10
10
11
11
``` plaintext
12
12
cpp-ml-library/
13
- ├── include/ # Header files
14
- ├── src/ # Source files
13
+ ├── ml_library_include/ # Header files
15
14
├── tests/ # Unit tests
16
15
├── examples/ # Example usage files
17
16
├── docs/ # Documentation files
@@ -50,33 +49,33 @@ make install
50
49
To use this library in your C++ project, include the master header file:
51
50
52
51
``` cpp
53
- #include " ml /ml.h"
52
+ #include " ml_library_include /ml.h"
54
53
```
55
54
56
55
## Implemented Algorithms
57
56
58
57
The following machine learning algorithms are planned, inspired by concepts and techniques taught in the Udemy course:
59
58
60
59
1 . ** Regression**
61
- - [x] Polynomial Regression
62
- - [x] Multi-Linear Regression
63
- - [x] Logistic Regression
64
- - [x] Decision Tree Regression
65
- - [x] Random Forest Regression
66
- - [x] K-Nearest Neighbors
60
+ - [x] Polynomial Regression (PolynomialRegression)
61
+ - [x] Multi-Linear Regression (MultilinearRegression)
62
+ - [x] Logistic Regression (LogisticRegression)
63
+ - [x] Decision Tree Regression (DecisionTreeRegressor)
64
+ - [x] Random Forest Regression (RandomForestRegressor)
65
+ - [x] K-Nearest Neighbors (KNNRegressor)
67
66
68
67
69
68
2 . ** Classification**
70
- - [x] Decision Tree Classifier
71
- - [x] Random Forest Classifier
72
- - [x] K-Nearest Neighbors
69
+ - [x] Decision Tree Classifier (DecisionTreeClassifier)
70
+ - [x] Random Forest Classifier (RandomForestClassifier)
71
+ - [x] K-Nearest Neighbors (KNNClassifier)
73
72
74
73
3 . ** Clustering**
75
- - [x] K-Means Clustering
76
- - [x] Hierarchical clustering
74
+ - [x] K-Means Clustering (KMeans)
75
+ - [x] Hierarchical clustering (HierarchicalClustering)
77
76
78
77
4 . ** Neural Networks**
79
- - [x] Neural Network (NN )
78
+ - [x] Neural Network (NeuralNetwork )
80
79
- [ ] Artificial Neural Network (ANN)
81
80
- [ ] Convolutional Neural Network (CNN)
82
81
@@ -85,27 +84,30 @@ The following machine learning algorithms are planned, inspired by concepts and
85
84
- [x] Eclat
86
85
87
86
6 . ** Support Vector Machine**
88
- - [ ] Support Vector Regression (SVR )
87
+ - [ ] Support Vector Regression (SupportVectorRegression )
89
88
90
89
## Algorithm Implementation Progress
91
90
92
91
| Algorithm Category | Algorithm | Implemented | Tests | Examples |
93
92
| --------------------------| ------------------------------| -------------| -------| ----------|
94
- | ** Regression** | Polynomial Regression | [ x] | [ ] | [ x] |
95
- | | Logistic Regression | [ x] | [ ] | [ x] |
96
- | | Multi-Linear Regression | [ x] | [ ] | [ x] |
97
- | | Decision Tree Regression | [ x] | [ ] | [ ] |
98
- | | Random Forest Regression | [ x] | [ ] | [ ] |
99
- | ** Classification** | Decision Tree Classifier | [ x] | [ ] | [ ] |
100
- | | Random Forest Classifier | [ x] | [ ] | [ ] |
101
- | | K-Nearest Neighbors | [ x] | [ ] | [ ] |
102
- | ** Clustering** | K-Means Clustering | [ x] | [ ] | [ ] |
103
- | ** Neural Networks** | Neural Network (NN) | [ x] | [ x] | [ x] |
93
+ | ** Regression** | Polynomial Regression (PolynomialRegression) | [ x] | [ ] | [ x] |
94
+ | | Logistic Regression (LogisticRegression) | [ x] | [ ] | [ x] |
95
+ | | Multi-Linear Regression (MultilinearRegression) | [ x] | [ ] | [ x] |
96
+ | | Decision Tree Regression (DecisionTreeRegressor) | [ ] | [ ] | [ ] |
97
+ | | Random Forest Regression (RandomForestRegressor) | [ ] | [ ] | [ ] |
98
+ | | K-Nearest Neighbors (KNNRegressor) | [ x] | [ ] | [ ] |
99
+ | ** Classification** | Decision Tree Classifier (DecisionTreeClassifier) | [ ] | [ ] | [ ] |
100
+ | | Random Forest Classifier (RandomForestClassifier) | [ ] | [ ] | [ ] |
101
+ | | K-Nearest Neighbors (KNNClassifier) | [ x] | [ ] | [ ] |
102
+ | ** Clustering** | K-Means Clustering (KMeans) | [ x] | [ ] | [ ] |
103
+ | | Hierarchical clustering (HierarchicalClustering) | [ x] | [ ] | [ ] |
104
+ | ** Neural Networks** | Neural Network (NeuralNetwork) | [ x] | [ x] | [ x] |
104
105
| | Artificial Neural Network | [ ] | [ ] | [ ] |
105
106
| | Convolutional Neural Network | [ ] | [ ] | [ ] |
106
- | ** Association Rule Learning** | Apriori | [ x] | [ ] | [ x] |
107
- | | Eclat | [ x] | [ ] | [ x] |
108
- | ** Support Vector Machine** | Support Vector Regression (SVR) | [ ] | [ ] | [ ] |
107
+ | ** Association Rule Learning** | Apriori | [ x] | [ x] | [ x] |
108
+ | | Eclat | [ x] | [ x] | [ x] |
109
+ | ** Support Vector Machine** | Support Vector Regression (SupportVectorRegression) | [ ] | [ ] | [ ] |
110
+
109
111
110
112
111
113
@@ -135,7 +137,7 @@ int main() {
135
137
136
138
## Documentation
137
139
138
- The documentation for this project is generated using Doxygen and is available online at [ GitHub Pages] ( https://jideoyelayo1.github.io /cpp-ml-library/ ) . The documentation provides details on each class, function, and algorithm.
140
+ The documentation for this project is generated using Doxygen and is available online at [ GitHub Pages] ( https://jideoyelayo.com /cpp-ml-library/ ) . The documentation provides details on each class, function, and algorithm.
139
141
140
142
## Contributing
141
143
0 commit comments