|
| 1 | +// boj 10942 펠린드롬? |
| 2 | +// dp |
| 3 | + |
| 4 | +import java.io.BufferedReader; |
| 5 | +import java.io.InputStreamReader; |
| 6 | +import java.util.StringTokenizer; |
| 7 | + |
| 8 | +public class boj_10942 { |
| 9 | + static int n, m, s, e; |
| 10 | + static int[] numbers; |
| 11 | + static boolean[][] isPalindrome; |
| 12 | + |
| 13 | + public static void main(String[] args) throws Exception { |
| 14 | + BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); |
| 15 | + StringTokenizer st = new StringTokenizer(br.readLine()); |
| 16 | + StringBuilder sb = new StringBuilder(); |
| 17 | + |
| 18 | + n = stoi(st.nextToken()); |
| 19 | + numbers = new int [n]; |
| 20 | + isPalindrome = new boolean [n][n]; |
| 21 | + st = new StringTokenizer(br.readLine()); |
| 22 | + for (int i = 0; i < n; ++i) { |
| 23 | + numbers[i] = stoi(st.nextToken()); |
| 24 | + isPalindrome[i][i] = true; |
| 25 | + if (i > 0 && numbers[i-1] == numbers[i]) isPalindrome[i-1][i] = true; |
| 26 | + } |
| 27 | + for (int l = 3; l <= n; ++l) { |
| 28 | + for (int i = 0; i <= n - l; ++i) { |
| 29 | + if (numbers[i] == numbers[i + l - 1] && isPalindrome[i + 1][i + l - 2]) |
| 30 | + isPalindrome[i][i + l - 1] = true; |
| 31 | + } |
| 32 | + } |
| 33 | + m = stoi(br.readLine()); |
| 34 | + while (m-- > 0) { |
| 35 | + st = new StringTokenizer(br.readLine()); |
| 36 | + s = stoi(st.nextToken()) - 1; |
| 37 | + e = stoi(st.nextToken()) - 1; |
| 38 | + sb.append(isPalindrome[s][e] ? 1 : 0).append('\n'); |
| 39 | + } |
| 40 | + System.out.print(sb); |
| 41 | + } |
| 42 | + |
| 43 | + static int stoi(String s) {return Integer.parseInt(s);} |
| 44 | +} |
0 commit comments