-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.aux
92 lines (92 loc) · 11.2 KB
/
main.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\newlabel{FirstPage}{{}{1}{}{section*.1}{}}
\@writefile{toc}{\contentsline {title}{Protection of quantum correlation using weak measurement \\ and quantum measurement reversal}{1}{section*.2}}
\@writefile{toc}{\contentsline {abstract}{Abstract}{1}{section*.1}}
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{section*.3}}
\@writefile{toc}{\contentsline {section}{\numberline {II}Quantum discord: the definition}{1}{section*.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A}Entropic discord}{1}{section*.6}}
\newlabel{quan.cor.}{{4}{1}{}{equation.2.4}{}}
\newlabel{clas.cor.}{{6}{1}{}{equation.2.6}{}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:ent.ex.}{{1a}{2}{Entropic discord estimation of $\boldsymbol {\rho }_x$, varying $\theta $ and $\phi $.\relax }{figure.caption.5}{}}
\newlabel{sub@fig:ent.ex.}{{a}{2}{Entropic discord estimation of $\boldsymbol {\rho }_x$, varying $\theta $ and $\phi $.\relax }{figure.caption.5}{}}
\newlabel{fig:ent.ex.}{{1b}{2}{Geometric discord estimation of $\boldsymbol {\rho }_x$, varying $\theta $ and $\phi $.\relax }{figure.caption.5}{}}
\newlabel{sub@fig:ent.ex.}{{b}{2}{Geometric discord estimation of $\boldsymbol {\rho }_x$, varying $\theta $ and $\phi $.\relax }{figure.caption.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Entropic and geometric discord estimation of an arbitrary matrix $\bm {\rho }_x$.\relax }}{2}{figure.caption.5}}
\newlabel{fig:ex.s}{{1}{2}{Entropic and geometric discord estimation of an arbitrary matrix $\boldsymbol {\rho }_x$.\relax }{figure.caption.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {B}Geometric discord}{2}{section*.7}}
\newlabel{geom.}{{7}{2}{}{equation.2.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Numerical methods for quantum discord estimation}{2}{section*.8}}
\newlabel{func.}{{10}{3}{}{equation.3.10}{}}
\newlabel{fig:d}{{2a}{4}{\relax }{figure.caption.9}{}}
\newlabel{sub@fig:d}{{a}{4}{\relax }{figure.caption.9}{}}
\newlabel{fig:w}{{2b}{4}{\relax }{figure.caption.9}{}}
\newlabel{sub@fig:w}{{b}{4}{\relax }{figure.caption.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Scheme for protecting quantum correlation from decoherence using weak measurement and quantum measurement reversl; a) Decoherence $D_1$ and $D_2$ in the quantum channels weaken the correlation of the joint quantum state $\rho _d$ between Bob and Charlie. b) Such weakening can be reversed by sequential operations of weak measurement ($M_{wk}$) by Alice and reversing measurement ($M_{rev}$) by Bob and Charlie.\relax }}{4}{figure.caption.9}}
\newlabel{fig:scheme}{{2}{4}{Scheme for protecting quantum correlation from decoherence using weak measurement and quantum measurement reversl; a) Decoherence $D_1$ and $D_2$ in the quantum channels weaken the correlation of the joint quantum state $\rho _d$ between Bob and Charlie. b) Such weakening can be reversed by sequential operations of weak measurement ($M_{wk}$) by Alice and reversing measurement ($M_{rev}$) by Bob and Charlie.\relax }{figure.caption.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Experiment}{4}{section*.10}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A}A brief discussion of the concurrence result}{5}{section*.12}}
\newlabel{fig:concd}{{3a}{5}{\relax }{figure.caption.11}{}}
\newlabel{sub@fig:concd}{{a}{5}{\relax }{figure.caption.11}{}}
\newlabel{fig:concw}{{3b}{5}{\relax }{figure.caption.11}{}}
\newlabel{sub@fig:concw}{{b}{5}{\relax }{figure.caption.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Experimental data fitted to concurrence; a) As D increases, the concurrence of $\bm {\rho }_d$ gradually decreases. b) Even under the influence of strong decoherence ($D=0.6$), we can revive the concurrence of $\bm {\rho }_r$ by $M_{wk}(p)$ and the corresponding optimal $M_{rev}(p_r)$.\relax }}{5}{figure.caption.11}}
\newlabel{fig:conc}{{3}{5}{Experimental data fitted to concurrence; a) As D increases, the concurrence of $\boldsymbol {\rho }_d$ gradually decreases. b) Even under the influence of strong decoherence ($D=0.6$), we can revive the concurrence of $\boldsymbol {\rho }_r$ by $M_{wk}(p)$ and the corresponding optimal $M_{rev}(p_r)$.\relax }{figure.caption.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {B}Theoretical estimation of quantum discord under the same scenario}{5}{section*.13}}
\newlabel{fig:A1}{{4a}{6}{\relax }{figure.caption.14}{}}
\newlabel{sub@fig:A1}{{a}{6}{\relax }{figure.caption.14}{}}
\newlabel{fig:A2}{{4b}{6}{\relax }{figure.caption.14}{}}
\newlabel{sub@fig:A2}{{b}{6}{\relax }{figure.caption.14}{}}
\newlabel{fig:A3}{{4c}{6}{\relax }{figure.caption.14}{}}
\newlabel{sub@fig:A3}{{c}{6}{\relax }{figure.caption.14}{}}
\newlabel{fig:A4}{{4d}{6}{\relax }{figure.caption.14}{}}
\newlabel{sub@fig:A4}{{d}{6}{\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Theoretical estimation of entropic discord as functions of decoherence and weak measurement; a) and b) are for the maximally correlated state $|\Phi \delimiter "526930B $ with $|\alpha |=|\beta |$, and c) and d) are for the non-maximally correlated state $|\Phi \delimiter "526930B $ with $|\alpha | < |\beta |$ with $\alpha =0.42$. Entropic quantum discord under the influence of decoherence is shown in a) and c), whereas the effect of the optimal weak and reversing measurements is shown in b) and d). Plots b) and d) are taken with $D_1 = 0.6$ and $D_2 = 0.8$.\relax }}{6}{figure.caption.14}}
\newlabel{fig:A5}{{4}{6}{Theoretical estimation of entropic discord as functions of decoherence and weak measurement; a) and b) are for the maximally correlated state $|\Phi \rangle $ with $|\alpha |=|\beta |$, and c) and d) are for the non-maximally correlated state $|\Phi \rangle $ with $|\alpha | < |\beta |$ with $\alpha =0.42$. Entropic quantum discord under the influence of decoherence is shown in a) and c), whereas the effect of the optimal weak and reversing measurements is shown in b) and d). Plots b) and d) are taken with $D_1 = 0.6$ and $D_2 = 0.8$.\relax }{figure.caption.14}{}}
\@writefile{toc}{\contentsline {section}{\numberline {V}Result}{6}{section*.16}}
\newlabel{fig:A1G}{{5a}{6}{\relax }{figure.caption.15}{}}
\newlabel{sub@fig:A1G}{{a}{6}{\relax }{figure.caption.15}{}}
\newlabel{fig:A2G}{{5b}{6}{\relax }{figure.caption.15}{}}
\newlabel{sub@fig:A2G}{{b}{6}{\relax }{figure.caption.15}{}}
\newlabel{fig:A3G}{{5c}{6}{\relax }{figure.caption.15}{}}
\newlabel{sub@fig:A3G}{{c}{6}{\relax }{figure.caption.15}{}}
\newlabel{fig:A4G}{{5d}{6}{\relax }{figure.caption.15}{}}
\newlabel{sub@fig:A4G}{{d}{6}{\relax }{figure.caption.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Theoretical estimation of geometric discord as functions of decoherence and weak measurement; a) and b) are for the maximally correlated state $|\Phi \delimiter "526930B $ with $|\alpha |=|\beta |$, and c) and d) are for the non-maximally correlated state $|\Phi \delimiter "526930B $ with $|\alpha | < |\beta |$ with $\alpha =0.42$. Geometric quantum discord under the influence of decoherence is shown in a) and c), whereas the effect of the optimal weak and reversing measurements is shown in b) and d). Plots b) and d) are taken with $D_1 = 0.6$ and $D_2 = 0.8$.\relax }}{6}{figure.caption.15}}
\newlabel{fig:A5G}{{5}{6}{Theoretical estimation of geometric discord as functions of decoherence and weak measurement; a) and b) are for the maximally correlated state $|\Phi \rangle $ with $|\alpha |=|\beta |$, and c) and d) are for the non-maximally correlated state $|\Phi \rangle $ with $|\alpha | < |\beta |$ with $\alpha =0.42$. Geometric quantum discord under the influence of decoherence is shown in a) and c), whereas the effect of the optimal weak and reversing measurements is shown in b) and d). Plots b) and d) are taken with $D_1 = 0.6$ and $D_2 = 0.8$.\relax }{figure.caption.15}{}}
\@writefile{toc}{\contentsline {section}{\numberline {VI}Discussion}{6}{section*.19}}
\newlabel{fig:DD}{{6a}{7}{\relax }{figure.caption.17}{}}
\newlabel{sub@fig:DD}{{a}{7}{\relax }{figure.caption.17}{}}
\newlabel{fig:Dp}{{6b}{7}{\relax }{figure.caption.17}{}}
\newlabel{sub@fig:Dp}{{b}{7}{\relax }{figure.caption.17}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Experimental data for protecting quantum correlation from decoherence using quantum weak measurement and quantum measurement reversal, quantized with entropic quantum discord; a) As $D$ increases, the amount of quantum correlation gradually decreases. b) Even under the effect of strong decoherence ($D=0.6$), we can reverse the amount of quantum correlation between Bob and Charlie by performing $M_{wk}(p)$ and $M_{rev}(p) $. The error bars represent the statistical error of $\pm 1$ standard deviation, and the dashed lines represent the corresponding concurrence plots.\relax }}{7}{figure.caption.17}}
\newlabel{fig:D}{{6}{7}{Experimental data for protecting quantum correlation from decoherence using quantum weak measurement and quantum measurement reversal, quantized with entropic quantum discord; a) As $D$ increases, the amount of quantum correlation gradually decreases. b) Even under the effect of strong decoherence ($D=0.6$), we can reverse the amount of quantum correlation between Bob and Charlie by performing $M_{wk}(p)$ and $M_{rev}(p) $. The error bars represent the statistical error of $\pm 1$ standard deviation, and the dashed lines represent the corresponding concurrence plots.\relax }{figure.caption.17}{}}
\newlabel{fig:DGD}{{7a}{7}{\relax }{figure.caption.18}{}}
\newlabel{sub@fig:DGD}{{a}{7}{\relax }{figure.caption.18}{}}
\newlabel{fig:DGp}{{7b}{7}{\relax }{figure.caption.18}{}}
\newlabel{sub@fig:DGp}{{b}{7}{\relax }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Experimental data for protecting quantum correlation from amplitude decoherence using quantum weak measurement and quantum measurement reversal, quantized with geometric quantum discord; the descriptions for a) and b) are equivalent to those of \\ fig. \ref {fig:D}.\relax }}{7}{figure.caption.18}}
\newlabel{fig:DG}{{7}{7}{Experimental data for protecting quantum correlation from amplitude decoherence using quantum weak measurement and quantum measurement reversal, quantized with geometric quantum discord; the descriptions for a) and b) are equivalent to those of \\ fig. \ref {fig:D}.\relax }{figure.caption.18}{}}
\@writefile{toc}{\contentsline {section}{\numberline {VII}References}{7}{section*.20}}
\bibdata{mainNotes}
\bibstyle{apsrev4-1}
\citation{REVTEX41Control}
\citation{apsrev41Control}
\newlabel{LastPage}{{}{8}{}{}{}}