forked from PyTorchKorea/tutorials-kr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_compile_backend_ipex.rst
165 lines (124 loc) ยท 5.43 KB
/
torch_compile_backend_ipex.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
Intelยฎ Extension for PyTorch* ๋ฐฑ์๋
=====================================
**์ ์**: `Hamid Shojanazeri <https://github.com/jingxu10>`_
**๋ฒ์ญ:**: `๊น์ฌํ <https://github.com/jh941213>`_
- `torch.compile` ๊ณผ ๋ ์ ์๋ํ๋๋ก, Intelยฎ Extension for PyTorch๋ ``ipex`` ๋ผ๋ ๋ฐฑ์๋๋ฅผ ๊ตฌํํ์ต๋๋ค.
- ์ด ๋ฐฑ์๋๋ Intel ํ๋ซํผ์์ ํ๋์จ์ด ์์ ์ฌ์ฉ ํจ์จ์ฑ์ ๊ฐ์ ํ์ฌ ์ฑ๋ฅ์ ํฅ์์ํค๋ ๊ฒ์ ๋ชฉํ๋ก ํฉ๋๋ค.
- ๋ชจ๋ธ ์ปดํ์ผ์ ์ํ Intelยฎ Extension for PyTorch์ ์ค๊ณ๋ ์ถ๊ฐ ์ปค์คํฐ๋ง์ด์ง์ ํตํด, `ipex` ๋ฐฑ์๋๊ฐ ๊ตฌํ๋์์ต๋๋ค.
์ฌ์ฉ ์์
~~~~~~~~~~~~~
FP32 ํ์ต
----------
์๋ ์์ ๋ฅผ ํตํด, ์ฌ๋ฌ๋ถ์ FP32 ๋ฐ์ดํฐ ํ์
์ผ๋ก ๋ชจ๋ธ์ ํ์ตํ ๋ `torch.compile` ๊ณผ ํจ๊ป `ipex` ๋ฐฑ์๋๋ฅผ ์ฌ์ฉํ๋ ๋ฐฉ๋ฒ์ ๋ฐฐ์ธ ์ ์์ต๋๋ค.
.. code:: python
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################### ์ฝ๋ ๋ณ๊ฒฝ ๋ถ๋ถ ####################
import intel_extension_for_pytorch as ipex
# ์ ํ์ ์ผ๋ก ๋ค์ API๋ฅผ ํธ์ถํ์ฌ, ํ๋ก ํธ์๋ ์ต์ ํ๋ฅผ ์ ์ฉํฉ๋๋ค.
model, optimizer = ipex.optimize(model, optimizer=optimizer)
compile_model = torch.compile(model, backend="ipex")
######################################################
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = compile_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
BF16 ํ์ต
----------
์๋ ์์๋ฅผ ํตํด BFloat16 ๋ฐ์ดํฐ ํ์
์ผ๋ก ๋ชจ๋ธ ํ์ต์ ์ํด `torch.compile` ์ ํจ๊ป `ipex` ๋ฐฑ์๋๋ฅผ ํ์ฉํ๋ ๋ฐฉ๋ฒ์ ์์๋ณด์ธ์.
.. code:: python
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################### ์ฝ๋ ๋ณ๊ฒฝ ๋ถ๋ถ ####################
import intel_extension_for_pytorch as ipex
# ์ ํ์ ์ผ๋ก ๋ค์ API๋ฅผ ํธ์ถํ์ฌ, ํ๋ก ํธ์๋ ์ต์ ํ๋ฅผ ์ ์ฉํฉ๋๋ค.
model, optimizer = ipex.optimize(model, dtype=torch.bfloat16, optimizer=optimizer)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.cpu.amp.autocast():
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = compile_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
FP32 ์ถ๋ก
--------------
์๋ ์์๋ฅผ ํตํด `ipex` ๋ฐฑ์๋๋ฅผ `torch.compile` ์ ํจ๊ป ํ์ฉํ์ฌ FP32 ๋ฐ์ดํฐ ํ์
์ผ๋ก ๋ชจ๋ธ์ ์ถ๋ก ํ๋ ๋ฐฉ๋ฒ์ ์์๋ณด์ธ์.
.. code:: python
import torch
import torchvision.models as models
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### ์ฝ๋ ๋ณ๊ฒฝ ๋ถ๋ถ ####################
import intel_extension_for_pytorch as ipex
# ์ ํ์ ์ผ๋ก ๋ค์ API๋ฅผ ํธ์ถํ์ฌ, ํ๋ก ํธ์๋ ์ต์ ํ๋ฅผ ์ ์ฉํฉ๋๋ค.
model = ipex.optimize(model, weights_prepack=False)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.no_grad():
compile_model(data)
BF16 ์ถ๋ก
--------------
์๋ ์์๋ฅผ ํตํด `ipex` ๋ฐฑ์๋๋ฅผ `torch.compile`์ ํจ๊ป ํ์ฉํ์ฌ BFloat16 ๋ฐ์ดํฐ ํ์
์ผ๋ก ๋ชจ๋ธ์ ์ถ๋ก ํ๋ ๋ฐฉ๋ฒ์ ์์๋ณด์ธ์.
.. code:: python
import torch
import torchvision.models as models
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### ์ฝ๋ ๋ณ๊ฒฝ ๋ถ๋ถ ####################
import intel_extension_for_pytorch as ipex
# ์ ํ์ ์ผ๋ก ๋ค์ API๋ฅผ ํธ์ถํ์ฌ, ํ๋ก ํธ์๋ ์ต์ ํ๋ฅผ ์ ์ฉํฉ๋๋ค.
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.no_grad(), torch.autocast(device_type="cpu", dtype=torch.bfloat16):
compile_model(data)