-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmidterm.lyx
450 lines (333 loc) · 7.68 KB
/
midterm.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#LyX 1.6.7 created this file. For more info see http://www.lyx.org/
\lyxformat 345
\begin_document
\begin_header
\textclass article
\use_default_options true
\language english
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Standard
John Hancock
\end_layout
\begin_layout Standard
CEN 6405
\end_layout
\begin_layout Standard
Mid Term Exam
\end_layout
\begin_layout Standard
May 30th, 2014
\end_layout
\begin_layout Part*
Midterm Exam
\end_layout
\begin_layout Section*
1
\end_layout
\begin_layout Subsection*
(a)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
Y_{i}=\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}+\beta_{3}X_{1i}^{2}+\epsilon_{i}\]
\end_inset
\end_layout
\begin_layout Standard
Is not a linear regression model, or an intrinsically linear regression
model because
\begin_inset Formula $Y_{i}$
\end_inset
is dependant on
\begin_inset Formula $X_{1i}$
\end_inset
and
\begin_inset Formula $X_{i1}^{2}$
\end_inset
\end_layout
\begin_layout Standard
No matter what variable
\begin_inset Formula $V$
\end_inset
we transform
\begin_inset Formula $X_{1i}$
\end_inset
to,
\begin_inset Formula $Y_{i}$
\end_inset
will be dependant on
\begin_inset Formula $V$
\end_inset
and some power of
\begin_inset Formula $V$
\end_inset
.
\end_layout
\begin_layout Subsection*
(b)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
Y_{i}=\epsilon_{i}exp\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}^{2}\right)\]
\end_inset
Is intrinsically linear because we can rewrite the above as:
\end_layout
\begin_layout Standard
\begin_inset Formula \[
ln\left(Y_{i}\right)=ln\left(\epsilon_{i}exp\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}^{2}\right)\right)\]
\end_inset
\begin_inset Formula \[
=ln\left(\epsilon_{i}\right)+ln\left(exp\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}^{2}\right)\right)\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \[
=ln\left(\epsilon_{i}\right)+\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}^{2}\]
\end_inset
\end_layout
\begin_layout Standard
And introduce new variables
\begin_inset Formula $Y_{i}^{\prime}=ln\left(Y_{i}\right)$
\end_inset
and
\begin_inset Formula $X_{2i}^{\prime}=X_{2i}^{2}$
\end_inset
, error term
\begin_inset Formula $\epsilon_{i}^{\prime}=ln\left(e_{i}\right)$
\end_inset
and the model becomes:
\begin_inset Formula \[
Y_{i}^{\prime}=\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}^{\prime}+\epsilon_{i}^{\prime}\]
\end_inset
\end_layout
\begin_layout Subsection*
(c)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
Y_{i}=\beta_{0}+log\left(\beta_{1}X_{1i}\right)+\beta_{2}X_{2i}+\epsilon_{i}\]
\end_inset
Is intrinsically linear because we can rewrite the above as
\begin_inset Formula \[
Y_{i}=\beta_{0}+log\left(\beta_{1}\right)+log\left(X_{1i}\right)+\beta_{2}X_{2i}+\epsilon_{i}\]
\end_inset
\end_layout
\begin_layout Standard
And introduce new constant
\begin_inset Formula $\beta_{0}^{\prime}=\beta_{0}+log\left(\beta_{1}\right)$
\end_inset
, new variable
\begin_inset Formula $X_{i1}^{\prime}=log\left(X_{1i}\right)$
\end_inset
and the model becomes:
\begin_inset Formula \[
Y_{i}=\beta_{0}^{\prime}+\beta_{1}X_{i1}^{\prime}+\beta_{2}X_{2i}+\epsilon_{i}\]
\end_inset
\end_layout
\begin_layout Section*
2
\end_layout
\begin_layout Subsection*
(a)
\end_layout
\begin_layout Standard
We are assuming the
\begin_inset Quotes eld
\end_inset
MS,
\begin_inset Quotes erd
\end_inset
in the ANOVA table given stands for,
\begin_inset Quotes eld
\end_inset
Mean Squared,
\begin_inset Quotes erd
\end_inset
\begin_inset Quotes eld
\end_inset
df
\begin_inset Quotes erd
\end_inset
, stands for,
\begin_inset Quotes eld
\end_inset
degrees of freedom,
\begin_inset Quotes erd
\end_inset
and that 1803.3 is the mean squared of the regression (
\begin_inset Formula $MSR)$
\end_inset
, and 0.8175 is the mean squared of the error (
\begin_inset Formula $MSE)$
\end_inset
.
Then the computed
\begin_inset Formula $F$
\end_inset
-value from the ANOVA table given is
\begin_inset Formula \[
\frac{MSR}{MSE}=\frac{1803.3}{0.8175}\approx2208.87\]
\end_inset
\end_layout
\begin_layout Standard
In order to test whether a regression relation exists, we need the value
from the
\begin_inset Formula $F$
\end_inset
distribution table for
\begin_inset Formula $\alpha=0.05$
\end_inset
,
\begin_inset Formula $n=3$
\end_inset
,
\begin_inset Formula $m=20.$
\end_inset
This is because the ANOVA table given shows 20 degrees of freedom for error
and 3 degrees of freedom for model.
which is
\begin_inset Formula $F_{\left[0.95;3,20\right]}=8.66$
\end_inset
.
The computed
\begin_inset Formula $F$
\end_inset
-value is greater than the value from the
\begin_inset Formula $F$
\end_inset
distribution table.
This means the regression explains a significant part of the variation
at the 0.05 significance level.
We can conclude that a regression relation exists.
\end_layout
\begin_layout Subsection*
(b)
\end_layout
\begin_layout Standard
The conclusion that a regression exists does not imply that the software
engineer need not screen the independent variables.
It is possible that we can do ANOVA, compute
\begin_inset Formula $MSR$
\end_inset
and
\begin_inset Formula $MSE$
\end_inset
that pass the
\begin_inset Formula $F$
\end_inset
-test, but confidence intervals for some model parameters
\begin_inset Formula $\beta_{i}$
\end_inset
include 0.
\end_layout
\begin_layout Standard
If the
\begin_inset Formula $F$
\end_inset
-test had shown that a regression relation had not existed, it would imply
that we cannot reject the hypothesis that all of the model parameters
\begin_inset Formula $\beta_{0}$
\end_inset
,
\begin_inset Formula $\beta_{1}$
\end_inset
,
\begin_inset Formula $\beta_{2}$
\end_inset
,
\begin_inset Formula $\beta_{3}$
\end_inset
are 0.
This would imply that we would not need to screen for independent variables.
It would be a waste of time.
\end_layout
\begin_layout Section*
3
\end_layout
\begin_layout Section*
(a)
\end_layout
\begin_layout Standard
The largest value for
\begin_inset Formula $SSR$
\end_inset
, 5409.89 in the given table is for
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
,
\begin_inset Formula $x_{3}$
\end_inset
.
Therefore the
\begin_inset Formula $R^{2}$
\end_inset
value for the model with
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
,
\begin_inset Formula $x_{3}$
\end_inset
as independent variables would be the largest out of all the models listed.
Therefore this model would be the best set for predicting
\begin_inset Formula $y$
\end_inset
.
\end_layout
\begin_layout Subsection*
(b)
\end_layout
\begin_layout Standard
The observer misses the point that not screening means we might accidentally
select a model with a lower
\begin_inset Formula $R^{2}$
\end_inset
than one of the models that we did not screen.
In this case, we would have selected a model where error explains more
varaition than the best model.
Therefore, we should screen.
\end_layout
\begin_layout Section*
4
\end_layout
\begin_layout Subsection*
(a)
\end_layout
\end_body
\end_document