@@ -33,7 +33,7 @@ download:
33
33
34
34
# NOTE: Please consider using the Step1 and one of Step2 for new dataset,
35
35
# [something] should be replaced with the actual value.
36
- # Step1. DOWNLOAD: wget -N [SOURCE_FILE] -P $(DATADIR)
36
+ # Step1. DOWNLOAD: wget -nv - N [SOURCE_FILE] -P $(DATADIR)
37
37
# Step2-1. UNZIP: unzip -o $(DATADIR)/[SOURCE_FILE] -d [*_source/data/]
38
38
# Step2-2. UNTAR: tar -xzf $(DATADIR)/[SOURCE_FILE] -C [*_source/data/]
39
39
# Step2-3. AS-IS: cp $(DATADIR)/[SOURCE_FILE] [*_source/data/]
@@ -46,18 +46,18 @@ download:
46
46
mkdir -p prototype_source/data
47
47
48
48
# transfer learning tutorial data
49
- wget -N https://download.pytorch.org/tutorial/hymenoptera_data.zip -P $(DATADIR)
49
+ wget -nv - N https://download.pytorch.org/tutorial/hymenoptera_data.zip -P $(DATADIR)
50
50
unzip $(ZIPOPTS) $(DATADIR)/hymenoptera_data.zip -d beginner_source/data/
51
51
52
52
# nlp tutorial data
53
- wget -N https://download.pytorch.org/tutorial/data.zip -P $(DATADIR)
53
+ wget -nv - N https://download.pytorch.org/tutorial/data.zip -P $(DATADIR)
54
54
unzip $(ZIPOPTS) $(DATADIR)/data.zip -d intermediate_source/ # This will unzip all files in data.zip to intermediate_source/data/ folder
55
55
56
56
# data loader tutorial
57
- wget -N https://download.pytorch.org/tutorial/faces.zip -P $(DATADIR)
57
+ wget -nv - N https://download.pytorch.org/tutorial/faces.zip -P $(DATADIR)
58
58
unzip $(ZIPOPTS) $(DATADIR)/faces.zip -d beginner_source/data/
59
59
60
- wget -N https://download.pytorch.org/models/tutorials/4000_checkpoint.tar -P $(DATADIR)
60
+ wget -nv - N https://download.pytorch.org/models/tutorials/4000_checkpoint.tar -P $(DATADIR)
61
61
cp $(DATADIR)/4000_checkpoint.tar beginner_source/data/
62
62
63
63
# neural style images
@@ -66,41 +66,45 @@ download:
66
66
cp -r _static/img/neural-style/ advanced_source/data/images/
67
67
68
68
# Download dataset for beginner_source/dcgan_faces_tutorial.py
69
- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/img_align_celeba.zip -P $(DATADIR)
69
+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/img_align_celeba.zip -P $(DATADIR)
70
70
unzip $(ZIPOPTS) $(DATADIR)/img_align_celeba.zip -d beginner_source/data/celeba
71
71
72
72
# Download dataset for beginner_source/hybrid_frontend/introduction_to_hybrid_frontend_tutorial.py
73
- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/iris.data -P $(DATADIR)
73
+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/iris.data -P $(DATADIR)
74
74
cp $(DATADIR)/iris.data beginner_source/data/
75
75
76
76
# Download dataset for beginner_source/chatbot_tutorial.py
77
- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/cornell_movie_dialogs_corpus .zip -P $(DATADIR)
78
- unzip $(ZIPOPTS) $(DATADIR)/cornell_movie_dialogs_corpus .zip -d beginner_source/data/
77
+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/cornell_movie_dialogs_corpus_v2 .zip -P $(DATADIR)
78
+ unzip $(ZIPOPTS) $(DATADIR)/cornell_movie_dialogs_corpus_v2 .zip -d beginner_source/data/
79
79
80
80
# Download dataset for beginner_source/audio_classifier_tutorial.py
81
- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/UrbanSound8K.tar.gz -P $(DATADIR)
81
+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/UrbanSound8K.tar.gz -P $(DATADIR)
82
82
tar $(TAROPTS) -xzf $(DATADIR)/UrbanSound8K.tar.gz -C ./beginner_source/data/
83
83
84
84
# Download model for beginner_source/fgsm_tutorial.py
85
- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/lenet_mnist_model.pth -P $(DATADIR)
85
+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/lenet_mnist_model.pth -P $(DATADIR)
86
86
cp $(DATADIR)/lenet_mnist_model.pth ./beginner_source/data/lenet_mnist_model.pth
87
87
88
88
# Download model for advanced_source/dynamic_quantization_tutorial.py
89
- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/word_language_model_quantize.pth -P $(DATADIR)
89
+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/word_language_model_quantize.pth -P $(DATADIR)
90
90
cp $(DATADIR)/word_language_model_quantize.pth advanced_source/data/word_language_model_quantize.pth
91
91
92
92
# Download data for advanced_source/dynamic_quantization_tutorial.py
93
- wget -N https://s3.amazonaws.com/pytorch-tutorial-assets/wikitext-2.zip -P $(DATADIR)
93
+ wget -nv - N https://s3.amazonaws.com/pytorch-tutorial-assets/wikitext-2.zip -P $(DATADIR)
94
94
unzip $(ZIPOPTS) $(DATADIR)/wikitext-2.zip -d advanced_source/data/
95
95
96
96
# Download model for advanced_source/static_quantization_tutorial.py
97
- wget -N https://download.pytorch.org/models/mobilenet_v2-b0353104.pth -P $(DATADIR)
97
+ wget -nv - N https://download.pytorch.org/models/mobilenet_v2-b0353104.pth -P $(DATADIR)
98
98
cp $(DATADIR)/mobilenet_v2-b0353104.pth advanced_source/data/mobilenet_pretrained_float.pth
99
99
100
100
# Download model for prototype_source/graph_mode_static_quantization_tutorial.py
101
- wget -N https://download.pytorch.org/models/resnet18-5c106cde.pth -P $(DATADIR)
101
+ wget -nv - N https://download.pytorch.org/models/resnet18-5c106cde.pth -P $(DATADIR)
102
102
cp $(DATADIR)/resnet18-5c106cde.pth prototype_source/data/resnet18_pretrained_float.pth
103
103
104
+ # Download vocab for beginner_source/flava_finetuning_tutorial.py
105
+ wget -nv -N http://dl.fbaipublicfiles.com/pythia/data/vocab.tar.gz -P $(DATADIR)
106
+ tar $(TAROPTS) -xzf $(DATADIR)/vocab.tar.gz -C ./beginner_source/data/
107
+
104
108
# Download some dataset for beginner_source/translation_transformer.py
105
109
python -m spacy download en_core_web_sm
106
110
python -m spacy download de_core_news_sm
0 commit comments