val += root->val; |
| 264 | + root->val = val; |
| 265 | + inverseInorder(root->left, val); |
| 266 | + } |
| 267 | +}; |
| 268 | +``` |
| 269 | +
|
| 270 | +
|
| 271 | +#### 109 有序链表转换二叉搜索树 (Medium) |
| 272 | +* 有序链表转换为二叉搜索树与数组的转换方式基本一致 |
| 273 | +* 只需要将链表分为左右两部分分别构成BST的左右子树即可 |
| 274 | +
|
| 275 | +```c++ |
| 276 | +class Solution { |
| 277 | +public: |
| 278 | + TreeNode* sortedListToBST(ListNode* head) { |
| 279 | + if (head == nullptr) return nullptr; |
| 280 | + // 返回链表中间节点的前驱节点 |
| 281 | + ListNode* premiddle = premiddleList(head); |
| 282 | + cout<< (premiddle->val) << endl; |
| 283 | + // 链表的中间节点 |
| 284 | + int val = 0; |
| 285 | + ListNode* middle = premiddle->next; |
| 286 | + if (middle == nullptr) { |
| 287 | + TreeNode* root = new TreeNode(premiddle->val); |
| 288 | + return root; |
| 289 | + } |
| 290 | + else{ |
| 291 | + TreeNode* root = new TreeNode(middle->val); |
| 292 | + premiddle->next = nullptr; |
| 293 | + root->left = sortedListToBST(head); |
| 294 | + root->right = sortedListToBST(middle->next); |
| 295 | + return root; |
| 296 | + } |
| 297 | + } |
| 298 | +
|
| 299 | +
|
| 300 | + // 获得链表的中间节点的前一个节点。 |
| 301 | + ListNode* premiddleList(ListNode* head){ |
| 302 | + if ( head == nullptr) return nullptr; |
| 303 | + ListNode* slow = head; |
| 304 | + ListNode* pre = slow; |
| 305 | + ListNode* fast = head->next; |
| 306 | + while (fast != nullptr && fast->next != nullptr){ |
| 307 | + pre = slow; |
| 308 | + slow = slow->next; |
| 309 | + fast = fast->next->next; |
| 310 | + } |
| 311 | + return pre; |
| 312 | + } |
| 313 | +}; |
| 314 | +``` |
| 315 | + |
| 316 | + |
| 317 | +#### 236 二叉树的最近公共祖先 (Medium) |
| 318 | +* 直接遍历查找,如果一棵树的左右子树中分别存在p与q,那么直接返回这个结点 |
| 319 | + |
| 320 | +```c++ |
| 321 | +class Solution { |
| 322 | +public: |
| 323 | + TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { |
| 324 | + if (root == nullptr) return nullptr; |
| 325 | + if ( root == p || root == q) return root; |
| 326 | + TreeNode* left = lowestCommonAncestor(root->left, p, q); |
| 327 | + TreeNode* right = lowestCommonAncestor(root->right, p, q); |
| 328 | + if (left != nullptr && right != nullptr) return root; |
| 329 | + else if (left == nullptr) |
| 330 | + return right; |
| 331 | + else if (right == nullptr) |
| 332 | + return left; |
| 333 | + else return nullptr; |
| 334 | + } |
| 335 | +}; |
| 336 | +``` |
| 337 | +
|
| 338 | +
|
| 339 | +
|
| 340 | +
|
| 341 | +## 更多分类刷题资料 |
| 342 | +
|
| 343 | +* 微信公众号: 小哲AI |
| 344 | +
|
| 345 | +  |
| 346 | +
|
| 347 | +* GitHub地址: [https://github.com/lxztju/leetcode-algorithm](https://github.com/lxztju/leetcode-algorithm) |
| 348 | +* csdn博客: [https://blog.csdn.net/lxztju](https://blog.csdn.net/lxztju) |
| 349 | +* 知乎专栏: [小哲AI](https://www.zhihu.com/column/c_1101089619118026752) |
| 350 | +* AI研习社专栏:[小哲AI](https://www.yanxishe.com/column/109) |
| 351 | +
|
0 commit comments